Table of Contents

What Is Amazon EC2? ... 1
Features of Amazon EC2 ... 1
How to Get Started with Amazon EC2 .. 1
Related Services ... 2
Accessing Amazon EC2 ... 3
Pricing for Amazon EC2 .. 3
PCI DSS Compliance ... 4
Basic Infrastructure ... 4
Amazon Machine Images and Instances ... 4
Regions and Availability Zones ... 5
Storage .. 6
Root Device Volume .. 7
Networking and Security ... 8
AWS Identity and Access Management ... 8
Differences between Windows Server and an Amazon EC2 Windows Instance ... 9
Designing Your Applications to Run on Amazon EC2 Windows Instances .. 10

Setting Up .. 12
Sign Up for AWS .. 12
Create an IAM User .. 12
Create a Key Pair ... 14
Create a Virtual Private Cloud (VPC) .. 15
Create a Security Group .. 16

Getting Started .. 19
Overview ... 19
Prerequisites .. 20
Step 1: Launch an Instance .. 20
Step 2: Connect to Your Instance ... 21
Step 3: Clean Up Your Instance ... 22
Next Steps .. 23

Best Practices ... 24

Tutorials ... 26
Tutorial: Deploy a WordPress Blog ... 26
Prerequisites .. 26
Installing the Microsoft Web Platform Installer .. 27
Installing WordPress .. 27
Configuring Security Keys ... 28
Configuring the Site Title and Administrator ... 29
Making Your WordPress Site Public .. 29
Next Steps .. 30

Tutorial: Installing a WAMP Server ... 30

Tutorial: Installing a WIMP Server .. 33
Prerequisites .. 33
Prepare Your Instance ... 33
Install the IIS web server .. 34
Install MySQL and PHP .. 35
Test Your Server .. 35

Tutorial: Increase the Availability of Your Application .. 36
Prerequisites .. 37
Scale and Load Balance Your Application .. 37
Test Your Load Balancer .. 39

Tutorial: Remotely Manage Your Instances .. 39
Grant Your User Account Access to Systems Manager ... 40
Install the SSM Agent ... 40
Send a Command Using the EC2 Console .. 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAM and Amazon EC2</td>
<td>467</td>
</tr>
<tr>
<td>IAM Policies</td>
<td>468</td>
</tr>
<tr>
<td>IAM Roles</td>
<td>534</td>
</tr>
<tr>
<td>Network Access</td>
<td>542</td>
</tr>
<tr>
<td>Amazon VPC</td>
<td>544</td>
</tr>
<tr>
<td>Benefits of Using a VPC</td>
<td>545</td>
</tr>
<tr>
<td>Differences Between EC2-Classic and EC2-VPC</td>
<td>545</td>
</tr>
<tr>
<td>Sharing and Accessing Resources Between EC2-Classic and EC2-VPC</td>
<td>548</td>
</tr>
<tr>
<td>Instance Types Available Only in a VPC</td>
<td>550</td>
</tr>
<tr>
<td>Amazon VPC Documentation</td>
<td>550</td>
</tr>
<tr>
<td>Supported Platforms</td>
<td>551</td>
</tr>
<tr>
<td>ClassicLink</td>
<td>552</td>
</tr>
<tr>
<td>Migrating from EC2-Classic to a VPC</td>
<td>562</td>
</tr>
<tr>
<td>Instance IP Addressing</td>
<td>571</td>
</tr>
<tr>
<td>Network Interfaces</td>
<td>595</td>
</tr>
<tr>
<td>Network Interface Basics</td>
<td>596</td>
</tr>
<tr>
<td>Elastic IP Addresses</td>
<td>586</td>
</tr>
<tr>
<td>Elastic IP Address Basics</td>
<td>587</td>
</tr>
<tr>
<td>Elastic IP Address Differences for EC2-Classic and EC2-VPC</td>
<td>587</td>
</tr>
<tr>
<td>Working with Elastic IP Addresses</td>
<td>589</td>
</tr>
<tr>
<td>Using Reverse DNS for Email Applications</td>
<td>595</td>
</tr>
<tr>
<td>Elastic IP Address Limit</td>
<td>595</td>
</tr>
<tr>
<td>Network Interfaces</td>
<td>596</td>
</tr>
<tr>
<td>Elastic IP Addresses</td>
<td>586</td>
</tr>
<tr>
<td>Elastic IP Address Basics</td>
<td>587</td>
</tr>
<tr>
<td>Elastic IP Address Differences for EC2-Classic and EC2-VPC</td>
<td>587</td>
</tr>
<tr>
<td>Working with Elastic IP Addresses</td>
<td>589</td>
</tr>
<tr>
<td>Using Reverse DNS for Email Applications</td>
<td>595</td>
</tr>
<tr>
<td>Elastic IP Address Limit</td>
<td>595</td>
</tr>
<tr>
<td>Placement Groups</td>
<td>612</td>
</tr>
<tr>
<td>Cluster Placement Groups</td>
<td>613</td>
</tr>
<tr>
<td>Spread Placement Groups</td>
<td>613</td>
</tr>
<tr>
<td>Placement Group Rules and Limitations</td>
<td>613</td>
</tr>
<tr>
<td>Creating a Placement Group</td>
<td>614</td>
</tr>
<tr>
<td>Launching Instances in a Placement Group</td>
<td>615</td>
</tr>
<tr>
<td>Deleting a Placement Group</td>
<td>615</td>
</tr>
<tr>
<td>Network MTU</td>
<td>616</td>
</tr>
<tr>
<td>Jumbo Frames (9001 MTU)</td>
<td>616</td>
</tr>
<tr>
<td>Path MTU Discovery</td>
<td>616</td>
</tr>
<tr>
<td>Check the Path MTU Between Two Hosts</td>
<td>617</td>
</tr>
<tr>
<td>Check and Set the MTU on Your Windows Instance</td>
<td>618</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>619</td>
</tr>
<tr>
<td>Enhanced Networking</td>
<td>619</td>
</tr>
<tr>
<td>Enhanced Networking Types</td>
<td>619</td>
</tr>
<tr>
<td>Enabling Enhanced Networking on Your Instance</td>
<td>620</td>
</tr>
<tr>
<td>Enabling Enhanced Networking: Intel 82599 VF</td>
<td>620</td>
</tr>
<tr>
<td>Enabling Enhanced Networking: ENA</td>
<td>623</td>
</tr>
<tr>
<td>Storage</td>
<td>627</td>
</tr>
<tr>
<td>Amazon EBS</td>
<td>628</td>
</tr>
<tr>
<td>Features of Amazon EBS</td>
<td>629</td>
</tr>
<tr>
<td>EBS Volumes</td>
<td>630</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Getting Started</td>
<td>772</td>
</tr>
<tr>
<td>Setting Up</td>
<td>772</td>
</tr>
<tr>
<td>- Sign Up for AWS</td>
<td>772</td>
</tr>
<tr>
<td>- Set Up Access for Users</td>
<td>773</td>
</tr>
<tr>
<td>- Deploy the Add-In</td>
<td>775</td>
</tr>
<tr>
<td>- Provide Your AWS Credentials</td>
<td>775</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>782</td>
</tr>
<tr>
<td>- Error: Add-in cannot be installed</td>
<td>782</td>
</tr>
<tr>
<td>- Installation Errors</td>
<td>782</td>
</tr>
<tr>
<td>- Checking the Log File</td>
<td>783</td>
</tr>
<tr>
<td>- Errors Importing a VM</td>
<td>783</td>
</tr>
<tr>
<td>- Uninstalling the Add-In</td>
<td>783</td>
</tr>
<tr>
<td>AWS Management Pack</td>
<td>785</td>
</tr>
<tr>
<td>- Overview of AWS Management Pack for System Center 2012</td>
<td>785</td>
</tr>
<tr>
<td>- Overview of AWS Management Pack for System Center 2007 R2</td>
<td>787</td>
</tr>
<tr>
<td>Downloading</td>
<td>788</td>
</tr>
<tr>
<td>- System Center 2012</td>
<td>788</td>
</tr>
<tr>
<td>- System Center 2007 R2</td>
<td>788</td>
</tr>
<tr>
<td>Deploying</td>
<td>789</td>
</tr>
<tr>
<td>- Step 1: Installing the AWS Management Pack</td>
<td>789</td>
</tr>
<tr>
<td>- Step 2: Configuring the Watcher Node</td>
<td>791</td>
</tr>
<tr>
<td>- Step 3: Create an AWS Run As Account</td>
<td>791</td>
</tr>
<tr>
<td>- Step 4: Run the Add Monitoring Wizard</td>
<td>794</td>
</tr>
<tr>
<td>- Step 5: Configure Ports and Endpoints</td>
<td>798</td>
</tr>
<tr>
<td>Using</td>
<td>798</td>
</tr>
<tr>
<td>- Views</td>
<td>799</td>
</tr>
<tr>
<td>- Discoveries</td>
<td>813</td>
</tr>
<tr>
<td>- Monitors</td>
<td>814</td>
</tr>
<tr>
<td>- Rules</td>
<td>815</td>
</tr>
<tr>
<td>- Events</td>
<td>815</td>
</tr>
<tr>
<td>- Health Model</td>
<td>816</td>
</tr>
<tr>
<td>- Customizing the AWS Management Pack</td>
<td>817</td>
</tr>
<tr>
<td>Upgrading</td>
<td>818</td>
</tr>
<tr>
<td>- System Center 2012</td>
<td>818</td>
</tr>
<tr>
<td>- System Center 2007 R2</td>
<td>819</td>
</tr>
<tr>
<td>Uninstalling</td>
<td>819</td>
</tr>
<tr>
<td>- System Center 2012</td>
<td>819</td>
</tr>
<tr>
<td>- System Center 2007 R2</td>
<td>820</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>820</td>
</tr>
<tr>
<td>- Errors 4101 and 4105</td>
<td>820</td>
</tr>
<tr>
<td>- Error 4513</td>
<td>820</td>
</tr>
</tbody>
</table>
What Is Amazon EC2?

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the Amazon Web Services (AWS) cloud. Using Amazon EC2 eliminates your need to invest in hardware up front, so you can develop and deploy applications faster. You can use Amazon EC2 to launch as many or as few virtual servers as you need, configure security and networking, and manage storage. Amazon EC2 enables you to scale up or down to handle changes in requirements or spikes in popularity, reducing your need to forecast traffic.

For more information about cloud computing, see What is Cloud Computing?

Features of Amazon EC2

Amazon EC2 provides the following features:

- Virtual computing environments, known as instances
- Preconfigured templates for your instances, known as Amazon Machine Images (AMIs), that package the bits you need for your server (including the operating system and additional software)
- Various configurations of CPU, memory, storage, and networking capacity for your instances, known as instance types
- Secure login information for your instances using key pairs (AWS stores the public key, and you store the private key in a secure place)
- Storage volumes for temporary data that’s deleted when you stop or terminate your instance, known as instance store volumes
- Persistent storage volumes for your data using Amazon Elastic Block Store (Amazon EBS), known as Amazon EBS volumes
- Multiple physical locations for your resources, such as instances and Amazon EBS volumes, known as regions and Availability Zones
- A firewall that enables you to specify the protocols, ports, and source IP ranges that can reach your instances using security groups
- Static IPv4 addresses for dynamic cloud computing, known as Elastic IP addresses
- Metadata, known as tags, that you can create and assign to your Amazon EC2 resources
- Virtual networks you can create that are logically isolated from the rest of the AWS cloud, and that you can optionally connect to your own network, known as virtual private clouds (VPCs)

For more information about the features of Amazon EC2, see the Amazon EC2 product page.

Amazon EC2 enables you to run any compatible Windows-based solution on our high-performance, reliable, cost-effective, cloud computing platform. For more information, see Amazon EC2 Running Windows Server & SQL.

For more information about running your website on AWS, see Websites & Website Hosting.

How to Get Started with Amazon EC2

The first thing you need to do is get set up to use Amazon EC2. After you are set up, you are ready to complete the Getting Started tutorial for Amazon EC2. Whenever you need more information about a feature of Amazon EC2, you can read the technical documentation.
Get Up and Running

- Setting Up with Amazon EC2 (p. 12)
- Getting Started with Amazon EC2 Windows Instances (p. 19)

Basics

- Amazon EC2 Basic Infrastructure for Windows (p. 4)
- Instance Types (p. 104)
- Tags (p. 759)

Networking and Security

- Amazon EC2 Key Pairs and Windows Instances (p. 446)
- Security Groups (p. 451)
- Elastic IP Addresses (p. 586)
- Amazon EC2 and Amazon VPC (p. 544)

Storage

- Amazon EBS (p. 628)
- Instance Store (p. 722)

Working with Windows Instances

- Remote Management (Run Command)
- Differences between Windows Server and an Amazon EC2 Windows Instance (p. 9)
- Designing Your Applications to Run on Amazon EC2 Windows Instances (p. 10)
- Getting Started with AWS: Hosting a .NET Web App

If you have questions about whether AWS is right for you, contact AWS Sales. If you have technical questions about Amazon EC2, use the Amazon EC2 forum.

Related Services

You can provision Amazon EC2 resources, such as instances and volumes, directly using Amazon EC2. You can also provision Amazon EC2 resources using other services in AWS. For more information, see the following documentation:

- Amazon EC2 Auto Scaling User Guide
- AWS CloudFormation User Guide
- AWS Elastic Beanstalk Developer Guide
- AWS OpsWorks User Guide

To automatically distribute incoming application traffic across multiple instances, use Elastic Load Balancing. For more information, see Elastic Load Balancing User Guide.

To monitor basic statistics for your instances and Amazon EBS volumes, use Amazon CloudWatch. For more information, see the Amazon CloudWatch User Guide.
To automate actions, such as activating a Lambda function whenever a new Amazon EC2 instance starts, or invoking SSM Run Command whenever an event in another AWS service happens, use Amazon CloudWatch Events. For more information, see the Amazon CloudWatch Events User Guide.

To monitor the calls made to the Amazon EC2 API for your account, including calls made by the AWS Management Console, command line tools, and other services, use AWS CloudTrail. For more information, see the AWS CloudTrail User Guide.

To get a managed relational database in the cloud, use Amazon Relational Database Service (Amazon RDS) to launch a database instance. Although you can set up a database on an EC2 instance, Amazon RDS offers the advantage of handling your database management tasks, such as patching the software, backing up, and storing the backups. For more information, see Amazon Relational Database Service Developer Guide.

To import virtual machine (VM) images from your local environment into AWS and convert them into ready-to-use AMIs or instances, use VM Import/Export. For more information, see the VM Import/Export User Guide.

Accessing Amazon EC2

Amazon EC2 provides a web-based user interface, the Amazon EC2 console. If you've signed up for an AWS account, you can access the Amazon EC2 console by signing into the AWS Management Console and selecting EC2 from the console home page.

If you prefer to use a command line interface, you have the following options:

AWS Command Line Interface (CLI)

Provides commands for a broad set of AWS products, and is supported on Windows, Mac, and Linux. To get started, see AWS Command Line Interface User Guide. For more information about the commands for Amazon EC2, see ec2 in the AWS CLI Command Reference.

AWS Tools for Windows PowerShell

Provides commands for a broad set of AWS products for those who script in the PowerShell environment. To get started, see the AWS Tools for Windows PowerShell User Guide. For more information about the cmdlets for Amazon EC2, see the AWS Tools for PowerShell Cmdlet Reference.

Amazon EC2 provides a Query API. These requests are HTTP or HTTPS requests that use the HTTP verbs GET or POST and a Query parameter named Action. For more information about the API actions for Amazon EC2, see Actions in the Amazon EC2 API Reference.

If you prefer to build applications using language-specific APIs instead of submitting a request over HTTP or HTTPS, AWS provides libraries, sample code, tutorials, and other resources for software developers. These libraries provide basic functions that automate tasks such as cryptographically signing your requests, retrying requests, and handling error responses, making it is easier for you to get started. For more information, see AWS SDKs and Tools.

Pricing for Amazon EC2

When you sign up for AWS, you can get started with Amazon EC2 for free using the AWS Free Tier.

Amazon EC2 provides the following purchasing options for instances:
On-Demand Instances

Pay for the instances that you use by the hour, with no long-term commitments or upfront payments.

Reserved Instances

Make a low, one-time, up-front payment for an instance, reserve it for a one- or three-year term, and pay a significantly lower hourly rate for these instances.

Spot Instances

Request unused EC2 instances, which can lower your costs significantly.

For a complete list of charges and specific prices for Amazon EC2, see Amazon EC2 Pricing.

To calculate the cost of a sample provisioned environment, see AWS Economics Center.

To see your bill, go to your AWS Account Activity page. Your bill contains links to usage reports that provide details about your bill. To learn more about AWS account billing, see AWS Account Billing.

If you have questions concerning AWS billing, accounts, and events, contact AWS Support.

For an overview of Trusted Advisor, a service that helps you optimize the costs, security, and performance of your AWS environment, see AWS Trusted Advisor.

PCI DSS Compliance

Amazon EC2 supports the processing, storage, and transmission of credit card data by a merchant or service provider, and has been validated as being compliant with Payment Card Industry (PCI) Data Security Standard (DSS). For more information about PCI DSS, including how to request a copy of the AWS PCI Compliance Package, see PCI DSS Level 1.

Amazon EC2 Basic Infrastructure for Windows

As you get started with Amazon EC2, you'll benefit from understanding the components of its basic infrastructure and how they compare or contrast with your own data centers.

Concepts

- Amazon Machine Images and Instances (p. 4)
- Regions and Availability Zones (p. 5)
- Storage (p. 6)
- Root Device Volume (p. 7)
- Networking and Security (p. 8)
- AWS Identity and Access Management (p. 8)
- Differences between Windows Server and an Amazon EC2 Windows Instance (p. 9)
- Designing Your Applications to Run on Amazon EC2 Windows Instances (p. 10)

Amazon Machine Images and Instances

An Amazon Machine Image (AMI) is a template that contains a software configuration (for example, an operating system, an application server, and applications). From an AMI, you launch instances, which are copies of the AMI running as virtual servers in the cloud.
Amazon publishes many AMIs that contain common software configurations for public use. In addition, members of the AWS developer community have published their own custom AMIs. You can also create your own custom AMI or AMIs; doing so enables you to quickly and easily start new instances that have everything you need. For example, if your application is a website or web service, your AMI could include a web server, the associated static content, and the code for the dynamic pages. As a result, after you launch an instance from this AMI, your web server starts, and your application is ready to accept requests.

You can launch different types of instances from a single AMI. An instance type essentially determines the hardware of the host computer used for your instance. Each instance type offers different compute and memory facilities. Select an instance type based on the amount of memory and computing power that you need for the applications or software that you plan to run on the instance. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types. You can also launch multiple instances from an AMI, as shown in the following figure.

Your Windows instances keep running until you stop or terminate them, or until they fail. If an instance fails, you can launch a new one from the AMI.

Your AWS account has a limit on the number of instances that you can have running. For more information about this limit, and how to request an increase, see How many instances can I run in Amazon EC2 in the Amazon EC2 General FAQ.

Regions and Availability Zones

Amazon has data centers in different areas of the world (for example, North America, Europe, and Asia). Correspondingly, Amazon EC2 is available to use in different regions. By launching instances in separate regions, you can design your application to be closer to specific customers or to meet legal or other requirements. Prices for Amazon EC2 usage vary by region (for more information about pricing by region, see Amazon EC2 Pricing).

Each region contains multiple distinct locations called Availability Zones. Each Availability Zone is engineered to be isolated from failures in other Availability Zones, and to provide inexpensive, low-latency network connectivity to other zones in the same region. By launching instances in separate Availability Zones, you can protect your applications from the failure of a single location.
Storage

When using Amazon EC2, you may have data that you need to store. Amazon EC2 offers the following storage options:

- Amazon Elastic Block Store (Amazon EBS)
- Amazon EC2 Instance Store (p. 722)
- Amazon Simple Storage Service (Amazon S3)

The following figure shows the relationship between these types of storage.

Amazon EBS Volumes

Amazon EBS volumes are the recommended storage option for the majority of use cases. Amazon EBS provides your instances with persistent, block-level storage. Amazon EBS volumes are essentially hard disks that you can attach to a running instance.

Amazon EBS is especially suited for applications that require a database, a file system, or access to raw block-level storage.

As illustrated in the previous figure, you can attach multiple volumes to an instance. Also, to keep a backup copy of your data, you can create a snapshot of an EBS volume, which is stored in Amazon S3.
You can create a new Amazon EBS volume from a snapshot, and attach it to another instance. You can also detach a volume from an instance and attach it to a different instance. The following figure illustrates the life cycle of an EBS volume.

For more information about Amazon EBS volumes, see Amazon Elastic Block Store (p. 628).

Instance Store

All instance types, with the exception of Micro instances, offer *instance store*, which provides your instances with temporary, block-level storage. This is storage that is physically attached to the host computer. The data on an instance store volume doesn't persist when the associated instance is stopped or terminated. For more information about instance store volumes, see Amazon EC2 Instance Store (p. 722).

Instance store is an option for inexpensive temporary storage. You can use instance store volumes if you don't require data persistence.

Amazon S3

Amazon S3 is storage for the Internet. It provides a simple web service interface that enables you to store and retrieve any amount of data from anywhere on the web. For more information about Amazon S3, see the Amazon S3 product page.

Root Device Volume

When you launch an instance, the *root device volume* contains the image used to boot the instance. When you launch a Windows instance, a root EBS volume is created from an EBS snapshot and attached to the instance.

By default, the root volume is deleted when the instance terminates (the `DeleteOnTermination` attribute is `true`). Using the console, you can change `DeleteOnTermination` when you launch an instance. To change this attribute for a running instance, you must use the command line.

To change the root device volume of an instance to persist at launch using the console

1. Open the Amazon EC2 console.
2. From the Amazon EC2 console dashboard, click *Launch Instance*.
3. On the Choose an Amazon Machine Image (AMI) page, choose the AMI to use and click Select.
4. Follow the wizard to complete the Choose an Instance Type and Configure Instance Details pages.
5. On the Add Storage page, deselect the Delete On Termination check box for the root volume.
6. Complete the remaining wizard pages, and then click Launch.

You can verify the setting by viewing details for the root device volume on the instance's details pane. Next to Block devices, choose the entry for the root device volume. By default, Delete on termination is True. If you change the default behavior, Delete on termination is False.

To change the root device volume of an instance to persist using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-instance-attribute (AWS CLI)
- Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

Networking and Security

You can launch instances in one of two platforms: EC2-Classic and EC2-VPC. An instance that's launched into EC2-Classic is assigned a public IPv4 address. By default, an instance that's launched into EC2-VPC is assigned public IPv4 address only if it's launched into a default VPC. An instance that's launched into a nondefault VPC must be specifically assigned a public IPv4 address at launch, or you must modify your subnet's default public IPv4 addressing behavior. For more information about EC2-Classic and EC2-VPC, see Supported Platforms (p. 551).

Instances can fail or terminate for reasons outside of your control. If one fails and you launch a replacement instance, the replacement has a different public IPv4 address than the original. However, if your application needs a static IPv4 address, Amazon EC2 offers Elastic IP addresses. For more information, see Amazon EC2 Instance IP Addressing (p. 571).

You can use security groups to control who can access your instances. These are analogous to an inbound network firewall that enables you to specify the protocols, ports, and source IP ranges that are allowed to reach your instances. You can create multiple security groups and assign different rules to each group. You can then assign each instance to one or more security groups, and we use the rules to determine which traffic is allowed to reach the instance. You can configure a security group so that only specific IP addresses or specific security groups have access to the instance. For more information, see Amazon EC2 Security Groups for Windows Instances (p. 451).

AWS Identity and Access Management

AWS Identity and Access Management (IAM) enables you to do the following:

- Create users and groups under your AWS account
- Assign unique security credentials to each user under your AWS account
- Control each user's permissions to perform tasks using AWS resources
- Allow the users in another AWS account to share your AWS resources
- Create roles for your AWS account and define the users or services that can assume them
- Use existing identities for your enterprise to grant permissions to perform tasks using AWS resources

By using IAM with Amazon EC2, you can control whether users in your organization can perform a task using specific Amazon EC2 API actions and whether they can use specific AWS resources.
Differences between Windows Server and an Amazon EC2 Windows Instance

After you launch your Amazon EC2 Windows instance, it behaves like a traditional server running Windows Server. For example, both Windows Server and an Amazon EC2 instance can be used to run your web applications, conduct batch processing, or manage applications requiring large-scale computations. However, there are important differences between the server hardware model and the cloud computing model. The way an Amazon EC2 instance runs is not the same as the way a traditional server running Windows Server runs.

Before you begin launching Amazon EC2 Windows instances, you should be aware that the architecture of applications running on cloud servers can differ significantly from the architecture for traditional application models running on your hardware. Implementing applications on cloud servers requires a shift in your design process.

The following table describes some key differences between Windows Server and an Amazon EC2 Windows instance.

<table>
<thead>
<tr>
<th>Windows Server</th>
<th>Amazon EC2 Windows Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources and capacity are physically limited.</td>
<td>Resources and capacity are scalable.</td>
</tr>
<tr>
<td>You pay for the infrastructure, even if you don’t use it.</td>
<td>You pay for the usage of the infrastructure. We stop charging you for the instance as soon as you stop or terminate it.</td>
</tr>
<tr>
<td>Occupies physical space and must be maintained on a regular basis.</td>
<td>Doesn’t occupy physical space and does not require regular maintenance.</td>
</tr>
<tr>
<td>Starts with push of the power button (known as cold booting).</td>
<td>Starts with the launch of the instance.</td>
</tr>
<tr>
<td>You can keep the server running until it is time to shut it down, or put it in a sleep or hibernation state (during which the server is powered down).</td>
<td>You can keep the server running, or stop and restart it (during which the instance is moved to a new host computer).</td>
</tr>
<tr>
<td>When you shut down the server, all resources remain intact and in the state they were in when you switched it off. Information you stored on the hard drives persists and can be accessed whenever it’s needed. You can restore the server to the running state by powering it on.</td>
<td>When you terminate the instance, its infrastructure is no longer available to you. You can’t connect to or restart an instance after you’ve terminated it. However, you can create an image from your instance while it’s running, and launch new instances from the image at any time.</td>
</tr>
</tbody>
</table>

A traditional server running Windows Server goes through the states shown in the following diagram.
An Amazon EC2 Windows instance is similar to the traditional Windows Server, as you can see by comparing the following diagram with the previous diagram for Windows Server. After you launch an instance, it briefly goes into the pending state while registration takes place, then it goes into the running state. The instance remains active until you stop or terminate it. You can't restart an instance after you terminate it. You can create a backup image of your instance while it's running, and launch a new instance from that backup image.

Designing Your Applications to Run on Amazon EC2 Windows Instances

It is important that you consider the differences mentioned in the previous section when you design your applications to run on Amazon EC2 Windows instances.

Applications built for Amazon EC2 use the underlying computing infrastructure on an as-needed basis. They draw on necessary resources (such as storage and computing) on demand in order to perform a job, and relinquish the resources when done. In addition, they often dispose of themselves after the job is done. While in operation, the application scales up and down elastically based on resource requirements. An application running on an Amazon EC2 instance can terminate and recreate the various components at will in case of infrastructure failures.

When designing your Windows applications to run on Amazon EC2, you can plan for rapid deployment and rapid reduction of compute and storage resources, based on your changing needs.

When you run an Amazon EC2 Windows instance, you don't need to provision the exact system package of hardware, software, and storage, the way you do with Windows Server. Instead, you can focus on using a variety of cloud resources to improve the scalability and overall performance of your Windows application.

With Amazon EC2, designing for failure and outages is an integral and crucial part of the architecture. As with any scalable and redundant system, architecture of your system should account for computing,
network, and storage failures. You have to build mechanisms in your applications that can handle different kinds of failures. The key is to build a modular system with individual components that are not tightly coupled, can interact asynchronously, and treat one another as black boxes that are independently scalable. Thus, if one of your components fails or is busy, you can launch more instances of that component without breaking your current system.

Another key element to designing for failure is to distribute your application geographically. Replicating your application across geographically distributed regions improves high availability in your system.

Amazon EC2 infrastructure is programmable and you can use scripts to automate the deployment process, to install and configure software and applications, and to bootstrap your virtual servers.

You should implement security in every layer of your application architecture running on an Amazon EC2 Windows instance. If you are concerned about storing sensitive and confidential data within your Amazon EC2 environment, you should encrypt the data before uploading it.
Setting Up with Amazon EC2

If you've already signed up for Amazon Web Services (AWS), you can start using Amazon EC2 immediately. You can open the Amazon EC2 console, choose **Launch Instance**, and follow the steps in the launch wizard to launch your first instance.

If you haven't signed up for AWS yet, or if you need assistance launching your first instance, complete the following tasks to get set up to use Amazon EC2:

1. **Sign Up for AWS** (p. 12)
2. **Create an IAM User** (p. 12)
3. **Create a Key Pair** (p. 14)
4. **Create a Virtual Private Cloud (VPC)** (p. 15)
5. **Create a Security Group** (p. 16)

Sign Up for AWS

When you sign up for Amazon Web Services (AWS), your AWS account is automatically signed up for all services in AWS, including Amazon EC2. You are charged only for the services that you use.

With Amazon EC2, you pay only for what you use. If you are a new AWS customer, you can get started with Amazon EC2 for free. For more information, see **AWS Free Tier**.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose **Create an AWS Account**.

 Note

 This might be unavailable in your browser if you previously signed into the AWS Management Console. In that case, choose **Sign in to a different account**, and then choose **Create a new AWS account**.

2. Follow the online instructions.

 Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.

 Note your AWS account number, because you'll need it for the next task.

Create an IAM User

Services in AWS, such as Amazon EC2, require that you provide credentials when you access them, so that the service can determine whether you have permission to access its resources. The console requires your password. You can create access keys for your AWS account to access the command line interface or API. However, we don't recommend that you access AWS using the credentials for your AWS account; we recommend that you use AWS Identity and Access Management (IAM) instead. Create an IAM user, and then add the user to an IAM group with administrative permissions or grant this user administrative permissions. You can then access AWS using a special URL and the credentials for the IAM user.
If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM console. If you aren't familiar with using the console, see Working with the AWS Management Console for an overview.

To create an IAM user for yourself and add the user to an Administrators group

1. Use your AWS account email address and password to sign in as the AWS account root user to the IAM console at https://console.aws.amazon.com/iam/.

 Note

 We strongly recommend that you adhere to the best practice of using the Administrator user below and securely lock away the root user credentials. Sign in as the root user only to perform a few account and service management tasks.

2. In the navigation pane of the console, choose Users, and then choose Add user.

3. For User name, type Administrator.

4. Select the check box next to AWS Management Console access, select Custom password, and then type the new user's password in the text box. You can optionally select Require password reset to force the user to select a new password the next time the user signs in.

5. Choose Next: Permissions.

6. On the Set permissions for user page, choose Add user to group.

7. Choose Create group.

8. In the Create group dialog box, type Administrators.

9. For Filter, choose Job function.

10. In the policy list, select the check box for AdministratorAccess. Then choose Create group.

11. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary to see the group in the list.

12. Choose Next: Review to see the list of group memberships to be added to the new user. When you are ready to proceed, choose Create user.

You can use this same process to create more groups and users, and to give your users access to your AWS account resources. To learn about using policies to restrict users’ permissions to specific AWS resources, go to Access Management and Example Policies.

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://your_aws_account_id.signin.aws.amazon.com/console/

Enter the IAM user name (not your email address) and password that you just created. When you're signed in, the navigation bar displays "your_user_name @ your_aws_account_id".

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account alias. From the IAM console, choose Dashboard in the navigation pane. From the dashboard, choose Customize and enter an alias such as your company name. To sign in after you create an account alias, use the following URL:

https://your_account_alias.signin.aws.amazon.com/console/

To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM users sign-in link on the dashboard.

For more information about IAM, see IAM and Amazon EC2 (p. 467).
Create a Key Pair

AWS uses public-key cryptography to secure the login information for your instance. You specify the name of the key pair when you launch your instance, then provide the private key to obtain the administrator password for your Windows instance so you can log in using RDP.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. Note that if you plan to launch instances in multiple regions, you'll need to create a key pair in each region. For more information about regions, see Regions and Availability Zones (p. 5).

To create a key pair

1. Sign in to AWS using the URL that you created in the previous section.
2. From the AWS dashboard, choose **EC2** to open the Amazon EC2 console.
3. From the navigation bar, select a region for the key pair. You can select any region that's available to you, regardless of your location. However, key pairs are specific to a region; for example, if you plan to launch an instance in the US East (Ohio) Region, you must create a key pair for the instance in the US East (Ohio) Region.

4. In the navigation pane, under **NETWORK & SECURITY**, choose **Key Pairs**.
Create a Virtual Private Cloud (VPC)

Amazon VPC enables you to launch AWS resources into a virtual network that you've defined. If you have a default VPC, you can skip this section and move to the next task, Create a Security Group (p. 16). To determine whether you have a default VPC, see Supported Platforms in the Amazon EC2 Console (p. 551). Otherwise, you can create a nondefault VPC in your account using the steps below.

Important
If your account supports EC2-Classic in a region, then you do not have a default VPC in that region. T2 instances must be launched into a VPC.

To create a nondefault VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the navigation bar, select a region for the VPC. VPCs are specific to a region, so you should select the same region in which you created your key pair.
3. On the VPC dashboard, choose **Start VPC Wizard**.
4. On the **Step 1: Select a VPC Configuration** page, ensure that **VPC with a Single Public Subnet** is selected, and choose **Select**.
Create a Security Group

Security groups act as a firewall for associated instances, controlling both inbound and outbound traffic at the instance level. You must add rules to a security group that enable you to connect to your instance from your IP address using RDP. You can also add rules that allow inbound and outbound HTTP and HTTPS access from anywhere.

Note that if you plan to launch instances in multiple regions, you'll need to create a security group in each region. For more information about regions, see Regions and Availability Zones (p. 5).

Prerequisites

You'll need the public IPv4 address of your local computer. The security group editor in the Amazon EC2 console can automatically detect the public IPv4 address for you. Alternatively, you can use the search phrase "what is my IP address" in an Internet browser, or use the following service: Check IP. If you are connecting through an Internet service provider (ISP) or from behind a firewall without a static IP address, you need to find out the range of IP addresses used by client computers.

To create a security group with least privilege

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

 Tip
 Alternatively, you can use the Amazon VPC console to create a security group. However, the instructions in this procedure don't match the Amazon VPC console. Therefore, if you switched to the Amazon VPC console in the previous section, either switch back to the Amazon EC2 console and use these instructions, or use the instructions in Set Up a Security Group for Your VPC in the Amazon VPC Getting Started Guide.

2. From the navigation bar, select a region for the security group. Security groups are specific to a region, so you should select the same region in which you created your key pair.

5. Enter a name for the new security group and a description. Use a name that is easy for you to remember, such as your IAM user name, followed by _SG_, plus the region name. For example, me_SG_uswest2.

6. In the VPC list, select your VPC. If you have a default VPC, it's the one that is marked with an asterisk (*).

 Note
 If your account supports EC2-Classic, select the VPC that you created in the previous task.

7. On the Inbound tab, create the following rules (choose Add Rule for each new rule), and then choose Create:
 - Choose HTTP from the Type list, and make sure that Source is set to Anywhere (0.0.0.0/0).
 - Choose HTTPS from the Type list, and make sure that Source is set to Anywhere (0.0.0.0/0).
 - Choose RDP from the Type list. In the Source box, choose My IP to automatically populate the field with the public IPv4 address of your local computer. Alternatively, choose Custom and specify the public IPv4 address of your computer or network in CIDR notation. To specify an individual IP address in CIDR notation, add the routing suffix /32, for example,
If your company allocates addresses from a range, specify the entire range, such as 203.0.113.0/24.

Warning

For security reasons, we don’t recommend that you allow RDP access from all IPv4 addresses (0.0.0.0/0) to your instance, except for testing purposes and only for a short time.

For more information, see Amazon EC2 Security Groups for Windows Instances (p. 451).
Getting Started with Amazon EC2 Windows Instances

Let's get started with Amazon Elastic Compute Cloud (Amazon EC2) by launching, connecting to, and using a Windows instance. An instance is a virtual server in the AWS cloud. With Amazon EC2, you can set up and configure the operating system and applications that run on your instance.

When you sign up for AWS, you can get started with Amazon EC2 for free using the AWS Free Tier. If you created your AWS account less than 12 months ago, and have not already exceeded the free tier benefits for Amazon EC2, it will not cost you anything to complete this tutorial, because we help you select options that are within the free tier benefits. Otherwise, you'll incur the standard Amazon EC2 usage fees from the time that you launch the instance until you terminate the instance (which is the final task of this tutorial), even if it remains idle.

Contents
- Overview (p. 19)
- Prerequisites (p. 20)
- Step 1: Launch an Instance (p. 20)
- Step 2: Connect to Your Instance (p. 21)
- Step 3: Clean Up Your Instance (p. 22)
- Next Steps (p. 23)

Overview

The instance is an Amazon EBS-backed instance (meaning that the root volume is an EBS volume). You can either specify the Availability Zone in which your instance runs, or let Amazon EC2 select an Availability Zone for you. When you launch your instance, you secure it by specifying a key pair and security group. When you connect to your instance, you must specify the private key of the key pair that you specified when launching your instance.

Tasks

To complete this tutorial, perform the following tasks:
Prerequisites

Before you begin, be sure that you've completed the steps in Setting Up with Amazon EC2 (p. 12).

Step 1: Launch an Instance

You can launch a Windows instance using the AWS Management Console as described in the following procedure. This tutorial is intended to help you launch your first instance quickly, so it doesn't cover all possible options. For more information about the advanced options, see Launching an Instance.

To launch an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the console dashboard, choose Launch Instance.
3. The Choose an Amazon Machine Image (AMI) page displays a list of basic configurations, called Amazon Machine Images (AMIs), that serve as templates for your instance. Select the AMI for Windows Server 2012 R2 Base or Windows Server 2008 R2 Base. Notice that these AMIs are marked “Free tier eligible.”
4. On the Choose an Instance Type page, you can select the hardware configuration of your instance. Select the t2.micro type, which is selected by default. Notice that this instance type is eligible for the free tier.

 Note

 T2 instances, such as t2.micro, must be launched into a VPC. If your AWS account supports EC2-Classic and you do not have a VPC in the selected region, the launch wizard creates a VPC for you and you can continue to the next step. Otherwise, the Review and Launch button is disabled and you must choose Next: Configure Instance Details and follow the directions to select a subnet.
5. Choose Review and Launch to let the wizard complete the other configuration settings for you.
6. On the Review Instance Launch page, under Security Groups, you'll see that the wizard created and selected a security group for you. You can use this security group, or alternatively you can select the security group that you created when getting set up using the following steps:
 a. Choose Edit security groups.
 b. On the Configure Security Group page, ensure that Select an existing security group is selected.
 c. Select your security group from the list of existing security groups, and then choose Review and Launch.
8. When prompted for a key pair, select **Choose an existing key pair**, then select the key pair that you created when getting set up.

Alternatively, you can create a new key pair. Select **Create a new key pair**, enter a name for the key pair, and then choose **Download Key Pair**. This is the only chance for you to save the private key file, so be sure to download it. Save the private key file in a safe place. You'll need to provide the name of your key pair when you launch an instance and the corresponding private key each time you connect to the instance.

Warning

Don't select the **Proceed without a key pair** option. If you launch your instance without a key pair, then you can't connect to it.

When you are ready, select the acknowledgement check box, and then choose **Launch Instances**.

9. A confirmation page lets you know that your instance is launching. Choose **View Instances** to close the confirmation page and return to the console.

10. On the **Instances** screen, you can view the status of the launch. It takes a short time for an instance to launch. When you launch an instance, its initial state is **pending**. After the instance starts, its state changes to **running** and it receives a public DNS name. (If the **Public DNS (IPv4)** column is hidden, choose **Show/Hide Columns** (the gear-shaped icon) in the top right corner of the page and then select **Public DNS (IPv4)**.)

11. It can take a few minutes for the instance to be ready so that you can connect to it. Check that your instance has passed its status checks; you can view this information in the **Status Checks** column.

Step 2: Connect to Your Instance

To connect to a Windows instance, you must retrieve the initial administrator password and then specify this password when you connect to your instance using Remote Desktop.

The name of the administrator account depends on the language of the operating system. For example, for English, it's Administrator, for French it's Administrateur, and for Portuguese it's Administrador. For more information, see [Localized Names for Administrator Account in Windows](https://docs.microsoft.com/en-us/windows/reference/professional/localized-names-for-administrator-account-in-windows) in the Microsoft TechNet Wiki.

If you've joined your instance to a domain, you can connect to your instance using domain credentials you've defined in AWS Directory Service. On the Remote Desktop login screen, instead of using the local computer name and the generated password, use the fully-qualified user name for the administrator (for example, **corp.example.com\Admin**) and the password for this account.

The license for the Windows Server operating system (OS) allows two simultaneous remote connections for administrative purposes. The license for Windows Server is included in the price of your Windows instance. If you need more than two simultaneous remote connections, you must purchase a Remote Desktop Services (RDS) license. If you attempt a third connection, an error occurs. For more information, see [Configure the Number of Simultaneous Remote Connections Allowed for a Connection](https://docs.microsoft.com/en-us/windows-server/administration/configuring-the-system/configure-the-number-of-simultaneous-remote-connections-allowed-for-a-connection).

To connect to your Windows instance using an RDP client

1. In the Amazon EC2 console, select the instance, and then choose **Connect**.
2. In the **Connect To Your Instance** dialog box, choose **Get Password** (it will take a few minutes after the instance is launched before the password is available).
3. Choose **Browse** and navigate to the private key file you created when you launched the instance. Select the file and choose **Open** to copy the entire contents of the file into the **Contents** field.
4. Choose **Decrypt Password**. The console displays the default administrator password for the instance in the **Connect To Your Instance** dialog box, replacing the link to **Get Password** shown previously with the actual password.
5. Record the default administrator password, or copy it to the clipboard. You need this password to connect to the instance.

6. Choose Download Remote Desktop File. Your browser prompts you to either open or save the .rdp file. Either option is fine. When you have finished, you can choose Close to dismiss the Connect To Your Instance dialog box.
 - If you opened the .rdp file, you'll see the Remote Desktop Connection dialog box.
 - If you saved the .rdp file, navigate to your downloads directory, and open the .rdp file to display the dialog box.

7. You may get a warning that the publisher of the remote connection is unknown. You can continue to connect to your instance.

8. When prompted, log in to the instance, using the administrator account for the operating system and the password that you recorded or copied previously. If your Remote Desktop Connection already has an administrator account set up, you might have to choose the Use another account option and type the user name and password manually.

 Note
 Sometimes copying and pasting content can corrupt data. If you encounter a "Password Failed" error when you log in, try typing in the password manually.

9. Due to the nature of self-signed certificates, you may get a warning that the security certificate could not be authenticated. Use the following steps to verify the identity of the remote computer, or simply choose Yes or Continue to continue if you trust the certificate.
 a. If you are using Remote Desktop Connection from a Windows PC, choose View certificate. If you are using Microsoft Remote Desktop on a Mac, choose Show Certificate.
 b. Choose the Details tab, and scroll down to the Thumbprint entry on a Windows PC, or the SHA1 Fingerprints entry on a Mac. This is the unique identifier for the remote computer's security certificate.
 c. In the Amazon EC2 console, select the instance, choose Actions, and then choose Get System Log.
 d. In the system log output, look for an entry labeled RDPCERTIFICATE-THUMBPRINT. If this value matches the thumbprint or fingerprint of the certificate, you have verified the identity of the remote computer.
 e. If you are using Remote Desktop Connection from a Windows PC, return to the Certificate dialog box and choose OK. If you are using Microsoft Remote Desktop on a Mac, return to the Verify Certificate and choose Continue.
 f. [Windows] Choose Yes in the Remote Desktop Connection window to connect to your instance.
 [Mac OS] Log in as prompted, using the default administrator account and the default administrator password that you recorded or copied previously. Note that you might need to switch spaces to see the login screen. For more information about spaces, see http://support.apple.com/kb/PH14155.
 g. If you receive an error while attempting to connect to your instance, see Remote Desktop can't connect to the remote computer (p. 851).

Step 3: Clean Up Your Instance

After you've finished with the instance that you created for this tutorial, you should clean up by terminating the instance. If you want to do more with this instance before you clean up, see Next Steps (p. 23).

Important
Terminating an instance effectively deletes it; you can't reconnect to an instance after you've terminated it.
If you launched an instance that is not within the AWS Free Tier, you'll stop incurring charges for that instance as soon as the instance status changes to shutting down or terminated. If you'd like to keep your instance for later, but not incur charges, you can stop the instance now and then start it again later. For more information, see Stopping Instances.

To terminate your instance

1. In the navigation pane, choose Instances. In the list of instances, select the instance.
2. Choose Actions, Instance State, Terminate.
3. Choose Yes, Terminate when prompted for confirmation.

Amazon EC2 shuts down and terminates your instance. After your instance is terminated, it remains visible on the console for a short while, and then the entry is deleted.

Next Steps

After you start your instance, you might want to try some of the following exercises:

- Learn how to remotely manage your EC2 instance using Run Command. For more information, see Tutorial: Remotely Manage Your Amazon EC2 Instances (p. 39) and Systems Manager Remote Management (Run Command).
- Configure a CloudWatch alarm to notify you if your usage exceeds the Free Tier. For more information, see Create a Billing Alarm in the AWS Billing and Cost Management User Guide.
- Add an EBS volume. For more information, see Creating an Amazon EBS Volume (p. 644) and Attaching an Amazon EBS Volume to an Instance (p. 647).
- Install the WAMP or WIMP stack. For more information, see Tutorial: Installing a WAMP Server on an Amazon EC2 Instance Running Windows Server (p. 30) and Tutorial: Installing a WIMP Server on an Amazon EC2 Instance Running Windows Server (p. 33).
Best Practices for Amazon EC2

This checklist is intended to help you get the maximum benefit from and satisfaction with Amazon EC2.

Security and Network

- Manage access to AWS resources and APIs using identity federation, IAM users, and IAM roles. Establish credential management policies and procedures for creating, distributing, rotating, and revoking AWS access credentials. For more information, see IAM Best Practices in the IAM User Guide.
- Implement the least permissive rules for your security group. For more information, see Security Group Rules (p. 453).
- Regularly patch, update, and secure the operating system and applications on your instance. For more information about updating Amazon Linux, see Managing Software on Your Linux Instance in the Amazon EC2 User Guide for Linux Instances. For more information about updating your Windows instance, see Updating Your Windows Instance.
- Launch your instances into a VPC instead of EC2-Classic. Note that if you created your AWS account after 2013-12-04, we automatically launch your instances into a VPC. For more information about the benefits, see Amazon EC2 and Amazon Virtual Private Cloud (p. 544).

Storage

- Use separate Amazon EBS volumes for the operating system versus your data. Ensure that the volume with your data persists after instance termination. For more information, see Preserving Amazon EBS Volumes on Instance Termination (p. 296).
- Use the instance store available for your instance to store temporary data. Remember that the data stored in instance store is deleted when you stop or terminate your instance. If you use instance store for database storage, ensure that you have a cluster with a replication factor that ensures fault tolerance.

Resource Management

- Use instance metadata and custom resource tags to track and identify your AWS resources. For more information, see Instance Metadata and User Data (p. 362) and Tagging Your Amazon EC2 Resources (p. 759).
- View your current limits for Amazon EC2. Plan to request any limit increases in advance of the time that you’ll need them. For more information, see Amazon EC2 Service Limits (p. 768).

Backup and Recovery

- Regularly back up your EBS volumes using Amazon EBS snapshots (p. 680), and create an Amazon Machine Image (AMI) (p. 51) from your instance to save the configuration as a template for launching future instances.
- Deploy critical components of your application across multiple Availability Zones, and replicate your data appropriately.
- Design your applications to handle dynamic IP addressing when your instance restarts. For more information, see Amazon EC2 Instance IP Addressing (p. 571).
- Monitor and respond to events. For more information, see Monitoring Amazon EC2 (p. 392).
- Ensure that you are prepared to handle failover. For a basic solution, you can manually attach a network interface or Elastic IP address to a replacement instance. For more information, see Elastic
Network Interfaces (p. 595). For an automated solution, you can use Amazon EC2 Auto Scaling. For more information, see the Amazon EC2 Auto Scaling User Guide.

- Regularly test the process of recovering your instances and Amazon EBS volumes if they fail.
Tutorials for Amazon EC2 Instances Running Windows Server

The following tutorials show you how to perform common tasks using EC2 instances running Windows Server.

Tutorials
- Tutorial: Deploying a WordPress Blog on Your Amazon EC2 Instance Running Windows Server (p. 26)
- Tutorial: Installing a WAMP Server on an Amazon EC2 Instance Running Windows Server (p. 30)
- Tutorial: Installing a WIMP Server on an Amazon EC2 Instance Running Windows Server (p. 33)
- Tutorial: Increase the Availability of Your Application on Amazon EC2 (p. 36)
- Tutorial: Remotely Manage Your Amazon EC2 Instances (p. 39)
- Tutorial: Setting Up a Windows HPC Cluster on Amazon EC2 (p. 43)

Tutorial: Deploying a WordPress Blog on Your Amazon EC2 Instance Running Windows Server

This tutorial will help you install and deploy a WordPress blog on an Amazon EC2 instance running Windows Server.

If you'd prefer to host your WordPress blog on a Linux instance, see Tutorial: Hosting a WordPress Blog with Amazon EC2 in the Amazon EC2 User Guide for Linux Instances. If you need a high-availability solution with a decoupled database, see Deploying a High-Availability WordPress Website in the AWS Elastic Beanstalk Developer Guide.

Prerequisites

Before you get started, be sure that you do the following:

- Launch an Amazon EC2 instance from a Windows Server AMI. For information, see Getting Started with Amazon EC2 Windows Instances (p. 19).
- Use the AWS free usage tier (if eligible) to launch and use the free Windows t2.micro instance for 12 months. You can use the AWS free usage tier for launching new applications, testing existing applications, or simply gaining hands-on experience with AWS. For more information about eligibility and the highlights, see the AWS Free Usage Tier product page.

 Important

 If you've launched a regular instance and use it to deploy the WordPress website, you will incur the standard Amazon EC2 usage fees for the instance until you terminate it. For more information about Amazon EC2 usage rates, go to the Amazon EC2 product page.

- Ensure that the security group in which you're launching your instance has ports 80 (HTTP), 443 (HTTPS), and 3389 (RDP) open for inbound traffic. Ports 80 and 443 allow computers outside of the instance to connect with HTTP and HTTPS. If these ports are not open, the WordPress site can't be
accessed from outside the instance. Port 3389 allows you to connect to the instance with Remote Desktop Protocol.

- Connect to your instance.

Installing the Microsoft Web Platform Installer

You can use the Microsoft Web Platform Installer to install and configure WordPress on your server. This tool simplifies deployment of Web applications and Web sites to IIS servers. For more information, see Microsoft Web Platform Installer.

To install Microsoft Web Platform Installer

1. Verify that you've met the conditions in Prerequisites (p. 26).
2. Connect to your instance.
3. Disable Internet Explorer Enhanced Security Configuration so that you can download and install required software from the web.
 a. Open Server Manager.
 - On Windows Server 2008 R2, under Server Summary, in the Security Information section, click Configure IE ESC.
 b. Under Administrators, click Off, and then click OK.
 c. Close Server Manager.
 d. Make a note to re-enable Internet Explorer Enhanced Security Configuration when you have finished installing software from the web.
4. Download and install the latest version of the Microsoft Web Platform Installer.

Installing WordPress

Now you'll use the Web Platform Installer to deploy WordPress on your server.

To install WordPress

1. Download and install Visual C++ Redistributable for Visual Studio 2012 Update 4 or later.
2. Open the Web Platform Installer and click Applications.
3. Select WordPress, click Add, and then click Install.
4. On the Prerequisites page, select MySQL for the database to use. Enter the desired administrator password for your MySQL database in the Password and Re-type Password boxes, and then click Continue.

 For more information about creating a secure password, see https://identitysafe.norton.com/password-generator/. Do not reuse an existing password, and make sure to store this password in a safe place.
5. Click I Accept for the list of third-party application software, Microsoft products (including the IIS web server), and components. After the Web Platform Installer finishes installing the software, you are prompted to configure your new site.
6. On the Configure page, clear the default application name in the 'WordPress' application name: box and leave it blank, then leave the default information in the other boxes and click Continue.
7. Click Yes to accept that the contents of the folder will be overwritten.
Configuring Security Keys

WordPress allows you to generate and enter unique authentication keys and salts for your site. These key and salt values provide a layer of encryption to the browser cookies that WordPress users store on their local machines. Basically, adding long, random values here makes your site more secure.

To configure security keys

1. Visit https://api.wordpress.org/secret-key/1.1/salt/ to randomly generate a set of key values that you can copy and paste into the installation wizard. The following steps will show you how to modify these values in Notepad to work with a Windows installation.
2. Copy all of the text in that page to your clipboard. It should look similar to the example below.

```php
define('AUTH_KEY',         '3#USS+[RXN8:b^-L O(WU_+ cWFk1-c]o)-bHw+)//
AJ[wTwSZ2Qb[mghEXcRh-]
');
define('SECURE_AUTH_KEY',  'Zsz._P=1/jy.Lq)XjlkwSl1ySNJ76E6EJ.AV0pCKZZB,~*r ?6OP$eJT@;
');
define('LOGGED_IN_KEY',    'juqwe3V**+sf_z0Wf?{LlG0Q]Ye@2Jh, 8x>Y });([^]Iw]Pi+LGA4R?
7N'YB3');
define('NONCE_KEY',        '+9eXUahge@:C');
define('AUTH_SALT',        'C#DpB4Hj[JK:?{qI`sRVa:{;7yShy(9A5w+`JJVb1fkk%_Bx*M(qc[Qg
%JTih');
define('SECURE_AUTH_SALT', 'd!uRu#)q#{F$Z9uFPG.$(+S(n~1M%&=qL>U7VzPd@2~Es7Q1o-
bp2BERY');
define('LOGGED_IN_SALT',   'jj{00P*ow2f]KVD+FVLn-- > .]Y4Ug4#I^+LVd9QeZ*%XmK|e(76miC+6W&
+0P/');
define('NONCE_SALT',       '-97r*V/cgxLmp?ZY4zU4r99QQ_rGs2LsdP/;
_e1tS)8_B/,,6[=UK<r_Jy9?jWg');
```

3. Open a Notepad window by clicking Start, All Programs, Accessories, and then Notepad.
4. Paste the copied text into the Notepad window.
5. Windows WordPress installations do not accept the dollar sign ($) in key and salt values, so they need to be replaced with another character (such as S). In the Notepad window, click Edit, then click Replace.
6. In the Find what box, type $.
7. In the Replace with box, type S.
8. Click Replace All to replace all of the dollar signs with S characters.
9. Close the Replace window.
10. Paste the modified key and salt values from the Notepad window into their corresponding boxes in the installation wizard. For example, the AUTH_KEY value in the Notepad window should be pasted into the Authentication Key box in the wizard.

Do not include the single quotes or other text surrounding the values, just the actual value as in the example shown below.

The modified AUTH_KEY line from the Notepad window:

```php
define('AUTH_KEY',         '3#USS+[RXN8:b^-L O(WU_+ cWFk1-c]o)-bHw+)//
AJ[wTwSZ2Qb[mghEXcRh-]
');
```
Configuring the Site Title and Administrator

When you complete the Web Platform Installer wizard, a browser window opens to your WordPress installation at http://localhost/wp-admin/install.php. On this page, you configure the title for your site and an administrative user to moderate your blog.

To complete the installation

1. On the WordPress Welcome page, enter the following information and click Install WordPress.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Title</td>
<td>Enter a name for your WordPress site.</td>
</tr>
<tr>
<td>Username</td>
<td>Enter a name for your WordPress administrator. For security purposes you should choose a unique name for this user, because this will be more difficult to exploit than the default user name, admin.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter a strong password, and then enter it again to confirm. Do not reuse an existing password, and make sure to store this password in a safe place.</td>
</tr>
<tr>
<td>Your E-mail</td>
<td>Enter the email address you want to use for notifications.</td>
</tr>
<tr>
<td>Privacy</td>
<td>Check to allow search engines to index your site.</td>
</tr>
</tbody>
</table>

2. Click Log In.
3. On the Log In page, enter your user name for Username and the site password you entered previously for Password.

Making Your WordPress Site Public

Now that you can see your WordPress blog on your local host, you can publish this website as the default site on your instance so that other people can see it. The next procedure walks you through the process of modifying your WordPress settings to point to the public DNS name of your instance instead of your local host.

To configure the default settings for your WordPress site

1. Open the WordPress dashboard by opening a browser on your instance and going to http://localhost/wp-admin. If prompted for your credentials, enter your user name for the Username and your site password for Password.
2. In the Dashboard pane, click Settings.
3. On the **General Settings** page, enter the following information and click **Save Changes**.
 - **WordPress address (URL)**—The public DNS address of your instance. For example, your URL may look something like `http://ec2-203-0-113-25.compute-1.amazonaws.com`.

 You can get the public DNS for your instance using the Amazon EC2 console (select the instance and check the **Public DNS** column; if this column is hidden, click the **Show/Hide** icon and select **Public DNS**).
 - **Site address (URL)**—The same public DNS address of your instance that you set in **WordPress address (URL)**.

4. To see your new site, open a browser on a computer other than the instance hosting WordPress and type the public DNS address of your instance in the web address field. Your WordPress site appears.

Congratulations! You have just deployed a WordPress site on a Windows instance.

Next Steps

If you no longer need this instance, you can remove it to avoid incurring charges. For more information, see **Clean Up Your Instance** (p. 22).

If your WordPress blog becomes popular and you need more compute power or storage, consider the following steps:

- Expand the storage space on your instance. For more information, see **Modifying the Size, IOPS, or Type of an EBS Volume on Windows** (p. 666).
- Move your MySQL database to **Amazon RDS** to take advantage of the service's ability to scale automatically.
- Migrate to a larger instance type. For more information, see **Resizing Your Instance** (p. 153).
- Add additional instances. For more information, see **Tutorial: Increase the Availability of Your Application on Amazon EC2** (p. 36).

Tutorial: Installing a WAMP Server on an Amazon EC2 Instance Running Windows Server

This tutorial shows you how to install an Apache web server with PHP and MySQL on an EC2 instance running Windows Server. This software configuration is sometimes called a WAMP server or WAMP stack (Windows, Apache, MySQL, PHP). For information about how to create a similar server on Linux, see **Tutorial: Installing a LAMP Web Server** in the *Amazon EC2 User Guide for Linux Instances*.

A WAMP stack is designed for easy installation to help developers get up and running quickly. It is not designed for production environments for the following reasons:

- The default configurations do not meet security requirements for most production environments.
- Upgrading and patching the different software components on a single production server would affect server availability.
• The WAMP one-click installers do not place files in standard locations, which can make it difficult to locate important configuration files.

You can, however, create a WAMP stack on an EC2 instance to prototype a web project in a controlled test environment. For example, you can host a static website or deploy a dynamic PHP application that reads and writes information to a database.

There are many third-party solutions that you can use to install a WAMP stack; this tutorial uses the Bitnami WAMP stack. For more information, see **Review: WAMP stacks for Web developers**.

Prerequisites

• Provision a Windows Server 2008 R2 or 2012 R2 base instance. You must configure the base instance with a public domain name system (DNS) name that is reachable from the Internet. For more information, see Getting Started with Amazon EC2 Windows Instances (p. 19).

• Verify that the security group for your instance has the following ports open:
 • Port 80 (HTTP inbound and outbound) - Allows computers outside of the instance to connect by using HTTP.
 • Port 443 (HTTPS inbound and outbound) - Allows computers outside of the instance to connect by using HTTPS.
 • Port 3389 (RDP inbound only) - Allows you to connect to the instance using Remote Desktop Protocol (RDP). As a security best practice, restrict RDP access to a range of IP addresses in your organization.

To install a WAMP server

1. Connect to your instance using Microsoft Remote Desktop. For more information, see Connecting to Your Windows Instance (p. 283).

2. Disable Internet Explorer Enhanced Security Configuration so that you can download and install required software from the web.
 a. From the instance, open Server Manager.
 c. Under Administrators, click Off, and then click OK.
 d. Close Server Manager.
 e. Make a note to re-enable Internet Explorer Enhanced Security Configuration when you have finished installing software from the web.

3. Install software updates to ensure that the instance has the latest security updates and bug fixes.
 • **EC2Config** - Download and install the latest version of the EC2Config service. For more information, see Installing the Latest Version of EC2Config (p. 317).
 • **Windows Update** - Run Windows Update to ensure that the latest security and software updates are installed on the instance. In Control Panel, click System and Security. In the Windows Update section, click Check for updates.

4. Download and install the WAMP stack. For the purposes of this tutorial, we suggest that you download and install this WAMP stack. You can, however, download and install other Bitnami WAMP stacks. Regardless of which stack you install, the Bitnami site prompts you to either create a free Bitnami account or log in by using a social media account. After you log in, run the Bitnami setup wizard.
5. After setup completes, verify that the Apache web server is configured properly and running by browsing to a test page. Open a web browser on a different computer and enter either the public DNS address of the WAMP server or the public IP address. The public DNS address for your instance is listed on the Amazon EC2 console in the **Public DNS** column. If this column is hidden, click the **Show/Hide** icon and select **Public DNS**.

Important

If you do not see the Bitnami test page, use Windows Firewall with Advanced Security to create a custom rule that allows the HTTP protocol through port 80 and the HTTPS protocol through port 443. For more information, see *Windows Firewall with Advanced Security Overview* on Microsoft TechNet. Also verify that the security group you are using contains a rule to allow HTTP (port 80) connections. For information about adding an HTTP rule to your security group, see *Adding Rules to a Security Group*.

6. Test your WAMP server by viewing a PHP file from the web. You must be logged onto the instance as an administrator to perform the following steps.

 a. Create a file named *phpinfo.php* containing the code below and place this file in the Apache root directory. By default, the path is: `C:\Bitnami\wampstack-<version_number>\apache2\htdocs`.

   ```php
   <?php phpinfo(); ?>
   ```

 b. In a web browser, enter the URL of the file you just created. This URL is the public DNS address of your instance followed by a forward slash and the file name. For example: `http://my.public.dns.amazonaws.com/phpinfo.php`.

 c. Verify that the PHP information page is displayed. If the page does not display, verify that you entered the correct public DNS address. Also verify that Windows folder options are configured to show known file extensions. By default, folder options hide known file extensions. If you created the file in Notepad and saved it in the root directory your phpinfo.php file might incorrectly be saved as phpinfo.php.txt.

 d. As a security best practice, delete the phpinfo.php file when you finish testing the WAMP server.

7. Enhance MySQL security by disabling default features and by setting a root password. The *mysql_secure_installation* Perl script can perform these tasks for you. To run the script, you must install Perl.

 a. Download and install Perl from the *Perl Programming Language* website.

 b. In the `C:\Bitnami\wampstack-<version_number>\mysql\bin` directory, double-click *mysql_secure_installation*.

 c. When prompted, enter the MySQL root account password that you entered when you ran the Bitnami WAMP stack installer, and then press Enter.

 d. Type **n** to skip changing the password.

 e. Type **y** to remove the anonymous user accounts.

 f. Type **y** to disable remote root login.

 g. Type **y** to remove the test database.

 h. Type **y** to reload the privilege tables and save your changes.

If you successfully completed the steps in this tutorial, then your WAMP server is functioning properly. To continue testing, you can add more content to the `C:\Bitnami\wampstack-<version_number>\apache2\htdocs` folder and view the content by using the public DNS address for your instance.

Important

As a best practice, stop the MySQL server if you do not plan to use it right away. You can restart the server when you need it again.
Tutorial: Installing a WIMP Server on an Amazon EC2 Instance Running Windows Server

This tutorial shows you how to install a Microsoft Internet Information Services (IIS) web server with PHP and MySQL on an EC2 instance running Windows Server. This software configuration is sometimes called a WIMP server or WIMP stack (Windows, IIS, MySQL, PHP).

A WIMP stack is designed for easy installation to help developers get up and running quickly. It is not designed for production environments for the following reasons:

- The default configurations do not meet security requirements for most production environments.
- Upgrading and patching the different software components on a single production server would affect server availability.
- The WAMP one-click installers do not place files in standard locations, which can make it difficult to locate important configuration files.

You can, however, create a WIMP stack on an EC2 instance to prototype a web project in a controlled test environment. For example, you can host a static website or deploy a dynamic PHP application that reads and writes information to a database.

Prerequisites

- Provision a Windows Server 2008 R2 or 2012 R2 base instance. You must configure the base instance with a public domain name system (DNS) name that is reachable from the Internet. For more information, see Getting Started with Amazon EC2 Windows Instances (p. 19).
- Verify that the security group for your instance has the following ports open:
 - Port 80 (HTTP inbound and outbound) - Allows computers outside of the instance to connect by using HTTP.
 - Port 443 (HTTPS inbound and outbound) - Allows computers outside of the instance to connect by using HTTPS.
 - Port 3389 (RDP inbound only) - Allows you to connect to the instance using Remote Desktop Protocol (RDP). As a security best practice, restrict RDP access to a range of IP addresses in your organization.
- Read the best practices for installing PHP on the Microsoft web platform.

Prepare Your Instance

To prepare your instance

1. Connect to your instance using Microsoft Remote Desktop. For more information, see Connecting to Your Windows Instance (p. 283).
2. Disable Internet Explorer Enhanced Security Configuration so that you can download and install required software from the web.

 Note

 Make a note to re-enable Internet Explorer Enhanced Security Configuration when you have finished installing software from the web.
3. Install software updates to ensure that the instance has the latest security updates and bug fixes.
Install the IIS web server

IIS is a feature of Windows Server and is installed by using Server Manager. The procedure you'll use depends on the version of Windows Server your instance is running.

Install IIS on Windows Server 2012

1. In Server Manager click **Add roles and features**.
2. On the **Before you begin** page, click **Next**.
3. On the **Select installation type** page, select **Role-based or feature-based installation**, and then click **Next**.
4. On the **Select destination server** page, select your instance from the server pool, and then click **Next**.
5. On the **Select server roles** page, select **Web Server (IIS)**, click **Add features**, and then click **Next**.
6. On the **Select features** page, retain the default features and expand **.NET Framework 4.5 Features**, select **ASP.NET 4.5**, and then click **Next**.
7. On the **Web Server Role (IIS)** page, click **Next**.
8. On the **Select role services** page, retain the default services and select **Application Development**.
9. Expand **Application Development**, and then select the following features. When selecting these features, if you are prompted, click **Add features**:
 a. .NET Extensibility 3.5
 b. .NET Extensibility 4.5
 c. Application Initialization
 d. ASP.NET 3.5
 e. ASP.NET 4.5
 f. CGI
10. Click **Next**.
11. On the **Confirm installation selections** page, select **Restart the destination server automatically if required**. When prompted for confirmation, click **Yes**.
12. Click **Install**, and then after the installation is complete, click **Close**.

Install IIS on Windows Server 2008

1. In Server Manager, click **Roles**.
2. Click **Add Roles**.
3. On the **Before You Begin** page, click **Next**.
4. On the **Select Server Roles** page, click **Web Server (IIS)**.
5. On the **Select Role Services** page under **Application Development**, click **ASP.NET**.
a. When prompted, click **Add Required Role Services**.
b. Click **CGI**.
c. Click **Next**.
6. On the **Confirm Installation Selections**, click **Install**.
7. Run Windows update again.

To verify that the web server is running

After setup completes, verify that the IIS web server is configured properly and running by going to the IIS welcome page. Open a web browser on a different computer and enter either the public DNS address of the WIMP server or the public IP address. The public DNS address for your instance is listed on the Amazon EC2 console in the **Public DNS** column. If this column is hidden, click the **Show/Hide** icon and select **Public DNS**.

Important

If you do not see the IIS welcome page, use Windows Firewall with Advanced Security to create a custom rule that allows the HTTP protocol through port 80 and the HTTPS protocol through port 443. For more information, see Windows Firewall with Advanced Security Overview on Microsoft TechNet. Also verify that the security group you are using contains a rule to allow HTTP (port 80) connections. For information about adding an HTTP rule to your security group, see Adding Rules to a Security Group.

Install MySQL and PHP

You can download and install MySQL and PHP using the Microsoft Web Platform Installer.

To install MySQL and PHP

1. In your Windows Server instance, download and install the latest version of the Microsoft Web Platform Installer 5.0.
2. In the Microsoft Web Platform Installer, click the **Products** tab.
3. Select **MySQL Windows 5.5** and click **Add**.
4. Select **PHP 5.6.0** and click **Add**.
5. Click **Install**.
6. On the **Prerequisites** page, enter a password for the MySQL default database administrator account, and then click **Continue**.
7. When the installation is complete, click **Finish**, and then click **Exit** to close the Web Platform Installer.

Test Your Server

Test your server by viewing a PHP file from the web. You must be logged onto the instance as an administrator to perform the following steps.

To test your WIMP server

1. Download and install the Visual C++ Redistributable for Visual Studio 2012 Update 4 x86 package. Even if your server is a 64-bit server, you must install the x86 package.
2. Create a file named `phpinfo.php` that contains the following code and place this file in the IIS root directory. By default, the path is: `C:\inetpub\wwwroot`.
3. In a web browser, enter the URL of the file you just created. This URL is the public DNS address of your instance followed by a forward slash and the file name, as in the following example: http://my.public.dns.amazonaws.com/phpinfo.php.

4. Verify that the PHP information page is displayed. If the page does not display, verify that you entered the correct public DNS address. Also verify that Windows folder options are configured to show known file extensions. By default, folder options hide known file extensions. If you created the file in Notepad and saved it in the root directory your phpinfo.php file might incorrectly be saved as phpinfo.php.txt.

5. As a security best practice, delete the phpinfo.php file when you finish testing the WAMP server.

6. Enhance MySQL security by disabling default features and by setting a root password. The mysql_secure_installation Perl script can perform these tasks for you. To run the script, you must install Perl.
 a. Download and install Perl from the Perl Programming Language website.
 b. In the C:\Program Files\MySQL\MySQL Server 5.5\bin directory, double-click mysql_secure_installation.
 c. When prompted, enter the current root password and press Enter.
 d. Type n to skip changing the password.
 e. Type Y to remove the anonymous user accounts.
 f. Type Y to disable remote root login.
 g. Type Y to remove the test database.
 h. Type Y to reload the privilege tables and save your changes.

You should now have a fully functional WIMP web server. If you add content to the IIS document root at C:\inetpub\wwwroot, you can view that content at the public DNS address for your instance.

Important
As a best practice, stop the MySQL server if you do not plan to use it right away. You can restart the server when you need it again.

Tutorial: Increase the Availability of Your Application on Amazon EC2

Suppose that you start out running your app or website on a single EC2 instance, and over time, traffic increases to the point that you require more than one instance to meet the demand. You can launch multiple EC2 instances from your AMI and then use Elastic Load Balancing to distribute incoming traffic for your application across these EC2 instances. This increases the availability of your application. Placing your instances in multiple Availability Zones also improves the fault tolerance in your application. If one Availability Zone experiences an outage, traffic is routed to the other Availability Zone.

You can use Amazon EC2 Auto Scaling to maintain a minimum number of running instances for your application at all times. Amazon EC2 Auto Scaling can detect when your instance or application is unhealthy and replace it automatically to maintain the availability of your application. You can also use Amazon EC2 Auto Scaling to scale your Amazon EC2 capacity up or down automatically based on demand, using criteria that you specify.

In this tutorial, we use Amazon EC2 Auto Scaling with Elastic Load Balancing to ensure that you maintain a specified number of healthy EC2 instances behind your load balancer. Note that these instances do not
need public IP addresses, because traffic goes to the load balancer and is then routed to the instances. For more information, see Amazon EC2 Auto Scaling and Elastic Load Balancing.

Contents

- Prerequisites (p. 37)
- Scale and Load Balance Your Application (p. 37)
- Test Your Load Balancer (p. 39)

Prerequisites

This tutorial assumes that you have already done the following:

1. If you don't have a default virtual private cloud (VPC), create a VPC with one public subnet in two or more Availability Zones. For more information, see Create a Virtual Private Cloud (VPC) (p. 15).
2. Launch an instance in the VPC.
3. Connect to the instance and customize it. For example, you can install software and applications, copy data, and attach additional EBS volumes. For information about setting up a web server on your instance, see Tutorial: Installing a WAMP Server on an Amazon EC2 Instance Running Windows Server (p. 30) or Tutorial: Installing a WIMP Server on an Amazon EC2 Instance Running Windows Server (p. 33).
4. Test your application on your instance to ensure that your instance is configured correctly.
5. Create a custom Amazon Machine Image (AMI) from your instance. For more information, see Creating a Custom Windows AMI (p. 65).
6. (Optional) Terminate the instance if you no longer need it.
7. Create an IAM role that grants your application the access to AWS that it needs. For more information, see To create an IAM role using the IAM console (p. 537).

Scale and Load Balance Your Application

Use the following procedure to create a load balancer, create a launch configuration for your instances, create an Auto Scaling group with two or more instances, and associate the load balancer with the Auto Scaling group.

To scale and load-balance your application

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the navigation pane, under **LOAD BALANCING**, choose **Load Balancers**.
3. Choose **Create Load Balancer**.
4. For **Application Load Balancer**, choose **Create**.
5. On the **Configure Load Balancer** page, do the following:
 a. For **Name**, type a name for your load balancer. For example, **my-lb**.
 b. For **Scheme**, keep the default value, **internet-facing**.
 c. For **Listeners**, keep the default, which is a listener that accepts HTTP traffic on port 80.
 d. For **Availability Zones**, select the VPC that you used for your instances. Select an Availability Zone and then select the public subnet for that Availability Zone. Repeat for a second Availability Zone.
 e. Choose **Next: Configure Security Settings**.
6. For this tutorial, you are not using a secure listener. Choose **Next: Configure Security Groups**.
7. On the **Configure Security Groups** page, do the following:
 a. Choose **Create a new security group**.
 b. Type a name and description for the security group, or keep the default name and description. This new security group contains a rule that allows traffic to the port configured for the listener.
 c. Choose **Next: Configure Routing**.
8. On the **Configure Routing** page, do the following:
 a. For **Target group**, keep the default, **New target group**.
 b. For **Name**, type a name for the target group.
 c. Keep **Protocol** as **HTTP**, **Port** as **80**, and **Target type** as **instance**.
 d. For **Health checks**, keep the default protocol and path.
 e. Choose **Next: Register Targets**.
9. On the **Register Targets** page, choose **Next: Review** to continue to the next page, as we'll use Amazon EC2 Auto Scaling to add EC2 instances to the target group.
10. On the **Review** page, choose **Create**. After the load balancer is created, choose **Close**.
11. On the navigation pane, under **AUTO SCALING**, choose **Launch Configurations**.
 a. If you are new to Amazon EC2 Auto Scaling, you see a welcome page. Choose **Create Auto Scaling group** to start the Create Auto Scaling Group wizard, and then choose **Create launch configuration**.
 b. Otherwise, choose **Create launch configuration**.
12. On the **Choose AMI** page, select the **My AMIs** tab, and then select the AMI that you created in **Prerequisites** (p. 37).
13. On the **Choose Instance Type** page, select an instance type, and then choose **Next: Configure details**.
14. On the **Configure details** page, do the following:
 a. For **Name**, type a name for your launch configuration (for example, **my-launch-config**).
 b. For **IAM role**, select the IAM role that you created in **Prerequisites** (p. 37).
 c. (Optional) If you need to run a startup script, expand **Advanced Details** and type the script in **User data**.
 d. Choose **Skip to review**.
15. On the **Review** page, choose **Edit security groups**. You can select an existing security group or create a new one. This security group must allow HTTP traffic and health checks from the load balancer. If your instances will have public IP addresses, you can optionally allow RDP traffic if you need to connect to the instances. When you are finished, choose **Review**.
16. On the **Review** page, choose **Create launch configuration**.
17. When prompted, select an existing key pair, create a new key pair, or proceed without a key pair. Select the acknowledgment check box, and then choose **Create launch configuration**.

18. After the launch configuration is created, you must create an Auto Scaling group.
 - If you are new to Amazon EC2 Auto Scaling and you are using the Create Auto Scaling group wizard, you are taken to the next step automatically.
 - Otherwise, choose **Create an Auto Scaling group using this launch configuration**.

19. On the **Configure Auto Scaling group details** page, do the following:
 a. For **Group name**, type a name for the Auto Scaling group. For example, `my-asg`.
 b. For **Group size**, type the number of instances (for example, `2`). Note that we recommend that you maintain approximately the same number of instances in each Availability Zone.
 c. Select your VPC from **Network** and your two public subnets from **Subnet**.
 d. Under **Advanced Details**, select **Receive traffic from one or more load balancers**. Select your target group from **Target Groups**.
 e. Choose **Next: Configure scaling policies**.

20. On the **Configure scaling policies** page, choose **Review**, as we will let Amazon EC2 Auto Scaling maintain the group at the specified size. Note that later on, you can manually scale this Auto Scaling group, configure the group to scale on a schedule, or configure the group to scale based on demand.

21. On the **Review** page, choose **Create Auto Scaling group**.

22. After the group is created, choose **Close**.

Test Your Load Balancer

When a client sends a request to your load balancer, the load balancer routes the request to one of its registered instances.

To test your load balancer

1. Verify that your instances are ready. From the **Auto Scaling Groups** page, select your Auto Scaling group, and then choose the **Instances** tab. Initially, your instances are in the **Pending** state. When their states are **InService**, they are ready for use.
2. Verify that your instances are registered with the load balancer. From the **Target Groups** page, select your target group, and then choose the **Targets** tab. If the state of your instances is **initial**, it's possible that they are still registering. When the state of your instances is **healthy**, they are ready for use. After your instances are ready, you can test your load balancer as follows.
3. From the **Load Balancers** page, select your load balancer.
4. On the **Description** tab, locate the DNS name. This name has the following form:

 `my-lb-xxxxxxxxxx.us-west-2.elb.amazonaws.com`

5. In a web browser, paste the DNS name for the load balancer into the address bar and press Enter. You'll see your website displayed.

Tutorial: Remotely Manage Your Amazon EC2 Instances

This tutorial shows you how to remotely manage an Amazon EC2 instance using Systems Manager Run Command from your local machine. This tutorial includes procedures for executing commands using the Amazon EC2 console, AWS Tools for Windows PowerShell, and the AWS Command Line Interface.
Note
With Run Command, you can also manage your servers and virtual machines (VMs) in your on-premises environment or in an environment provided by other cloud providers. For more information, see Setting Up Systems Manager in Hybrid Environments.

Before you Begin
You must configure an AWS Identity and Access Management (IAM) instance profile role for Systems Manager. Attach the AmazonEC2RoleforSSM role to an Amazon EC2 instance. This role enables the instance to communicate with the Systems Manager API. For more information about how to attach the role to an existing instance, see Attaching an IAM Role to an Instance (p. 539).

You must also configure your IAM user account for Systems Manager, as described in the next section.

Grant Your User Account Access to Systems Manager

Your user account must be configured to communicate with the SSM API. Use the following procedure to attach a managed AWS Identity and Access Management (IAM) policy to your user account that grants you full access to SSM API actions.

To create the IAM policy for your user account
1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Policies. (If this is your first time using IAM, choose Get Started, and then choose Create Policy.)
3. In the Filter field, type AmazonSSMFullAccess and press Enter.
4. Select the check box next to AmazonSSMFullAccess and then choose Policy Actions, Attach.
5. On the Attach Policy page, choose your user account and then choose Attach Policy.

Install the SSM Agent

SSM Agent processes Run Command requests and configures the instances that are specified in the request. The agent is installed by default on Windows AMIs starting in November 2016 and later and Amazon Linux AMIs starting with 2017.09.

To install the agent on Linux, see Installing and Configuring SSM Agent on Linux Instances in the AWS Systems Manager User Guide.

To install the agent on Windows, see Installing and Configuring SSM Agent on Windows Instances in the AWS Systems Manager User Guide.

Send a Command Using the EC2 Console

Use the following procedure to list all services running on the instance by using Run Command from the Amazon EC2 console.

To execute a command using Run Command from the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Run Command.
3. Choose Run a command.
5. For **Target instances**, choose the instance you created. If you don't see the instance, verify that you are currently in the same region as the instance you created. Also verify that you configured the IAM role and trust policies as described earlier.

6. For **Commands**, type `Get-Service` for Windows, or `ps aux` for Linux.

7. (Optional) For **Working Directory**, specify a path to the folder on your EC2 instances where you want to run the command.

8. (Optional) For **Execution Timeout**, specify the number of seconds the EC2Config service or SSM agent will attempt to run the command before it times out and fails.

9. For **Comment**, we recommend providing information that will help you identify this command in your list of commands.

10. For **Timeout (seconds)**, type the number of seconds that Run Command should attempt to reach an instance before it is considered unreachable and the command execution fails.

11. Choose **Run** to execute the command. Run Command displays a status screen. Choose **View result**.

12. To view the output, choose the command invocation for the command, choose the **Output** tab, and then choose **View Output**.

For more examples of how to execute commands using Run Command, see Executing Commands Using Systems Manager Run Command.

Send a Command Using AWS Tools for Windows PowerShell

Use the following procedure to list all services running on the instance by using Run Command from AWS Tools for Windows PowerShell.

To execute a command

1. On your local computer, download the latest version of **AWS Tools for Windows PowerShell**.
2. Open **AWS Tools for Windows PowerShell** on your local computer and execute the following command to specify your credentials.

```
Set-AWSCredentials -AccessKey key -SecretKey key
```

3. Execute the following command to set the region for your PowerShell session. Specify the region where you created the instance in the previous procedure. This example uses the us-west-2 region.

```
Set-DefaultAWSRegion -Region us-west-2
```

4. Execute the following command to retrieve the services running on the instance.

```
Send-SSMCommand -InstanceId 'Instance-ID' -DocumentName AWS-RunPowerShellScript -Comment 'listing services on the instance' -Parameter @{'commands'='@('Get-Service')}
```

The command returns a command ID, which you will use to view the results.

5. The following command returns the output of the original Send-SSMCommand. The output is truncated after 2500 characters. To view the full list of services, specify an Amazon S3 bucket in the command using the -OutputS3BucketName `bucket_name` parameter.

```
Get-SSMCommandInvocation -CommandId Command-ID -Details $true | select -ExpandProperty CommandPlugins
```

For more examples of how to execute commands using Run Command with Tools for Windows PowerShell, see **Systems Manager Run Command Walkthough Using the AWS Tools for Windows PowerShell.**

Send a Command Using the AWS CLI

Use the following procedure to list all services running on the instance by using Run Command in the AWS CLI.

To execute a command

1. On your local computer, download the latest version of the **AWS Command Line Interface (AWS CLI).**
2. Open the AWS CLI on your local computer and execute the following command to specify your credentials and the region.

```
aws configure
```

3. The system prompts you to specify the following.

```
AWS Access Key ID [None]: key
AWS Secret Access Key [None]: key
Default region name [None]: region, for example us-east-1
Default output format [None]: ENTER
```

4. Execute the following command to retrieve the services running on the instance.

```
aws ssm send-command --document-name "AWS-RunShellScript" --comment "listing services" --instance-ids "Instance-ID" --parameters commands="service --status-all" --region us-west-2 --output text
```

The command returns a command ID, which you will use to view the results.
5. The following command returns the output of the original Send-SSMCommand. The output is truncated after 2500 characters. To view the full list of services, you would need to specify an Amazon S3 bucket in the command using the --output-s3-bucket-name `bucket_name` parameter.

```bash
aws ssm list-command-invocations --command-id "command ID" --details
```

For more examples of how to execute commands using Run Command using the AWS CLI, see Systems Manager Run Command Walkthrough Using the AWS CLI.

Related Content

For more information about Run Command and Systems Manager, see the following topics and references.

- AWS Systems Manager User Guide
- Amazon EC2 Systems Manager API Reference
- Systems Manager AWS Tools for PowerShell Cmdlet Reference
- Systems Manager AWS CLI Command Reference
- AWS SDKs

Tutorial: Setting Up a Windows HPC Cluster on Amazon EC2

You can launch a scalable Windows High Performance Computing (HPC) cluster using Amazon EC2 instances. A Windows HPC cluster requires an Active Directory domain controller, a DNS server, a head node, and one or more compute nodes.

To set up a Windows HPC cluster on Amazon EC2, complete the following tasks:

- **Step 2: Set Up Your Active Directory Domain Controller** (p. 46)
- **Step 3: Configure Your Head Node** (p. 47)
- **Step 4: Set Up the Compute Node** (p. 48)
- **Step 5: Scale Your HPC Compute Nodes (Optional)** (p. 49)

For more information about high performance computing, see High Performance Computing (HPC) on AWS.

Prerequisites

You must launch your instances in a VPC. You can use the default VPC or create a nondefault VPC. For more information, see Getting Started in the Amazon VPC User Guide.

Step 1: Create Security Groups

Use the Tools for Windows PowerShell to create security groups for the domain controller, domain members, and the HPC cluster.
To create the security groups

1. Use the `New-EC2SecurityGroup` cmdlet to create the security group for the domain controller. Note the ID of the security group in the output.

   ```powershell
   PS C:\> New-EC2SecurityGroup -VpcId vpc-id -GroupName "SG - Domain Controller" -Description "Active Directory Domain Controller"
   ```

2. Use the `New-EC2SecurityGroup` cmdlet to create the security group for the domain members. Note the ID of the security group in the output.

   ```powershell
   PS C:\> New-EC2SecurityGroup -VpcId vpc-id -GroupName "SG - Domain Member" -Description "Active Directory Domain Member"
   ```

3. Use the `New-EC2SecurityGroup` cmdlet to create the security group for the HPC cluster. Note the ID of the security group in the output.

   ```powershell
   PS C:\> New-EC2SecurityGroup -VpcId vpc-id -GroupName "SG - Windows HPC Cluster" -Description "Windows HPC Cluster Nodes"
   ```

To add rules to the security groups

1. Create the following rules to add to the domain controller security group. Replace the placeholder security group ID with the ID of the domain member security group and the placeholder CIDR block with the CIDR block of your network.

   ```powershell
   PS C:\> $sg_dm = New-Object Amazon.EC2.Model.UserIdGroupPair
   PS C:\> $sg_dm.GroupId = "sg-12345678"
   PS C:\> $r1 = @{ IpProtocol="UDP"; FromPort="123"; ToPort="123"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r2 = @{ IpProtocol="TCP"; FromPort="135"; ToPort="135"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r3 = @{ IpProtocol="UDP"; FromPort="138"; ToPort="138"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r4 = @{ IpProtocol="TCP"; FromPort="49152"; ToPort="65535"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r5 = @{ IpProtocol="TCP"; FromPort="389"; ToPort="389"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r6 = @{ IpProtocol="UDP"; FromPort="389"; ToPort="389"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r7 = @{ IpProtocol="TCP"; FromPort="636"; ToPort="636"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r8 = @{ IpProtocol="TCP"; FromPort="3268"; ToPort="3268"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r9 = @{ IpProtocol="TCP"; FromPort="53"; ToPort="53"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r10 = @{ IpProtocol="UDP"; FromPort="53"; ToPort="53"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r11 = @{ IpProtocol="TCP"; FromPort="88"; ToPort="88"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r12 = @{ IpProtocol="UDP"; FromPort="88"; ToPort="88"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r13 = @{ IpProtocol="TCP"; FromPort="445"; ToPort="445"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r14 = @{ IpProtocol="UDP"; FromPort="445"; ToPort="445"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r15 = @{ IpProtocol="ICMP"; FromPort="-1"; ToPort="-1"; UserIdGroupPairs= $sg_dm }
   PS C:\> $r16 = @{ IpProtocol="UDP"; FromPort="53"; ToPort="53"; IpRanges="203.0.113.25/32" }
   ```
Step 1: Create Security Groups

2. Use the `Grant-EC2SecurityGroupIngress` cmdlet to add the rules to the domain controller security group.

```powershell
PS C:\> $r17 = @{ IpProtocol="TCP"; FromPort="3389"; ToPort="3389"; IpRanges="203.0.113.25/32" }
PS C:\> Grant-EC2SecurityGroupIngress -GroupId sg-1a2b3c4d -IpPermission @($r1, $r2, $r3, $r4, $r5, $r6, $r7, $r8, $r9, $r10, $r11, $r12, $r13, $r14, $r15, $r16, $r17)
```

For more information about these security group rules, see the following Microsoft article: How to configure a firewall for domains and trusts.

3. Create the following rules to add to the domain member security group. Replace the placeholder security group ID with the ID of the domain controller security group.

```powershell
PS C:\> $sg_dc = New-Object Amazon.EC2.Model.UserIdGroupPair
PS C:\> $sg_dc.GroupId = "sg-1a2b3c4d"
PS C:\> $r1 = @{ IpProtocol="TCP"; FromPort="49152"; ToPort="65535"; UserIdGroupPairs= $sg_dc }
PS C:\> $r2 = @{ IpProtocol="UDP"; FromPort="49152"; ToPort="65535"; UserIdGroupPairs= $sg_dc }
PS C:\> $r3 = @{ IpProtocol="TCP"; FromPort="53"; ToPort="53"; UserIdGroupPairs= $sg_dc }
PS C:\> $r4 = @{ IpProtocol="UDP"; FromPort="53"; ToPort="53"; UserIdGroupPairs= $sg_dc }
```

4. Use the `Grant-EC2SecurityGroupIngress` cmdlet to add the rules to the domain member security group.

```powershell
PS C:\> Grant-EC2SecurityGroupIngress -GroupId sg-1a2b3c4d -IpPermission @($r1, $r2, $r3, $r4)
```

5. Create the following rules to add to the HPC cluster security group. Replace the placeholder security group ID with the ID of the HPC cluster security group and the placeholder CIDR block with the CIDR block of your network.

```powershell
$sg_hpc = New-Object Amazon.EC2.Model.UserIdGroupPair
PS C:\> $sg_hpc.GroupId = "sg-87654321"
PS C:\> $r1 = @{ IpProtocol="TCP"; FromPort="80"; ToPort="80"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r2 = @{ IpProtocol="TCP"; FromPort="443"; ToPort="443"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r3 = @{ IpProtocol="TCP"; FromPort="1856"; ToPort="1856"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r4 = @{ IpProtocol="TCP"; FromPort="5800"; ToPort="5800"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r5 = @{ IpProtocol="TCP"; FromPort="5801"; ToPort="5801"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r6 = @{ IpProtocol="TCP"; FromPort="5969"; ToPort="5969"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r7 = @{ IpProtocol="TCP"; FromPort="5970"; ToPort="5970"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r8 = @{ IpProtocol="TCP"; FromPort="5974"; ToPort="5974"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r9 = @{ IpProtocol="TCP"; FromPort="5999"; ToPort="5999"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r10 = @{ IpProtocol="TCP"; FromPort="6729"; ToPort="6730"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r11 = @{ IpProtocol="TCP"; FromPort="7997"; ToPort="7997"; UserIdGroupPairs= $sg_hpc }
PS C:\> $r12 = @{ IpProtocol="TCP"; FromPort="8677"; ToPort="8677"; UserIdGroupPairs= $sg_hpc }
```
Step 2: Set Up Your Active Directory Domain Controller

The Active Directory domain controller provides authentication and centralized resource management of the HPC environment and is required for the installation. To set up your Active Directory, launch an instance to serve as the domain controller for your HPC cluster and configure it.

To launch a domain controller for your HPC cluster

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the console dashboard, choose Launch Instance.
3. On the Choose an AMI page, select an AMI for Windows Server, and choose Select.
4. On the next page of the wizard, select an instance type, then choose Next: Configure Instance Details.
5. On the Configure Instance Details page, select your VPC from Network and a subnet from Subnet. On the next page of the wizard, you can specify additional storage for your instance.
6. On the Add Tags page, enter Domain Controller as the value for the Name tag for the instance, and then choose Next: Configure Security Group.

6. Use the Grant-EC2SecurityGroupIngress cmdlet to add the rules to the HPC cluster security group.

For more information about these security group rules, see the following Microsoft article: HPC Cluster Networking: Windows Firewall configuration.

7. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
8. In the navigation pane, choose Security Groups. Verify that the all three security groups appear in the list and have the required rules.

For more information about these security group rules, see the following Microsoft article: HPC Cluster Networking: Windows Firewall configuration.
Step 3: Configure Your Head Node

An HPC client connects to the head node. The head node facilitates the scheduled jobs. You configure your head node by launching an instance, installing the HPC Pack, and configuring the cluster.

Launch an instance and then configure it as a member of the hpc.local domain and with the necessary user accounts.

To configure an instance as your head node

1. Launch an instance and name it HPC-Head. When you launch the instance, select both of these security groups: SG - Windows HPC Cluster and SG - Domain Member.
2. Connect to the instance and get the existing DNS server address using the following command:

 \[\text{IPConfig /all} \]

3. Update the TCP/IPv4 properties of the HPC-Head NIC to include the Elastic IP address for the Domain Controller instance as the primary DNS, and then add the additional DNS IP address from the previous step.
4. Join the machine to the hpc.local domain using the credentials for hpc.local\administrator (the domain administrator account).
5. Add hpc.local\hpcuser as the local administrator. When prompted for credentials, use hpc.local\administrator, and then restart the instance.

Connect to the instance you created, and configure the server as a domain controller for the HPC cluster.

To configure your instance as a domain controller

1. Connect to your Domain Controller instance. For more information, see Connecting to Your Windows Instance (p. 283).
2. Open Server Manager, and add the Active Directory Domain Services role.
3. Promote the server to a domain controller using Server Manager or by running DCPromo.exe.
4. Create a new domain in a new forest.
5. Type hpc.local as the fully qualified domain name (FQDN).
7. Ensure that the DNS Server option is selected, and then choose Next.
8. Select Yes, the computer will use an IP address automatically assigned by a DHCP server (not recommended).
9. When prompted, choose Yes to continue.
10. Complete the wizard and then select Reboot on Completion.
11. Connect to the instance as hpc.local\administrator.
12. Create a domain user hpc.local\hpcuser.
6. Connect to **HPC-Head** as hpc.local\hpcuser.

To install the HPC Pack

1. Connect to your **HPC-Head** instance using the hpc.local\hpcuser account.
2. Using **Server Manager**, turn off Internet Explorer Enhanced Security Configuration (IE ESC) for Administrators.
 a. In **Server Manager**, under **Security Information**, choose **Configure IE ESC**.
 b. Turn off IE ESC for administrators.
3. Install the HPC Pack on **HPC-Head**.
 a. Download the HPC Pack to **HPC-Head** from the Microsoft Download Center. Choose the HPC Pack for the version of Windows Server on **HPC-Head**.
 b. Extract the files to a folder, open the folder, and double-click **setup.exe**.
 c. On the Installation page, select **Create a new HPC cluster by creating a head node**, and then choose **Next**.
 d. Accept the default settings to install all the databases on the Head Node, and then choose **Next**.
 e. Complete the wizard.

To configure your HPC cluster on the head node

1. Start **HPC Cluster Manager**.
2. In the **Deployment To-Do List**, select **Configure your network**.
 a. In the wizard, select the default option (5), and then choose **Next**.
 b. Complete the wizard accepting default values on all screens, and choose how you want to update the server and participate in customer feedback.
 c. Choose **Configure**.
3. Select **Provide Network Credentials**, then provide the hpc.local\hpcuser credentials.
4. Select **Configure the naming of new nodes**, and then choose **OK**.
5. Select **Create a node template**.
 a. Select the **Compute node template**, and then choose **Next**.
 b. Select **Without operating system**, and then continue with the defaults.
 c. Choose **Create**.

Step 4: Set Up the Compute Node

You set up the compute node by launching an instance, installing the HPC Pack, and adding the node to your cluster.

First, launch an instance, and then configure it as a member of the hpc.local domain with the necessary user accounts.

To configure an instance for your compute node

1. Launch an instance and name it **HPC-Compute**. When you launch the instance, select the following security groups: **SG - Windows HPC Cluster** and **SG - Domain Member**.
2. Log in to the instance and get the existing DNS server address from **HPC-Compute** using the following command:
Step 5: Scale Your HPC Compute Nodes (Optional)

To install the HPC Pack on the compute node

1. Connect to your HPC-Compute instance using the hpc.local\hpcuser account.
2. Using Server Manager, turn off Internet Explorer Enhanced Security Configuration (IE ESC) for Administrators.
 a. In Server Manager, under Security Information, choose Configure IE ESC.
 b. Turn off IE ESC for administrators.
3. Install the HPC Pack on HPC-Compute.
 a. Download the HPC Pack to HPC-Compute from the Microsoft Download Center. Choose the HPC Pack for the version of Windows Server on HPC-Compute.
 b. Extract the files to a folder, open the folder, and double-click setup.exe.
 c. On the Installation page, select Join an existing HPC cluster by creating a new compute node, and then choose Next.
 d. Specify the fully-qualified name of the HPC-Head instance, and then choose the defaults.
 e. Complete the wizard.

To complete your cluster configuration, from the head node, add the compute node to your cluster.

To add the compute node to your cluster

1. Connect to the HPC-Head instance as hpc.local\hpcuser.
2. Open HPC Cluster Manager.
4. If the compute node displays in the Unapproved bucket, right-click the node that is listed and select Add Node.
 a. Select Add compute nodes or broker nodes that have already been configured.
 b. Select the check box next to the node and choose Add.
5. Right-click the node and choose Bring Online.

Step 5: Scale Your HPC Compute Nodes (Optional)

To scale your compute nodes

1. Connect to the HPC-Compute instance as hpc.local\hpcuser.
2. Delete any files you downloaded locally from the HP Pack installation package. (You have already run setup and created these files on your image so they do not need to be cloned for an AMI.)
3. From C:\Program Files\Amazon\Ec2ConfigService open the file sysprep2008.xml.
4. At the bottom of <settings pass="specialize">, add the following section. Make sure to replace hpc.local, password, and hpcuser to match your environment.

 <component name="Microsoft-Windows-UnattendedJoin" processorArchitecture="amd64"
 publicKeyToken="31bf3856ad364e35"
 language="neutral" versionScope="nonSxS" xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Identification>
 <UnsecureJoin>false</UnsecureJoin>
 <Credentials>
 <Domain>hpc.local</Domain>
 <Password>password</Password>
 <Username>hpcuser</Username>
 </Credentials>
 </Identification>
 <JoinDomain>hpc.local</JoinDomain>
 </component>

6. Choose Start, All Programs, EC2ConfigService Settings.
 a. Choose the General tab, and clear the Set Computer Name check box.
 b. Choose the Bundle tab, and then choose Run Sysprep and Shutdown Now.
7. Open the Amazon EC2 console.
8. In the navigation pane, choose Instances.
9. Wait for the instance status to show stopped.
10. Select the instance, choose Actions, Image, Create Image.
11. Specify an image name and image description, and then choose Create Image to create an AMI from the instance.
12. Start the original HPC-Compute instance that was shut down.
13. Connect to the head node using the hpc.local\hpcuser account.
14. From HPC Cluster Manager, delete the old node that now appears in an error state.
15. In the Amazon EC2 console, in the navigation pane, choose AMIs.
16. Use the AMI you created to add additional nodes to the cluster.

You can launch additional compute nodes from the AMI that you created. These nodes are automatically joined to the domain, but you must add them to the cluster as already configured nodes in HPC Cluster Manager using the head node and then bring them online.
Amazon Machine Images (AMI)

An Amazon Machine Image (AMI) provides the information required to launch an instance, which is a virtual server in the cloud. You must specify a source AMI when you launch an instance. You can launch multiple instances from a single AMI when you need multiple instances with the same configuration. You can use different AMIs to launch instances when you need instances with different configurations.

An AMI includes the following:
- A template for the root volume for the instance (for example, an operating system, an application server, and applications)
- Launch permissions that control which AWS accounts can use the AMI to launch instances
- A block device mapping that specifies the volumes to attach to the instance when it's launched

Creating Your Own AMI

You can launch an instance from an existing AMI, customize the instance, and then save this updated configuration as a custom AMI. Instances launched from this new custom AMI include the customizations that you made when you created the AMI.

For more information, see Creating a Custom Windows AMI (p. 65).

To help categorize and manage your AMIs, you can assign custom tags to them. For more information, see Tagging Your Amazon EC2 Resources (p. 759).

Buying, Sharing, and Selling AMIs

After you create an AMI, you can keep it private so that only you can use it, or you can share it with a specified list of AWS accounts. You can also make your custom AMI public so that the community can use it. Building a safe, secure, usable AMI for public consumption is a fairly straightforward process, if you follow a few simple guidelines. For information about how to create and use shared AMIs, see Shared AMIs (p. 54).

You can purchase AMIs from a third party, including AMIs that come with service contracts from organizations such as Red Hat. You can also create an AMI and sell it to other Amazon EC2 users. For more information about buying or selling AMIs, see Paid AMIs (p. 61).

Deregistering Your AMI

You can deregister an AMI when you have finished with it. After you deregister an AMI, you can't be used to launch new instances. Existing instances launched from the AMI are not affected. For more information, see Deregistering Your Windows AMI (p. 76).

AWS Windows AMIs

AWS provides a set of publicly available AMIs that contain software configurations specific to the Windows platform. Using these AMIs, you can quickly start building and deploying your applications.
using Amazon EC2. First choose the AMI that meets your specific requirements, and then launch an instance using that AMI. You retrieve the password for the administrator account and then log in to the instance using Remote Desktop Connection, just as you would with any other Windows server.

Some Windows AMIs include an edition of Microsoft SQL Server (SQL Enterprise Edition, SQL Server Standard, SQL Server Express, or SQL Server Web). Launching an instance from a Windows AMI with Microsoft SQL Server enables you to run the instance as a database server. Alternatively, you can launch an instance from any Windows AMI and then install the database software that you need on the instance.

Microsoft no longer supports Windows Server 2003 (see Microsoft Windows Server 2003 End-of-Support). We recommend that you launch new EC2 instances using a supported version of Windows Server. If you have existing EC2 instances that are running an unsupported version of Windows Server, we recommend that you upgrade those instances to a supported version of Windows Server. For more information, see Upgrading an Amazon EC2 Windows Instance to a Newer Version of Windows Server (p. 374).

Selecting an Initial Windows AMI

To view the Windows AMIs provided by AWS, you can use the Amazon EC2 console or AWS Marketplace. For more information, see Finding a Windows AMI (p. 52).

You can also create an AMI from your own Windows computer. For more information, see the following services:

- AWS Server Migration Service
- VM Import/Export

Keeping Your AMIs Up-to-Date

AWS provides updated, fully-patched Windows AMIs within five business days of Microsoft's patch Tuesday (the second Tuesday of each month). For more information, see Details About AWS Windows AMI Versions (p. 80).

The AWS Windows AMIs contain the latest security updates available at the time they were created. For more information, see Updating Your Windows Instance (p. 77).

Finding a Windows AMI

Before you can launch an instance, you must select an AMI to use. As you select an AMI, consider the following requirements you might have for the instances that you'll launch:

- The region
- The operating system
- The architecture: 32-bit (i386) or 64-bit (x86_64)
- The provider (for example, Amazon Web Services)
- Additional software (for example, SQL server)

If you need to find a Linux AMI, see Finding a Linux AMI in the Amazon EC2 User Guide for Linux Instances.

Contents
Finding a Windows AMI Using the Amazon EC2 Console

You can find Windows AMIs using the Amazon EC2 console. You can search through all available AMIs using the Images page, or select from commonly used AMIs on the Quick Start tab when you use the console to launch an instance. AMI IDs are unique to each region.

To find a Windows AMI using the Choose AMI page
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region in which to launch your instances. You can select any region that's available to you, regardless of your location.
3. From the console dashboard, choose Launch Instance.
4. On Quick Start tab, select from one of the commonly used AMIs in the list. If you don't see the AMI that you need, select the AWS Marketplace or Community AMIs tab to find additional AMIs.

To find a Windows AMI using the Images page
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region in which to launch your instances. You can select any region that's available to you, regardless of your location.
3. In the navigation pane, choose AMIs.
4. (Optional) Use the Filter options to scope the list of displayed AMIs to see only the AMIs that interest you. For example, to list all Windows AMIs provided by AWS, select Public images. Choose the Search bar and select Owner from the menu, then select Amazon images. Choose the Search bar again to select Platform and then the operating system from the list provided.
5. (Optional) Choose the Show/Hide Columns icon to select which image attributes to display, such as the root device type. Alternatively, you can select an AMI from the list and view its properties in the Details tab.
6. To launch an instance from this AMI, select it and then choose Launch. For more information about launching an instance using the console, see Launching Your Instance from an AMI (p. 267). If you're not ready to launch the instance now, make note of the AMI ID for later.

Finding an AMI Using the AWS Tools for Windows PowerShell

You can use cmdlets for Amazon EC2 or AWS Systems Manager to list only the Windows AMIs that meet your needs. After locating an AMI that meets your needs, make note of its ID so that you can use it to launch instances. For more information, see Launch an Instance Using Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.

Amazon EC2

For information and examples, see Find an AMI Using Windows PowerShell in the AWS Tools for Windows PowerShell User Guide.
Systems Manager Parameter Store

For information and examples, see Query for the Latest Windows AMI Using Systems Manager Parameter Store.

Finding an AMI Using the AWS CLI

You can use AWS CLI commands for Amazon EC2 or AWS Systems Manager to list only the Windows AMIs that meet your needs. After locating an AMI that meets your needs, make note of its ID so that you can use it to launch instances. For more information, see Launching an Instance Using the AWS CLI in the AWS Command Line Interface User Guide.

Amazon EC2

The describe-images command supports filtering parameters. For example, use the --owners parameter to public AMIs owned by Amazon.

```
aws ec2 describe-images --owners self amazon
```

You can add the following filter to the previous command to display only Windows AMIs:

```
--filters "Name=platform,Values=windows"
```

Systems Manager Parameter Store

For information and examples, see Query for the Latest Windows AMI Using Systems Manager Parameter Store.

Shared AMIs

A shared AMI is an AMI that a developer created and made available for other developers to use. One of the easiest ways to get started with Amazon EC2 is to use a shared AMI that has the components you need and then add custom content. You can also create your own AMIs and share them with others.

You use a shared AMI at your own risk. Amazon can't vouch for the integrity or security of AMIs shared by other Amazon EC2 users. Therefore, you should treat shared AMIs as you would any foreign code that you might consider deploying in your own data center and perform the appropriate due diligence. We recommend that you get an AMI from a trusted source. If you have questions or observations about a shared AMI, use the AWS forums.

Amazon's public images have an aliased owner, which appears as amazon in the account field. This enables you to find AMIs from Amazon easily. Other users can't alias their AMIs.

For information about creating an AMI, see Creating an Amazon EBS-Backed Windows AMI. For more information about building, delivering, and maintaining your applications on the AWS Marketplace, see the AWS Marketplace User Guide and AWS Marketplace Seller Guide.
Finding Shared AMIs

You can use the Amazon EC2 console or the command line to find shared AMIs.

Finding a Shared AMI (Console)

To find a shared private AMI using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs.
3. In the first filter, choose Private images. All AMIs that have been shared with you are listed. To granulate your search, choose the Search bar and use the filter options provided in the menu.

To find a shared public AMI using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs.
3. In the first filter, choose Public images. To granulate your search, choose the Search bar and use the filter options provided in the menu.
4. Use filters to list only the types of AMIs that interest you. For example, choose Owner: and then choose Amazon images to display only Amazon’s public images.

Finding a Shared AMI (Tools for Windows PowerShell)

Use the Get-EC2Image command (Tools for Windows PowerShell) to list AMIs. You can scope the list to the types of AMIs that interest you, as shown in the following examples.

Example: List all public AMIs

The following command lists all public AMIs, including any public AMIs that you own.

```
PS C:\> Get-EC2Image -ExecutableUser all
```

Example: List AMIs with explicit launch permissions

The following command lists the AMIs for which you have explicit launch permissions. This list does not include any AMIs that you own.

```
PS C:\> Get-EC2Image -ExecutableUser self
```

Example: List AMIs owned by Amazon

The following command lists the AMIs owned by Amazon. Amazon’s public AMIs have an aliased owner, which appears as amazon in the account field. This enables you to find AMIs from Amazon easily. Other users can’t alias their AMIs.

```
PS C:\> Get-EC2Image -Owner amazon
```

Example: List AMIs owned by an account

The following command lists the AMIs owned by the specified AWS account.
PS C:\> Get-EC2Image -Owner 123456789012

Example: Scope AMIs using a filter

To reduce the number of displayed AMIs, use a filter to list only the types of AMIs that interest you. For example, use the following filter to display only EBS-backed AMIs.

```
-Filter @(
  Name="root-device-type";
  Values="ebs"
)
```

Finding a Shared AMI (AWS CLI)

Use the describe-images command (AWS CLI) to list AMIs. You can scope the list to the types of AMIs that interest you, as shown in the following examples.

Example: List all public AMIs

The following command lists all public AMIs, including any public AMIs that you own.

```
aws ec2 describe-images --executable-users all
```

Example: List AMIs with explicit launch permissions

The following command lists the AMIs for which you have explicit launch permissions. This list does not include any AMIs that you own.

```
aws ec2 describe-images --executable-users self
```

Example: List AMIs owned by Amazon

The following command lists the AMIs owned by Amazon. Amazon's public AMIs have an aliased owner, which appears as amazon in the account field. This enables you to find AMIs from Amazon easily. Other users can't alias their AMIs.

```
aws ec2 describe-images --owners amazon
```

Example: List AMIs owned by an account

The following command lists the AMIs owned by the specified AWS account.

```
aws ec2 describe-images --owners 123456789012
```

Example: Scope AMIs using a filter

To reduce the number of displayed AMIs, use a filter to list only the types of AMIs that interest you. For example, use the following filter to display only EBS-backed AMIs.

```
--filters "Name=root-device-type,Values=ebs"
```

Making an AMI Public

Amazon EC2 enables you to share your AMIs with other AWS accounts. You can allow all AWS accounts to launch the AMI (make the AMI public), or only allow a few specific accounts to launch the AMI.
Sharing an AMI with Specific AWS Accounts (p. 58). You are not billed when your AMI is launched by other AWS accounts; only the accounts launching the AMI are billed.

AMIs are a regional resource. Therefore, sharing an AMI makes it available in that region. To make an AMI available in a different region, copy the AMI to the region and then share it. For more information, see Copying an AMI (p. 70).

Note
If an AMI has a product code, or contains a snapshot of an encrypted volume, you can't make it public. You must share the AMI with only specific AWS accounts.

Sharing an AMI with all AWS Accounts (Console)

After you make an AMI public, it is available in Community AMIs when you launch an instance in the same region using the console. Note that it can take a short while for an AMI to appear in Community AMIs after you make it public. It can also take a short while for an AMI to be removed from Community AMIs after you make it private again.

To share a public AMI using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs.
3. Select your AMI from the list, and then choose Actions, Modify Image Permissions.
4. Choose Public and choose Save.

Sharing an AMI with all AWS Accounts (Tools for Windows PowerShell)

Each AMI has a launchPermission property that controls which AWS accounts, besides the owner's, are allowed to use that AMI to launch instances. By modifying the launchPermission property of an AMI, you can make the AMI public (which grants launch permissions to all AWS accounts) or share it with only the AWS accounts that you specify.

You can add or remove account IDs from the list of accounts that have launch permissions for an AMI. To make the AMI public, specify the all group. You can specify both public and explicit launch permissions.

To make an AMI public

1. Use the Edit-EC2ImageAttribute command as follows to add the all group to the launchPermission list for the specified AMI.

   ```powershell
   PS C:\> Edit-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission -OperationType add -UserGroup all
   ```

2. To verify the launch permissions of the AMI, use the following Get-EC2ImageAttribute command.

   ```powershell
   PS C:\> Get-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission
   ```

3. (Optional) To make the AMI private again, remove the all group from its launch permissions. Note that the owner of the AMI always has launch permissions and is therefore unaffected by this command.

   ```powershell
   PS C:\> Edit-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission -OperationType remove -UserGroup all
   ```
Sharing an AMI with all AWS Accounts (AWS CLI)

Each AMI has a `launchPermission` property that controls which AWS accounts, besides the owner's, are allowed to use that AMI to launch instances. By modifying the `launchPermission` property of an AMI, you can make the AMI public (which grants launch permissions to all AWS accounts) or share it with only the AWS accounts that you specify.

You can add or remove account IDs from the list of accounts that have launch permissions for an AMI. To make the AMI public, specify the `all` group. You can specify both public and explicit launch permissions.

To make an AMI public

1. Use the `modify-image-attribute` command as follows to add the `all` group to the `launchPermission` list for the specified AMI.

   ```bash
   aws ec2 modify-image-attribute --image-id ami-12345678 --launch-permission "{"Add":[{"Group":"all"}]}
   ```

2. To verify the launch permissions of the AMI, use the following `describe-image-attribute` command.

   ```bash
   aws ec2 describe-image-attribute --image-id ami-12345678 --attribute launchPermission
   ```

3. (Optional) To make the AMI private again, remove the `all` group from its launch permissions. Note that the owner of the AMI always has launch permissions and is therefore unaffected by this command.

   ```bash
   aws ec2 modify-image-attribute --image-id ami-12345678 --launch-permission "{"Remove ":[{"Group":"all"}]}
   ```

Sharing an AMI with Specific AWS Accounts

You can share an AMI with specific AWS accounts without making the AMI public. All you need are the AWS account IDs.

AMIs are a regional resource. Therefore, sharing an AMI makes it available in that region. To make an AMI available in a different region, copy the AMI to the region and then share it. For more information, see Copying an AMI (p. 70).

Note

If you are sharing an AMI containing a snapshot of an encrypted volume, see Sharing an Amazon EBS Snapshot for restrictions that apply.

Sharing an AMI (Console)

To grant explicit launch permissions using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs.
3. Select your AMI in the list, and then choose Actions, Modify Image Permissions.
4. Specify the AWS account number of the user with whom you want to share the AMI in the AWS Account Number field, then choose Add Permission.

 To share this AMI with multiple users, repeat this step until you have added all the required users.

5. To allow create volume permissions for snapshots, select Add "create volume" permissions to the following associated snapshots when creating permissions.
Note
You do not need to share the Amazon EBS snapshots that an AMI references in order to share the AMI. Only the AMI itself needs to be shared; the system automatically provides the instance access to the referenced Amazon EBS snapshots for the launch.

6. Choose Save when you are done.
7. (Optional) To view the AWS account IDs with which you have shared the AMI, select the AMI in the list, and choose the Permissions tab. To find AMIs that are shared with you, see Finding Shared AMIs (p. 55).

Sharing an AMI (Tools for Windows PowerShell)

Use the Edit-EC2ImageAttribute command (Tools for Windows PowerShell) to share an AMI as shown in the following examples.

To grant explicit launch permissions

The following command grants launch permissions for the specified AMI to the specified AWS account.

```
PS C:\> Edit-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission -OperationType add -UserId "123456789012"
```

The following command grants create volume permission for a snapshot.

```
PS C:\> Edit-EC2SnapshotAttribute -SnapshotId snap-1234567890abcdef0 -Attribute CreateVolumePermission -OperationType add -UserId 123456789012
```

To remove launch permissions for an account

The following command removes launch permissions for the specified AMI from the specified AWS account:

```
PS C:\> Edit-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission -OperationType remove -UserId "123456789012"
```

The following command removes create volume permission for a snapshot.

```
PS C:\> Edit-EC2SnapshotAttribute -SnapshotId snap-1234567890abcdef0 -Attribute CreateVolumePermission -OperationType remove -UserId 123456789012
```

To remove all launch permissions

The following command removes all public and explicit launch permissions from the specified AMI. Note that the owner of the AMI always has launch permissions and is therefore unaffected by this command.

```
PS C:\> Reset-EC2ImageAttribute -ImageId ami-12345678 -Attribute launchPermission
```

Sharing an AMI (AWS CLI)

Use the modify-image-attribute command (AWS CLI) to share an AMI as shown in the following examples.

To grant explicit launch permissions
The following command grants launch permissions for the specified AMI to the specified AWS account.

```
aws ec2 modify-image-attribute --image-id ami-12345678 --launch-permission "{"Add": [{"UserId":"123456789012"}]}
```

The following command grants create volume permission for a snapshot.

```
aws ec2 modify-snapshot-attribute --snapshot-id snap-1234567890abcdef0 --attribute createVolumePermission --operation-type add --user-ids 123456789012
```

To remove launch permissions for an account

The following command removes launch permissions for the specified AMI from the specified AWS account:

```
aws ec2 modify-image-attribute --image-id ami-12345678 --launch-permission "{"Remove": [{"UserId":"123456789012"}]}
```

The following command removes create volume permission for a snapshot.

```
aws ec2 modify-snapshot-attribute --snapshot-id snap-1234567890abcdef0 --attribute createVolumePermission --operation-type remove --user-ids 123456789012
```

To remove all launch permissions

The following command removes all public and explicit launch permissions from the specified AMI. Note that the owner of the AMI always has launch permissions and is therefore unaffected by this command.

```
aws ec2 reset-image-attribute --image-id ami-12345678 --attribute launchPermission
```

Using Bookmarks

If you have created a public AMI, or shared an AMI with another AWS user, you can create a **bookmark** that allows a user to access your AMI and launch an instance in their own account immediately. This is an easy way to share AMI references, so users don’t have to spend time finding your AMI in order to use it.

Note that your AMI must be public, or you must have shared it with the user to whom you want to send the bookmark.

To create a bookmark for your AMI

1. Type a URL with the following information, where `region` is the region in which your AMI resides:

   ```
   https://console.aws.amazon.com/ec2/v2/home?
   region=region#LaunchInstanceWizard:ami=ami_id
   ```

 For example, this URL launches an instance from the ami-12345678 AMI in the us-east-1 region:

   ```
   ```

2. Distribute the link to users who want to use your AMI.
3. To use a bookmark, choose the link or copy and paste it into your browser. The launch wizard opens, with the AMI already selected.
Guidelines for Shared Windows AMIs

Use the following guidelines to reduce the attack surface and improve the reliability of the AMIs you create.

- No list of security guidelines can be exhaustive. Build your shared AMIs carefully and take time to consider where you might expose sensitive data.
- Develop a repeatable process for building, updating, and republishing AMIs.
- Build AMIs using the most up-to-date operating systems, packages, and software.
- Download and install the latest version of the EC2Config service. For more information about installing this service, see Installing the Latest Version of EC2Config (p. 317).
- Verify that Ec2SetPassword, Ec2WindowsActivate and Ec2HandleUserData are enabled.
- Verify that no guest accounts or Remote Desktop user accounts are present.
- Disable or remove unnecessary services and programs to reduce the attack surface of your AMI.
- Remove instance credentials, such as your key pair, from the AMI (if you saved them on the AMI). Store the credentials in a safe location.
- Ensure that the administrator password and passwords on any other accounts are set to an appropriate value for sharing. These passwords are available for anyone who launches your shared AMI.
- Test your AMI before you share it.

Paid AMIs

A paid AMI is an AMI that you can purchase from a developer.

Amazon EC2 integrates with AWS Marketplace, enabling developers to charge other Amazon EC2 users for the use of their AMIs or to provide support for instances.

The AWS Marketplace is an online store where you can buy software that runs on AWS, including AMIs that you can use to launch your EC2 instance. The AWS Marketplace AMIs are organized into categories, such as Developer Tools, to enable you to find products to suit your requirements. For more information about AWS Marketplace, see the AWS Marketplace site.

Launching an instance from a paid AMI is the same as launching an instance from any other AMI. No additional parameters are required. The instance is charged according to the rates set by the owner of the AMI, as well as the standard usage fees for the related web services, for example, the hourly rate for running an m1.small instance type in Amazon EC2. Additional taxes might also apply. The owner of the paid AMI can confirm whether a specific instance was launched using that paid AMI.

Important

Amazon DevPay is no longer accepting new sellers or products. AWS Marketplace is now the single, unified e-commerce platform for selling software and services through AWS. For information about how to deploy and sell software from AWS Marketplace, see Selling on AWS Marketplace. AWS Marketplace supports AMIs backed by Amazon EBS.

Contents

- Selling Your AMI (p. 62)
- Finding a Paid AMI (p. 62)
- Purchasing a Paid AMI (p. 63)
- Getting the Product Code for Your Instance (p. 63)
- Using Paid Support (p. 63)
- Bills for Paid and Supported AMIs (p. 64)
Selling Your AMI

You can sell your AMI using AWS Marketplace. AWS Marketplace offers an organized shopping experience. Additionally, AWS Marketplace also supports AWS features such as Amazon EBS-backed AMIs, Reserved Instances, and Spot Instances.

For information about how to sell your AMI on AWS Marketplace, see Selling on AWS Marketplace.

Finding a Paid AMI

There are several ways that you can find AMIs that are available for you to purchase. For example, you can use AWS Marketplace, the Amazon EC2 console, or the command line. Alternatively, a developer might let you know about a paid AMI themselves.

Finding a Paid AMI Using the Console

To find a paid AMI using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs.
3. Choose Public images from the first Filter list. In the Search bar choose Product Code, then Marketplace. In the Search bar again, choose Platform and then select the operating system from the list.

Finding a Paid AMI Using AWS Marketplace

To find a paid AMI using AWS Marketplace

1. Open AWS Marketplace.
2. Enter the name of the operating system in the search box, and click Go.
3. To scope the results further, use one of the categories or filters.
4. Each product is labeled with its product type: either AMI or Software as a Service.

Finding a Paid AMI Using the Tools for Windows PowerShell

You can find a paid AMI using the following Get-EC2Image command.

```
PS C:\> Get-EC2Image -Owner aws-marketplace
```

The output for a paid AMI includes the product code.

```
ProductCodeId    ProductCodeType
---------------  ---------------
product_code     marketplace
```

Finding a Paid AMI Using the AWS CLI

You can find a paid AMI using the following describe-images command (AWS CLI).
Purchasing a Paid AMI

You must sign up for (purchase) a paid AMI before you can launch an instance using the AMI.

Typically a seller of a paid AMI presents you with information about the AMI, including its price and a link where you can buy it. When you click the link, you're first asked to log into AWS, and then you can purchase the AMI.

Purchasing a Paid AMI Using the Console

You can purchase a paid AMI by using the Amazon EC2 launch wizard. For more information, see Launching an AWS Marketplace Instance (p. 281).

Subscribing to a Product Using AWS Marketplace

To use the AWS Marketplace, you must have an AWS account. To launch instances from AWS Marketplace products, you must be signed up to use the Amazon EC2 service, and you must be subscribed to the product from which to launch the instance. There are two ways to subscribe to products in the AWS Marketplace:

• **AWS Marketplace website**: You can launch preconfigured software quickly with the 1-Click deployment feature.
• **Amazon EC2 launch wizard**: You can search for an AMI and launch an instance directly from the wizard. For more information, see Launching an AWS Marketplace Instance (p. 281).

Getting the Product Code for Your Instance

You can retrieve the AWS Marketplace product code for your instance using its instance metadata. For more information about retrieving metadata, see Instance Metadata and User Data (p. 362).

To retrieve a product code, use the following command:

```
```

If the instance has a product code, Amazon EC2 returns it.

Using Paid Support

Amazon EC2 also enables developers to offer support for software (or derived AMIs). Developers can create support products that you can sign up to use. During sign-up for the support product, the

```
developer gives you a product code, which you must then associate with your own AMI. This enables
the developer to confirm that your instance is eligible for support. It also ensures that when you run
instances of the product, you are charged according to the terms for the product specified by the
developer.

    Important
    You can't use a support product with Reserved Instances. You always pay the price that's
specified by the seller of the support product.

To associate a product code with your AMI, use one of the following commands, where `ami_id` is the ID of
the AMI and `product_code` is the product code:

- modify-image-attribute (AWS CLI)

    aws ec2 modify-image-attribute --image-id ami_id --product-codes "product_code"

- Edit-EC2ImageAttribute (AWS Tools for Windows PowerShell)

    PS C:\> Edit-EC2ImageAttribute -ImageId ami_id -ProductCode product_code

After you set the product code attribute, it cannot be changed or removed.

**Bills for Paid and Supported AMIs**

At the end of each month, you receive an email with the amount your credit card has been charged for
using any paid or supported AMIs during the month. This bill is separate from your regular Amazon EC2
bill. For more information, see Paying For AWS Marketplace Products.

**Managing Your AWS Marketplace Subscriptions**

On the AWS Marketplace website, you can check your subscription details, view the vendor's usage
instructions, manage your subscriptions, and more.

To check your subscription details

1. Log in to the AWS Marketplace.
2. Choose Your Marketplace Account.
3. Choose Manage your software subscriptions.
4. All your current subscriptions are listed. Choose Usage Instructions to view specific instructions for
   using the product, for example, a user name for connecting to your running instance.

To cancel an AWS Marketplace subscription

1. Ensure that you have terminated any instances running from the subscription.
   a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
   b. In the navigation pane, choose Instances.
   c. Select the instance, and choose Actions, Instance State, Terminate.
   d. Choose Yes, Terminate when prompted for confirmation.
2. Log in to the AWS Marketplace, and choose Your Marketplace Account, then Manage your software
   subscriptions.
3. Choose Cancel subscription. You are prompted to confirm your cancellation.
Creating a Custom Windows AMI

To create a Windows AMI, you launch an instance from an existing Windows AMI, customize the instance, and create a new AMI from the instance.

To create a custom Linux AMI, use the procedure for the type of volume for the instance. For more information, see Creating an Amazon EBS-Backed Linux AMI or Creating an Instance Store-Backed Linux AMI in the Amazon EC2 User Guide for Linux Instances.

Overview of Creating an AMI

First, launch an instance from an AMI that's similar to the AMI that you'd like to create. You can connect to your instance and customize it. When the instance is set up the way you want it, ensure data integrity by stopping the instance before you create an AMI and then create the image. We automatically register the AMI for you.

During the AMI-creation process, Amazon EC2 creates snapshots of your instance's root volume and any other EBS volumes attached to your instance. If any volumes attached to the instance are encrypted, the new AMI only launches successfully on instance types that support Amazon EBS encryption. For more information, see Amazon EBS Encryption (p. 696).

Depending on the size of the volumes, it can take several minutes for the AMI-creation process to complete (sometimes up to 24 hours). You may find it more efficient to create snapshots of your volumes prior to creating your AMI. This way, only small, incremental snapshots need to be created when the AMI is created, and the process completes more quickly (the total time for snapshot creation remains the same). For more information, see Creating an Amazon EBS Snapshot (p. 683).

After the process completes, you have a new AMI and snapshot created from the root volume of the instance. When you launch an instance using the new AMI, we create a new EBS volume for its root volume using the snapshot. Both the AMI and the snapshot incur charges to your account until you delete them. For more information, see Deregistering Your Windows AMI (p. 76).

If you add instance-store volumes or Amazon EBS volumes to your instance in addition to the root device volume, the block device mapping for the new AMI contains information for these volumes, and the block device mappings for instances that you launch from the new AMI automatically contain information for these volumes. The instance-store volumes specified in the block device mapping for the new instance are new and don't contain any data from the instance store volumes of the instance you used to create the AMI. The data on EBS volumes persists. For more information, see Block Device Mapping (p. 733).

Note
When you create a new instance from a custom AMI, you should initialize both its root volume and any additional EBS storage before putting it into production. For more information, see Initializing Amazon EBS Volumes.

Creating a Windows AMI from a Running Instance

You can create an AMI using the AWS Management Console or the command line. The following diagram summarizes the process for creating an AMI from a running EC2 instance. Start with an existing AMI, launch an instance, customize it, create a new AMI from it, and finally launch an instance of your new...
AMI. The steps in the following diagram match the steps in the procedure below. If you already have a running Windows instance, you can go directly to step 4.

To create an AMI from an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Images, AMIs.
3. Use the Filter options to scope the list of AMIs to the Windows AMIs that meet your needs. For example, to view the Windows AMIs provided by AWS, choose Public images from the drop-down list. Choose the Search bar. Choose Owner from the menu and choose Amazon images. Choose Source from the menu and type one of the following, depending on the version of Windows Server that you need:
   
   - amazon/Windows_Server-2016
   - amazon/Windows_Server-2012
   - amazon/Windows_Server-2008

   Add any other filters that you need. When you have chosen an AMI, select its checkbox.
4. Choose Launch. Accept the default values as you step through the wizard. For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265). When the instance is ready, connect to it. For more information, see Connecting to Your Windows Instance (p. 283).
5. You can perform any of the following actions on your instance to customize it for your needs:
   
   - Install software and applications
   - Copy data
   - Reduce start time by deleting temporary files, defragmenting your hard drive, and zeroing out free space
   - Attach additional EBS volumes
   - Create a new user account and add it to the Administrators group

   If you are sharing your AMI, these credentials can be supplied for RDP access without disclosing your default administrator password.
   
   - [Windows Server 2016] Configure settings using EC2Launch. To generate a random password at launch time, use the adminPasswordType setting. For more information, see Configuring EC2Launch (p. 301).
   - [Windows Server 2012 R2 and earlier] Configure settings using EC2Config. To generate a random password at launch time, enable the Ec2SetPassword plugin; otherwise, the current administrator password is used. For more information, see EC2Config Settings Files (p. 312).
   - [Windows Server 2008 R2] If the instance uses RedHat drivers to access Xen virtualized hardware, upgrade to Citrix drivers before you create an AMI. For more information, see Upgrade Windows Server 2008 and 2008 R2 Instances (Redhat to Citrix PV Upgrade) (p. 339).
6. In the navigation pane, choose Instances and select your instance. Choose Actions, Image, and Create Image.

   **Tip**
   
   If this option is disabled, your instance isn't an Amazon EBS-backed instance.
7. Specify a unique name for the image and an optional description (up to 255 characters.)

By default, Amazon EC2 shuts down the instance, takes snapshots of any attached volumes, creates and registers the AMI, and then reboots the instance. Choose No reboot if you don’t want your instance to be shut down.

**Warning**

If you choose No reboot, we can’t guarantee the file system integrity of the created image.

(Optional) Modify the root volume, Amazon EBS volumes, and instance store volumes as needed. For example:

- To change the size of the root volume, locate the Root volume in the Type column, and fill in the Size field.
- To suppress an Amazon EBS volume specified by the block device mapping of the AMI used to launch the instance, locate the EBS volume in the list and choose Delete.
- To add an Amazon EBS volume, choose Add New Volume, Type, and EBS, and fill in the fields. When you then launch an instance from your new AMI, these additional volumes are automatically attached to the instance. Empty volumes must be formatted and mounted. Volumes based on a snapshot must be mounted.
- To suppress an instance store volume specified by the block device mapping of the AMI used to launch the instance, locate the volume in the list and choose Delete.
- To add an instance store volume, choose Add New Volume, Type, and Instance Store, and select a device name from the Device list. When you launch an instance from your new AMI, these additional volumes are automatically initialized and mounted. These volumes don’t contain data from the instance store volumes of the running instance from which you based your AMI.

When you are finished, choose Create Image.

8. While your AMI is being created, you can choose AMIs in the navigation pane to view its status. Initially, this is pending. After a few minutes, the status should change to available.

(Optional) Choose Snapshots in the navigation pane to view the snapshot that was created for the new AMI. When you launch an instance from this AMI, we use this snapshot to create its root device volume.

9. Launch an instance from your new AMI. For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265). The new running instance contains all of the customizations you applied in previous steps, and any additional customization you add when launching the instance, such as user data (scripts that run when the instance starts).

**To create an AMI from an instance using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- create-image (AWS CLI)
- New-EC2Image (AWS Tools for Windows PowerShell)

**AMIs with Encrypted Snapshots**

AMIs that are backed by Amazon EBS snapshots can take advantage of Amazon EBS encryption. Snapshots of both data and root volumes can be encrypted and attached to an AMI.

EC2 instances with encrypted volumes are launched from AMIs in the same way as other instances.
The `CopyImage` action can be used to create an AMI with encrypted snapshots from an AMI with unencrypted snapshots. By default, `CopyImage` preserves the encryption status of source snapshots when creating destination copies. However, you can configure the parameters of the copy process to also encrypt the destination snapshots.

Snapshots can be encrypted with either your default AWS Key Management Service customer master key (CMK), or with a custom key that you specify. You must in all cases have permission to use the selected key. If you have an AMI with encrypted snapshots, you can choose to re-encrypt them with a different encryption key as part of the `CopyImage` action. `CopyImage` accepts only one key at a time and encrypts all of an image's snapshots (whether root or data) to that key. However, it is possible to manually build an AMI with snapshots encrypted to multiple keys.

Support for creating AMIs with encrypted snapshots is accessible through the Amazon EC2 console, Amazon EC2 API, or the AWS CLI.

The encryption parameters of `CopyImage` are available in all regions where AWS KMS is available.

### AMI Scenarios Involving Encrypted EBS Snapshots

You can copy an AMI and simultaneously encrypt its associated EBS snapshots using the AWS Management Console or the command line.

#### Copying an AMI with an Encrypted Data Snapshot

In this scenario, an EBS-backed AMI has an unencrypted root snapshot and an encrypted data snapshot, shown in step 1. The `CopyImage` action is invoked in step 2 without encryption parameters. As a result, the encryption status of each snapshot is preserved, so that the destination AMI, in step 3, is also backed by an unencrypted root snapshot and an encrypted data snapshot. Though the snapshots contain the same data, they are distinct from each other and you will incur storage costs for the snapshots in both AMIs, as well as charges for any instances you launch from either AMI.

You can perform a simple copy such as this using either the Amazon EC2 console or the command line. For more information, see Copying an AMI (p. 70).

#### Copying an AMI Backed by An Encrypted Root Snapshot

In this scenario, an Amazon EBS-backed AMI has an encrypted root snapshot, shown in step 1. The `CopyImage` action is invoked in step 2 without encryption parameters. As a result, the encryption status of the snapshot is preserved, so that the destination AMI, in step 3, is also backed by an encrypted root snapshot. Though the root snapshots contain identical system data, they are distinct from each other and you will incur storage costs for the snapshots in both AMIs, as well as charges for any instances you launch from either AMI.
You can perform a simple copy such as this using either the Amazon EC2 console or the command line. For more information, see Copying an AMI (p. 70).

Creating an AMI with Encrypted Root Snapshot from an Unencrypted AMI

In this scenario, an Amazon EBS-backed AMI has an unencrypted root snapshot, shown in step 1, and an AMI is created with an encrypted root snapshot, shown in step 3. The CopyImage action in step 2 is invoked with two encryption parameters, including the choice of a CMK. As a result, the encryption status of the root snapshot changes, so that the target AMI is backed by a root snapshot containing the same data as the source snapshot, but encrypted using the specified key. You will incur storage costs for the snapshots in both AMIs, as well as charges for any instances you launch from either AMI.

You can perform a copy and encrypt operation such as this using either the Amazon EC2 console or the command line. For more information, see Copying an AMI (p. 70).

Creating an AMI with an Encrypted Root Snapshot from a Running Instance

In this scenario, an AMI is created from a running EC2 instance. The running instance in step 1 has an encrypted root volume, and the created AMI in step 3 has a root snapshot encrypted to the same key as the source volume. The CreateImage action has exactly the same behavior whether or not encryption is present.

You can create an AMI from a running Amazon EC2 instance (with or without encrypted volumes) using either the Amazon EC2 console or the command line. For more information, see Creating a Custom Windows AMI (p. 65).

Creating an AMI with Unique CMKs for Each Encrypted Snapshot

This scenario starts with an AMI backed by a root-volume snapshot (encrypted to key #1), and finishes with an AMI that has two additional data-volume snapshots attached (encrypted to key #2 and key #3). The CopyImage action cannot apply more than one encryption key in a single operation. However, you can create an AMI from an instance that has multiple attached volumes encrypted to different keys. The resulting AMI has snapshots encrypted to those keys and any instance launched from this new AMI also has volumes encrypted to those keys.

The steps of this example procedure correspond to the following diagram.
1. Start with the source AMI backed by vol. #1 (root) snapshot, which is encrypted with key #1.
2. Launch an EC2 instance from the source AMI.
3. Create EBS volumes vol. #2 (data) and vol. #3 (data), encrypted to key #2 and key #3 respectively.
4. Attach the encrypted data volumes to the EC2 instance.
5. The EC2 instance now has an encrypted root volume as well as two encrypted data volumes, all using different keys.
6. Use the CreateImage action on the EC2 instance.
7. The resulting target AMI contains encrypted snapshots of the three EBS volumes, all using different keys.

You can carry out this procedure using either the Amazon EC2 console or the command line. For more information, see the following topics:

- Launch Your Instance (p. 264)
- Creating a Custom Windows AMI (p. 65).
- Amazon EBS Volumes (p. 630)
- AWS Key Management in the AWS Key Management Service Developer Guide

**Copying an AMI**

You can copy an Amazon Machine Image (AMI) within or across an AWS region using the AWS Management Console, the AWS command line tools or SDKs, or the Amazon EC2 API, all of which support the CopyImage action. You can copy both Amazon EBS-backed AMIs and instance store-backed AMIs. You can copy encrypted AMIs and AMIs with encrypted snapshots.

Copying a source AMI results in an identical but distinct target AMI with its own unique identifier. In the case of an Amazon EBS-backed AMI, each of its backing snapshots is, by default, copied to an identical but distinct target snapshot. (The one exception is when you choose to encrypt the snapshot.) You can change or deregister the source AMI with no effect on the target AMI. The reverse is also true.

There are no charges for copying an AMI. However, standard storage and data transfer rates apply.
AWS does not copy launch permissions, user-defined tags, or Amazon S3 bucket permissions from the source AMI to the new AMI. After the copy operation is complete, you can apply launch permissions, user-defined tags, and Amazon S3 bucket permissions to the new AMI.

Permissions for Copying an Instance Store-Backed AMI

If you use an IAM user to copy an instance store-backed AMI, the user must have the following Amazon S3 permissions: s3:CreateBucket, s3:GetBucketAcl, s3:ListAllMyBuckets, s3:GetObject, s3:PutObject, and s3:PutObjectAcl.

The following example policy allows the user to copy the AMI source in the specified bucket to the specified region.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": [
 "arn:aws:s3:::ami-source-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": ["s3:CreateBucket", "s3:GetBucketAcl", "s3:PutObjectAcl", "s3:PutObject"],
 "Resource": [
 "arn:aws:s3:::amis-for-123456789012-in-us-east-1*"
]
 }
]
}
```

To find the Amazon Resource Name (ARN) of the AMI source bucket, open the Amazon EC2 console at https://console.aws.amazon.com/ec2/, in the navigation pane choose AMIs, and locate the bucket name in the Source column.

Cross-Region AMI Copy

Copying an AMI across geographically diverse regions provides the following benefits:

- Consistent global deployment: Copying an AMI from one region to another enables you to launch consistent instances in different regions based on the same AMI.
- Scalability: You can more easily design and build global applications that meet the needs of your users, regardless of their location.
• **Performance:** You can increase performance by distributing your application, as well as locating critical components of your application in closer proximity to your users. You can also take advantage of region-specific features, such as instance types or other AWS services.

• **High availability:** You can design and deploy applications across AWS regions, to increase availability.

The following diagram shows the relations among a source AMI and two copied AMIs in different regions, as well as the EC2 instances launched from each. When you launch an instance from an AMI, it resides in the same region where the AMI resides. If you make changes to the source AMI and want those changes to be reflected in the AMIs in the target regions, you must recopy the source AMI to the target regions.

When you first copy an instance store-backed AMI to a region, we create an Amazon S3 bucket for the AMIs copied to that region. All instance store-backed AMIs that you copy to that region are stored in this bucket. The bucket names have the following format: amis-for-`account-in-region-hash`. For example: `amis-for-123456789012-in-us-east-2-yhjmxvp6`.

**Prerequisite**

Prior to copying an AMI, you must ensure that the contents of the source AMI are updated to support running in a different region. For example, you should update any database connection strings or similar application configuration data to point to the appropriate resources. Otherwise, instances launched from the new AMI in the destination region may still use the resources from the source region, which can impact performance and cost.

**Limit**

Destination regions are limited to 50 concurrent AMI copies at a time, with no more than 25 of those coming from a single source region.

**Cross-Account AMI Copy**

You can share an AMI with another AWS account. Sharing an AMI does not affect the ownership of the AMI. The owning account is charged for the storage in the region. For more information, see [Sharing an AMI with Specific AWS Accounts](p. 58).

If you copy an AMI that has been shared with your account, you are the owner of the target AMI in your account. The owner of the source AMI is charged standard Amazon EBS or Amazon S3 transfer fees, and you are charged for the storage of the target AMI in the destination region.

**Resource Permissions**

To copy an AMI that was shared with you from another account, the owner of the source AMI must grant you read permissions for the storage that backs the AMI, either the associated EBS snapshot (for an Amazon EBS-backed AMI) or an associated S3 bucket (for an instance store-backed AMI).
Limits

- You can’t copy an encrypted AMI that was shared with you from another account. Instead, if the underlying snapshot and encryption key were shared with you, you can copy the snapshot while re-encrypting it with a key of your own. You own the copied snapshot, and can register it as a new AMI.
- You can’t copy an AMI with an associated billingProduct code that was shared with you from another account. This includes Windows AMIs and AMIs from the AWS Marketplace. To copy a shared AMI with a billingProduct code, launch an EC2 instance in your account using the shared AMI and then create an AMI from the instance. For more information, see Creating a Custom Windows AMI (p. 65).

Encryption and AMI Copy

Encrypting during AMI copy applies only to Amazon EBS-backed AMIs. Because an instance store-backed AMI does not rely on snapshots, you cannot use AMI copy to change its encryption status.

You can use AMI copy to create a new AMI backed by encrypted Amazon EBS snapshots. If you invoke encryption while copying an AMI, each snapshot taken of its associated Amazon EBS volumes—including the root volume—is encrypted using a key that you specify. For more information about using AMIs with encrypted snapshots, see AMIs with Encrypted Snapshots (p. 67).

By default, the backing snapshot of an AMI is copied with its original encryption status. Copying an AMI backed by an unencrypted snapshot results in an identical target snapshot that is also unencrypted. If the source AMI is backed by an encrypted snapshot, copying it results in a target snapshot encrypted to the specified key. Copying an AMI backed by multiple snapshots preserves the source encryption status in each target snapshot. For more information about copying AMIs with multiple snapshots, see AMIs with Encrypted Snapshots (p. 67).

The following table shows encryption support for various scenarios. Note that while it is possible to copy an unencrypted snapshot to yield an encrypted snapshot, you cannot copy an encrypted snapshot to yield an unencrypted one.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unencrypted-to-unencrypted</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Encrypted-to-encrypted</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Unencrypted-to-encrypted</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Encrypted-to-unencrypted</td>
<td>No</td>
</tr>
</tbody>
</table>

Copy an unencrypted source AMI to an unencrypted target AMI

In this scenario, a copy of an AMI with an unencrypted single backing snapshot is created in the specified geographical region (not shown). Although this diagram shows an AMI with a single backing snapshot, you can also copy an AMI with multiple snapshots. The encryption status of each snapshot is preserved. Therefore, an unencrypted snapshot in the source AMI results in an unencrypted snapshot in the target AMI, and an encrypted snapshot in the source AMI results in an encrypted snapshot in the target AMI.
Copy an encrypted source AMI to an encrypted target AMI

Although this scenario involves encrypted snapshots, it is functionally equivalent to the previous scenario. If you apply encryption while copying a multi-snapshot AMI, all of the target snapshots are encrypted using the specified key or the default key if none is specified.

Copy an unencrypted source AMI to an encrypted target AMI

In this scenario, copying an AMI changes the encryption status of the destination image, for instance, by encrypting an unencrypted snapshot, or re-encrypting an encrypted snapshot with a different key. To apply encryption during the copy, you must provide an encryption flag and key. Volumes created from the target snapshot are accessible only using this key.

Copying an AMI

You can copy an AMI as follows.

Prerequisite

Create or obtain an AMI backed by an Amazon EBS snapshot. Note that you can use the Amazon EC2 console to search a wide variety of AMIs provided by AWS. For more information, see Creating a Custom Windows AMI (p. 65) and Finding a Windows AMI (p. 52).

To copy an AMI using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the console navigation bar, select the region that contains the AMI. In the navigation pane, choose **Images, AMIs** to display the list of AMIs available to you in the region.

3. Select the AMI to copy and choose **Actions, Copy AMI**.

4. In the **Copy AMI** dialog box, specify the following information and then choose **Copy AMI**:

   - **Destination region**: The region in which to copy the AMI.
   - **Name**: A name for the new AMI. You can include operating system information in the name, as we do not provide this information when displaying details about the AMI.
   - **Description**: By default, the description includes information about the source AMI so that you can distinguish a copy from its original. You can change this description as needed.
   - **Encryption**: Select this field to encrypt the target snapshots, or to re-encrypt them using a different key.
   - **Master Key**: The KMS key to used to encrypt the target snapshots.

5. We display a confirmation page to let you know that the copy operation has been initiated and to provide you with the ID of the new AMI.

   To check on the progress of the copy operation immediately, follow the provided link. To check on the progress later, choose **Done**, and then when you are ready, use the navigation bar to switch to the target region (if applicable) and locate your AMI in the list of AMIs.

   The initial status of the target AMI is **pending** and the operation is complete when the status is **available**.

**To copy an AMI using the AWS CLI**

You can copy an AMI using the `copy-image` command. You must specify both the source and destination regions. You specify the source region using the `--source-region` parameter. You can specify the destination region using either the `--region` parameter or an environment variable. For more information, see [Configuring the AWS Command Line Interface](#).

When you encrypt a target snapshot during copying, you must specify these additional parameters: `--encrypted` and `--kms-key-id`.

**To copy an AMI using the Tools for Windows PowerShell**

You can copy an AMI using the `Copy-EC2Image` command. You must specify both the source and destination regions. You specify the source region using the `-SourceRegion` parameter. You can specify the destination region using either the `-Region` parameter or the `Set-AWSDefaultRegion` command. For more information, see [Specifying AWS Regions](#).

When you encrypt a target snapshot during copying, you must specify these additional parameters: `-Encrypted` and `-KmsKeyId`.

### Stopping a Pending AMI Copy Operation

You can stop a pending AMI copy as follows.

**To stop an AMI copy operation using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the destination region from the region selector.
3. In the navigation pane, choose **AMIs**.
4. Select the AMI to stop copying and choose **Actions, Deregister**.
5. When asked for confirmation, choose **Continue**.
**To stop an AMI copy operation using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- **deregister-image** (AWS CLI)
- **Unregister-EC2Image** (AWS Tools for Windows PowerShell)

**Deregistering Your Windows AMI**

You can deregister a Windows AMI when you have finished using it. After you deregister an AMI, you can't use it to launch new instances.

When you deregister an AMI, it doesn't affect any instances that you've already launched from the AMI or any snapshots created for the EBS root volume during the AMI creation process. You'll continue to incur usage costs for these instances and storage costs for the snapshot. Therefore, you should terminate any instances that you finished with and delete any snapshots that you are finished with.

The following diagram illustrates the process for cleaning up your Windows AMI.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **AMIs**. Select the AMI and take note of its ID — this can help you find the correct snapshot in the next step. Choose **Actions**, and then **Deregister**. When prompted for confirmation, choose **Continue**.
   
   **Note**
   It can take a few minutes before the console removes the AMI from the list. Choose **Refresh** to refresh the status.

3. In the navigation pane, choose **Snapshots**, and select the snapshot (look for the AMI ID in the **Description** column). Choose **Actions**, and then choose **Delete Snapshot**. When prompted for confirmation, choose **Yes, Delete**.

4. (Optional) If you are finished with an instance that you launched from the AMI, terminate it. In the navigation pane, choose **Instances**. Select the instance, choose **Actions**, then **Instance State**, and then **Terminate**. When prompted for confirmation, choose **Yes, Terminate**.
Managed AWS Windows AMIs

AWS provides managed Amazon Machine Images (AMIs) that include various versions and configurations of Windows Server. In general, the AWS Windows AMIs are configured with the default settings used by the Microsoft installation media. However, there are customizations. For example, the AWS Windows AMIs come with the following software and drivers:

- EC2Config service (through Windows Server 2012 R2)
- EC2Launch (Windows Server 2016 only)
- AWS Systems Manager
- AWS CloudFormation
- AWS Tools for Windows PowerShell
- Network drivers (SRIOV, ENA, Citrix PV)
- Storage drivers (NVMe, AWS PV, Citrix PV)
- Graphics drivers (NVidia GPU, Elastic GPU)
- Spot Instance hibernation

For information about other customizations, see Configuration Changes for AWS Windows AMIs (p. 78).

Contents

- Updating Your Windows Instance (p. 77)
- Upgrading or Migrating to a Newer Version of Windows Server (p. 78)
- Subscribing to Windows AMI Notifications (p. 78)
- Configuration Changes for AWS Windows AMIs (p. 78)
- Details About AWS Windows AMI Versions (p. 80)
- Changes in Windows Server 2016 AMIs (p. 96)
- Docker Container Conflict on Windows Server 2016 Instances (p. 97)

Updating Your Windows Instance

After you launch a Windows instance, you are responsible for installing updates on it. You can manually install only the updates that interest you, or you can start from a current AWS Windows AMI and build a new Windows instance. For information about finding the current AWS Windows AMIs, see Finding a Windows AMI (p. 52).

For Windows instances, you can install updates to the following services or applications:

- Microsoft Windows Server
- Microsoft SQL Server
- Windows PowerShell
- EC2Launch (p. 300)
- EC2Config service (p. 317)
- SSM Agent
- PV Drivers (p. 336)
- AWS Tools for Windows PowerShell
- AWS CloudFormation helper scripts
You can reboot a Windows instance after installing updates. For more information, see Reboot Your Instance (p. 290).

### Upgrading or Migrating to a Newer Version of Windows Server

For information about how to upgrade or migrate a Windows instance to a newer version of Windows Server, see Upgrading an Amazon EC2 Windows Instance to a Newer Version of Windows Server (p. 374).

### Subscribing to Windows AMI Notifications

To be notified when new AMIs are released or when previously released AMIs are made private, subscribe for notifications using Amazon SNS.

**To subscribe to Windows AMI notifications**

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v2/home.
2. In the navigation bar, change the region to **US East (N. Virginia)**, if necessary. You must use this region because the SNS notifications that you are subscribing to were created in this region.
3. In the navigation pane, choose **Subscriptions**.
4. Choose **Create subscription**.
5. For the **Create subscription** dialog box, do the following:
   a. For **Topic ARN**, copy and paste one of the following Amazon Resource Names (ARNs):
      - `arn:aws:sns:us-east-1:801119661308:ec2-windows-ami-private`
   b. For **Protocol**, choose **Email**.
   c. For **Endpoint**, type an email address that you can use to receive the notifications.
   d. Choose **Create subscription**.
6. You'll receive a confirmation email with the subject line **AWS Notification - Subscription Confirmation**. Open the email and choose **Confirm subscription** to complete your subscription.

Whenever Windows AMIs are released, we send notifications to the subscribers of the `ec2-windows-ami-update` topic. Whenever released Windows AMIs are made private, we send notifications to the subscribers of the `ec2-windows-ami-private` topic. If you no longer want to receive these notifications, use the following procedure to unsubscribe.

**To unsubscribe from Windows AMI notifications**

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v2/home.
2. In the navigation bar, change the region to **US East (N. Virginia)**, if necessary. You must use this region because the SNS notifications were created in this region.
3. In the navigation pane, choose **Subscriptions**.
4. Select the subscriptions and then choose **Actions, Delete subscriptions**. When prompted for confirmation, choose **Delete**.

### Configuration Changes for AWS Windows AMIs

The following changes are applied to each AWS Windows AMI.
# Clean and Prepare

<table>
<thead>
<tr>
<th>Change</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for pending file renames or reboots, and reboot as needed</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Delete .dmp files</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Delete logs (event logs, SSM, EC2Config)</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Delete temporary folders and files for sysprep</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Clear recent history (Start menu, Windows Explorer, and so on)</td>
<td>Windows Server 2012 R2 and earlier</td>
</tr>
<tr>
<td>Perform virus scan</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Pre-compile queued .NET assemblies (before sysprep)</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Run Windows maintenance tools</td>
<td>Windows Server 2012 R2 and later</td>
</tr>
<tr>
<td>Restore default values for Internet Explorer</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Restore default values for EC2Config</td>
<td>Windows Server 2012 R2 and earlier</td>
</tr>
<tr>
<td>Set EC2Launch to run at the next launch</td>
<td>Windows Server 2016</td>
</tr>
<tr>
<td>Reset the Windows wallpaper</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Run sysprep</td>
<td>All AMIs</td>
</tr>
</tbody>
</table>

# Install and Configure

<table>
<thead>
<tr>
<th>Change</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add links to the Amazon EC2 Windows Guide</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Attach instance storage volumes to extended mount points</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Install the current AWS Tools for Windows PowerShell</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Install the current AWS CloudFormation helper scripts</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Install the current EC2Config and SSM Agent</td>
<td>Windows Server 2012 R2 and earlier</td>
</tr>
<tr>
<td>Install the current EC2Launch and SSM Agent</td>
<td>Windows Server 2016</td>
</tr>
<tr>
<td>Install the current AWS PV, ENA, and NVMe drivers</td>
<td>Windows Server 2008 R2 and later</td>
</tr>
<tr>
<td>Install the current SRIOV drivers</td>
<td>Windows Server 2012 R2 and later</td>
</tr>
<tr>
<td>Install the current Citrix PV driver</td>
<td>Windows Server 2008 SP2 and earlier</td>
</tr>
<tr>
<td>Install PowerShell 2.0 and 3.0</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
</tbody>
</table>
### Details About AWS Windows AMI Versions

AWS provides updated, fully-patched Windows AMIs within five business days of Microsoft’s patch Tuesday (the second Tuesday of each month). The new AMIs are available immediately through the Images page in the Amazon EC2 console. The new AMIs are available in the AWS Marketplace and the Quick Start tab of the launch instance wizard within a few days of their release.

To ensure that customers have the latest security updates by default, AWS keeps Windows AMIs available only for three months. After releasing new Windows AMIs, AWS makes the Windows AMIs that are older

<table>
<thead>
<tr>
<th>Change</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Microsoft SQL Server is installed:</td>
<td>All AMIs</td>
</tr>
<tr>
<td>• Install service packs</td>
<td>All AMIs</td>
</tr>
<tr>
<td>• Configure to start automatically</td>
<td>All AMIs</td>
</tr>
<tr>
<td>• Add BUILTIN\Administrators to the SysAdmin role</td>
<td>All AMIs</td>
</tr>
<tr>
<td>• Open TCP port 1433 and UDP port 1434</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Apply the following hotfixes:</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• MS15-011</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2582281</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2634328</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2800213</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2922223</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2394911</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>• KB2780879</td>
<td>Windows Server 2008 SP2 and R2</td>
</tr>
<tr>
<td>Allow ICMP traffic through the firewall</td>
<td>Windows Server 2012 R2 and earlier</td>
</tr>
<tr>
<td>Enable file and printer sharing</td>
<td>Windows Server 2012 R2 and earlier</td>
</tr>
<tr>
<td>Disable RunOnce for Internet Explorer</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Enable remote PowerShell</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Configure the Windows page file</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Disable hibernation and delete the hibernation file</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Set the performance options for best performance</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Set the power setting to high performance</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Disable the screen saver password</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Set the RealTimeIsUniversal registry key</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Set the timezone to UTC</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Disable Windows updates and notifications</td>
<td>All AMIs</td>
</tr>
<tr>
<td>Run Windows Update and reboot until there are no pending updates</td>
<td>All AMIs</td>
</tr>
</tbody>
</table>
than three months private within 10 days. After an AMI has been made private, if you look at an instance launched from that AMI in the console, the **AMI ID** field states, "Cannot load detail for ami-xxxxx. You may not be permitted to view it." You can still retrieve the AMI ID using the AWS CLI or an AWS SDK.

The Windows AMIs in each release have new AMI IDs. Therefore, we recommend that you write scripts that locate the latest AWS Windows AMIs by their names, rather than by their IDs. For more information, see the following examples:

- [Get-EC2ImageByName](#) (AWS Tools for Windows PowerShell)
- [Query for the Latest Windows AMI Using Systems Manager Parameter Store](#)
- [Walkthrough: Looking Up Amazon Machine Image IDs](#) (AWS Lambda, AWS CloudFormation)

The following tables summarize the changes to each release of the AWS Windows AMIs. Note that some changes apply to all AWS Windows AMIs while others apply to only a subset of these AMIs.

### Contents

- AMIs Released in 2018 (to date) (p. 81)
- AMIs Released in 2017 (p. 82)
- AMIs Released in 2016 (p. 85)
- AMIs Released in 2015 (p. 89)
- AMIs Released in 2014 (p. 91)
- AMIs Released in 2013 (p. 93)
- AMIs Released in 2012 (p. 95)
- AMIs Released in 2011 and earlier (p. 96)

For more information about components included in these AMIs, see the following:

- EC2Config Version History (p. 319)
- EC2Launch Version History (p. 306)
- Amazon SSM Agent Release Notes
- Amazon ENA Driver Versions (p. 626)
- AWS PV Driver Version History (p. 333)

### AMIs Released in 2018 (to date)

For more information about Microsoft updates, see Description of Software Update Services and Windows Server Update Services changes in content for 2018.

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018.01.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to January 9, 2018</td>
</tr>
<tr>
<td>2018.01.05</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to January 2018</td>
</tr>
<tr>
<td></td>
<td>• Registry settings to enable mitigations for the Spectre and Meltdown exploits</td>
</tr>
<tr>
<td></td>
<td>• AWS Tools for Windows PowerShell 3.3.215</td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.9.2262</td>
</tr>
</tbody>
</table>
AMIs Released in 2017

For more information about Microsoft updates, see Description of Software Update Services and Windows Server Update Services changes in content for 2017.

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017.12.13</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to December 12, 2017</td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.9.2218</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation templates 1.4.27</td>
</tr>
<tr>
<td></td>
<td>• AWS NVMe driver 1.02</td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.2.93.0</td>
</tr>
<tr>
<td></td>
<td>• AWS Tools for Windows PowerShell 3.3.201</td>
</tr>
<tr>
<td>2017.11.29</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Removed components for Volume Shadow Copy Service (VSS) included in</td>
</tr>
<tr>
<td></td>
<td>2017.11.18 and 2017.11.19 due to a compatibility issue with Windows</td>
</tr>
<tr>
<td></td>
<td>Backup.</td>
</tr>
<tr>
<td>2017.11.19</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• EC2 Hibernate Agent 1.0 (supports hibernation for Spot Instances)</td>
</tr>
<tr>
<td>2017.11.18</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to November 14, 2017</td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.9.2218</td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.2.64.0</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation templates 1.4.24</td>
</tr>
<tr>
<td></td>
<td>• Elastic Network Adapter (ENA) driver 1.08 (rollback from 1.2.2 in the</td>
</tr>
<tr>
<td></td>
<td>2017.10.13 AMI release)</td>
</tr>
<tr>
<td></td>
<td>• Query for the latest Windows AMI using Systems Manager Parameter Store</td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EC2Launch 1.3.640</td>
</tr>
<tr>
<td>2017.10.13</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to October 11, 2017</td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.9.2188</td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.2.30.0</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation templates 1.4.24</td>
</tr>
<tr>
<td></td>
<td>• Elastic Network Adapter (ENA) driver 1.2.2. (Windows Server 2008 R2</td>
</tr>
<tr>
<td></td>
<td>through Windows Server 2016)</td>
</tr>
<tr>
<td>2017.10.04</td>
<td><strong>Microsoft SQL Server</strong></td>
</tr>
<tr>
<td></td>
<td>Windows Server 2016 with Microsoft SQL Server 2017 AMIs are now public</td>
</tr>
<tr>
<td></td>
<td>in all Regions.</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2016-English-Full-SQL_2017_Enterprise-2017.04</td>
</tr>
</tbody>
</table>
Microsoft SQL Server 2017 supports the following features:

- Machine Learning Services with Python (ML and AI) and R language support
- Automatic database tuning
- Clusterless Availability Groups
- Runs on Red Hat Enterprise Linux (RHEL), SUSE Linux Enterprise Server (SLES), and Ubuntu. For more information, see the following Microsoft article: [Installation guidance for SQL Server on Linux](#). Not supported on Amazon Linux.
- Windows-Linux cross-OS migrations
- Resumable online index rebuild
- Improved adaptive query processing
- Graph data support

### 2017.09.13 All AMIs
- Microsoft security updates current to September 13, 2017
- EC2Config version 4.9.2106
- SSM Agent 2.0.952.0
- AWS Tools for Windows PowerShell 3.3.143
- AWS CloudFormation templates 1.4.21

### 2017.08.09 All AMIs
- Microsoft security updates current to August 9, 2017
- SSM Agent 2.0.879.0

**Windows Server 2012 R2**
- Due to an internal error, these AMIs were released with an older version of AWS Tools for Windows PowerShell, 3.3.58.0.

### 2017.07.13 All AMIs
- Microsoft security updates current to July 13, 2017
- SSM Agent 2.0.847.0

**Windows Server 2016**
- Intel SRIOV Driver 2.0.210.0
<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017.06.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>- Microsoft security updates current to June 14, 2017</td>
</tr>
<tr>
<td></td>
<td>- Updates for .NET Framework 4.7 installed from Windows Update</td>
</tr>
<tr>
<td></td>
<td>- Microsoft updates to address the &quot;privilege not held&quot; error using the PowerShell Stop-Computer cmdlet. For more information, see Privilege not held error on the Microsoft site.</td>
</tr>
<tr>
<td></td>
<td>- EC2Config version 4.9.1900</td>
</tr>
<tr>
<td></td>
<td>- SSM Agent 2.0.805.0</td>
</tr>
<tr>
<td></td>
<td>- AWS Tools for Windows PowerShell 3.3.99.0</td>
</tr>
<tr>
<td></td>
<td>- Internet Explorer 11 for the desktop is the default, instead of the immersive Internet Explorer</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2016</strong></td>
</tr>
<tr>
<td></td>
<td>- EC2Launch 1.3.610</td>
</tr>
<tr>
<td>2017.05.30</td>
<td>The Windows_Server-2008-SP2-English-32Bit-Base-2017.05.10 AMI was updated to the Windows_Server-2008-SP2-English-32Bit-Base-2017.05.30 AMI to resolve an issue with password generation.</td>
</tr>
<tr>
<td>2017.05.22</td>
<td>The Windows_Server-2016-English-Full-Base-2017.05.10 AMI was updated to the Windows_Server-2016-English-Full-Base-2017.05.22 AMI after some log cleaning.</td>
</tr>
<tr>
<td>2017.05.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>- Microsoft security updates current to May 9, 2017</td>
</tr>
<tr>
<td></td>
<td>- AWS PV Driver v7.4.6</td>
</tr>
<tr>
<td></td>
<td>- AWS Tools for Windows PowerShell 3.3.83.0</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2016</strong></td>
</tr>
<tr>
<td></td>
<td>- SSM Agent 2.0.767</td>
</tr>
<tr>
<td>2017.04.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>- Microsoft security updates current to April 11, 2017</td>
</tr>
<tr>
<td></td>
<td>- AWS Tools for Windows PowerShell 3.3.71.0</td>
</tr>
<tr>
<td></td>
<td>- AWS CloudFormation templates 1.4.18</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2003 to Windows Server 2012</strong></td>
</tr>
<tr>
<td></td>
<td>- EC2Config version 4.9.1775</td>
</tr>
<tr>
<td></td>
<td>- SSM Agent 2.0.761.0</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2016</strong></td>
</tr>
<tr>
<td></td>
<td>- SSM Agent 2.0.730.0</td>
</tr>
<tr>
<td>Release</td>
<td>Changes</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>2017.03.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to March 14, 2017</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Current AWS CloudFormation templates</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2003 to Windows Server 2012</strong></td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.7.1631</td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.0.682.0</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2016</strong></td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.0.706.0</td>
</tr>
<tr>
<td></td>
<td>• EC2Launch v1.3.540</td>
</tr>
<tr>
<td>2017.02.21</td>
<td>Microsoft recently announced that they will not release monthly patches or security updates for the month of February. All February patches and security updates will be included in the March update. Amazon Web Services did not release updated Windows Server AMIs in February.</td>
</tr>
<tr>
<td>2017.01.11</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to January 10, 2017</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Current AWS CloudFormation templates</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2003 to Windows Server 2012</strong></td>
</tr>
<tr>
<td></td>
<td>• EC2Config version 4.2.1442</td>
</tr>
<tr>
<td></td>
<td>• SSM Agent 2.0.599.0</td>
</tr>
</tbody>
</table>

### AMIs Released in 2016

For more information about Microsoft updates, see Description of Software Update Services and Windows Server Update Services changes in content for 2016.

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016.12.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to December 13, 2016</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td><strong>Windows Server 2003 to Windows Server 2012</strong></td>
</tr>
<tr>
<td></td>
<td>• Released EC2Config version 4.1.1396</td>
</tr>
<tr>
<td></td>
<td>• Elastic Network Adapter (ENA) driver 1.0.9.0 (Windows Server 2008 R2 only)</td>
</tr>
<tr>
<td>Release</td>
<td>Changes</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Windows Server 2016</strong></td>
<td>New AMIs available in all regions:</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2016-English-Core-Base</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2016-English-Nano-Base (Late December release because of a known issue where a small number of launches would fail to generate a login password.)</td>
</tr>
<tr>
<td><strong>Microsoft SQL Server</strong></td>
<td>All Microsoft SQL Server AMIs with the latest service pack are now public in all regions. These new AMIs replace old SQL Service Pack AMIs going forward.</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2008-R2_SP1-English-64Bit-SQL_2012_SP3_edition-2016.12.14</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2012-R2_RTM-English-64Bit-SQL_2016_SP1_edition-2016.12.14</td>
</tr>
<tr>
<td></td>
<td>• Windows_Server-2016-English-Full-SQL_2016_SP1_edition-2016.12.14</td>
</tr>
<tr>
<td></td>
<td>SQL Server 2016 SP1 is a major release. The following features, which were previously available in Enterprise edition only, are now enabled in Standard, Web, and Express editions with SQL Server 2016 SP1:</td>
</tr>
<tr>
<td></td>
<td>• Row-level security</td>
</tr>
<tr>
<td></td>
<td>• Dynamic Data Masking</td>
</tr>
<tr>
<td></td>
<td>• Change Data Capture</td>
</tr>
<tr>
<td></td>
<td>• Database snapshot</td>
</tr>
<tr>
<td></td>
<td>• Column store</td>
</tr>
<tr>
<td></td>
<td>• Partitioning</td>
</tr>
<tr>
<td></td>
<td>• Compression</td>
</tr>
<tr>
<td></td>
<td>• In Memory OLTP</td>
</tr>
<tr>
<td></td>
<td>• Always Encrypted</td>
</tr>
<tr>
<td>2016.11.23</td>
<td><strong>Windows Server 2003 to Windows Server 2012</strong></td>
</tr>
<tr>
<td></td>
<td>• Released EC2Config version 4.1.1378</td>
</tr>
<tr>
<td></td>
<td>• The AMIs released this month, and going forward, use the EC2Config service to process boot-time configurations and SSM Agent to process Amazon EC2 Run Command and SSM Config requests. EC2Config no longer processes requests for Run Command and SSM Config. The latest EC2Config installer installs SSM Agent side-by-side with the EC2Config service. For more information, see EC2Config and AWS Systems Manager (p. 308).</td>
</tr>
</tbody>
</table>
### Details About AWS Windows AMI Versions

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2016.11.09 | **All AMIs**  
  - Microsoft security updates current to November 8, 2016  
  - Released AWS PV driver, version 7.4.3.0 for Windows 2008 R2 and later  
  - Current AWS Tools for Windows PowerShell |
| 2016.10.18 | **All AMIs**  
  - Microsoft security updates current to October 12, 2016  
  - Current AWS Tools for Windows PowerShell |
|           | **Windows Server 2016**  
  - Released AMIs for Windows Server 2016. These AMIs include significant changes. For example, they don't include the EC2Config service. You can't connect to Windows Server 2016 Nano Server using Remote Desktop; you must remotely administer Nano Server using Windows PowerShell. For more information, see Changes in Windows Server 2016 AMIs (p. 96). |
| 2016.9.14  | **All AMIs**  
  - Microsoft security updates current to September 13, 2016  
  - Current AWS Tools for Windows PowerShell  
  - Renamed AMI Windows_Server-2012-RTM-Japanese-64Bit-SQL_2008_R3_SP2_Standard to Windows_Server-2012-RTM-Japanese-64Bit-SQL_2008_R2_SP3_Standard |
| 2016.8.26  | All Windows Server 2008 R2 AMIs dated 2016.08.11 were updated to fix a known issue. New AMIs are dated 2016.08.25. |
| 2016.8.11  | **All AMIs**  
  - Ec2Config v3.19.1153  
  - Microsoft security updates current to August 10, 2016  
  - Enabled the registry key User32 exception handler hardening feature in Internet Explorer for MS15-124 |
  - Elastic Network Adapter (ENA) Driver 1.0.8.0  
  - ENA AMI property set to enabled  
  - AWS PV Driver for Windows Server 2008 R2 was re-released this month because of a known issue. Windows Server 2008 R2 AMI's were removed in July because of this issue. |
<p>| 2016.8.2   | All Windows Server 2008 R2 AMIs for July were removed and rolled back to AMIs dated 2016.06.15, because of an issue discovered in the AWS PV driver. The AWS PV driver issue has been fixed. The August AMI release will include Windows Server 2008 R2 AMIs with the fixed AWS PV driver and July/August Windows updates. |</p>
<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2016.7.26 | **All AMIs**  
• Ec2Config v3.18.1118  
• 2016.07.13 AMIs were missing security patches. AMIs were re-patched. Additional processes were put in place to verify successful patch installations going forward. |
| 2016.7.13 | **All AMIs**  
• Microsoft security updates current to July 2016  
• Current AWS Tools for Windows PowerShell  
• Updated AWS PV Driver 7.4.2.0  
• AWS PV Driver for Windows Server 2008 R2 |
| 2016.6.16 | **All AMIs**  
• Microsoft security updates current to June 2016  
• Current AWS Tools for Windows PowerShell  
• EC2Config service version 3.17.1032 |
|           | **Microsoft SQL Server**  
• Released 10 AMIs that include 64-bit versions of Microsoft SQL Server 2016. If using the Amazon EC2 console, navigate to Images, AMIs, Public Images, and type Windows_Server-2012-R2_RTM-English-64Bit-SQL_2016_Standard in the search bar. For more information, see What's New in SQL Server 2016 on MSDN. |
| 2016.5.11 | **All AMIs**  
• Microsoft security updates current to May 2016  
• Current AWS Tools for Windows PowerShell  
• EC2Config service version 3.16.930  
• MS15-011 Active Directory patch installed |
|           | **Windows Server 2012 R2**  
• Intel SRIOV Driver 1.0.16.1 |
| 2016.4.13 | **All AMIs**  
• Microsoft security updates current to April 2016  
• Current AWS Tools for Windows PowerShell  
• EC2Config service version 3.15.880 |
| 2016.3.9  | **All AMIs**  
• Microsoft security updates current to March 2016  
• Current AWS Tools for Windows PowerShell  
• EC2Config service version 3.14.786 |
## Amazon Elastic Compute Cloud
User Guide for Windows Instances
Details About AWS Windows AMI Versions

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016.2.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to February 2016</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.13.727</td>
</tr>
<tr>
<td>2016.1.25</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to January 2016</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.12.649</td>
</tr>
<tr>
<td>2016.1.5</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
</tbody>
</table>

### AMIs Released in 2015

For more information about Microsoft updates, see Description of Software Update Services and Windows Server Update Services changes in content for 2015.

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015.12.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to December 2015</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td>2015.11.11</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to November 2015</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.11.521</td>
</tr>
<tr>
<td></td>
<td>• CFN Agent updated to latest version</td>
</tr>
<tr>
<td>2015.10.26</td>
<td>Corrected boot volume sizes of base AMIs to be 30GB instead of 35GB</td>
</tr>
<tr>
<td>2015.10.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to October 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.10.442</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Updated SQL Service Packs to latest versions for all SQL variants</td>
</tr>
<tr>
<td></td>
<td>• Removed old entries in Event Logs</td>
</tr>
<tr>
<td></td>
<td>• AMI Names have been changed to reflect the latest service pack.</td>
</tr>
<tr>
<td></td>
<td>For example, the latest AMI with Server 2012 and SQL 2014</td>
</tr>
</tbody>
</table>

89
<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015.9.9</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to September 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.9.359</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Current AWS CloudFormation helper scripts</td>
</tr>
<tr>
<td>2015.8.18</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to August 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.8.294</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>Only AMIs with Windows Server 2012 and Windows Server 2012 R2</td>
</tr>
<tr>
<td></td>
<td>• AWS PV Driver 7.3.2</td>
</tr>
<tr>
<td>2015.7.21</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to July 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.7.308</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Modified AMI descriptions of SQL images for consistency</td>
</tr>
<tr>
<td>2015.6.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to June 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.6.269</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• Current AWS CloudFormation helper scripts</td>
</tr>
<tr>
<td></td>
<td>Only AMIs with Windows Server 2012 R2</td>
</tr>
<tr>
<td></td>
<td>• AWS PV Driver 7.3.1</td>
</tr>
<tr>
<td>2015.5.13</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to May 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.5.228</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td>2015.04.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to April 2015</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 3.3.174</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
</tbody>
</table>
Details About AWS Windows AMI Versions

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015.03.11</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to March 2015&lt;br&gt;- EC2Config service version 3.2.97&lt;br&gt;- Current AWS Tools for Windows PowerShell&lt;br&gt;&lt;br&gt;<strong>Only AMIs with Windows Server 2012 R2</strong>&lt;br&gt;- AWS PV Driver 7.3.0</td>
</tr>
<tr>
<td>2015.02.11</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to February 2015&lt;br&gt;- EC2Config service version 3.0.54&lt;br&gt;- Current AWS Tools for Windows PowerShell&lt;br&gt;- Current AWS CloudFormation helper scripts</td>
</tr>
<tr>
<td>2015.01.14</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to January 2015&lt;br&gt;- EC2Config service version 2.3.313&lt;br&gt;- Current AWS Tools for Windows PowerShell&lt;br&gt;- Current AWS CloudFormation helper scripts</td>
</tr>
</tbody>
</table>

**AMIs Released in 2014**

For more information about Microsoft updates, see [Description of Software Update Services and Windows Server Update Services changes in content for 2014](#).

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014.12.10</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to December 2014&lt;br&gt;- EC2Config service version 2.2.12&lt;br&gt;- Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td>2014.11.19</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to November 2014&lt;br&gt;- EC2Config service version 2.2.11&lt;br&gt;- Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td>2014.10.15</td>
<td><strong>All AMIs</strong>&lt;br&gt;- Microsoft security updates current to October 2014&lt;br&gt;- EC2Config service version 2.2.10&lt;br&gt;- Current AWS Tools for Windows PowerShell</td>
</tr>
</tbody>
</table>
## Details About AWS Windows AMI Versions

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Only AMIs with Windows Server 2012 R2</strong></td>
<td></td>
</tr>
<tr>
<td>• AWS PV Driver 7.2.4.1 (resolves the issues with Plug and Play Cleanup, which is now enabled by default)</td>
<td></td>
</tr>
<tr>
<td>2014.09.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to September 2014</td>
<td></td>
</tr>
<tr>
<td>• EC2Config service version 2.2.8</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td><strong>Only AMIs with Windows Server 2012 R2</strong></td>
<td></td>
</tr>
<tr>
<td>• Disable Plug and Play Cleanup (see Important information)</td>
<td></td>
</tr>
<tr>
<td>• AWS PV Driver 7.2.2.1 (resolves issues with the uninstaller)</td>
<td></td>
</tr>
<tr>
<td>2014.08.13</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to August 2014</td>
<td></td>
</tr>
<tr>
<td>• EC2Config service version 2.2.7</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td><strong>Only AMIs with Windows Server 2012 R2</strong></td>
<td></td>
</tr>
<tr>
<td>• AWS PV Driver 7.2.2.1 (improves disk performance, resolves issues with reconnecting multiple network interfaces and lost network settings)</td>
<td></td>
</tr>
<tr>
<td>2014.07.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to July 2014</td>
<td></td>
</tr>
<tr>
<td>• EC2Config service version 2.2.5</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td>2014.06.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to June 2014</td>
<td></td>
</tr>
<tr>
<td>• EC2Config service version 2.2.4</td>
<td></td>
</tr>
<tr>
<td>• Removed NVIDIA drivers (except for Windows Server 2012 R2 AMIs)</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td>2014.05.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to May 2014</td>
<td></td>
</tr>
<tr>
<td>• EC2Config service version 2.2.2</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td>• AWS CloudFormation helper scripts version 1.4.0</td>
<td></td>
</tr>
<tr>
<td>2014.04.09</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td>• Microsoft security updates current to April 2014</td>
<td></td>
</tr>
<tr>
<td>• Current AWS Tools for Windows PowerShell</td>
<td></td>
</tr>
<tr>
<td>• Current AWS CloudFormation helper scripts</td>
<td></td>
</tr>
</tbody>
</table>
## Amazon Elastic Compute Cloud
User Guide for Windows Instances
Details About AWS Windows AMI Versions

### AMIs Released in 2014

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2014.03.12 | **All AMIs**  
  - Microsoft security updates current to March 2014                                                          |
| 2014.02.12 | **All AMIs**  
  - Microsoft security updates current to February 2014  
  - EC2Config service version 2.2.1  
  - Current AWS Tools for Windows PowerShell  
  - KB2634328  
  - Remove the BCDEdit useplatformclock value |

**Only AMIs with Microsoft SQL Server**

- Microsoft SQL Server 2012 SP1 cumulative update package 8
- Microsoft SQL Server 2008 R2 cumulative update package 10

### AMIs Released in 2013

For more information about Microsoft updates, see [Description of Software Update Services and Windows Server Update Services changes in content for 2013](#).

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2013.11.13 | **All AMIs**  
  - Microsoft security updates current to November 2013  
  - EC2Config service version 2.1.19  
  - Current AWS Tools for Windows PowerShell  
  - Configure NTP to synchronize the time once a day (the default is every seven days) |

**Only AMIs with Windows Server 2012**

- Clean up the WinSXS folder using the following command: `dism /online /cleanup-image /StartComponentCleanup`

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2013.09.11 | **All AMIs**  
  - Microsoft security updates current to September 2013  
  - EC2Config service version 2.1.18  
  - Current AWS Tools for Windows PowerShell  
  - AWS CloudFormation helper scripts version 1.3.15 |

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2013.07.10 | **All AMIs**  
  - Microsoft security updates current to July 2013  
  - EC2Config service version 2.1.16  
  - Expanded the root volume to 50 GB  
  - Set the page file to 512 MB, expanding to 8 GB as needed |
<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013.06.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to June 2013</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td><strong>Only AMIs with Microsoft SQL Server</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft SQL Server 2012 SP1 with cumulative update package 4</td>
</tr>
<tr>
<td>2013.05.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to May 2013</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.15</td>
</tr>
<tr>
<td></td>
<td>• All instance store volumes attached by default</td>
</tr>
<tr>
<td></td>
<td>• Remote PowerShell enabled by default</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td>2013.04.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to April 2013</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation helper scripts version 1.3.14</td>
</tr>
<tr>
<td>2013.03.14</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to March 2013</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.14</td>
</tr>
<tr>
<td></td>
<td>• Citrix Agent with CPU heartbeat fix</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation helper scripts version 1.3.11</td>
</tr>
<tr>
<td>2013.02.22</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to February 2013</td>
</tr>
<tr>
<td></td>
<td>• KB2800213</td>
</tr>
<tr>
<td></td>
<td>• Windows PowerShell 3.0 upgrade</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.13</td>
</tr>
<tr>
<td></td>
<td>• Citrix Agent with time fix</td>
</tr>
<tr>
<td></td>
<td>• Citrix PV drivers dated 2011.07.19</td>
</tr>
<tr>
<td></td>
<td>• Current AWS Tools for Windows PowerShell</td>
</tr>
<tr>
<td></td>
<td>• AWS CloudFormation helper scripts version 1.3.8</td>
</tr>
<tr>
<td></td>
<td><strong>Only AMIs with Microsoft SQL Server</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft SQL Server 2012 cumulative update package 5</td>
</tr>
</tbody>
</table>
AMIs Released in 2012

For more information about Microsoft updates, see Description of Software Update Services and Windows Server Update Services changes in content for 2012.

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012.12.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to December 2012</td>
</tr>
<tr>
<td></td>
<td>• Set the ActiveTimeBias registry value to 0</td>
</tr>
<tr>
<td></td>
<td>• Disable IPv6 for the network adapter</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.9</td>
</tr>
<tr>
<td></td>
<td>• Add AWS Tools for Windows PowerShell and set the policy to allow import-module</td>
</tr>
<tr>
<td>2012.11.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to November 2012</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.7</td>
</tr>
<tr>
<td>2012.10.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to October 2012</td>
</tr>
<tr>
<td>2012.08.15</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to August 2012</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.2</td>
</tr>
<tr>
<td></td>
<td>• KB2545227</td>
</tr>
<tr>
<td>2012.07.11</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to July 2012</td>
</tr>
<tr>
<td>2012.06.12</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to June 2012</td>
</tr>
<tr>
<td></td>
<td>• Set page file to 4 GB</td>
</tr>
<tr>
<td></td>
<td>• Remove installed language packs</td>
</tr>
<tr>
<td></td>
<td>• Set performance option to &quot;Adjust for best performance&quot;</td>
</tr>
<tr>
<td></td>
<td>• Set the screen saver to no longer display the logon screen on resume</td>
</tr>
<tr>
<td></td>
<td>• Remove previous RedHat driver versions using pnputil</td>
</tr>
<tr>
<td></td>
<td>• Remove duplicate bootloaders and set bootstatuspolicy to ignoreallfailures using bcedit</td>
</tr>
<tr>
<td>2012.05.10</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to May 2012</td>
</tr>
<tr>
<td></td>
<td>• EC2Config service version 2.1.0</td>
</tr>
<tr>
<td>2012.04.11</td>
<td><strong>All AMIs</strong></td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to April 2012</td>
</tr>
<tr>
<td></td>
<td>• KB2582281</td>
</tr>
</tbody>
</table>
Changes in Windows Server 2016 AMIs

AWS provides AMIs for Windows Server 2016. These AMIs include the following high-level changes from earlier Windows AMIs:

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012.03.13</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Current version of EC2Config</td>
</tr>
<tr>
<td></td>
<td>• System time in UTC instead of GMT</td>
</tr>
<tr>
<td>2012.02.24</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to February 2012</td>
</tr>
<tr>
<td></td>
<td>• Standardize AMI names and descriptions</td>
</tr>
<tr>
<td>2012.01.12</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to January 2012</td>
</tr>
<tr>
<td></td>
<td>• RedHat PV driver version 1.3.10</td>
</tr>
</tbody>
</table>

AMIs Released in 2011 and earlier

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.09.11</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Microsoft security updates current to September 2011</td>
</tr>
<tr>
<td>1.04</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Current Microsoft security updates</td>
</tr>
<tr>
<td></td>
<td>• Update network driver</td>
</tr>
<tr>
<td></td>
<td>• Fix issue with instances in a VPC losing connectivity when changing the time zone of the instance</td>
</tr>
<tr>
<td>1.02</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Current Microsoft security updates</td>
</tr>
<tr>
<td></td>
<td>• Update network driver</td>
</tr>
<tr>
<td></td>
<td>• Add support for licensing activation for instances in a VPC</td>
</tr>
<tr>
<td>1.01</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Current Microsoft security updates</td>
</tr>
<tr>
<td></td>
<td>• Fix issue with password improperly generated while waiting for network availability</td>
</tr>
<tr>
<td>1.0</td>
<td>All AMIs</td>
</tr>
<tr>
<td></td>
<td>• Initial release</td>
</tr>
</tbody>
</table>
To accommodate the change from .NET Framework to .NET Core, the EC2Config service has been deprecated on Windows Server 2016 AMIs and replaced by EC2Launch. EC2Launch is a bundle of Windows PowerShell scripts that perform many of the tasks performed by the EC2Config service. For more information, see Configuring a Windows Instance Using EC2Launch (p. 299).

The Windows Server 2016 Nano Server installation option (Nano Server) does not support Remote Desktop connections. The Connection option is available in the EC2 console, but the connection fails. You must remotely connect to your instance using Windows PowerShell. For more information, see Connect to a Windows Server 2016 Nano Server Instance (p. 286).

On earlier versions of Windows Server AMIs, you can use the EC2Config service to join an EC2 instance to a domain and configure integration with Amazon CloudWatch. On Windows Server 2016 AMIs, the Amazon EC2 Systems Manager (SSM) agent performs these tasks. This means that you must use either Amazon EC2 Run Command or SSM Config to join an EC2 instance to a domain or configure integration with Amazon CloudWatch on Windows Server 2016 instances. For more information about configuring instances to send log data to CloudWatch, see Sending Logs, Events, and Performance Counters to Amazon CloudWatch (p. 431) For information about joining an EC2 instance to a domain, see Joining a Windows Instance to an AWS Directory Service Domain.

Other Differences

Note these additional important differences for instances created from Windows Server 2016 AMIs.

- By default, EC2Launch does not initialize secondary EBS volumes. You can configure EC2Launch to initialize disks automatically by either scheduling the script to run or by calling EC2Launch in user data. For the procedure to initialize disks using EC2Launch, see "Initialize Drives and Drive Letter Mappings" in Configuring EC2Launch (p. 301).
- Nano Server does not support online domain joining. You must perform an offline domain join instead. For more information, see Offline Domain Join (Djoin.exe) Step-by-Step Guide on Microsoft TechNet.
- If you previously enabled CloudWatch integration on your instances by using a local configuration file (AWS.EC2.Windows.CloudWatch.json), you can configure the file to work with the SSM Agent on instances created from Windows Server 2016 AMIs. For more information, see Use SSM Agent to Configure CloudWatch (p. 443).

For more information, see Windows Server 2016 and Install Nano Server on Microsoft.com.

Docker Container Conflict on Windows Server 2016 Instances

If you run the Docker service on Windows Server 2016 AMIs, the service is configured to use a different CIDR value than the default internal IP address prefix value. The default value is 172.16.0.0/12. Windows Server 2016 AMIs use 172.17.0.0/16 to avoid a conflict with the default Amazon EC2 VPC/subnet. If you don't change VPC/subnet settings for your EC2 instances, then you don't need to do anything. The conflict is essentially avoided because of the different CIDR values. If you do change VPC/subnet settings, be aware of these internal IP address prefix values and avoid creating a conflict. For more information, read the following section.

Important

If you plan to run Docker on a Windows Server 2016 instance, you must create the instance from the following Amazon Machine Image (AMI) or an AMI based on this image: Windows_Server-2016-English-Full-Containers-2016.10.18. Otherwise, if you use a different Windows Server 2016 AMI, instances fail to boot correctly after installing Docker and then running Sysprep.
Create a Standard Amazon Machine Image Using Sysprep

The Microsoft System Preparation (Sysprep) tool simplifies the process of duplicating a customized installation of Windows. We recommend that you use Sysprep to create a standardized Amazon Machine Image (AMI). You can then create new Amazon EC2 instances for Windows from this standardized image.

We also recommend that you run Sysprep with the EC2Config service, which automates and secures the image-preparation process on your AMI by using an answer file. The file is located in the following directory by default: C:\Program Files\Amazon\Ec2ConfigService\sysprep2008.xml.

Important

- The EC2Config service is replaced by EC2Launch on Windows Server 2016. You can use Sysprep with EC2Launch on the full version of Windows Server 2016 (with a desktop experience). Sysprep with EC2Launch is not supported on the Nano installation of Windows Server 2016. For more information, see Using Sysprep with EC2Launch (p. 303).
- Don't use Sysprep to create an instance backup. Sysprep removes system-specific information; removing this information might have unintended consequences for an instance backup.

Contents

- Before You Begin (p. 98)
- Using Sysprep with the EC2Config Service (p. 98)
- Run Sysprep with the EC2Config Service (p. 101)
- Troubleshooting Sysprep with EC2Config (p. 102)

Before You Begin

- Learn more about Sysprep on Microsoft TechNet.
- Learn which server roles are supported for Sysprep.

Using Sysprep with the EC2Config Service

Learn the details of the different Sysprep execution phases and the tasks performed by the EC2Config service as the image is prepared.

Sysprep Phases

Sysprep runs through the following phases:

1. Generalize: The tool removes image-specific information and configurations. For example, Sysprep removes the security identifier (SID), the computer name, the event logs, and specific drivers, to name a few. After this phase is completed, the operating system (OS) is ready to create an AMI.
   
   Note
   When you run Sysprep with the EC2Config service, the system prevents drivers from being removed because the PersistAllDeviceInstalls setting is set to true by default.

2. Specialize: Plug and Play scans the computer and installs drivers for any detected devices. The tool generates OS requirements like the computer name and SID. Optionally, you can execute commands in this phase.
3. **Out-of-Box Experience (OOBE):** The system runs an abbreviated version of Windows Setup and asks the user to enter information such as a system language, the time zone, and a registered organization. When you run Sysprep with EC2Config, the answer file automates this phase.

### Sysprep Actions

Sysprep and the EC2Config service perform the following actions when preparing an image.

1. When you choose *Shutdown with Sysprep* in the *EC2 Service Properties* dialog box, the system runs the `ec2config.exe –sysprep` command.
2. The EC2Config service reads the content of the `BundleConfig.xml` file. This file is located in the following directory, by default: `C:\Program Files\Amazon\Ec2ConfigService\Settings`.

The `BundleConfig.xml` file includes the following settings. You can change these settings:

- **AutoSysprep**: Indicates whether to use Sysprep automatically. You do not need to change this value if you are running Sysprep from the EC2 Service Properties dialog box. The default value is No.
- **SetRDPCertificate**: Sets a self-signed certificate for the Remote Desktop server. This enables you to securely use the Remote Desktop Protocol (RDP) to connect to the instance. Change the value to Yes if new instances should use a certificate. This setting is not used with Windows Server 2008 or Windows Server 2012 instances because these operating systems can generate their own certificates. The default value is No.
- **SetPasswordAfterSysprep**: Sets a random password on a newly launched instance, encrypts it with the user launch key, and outputs the encrypted password to the console. Change the value to No if new instances should not be set to a random encrypted password. The default value is Yes.
- **PreSysprepRunCmd**: The location of the command to run. The command is located in the following directory, by default: `C:\Program Files\Amazon\Ec2ConfigService\Scripts\BeforeSysprep.cmd`.

3. The system executes `BeforeSysprep.cmd`. This command creates a registry key as follows:

   ```
 reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" /v fDenyTSConnections /t REG_DWORD /d 1 /f
   ```

   The registry key disables RDP connections until they are re-enabled. Disabling RDP connections is a necessary security measure because, during the first boot session after Sysprep has run, there is a short period of time where RDP allows connections and the Administrator password is blank.

4. The EC2Config service calls `sysprep.exe` by executing the following command:

   ```
 sysprep.exe /unattend: "C:\Program Files\Amazon\Ec2ConfigService\sysprep2008.xml" /oobe /generalize /shutdown
   ```

### Generalize Phase

1. The tool removes image-specific information and configurations such as the computer name and the SID. If the instance is a member of a domain, it is removed from the domain. The `sysprep2008.xml` answer file includes the following settings which affect this phase:

   - **PersistAllDeviceInstalls**: This setting prevents Windows Setup from removing and reconfiguring devices, which speeds up the image preparation process because Amazon AMIs require certain drivers to run and re-detection of those drivers would take time.
   - **DoNotCleanUpNonPresentDevices**: This setting retains Plug and Play information for devices that are not currently present.

2. Sysprep.exe shuts down the OS as it prepares to create the AMI. They system either launches a new instance or starts the original instance.
Specialize Phase

The system generates OS specific requirements such as a computer name and a SID. The system also performs the following actions based on configurations that you specify in the sysprep2008.xml answer file.

- **CopyProfile**: Sysprep can be configured to delete all user profiles, including the built-in Administrator profile. This setting retains the built-in Administrator account so that any customizations you made to that account are carried over to the new image. The default value is True.

If you don’t have specific user-profile customizations that you want to carry over to the new image then change this setting to False. Sysprep will remove all user profiles; this saves time and disk space.

- **TimeZone**: The time zone is set to Coordinate Universal Time (UTC) by default.

- **Synchronous command with order 1**: The system executes the following command that enables the administrator account and specifies the password requirement.

  ```
 net user Administrator /ACTIVE:YES /LOGONPASSWORDCHG:NO /EXPIRES:NEVER /PASSWORDREQ:YES
  ```

- **Synchronous command with order 2**: The system scrambles the administrator password. This security measure is designed to prevent the instance from being accessible after Sysprep completes if you did not enable the ec2setpassword setting.

  ```
 C:\Program Files\Amazon\Ec2ConfigService\ScramblePassword.exe" -u Administrator
  ```

- **Synchronous command with order 3**: The system executes the following command:

  ```
 C:\Program Files\Amazon\Ec2ConfigService\Scripts\SysprepSpecializePhase.cmd
  ```

  This command adds the following registry key, which re-enables RDP:

  ```
 reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server" /v fDenyTSConnections /t REG_DWORD /d 0 /f
  ```

OOBE Phase

1. Using the EC2Config service answer file, the system specifies the following configurations:

   - `<InputLocale>en-US</InputLocale>`
   - `<SystemLocale>en-US</SystemLocale>`
   - `<UILanguage>en-US</UILanguage>`
   - `<UserLocale>en-US</UserLocale>`
   - `<HideEULAPage>true</HideEULAPage>`
   - `<HideWirelessSetupInOOBE>true</HideWirelessSetupInOOBE>`
   - `<NetworkLocation>Other</NetworkLocation>`
   - `<ProtectYourPC>3</ProtectYourPC>`
   - `<BluetoothTaskbarIconEnabled>false</BluetoothTaskbarIconEnabled>`
   - `<TimeZone>UTC</TimeZone>`
   - `<RegisteredOrganization>Amazon.com</RegisteredOrganization>`
   - `<RegisteredOwner>Amazon</RegisteredOwner>`

**Note**

During the generalize and specialize phases the EC2Config service monitors the status of the OS. If EC2Config detects that the OS is in a Sysprep phase, then it publishes the following message the system log:

EC2ConfigMonitorState: 0 Windows is being configured. SysprepState=IMAGE_STATE_UNDEPLOYABLE
2. After the OOBEl phase completes, the system executes the SetupComplete.cmd from the following location: C:\Windows\Setup\Scripts\SetupComplete.cmd. In Amazon public AMIs before April 2015 this file was empty and executed nothing on the image. In public AMIs dated after April 2015, the file includes the following value: call "C:\Program Files\Amazon\Ec2ConfigService\Scripts \PostSysprep.cmd".

3. The system executes the PostSysprep.cmd, which performs the following operations:
   - Sets the local Administrator password to not expire. If the password expired, Administrators might not be able to log on.
   - Sets the MSSQLServer machine name (if installed) so that the name will be in sync with the AMI.

### Post Sysprep

After Sysprep completes, the EC2Config services sends the following message to the console output:

```
Windows sysprep configuration complete.
Message: Sysprep Start
Message: Sysprep End
```

EC2Config then performs the following actions:

1. Reads the content of the config.xml file and lists all enabled plug-ins.
2. Executes all “Before Windows is ready” plug-ins at the same time.
   - Ec2SetPassword
   - Ec2SetComputerName
   - Ec2InitializeDrives
   - Ec2EventLog
   - Ec2ConfigureRDP
   - Ec2OutputRDP_cert
   - Ec2SetDriveLetter
   - Ec2WindowsActivate
   - Ec2DynamicBootVolumeSize
3. After it is finished, sends a “Windows is ready” message to the instance system logs.
4. Runs all “After Windows is ready” plug-ins at the same time.
   - AWS CloudWatch logs
   - UserData
   - Simple Systems Manager (SSM)

For more information about Windows plug-ins, see Configuring a Windows Instance Using the EC2Config Service (p. 307).

### Run Sysprep with the EC2Config Service

Use the following procedure to create a standardized AMI using Sysprep and the EC2Config service.

1. In the Amazon EC2 console locate or create (p. 65) an AMI that you want to duplicate.
2. Launch and connect to your Windows instance.
3. Customize it.
4. Specify configuration settings in the EC2Config service answer file:
   
   ```
 C:\Program Files\Amazon\Ec2ConfigService\sysprep2008.xml
   ```
5. From the Windows Start menu, choose All Programs, and then choose EC2ConfigService Settings.


7. Select an option for the Administrator password, and then select Shutdown with Sysprep or Shutdown without Sysprep. EC2Config edits the settings files based on the password option that you selected.

   - **Random**: EC2Config generates a password, encrypts it with user's key, and displays the encrypted password to the console. We disable this setting after the first launch so that this password persists if the instance is rebooted or stopped and started.

   - **Specify**: The password is stored in the Sysprep answer file in unencrypted form (clear text). When Sysprep runs next, it sets the Administrator password. If you shut down now, the password is set immediately. When the service starts again, the Administrator password is removed. It's important to remember this password, as you can't retrieve it later.

   - **Keep Existing**: The existing password for the Administrator account doesn't change when Sysprep is run or EC2Config is restarted. It's important to remember this password, as you can't retrieve it later.

8. Choose OK.

When you are asked to confirm that you want to run Sysprep and shut down the instance, click Yes. You'll notice that EC2Config runs Sysprep. Next, you are logged off the instance, and the instance is shut down. If you check the Instances page in the Amazon EC2 console, the instance state changes from running to stopping, and then finally to stopped. At this point, it's safe to create an AMI from this instance.

You can manually invoke the Sysprep tool from the command line using the following command:

```
"%programfiles%\amazon\ec2configservice\"ec2config.exe -sysprep"
```

**Note**

The double quotation marks in the command are not required if your CMD shell is already in the C:\Program Files\Amazon\EC2ConfigService\ directory.

However, you must be very careful that the XML file options specified in the Ec2ConfigService \Settings folder are correct; otherwise, you might not be able to connect to the instance. For more information about the settings files, see EC2Config Settings Files (p. 312). For an example of configuring and then running Sysprep from the command line, see Ec2ConfigService\Scripts \InstallUpdates.ps1.

### Troubleshooting Sysprep with EC2Config

If you experience problems or receive error messages during image preparations, review the following logs:

- %WINDIR%\Panther\Unattendgc
- %WINDIR%\System32\Sysprep\Panther
- "C:\Program Files\Amazon\Ec2ConfigService\Logs\Ec2ConfigLog.txt"

If you receive an error message during image preparation with Sysprep, the OS might not be reachable. To review the log files, you must stop the instance, attach its root volume to another healthy instance as a secondary volume, and then review the logs mentioned earlier on the secondary volume.

If you locate errors in the Unattendgc log file, use the Microsoft Error Lookup Tool to get more details about the error. The following issue reported in the Unattendgc log file is typically the result of one or more corrupted user profiles on the instance:

```
Error [Shell Unattend] _FindLatestProfile failed (0x80070003) [gle=0x00000003]
```
Troubleshooting Sysprep with EC2Config

Error [Shell Unattend] CopyProfile failed (0x80070003) [gle=0x00000003]

There are two options for resolving this issue:

**Option 1:** Use Regedit on the instance to search for the following key. Verify that there are no profile registry keys for a deleted user:

```
[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ProfileList]
```

**Option 2:** Edit the EC2Config answer file (C:\Program Files\Amazon\Ec2ConfigService\sysprep2008.xml) and change `<CopyProfile>true</CopyProfile>` to `<CopyProfile>false</CopyProfile>`. Run Sysprep again. Note that this configuration change will delete the built-in administrator user profile after Sysprep completes.
Amazon EC2 Instances

If you're new to Amazon EC2, see the following topics to get started:

- What Is Amazon EC2? (p. 1)
- Setting Up with Amazon EC2 (p. 12)
- Getting Started with Amazon EC2 Windows Instances (p. 19)
- Instance Lifecycle (p. 261)

Before you launch a production environment, you need to answer the following questions.

Q. What instance type best meets my needs?

Amazon EC2 provides different instance types to enable you to choose the CPU, memory, storage, and networking capacity that you need to run your applications. For more information, see Instance Types (p. 104).

Q. What purchasing option best meets my needs?

Amazon EC2 supports On-Demand instances (the default), Spot instances, and Reserved Instances. For more information, see Instance Purchasing Options (p. 156).

Q. Would I benefit from using a virtual private cloud?

If you can launch instances in either EC2-Classic or EC2-VPC, you'll need to decide which platform meets your needs. For more information, see Supported Platforms (p. 551) and Amazon EC2 and Amazon Virtual Private Cloud (p. 544).

Q. Can I remotely manage a fleet of EC2 instances and machines in my hybrid environment?

Amazon Elastic Compute Cloud (Amazon EC2) Run Command lets you remotely and securely manage the configuration of your Amazon EC2 instances, virtual machines (VMs) and servers in hybrid environments, or VMs from other cloud providers. For more information, see Systems Manager Remote Management (Run Command).

Instance Types

When you launch an instance, the instance type that you specify determines the hardware of the host computer used for your instance. Each instance type offers different compute, memory, and storage capabilities and are grouped in instance families based on these capabilities. Select an instance type based on the requirements of the application or software that you plan to run on your instance.

Amazon EC2 provides each instance with a consistent and predictable amount of CPU capacity, regardless of its underlying hardware.

Amazon EC2 dedicates some resources of the host computer, such as CPU, memory, and instance storage, to a particular instance. Amazon EC2 shares other resources of the host computer, such as the network and the disk subsystem, among instances. If each instance on a host computer tries to use as much of one of these shared resources as possible, each receives an equal share of that resource. However, when a resource is underused, an instance can consume a higher share of that resource while it's available.
Each instance type provides higher or lower minimum performance from a shared resource. For example, instance types with high I/O performance have a larger allocation of shared resources. Allocating a larger share of shared resources also reduces the variance of I/O performance. For most applications, moderate I/O performance is more than enough. However, for applications that require greater or more consistent I/O performance, consider an instance type with higher I/O performance.

Contents

- Available Instance Types (p. 105)
- Hardware Specifications (p. 106)
- Networking and Storage Features (p. 106)
- Instance Limits (p. 108)

Available Instance Types

Amazon EC2 provides the instance types listed in the following tables.

Current Generation Instances

For the best performance, we recommend that you use the current generation instance types when you launch new instances.

For more information about the current generation instance types, see Amazon EC2 Instance Types.

<table>
<thead>
<tr>
<th>Instance Family</th>
<th>Current Generation Instance Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>t2.nano</td>
</tr>
<tr>
<td>Compute optimized</td>
<td>c4.large</td>
</tr>
<tr>
<td>Memory optimized</td>
<td>r4.large</td>
</tr>
<tr>
<td>Storage optimized</td>
<td>d2.xlarge</td>
</tr>
<tr>
<td>Accelerated computing</td>
<td>f1.2xlarge</td>
</tr>
</tbody>
</table>
generation of instances to get the best performance, but we continue to support these previous generation instances. If you are currently using a previous generation instance, you can see which current generation instance would be a suitable upgrade. For more information, see Previous Generation Instances.

<table>
<thead>
<tr>
<th>Instance Family</th>
<th>Previous Generation Instance Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>m1.small</td>
</tr>
<tr>
<td>Compute optimized</td>
<td>c1.medium</td>
</tr>
<tr>
<td>Memory optimized</td>
<td>m2.xlarge</td>
</tr>
<tr>
<td>Storage optimized</td>
<td>hs1.8xlarge</td>
</tr>
<tr>
<td>GPU optimized</td>
<td>g2.2xlarge</td>
</tr>
<tr>
<td>Micro</td>
<td>t1.micro</td>
</tr>
</tbody>
</table>

**Hardware Specifications**

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

To determine which instance type best meets your needs, we recommend that you launch an instance and use your own benchmark application. Because you pay by the instance hour, it's convenient and inexpensive to test multiple instance types before making a decision.

If your needs change, even after you make a decision, you can resize your instance later. For more information, see Resizing Your Instance (p. 153).

**Note**

Amazon EC2 instances run on 64-bit virtual Intel processors as specified in the instance type product pages. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types. However, confusion may result from industry naming conventions for 64-bit CPUs. Chip manufacturer Advanced Micro Devices (AMD) introduced the first commercially successful 64-bit architecture based on the Intel x86 instruction set. Consequently, the architecture is widely referred to as AMD64 regardless of the chip manufacturer. Windows and several Linux distributions follow this practice. This explains why the internal system information on an Ubuntu or Windows EC2 instance displays the CPU architecture as AMD64 even though the instances are running on Intel hardware.

**Networking and Storage Features**

When you select an instance type, this determines the networking and storage features that are available.

**Networking features**

- Some instance types are not available in EC2-Classic, so you must launch them in a VPC. By launching an instance in a VPC, you can leverage features that are not available in EC2-Classic, such as enhanced
networking, assigning multiple private IPv4 addresses to an instance, assigning IPv6 addresses to an instance, and changing the security groups assigned to an instance. For more information, see Instance Types Available Only in a VPC (p. 550).

- All current generation instance types support IPv6.
- To maximize the networking and bandwidth performance of your instance type, you can do the following:
  - Launch supported instance types into a cluster placement group to optimize your instances for high performance computing (HPC) applications. Instances in a common cluster placement group can benefit from high-bandwidth (up to 25 Gbps), low-latency networking. For more information, see Placement Groups (p. 612).
  - Enable enhanced networking for supported current generation instance types to get significantly higher packet per second (PPS) performance, lower network jitter, and lower latencies. For more information, see Enhanced Networking on Windows (p. 619).
- The maximum supported MTU varies across instance types. All Amazon EC2 instance types support standard Ethernet V2 1500 MTU frames. All current generation instances support 9001 MTU, or jumbo frames, and some previous generation instances support them as well. For more information, see Network Maximum Transmission Unit (MTU) for Your EC2 Instance (p. 616).

Storage features

- Some instance types support EBS volumes and instance store volumes, while other instance types support only EBS volumes. Some instances that support instance store volumes use solid state drives (SSD) to deliver very high random I/O performance. For more information, see Storage (p. 627).
- To obtain additional, dedicated capacity for Amazon EBS I/O, you can launch some instance types as EBS–optimized instances. Some instance types are EBS–optimized by default. For more information, see Amazon EBS–Optimized Instances (p. 691).

The following table summarizes the networking and storage features supported by the current generation instance types.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>VPC only</th>
<th>EBS only</th>
<th>Instance store</th>
<th>Placement group</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Intel 82599 VF</td>
</tr>
<tr>
<td>C5</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>F1</td>
<td>Yes</td>
<td></td>
<td>NVMe *</td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>P2</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>P3</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>G3</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>H1</td>
<td>Yes</td>
<td></td>
<td>HDD</td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>I3</td>
<td>Yes</td>
<td></td>
<td>NVMe *</td>
<td>Yes</td>
<td>ENA</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td>HDD</td>
<td>Yes</td>
<td>Intel 82599 VF</td>
</tr>
<tr>
<td>M4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>m4.16xlarge: ENA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All other sizes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel 82599 VF</td>
</tr>
</tbody>
</table>
Instance Limits

There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types.

For more information about the default limits, see How many instances can I run in Amazon EC2?

For more information about viewing your current limits or requesting an increase in your current limits, see Amazon EC2 Service Limits (p. 768).

T2 Instances

T2 instances are designed to provide a baseline level of CPU performance with the ability to burst to a higher level when required by your workload. T2 instances are well suited for a wide range of general-purpose applications like microservices, low-latency interactive applications, small and medium databases, virtual desktops, development, build, and stage environments, code repositories, and product prototypes.

For more information about T2 instance pricing and additional hardware details, see Amazon EC2 Pricing and Amazon EC2 Instance Types.

If your account is less than 12 months old, you can use a t2.micro instance for free within certain usage limits. For more information, see AWS Free Tier.

Hardware Specifications

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.
T2 Instance Requirements

The following are the requirements for T2 instances:

- You must launch your T2 instances into a virtual private cloud (VPC); they are not supported on the EC2-Classic platform. Amazon VPC enables you to launch AWS resources into a virtual network that you've defined. You cannot change the instance type of an existing instance in EC2-Classic to a T2 instance type. For more information about EC2-Classic and EC2-VPC, see Supported Platforms (p. 551). For more information about launching a VPC-only instance, see Instance Types Available Only in a VPC (p. 550).

- T2 instances are available as On-Demand Instances, Reserved Instances, and Spot Instances, but they are not available as Scheduled Instances or Dedicated Instances. They are also not supported on a Dedicated Host. For more information about these options, see Instance Purchasing Options (p. 156).

- There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types. By default, you can run up to 20 T2 instances simultaneously. If you need more T2 instances, you can request them using the Amazon EC2 Instance Request Form.

- Ensure that the T2 instance size that you choose passes the minimum memory requirements of your operating system and applications. Operating systems with graphical user interfaces that consume significant memory and CPU resources (for example, Windows) may require a t2.micro, or larger, instance size for many use cases. As the memory and CPU requirements of your workload grows over time, you can scale to larger T2 instance sizes, or other EC2 instance types.

Best Practices

Follow these best practices to get the maximum benefit from and satisfaction with T2 instances.

- Use a recommended AMI
  For Windows T2 instances, we recommend the latest AWS Windows AMI (p. 80).

- Turn on auto-recover
  You can create a CloudWatch alarm that monitors an EC2 instance and automatically recovers the instance if it becomes impaired for any reason. For more information, see Adding Recover Actions to Amazon CloudWatch Alarms (p. 426).

CPU Credits and Baseline Performance

Traditional Amazon EC2 instance types provide fixed performance, while T2 instances provide a baseline level of CPU performance with the ability to burst above that baseline level. The baseline performance and ability to burst are governed by CPU credits. A CPU credit provides the performance of a full CPU core for one minute.

Topics

- CPU Credits (p. 109)
- Baseline Performance (p. 111)

CPU Credits

One CPU credit is equal to one vCPU running at 100% utilization for one minute. Other combinations of number of vCPUs, utilization, and time can also equate to one CPU credit. For example, one CPU credit is equal to one vCPU running at 50% utilization for two minutes, or two vCPUs running at 25% utilization for two minutes.
Earning CPU Credits

Each T2 instance continuously receives (at a millisecond-level resolution) a set rate of CPU credits per hour, depending on the instance size. The accounting process for whether credits are accumulated or spent also happens at a millisecond-level resolution, so you don’t have to worry about overspending CPU credits; a short burst of CPU takes a small fraction of a CPU credit.

When a T2 instance uses fewer CPU resources than its baseline performance level allows (such as when it is idle), the unused CPU credits (or the difference between what was earned and what was spent) are stored in the credit balance, building CPU credits for bursting. When your T2 instance requires more CPU resources than its baseline performance level allows, it uses credits from the CPU credit balance. The more credits your T2 instance has accrued, the more time it can burst beyond its baseline performance level when more performance is needed.

The following table lists the rate at which CPU credits are received, the maximum earned CPU credit balance that an instance can accrue, the number of vCPUs, and the baseline performance level as a percentage of a full core performance (using a single vCPU).

<table>
<thead>
<tr>
<th>Instance type</th>
<th>CPU credits earned per hour</th>
<th>Maximum earned CPU credit balance</th>
<th>vCPUs</th>
<th>Baseline performance (% CPU utilization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2.nano</td>
<td>3</td>
<td>72</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>t2.micro</td>
<td>6</td>
<td>144</td>
<td>1</td>
<td>10%</td>
</tr>
<tr>
<td>t2.small</td>
<td>12</td>
<td>288</td>
<td>1</td>
<td>20%</td>
</tr>
<tr>
<td>t2.medium</td>
<td>24</td>
<td>576</td>
<td>2</td>
<td>40% (of 200% max)*</td>
</tr>
<tr>
<td>t2.large</td>
<td>36</td>
<td>864</td>
<td>2</td>
<td>60% (of 200% max)*</td>
</tr>
<tr>
<td>t2.xlarge</td>
<td>54</td>
<td>1296</td>
<td>4</td>
<td>90% (of 400% max)*</td>
</tr>
<tr>
<td>t2.2xlarge</td>
<td>81</td>
<td>1944</td>
<td>8</td>
<td>135% (of 800% max)*</td>
</tr>
</tbody>
</table>

* t2.medium and larger instances have more than one vCPU. The baseline performance in the table is a percentage of using a single vCPU (you could split performance over multiple vCPUs). To calculate the baseline CPU utilization for the instance, divide the combined vCPU percentages by the number of vCPUs. For example, the baseline performance for a t2.large is 60% of one vCPU. A t2.large instance has two vCPUs, therefore the CPU utilization for a t2.large instance operating at the baseline performance is shown as 30% in CloudWatch CPU metrics.

CPU Credit Earn Rate

The number of CPU credits earned per hour is determined by the instance size. For example, a t2.nano earns three credits per hour, while a t2.small earns 12 credits per hour. The preceding table lists the credit earn rate for all T2 instances.

While CPU credits never expire, an instance cannot accumulate more than the maximum number of credits that can be accrued. Any credits that are earned after the maximum is reached are discarded, indicated by the image below: the full bucket indicates the maximum number of credits, and the spillover indicates newly earned credits that exceed the maximum.
The maximum number of credits differs for each T2 instance size. For example, a t2.micro instance earns six CPU credits per hour, and can accumulate a maximum earned CPU credit balance of 144 CPU credits. The preceding table lists the maximum number of credits that each T2 instance can accrue.

Accrued CPU Credits Are Lost When Instance Is Stopped

CPU credits on a running instance do not expire. However, the CPU credit balance does not persist between instance stops and starts; if you stop an instance, the instance loses all its accrued credits. For more information, see CPUCreditBalance in the CloudWatch metrics table (p. 119).

Baseline Performance

Each T2 instance earns a specified number of credits per hour and can accrue a maximum number of credits, determined by the instance size.

The number of credits earned per hour can be expressed as a percentage of CPU utilization, and is known as the baseline performance, and sometimes just as the baseline. For example, a t2.nano earns three credits per hour resulting in a baseline performance of 5% (3/60 minutes). A t2.large, with two vCPUs, earns 36 credits per hour, resulting in a baseline performance of 30% (18/60 minutes) per vCPU.

T2 Standard

A T2 Standard instance is suited to workloads with an average CPU utilization that is consistently below the baseline performance of the instance. The instance uses credits that it has accrued in its CPU credit balance to burst above the baseline. If the instance is running low on accrued credits, performance is gradually lowered to the baseline performance level over a 15-minute period, so that the instance does not experience a sharp performance drop-off when its accrued CPU credit balance is depleted. For more information, see CPU Credits and Baseline Performance (p. 109).

Tip
To ensure that your workloads always get the performance they need, switch to T2 Unlimited or consider using a larger T2 instance size. For more information, see T2 Unlimited (p. 113).

How T2 Standard Works

A T2 Standard instance receives two types of CPU credits: earned credits and launch credits. When a T2 Standard instance starts, it continuously receives (at a millisecond-level resolution) a set rate of earned credits per hour. At start, it has not yet earned credits for a good startup experience; therefore, to provide a good startup experience, it receives launch credits at start, which it uses first while it accumulates earned credits.

When a T2 Standard instance is stopped, it loses all its accrued credits, and its credit balance is reset to zero. When it is restarted, it receives a new set of launch credits, and begins to accumulate earned credits. There are limits to the number of times T2 Standard instances can receive launch credits. If an account has exceeded its limits, no more launch credits are allocated.

Launch Credits

T2 Standard instances get 30 launch credits per vCPU at launch or start. For example, a t2.micro has one vCPU and gets 30 launch credits, while a t2.xlarge has four vCPUs and gets 120 launch

111
Launch credits are designed to provide a good startup experience to allow instances to burst immediately after launch before they have accumulated a CPU credit balance.

**Note**
There is a limit on the number of times T2 Standard instances can launch or start with launch credits. The default limit is 100 launches or starts of all T2 Standard instances combined per account, per 24-hour period, per region. If the limit is exceeded, launch credits are not allocated. New accounts may have a lower limit, which increases over time based on your usage.

Launch credits are used first and do not count towards the maximum number of earned CPU credits that can be accrued. For example, a t2.micro instance that is launched and then remains idle for over 24 hours can reach a credit balance of up to 174 (30 launch credits + 144 earned credits). However, after the instance uses the 30 launch credits, the credit balance can never exceed 144. For more information about the maximum earned CPU credit balance for each T2 instance size, see the T2 credit table (p. 110).

The following table lists the initial CPU credit allocation received at launch or start, and the number of vCPUs.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Launch credits</th>
<th>vCPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2.nano</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>t2.micro</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>t2.small</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>t2.medium</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>t2.large</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>t2.xlarge</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>t2.2xlarge</td>
<td>240</td>
<td>8</td>
</tr>
</tbody>
</table>

**Differences Between Launch Credits and Earned Credits**

The following table lists the differences between launch credits and earned credits.

<table>
<thead>
<tr>
<th>Credit earn rate</th>
<th>Launch credits</th>
<th>Earned credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 Standard instances get 30 launch credits per vCPU at launch or start.</td>
<td>Each T2 instance continuously receives (at a millisecond-level resolution) a set rate of CPU credits per hour, depending on the instance size. For more information about the number of CPU credits earned per instance size, see the T2 credit table (p. 110).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit earn limit</th>
<th>Launch credits</th>
<th>Earned credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>The limit for receiving launch credits is 100 launches or starts of any T2 instance per account, per 24-hour period, per region. New accounts may have a lower limit, which increases over time based on your usage.</td>
<td>A T2 instance cannot accumulate more than the maximum number of credits that can be accrued. Any credits that are earned after the maximum is reached are discarded. Launch credits do not count towards the maximum. For more information about the maximum earned CPU credit balance for each</td>
<td></td>
</tr>
</tbody>
</table>

112
Launch credits	Earned credits
T2 instance size, see the T2 credit table (p. 110).

Credit use	Earned credits are used only after launch credits are used up.
Launch credits are used first, before earned credits.

Credit expiration	When an instance is running, earned credits do not expire. When the instance stops, all earned credits are lost.
When an instance is running, launch credits do not expire. When the instance stops, all launch credits are lost.

The total number of launch credits and earned credits is tracked by the CloudWatch metric CPUCreditBalance. For more information, see CPUCreditBalance in the CloudWatch metrics table (p. 119).

**T2 Unlimited**

A T2 Unlimited instance can sustain high CPU performance for any period of time whenever required. The hourly T2 instance price automatically covers all interim spikes in usage if the average CPU utilization of the instance is at or below the baseline over a rolling 24-hour period or the instance lifetime, whichever is shorter. If the instance runs at higher CPU utilization for a prolonged period, it can do so for a flat additional rate per vCPU-hour. For information about instance pricing, see Amazon EC2 Pricing and the T2 Unlimited Pricing section in Amazon EC2 On-Demand Pricing.

**Important**

If you use a t2.micro instance under the AWS Free Tier offer and configure it as Unlimited, charges may apply if your average utilization over a rolling 24-hour period exceeds the baseline of the instance.

**Topics**

- T2 Unlimited Concepts (p. 113)
- Example: Explaining Credit Use with T2 Unlimited (p. 114)
- Launching a T2 Instance as Unlimited (p. 116)
- Viewing the Credit Option for CPU Usage of a T2 Instance (p. 116)
- Modifying the Credit Option for CPU Usage of a T2 Instance (p. 117)
- Using an Auto Scaling Group to Launch a T2 Unlimited Instance (p. 118)

**T2 Unlimited Concepts**

T2 Unlimited is a configuration option for T2 instances that can be set at launch, or enabled at any time for a running or stopped T2 instance.

T2 Unlimited instances can burst above the baseline for as long as required. This enables you to enjoy the low T2 instance hourly price for a wide variety of general-purpose applications, and ensures that your instances are never held to the baseline performance. The basic T2 hourly instance price automatically covers all CPU usage spikes if the average CPU utilization of a T2 Unlimited instance over a rolling 24-hour period is at or below the baseline. For a vast majority of general-purpose workloads, T2 Unlimited instances provide ample performance without any additional charges. If the average CPU utilization exceeds the baseline over a 24-hour period, there is a flat additional rate per vCPU-hour. For more information, see the T2 Unlimited Pricing section in Amazon EC2 On-Demand Pricing.

**How T2 Unlimited Works**

---

113
When a T2 Unlimited instance has exhausted its CPU credit balance, it can consume *surplus* credits to burst beyond the baseline. Surplus credits are tracked by the CloudWatch metric `CPUSurplusCreditBalance`. When an instance's CPU utilization falls below the baseline, the credits that it earns are used to pay down (or reduce) the surplus credits it consumed earlier. The ability to earn and pay down credits enables Amazon EC2 to average the CPU utilization of an instance over a 24-hour period.

**When is a T2 Unlimited Instance Charged?**

If the average CPU utilization of the instance is at or below the baseline, the instance incurs no additional charges. However, if CPU utilization stays above the baseline and the instance does not pay down the surplus credits it has consumed, the surplus credits are charged at a flat additional rate per vCPU-hour. For more information, see the T2 Unlimited Pricing section in Amazon EC2 On-Demand Pricing.

Because an instance earns a maximum number of credits (p. 110) in a 24-hour period (for example, a `t2.micro` can earn a maximum of 144 credits), it can consume surplus credits up to that maximum without being charged immediately. Surplus credits that are consumed above the maximum are charged at the end of the hour. When the instance is terminated or stopped, any remaining surplus credits that were consumed earlier are charged.

Surplus credits that are charged at any point can be tracked by the CloudWatch metric `CPUSurplusCreditsCharged`. For more information, see Additional CloudWatch Metrics for T2 Instances (p. 118).

**No Launch Credits for T2 Unlimited**

T2 Unlimited instances do not receive launch credits. A T2 Unlimited instance can burst beyond the baseline at any time with no additional charge as long as its average CPU utilization is at or below the baseline over a rolling 24-hour window or its lifetime, whichever is shorter. As such, T2 Unlimited instances do not require launch credits to achieve high performance immediately after launch.

**Tracking Credit Usage Above the Baseline**

To see if your T2 Unlimited instance is using more credits than the baseline provides, you can use CloudWatch metrics to track and set up hourly alarms to be notified of credit usage. For more information, see Monitoring Your CPU Credits (p. 118).

**Enabling T2 Unlimited**

T2 Standard is the default configuration; if you do not enable T2 Unlimited, your T2 instance launches as Standard. You can switch from Standard to Unlimited, and from Unlimited to Standard at any time on a running or stopped instance. For more information, see Launching a T2 Instance as Unlimited (p. 116) and Modifying the Credit Option for CPU Usage of a T2 Instance (p. 117).

The `CPUCreditBalance` of a T2 instance remains unchanged and is carried over when switching from Standard to Unlimited, or from Unlimited to Standard. However, the `CPUSurplusCreditBalance` is immediately charged when a T2 instance switches from Unlimited to Standard. For more information, see Monitoring Your CPU Credits (p. 118).

You can view if your T2 instance is configured as Standard or Unlimited using the Amazon EC2 console or the AWS CLI. For more information, see Viewing the Credit Option for CPU Usage of a T2 Instance (p. 116).

**Example: Explaining Credit Use with T2 Unlimited**

In this example, you see the CPU utilization of a `t2.nano` instance launched as Unlimited, and how it uses *earned* and *surplus* credits to sustain CPU performance.

A `t2.nano` instance earns 72 CPU credits over a rolling 24-hour period, which it uses to redeem 72 minutes of vCPU use. When it depletes its CPU credit balance (represented by the CloudWatch metric...
CPUCreditBalance, it can use surplus CPU credits—that it has not yet earned—to burst for as long as it needs. Because a t2.nano earns a maximum of 72 credits in a 24-hour period, it can consume surplus credits up to that maximum without being charged immediately. If it uses more than 72 CPU credits, it is charged for the difference at the end of the hour.

The intent of the example, illustrated by the following graph, is to show how an instance can burst using surplus credits even after it exhausts its CPUCreditBalance. You can assume that the instance has earned the maximum credits at the start of the time line in the graph. The following workflow references the numbered points on the graph:

1 – In the first 10 minutes, CPUCreditUsage is at 0, and the CPUCreditBalance remains at its maximum of 72.

2 – At 23:40, as CPU utilization increases, the instance uses CPU credits and the CPUCreditBalance decreases.

3 – At around 00:47, the instance depletes its entire CPUCreditBalance, and starts to use surplus credits to sustain high CPU performance.

4 – Surplus credits are used until 01:55, when the CPUSurplusCreditBalance reaches 72 CPU credits. This is the maximum a t2.nano can earn in a 24-hour period. Any surplus credits used thereafter cannot be offset by earned credits within the 24-hour period, which results in a small additional charge at the end of the hour.

5 – The instance continues to use surplus credits until around 02:20. As CPU utilization falls below the baseline, the instance starts to earn credits at 3 credits per hour (or 0.25 credits every 5 minutes). After the CPUSurplusCreditBalance reduces to 0, the instance starts to earn CPUCreditBalance at 0.25 credits every 5 minutes.

Calculating the Bill
Surplus credits cost $0.096 per vCPU-hour. The instance consumed approximately 25 surplus credits between 01:55 and 02:20, which is equivalent to 0.42 vCPU-hours.

Additional charges for this instance are 0.42 vCPU-hours x $0.096/vCPU-hour = $0.04032, rounded to $0.04.

Here is the month-end bill for this T2 Unlimited instance:

You can set billing alerts to be notified every hour of any accruing charges, and take action if required.

Launching a T2 Instance as Unlimited

When you launch a T2 instance, the instance launches as standard by default. To launch a T2 instance as unlimited, you must specify the unlimited option.

You can launch a T2 Unlimited instance using the Amazon EC2 console, an AWS SDK, a command line tool, or with an Auto Scaling group. For more information, see Using an Auto Scaling Group to Launch a T2 Unlimited Instance (p. 118).

To launch a T2 instance as Unlimited using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. On the Choose an Amazon Machine Image (AMI) page, select an AMI, and choose Select.
4. On the Choose an Instance Type page, select a T2 instance type, and choose Next: Configure Instance Details.
   
   Note
   
   T2 instance types are the only instance types that use CPU credits for CPU usage.
5. On the Configure Instance Details page, for T2 Unlimited, choose Enable, and then choose Next: Add Storage.
6. Continue as prompted by the wizard. When you've finished reviewing your options on the Review Instance Launch page, choose Launch to choose a key pair and launch the T2 instance. For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265).

To launch a T2 instance as Unlimited using the AWS CLI

• Launch a T2 instance using the run-instances command. Specify the credit option using the --credit-specification CpuCredits= parameter. Valid credit options are standard and unlimited. If you do not include the --credit-specification parameter, the instance launches as standard by default.

```
aws ec2 run-instances --image-id ami-abc12345 --count 1 --instance-type t2.micro --key-name MyKeyPair --credit-specification CpuCredits=unlimited
```

Viewing the Credit Option for CPU Usage of a T2 Instance

You can view the credit option (standard or unlimited) of a running or stopped T2 instance.

To view the credit option for CPU usage using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the left navigation pane, choose **Instances** and select the T2 instance.
3. Choose **Description** and view the **T2 Unlimited** field.
   - If the value is **Enabled**, then your instance is configured as T2 Unlimited.
   - If the value is **Disabled**, then your instance is configured as T2 Standard.

**To describe the credit option for CPU usage using the AWS CLI**

- Describe the credit option for CPU usage using the describe-instance-credit-specifications command. If you do not specify one or more instance IDs, all T2 instances with the credit option of unlimited are returned.

**Example**

```bash
aws ec2 describe-instance-credit-specifications --instance-id i-1234567890abcdef0
```

```json
{
 "InstanceCreditSpecifications": [
 {
 "InstanceId": "i-1234567890abcdef0",
 "CpuCredits": "unlimited"
 }
]
}
```

**Modifying the Credit Option for CPU Usage of a T2 Instance**

You can switch the credit option for CPU usage of a running or stopped T2 instance at any time from standard to unlimited, and from unlimited to standard.

**To modify the credit option for CPU usage of a T2 instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the left navigation pane, choose **Instances** and select the T2 instance.
3. Choose **Actions**, **Instance Settings**, **Change T2 Unlimited**, and then choose **Yes, Change T2 Unlimited**.

**Note**

The **Change T2 Unlimited** option is enabled only if you select a T2 instance.

**To modify the credit option for CPU usage of a T2 instance using the AWS CLI**

- Modify the credit option for CPU usage for a T2 instance using the modify-instance-credit-specification command. Specify the instance and its credit option using the --instance-credit-specification parameter. Valid credit options are standard and unlimited.

```bash
aws ec2 modify-instance-credit-specification --region us-east-1 --instance-credit-specification "[{"InstanceId": "i-1234567890abcdef0","CpuCredits": "unlimited"}]
```

```json
{
 "SuccessfulInstanceCreditSpecifications": [
 {
 "InstanceId": "i-1234567890abcdef0"
 }
]
}
```
Using an Auto Scaling Group to Launch a T2 Unlimited Instance

When T2 instances are launched or started, they require CPU credits for a good bootstrapping experience. If you use an Auto Scaling group to launch your T2 instances, we recommend that you configure the T2 instances as Unlimited so that they use surplus credits when they are automatically launched or restarted by the Auto Scaling group. Using surplus credits prevents performance restrictions.

You must use a launch template for launching a T2 instance as Unlimited in an Auto Scaling group; a launch configuration does not support launching a T2 instance as Unlimited.

To create a launch template that launches a T2 Unlimited instance using the AWS CLI

- To create a launch template that launches a T2 Unlimited instance, use the create-launch-template command and specify unlimited as the credit option for CPU usage.

  **Example**

  ```bash
 aws ec2 create-launch-template --launch-template-name MyLaunchTemplate
 --version-description FirstVersion --launch-template-data
 ImageId=ami-8c1be5f6,InstanceType=t2.medium,CreditSpecification={CpuCredits=unlimited}
  ```

  To associate the launch template with an Auto Scaling group, create the group with the launch template, or add the launch template to an existing group.

To create an Auto Scaling group with a launch template using the AWS CLI

- Use the create-auto-scaling-group AWS CLI command and specify the --launch-template parameter.

To add a launch template to an Auto Scaling group using the AWS CLI

- Use the update-auto-scaling-group AWS CLI command and specify the --launch-template parameter.

For more information, see Creating an Auto Scaling Group Using a Launch Template in the Amazon EC2 Auto Scaling User Guide.

Monitoring Your CPU Credits

You can see the credit balance for each T2 instance in the Amazon EC2 per-instance metrics of the CloudWatch console.

**Topics**

- Additional CloudWatch Metrics for T2 Instances (p. 118)
- Calculating CPU Credit Usage (p. 120)

**Additional CloudWatch Metrics for T2 Instances**

T2 instances have four additional CloudWatch metrics, which are updated every five minutes:
Amazon Elastic Compute Cloud
User Guide for Windows Instances
T2 Instances

- **CPUCreditUsage** – The number of CPU credits used during the measurement period.
- **CPUCreditBalance** – The number of unused CPU credits that a T2 instance has earned. This balance is depleted when the CPU bursts and CPU credits are spent more quickly than they are earned.
- **CPUSurplusCreditBalance** – The number of surplus CPU credits used for sustaining CPU performance when the CPUCreditBalance is zero.
- **CPUSurplusCreditsCharged** – The number of surplus CPU credits that exceed the maximum number of CPU credits (p. 110) that can be earned in a 24-hour period, and thus attract an additional charge.

The last two metrics apply only to T2 instances configured as unlimited.

The following table describes the CloudWatch metrics for T2 instances. For more information about using these metrics in CloudWatch, see List the Available CloudWatch Metrics for Your Instances (p. 406).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUCreditUsage</td>
<td>[T2 instances] The number of CPU credits used by the instance for CPU utilization. One CPU credit equals one vCPU running at 100% utilization for one minute or an equivalent combination of vCPUs, utilization, and time (for example, one vCPU running at 50% utilization for two minutes or two vCPUs running at 25% utilization for two minutes).&lt;br&gt;CPU credit metrics are available at a five-minute frequency only. If you specify a period greater than five minutes, use the <strong>Sum</strong> statistic instead of the <strong>Average</strong> statistic.&lt;br&gt;Units: Credits (vCPU-minutes)</td>
</tr>
<tr>
<td>CPUCreditBalance</td>
<td>[T2 instances] The number of earned CPU credits accumulated since the instance was launched, less the credits used, up to a maximum number based on the instance size.&lt;br&gt;Credits are stored in the credit balance after they are earned, and removed from the credit balance when they are used. The credit balance has a maximum limit, determined by the instance size. If the credit balance has reached the limit, additional earned credits are not added to the balance.&lt;br&gt;The credits in the CPUCreditBalance are available for the instance to use to burst beyond its baseline CPU utilization.&lt;br&gt;Credits on a running instance do not expire. However, if you stop an instance, it loses all the credits in the credit balance.&lt;br&gt;CPU credit metrics are available at a five-minute frequency only.&lt;br&gt;Units: Credits (vCPU-minutes)</td>
</tr>
<tr>
<td>CPUSurplusCreditBalance</td>
<td>[T2 instances] The number of surplus credits that have been used by a T2 Unlimited instance when its CPUCreditBalance is zero.&lt;br&gt;The CPUSurplusCreditBalance is paid down by earned CPU credits.&lt;br&gt;Units: Credits (vCPU-minutes)</td>
</tr>
</tbody>
</table>
### Calculating CPU Credit Usage

The CPU credit usage of T2 Standard and T2 Unlimited instances is calculated using the T2 instance CloudWatch metrics described in the preceding table.

Amazon EC2 sends the metrics to CloudWatch every five minutes. A reference to a prior value of a metric at any point in time implies the previous value of the metric, sent five minutes ago.

#### Calculating CPU Credit Usage for T2 Standard

- The CPU credit balance increases if CPU utilization is below the baseline, when credits used are less than credits earned in the prior five-minute interval.
- The CPU credit balance decreases if CPU utilization is above the baseline, when credits used are more than credits earned in the prior five-minute interval.

Mathematically, this is captured by the following equation:

Example

\[
\text{CPUCreditBalance} = \text{prior CPUCreditBalance} + [\text{Credits earned per hour} \times (\frac{5}{60}) - \text{CPUCreditUsage}]
\]

The size of the instance determines the maximum credit balance that the instance can accumulate and the number of credits that it can earn per hour. For information about the maximum credit balance for each T2 instance size, and the number of credits earned per hour, see the T2 credit table (p. 110).

Example

This example uses a t2.micro instance. To calculate the CPUCreditBalance of the instance, use the preceding equation as follows:

- \text{CPUCreditBalance} – The current credit balance to calculate.
- \text{prior CPUCreditBalance} – The credit balance five minutes ago. In this example, the instance had accrued two credits.
- \text{Credits earned per hour} – A t2.micro instance earns six credits per hour.
- \text{5/60} – Represents the five-minute interval between CloudWatch metric publication. Multiply the credits earned per hour by \text{5/60} (five minutes) to get the number of credits the instance earned in the past five minutes. A t2.micro instance earns 0.5 credits every five minutes.
- \text{CPUCreditUsage} – How many credits the instance used in the past five minutes. In this example, the instance used one credit in the past five minutes.

Using these values, you can calculate the CPUCreditBalance value:

### Metric Table

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUSurplusCreditsCharged</td>
<td>[T2 instances] The number of surplus credits that have been used by a T2 Unlimited instance that are not offset by earned CPU credits. CPUSurplusCreditsCharged tracks the surplus credits that incur an additional charge, and represents the difference between CPUSurplusCreditBalance and CPUCreditBalance. Units: Credits (vCPU-minutes)</td>
</tr>
</tbody>
</table>
Calculating CPU Credit Usage for T2 Unlimited

When a T2 instance needs to burst above the baseline, it always uses the earned credit balance before using surplus credits. When it exhausts its accrued CPU credit balance, it can consume surplus credits to burst for as long as it needs. When CPU utilization falls below the baseline, surplus credits are always paid down before the instance accrues earned credits.

We use the term Adjusted balance in the following equations to reflect the activity that occurs in this five-minute interval. We use this value to arrive at the values for the CPUCreditBalance and CPUSurplusCreditBalance CloudWatch metrics.

Example

\[
\text{Adjusted balance} = [\text{prior CPUCreditBalance} - \text{prior CPUSurplusCreditBalance}] + [\text{Credits earned per hour} \times (5/60) - \text{CPUCreditUsage}]
\]

A value of 0 for Adjusted balance indicates that the instance used all its earned credits for bursting, and no surplus credits were used. As a result, both CPUCreditBalance and CPUSurplusCreditBalance are set to 0.

A positive Adjusted balance value indicates that the instance accrued earned credits, and previous surplus credits, if any, were paid down. As a result, the Adjusted balance value is assigned to CPUCreditBalance, and the CPUSurplusCreditBalance is set to 0. The instance size determines the maximum credit balance (p. 110) it can accrue.

Example

\[
\text{CPUCreditBalance} = \min [\max \text{earned credit balance}, \text{Adjusted balance}]
\]
\[
\text{CPUSurplusCreditBalance} = 0
\]

A negative Adjusted balance value indicates that the instance used all its earned credits and, in addition, also used surplus credits for bursting. As a result, the Adjusted balance value is assigned to CPUSurplusCreditBalance and the CPUCreditBalance is set to 0. Again, the instance size determines the maximum surplus credit (p. 110) balance it can accrue.

Example

\[
\text{CPUSurplusCreditBalance} = \min [\max \text{earned credit balance}, -\text{Adjusted balance}]
\]
\[
\text{CPUCreditBalance} = 0
\]

If the surplus credits used exceed the maximum credits the instance can accrue, the surplus credit balance is set to the maximum as shown in the preceding equation. The remaining surplus credits are charged as represented by the CPUSurplusCreditsCharged metric.

Example

\[
\text{CPUSurplusCreditsCharged} = \max [-\text{Adjusted balance} - \max \text{earned credit balance}, 0]
\]

Finally, when the instance terminates, any surplus credits accumulated in the CPUSurplusCreditBalance are charged. If the instance is switched from Unlimited to Standard, any remaining CPUSurplusCreditBalance is also charged.
General Purpose Instances

General purpose instances provide a balance of compute, memory, and networking resources, and can be used for a variety of workloads.

M5 Instances

M5 instances are the latest generation in Amazon EC2's General purpose instance family. M5 instances give you an ideal cloud infrastructure, offering a balance of compute, memory, and networking resources for a broad range of applications that are deployed in the cloud. M5 instances are well-suited for the following applications:

- Web and application servers
- Small and medium databases
- Gaming servers
- Caching fleets
- Running backend servers for SAP, Microsoft SharePoint, cluster computing, and other enterprise applications

Note: M5 instances require EBS-backed AMIs with the NVMe and Elastic Network Adapter (ENA) drivers installed. For more information, see the Release Notes (p. 124).

T2 Instances

T2 instances provide a baseline level of CPU performance with the ability to burst to a higher level when required by your workload. A T2 Unlimited instance can sustain high CPU performance for any period of time whenever required. For more information, see T2 Instances (p. 108). T2 instances are well-suited for the following applications:

- Websites and web applications
- Code repositories
- Development, build, test, and staging environments
- Microservices

Contents

- Hardware Specifications (p. 122)
- Instance Performance (p. 123)
- Network Performance (p. 123)
- Instance Features (p. 124)
- Release Notes (p. 124)

Hardware Specifications

The following is a summary of the hardware specifications for General purpose instances.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2.nano</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>t2.micro</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t2.small</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Instance type</td>
<td>vCPUs</td>
<td>Memory (GiB)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>t2.medium</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>t2.large</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>t2.xlarge</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>t2.2xlarge</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>m4.large</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>m4.xlarge</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>m4.2xlarge</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>m4.4xlarge</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>m4.16xlarge</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>m5.large</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>m5.xlarge</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>m5.2xlarge</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>m5.4xlarge</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>m5.12xlarge</td>
<td>48</td>
<td>192</td>
</tr>
<tr>
<td>m5.24xlarge</td>
<td>96</td>
<td>384</td>
</tr>
</tbody>
</table>

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

**Instance Performance**

EBS-optimized instances enable you to get consistently high performance for your EBS volumes by eliminating contention between Amazon EBS I/O and other network traffic from your instance. M4 and M5 instances are EBS-optimized by default at no additional cost. For more information, see Amazon EBS–Optimized Instances (p. 691).

**Network Performance**

You can enable enhanced networking capabilities on supported instance types. Enhanced networking provides significantly higher packet-per-second (PPS) performance, lower network jitter, and lower latencies. For more information, see Enhanced Networking on Windows (p. 619).

Instance types that use the Elastic Network Adapter (ENA) for enhanced networking deliver high packet per second performance with consistently low latencies. Most applications do not consistently need a high level of network performance, but can benefit from having access to increased bandwidth when they send or receive data. Instance types that use the ENA and support up to 10 Gbps of throughput use a network I/O credit mechanism to allocate network bandwidth to instances based on average bandwidth utilization. These instances accrue credits when their network throughput is below their baseline limits, and can use these credits when they perform network data transfers. For workloads that require access to 10 Gbps of bandwidth or more on a sustained basis, we recommend using instance types that support 10 Gbps or 25 Gbps network speeds.
The following is a summary of network performance for General purpose instances that support enhanced networking.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Network performance</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>m4.large</td>
<td>Moderate</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
<tr>
<td>m4.xlarge, m4.2xlarge, m4.4xlarge</td>
<td>High</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>10 Gbps</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
<tr>
<td>m4.16xlarge</td>
<td>25 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge</td>
<td>Up to 10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>m5.12xlarge</td>
<td>10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>m5.24xlarge</td>
<td>25 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
</tbody>
</table>

**Instance Features**

The following is a summary of features for General purpose instances:

<table>
<thead>
<tr>
<th>VPC only</th>
<th>EBS only</th>
<th>Placement group</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information, see the following:

- Instance Types Available Only in a VPC (p. 550)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EC2 Instance Store (p. 722)
- Placement Groups (p. 612)
- Enhanced Networking on Windows (p. 619)

**Release Notes**

- M4, M5, and t2.large and larger T2 instance types require 64-bit HVM AMIs. They have high-memory, and require a 64-bit operating system to take advantage of that capacity. HVM AMIs provide superior performance in comparison to paravirtual (PV) AMIs on high-memory instance types. In addition, you must use an HVM AMI to take advantage of enhanced networking.
- With M5 instances, EBS volumes are exposed as NVMe block devices (p. 700). M5 instances require EBS-backed AMIs with the NVMe and Elastic Network Adapter (ENA) drivers installed. The following AMIs meet these requirements:
  - Amazon Linux 2014.03 or later
  - Ubuntu 14.04 or later
• SUSE Linux Enterprise Server 12 or later
• Red Hat Enterprise Linux 7.4 or later
• CentOS 7 or later
• FreeBSD 11.1-RELEASE
• Windows Server 2012 R2
• Windows Server 2016
• M5 instances support a maximum of 27 EBS volumes plus elastic network interface attachments. For example, m5.2xlarge instances support four network interfaces. Every instance has at least one network interface. If you have a m5.2xlarge instance with three additional elastic network interface attachments, you can attach 24 EBS volumes to that instance.
• M5 instances should have acpid installed to support clean shutdown through API requests.
• There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types. For more information, see How many instances can I run in Amazon EC2?. To request a limit increase, use the Amazon EC2 Instance Request Form.

Compute Optimized Instances

Compute optimized instances are ideal for compute-bound applications that benefit from high-performance processors. They are well suited for the following applications:

• Batch processing workloads
• Media transcoding
• High-performance web servers
• High-performance computing (HPC)
• Scientific modeling
• Massively multiplayer online (MMO) gaming servers and ad serving engines
• Machine learning inference and other compute-intensive applications

Contents

• Hardware Specifications (p. 125)
• Instance Performance (p. 126)
• Network Performance (p. 126)
• Instance Features (p. 127)
• Release Notes (p. 127)

Hardware Specifications

The following is a summary of the hardware specifications for Compute optimized instances.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4.large</td>
<td>2</td>
<td>3.75</td>
</tr>
<tr>
<td>c4.xlarge</td>
<td>4</td>
<td>7.5</td>
</tr>
<tr>
<td>c4.2xlarge</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>c4.4xlarge</td>
<td>16</td>
<td>30</td>
</tr>
</tbody>
</table>
### Instance type
<table>
<thead>
<tr>
<th>Instance type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c4.8xlarge</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>c5.large</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>c5.xlarge</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>c5.2xlarge</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>c5.4xlarge</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>c5.9xlarge</td>
<td>36</td>
<td>72</td>
</tr>
<tr>
<td>c5.18xlarge</td>
<td>72</td>
<td>144</td>
</tr>
</tbody>
</table>

For more information about the hardware specifications for each Amazon EC2 instance type, see [Amazon EC2 Instance Types](#).

### Instance Performance

EBS-optimized instances enable you to get consistently high performance for your EBS volumes by eliminating contention between Amazon EBS I/O and other network traffic from your instance. C4 and C5 instances are EBS-optimized by default at no additional cost. For more information, see [Amazon EBS-Optimized Instances](#).

### Network Performance

You can enable enhanced networking capabilities on supported instance types. Enhanced networking provides significantly higher packet-per-second (PPS) performance, lower network jitter, and lower latencies. For more information, see [Enhanced Networking on Windows](#).

Instance types that use the Elastic Network Adapter (ENA) for enhanced networking deliver high packet per second performance with consistently low latencies. Most applications do not consistently need a high level of network performance, but can benefit from having access to increased bandwidth when they send or receive data. Instance types that use the ENA and support up to 10 Gbps of throughput use a network I/O credit mechanism to allocate network bandwidth to instances based on average bandwidth utilization. These instances accrue credits when their network throughput is below their baseline limits, and can use these credits when they perform network data transfers. For workloads that require access to 10 Gbps of bandwidth or more on a sustained basis, we recommend using instance types that support 10 Gbps or 25 Gbps network speeds.

The following is a summary of network performance for Compute optimized instances that support enhanced networking.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Network performance</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>c5.4xlarge and smaller</td>
<td>Up to 10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>c5.9xlarge</td>
<td>10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>c5.18xlarge</td>
<td>25 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>c4.large</td>
<td>Moderate</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
<tr>
<td>c4.xlarge, c4.2xlarge, c4.4xlarge</td>
<td>High</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
</tbody>
</table>
### Instance Features

The following is a summary of features for Compute optimized instances:

<table>
<thead>
<tr>
<th>VPC only</th>
<th>EBS only</th>
<th>Placement group</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information, see the following:

- Instance Types Available Only in a VPC (p. 550)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EC2 Instance Store (p. 722)
- Placement Groups (p. 612)
- Enhanced Networking on Windows (p. 619)

### Release Notes

- C4 and C5 instances require 64-bit EBS-backed HVM AMIs. They have high-memory (up to 144 GiB of RAM), and require a 64-bit operating system to take advantage of that capacity. HVM AMIs provide superior performance in comparison to paravirtual (PV) AMIs on high-memory instance types. In addition, you must use an HVM AMI to take advantage of enhanced networking.
- C5 instances have the following requirements:
  - Must have the NVMe drivers installed. EBS volumes are exposed as NVMe block devices (p. 700).
  - Must have the Elastic Network Adapter (ENA (p. 623)) drivers installed.

The following AMIs meet these requirements:

- Amazon Linux 2014.03 or later
- Ubuntu 14.04 or later
- SUSE Linux Enterprise Server 12 or later
- Red Hat Enterprise Linux 7.4 or later
- CentOS 7 or later
- FreeBSD 11.1-RELEASE
- Windows Server 2012 R2
- Windows Server 2016
- C5 instances support a maximum of 27 EBS volumes plus elastic network interface attachments. For example, c5.2xlarge instances support four network interfaces. Every instance has at least one network interface. If you have a c5.2xlarge instance with three additional elastic network interface attachments, you can attach 24 EBS volumes to that instance.
- C5 instances should have acpid installed to support clean shutdown through API requests.
- There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types. For more information, see How many instances can I run in Amazon EC2?. To request a limit increase, use the Amazon EC2 Instance Request Form.
Memory Optimized Instances

Memory optimized instances are designed to deliver fast performance for workloads that process large data sets in memory.

**R4 Instances**

R4 instances are well suited for the following applications:

- High-performance, relational (MySQL) and NoSQL (MongoDB, Cassandra) databases.
- Distributed web scale cache stores that provide in-memory caching of key-value type data (Memcached and Redis).
- In-memory databases using optimized data storage formats and analytics for business intelligence (for example, SAP HANA).
- Applications performing real-time processing of big unstructured data (financial services, Hadoop/Spark clusters).
- High-performance computing (HPC) and Electronic Design Automation (EDA) applications.

**X1 Instances**

X1 instances are well suited for the following applications:

- In-memory databases such SAP HANA, including SAP-certified support for Business Suite S/4HANA, Business Suite on HANA (SoH), Business Warehouse on HANA (BW), and Data Mart Solutions on HANA. For more information, see SAP HANA on the AWS Cloud.
- Big-data processing engines such as Apache Spark or Presto.
- High-performance computing (HPC) applications.

**X1e Instances**

X1e instances are well suited for the following applications:

- High-performance databases.
- In-memory databases such SAP HANA, For more information, see SAP HANA on the AWS Cloud.
- Memory-intensive enterprise applications.

**Hardware Specifications**

The following is a summary of the hardware specifications for Memory optimized instances.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r4.large</td>
<td>2</td>
<td>15.25</td>
</tr>
<tr>
<td>r4.xlarge</td>
<td>4</td>
<td>30.5</td>
</tr>
<tr>
<td>r4.2xlarge</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>r4.4xlarge</td>
<td>16</td>
<td>122</td>
</tr>
<tr>
<td>r4.8xlarge</td>
<td>32</td>
<td>244</td>
</tr>
<tr>
<td>r4.16xlarge</td>
<td>64</td>
<td>488</td>
</tr>
</tbody>
</table>
Memory Optimized Instances

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1.16xlarge</td>
<td>64</td>
<td>976</td>
</tr>
<tr>
<td>x1.32xlarge</td>
<td>128</td>
<td>1,952</td>
</tr>
<tr>
<td>x1e.xlarge</td>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td>x1e.2xlarge</td>
<td>8</td>
<td>244</td>
</tr>
<tr>
<td>x1e.4xlarge</td>
<td>16</td>
<td>488</td>
</tr>
<tr>
<td>x1e.8xlarge</td>
<td>32</td>
<td>976</td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td>64</td>
<td>1,952</td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td>128</td>
<td>3,904</td>
</tr>
</tbody>
</table>

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

Memory Performance

X1 instances include Intel Scalable Memory Buffers, providing 300 GiB/s of sustainable memory-read bandwidth and 140 GiB/s of sustainable memory-write bandwidth.

For more information about how much RAM can be enabled for Memory optimized instances, see Hardware Specifications (p. 128).

Memory optimized instances have high-memory and require 64-bit HVM AMIs to take advantage of that capacity. HVM AMIs provide superior performance in comparison to paravirtual (PV) AMIs on high-memory instance types.

Instance Performance

R4 instances feature up to 64 vCPUs and are powered by two AWS-customized Intel XEON processors based on E5-2686v4 that feature high-memory bandwidth and larger L3 caches to boost the performance of in-memory applications.

X1e and X1 instances feature up to 128 vCPUs and are powered by four Intel Xeon E7-8880 v3 processors that feature high-memory bandwidth and larger L3 caches to boost the performance of in-memory applications.

Memory optimized instances enable increased cryptographic performance through the latest Intel AES-NI feature, support Intel Transactional Synchronization Extensions (TSX) to boost the performance of in-memory transactional data processing, and support Advanced Vector Extensions 2 (Intel AVX2) processor instructions to expand most integer commands to 256 bits.

Network Performance

You can enable enhanced networking capabilities on supported instance types. Enhanced networking provides significantly higher packet-per-second (PPS) performance, lower network jitter, and lower latencies. For more information, see Enhanced Networking on Windows (p. 619).

Instance types that use the Elastic Network Adapter (ENA) for enhanced networking deliver high packet per second performance with consistently low latencies. Most applications do not consistently need a high level of network performance, but can benefit from having access to increased bandwidth when
they send or receive data. Instance types that use the ENA and support up to 10 Gbps of throughput use a network I/O credit mechanism to allocate network bandwidth to instances based on average bandwidth utilization. These instances accrue credits when their network throughput is below their baseline limits, and can use these credits when they perform network data transfers. For workloads that require access to 10 Gbps of bandwidth or more on a sustained basis, we recommend using instance types that support 10 Gbps or 25 Gbps network speeds.

The following is a summary of network performance for Memory optimized instances that support enhanced networking.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Network performance</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>r4.4xlarge and smaller</td>
<td>Up to 10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>x1e.8large and smaller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4.8xlarge, x1.16xlarge,</td>
<td>10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4.16xlarge, x1.32xlarge,</td>
<td>25 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Instance Features**

The following is a summary of features for Memory optimized instances.

<table>
<thead>
<tr>
<th></th>
<th>VPC only</th>
<th>EBS only</th>
<th>Instance store</th>
<th>Placement group</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>X1</td>
<td>Yes</td>
<td>SSD</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>X1e</td>
<td>Yes</td>
<td>SSD</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information, see the following:

- Instance Types Available Only in a VPC (p. 550)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EC2 Instance Store (p. 722)
- Placement Groups (p. 612)
- Enhanced Networking on Windows (p. 619)

**High Availability and Reliability (X1)**

X1 instances support Single Device Data Correction (SDDC +1), which detects and corrects multi-bit errors. SDDC +1 uses error checking and correction code to identify and disable a failed single DRAM device.

In addition, you can implement high availability (HA) and disaster recovery (DR) solutions to meet recovery point objective (RPO), recovery time objective (RTO), and cost requirements by leveraging Amazon CloudFormation and Recover Your Instance (p. 298). For more information about implementing HA and DR solutions, see the Using AWS for Disaster Recovery whitepaper.
If you run an SAP HANA production environment, you also have the option of using HANA System Replication (HSR) on X1 instances. For more information about architecting HA and DR solutions on X1 instances, see SAP HANA on the Amazon Web Services Cloud: Quick Start Reference Deployment.

Support for vCPUs

Memory optimized instances provide a high number of vCPUs, which can cause launch issues with operating systems that have a lower vCPU limit. We strongly recommend that you use the latest AMIs when you launch Memory optimized instances.

The following AMIs support launching Memory optimized instances:

- Amazon Linux AMI 2016.03 (HVM) or later
- Ubuntu Server 14.04 LTS (HVM)
- Red Hat Enterprise Linux 7.1 (HVM)
- SUSE Linux Enterprise Server 12 SP1 (HVM)
- Windows Server 2016
- Windows Server 2012 R2
- Windows Server 2012
- Windows Server 2008 R2 64-bit
- Windows Server 2008 SP2 64-bit

Release Notes

- You can't launch X1 instances using a Windows Server 2008 SP2 64-bit AMI, except for x1.16xlarge instances.
- You can't launch X1e instances using a Windows Server 2008 SP2 64-bit AMI.
- With earlier versions of the Windows Server 2008 R2 64-bit AMI, you can't launch r4.large and r4.4xlarge instances. If you experience this issue, update to the latest version of this AMI.
- There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types. For more information, see How many instances can I run in Amazon EC2?. To request a limit increase, use the Amazon EC2 Instance Request Form.

Storage Optimized Instances

Storage optimized instances are designed for workloads that require high, sequential read and write access to very large data sets on local storage. They are optimized to deliver tens of thousands of low-latency, random I/O operations per second (IOPS) to applications.

D2 Instances

D2 instances are well suited for the following applications:

- Massive parallel processing (MPP) data warehouse
- MapReduce and Hadoop distributed computing
- Log or data processing applications

H1 Instances

H1 instances are well suited for the following applications:

- Data-intensive workloads such as MapReduce and distributed file systems
Applications requiring sequential access to large amounts of data on direct-attached instance storage
Applications that require high-throughput access to large quantities of data

I3 Instances

I3 instances are well suited for the following applications:
- High frequency online transaction processing (OLTP) systems
- Relational databases
- NoSQL databases
- Cache for in-memory databases (for example, Redis)
- Data warehousing applications
- Low latency Ad-Tech serving applications

Contents
- Hardware Specifications (p. 132)
- Instance Performance (p. 133)
- Network Performance (p. 133)
- SSD I/O Performance (p. 134)
- Instance Features (p. 134)
- Release Notes (p. 135)

Hardware Specifications

The primary data storage for D2 instances is HDD instance store volumes. The primary data storage for I3 instances is non-volatile memory express (NVMe) SSD instance store volumes.

Instance store volumes persist only for the life of the instance. When you stop or terminate an instance, the applications and data in its instance store volumes are erased. We recommend that you regularly back up or replicate important data in your instance store volumes. For more information, see Amazon EC2 Instance Store (p. 722) and SSD Instance Store Volumes (p. 728).

The following is a summary of the hardware specifications for Storage optimized instances.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2.xlarge</td>
<td>4</td>
<td>30.5</td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>d2.4xlarge</td>
<td>16</td>
<td>122</td>
</tr>
<tr>
<td>d2.8xlarge</td>
<td>36</td>
<td>244</td>
</tr>
<tr>
<td>h1.2xlarge</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>h1.4xlarge</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>h1.8xlarge</td>
<td>32</td>
<td>128</td>
</tr>
<tr>
<td>h1.16xlarge</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>i3.large</td>
<td>2</td>
<td>15.25</td>
</tr>
</tbody>
</table>
For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

### Instance Performance

For instances with NVMe instance store volumes, you must use a Linux AMI with kernel version 4.4 or later. Otherwise, your instance will not achieve the maximum IOPS performance available.

EBS-optimized instances enable you to get consistently high performance for your EBS volumes by eliminating contention between Amazon EBS I/O and other network traffic from your instance. D2 and H1 instances are EBS-optimized by default at no additional cost. For more information, see Amazon EBS-Optimized Instances (p. 691).

### Network Performance

You can enable enhanced networking capabilities on supported instance types. Enhanced networking provides significantly higher packet-per-second (PPS) performance, lower network jitter, and lower latencies. For more information, see Enhanced Networking on Windows (p. 619).

Instance types that use the Elastic Network Adapter (ENA) for enhanced networking deliver high packet per second performance with consistently low latencies. Most applications do not consistently need a high level of network performance, but can benefit from having access to increased bandwidth when they send or receive data. Instance types that use the ENA and support up to 10 Gbps of throughput use a network I/O credit mechanism to allocate network bandwidth to instances based on average bandwidth utilization. These instances accrue credits when their network throughput is below their baseline limits, and can use these credits when they perform network data transfers. For workloads that require access to 10 Gbps of bandwidth or more on a sustained basis, we recommend using instance types that support 10 Gbps or 25 Gbps network speeds.

The following is a summary of network performance for Storage optimized instances that support enhanced networking.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Network performance</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>i3.xlarge</td>
<td>vCPUs</td>
<td>Memory (GiB)</td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>4</td>
<td>30.5</td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>16</td>
<td>122</td>
</tr>
<tr>
<td>i3.16xlarge</td>
<td>32</td>
<td>244</td>
</tr>
<tr>
<td>i3.32xlarge</td>
<td>64</td>
<td>488</td>
</tr>
</tbody>
</table>

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.
SSD I/O Performance

If you use a Linux AMI with kernel version 4.4 or later and use all the SSD-based instance store volumes available to your instance, you get the IOPS (4,096 byte block size) performance listed in the following table (at queue depth saturation). Otherwise, you get lower IOPS performance.

<table>
<thead>
<tr>
<th>Instance Size</th>
<th>100% Random Read IOPS</th>
<th>Write IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i3.large *</td>
<td>100,125</td>
<td>35,000</td>
</tr>
<tr>
<td>i3.xlarge *</td>
<td>206,250</td>
<td>70,000</td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>412,500</td>
<td>180,000</td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>825,000</td>
<td>360,000</td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>1.65 million</td>
<td>720,000</td>
</tr>
<tr>
<td>i3.16xlarge</td>
<td>3.3 million</td>
<td>1.4 million</td>
</tr>
</tbody>
</table>

* For i3.large and i3.xlarge instances, you can get up to the specified performance.

As you fill the SSD-based instance store volumes for your instance, the number of write IOPS that you can achieve decreases. This is due to the extra work the SSD controller must do to find available space, rewrite existing data, and erase unused space so that it can be rewritten. This process of garbage collection results in internal write amplification to the SSD, expressed as the ratio of SSD write operations to user write operations. This decrease in performance is even larger if the write operations are not in multiples of 4,096 bytes or not aligned to a 4,096-byte boundary. If you write a smaller amount of bytes or bytes that are not aligned, the SSD controller must read the surrounding data and store the result in a new location. This pattern results in significantly increased write amplification, increased latency, and dramatically reduced I/O performance.

SSD controllers can use several strategies to reduce the impact of write amplification. One such strategy is to reserve space in the SSD instance storage so that the controller can more efficiently manage the space available for write operations. This is called over-provisioning. The SSD-based instance store volumes provided to an instance don’t have any space reserved for over-provisioning. To reduce write amplification, we recommend that you leave 10% of the volume unpartitioned so that the SSD controller can use it for over-provisioning. This decreases the storage that you can use, but increases performance even if the disk is close to full capacity.

For instance store volumes that support TRIM, you can use the TRIM command to notify the SSD controller whenever you no longer need data that you’ve written. This provides the controller with more free space, which can reduce write amplification and increase performance. For more information, see Instance Store Volume TRIM Support (p. 729).

Instance Features

The following is a summary of features for Storage optimized instances:

<table>
<thead>
<tr>
<th></th>
<th>VPC only</th>
<th>SSD volumes</th>
<th>Placement group</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Intel 82599 VF (p. 620)</td>
</tr>
<tr>
<td>H1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>ENA (p. 623)</td>
</tr>
</tbody>
</table>
For more information, see the following:

- Instance Types Available Only in a VPC (p. 550)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EC2 Instance Store (p. 722)
- Placement Groups (p. 612)
- Enhanced Networking on Windows (p. 619)

Release Notes

- You must launch Storage optimized instances using an HVM AMI.
- You must launch I3 instances using an Amazon EBS-backed AMI.
- There is a limit on the total number of instances that you can launch in a region, and there are additional limits on some instance types. For more information, see How many instances can I run in Amazon EC2?. To request a limit increase, use the Amazon EC2 Instance Request Form.

Windows Accelerated Computing Instances

If you require high processing capability, you’ll benefit from using accelerated computing instances, which provide access to hardware-based compute accelerators such as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs). Accelerated computing instances enable more parallelism for higher throughput on compute-intensive workloads.

GPU-based instances provide access to NVIDIA GPUs with thousands of compute cores. You can use GPU-based accelerated computing instances to accelerate scientific, engineering, and rendering applications by leveraging the CUDA or Open Computing Language (OpenCL) parallel computing frameworks. You can also use them for graphics applications, including game streaming, 3-D application streaming, and other graphics workloads.

If your application needs a small amount of additional GPU resources for graphics acceleration, but is better suited for an instance type with different compute, memory, or storage specifications, use an Elastic GPU instead. For more information, see Amazon EC2 Elastic GPUs (p. 381).

FPGA-based instances provide access to large FPGAs with millions of parallel system logic cells. You can use FPGA-based accelerated computing instances to accelerate workloads such as genomics, financial analysis, real-time video processing, big data analysis, and security workloads by leveraging custom hardware accelerations. You can develop these accelerations using hardware description languages such as Verilog or VHDL, or by using higher-level languages such as OpenCL parallel computing frameworks. You can either develop your own hardware acceleration code or purchase hardware accelerations through the AWS Marketplace.

**Important**
FPGA-based instances do not support Microsoft Windows.

You can cluster accelerated computing instances into a cluster placement group. Cluster placement groups provide low latency and high-bandwidth connectivity between the instances within a single Availability Zone. For more information, see Placement Groups (p. 612).
Accelerated Computing Instance Families

Accelerated computing instance families use hardware accelerators, or co-processors, to perform some functions, such as floating point number calculations, graphics processing, or data pattern matching, more efficiently than is possible in software running on CPUs. The following accelerated computing instance families are available for you to launch in Amazon EC2.

P3 Instances

P3 instances use NVIDIA Tesla V100 GPUs and are designed for general purpose GPU computing using the CUDA or OpenCL programming models or through a machine learning framework. P3 instances provide high-bandwidth networking, powerful half, single, and double-precision floating-point capabilities, and 16 GiB of memory per GPU, which makes them ideal for deep learning, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, genomics, rendering, and other server-side GPU compute workloads.

P3 instances support NVIDIA NVLink peer to peer transfers. For more information, see NVIDIA NVLink.

P2 Instances

P2 instances use NVIDIA Tesla K80 GPUs and are designed for general purpose GPU computing using the CUDA or OpenCL programming models. P2 instances provide high-bandwidth networking, powerful single and double precision floating-point capabilities, and 12 GiB of memory per GPU, which makes them ideal for deep learning, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, genomics, rendering, and other server-side GPU compute workloads.

P2 instances support NVIDIA GPUDirect peer to peer transfers. For more information, see NVIDIA GPUDirect.

G3 Instances

G3 instances use NVIDIA Tesla M60 GPUs and provide a cost-effective, high-performance platform for graphics applications using DirectX or OpenGL. G3 instances also provide NVIDIA GRID Virtual Workstation features, such as support for four monitors with resolutions up to 4096x2160, and NVIDIA GRID Virtual Applications. G3 instances are well-suited for applications such as 3D visualizations, graphics-intensive remote workstations, 3D rendering, video encoding, virtual reality, and other server-side graphics workloads requiring massively parallel processing power.

G3 instances support NVIDIA GRID Virtual Workstation and NVIDIA GRID Virtual Applications. To activate either of these features, see Activate NVIDIA GRID Capabilities (G3 Instances Only) (p. 140).
Hardware Specifications

The following is a summary of the hardware specifications for accelerated computing instances.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>vCPUs</th>
<th>Memory (GiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2.xlarge</td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td>p2.8xlarge</td>
<td>32</td>
<td>488</td>
</tr>
<tr>
<td>p2.16xlarge</td>
<td>64</td>
<td>732</td>
</tr>
<tr>
<td>p3.2xlarge</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>p3.8xlarge</td>
<td>32</td>
<td>244</td>
</tr>
<tr>
<td>p3.16xlarge</td>
<td>64</td>
<td>488</td>
</tr>
<tr>
<td>g3.4xlarge</td>
<td>16</td>
<td>122</td>
</tr>
<tr>
<td>g3.8xlarge</td>
<td>32</td>
<td>244</td>
</tr>
<tr>
<td>g3.16xlarge</td>
<td>64</td>
<td>488</td>
</tr>
<tr>
<td>f1.2xlarge</td>
<td>8</td>
<td>122</td>
</tr>
<tr>
<td>f1.16xlarge</td>
<td>64</td>
<td>976</td>
</tr>
</tbody>
</table>

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

Instance Performance

EBS-optimized instances enable you to get consistently high performance for your EBS volumes by eliminating contention between Amazon EBS I/O and other network traffic from your instance. F1, P3, P2, and G3 instances are EBS-optimized by default at no additional cost. For more information, see Amazon EBS–Optimized Instances (p. 691).

Network Performance

You can enable enhanced networking capabilities on supported instance types. Enhanced networking provides significantly higher packet-per-second (PPS) performance, lower network jitter, and lower latencies. For more information, see Enhanced Networking on Windows (p. 619).

Instance types that use the Elastic Network Adapter (ENA) for enhanced networking deliver high packet per second performance with consistently low latencies. Most applications do not consistently need a high level of network performance, but can benefit from having access to increased bandwidth when they send or receive data. Instance types that use the ENA and support up to 10 Gbps of throughput use a network I/O credit mechanism to allocate network bandwidth to instances based on average bandwidth utilization. These instances accrue credits when their network throughput is below their baseline limits, and can use these credits when they perform network data transfers. For workloads that require access to 10 Gbps of bandwidth or more on a sustained basis, we recommend using instance types that support 10 Gbps or 25 Gbps network speeds.

The following is a summary of network performance for accelerated computing instances that support enhanced networking.
### Instance Features

The following is a summary of features for accelerated computing instances.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Network performance</th>
<th>Enhanced networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1.2xlarge, g3.4xlarge, p3.2xlarge</td>
<td>Up to 10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>g3.8xlarge, p2.8xlarge, p3.8xlarge</td>
<td>10 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
<tr>
<td>f1.16xlarge, g3.16xlarge, g3.16.xlarge, p2.16xlarge, p3.16xlarge</td>
<td>25 Gbps</td>
<td>ENA (p. 623)</td>
</tr>
</tbody>
</table>

* The root device volume must be an Amazon EBS volume.

For more information, see the following:

- Instance Types Available Only in a VPC (p. 550)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EC2 Instance Store (p. 722)
- Placement Groups (p. 612)
- Enhanced Networking on Windows (p. 619)

### Release Notes

- You must launch the instance using an HVM AMI.
- GPU-based instances can't access the GPU unless the NVIDIA drivers are installed.
- There is a limit of 100 AFIs per region.
- There is a limit on the number of instances that you can run. For more information, see How many instances can I run in Amazon EC2? in the Amazon EC2 FAQ. To request an increase in these limits, use the following form: Request to Increase Amazon EC2 Instance Limit.
- If you launch a multi-GPU instance with a Windows AMI that was created on a single-GPU instance, Windows does not automatically install the NVIDIA driver for all GPUs. You must authorize the driver installation for the new GPU hardware. You can correct this manually in the Device Manager by opening the Other device category (the inactive GPUs do not appear under Display Adapters). For each inactive GPU, open the context (right-click) menu, choose Update Driver Software, and then choose the default Automatic Update option.
- When using Microsoft Remote Desktop Protocol (RDP), GPUs that use the WDDM driver model are replaced with a non-accelerated Remote Desktop display driver. To access your GPU hardware, you
must use a different remote access tool, such as Teradici Cloud Access Software, NICE Desktop Cloud Visualization (DCV), or VNC. You can also use one of the GPU AMIs from the AWS Marketplace because they provide remote access tools that support 3D acceleration.

AMIs for GPU-Based Accelerated Computing Instances

To help you get started, NVIDIA and others provide AMIs for GPU-based accelerated computing instances. These reference AMIs include the NVIDIA driver, which enables full functionality and performance of the NVIDIA GPUs.

For a list of AMIs with the NVIDIA driver, search AWS Marketplace as follows:

- NVIDIA P3 AMIs
- NVIDIA P2 AMIs
- NVIDIA GRID G3 AMIs

You can launch accelerated computing instances using any HVM AMI.

You can also install the NVIDIA driver manually. For more information, see Installing the NVIDIA Driver on Windows (p. 139).

Installing the NVIDIA Driver on Windows

To install the NVIDIA driver on your Windows instance, log on to your instance as the administrator using Remote Desktop and download the appropriate driver. The driver that you download and install depends on the instance type.

NVIDIA GRID Drivers for (G3)

For G3 instances, you can download the NVIDIA GRID driver from Amazon S3 using the AWS Tools for Windows PowerShell.

**Important**
This download is available to AWS customers only. By downloading, you agree that you will only use the downloaded software to develop AMIs for use with the NVIDIA Tesla M60 hardware. Upon installation of the software, you are bound by the terms of the NVIDIA GRID Cloud End User License Agreement.

**Prerequisites**

Associate an IAM role with your instance that has permissions to use the s3:GetObject action. For more information, see IAM Roles for Amazon EC2 (p. 534). Alternatively, configure the Tools for Windows PowerShell to use your AWS credentials. For more information, see Using AWS Credentials.

**To install the NVIDIA GRID driver (G3 instances)**

1. Open a PowerShell window.
2. Download the drivers and the NVIDIA GRID Cloud End User License Agreement to your desktop with the following PowerShell commands (you can copy and paste the entire block of commands at one time).

```powershell
$Bucket = "ec2-windows-nvidia-drivers"
$LocalPath = "C:\Users\Administrator\Desktop\NVIDIA"
$Objects = Get-S3Object -BucketName $Bucket -Region us-east-1
foreach ($Object in $Objects) {
```

139
$LocalFileName = $Object.Key
if ($LocalFileName -ne '' -and $Object.Size -ne 0) {
    $LocalFilePath = Join-Path $LocalPath $LocalFileName
    Copy-S3Object -BucketName $Bucket -Key $Object.Key -LocalFile $LocalFilePath -Region us-east-1
}

3. Navigate to the desktop and double-click the installation file to launch it (choose the driver version that corresponds to your instance OS version). Follow the instructions to install the driver and reboot your instance as required. To verify that the GPU is working properly, check Device Manager.

4. Complete the GRID activation steps in Activate NVIDIA GRID Capabilities (G3 Instances Only) (p. 140).

5. Complete the optimization steps in Optimizing GPU Settings (P2, P3, and G3 Instances) (p. 141) to achieve the best performance from your GPU.

**Public NVIDIA Drivers (P2, P3)**

For instance types other than G3, or if you are not using NVIDIA GRID capabilities on a G3 instance, you can download a public NVIDIA driver.

To install a public NVIDIA driver


<table>
<thead>
<tr>
<th>Instances</th>
<th>Product Type</th>
<th>Product Series</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>Tesla</td>
<td>K-Series</td>
<td>K-80</td>
</tr>
<tr>
<td>P3</td>
<td>Tesla</td>
<td>V-Series</td>
<td>V100</td>
</tr>
</tbody>
</table>

2. Open the folder where you downloaded the driver and launch the installation file. Follow the instructions to install the driver and reboot your instance as required.

3. To verify that the GPU is working correctly, check Device Manager.

4. [P2, P3, and G3] Complete the optimization steps in Optimizing GPU Settings (P2, P3, and G3 Instances) (p. 141) to achieve the best performance from your GPU.

**Activate NVIDIA GRID Capabilities (G3 Instances Only)**

To activate the GRID capabilities on G3 instances, such as NVIDIA GRID Virtual Workstation or NVIDIA GRID Virtual Applications, you must define the product type for the driver in the registry and disable the licensing page in the control panel to prevent users from accidentally changing the product type.

To activate GRID features on G3 Windows instances

1. Run `regedit.exe` to open the registry editor.
2. Navigate to `HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation\Global\GridLicensing`.
3. Open the context (right-click) menu on the right pane and choose **New, DWORD**.
4. For **Name**, enter **FeatureType** and type **Enter**.
5. Open the context (right-click) menu on **FeatureType** and choose **Modify**.
6. For **Value data**, type the appropriate value below for the NVIDIA GRID feature to enable and choose **OK**.
• For NVIDIA GRID Virtual Workstation: 2
• For NVIDIA GRID Virtual Applications: 0
7. Open the context (right-click) menu on the right pane and choose New, DWORD.
8. For Name, enter NvCplDisableManageLicensePage and type Enter.
9. Open the context (right-click) menu on NvCplDisableManageLicensePage and choose Modify.
10. For Value data, type 1 and choose OK.
11. For NVIDIA GRID Virtual Applications only:
   a. Open the context (right-click) menu on the right pane and choose New, DWORD.
   b. For Name, enter IgnoreSP and type Enter.
   c. Open the context (right-click) menu on IgnoreSP and choose Modify.
   d. For Value data, type 1 and choose OK.
12. Close the registry editor.

**Optimizing GPU Settings (P2, P3, and G3 Instances)**

There are several GPU setting optimizations that you can perform to achieve the best performance on P2, P3, and G3 instances. By default, the NVIDIA driver uses an autoboost feature, which varies the GPU clock speeds. By disabling the autoboost feature and setting the GPU clock speeds to their maximum frequency, you can consistently achieve the maximum performance with your GPU instances.

**To optimize GPU settings**

1. Open a PowerShell window and navigate to the NVIDIA installation folder.
   ```bash
 cd "C:\Program Files\NVIDIA Corporation\NVSMI"
   ```
2. Disable the autoboost feature for all GPUs on the instance.
   ```bash
 .\nvidia-smi --auto-boost-default=0
   ```
   **Note**
   GPUs on P3 instances do not support autoboost.
3. Set all GPU clock speeds to their maximum frequency. Use the memory and graphics clock speeds specified in the following commands.
   **Note**
   Some versions of the NVIDIA driver do not allow setting application clock speed and throw a "Setting applications clocks is not supported for GPU ..." error, which you can ignore.
   • P2 instances:
     ```bash
 .\nvidia-smi -ac "2505,875"
     ```
   • P3 instances:
     ```bash
 .\nvidia-smi -ac "877,1530"
     ```
   • G3 instances:
     ```bash
 .\nvidia-smi -ac "2505,1177"
     ```
T1 Micro Instances

T1 Micro instances (t1.micro) provide a small amount of consistent CPU resources and allow you to increase CPU capacity in short bursts when additional cycles are available. They are well suited for lower throughput applications and websites that require additional compute cycles periodically.

Note
The t1.micro is a previous generation instance and it has been replaced by the t2.micro, which has a much better performance profile. We recommend using the t2.micro instance type instead of the t1.micro. For more information, see T2 Instances (p. 108).

The t1.micro instance is available as an Amazon EBS-backed instance only.

This documentation describes how t1.micro instances work so that you can understand how to apply them. It's not our intent to specify exact behavior, but to give you visibility into the instance's behavior so you can understand its performance.

Topics

- Hardware Specifications (p. 142)
- Optimal Application of T1 Micro Instances (p. 142)
- Available CPU Resources During Spikes (p. 146)
- When the Instance Uses Its Allotted Resources (p. 146)
- Comparison with the m1.small Instance Type (p. 149)
- AMI Optimization for Micro Instances (p. 152)

Hardware Specifications

For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.

Optimal Application of T1 Micro Instances

A t1.micro instance provides spiky CPU resources for workloads that have a CPU usage profile similar to what is shown in the following figure.
The instance is designed to operate with its CPU usage at essentially only two levels: the normal low background level, and then at brief spiked levels much higher than the background level. We allow the instance to operate at up to 2 EC2 compute units (ECUs) (one ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor). The ratio between the maximum level and the background level is designed to be large. We designed \texttt{t1.micro} instances to support tens of requests per minute on your application. However, actual performance can vary significantly depending on the amount of CPU resources required for each request on your application.

Your application might have a different CPU usage profile than that described in the preceding section. The following figure shows the profile for an application that isn't appropriate for a \texttt{t1.micro} instance. The application requires continuous data-crunching CPU resources for each request, resulting in plateaus of CPU usage that the \texttt{t1.micro} instance isn't designed to handle.
The following figure shows another profile that isn't appropriate for a t1.micro instance. Here the spikes in CPU use are brief, but they occur too frequently to be serviced by a micro instance.
The following figure shows another profile that isn't appropriate for a t1.micro instance. Here the spikes aren't too frequent, but the background level between spikes is too high to be serviced by a t1.micro instance.
In each of the preceding cases of workloads not appropriate for a t1.micro instance, we recommend that you consider using a different instance type. For more information about instance types, see Instance Types (p. 104).

**Available CPU Resources During Spikes**

When your instance bursts to accommodate a spike in demand for compute resources, it uses unused resources on the host. The amount available depends on how much contention there is when the spike occurs. The instance is never left with zero CPU resources, whether other instances on the host are spiking or not.

**When the Instance Uses Its Allotted Resources**

We expect your application to consume only a certain amount of CPU resources in a period of time. If the application consumes more than your instance's allotted CPU resources, we temporarily limit the instance so it operates at a low CPU level. If your instance continues to use all of its allotted resources, its performance will degrade. We will increase the time that we limit its CPU level, thus increasing the time before the instance is allowed to burst again.

If you enable CloudWatch monitoring for your t1.micro instance, you can use the "Avg CPU Utilization" graph in the AWS Management Console to determine whether your instance is regularly using all its allotted CPU resources. We recommend that you look at the maximum value reached during each given period. If the maximum value is 100%, we recommend that you use Amazon EC2 Auto Scaling to scale out (with additional t1.micro instances and a load balancer), or move to a larger instance type. For more information, see the Amazon EC2 Auto Scaling User Guide.
Consider the three suboptimal profiles from the preceding section and what it might look like when the instance consumes its allotted resources and we limit its CPU level. If an instance consumes its allotted resources, we restrict it to the low background level. The following figure shows long plateaus of data-crunching CPU usage. The CPU hits the maximum allowed level and stays there until the instance's allotted resources are consumed for the period. At that point, we limit the instance to operate at the low background level, and it operates there until we allow it to burst above that level again. The instance again stays there until the allotted resources are consumed and we limit it again (not seen on the graph).

The following figure shows requests that are too frequent. The instance uses its allotted resources after only a few requests and so we limit it. After we lift the restriction, the instance maxes out its CPU usage trying to keep up with the requests, and we limit it again.
The following figure shows a background level that is too high. Notice that the instance doesn't have to be operating at the maximum CPU level for us to limit it. We limit the instance when it's operating above the normal background level and has consumed its allotted resources for the given period. In this case (as in the preceding one), the instance can't keep up with the work, and we limit it again.
Comparison with the m1.small Instance Type

The `t1.micro` instance provides different levels of CPU resources at different times (up to 2 ECUs). By comparison, the `m1.small` instance type provides 1 ECU at all times. The following figure illustrates the difference.
Let's compare the CPU usage of a t1.micro instance with an m1.small instance for the various scenarios we've discussed in the preceding sections. The following figure that follows shows an optimal scenario for a t1.micro instance (the left graph) and how it might look for an m1.small instance (the right graph). In this case, we don't need to limit the t1.micro instance. The processing time on the m1.small instance would be longer for each spike in CPU demand compared to the t1.micro instance.
The following figure shows the scenario with the data-crunching requests that used up the allotted resources on the `t1.micro` instance, and how they might look with the `m1.small` instance.

The following figure shows the frequent requests that used up the allotted resources on the `t1.micro` instance, and how they might look on the `m1.small` instance.
The following figure shows the situation where the background level used up the allotted resources on the \texttt{t1.micro} instance, and how it might look on the \texttt{m1.small} instance.

---

**AMI Optimization for Micro Instances**

We recommend that you follow these best practices when optimizing an AMI for the \texttt{t1.micro} instance type:

- Design the AMI to run on 600 MB of RAM
- Limit the number of recurring processes that use CPU time (for example, cron jobs, daemons)

When you perform significant AMI or instance configuration changes (for example, enable server roles or install large applications), you might see limited instance performance, because these changes can be memory intensive and require long-running CPU resources. We recommend that you first use a larger
instance type when performing these changes to the AMI, and then run the AMI on a t1.micro instance for normal operations.

### Resizing Your Instance

As your needs change, you might find that your instance is over-utilized (the instance type is too small) or under-utilized (the instance type is too large). If this is the case, you can change the size of your instance. For example, if your t2.micro instance is too small for its workload, you can change it to an m3.medium instance.

You can change the size of the instance simply by changing its instance type, which is known as **resizing** it.

When you resize an instance, you must select an instance type that is compatible with the configuration of the instance. If the instance type that you want is not compatible with the instance configuration you have, then you must migrate your application to a new instance with the instance type that you need.

**Important**

When you resize an instance, the resized instance usually has the same number of instance store volumes that you specified when you launched the original instance. If you want to add instance store volumes, you must migrate your application to a new instance with the instance type and instance store volumes that you need. An exception to this rule is when you resize to a storage-optimized instance type that by default contains a higher number of volumes. For more information about instance store volumes, see Amazon EC2 Instance Store (p. 722).

### Contents

- Compatibility for Resizing Instances (p. 153)
- Resizing an Amazon EBS-backed Instance (p. 154)
- Migrating to a New Instance Configuration (p. 155)

### Compatibility for Resizing Instances

You can resize an instance only if its current instance type and the new instance type that you want are compatible in the following ways:

- **Network**: Some instance types are not supported in EC2-Classic and must be launched in a VPC. Therefore, you can't resize an instance in EC2-Classic to a instance type that is available only in a VPC unless you have a nondefault VPC. For more information, see Instance Types Available Only in a VPC (p. 550). To check if your instance is in a VPC, check the VPC ID value on the details pane of the Instances screen in the Amazon EC2 console.

- **Platform**: All Amazon EC2 instance types support 64-bit AMIs, but only the following instance types support 32-bit AMIs: t2.nano, t2.micro, t2.small, t2.medium, c3.large, t1.micro, m1.small, m1.medium, and c1.medium. If you are resizing a 32-bit instance, you are limited to these instance types. To check the platform of your instance, go to the Instances screen in the Amazon EC2 console and choose Show/Hide Columns, Architecture.

- **Enhanced networking**: Instance types that support enhanced networking (p. 619) require the necessary drivers installed. For example, the C5 and M5 instance types require EBS-backed AMIs with the Elastic Network Adapter (ENA) drivers installed. If you are resizing an existing instance to an instance that supports enhanced networking, then you must first install the ENA or ixgbevf drivers on your instance, as appropriate.

- **NVMe**: Some instance types, such as C5 and M5, expose EBS volumes as NVMe block devices. If you are resizing an instance to one of these instance types, you must first install the NVMe drivers on your instance. For more information about supported AMIs, see the Release Notes in Compute Optimized Instances and General Purpose Instances.
Resizing an Amazon EBS–backed Instance

You must stop your Amazon EBS–backed instance before you can change its instance type. When you stop and start an instance, be aware of the following:

- We move the instance to new hardware; however, the instance ID does not change.
- If your instance is running in a VPC and has a public IPv4 address, we release the address and give it a new public IPv4 address. The instance retains its private IPv4 addresses, any Elastic IP addresses, and any IPv6 addresses.
- If your instance is running in EC2-Class, we give it new public and private IP addresses, and disassociate any Elastic IP address that's associated with the instance. Therefore, to ensure that your users can continue to use the applications that you're hosting on your instance uninterrupted, you must re-associate any Elastic IP address after you restart your instance.
- If your instance is in an Auto Scaling group, the Amazon EC2 Auto Scaling service marks the stopped instance as unhealthy, and may terminate it and launch a replacement instance. To prevent this, you can suspend the scaling processes for the group while you're resizing your instance. For more information, see Suspending and Resuming Scaling Processes in the Amazon EC2 Auto Scaling User Guide.
- Ensure that you plan for downtime while your instance is stopped. Stopping and resizing an instance may take a few minutes, and restarting your instance may take a variable amount of time depending on your application's startup scripts.

For more information, see Stop and Start Your Instance (p. 287).

Use the following procedure to resize an Amazon EBS–backed instance using the AWS Management Console.

**To resize an Amazon EBS–backed instance**

1. Open the Amazon EC2 console.
2. [Windows Server 2016] Connect to your Windows instance and run the following EC2Launch PowerShell script to configure the instance after it is resized.
   
   ```
 PS C:\> C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeInstance.ps1 -Schedule
   ```

3. In the navigation pane, choose **Instances**, and select the instance.
4. [EC2-Classic] If the instance has an associated Elastic IP address, write down the Elastic IP address and the instance ID shown in the details pane.
5. Choose **Actions**, select **Instance State**, and then choose **Stop**.
6. In the confirmation dialog box, choose **Yes, Stop**. It can take a few minutes for the instance to stop.
   
   [EC2-Classic] When the instance state becomes **stopped**, the **Elastic IP**, **Public DNS (IPv4)**, **Private DNS**, and **Private IPs** fields in the details pane are blank to indicate that the old values are no longer associated with the instance.

7. With the instance still selected, choose **Actions**, select **Instance Settings**, and then choose **Change Instance Type**. Note that this action is disabled if the instance state is not **stopped**.
8. In the **Change Instance Type** dialog box, do the following:
   
   a. From **Instance Type**, select the instance type that you want. If the instance type that you want does not appear in the list, then it is not compatible with the configuration of your instance (for example, because of virtualization type).
   b. (Optional) If the instance type that you selected supports EBS-optimization, select **EBS-optimized** to enable EBS-optimization or deselect **EBS-optimized** to disable EBS-optimization.
Note that if the instance type that you selected is EBS-optimized by default, **EBS-optimized** is selected and you can't deselect it.

c. Choose **Apply** to accept the new settings.

9. To restart the stopped instance, select the instance, choose **Actions**, select **Instance State**, and then choose **Start**.

10. In the confirmation dialog box, choose **Yes, Start**. It can take a few minutes for the instance to enter the running state.

11. [EC2-Classic] When the instance state is running, the **Public DNS (IPv4)**, **Private DNS**, and **Private IPs** fields in the details pane contain the new values that we assigned to the instance. If your instance had an associated Elastic IP address, you must reassociate it as follows:

   a. In the navigation pane, choose **Elastic IPs**.
   
   b. Select the Elastic IP address that you wrote down before you stopped the instance.
   
   c. Choose **Actions** and then choose **Associate address**.
   
   d. From **Instance**, select the instance ID that you wrote down before you stopped the instance, and then choose **Associate**.

**Migrating to a New Instance Configuration**

If the current configuration of your instance is incompatible with the new instance type that you want, then you can't resize the instance to that instance type. Instead, you can migrate your application to a new instance with a configuration that is compatible with the new instance type that you want.

**To migrate your application to a compatible instance**

1. Back up any data on your instance store volumes that you need to keep to persistent storage. To migrate data on your EBS volumes that you need to keep, create a snapshot of the volumes (see Creating an Amazon EBS Snapshot (p. 683)) or detach the volume from the instance so that you can attach it to the new instance later (see Detaching an Amazon EBS Volume from an Instance (p. 664)).

2. Launch a new instance, selecting the following:

   • [EC2-VPC] If you are using an Elastic IP address, select the VPC that the original instance is currently running in.
   
   • Any EBS volumes that you detached from the original instance and want to attach to the new instance, or new EBS volumes based on the snapshots that you created.
   
   • If you want to allow the same traffic to reach the new instance, select the security group that is associated with the original instance.

3. Install your application and any required software on the instance.

4. Restore any data that you backed up from the instance store volumes of the original instance.

5. If you are using an Elastic IP address, assign it to the newly launched instance as follows:

   a. In the navigation pane, choose **Elastic IPs**.
   
   b. Select the Elastic IP address that is associated with the original instance, choose **Actions**, and then choose **Disassociate address**. When prompted for confirmation, choose **Disassociate address**.
   
   c. With the Elastic IP address still selected, choose **Actions**, and then choose **Associate address**.
   
   d. From **Instance**, select the new instance, and then choose **Associate**.

6. (Optional) You can terminate the original instance if it's no longer needed. Select the instance and verify that you are about to terminate the original instance, not the new instance (for example, check the name or launch time). Choose **Actions**, select **Instance State**, and then choose **Terminate**.

155
Instance Purchasing Options

Amazon EC2 provides the following purchasing options to enable you to optimize your costs based on your needs:

- **On-Demand Instances** – Pay, by the hour, for the instances that you launch.
- **Reserved Instances** – Purchase, at a significant discount, instances that are always available, for a term from one to three years.
- **Scheduled Instances** – Purchase instances that are always available on the specified recurring schedule, for a one-year term.
- **Spot Instances** – Request unused EC2 instances, which can lower your Amazon EC2 costs significantly.
- **Dedicated Hosts** – Pay for a physical host that is fully dedicated to running your instances, and bring your existing per-socket, per-core, or per-VM software licenses to reduce costs.
- **Dedicated Instances** – Pay, by the hour, for instances that run on single-tenant hardware.

If you require a capacity reservation, purchase Reserved Instances for a specific Availability Zone or purchase Scheduled Instances. Spot Instances are a cost-effective choice if you can be flexible about when your applications run and if they can be interrupted. Dedicated Hosts can help you address compliance requirements and reduce costs by using your existing server-bound software licenses. For more information, see Amazon EC2 Instance Purchasing Options.

Contents
- Determining the Instance Lifecycle (p. 156)
- Reserved Instances (p. 157)
- Scheduled Reserved Instances (p. 191)
- Spot Instances (p. 195)
- Dedicated Hosts (p. 246)
- Dedicated Instances (p. 256)

Determining the Instance Lifecycle

The lifecycle of an instance starts when it is launched and ends when it is terminated. The purchasing option that you choose affects the lifecycle of the instance. For example, an On-Demand Instance runs when you launch it and ends when you terminate it. A Spot Instance runs as long as capacity is available and your maximum price is higher than the Spot price. You can launch a Scheduled Instance during its scheduled time period; Amazon EC2 launches the instances and then terminates them three minutes before the time period ends.

Use the following procedure to determine the lifecycle of an instance.

**To determine the instance lifecycle using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance.
4. On the **Description** tab, find Tenancy. If the value is **host**, the instance is running on a Dedicated Host. If the value is **dedicated**, the instance is a Dedicated Instance.
5. On the **Description** tab, find **Lifecycle**. If the value is **spot**, the instance is a Spot Instance. If the value is **scheduled**, the instance is a Scheduled Instance. If the value is **normal**, the instance is either an On-Demand Instance or a Reserved Instance.

6. (Optional) If you have purchased a Reserved Instance and want to verify that it is being applied, you can check the usage reports for Amazon EC2. For more information, see *Amazon EC2 Usage Reports (p. 770).*

**To determine the instance lifecycle using the AWS CLI**

Use the following **describe-instances** command:

```
aws ec2 describe-instances --instance-ids i-1234567890abcdef0
```

If the instance is running on a Dedicated Host, the output contains the following information:

```
"Tenancy": "host"
```

If the instance is a Dedicated Instance, the output contains the following information:

```
"Tenancy": "dedicated"
```

If the instance is a Spot Instance, the output contains the following information:

```
"InstanceLifecycle": "spot"
```

If the instance is a Scheduled Instance, the output contains the following information:

```
"InstanceLifecycle": "scheduled"
```

Otherwise, the output does not contain **InstanceLifecycle**.

**Reserved Instances**

Reserved Instances provide you with a significant discount compared to On-Demand Instance pricing. Reserved Instances are not physical instances, but rather a billing discount applied to the use of On-Demand Instances in your account. These On-Demand Instances must match certain attributes in order to benefit from the billing discount.

The following diagram shows a basic overview of purchasing and using Reserved Instances.
In this scenario, you have a running On-Demand Instance (T2) in your account, for which you're currently paying On-Demand rates. You purchase a Reserved Instance that matches the attributes of your running instance, and the billing benefit is immediately applied. Next, you purchase a Reserved Instance for a C4 instance. You do not have any running instances in your account that match the attributes of this Reserved Instance. In the final step, you launch an instance that matches the attributes of the C4 Reserved Instance, and the billing benefit is immediately applied.

When you purchase a Reserved Instance, choose a combination of the following that suits your needs:

- **Payment option**: No Upfront, Partial Upfront, or All Upfront.
- **Term**: One-year or three-year. A year is defined as 31536000 seconds (365 days). Three years is defined as 94608000 seconds (1095 days).
- **Offering class**: Convertible or Standard.

In addition, a Reserved Instance has a number of attributes that determine how it is applied to a running instance in your account:

- **Instance type**: For example, m4.large. This is composed of the instance family (m4) and the instance size (large).
- **Scope**: Whether the Reserved Instance applies to a region or specific Availability Zone.
- **Tenancy**: Whether your instance runs on shared (default) or single-tenant (dedicated) hardware. For more information, see Dedicated Instances (p. 256).
- **Platform**: The operating system; for example, Windows or Linux/Unix.

Reserved Instances do not renew automatically; when they expire, you can continue using the EC2 instance without interruption, but you are charged On-Demand rates. In the above example, when the Reserved Instances that cover the T2 and C4 instances expire, you go back to paying the On-Demand rates until you terminate the instances or purchase new Reserved Instances that match the instance attributes.
After you purchase a Reserved Instance, you cannot cancel your purchase. However, you may be able to modify (p. 180), exchange (p. 187), or sell (p. 174) your Reserved Instance if your needs change.

Payment Options

The following payment options are available for Reserved Instances.

- **No Upfront** – You are billed a discounted hourly rate for every hour within the term, regardless of whether the Reserved Instance is being used. No upfront payment is required.

  **Note**
  No Upfront Reserved Instances are based on a contractual obligation to pay monthly for the entire term of the reservation. For this reason, a successful billing history is required before you can purchase No Upfront Reserved Instances.

- **Partial Upfront** – A portion of the cost must be paid upfront and the remaining hours in the term are billed at a discounted hourly rate, regardless of whether the Reserved Instance is being used.

- **All Upfront** – Full payment is made at the start of the term, with no other costs or additional hourly charges incurred for the remainder of the term, regardless of hours used.

Generally speaking, you can save more money choosing Reserved Instances with a higher upfront payment. You can also find Reserved Instances offered by third-party sellers at lower prices and shorter term lengths on the Reserved Instance Marketplace. For more information, see Selling on the Reserved Instance Marketplace (p. 174).

For more information about pricing, see Amazon EC2 Reserved Instances Pricing.

Using Reserved Instances in a VPC

If your account supports EC2-Classic, you can purchase Reserved Instances for use in either EC2-Classic or a VPC. You can purchase Reserved Instances to apply to instances launched into a VPC by selecting a platform that includes Amazon VPC in its name.

If you have an EC2-VPC-only account, the listed platforms available do not include Amazon VPC in its name because all instances must be launched into a VPC.

For more information, see Detecting Your Supported Platforms and Whether You Have a Default VPC.

Reserved Instance Limits

You are limited to purchasing 20 Reserved Instances per Availability Zone, per month, plus 20 regional Reserved Instances. Therefore, in a region that has three Availability Zones, you can purchase 80 Reserved Instances in total: 20 per Availability Zone (60) plus 20 regional Reserved Instances.

Reserved Instances that are purchased for a specific Availability Zone (zonal Reserved Instances) allow you to launch as many instances that are covered by the zonal Reserved Instances, even if this results in your exceeding your On-Demand Instance limit. For example, your running On-Demand Instance limit is 20, and you are currently running 18 On-Demand Instances. You have five unused zonal Reserved Instances. You can launch two more On-Demand Instances with any specifications, and you can launch five instances that exactly match the specifications of your zonal Reserved Instances; giving you a total of 25 instances.

Regional Reserved Instances do not increase your On-Demand Instance limit.

Types of Reserved Instances (Offering Classes)

When you purchase a Reserved Instance, you can choose between a Standard or Convertible offering class. The Reserved Instance applies to a single instance family, platform, scope, and tenancy over a
term. If your computing needs change, you may be able to modify or exchange your Reserved Instance, depending on the offering class. Offering classes may also have additional restrictions or limitations.

The following are the differences between Standard and Convertible offering classes.

<table>
<thead>
<tr>
<th>Standard Reserved Instance</th>
<th>Convertible Reserved Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some attributes, such as instance size, can be modified during the term; however, the instance type cannot be modified. You cannot exchange a Standard Reserved Instance, only modify it. For more information, see Modifying Reserved Instances (p. 180).</td>
<td>Can be exchanged during the term for another Convertible Reserved Instance with new attributes including instance family, instance type, platform, scope, or tenancy. For more information, see Exchanging Convertible Reserved Instances (p. 187). You can also modify some attributes of a Convertible Reserved Instance. For more information, see Modifying Reserved Instances (p. 180).</td>
</tr>
<tr>
<td>Can be sold in the Reserved Instance Marketplace.</td>
<td>Cannot be sold in the Reserved Instance Marketplace.</td>
</tr>
</tbody>
</table>

Standard and Convertible Reserved Instances can be purchased to apply to instances in a specific Availability Zone, or to instances in a region. When you purchase a Reserved Instance in a specific Availability Zone, it provides a capacity reservation. When you purchase a Reserved Instance for a region, it’s referred to as a regional Reserved Instance. Regional Reserved Instances do not provide a capacity reservation.

Regional Reserved Instances have the following attributes:

- **Availability Zone flexibility**: the Reserved Instance discount applies to instance usage in any Availability Zone in a region.
- **Instance size flexibility**: the Reserved Instance discount applies to instance usage regardless of size, within that instance family. Only supported on Linux/Unix Reserved Instances with default tenancy.

For more information and examples, see How Reserved Instances Are Applied (p. 160).

If you want to purchase capacity reservations that recur on a daily, weekly, or monthly basis, a Scheduled Reserved Instance may meet your needs. For more information, see Scheduled Reserved Instances (p. 191).

### How Reserved Instances Are Applied

If you purchase a Reserved Instance and you already have a running instance that matches the specifications of the Reserved Instance, the billing benefit is immediately applied. You do not have to restart your instances. If you do not have an eligible running instance, launch an instance and ensure that you match the same criteria that you specified for your Reserved Instance. For more information, see Using Your Reserved Instances (p. 173).

Reserved Instances apply to usage in the same manner, irrespective of the offering type (Standard or Convertible), and are automatically applied to running On-Demand Instances with matching attributes.

### How Zonal Reserved Instances Are Applied

Reserved Instances assigned to a specific Availability Zone provide the Reserved Instance discount to matching instance usage in that Availability Zone. For example, if you purchase two c4.xlarge default tenancy Linux/Unix Standard Reserved Instances in Availability Zone us-east-1a, then up to two
c4.xlarge default tenancy Linux/Unix instances running in the Availability Zone us-east-1a can benefit from the Reserved Instance discount. The attributes (tenancy, platform, Availability Zone, instance type, and instance size) of the running instances must match that of the Reserved Instances.

How Regional Reserved Instances Are Applied

Reserved Instances purchased for a region (regional Reserved Instances) provide Availability Zone flexibility—the Reserved Instance discount applies to instance usage in any Availability Zone in that region.

Regional Reserved Instances on the Linux/Unix platform with default tenancy also provide instance size flexibility, where the Reserved Instance discount applies to instance usage within that instance type, regardless of size.

**Note**
Instance size flexibility does not apply to Reserved Instances that are purchased for a specific Availability Zone, and does not apply to Windows, Windows with SQL Standard, Windows with SQL Server Enterprise, Windows with SQL Server Web, RHEL, and SLES Reserved Instances.

Instance size flexibility is determined by the normalization factor of the instance size. The discount applies either fully or partially to running instances of the same instance type, depending on the instance size of the reservation, in any Availability Zone in the region. The only attributes that must be matched are the instance type, tenancy, and platform.

The table below describes the different sizes within an instance type, and corresponding normalization factor per hour. This scale is used to apply the discounted rate of Reserved Instances to the normalized usage of the instance type.

<table>
<thead>
<tr>
<th>Instance size</th>
<th>Normalization factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>nano</td>
<td>0.25</td>
</tr>
<tr>
<td>micro</td>
<td>0.5</td>
</tr>
<tr>
<td>small</td>
<td>1</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
</tr>
<tr>
<td>large</td>
<td>4</td>
</tr>
<tr>
<td>xlarge</td>
<td>8</td>
</tr>
<tr>
<td>2xlarge</td>
<td>16</td>
</tr>
<tr>
<td>4xlarge</td>
<td>32</td>
</tr>
<tr>
<td>8xlarge</td>
<td>64</td>
</tr>
<tr>
<td>9xlarge</td>
<td>72</td>
</tr>
<tr>
<td>10xlarge</td>
<td>80</td>
</tr>
<tr>
<td>12xlarge</td>
<td>96</td>
</tr>
<tr>
<td>16xlarge</td>
<td>128</td>
</tr>
<tr>
<td>18xlarge</td>
<td>144</td>
</tr>
<tr>
<td>24xlarge</td>
<td>192</td>
</tr>
<tr>
<td>32xlarge</td>
<td>256</td>
</tr>
</tbody>
</table>
For example, a `t2.medium` instance has a normalization factor of 2. If you purchase a `t2.medium` default tenancy Amazon Linux/Unix Reserved Instance in the US East (N. Virginia) and you have two running `t2.small` instances in your account in that region, the billing benefit is applied in full to both instances.

Or, if you have one `t2.large` instance running in your account in the US East (N. Virginia) region, the billing benefit is applied to 50% of the usage of the instance.

**Note**
The normalization factor is also applied when modifying Reserved Instances. For more information, see Modifying Reserved Instances (p. 180).

**Examples of Applying Reserved Instances**
The following scenarios cover the ways in which Reserved Instances are applied.

**Example Scenario 1: Reserved Instances in a Single Account**
You are running the following On-Demand Instances in account A:

- 4 x `m3.large` Linux, default tenancy instances in Availability Zone us-east-1a
- 2 x `m4.xlarge` Amazon Linux, default tenancy instances in Availability Zone us-east-1b
- 1 x `c4.xlarge` Amazon Linux, default tenancy instances in Availability Zone us-east-1c
You purchase the following Reserved Instances in account A:

- 4 x m3.large Linux, default tenancy Reserved Instances in Availability Zone us-east-1a (capacity is reserved)
- 4 x m4.large Amazon Linux, default tenancy Reserved Instances in us-east-1
- 1 x c4.large Amazon Linux, default tenancy Reserved Instances in us-east-1

The Reserved Instance benefits are applied in the following way:

- The discount and capacity reservation of the four m3.large Reserved Instances is used by the four m3.large instances because the attributes (instance size, region, platform, tenancy) between them match.
- The m4.large Reserved Instances provide Availability Zone and instance size flexibility, because they are regional Amazon Linux Reserved Instances with default tenancy. An m4.large is equivalent to 4 normalized units/hour.

You've purchased four m4.large Reserved Instances, and in total, they are equal to 16 normalized units/hour (4x4). Account A has two m4.xlarge instances running, which is equivalent to 16 normalized units/hour (2x8). In this case, the four m4.large Reserved Instances provide the billing benefit to an entire hour of usage of the two m4.xlarge instances.

- The c4.large Reserved Instance in us-east-1 provides Availability Zone and instance size flexibility, because it is an Amazon Linux Reserved Instance with default tenancy, and applies to the c4.xlarge instance. A c4.large instance is equivalent to 4 normalized units/hour and a c4.xlarge is equivalent to 8 normalized units/hour.

In this case, the c4.large Reserved Instance provides partial benefit to c4.xlarge usage. This is because the c4.large Reserved Instance is equivalent to 4 normalized units/hour of usage, but the c4.xlarge instance requires 8 normalized units/hour. Therefore, the c4.large Reserved Instance billing discount applies to 50% of c4.xlarge usage. The remaining c4.xlarge usage is charged at the On-Demand rate.

Example Scenario 2: Regional Reserved Instances in Linked Accounts

Reserved Instances are first applied to usage within the purchasing account, followed by qualifying usage in any other account in the organization. For more information, see Reserved Instances and Consolidated Billing (p. 166). For regional Reserved Instances that offer instance size flexibility, there is no preference to the instance size within a family that the Reserved Instances apply. The Reserved Instance discount is applied to qualifying usage that is detected first by the AWS billing system. The following example may help explain this.

You're running the following On-Demand Instances in account A (the purchasing account):

- 2 x m4.xlarge Linux, default tenancy instances in Availability Zone us-east-1a
- 1 x m4.2xlarge Linux, default tenancy instances in Availability Zone us-east-1b
- 2 x c4.xlarge Linux, default tenancy instances in Availability Zone us-east-1a
- 1 x c4.2xlarge Linux, default tenancy instances in Availability Zone us-east-1b

Another customer is running the following On-Demand Instances in account B—a linked account:

- 2 x m4.xlarge Linux, default tenancy instances in Availability Zone us-east-1a

You purchase the following Reserved Instances in account A:
• 4 x m4.xlarge Linux, default tenancy Reserved Instances in us-east-1
• 2 x c4.xlarge Linux, default tenancy Reserved Instances in us-east-1

The Reserved Instance benefits are applied in the following way:

• The discount of the four m4.xlarge Reserved Instances is used by the two m4.xlarge instances in account A and the m4.2xlarge instance in account A. All three instances match the attributes (instance family, region, tenancy). There is no capacity reservation.
• The discount of the two c4.xlarge Reserved Instances can apply to either the two c4.xlarge instances or the c4.2xlarge instance, all of which match the attributes (instance family, region, platform, tenancy), depending on which usage is detected first by the billing system. There is no preference given to a particular instance size. There is no capacity reservation.

Example Scenario 3: Zonal Reserved Instances in a Linked Account

In general, Reserved Instances that are owned by an account are applied first to usage in that account. However, if there are qualifying, unused Reserved Instances for a specific Availability Zone (zonal Reserved Instances) in other accounts in the organization, they are applied to the account before regional Reserved Instances owned by the account. This is done to ensure maximum Reserved Instance utilization and a lower bill. For billing purposes, all the accounts in the organization are treated as one account. The following example may help explain this.

You're running the following On-Demand Instance in account A (the purchasing account):
• 1 x m4.xlarge Linux, default tenancy instance in Availability Zone us-east-1a

A customer is running the following On-Demand Instance in linked account B:
• 1 x m4.xlarge Linux, default tenancy instance in Availability Zone us-east-1b

You purchase the following Reserved Instances in account A:
• 1 x m4.xlarge Linux, default tenancy Reserved Instance in Availability Zone us-east-1

A customer also purchases the following Reserved Instances in linked account C:
• 1 x m4.xlarge Linux, default tenancy Reserved Instances in Availability Zone us-east-1a

The Reserved Instance benefits are applied in the following way:

• The discount of the m4.xlarge Reserved Instance owned by account C is applied to the m4.xlarge usage in account A.
• The discount of the m4.xlarge Reserved Instance owned by account A is applied to the m4.xlarge usage in account B.
• If the Reserved Instance owned by account A was first applied to the usage in account A, the Reserved Instance owned by account C remains unused and usage in account B is charged at On-Demand rates.

For more information, see Reserved Instances in the Billing and Cost Management Report.

How You Are Billed

All Reserved Instances provide you with a discount compared to On-Demand pricing. With Reserved Instances, you pay for the entire term regardless of actual use. You can choose to pay for your Reserved
Instance upfront, partially upfront, or monthly, depending on the payment option (p. 159) specified for the Reserved Instance.

When Reserved Instances expire, you are charged On-Demand rates for EC2 instance usage. You can set up a billing alert to warn you when your bill exceeds a threshold you define. For more information, see Monitoring Charges with Alerts and Notifications in the AWS Billing and Cost Management User Guide.

Note
The AWS Free Tier is available for new AWS accounts. If you are using the AWS Free Tier to run Amazon EC2 instances, and you purchase a Reserved Instance, you are charged under standard pricing guidelines. For information, see AWS Free Tier.

Topics
- Usage Billing (p. 165)
- Viewing Your Bill (p. 165)
- Reserved Instances and Consolidated Billing (p. 166)
- Reserved Instance Discount Pricing Tiers (p. 166)

Usage Billing
Reserved Instances are billed for every clock-hour during the term that you select, regardless of whether an instance is running or not. A clock-hour is defined as the standard 24-hour clock that runs from midnight to midnight, and is divided into 24 hours (for example, 1:00:00 to 1:59:59 is one clock-hour). For more information about instance states, see Instance Lifecycle (p. 261).

Reserved Instance billing benefits only apply to one instance-hour per clock-hour. An instance-hour begins when an instance is started and continues for 60 minutes or until the instance is stopped or terminated— whichever happens first.

A new instance-hour begins after an instance has run for 60 continuous minutes, or if an instance is stopped and then started. Rebooting an instance does not reset the running instance-hour.

For example, if an instance is stopped and then started again during a clock-hour and continues running for two more clock-hours, the first instance-hour (before the restart) is charged at the discounted Reserved Instance rate. The next instance-hour (after restart) is charged at the On-Demand rate and the next two instance-hours are charged at the discounted Reserved Instance rate.

Cost Explorer on the Billing and Cost Management console enables you to analyze the savings against running On-Demand Instances. The Reserved Instances FAQ includes an example of a list value calculation.

If you close your AWS account, On-Demand billing for your resources stops. However, if you have any Reserved Instances in your account, you continue to receive a bill for these until they expire.

Viewing Your Bill
You can find out about the charges and fees to your account by viewing the AWS Billing and Cost Management console.

- The Dashboard displays a spend summary for your account.
- On the Bills page, under Details expand the Elastic Compute Cloud section and the region to get billing information about your Reserved Instances.

You can view the charges online, or you can download a CSV file.
Reserved Instances and Consolidated Billing

The pricing benefits of Reserved Instances are shared when the purchasing account is part of a set of accounts billed under one consolidated billing payer account. The instance usage across all member accounts is aggregated in the payer account every month. This is typically useful for companies in which there are different functional teams or groups; then, the normal Reserved Instance logic is applied to calculate the bill. For more information, see Consolidated Billing and AWS Organizations in the AWS Organizations User Guide.

If you close the payer account, any member accounts that benefit from Reserved Instances billing discounts continue to benefit from the discount until the Reserved Instances expire, or until the member account is removed.

Reserved Instance Discount Pricing Tiers

If your account qualifies for a discount pricing tier, it automatically receives discounts on upfront and instance usage fees for Reserved Instance purchases that you make within that tier level from that point on. To qualify for a discount, the list value of your Reserved Instances in the region must be $500,000 USD or more.

The following rules apply:

- Pricing tiers and related discounts apply only to purchases of Amazon EC2 Standard Reserved Instances.
- Pricing tiers do not apply to Reserved Instances for Windows with SQL Server Standard or Windows with SQL Server Web.
- Pricing tier discounts only apply to purchases made from AWS. They do not apply to purchases of third-party Reserved Instances.
- Discount pricing tiers are currently not applicable to Convertible Reserved Instance purchases.

Calculating Reserved Instance Pricing Discounts

You can determine the pricing tier for your account by calculating the list value for all of your Reserved Instances in a region. Multiply the hourly recurring price for each reservation by the total number of hours for the term and add the undiscounted upfront price (also known as the fixed price) listed on the Reserved Instances pricing page at the time of purchase. Because the list value is based on undiscounted (public) pricing, it is not affected if you qualify for a volume discount or if the price drops after you buy your Reserved Instances.

\[
\text{List value} = \text{fixed price} + (\text{undiscounted recurring hourly price} \times \text{hours in term})
\]

For example, for a 1-year Partial Upfront t2.small Reserved Instance, assume the upfront price is $60.00 and the hourly rate is $0.007. This provides a list value of $121.32.
To view the fixed price values for Reserved Instances using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Reserved Instances.
3. Display the Upfront Price column by choosing Show/Hide Columns (the gear-shaped icon) in the top right corner.

To view the fixed price values for Reserved Instances using the command line

- `describe-reserved-instances` (AWS CLI)
- `Get-EC2ReservedInstance` (AWS Tools for Windows PowerShell)
- `DescribeReservedInstances` (Amazon EC2 API)

Buying with a Discount Tier

When you buy Reserved Instances, Amazon EC2 automatically applies any discounts to the part of your purchase that falls within a discount pricing tier. You don't need to do anything differently, and you can buy Reserved Instances using any of the Amazon EC2 tools. For more information, see Buying Reserved Instances (p. 168).

After the list value of your active Reserved Instances in a region crosses into a discount pricing tier, any future purchase of Reserved Instances in that region are charged at a discounted rate. If a single purchase of Reserved Instances in a region takes you over the threshold of a discount tier, then the portion of the purchase that is above the price threshold is charged at the discounted rate. For more information about the temporary Reserved Instance IDs that are created during the purchase process, see Crossing Pricing Tiers (p. 167).

If your list value falls below the price point for that discount pricing tier—for example, if some of your Reserved Instances expire—future purchases of Reserved Instances in the region are not discounted. However, you continue to get the discount applied against any Reserved Instances that were originally purchased within the discount pricing tier.

When you buy Reserved Instances, one of four possible scenarios occurs:

- **No discount**—Your purchase within a region is still below the discount threshold.
- **Partial discount**—Your purchase within a region crosses the threshold of the first discount tier. No discount is applied to one or more reservations and the discounted rate is applied to the remaining reservations.
- **Full discount**—Your entire purchase within a region falls within one discount tier and is discounted appropriately.
- **Two discount rates**—Your purchase within a region crosses from a lower discount tier to a higher discount tier. You are charged two different rates: one or more reservations at the lower discounted rate, and the remaining reservations at the higher discounted rate.

Crossing Pricing Tiers

If your purchase crosses into a discounted pricing tier, you see multiple entries for that purchase: one for that part of the purchase charged at the regular price, and another for that part of the purchase charged at the applicable discounted rate.

The Reserved Instance service generates several Reserved Instance IDs because your purchase crossed from an undiscounted tier, or from one discounted tier to another. There is an ID for each set of
reservations in a tier. Consequently, the ID returned by your purchase CLI command or API action is different from the actual ID of the new Reserved Instances.

**Consolidated Billing for Pricing Tiers**

A consolidated billing account aggregates the list value of member accounts within a region. When the list value of all active Reserved Instances for the consolidated billing account reaches a discount pricing tier, any Reserved Instances purchased after this point by any member of the consolidated billing account are charged at the discounted rate (as long as the list value for that consolidated account stays above the discount pricing tier threshold). For more information, see Reserved Instances and Consolidated Billing (p. 166).

**Buying Reserved Instances**

To purchase a Reserved Instance, search for *Reserved Instance offerings* from AWS and third-party sellers, adjusting your search parameters until you find the exact match that you're looking for.

When you search for Reserved Instances to buy, you receive a quote on the cost of the returned offerings. When you proceed with the purchase, AWS automatically places a limit price on the purchase price. The total cost of your Reserved Instances won't exceed the amount that you were quoted.

If the price rises or changes for any reason, the purchase is not completed. If, at the time of purchase, there are offerings similar to your choice but at a lower price, AWS sells you the offerings at the lower price.

Before you confirm your purchase, review the details of the Reserved Instance that you plan to buy, and make sure that all the parameters are accurate. After you purchase a Reserved Instance (either from a third-party seller in the Reserved Instance Marketplace or from AWS), you cannot cancel your purchase.

**Note**

To purchase and modify Reserved Instances, ensure that your IAM user account has the appropriate permissions, such as the ability to describe Availability Zones. For information, see Example Policies for Working With the AWS CLI or an AWS SDK and Example Policies for Working in the Amazon EC2 Console.

**Topics**

- Buying Standard Reserved Instances (p. 168)
- Buying Convertible Reserved Instances (p. 171)
- Viewing Your Reserved Instances (p. 173)
- Using Your Reserved Instances (p. 173)

**Buying Standard Reserved Instances**

You can buy Standard Reserved Instances in a specific Availability Zone and get a capacity reservation. Alternatively, you can forego the capacity reservation and purchase a regional Standard Reserved Instance.

**To buy Standard Reserved Instances using the Amazon EC2 console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Reserved Instances, Purchase Reserved Instances.
3. For Offering Class, choose Standard to display Standard Reserved Instances.
4. To purchase a capacity reservation, choose Only show offerings that reserve capacity in the top-right corner of the purchase screen. To purchase a regional Reserved Instance, leave the check box unselected.
5. Select other configurations as needed and choose Search.
Note
To purchase a Standard Reserved Instance from the Reserved Instance Marketplace, look for 3rd Party in the Seller column in the search results. The Term column displays non-standard terms.

6. Select the Reserved Instances to purchase, enter the quantity, and choose Add to Cart.
7. To see a summary of the Reserved Instances that you selected, choose View Cart.
8. To complete the order, choose Purchase.

Note
If, at the time of purchase, there are offerings similar to your choice but with a lower price, AWS sells you the offerings at the lower price.

9. The status of your purchase is listed in the State column. When your order is complete, the State value changes from payment-pending to active. When the Reserved Instance is active, it is ready to use.

Note
If the status goes to retired, AWS may not have received your payment.

To buy a Standard Reserved Instance using the AWS CLI

1. Find available Reserved Instances using the describe-reserved-instances-offerings command. Specify standard for the --offering-class parameter to return only Standard Reserved Instances. You can apply additional parameters to narrow your results; for example, if you want to purchase a regional t2.large Reserved Instance with a default tenancy for Linux/UNIX for a 1-year term only:

```
aws ec2 describe-reserved-instances-offerings --instance-type t2.large --offering-class standard --product-description "Linux/UNIX" --instance-tenancy default --filters Name=duration,Values=31536000 Name=scope,Values=Region
```

```json
{
 "ReservedInstancesOfferings": [
 {
 "OfferingClass": "standard",
 "OfferingType": "No Upfront",
 "ProductDescription": "Linux/UNIX",
 "InstanceTenancy": "default",
 "PricingDetails": [],
 "UsagePrice": 0.0,
 "RecurringCharges": [
 {
 "Amount": 0.0672,
 "Frequency": "Hourly"
 }
],
 "Marketplace": false,
 "CurrencyCode": "USD",
 "FixedPrice": 0.0,
 "Duration": 31536000,
 "Scope": "Region",
 "ReservedInstancesOfferingId": "bec624df-a8cc-4aad-a72f-4f8abc34caf2",
 "InstanceType": "t2.large"
 },
 {
 "OfferingClass": "standard",
 "OfferingType": "Partial Upfront",
 "ProductDescription": "Linux/UNIX",
 "InstanceTenancy": "default",
```
To find Reserved Instances on the Reserved Instance Marketplace only, use the marketplace filter and do not specify a duration in the request, as the term may be shorter than a 1– or 3-year term.

```bash
aws ec2 describe-reserved-instances-offerings --instance-type t2.large --offering-class standard --product-description "Linux/UNIX" --instance-tenancy default --filters Name=marketplace,Values=true
```

When you find a Reserved Instance that meets your needs, take note of the ReservedInstancesOfferingId.

2. Use the `purchase-reserved-instances-offering` command to buy your Reserved Instance. You must specify the Reserved Instance offering ID you obtained the previous step and you must specify the number of instances for the reservation.

```bash
aws ec2 purchase-reserved-instances-offering --reserved-instances-offering-id ec06327e-dd07-46ee-9398-75b5fexample --instance-count 1
```

3. Use the `describe-reserved-instances` command to get the status of your Reserved Instance.

```bash
aws ec2 describe-reserved-instances
```

Alternatively, use the following AWS Tools for Windows PowerShell commands:

- `Get-EC2ReservedInstancesOffering`
- `New-EC2ReservedInstance`
### Get-EC2ReservedInstance

If you already have a running instance that matches the specifications of the Reserved Instance, the billing benefit is immediately applied. You do not have to restart your instances. If you do not have a suitable running instance, launch an instance and ensure that you match the same criteria that you specified for your Reserved Instance. For more information, see Using Your Reserved Instances (p. 173).

For examples of how Reserved Instances are applied to your running instances, see How Reserved Instances Are Applied (p. 160).

### Buying Convertible Reserved Instances

You can buy Convertible Reserved Instances in a specific Availability Zone and get a capacity reservation. Alternatively, you can forego the capacity reservation and purchase a regional Convertible Reserved Instance.

#### To buy Convertible Reserved Instances using the Amazon EC2 console

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Reserved Instances, Purchase Reserved Instances**.
3. For **Offering Class**, choose **Convertible** to display Convertible Reserved Instances.
4. To purchase a capacity reservation, choose **Only show offerings that reserve capacity** in the top-right corner of the purchase screen. To purchase a regional Reserved Instance, leave the check box unselected.
5. Select other configurations as needed and choose **Search**.
6. Select the Convertible Reserved Instances to purchase, enter the quantity, and choose **Add to Cart**.
7. To see a summary of your selection, choose **View Cart**.
8. To complete the order, choose **Purchase**.

**Note**
If, at the time of purchase, there are offerings similar to your choice but with a lower price, AWS sells you the offerings at the lower price.

9. The status of your purchase is listed in the **State** column. When your order is complete, the **State** value changes from **payment-pending** to **active**. When the Reserved Instance is active, it is ready to use.

**Note**
If the status goes to **retired**, AWS may not have received your payment.

#### To buy a Convertible Reserved Instance using the AWS CLI

1. Find available Reserved Instances using the `describe-reserved-instances-offerings` command. Specify `convertible` for the `--offering-class` parameter to return only Convertible Reserved Instances. You can apply additional parameters to narrow your results; for example, if you want to purchase a regional `t2.large` Reserved Instance with a default tenancy for **Linux/UNIX**:

```bash
aws ec2 describe-reserved-instances-offerings --instance-type t2.large --offering-class convertible --product-description "Linux/UNIX" --instance-tenancy default --filters Name=scope,Values=Region
```

```json
{
 "ReservedInstancesOfferings": [
 {
 "OfferingClass": "convertible",
```
When you find a Reserved Instance that meets your needs, take note of the `ReservedInstancesOfferingId`.

2. Use the `purchase-reserved-instances-offering` command to buy your Reserved Instance. You must specify the Reserved Instance offering ID you obtained the previous step and you must specify the number of instances for the reservation.
3. Use the `describe-reserved-instances` command to get the status of your Reserved Instance.

```bash
aws ec2 describe-reserved-instances
```

Alternatively, use the following AWS Tools for Windows PowerShell commands:

- `Get-EC2ReservedInstancesOffering`
- `New-EC2ReservedInstance`
- `Get-EC2ReservedInstance`

If you already have a running instance that matches the specifications of the Reserved Instance, the billing benefit is immediately applied. You do not have to restart your instances. If you do not have a suitable running instance, launch an instance and ensure that you match the same criteria that you specified for your Reserved Instance. For more information, see Using Your Reserved Instances (p. 173).

For examples of how Reserved Instances are applied to your running instances, see How Reserved Instances Are Applied (p. 160).

**Viewing Your Reserved Instances**

You can view the Reserved Instances you've purchased using the Amazon EC2 console, or a command line tool.

**To view your Reserved Instances in the console**

1. Open the Amazon EC2 console at `https://console.aws.amazon.com/ec2/`.
2. In the navigation pane, choose `Reserved Instances`.
3. Your active and retired Reserved Instances are listed. The `State` column displays the state.
4. If you are a seller in the Reserved Instance Marketplace the `My Listings` tab displays the status of a reservation that's listed in the Reserved Instance Marketplace (p. 174). For more information, see Reserved Instance Listing States (p. 179).

**To view your Reserved Instances using the command line**

- `describe-reserved-instances` (AWS CLI)
- `Get-EC2ReservedInstance` (Tools for Windows PowerShell)

**Using Your Reserved Instances**

Reserved Instances are automatically applied to running On-Demand Instances provided that the specifications match. If you have no running On-Demand Instances that match the specifications of your Reserved Instance, the Reserved Instance is unused until you launch an instance with the required specifications.

If you're launching an instance to take advantage of the billing benefit of a Reserved Instance, ensure that you specify the following information during launch:

- **Platform**: You must choose an Amazon Machine Image (AMI) that matches the platform (product description) of your Reserved Instance. For example, if you specified `Linux/UNIX`, you can launch an instance from an Amazon Linux AMI.
• Instance type: Specify the same instance type as your Reserved Instance; for example, t2.large.

• Availability Zone: If you purchased a Reserved Instance for a specific Availability Zone, you must launch the instance into the same Availability Zone. If you purchased a regional Reserved Instance, you can launch your instance into any Availability Zone.

• Tenancy: The tenancy of your instance must match the tenancy of the Reserved Instance; for example, dedicated or shared. For more information, see Dedicated Instances (p. 256).

For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265). For examples of how Reserved Instances are applied to your running instances, see How Reserved Instances Are Applied (p. 160).

You can use Amazon EC2 Auto Scaling or other AWS services to launch the On-Demand Instances that use your Reserved Instance benefits. For more information, see the Amazon EC2 Auto Scaling User Guide.

Selling on the Reserved Instance Marketplace

The Reserved Instance Marketplace is a platform that supports the sale of third-party and AWS customers’ unused Standard Reserved Instances, which vary in term lengths and pricing options. For example, you may want to sell Reserved Instances after moving instances to a new AWS region, changing to a new instance type, ending projects before the term expiration, when your business needs change, or if you have unneeded capacity.

If you want to sell your unused Reserved Instances on the Reserved Instance Marketplace, you must meet certain eligibility criteria.

Topics
• Selling in the Reserved Instance Marketplace (p. 174)
• Buying in the Reserved Instance Marketplace (p. 180)

Selling in the Reserved Instance Marketplace

As soon as you list your Reserved Instances in the Reserved Instance Marketplace, they are available for potential buyers to find. All Reserved Instances are grouped according to the duration of the term remaining and the hourly price.

To fulfill a buyer's request, AWS first sells the Reserved Instance with the lowest upfront price in the specified grouping. Then, we sell the Reserved Instance with the next lowest price, until the buyer's entire order is fulfilled. AWS then processes the transactions and transfers ownership of the Reserved Instances to the buyer.

You own your Reserved Instance until it's sold. After the sale, you've given up the capacity reservation and the discounted recurring fees. If you continue to use your instance, AWS charges you the On-Demand price starting from the time that your Reserved Instance was sold.

Topics
• Restrictions and Limitations (p. 175)
• Registering as a Seller (p. 175)
• Pricing Your Reserved Instances (p. 177)
• Listing Your Reserved Instances (p. 178)
• Lifecycle of a Listing (p. 179)
• After Your Reserved Instance Is Sold (p. 180)
Restrictions and Limitations

Before you can sell your unused reservations, you must register as a seller in the Reserved Instance Marketplace. For information, see Registering as a Seller (p. 175).

The following limitations and restrictions apply when selling Reserved Instances:

- Only Amazon EC2 Standard Reserved Instances can be sold in the Reserved Instance Marketplace. Convertible Reserved Instances cannot be sold.
- The minimum price allowed in the Reserved Instance Marketplace is $0.00.
- Reserved Instances can be sold only after AWS has received the upfront payment and the reservation has been active (you’ve owned it) for at least 30 days. In addition, there must be at least one month remaining in the term of the Standard Reserved Instance you are listing.
- You cannot modify your listing in the Reserved Instance Marketplace directly. However, you can change your listing by first canceling it and then creating another listing with new parameters. For information, see Pricing Your Reserved Instances (p. 177). You can also modify your Reserved Instances before listing them. For information, see Modifying Reserved Instances (p. 180).
- AWS charges a service fee of 12 percent of the total upfront price of each Standard Reserved Instance you sell in the Reserved Instance Marketplace. The upfront price is the price the seller is charging for the Standard Reserved Instance.
- Only Amazon EC2 Standard Reserved Instances can be sold in the Reserved Instance Marketplace. Other AWS Reserved Instances, such as Amazon RDS and Amazon ElastiCache Reserved Instances cannot be sold in the Reserved Instance Marketplace.

Registering as a Seller

To sell in the Reserved Instance Marketplace, you must first register as a seller. During registration, you provide the following information:

- **Bank information**—AWS must have your bank information in order to disburse funds collected when you sell your reservations. The bank you specify must have a US address. For more information, see Bank Accounts (p. 175).
- **Tax information**—Sellers who have 50 or more transactions or who plan to sell $20,000 or more in Standard Reserved Instances have to provide additional information about their business for tax reasons. For information, see Tax Information (p. 176).

After AWS receives your completed seller registration, you receive an email confirming your registration and informing you that you can get started selling in the Reserved Instance Marketplace.

Topics

- Bank Accounts (p. 175)
- Tax Information (p. 176)
- Sharing Information with the Buyer (p. 177)
- Getting Paid (p. 177)

Bank Accounts

AWS must have your bank information in order to disburse funds collected when you sell your Reserved Instance. The bank you specify must have a US address.

To register a default bank account for disbursements

1. Open the Reserved Instance Marketplace Seller Registration page and sign in using your AWS credentials.
2. On the Manage Bank Account page, provide the following information about the bank through to receive payment:

- Bank account holder name
- Routing number
- Account number
- Bank account type

**Note**
If you are using a corporate bank account, you are prompted to send the information about the bank account via fax (1-206-765-3424).

After registration, the bank account provided is set as the default, pending verification with the bank. It can take up to two weeks to verify a new bank account, during which time you can't receive disbursements. For an established account, it usually takes about two days for disbursements to complete.

**To change the default bank account for disbursement**

1. On the Reserved Instance Marketplace Seller Registration page, sign in with the account that you used when you registered.
2. On the Manage Bank Account page, add a new bank account or modify the default bank account as needed.

**Tax Information**

Your sale of Reserved Instances might be subject to a transactional tax, such as sales tax or value-added tax. You should check with your business's tax, legal, finance, or accounting department to determine if transaction-based taxes are applicable. You are responsible for collecting and sending the transaction-based taxes to the appropriate tax authority.

As part of the seller registration process, you have the option of completing a tax interview. We encourage you to complete this process if any of the following apply:

- You want AWS to generate a Form 1099-K.
- You anticipate having either 50 or more transactions or $20,000 or more in sales of Reserved Instances in a calendar year. A transaction can involve one or more Reserved Instances. If you choose to skip this step during registration, and later you reach transaction 49, you get a message saying, "You have reached the transaction limit for pre-tax. Please complete the tax interview in the Seller Registration Portal." After the tax interview is completed, the account limit is automatically increased.
- You are a non-US seller. In this case, you must electronically complete Form W-8BEN.

For more information about IRS requirements and the Form 1099-K, see the IRS website.

The tax information you enter as part of the tax interview differs depending on whether your business is a US or non-US legal entity. As you fill out the tax interview, keep in mind the following:

- Information provided by AWS, including the information in this topic, does not constitute tax, legal, or other professional advice. To find out how the IRS reporting requirements might affect your business, or if you have other questions, please contact your tax, legal, or other professional advisor.
- To fulfill the IRS reporting requirements as efficiently as possible, answer all questions and enter all information requested during the interview.
- Check your answers. Avoid misspellings or entering incorrect tax identification numbers. They can result in an invalidated tax form.
After you complete the tax registration process, AWS files Form 1099-K. You will receive a copy of it through the US mail on or before January 31 in the year following the year that your tax account reaches the threshold levels. For example, if your tax account reaches the threshold in 2016, you receive the form in 2017.

Sharing Information with the Buyer

When you sell in the Reserved Instance Marketplace, AWS shares your company's legal name on the buyer's statement in accordance with US regulations. In addition, if the buyer calls AWS Support because the buyer needs to contact you for an invoice or for some other tax-related reason, AWS may need to provide the buyer with your email address so that the buyer can contact you directly.

For similar reasons, the buyer's ZIP code and country information are provided to the seller in the disbursement report. As a seller, you might need this information to accompany any necessary transaction taxes that you remit to the government (such as sales tax and value-added tax).

AWS cannot offer tax advice, but if your tax specialist determines that you need specific additional information, contact AWS Support.

Getting Paid

As soon as AWS receives funds from the buyer, a message is sent to the registered owner account email for the sold Reserved Instance.

AWS sends an Automated Clearing House (ACH) wire transfer to your specified bank account. Typically, this transfer occurs between one to three days after your Reserved Instance has been sold. You can view the state of this disbursement by viewing your Reserved Instance disbursement report. Disbursements take place once a day. Keep in mind that you can't receive disbursements until AWS has received verification from your bank. This period can take up to two weeks.

The Reserved Instance that you sold continues to appear when you describe your Reserved Instances.

You receive a cash disbursement for your Reserved Instances through a wire transfer directly into your bank account. AWS charges a service fee of 12 percent of the total upfront price of each Reserved Instance you sell in the Reserved Instance Marketplace.

Pricing Your Reserved Instances

The upfront fee is the only fee that you can specify for the Reserved Instance that you're selling. The upfront fee is the one-time fee that the buyer pays when they purchase a Reserved Instance. You cannot specify the usage fee or the recurring fee; The buyer pays the same usage or recurring fees that were set when the reservations were originally purchased.

The following are important limits to note:

- **You can sell up to $50,000 in Reserved Instances per year.** To sell more, complete the Request to Raise Sales Limit on Amazon EC2 Reserved Instances form.
- **The minimum price is $0.** The minimum allowed price in the Reserved Instance Marketplace is $0.00.

You cannot modify your listing directly. However, you can change your listing by first canceling it and then creating another listing with new parameters.

You can cancel your listing at any time, as long as it's in the active state. You cannot cancel the listing if it's already matched or being processed for a sale. If some of the instances in your listing are matched and you cancel the listing, only the remaining unmatched instances are removed from the listing.

Setting a Pricing Schedule

Because the value of Reserved Instances decreases over time, by default, AWS can set prices to decrease in equal increments month over month. However, you can set different upfront prices based on when your reservation sells.
For example, if your Reserved Instance has nine months of its term remaining, you can specify the amount that you would accept if a customer were to purchase that Reserved Instance with nine months remaining. You could set another price with five months remaining, and yet another price with one month remaining.

Listing Your Reserved Instances

As a registered seller, you can choose to sell one or more of your Reserved Instances. You can choose to sell all of them in one listing or in portions. In addition, you can list Reserved Instances with any configuration of instance type, platform, and scope.

If you cancel your listing and a portion of that listing has already been sold, the cancellation is not effective on the portion that has been sold. Only the unsold portion of the listing is no longer available in the Reserved Instance Marketplace.

Topics

• Listing Your Reserved Instance Using the AWS Management Console (p. 178)
• Listing Your Reserved Instances Using the AWS CLI or Amazon EC2 API (p. 178)
• Reserved Instance Listing States (p. 179)

Listing Your Reserved Instance Using the AWS Management Console

To list a Reserved Instance in the Reserved Instance Marketplace using the AWS Management Console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Reserved Instances.
3. Select the Reserved Instances to list, and choose Sell Reserved Instances.
4. On the Configure Your Reserved Instance Listing page, set the number of instances to sell and the upfront price for the remaining term in the relevant columns. See how the value of your reservation changes over the remainder of the term by selecting the arrow next to the Months Remaining column.
5. If you are an advanced user and you want to customize the pricing, you can enter different values for the subsequent months. To return to the default linear price drop, choose Reset.
6. Choose Continue when you are finished configuring your listing.
7. Confirm the details of your listing, on the Confirm Your Reserved Instance Listing page and if you're satisfied, choose List Reserved Instance.

To view your listings in the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Reserved Instances.
3. Select the Reserved Instance that you've listed and choose My Listings.

Listing Your Reserved Instances Using the AWS CLI or Amazon EC2 API

To list a Reserved Instance in the Reserved Instance Marketplace using the AWS CLI

1. Get a list of your Reserved Instances by using the describe-reserved-instances command.
2. Note the ID of the Reserved Instance you want to list and call create-reserved-instances-listing. You must specify the ID of the Reserved Instance, the number of instances, and the pricing schedule.
3. To view your listing, use the describe-reserved-instances-listings command.
To cancel your listing, use the `cancel-reserved-instances-listings` command.

**To list a Reserved Instance in the Reserved Instance Marketplace using the Amazon EC2 API**

- `DescribeReservedInstances`
- `CreateReservedInstancesListing`
- `DescribeReservedInstancesListings`
- `CancelReservedInstancesListing`

**Reserved Instance Listing States**

**Listing State** on the My Listings tab of the Reserved Instances page displays the current status of your listings:

The information displayed by **Listing State** is about the status of your listing in the Reserved Instance Marketplace. It is different from the status information that is displayed by the **State** column in the Reserved Instances page. This **State** information is about your reservation.

- **active**—The listing is available for purchase.
- **canceled**—The listing is canceled and isn't available for purchase in the Reserved Instance Marketplace.
- **closed**—The Reserved Instance is not listed. A Reserved Instance might be closed because the sale of the listing was completed.

**Lifecycle of a Listing**

When all the instances in your listing are matched and sold, the My Listings tab shows that the **Total instance count** matches the count listed under **Sold**. Also, there are no **Available** instances left for your listing, and its **Status** is closed.

When only a portion of your listing is sold, AWS retires the Reserved Instances in the listing and creates the number of Reserved Instances equal to the Reserved Instances remaining in the count. So, the listing ID and the listing that it represents, which now has fewer reservations for sale, is still active.

Any future sales of Reserved Instances in this listing are processed this way. When all the Reserved Instances in the listing are sold, AWS marks the listing as closed.

For example, you create a listing `Reserved Instances listing ID 5ec28771-05ff-4b9b-aa31-9e57dexample` with a listing count of 5.

The My Listings tab in the Reserved Instance console page displays the listing this way:

`Reserved Instance listing ID 5ec28771-05ff-4b9b-aa31-9e57dexample`

- Total reservation count = 5
- Sold = 0
- Available = 5
- Status = active

A buyer purchases two of the reservations, which leaves a count of three reservations still available for sale. Because of this partial sale, AWS creates a new reservation with a count of three to represent the remaining reservations that are still for sale.

This is how your listing looks in the My Listings tab:

`Reserved Instance listing ID 5ec28771-05ff-4b9b-aa31-9e57dexample`
• Total reservation count = 5
• Sold = 2
• Available = 3
• Status = active

If you cancel your listing and a portion of that listing has already sold, the cancelation is not effective on the portion that has been sold. Only the unsold portion of the listing is no longer available in the Reserved Instance Marketplace.

**After Your Reserved Instance Is Sold**

When your Reserved Instance is sold, AWS sends you an email notification. Each day that there is any kind of activity, you receive one email notification capturing all the activities of the day. For example, you may create or sell a listing, or AWS may send funds to your account.

To track the status of a Reserved Instance listing in the console, choose **Reserved Instance, My Listings**. The **My Listings** tab contains the **Listing State** value. It also contains information about the term, listing price, and a breakdown of how many instances in the listing are available, pending, sold, and canceled. You can also use the `describe-reserved-instances-listings` command with the appropriate filter to obtain information about your listings.

**Buying in the Reserved Instance Marketplace**

You can purchase Reserved Instances from third-party sellers who own Reserved Instances that they no longer need from the Reserved Instance Marketplace. You can do this using the Amazon EC2 console or a command line tool. The process is similar to purchasing Reserved Instances from AWS. For more information, see **Buying Reserved Instances** (p. 168).

There are a few differences between Reserved Instances purchased in the Reserved Instance Marketplace and Reserved Instances purchased directly from AWS:

• **Term**—Reserved Instances that you purchase from third-party sellers have less than a full standard term remaining. Full standard terms from AWS run for one year or three years.
• **Upfront price**—Third-party Reserved Instances can be sold at different upfront prices. The usage or recurring fees remain the same as the fees set when the Reserved Instances were originally purchased from AWS.
• **Types of Reserved Instances**—Only Amazon EC2 Standard Reserved Instances can be purchased from the Reserved Instance Marketplace. Convertible Reserved Instances, Amazon RDS and Amazon ElastiCache Reserved Instances are not available for purchase on the Reserved Instance Marketplace.

Basic information about you is shared with the seller, for example, your ZIP code and country information.

This information enables sellers to calculate any necessary transaction taxes that they have to remit to the government (such as sales tax or value-added tax) and is provided as a disbursement report. In rare circumstances, AWS might have to provide the seller with your email address, so that they can contact you regarding questions related to the sale (for example, tax questions).

For similar reasons, AWS shares the legal entity name of the seller on the buyer's purchase invoice. If you need additional information about the seller for tax or related reasons, contact **AWS Support**.

**Modifying Reserved Instances**

When your computing needs change, you can modify your Standard or Convertible Reserved Instances and continue to benefit from the billing benefit. You can modify the Availability Zone, scope, network
platform, or instance size (within the same instance type) of your Reserved Instance. To modify a
Reserved Instance, you specify the Reserved Instances that you want to modify, and you specify one or
more target configurations.

Note
You can also exchange a Convertible Reserved Instance for another Convertible Reserved
Instance with a different configuration, including instance family. For more information, see
Exchanging Convertible Reserved Instances (p. 187).

You can modify all or a subset of your Reserved Instances. You can separate your original Reserved
Instances into two or more new Reserved Instances. For example, if you have a reservation for 10
instances in us-east-1a and decide to move 5 instances to us-east-1b, the modification request
results in two new reservations: one for 5 instances in us-east-1a and the other for 5 instances in us-
east-1b.

You can also merge two or more Reserved Instances into a single Reserved Instance. For example,
if you have four t2.small Reserved Instances of one instance each, you can merge them to create
one t2.large Reserved Instance. For more information, see Modifying the Instance Size of Your
Reservations (p. 183).

After modification, the benefit of the Reserved Instances is applied only to instances that match the new
parameters. For example, if you change the Availability Zone of a reservation, the capacity reservation
and pricing benefits are automatically applied to instance usage in the new Availability Zone. Instances
that no longer match the new parameters are charged at the On-Demand rate unless your account has
other applicable reservations.

If your modification request succeeds:

• The modified reservation becomes effective immediately and the pricing benefit is applied to the new
  instances beginning at the hour of the modification request. For example, if you successfully modify
  your reservations at 9:15PM, the pricing benefit transfers to your new instance at 9:00PM. (You can get
  the effective date of the modified Reserved Instances by using the DescribeReservedInstances API
  action or the describe-reserved-instances command (AWS CLI).
• The original reservation is retired. Its end date is the start date of the new reservation, and the end
date of the new reservation is the same as the end date of the original Reserved Instance. If you
modify a three-year reservation that had 16 months left in its term, the resulting modified reservation
is a 16-month reservation with the same end date as the original one.
• The modified reservation lists a $0 fixed price and not the fixed price of the original reservation.

Note
The fixed price of the modified reservation does not affect the discount pricing tier calculations
applied to your account, which are based on the fixed price of the original reservation.

If your modification request fails, your Reserved Instances maintain their original configuration, and are
immediately available for another modification request.

There is no fee for modification, and you do not receive any new bills or invoices.

You can modify your reservations as frequently as you like, but you cannot change or cancel a pending
modification request after you submit it. After the modification has completed successfully, you can
submit another modification request to roll back any changes you made, if needed.

Topics
• Requirements and Restrictions for Modification (p. 182)
• Modifying the Instance Size of Your Reservations (p. 183)
• Submitting Modification Requests (p. 185)
• Troubleshooting Modification Requests (p. 186)
### Requirements and Restrictions for Modification

Not all attributes of a Reserved Instance can be modified, and restrictions may apply.

<table>
<thead>
<tr>
<th>Modifiable attribute</th>
<th>Supported platforms</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change <strong>Availability Zones</strong> within the same region</td>
<td>All Windows and Linux</td>
<td>-</td>
</tr>
<tr>
<td>Change the <strong>scope</strong> from Availability Zone to Region and vice versa</td>
<td>All Windows and Linux</td>
<td>If you change the scope from Availability Zone to region, you lose the capacity reservation benefit. If you change the scope from region to Availability Zone, you lose Availability Zone flexibility and instance size flexibility (if applicable). For more information, see How Reserved Instances Are Applied (p. 160).</td>
</tr>
<tr>
<td>Change the <strong>network platform</strong> between EC2-VPC and EC2-Classic</td>
<td>All Windows and Linux</td>
<td>Only applicable if your account supports EC2-Classic.</td>
</tr>
<tr>
<td>Change the <strong>instance size</strong> within the same instance type</td>
<td>Supported on Linux, except for RedHat and SUSE Linux due to licensing differences. For more information about RedHat and SUSE pricing, see Amazon EC2 Reserved Instance Pricing. Not supported on Windows.</td>
<td>Some instance types are not supported, because there are no other sizes available. For more information, see Modifying the Instance Size of Your Reservations (p. 183).</td>
</tr>
</tbody>
</table>

Amazon EC2 processes your modification request if there is sufficient capacity for your target configuration (if applicable), and if the following conditions are met.

The Reserved Instances that you want to modify must be:

- Active
- Not pending another modification request
- Not listed in the Reserved Instance Marketplace

**Note**

To modify your Reserved Instances that are listed in the Reserved Instance Marketplace, cancel the listing, request modification, and then list them again.

- Terminating in the same hour (but not minutes or seconds)
- Already purchased by you (you cannot modify an offering before or at the same time that you purchase it)

Your modification request must meet the following conditions:

- There must be a match between the instance size footprint of the active reservation and the target configuration. For more information, see Modifying the Instance Size of Your Reservations (p. 183).
• The input Reserved Instances must be either Standard Reserved Instances or Convertible Reserved Instances, but not a combination of both.

**Modifying the Instance Size of Your Reservations**

If you have Amazon Linux reservations in an instance type with multiple sizes, you can adjust the instance size of your Reserved Instances.

**Note**

Instances are grouped by family (based on storage, or CPU capacity); type (designed for specific use cases); and size. For example, the c4 instance type is in the Compute optimized instance family and is available in multiple sizes. While c3 instances are in the same family, you can't modify c4 instances into c3 instances because they have different hardware specifications. For more information, see Amazon EC2 Instance Types.

The following instances cannot be modified because there are no other sizes available.

- t1.micro
- cc2.8xlarge
- cr1.8xlarge
- hs1.8xlarge

Each Reserved Instance has an *instance size footprint*, which is determined by the normalization factor of the instance type and the number of instances in the reservation. When you modify a Reserved Instance, the footprint of the target configuration must match that of the original configuration, otherwise the modification request is not processed.

The normalization factor is based on instance size within the instance type (for example, m1.xlarge instances within the m1 instance type). This is only meaningful within the same instance type. Instance types cannot be modified from one type to another. In the Amazon EC2 console, this is measured in units. The following table illustrates the normalization factor that applies within an instance type.

<table>
<thead>
<tr>
<th>Instance size</th>
<th>Normalization factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>nano</td>
<td>0.25</td>
</tr>
<tr>
<td>micro</td>
<td>0.5</td>
</tr>
<tr>
<td>small</td>
<td>1</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
</tr>
<tr>
<td>large</td>
<td>4</td>
</tr>
<tr>
<td>xlarge</td>
<td>8</td>
</tr>
<tr>
<td>2xlarge</td>
<td>16</td>
</tr>
<tr>
<td>4xlarge</td>
<td>32</td>
</tr>
<tr>
<td>8xlarge</td>
<td>64</td>
</tr>
<tr>
<td>9xlarge</td>
<td>72</td>
</tr>
<tr>
<td>10xlarge</td>
<td>80</td>
</tr>
<tr>
<td>12xlarge</td>
<td>96</td>
</tr>
</tbody>
</table>
To calculate the instance size footprint of a Reserved Instance, multiply the number of instances by the normalization factor. For example, an `t2.medium` has a normalization factor of 2 so a reservation for four `t2.medium` instances has a footprint of 8 units.

You can allocate your reservations into different instance sizes across the same instance type as long as the instance size footprint of your reservation remains the same. For example, you can divide a reservation for one `t2.large` (1 x 4) instance into four `t2.small` (4 x 1) instances, or you can combine a reservation for four `t2.small` instances into one `t2.large` instance. However, you cannot change your reservation for two `t2.small` (2 x 1) instances into one `t2.large` (1 x 4) instance. This is because the existing instance size footprint of your current reservation is smaller than the proposed reservation.

In the following example, you have a reservation with two `t2.micro` instances (giving you a footprint of 1) and a reservation with one `t2.small` instance (giving you a footprint of 1). You merge both reservations to a single reservation with one `t2.medium` instance—the combined instance size footprint of the two original reservations equals the footprint of the modified reservation.

You can also modify a reservation to divide it into two or more reservations. In the following example, you have a reservation with a `t2.medium` instance. You divide the reservation into a reservation with two `t2.nano` instances and a reservation with three `t2.micro` instances.
Submitting Modification Requests

You can modify your Reserved Instances using the Amazon EC2 console, the Amazon EC2 API, or a command line tool.

Amazon EC2 Console

Before you modify your Reserved Instances, ensure that you have read the applicable restrictions (p. 182). If you are modifying instance size, ensure that you've calculated the total instance size footprint (p. 183) of the reservations that you want to modify and ensure that it matches the total instance size footprint of your target configurations.

To modify your Reserved Instances using the AWS Management Console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the Reserved Instances page, select one or more Reserved Instances to modify, and choose Modify Reserved Instances.
   
   Note
   
   If your Reserved Instances are not in the active state or cannot be modified, Modify Reserved Instances is disabled.

3. The first entry in the modification table displays attributes of selected Reserved Instances, and at least one target configuration beneath it. The Units column displays the total instance size footprint. Choose Add for each new configuration to add. Modify the attributes as needed for each configuration, and choose Continue when you're done:

   • **Network**: Choose whether the Reserved Instance applies to EC2-Classic or EC2-VPC. This option is only available if your account supports EC2-Classic.
   
   • **Scope**: Choose whether the Reserved Instance applies to an Availability Zone or to the whole region.
   
   • **Availability Zone**: Choose the required Availability Zone. Not applicable for regional Reserved Instances.
   
   • **Instance Type**: Select the required instance type. Only available for supported platforms. For more information, see Requirements and Restrictions for Modification (p. 182).
   
   • **Count**: Specify the number of instances to be covered by the reservation.
Note

If your combined target configurations are larger or smaller than the instance size footprint of your original Reserved Instances, the allocated total in the Units column displays in red.

4. To confirm your modification choices when you finish specifying your target configurations, choose Submit Modifications. If you change your mind at any point, choose Cancel to exit the wizard.

You can determine the status of your modification request by looking at the State column in the Reserved Instances screen. The following table illustrates the possible State values.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active (pending modification)</td>
<td>Transition state for original Reserved Instances.</td>
</tr>
<tr>
<td>retired (pending modification)</td>
<td>Transition state for original Reserved Instances while new Reserved Instances are being created.</td>
</tr>
<tr>
<td>retired</td>
<td>Reserved Instances successfully modified and replaced.</td>
</tr>
<tr>
<td>active</td>
<td>New Reserved Instances created from a successful modification request.</td>
</tr>
<tr>
<td></td>
<td>-Or-</td>
</tr>
<tr>
<td></td>
<td>Original Reserved Instances after a failed modification request.</td>
</tr>
</tbody>
</table>

Amazon EC2 API or Command Line Tool

To modify your Reserved Instances, you can use one of the following:

- modify-reserved-instances (AWS CLI)
- Edit-EC2ReservedInstance (AWS Tools for Windows PowerShell)
- ModifyReservedInstances (Amazon EC2 API)

To get the status of your modification, use one of the following:

- describe-reserved-instances-modifications (AWS CLI)
- Get-EC2ReservedInstancesModifications (AWS Tools for Windows PowerShell)
- DescribeReservedInstancesModifications (Amazon EC2 API)

The state returned shows your request as processing, fulfilled, or failed.

Troubleshooting Modification Requests

If the target configuration settings that you requested were unique, you receive a message that your request is being processed. At this point, Amazon EC2 has only determined that the parameters of your modification request are valid. Your modification request can still fail during processing due to unavailable capacity.

In some situations, you might get a message indicating incomplete or failed modification requests instead of a confirmation. Use the information in such messages as a starting point for resubmitting
another modification request. Ensure that you have read the applicable restrictions (p. 182) before submitting the request.

**Not all selected Reserved Instances can be processed for modification**

Amazon EC2 identifies and lists the Reserved Instances that cannot be modified. If you receive a message like this, go to the Reserved Instances page in the Amazon EC2 console and check the information for the Reserved Instances.

**Error in processing your modification request**

You submitted one or more Reserved Instances for modification and none of your requests can be processed. Depending on the number of reservations you are modifying, you can get different versions of the message.

Amazon EC2 displays the reasons why your request cannot be processed. For example, you might have specified the same target configuration—a combination of Availability Zone and platform—for one or more subsets of the Reserved Instances you are modifying. Try submitting the modification requests again, but ensure that the instance details of the reservations match, and that the target configurations for all subsets being modified are unique.

**Exchanging Convertible Reserved Instances**

You can exchange one or more Convertible Reserved Instances for another Convertible Reserved Instance with a different configuration, including instance family. There are no limits to how many times you perform an exchange, as long as the target Convertible Reserved Instance is of an equal or higher value than the Convertible Reserved Instances that you are exchanging.

When you exchange your Convertible Reserved Instance, the number of instances for your current reservation is exchanged for a number of instances that cover the equal or higher value of the configuration of the target Convertible Reserved Instance. Amazon EC2 calculates the number of Reserved Instances that you can receive as a result of the exchange.

**Topics**

- Requirements for Exchanging Convertible Reserved Instances (p. 187)
- Calculating Convertible Reserved Instances Exchanges (p. 188)
- Merging Convertible Reserved Instances (p. 188)
- Exchanging a Portion of a Convertible Reserved Instance (p. 189)
- Submitting Exchange Requests (p. 190)

**Requirements for Exchanging Convertible Reserved Instances**

If the following conditions are met, Amazon EC2 processes your exchange request. Your Convertible Reserved Instance must be:

- Active
- Not pending a previous exchange request

The following rules apply:

- Convertible Reserved Instances can only be exchanged for other Convertible Reserved Instances currently offered by AWS.
- You can exchange one or more Convertible Reserved Instances at a time for one Convertible Reserved Instance only.
• To exchange a portion of a Convertible Reserved Instance, you can modify it into two or more reservations, and then exchange one or more of the reservations for a new Convertible Reserved Instance. For more information, see Exchanging a Portion of a Convertible Reserved Instance (p. 189). For more information about modifying your Reserved Instances, see Modifying Reserved Instances (p. 180).

• A Convertible Reserved Instance can only be exchanged for one with same or higher payment option. For example, a Partial Upfront Convertible Reserved Instance can be exchanged for another Partial Upfront Convertible Reserved Instance or an All Upfront Convertible Reserved Instance—but it cannot be exchanged for a No Upfront Convertible Reserved Instance.

• If you exchange multiple Convertible Reserved Instances that have different expiration dates, the expiration date for the new Convertible Reserved Instance is the date that's furthest in the future.

• If you exchange a single Convertible Reserved Instance, it must have the same term (1-year or 3-years) as the new Convertible Reserved Instance. If you merge multiple Convertible Reserved Instances with different term lengths, the new Convertible Reserved Instance has a 3-year term. For more information, see Merging Convertible Reserved Instances (p. 188).

Calculating Convertible Reserved Instances Exchanges

Exchanging Convertible Reserved Instances is free. However, you may be required to pay a true-up cost, which is a prorated upfront cost of the difference between the Convertible Reserved Instances that you had and the Convertible Reserved Instances that you receive from the exchange.

Each Convertible Reserved Instance has a list value. This list value is compared to the list value of the Convertible Reserved Instances that you want in order to determine how many instance reservations you can receive from the exchange.

For example: You have 1 x $35-list value Convertible Reserved Instance that you want to exchange for a new instance type with a list value of $10.

\[
\frac{35}{10} = 3.5
\]

You can exchange your Convertible Reserved Instance for three $10 Convertible Reserved Instances. It's not possible to purchase half reservations; therefore you must purchase an additional Convertible Reserved Instance covers the remainder:

\[
3.5 = 3 \text{ whole Convertible Reserved Instances} + 1 \text{ additional Convertible Reserved Instance.}
\]

The fourth Convertible Reserved Instance has the same end date as the other three. If you are exchanging Partial or All Upfront Convertible Reserved Instances, you pay the true-up cost for the fourth reservation. If the remaining upfront cost of your Convertible ReservedInstances is $500, and the target reservation would normally cost $600 on a prorated basis, you are charged $100.

\[
\text{\$600 prorated upfront cost of new reservations} - \text{\$500 remaining upfront cost of original reservations} = \text{\$100 difference.}
\]

Merging Convertible Reserved Instances

If you merge two or more Convertible Reserved Instances, the term of the new Convertible Reserved Instance must be the same as the original Convertible Reserved Instances, or the highest of the original Convertible Reserved Instances. The expiration date for the new Convertible Reserved Instance is the expiration date that's furthest in the future.

For example, you have the following Convertible Reserved Instances in your account:
<table>
<thead>
<tr>
<th>Reserved Instance ID</th>
<th>Term</th>
<th>Expiration date</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaa1111</td>
<td>1-year</td>
<td>2018-12-31</td>
</tr>
<tr>
<td>bbbb2222</td>
<td>1-year</td>
<td>2018-07-31</td>
</tr>
<tr>
<td>cccc3333</td>
<td>3-year</td>
<td>2018-06-30</td>
</tr>
<tr>
<td>dddd4444</td>
<td>3-year</td>
<td>2019-12-31</td>
</tr>
</tbody>
</table>

- You can merge aaaa1111 and bbbb2222 and exchange them for a 1-year Convertible Reserved Instance. You cannot exchange them for a 3-year Convertible Reserved Instance. The expiration date of the new Convertible Reserved Instance is 2018-12-31.
- You can merge bbbb2222 and cccc3333 and exchange them for a 3-year Convertible Reserved Instance. You cannot exchange them for a 1-year Convertible Reserved Instance. The expiration date of the new Convertible Reserved Instance is 2018-07-31.
- You can merge cccc3333 and dddd4444 and exchange them for a 3-year Convertible Reserved Instance. You cannot exchange them for a 1-year Convertible Reserved Instance. The expiration date of the new Convertible Reserved Instance is 2019-12-31.

### Exchanging a Portion of a Convertible Reserved Instance

You can use the modification process to split your Convertible Reserved Instance into smaller reservations, and then exchange one or more of the new reservations for a new Convertible Reserved Instance. The following examples demonstrate how you can do this.

**Example Example: Convertible Reserved Instance with multiple instances**

In this example, you have a `t2.micro` Convertible Reserved Instance with four instances in the reservation. To exchange two `t2.micro` instances for an `m4.xlarge` instance:

1. Modify the `t2.micro` Convertible Reserved Instance by splitting it into two `t2.micro` Convertible Reserved Instances with two instances each.
2. Exchange one of the new `t2.micro` Convertible Reserved Instances for an `m4.xlarge` Convertible Reserved Instance.

**Example Example: Convertible Reserved Instance with a single instance**

In this example, you have a `t2.large` Convertible Reserved Instance. To change it to a smaller `t2.medium` instance and a `m3.medium` instance:

1. Modify the `t2.large` Convertible Reserved Instance by splitting it into two `t2.medium` Convertible Reserved Instances. A single `t2.large` instance has the same instance size footprint...
as two t2.medium instances. For more information, see Modifying the Instance Size of Your Reservations (p. 183).

2. Exchange one of the new t2.medium Convertible Reserved Instances for an m3.medium Convertible Reserved Instance.

For more information, see Modifying the Instance Size of Your Reservations (p. 183) and Submitting Exchange Requests (p. 190).

Not all Reserved Instances can be modified. Ensure that you read the applicable restrictions (p. 182).

Submitting Exchange Requests

You can exchange your Convertible Reserved Instances using the Amazon EC2 console or a command line tool.

Topics

- Exchanging a Convertible Reserved Instance Using the Console (p. 190)
- Exchanging a Convertible Reserved Instance Using the Command Line Interface (p. 190)

Exchanging a Convertible Reserved Instance Using the Console

You can search for Convertible Reserved Instances offerings and select your new configuration from the choices provided.

To exchange Convertible Reserved Instances using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Reserved Instances, select the Convertible Reserved Instances to exchange, and choose Actions, Exchange Reserved Instance.
3. Select the attributes of the desired configuration using the drop-down menus, and choose Find Offering.
4. Select a new Convertible Reserved Instance The Instance Count column displays the number of Reserved Instances that you receive for the exchange. When you have selected a Convertible Reserved Instance that meets your needs, choose Exchange.

The Reserved Instances that were exchanged are retired, and the new Reserved Instances are displayed in the Amazon EC2 console. This process can take a few minutes to propagate.

Exchanging a Convertible Reserved Instance Using the Command Line Interface

To exchange a Convertible Reserved Instance, first find a target Convertible Reserved Instance that meets your needs:
Scheduled Reserved Instances

Scheduled Reserved Instances (Scheduled Instances) enable you to purchase capacity reservations that recur on a daily, weekly, or monthly basis, with a specified start time and duration, for a one-year term. You reserve the capacity in advance, so that you know it is available when you need it. You pay for the time that the instances are scheduled, even if you do not use them.

Scheduled Instances are a good choice for workloads that do not run continuously, but do run on a regular schedule. For example, you can use Scheduled Instances for an application that runs during business hours or for batch processing that runs at the end of the week.

If you require a capacity reservation on a continuous basis, Reserved Instances might meet your needs and decrease costs. For more information, see Reserved Instances (p. 157). If you are flexible about when your instances run, Spot Instances might meet your needs and decrease costs. For more information, see Spot Instances (p. 195).

Contents
- How Scheduled Instances Work (p. 191)
- Service-Linked Roles for Scheduled Instances (p. 192)
- Purchasing a Scheduled Instance (p. 192)
- Launching a Scheduled Instance (p. 193)
- Scheduled Instance Limits (p. 194)

How Scheduled Instances Work

Amazon EC2 sets aside pools of EC2 instances in each Availability Zone for use as Scheduled Instances. Each pool supports a specific combination of instance type, operating system, and network (EC2-Classic or EC2-VPC).

To get started, you must search for an available schedule. You can search across multiple pools or a single pool. After you locate a suitable schedule, purchase it.

You must launch your Scheduled Instances during their scheduled time periods, using a launch configuration that matches the following attributes of the schedule that you purchased: instance type, Availability Zone, network, and platform. When you do so, Amazon EC2 launches EC2 instances on your behalf, based on the specified launch specification. Amazon EC2 must ensure that the EC2 instances have terminated by the end of the current scheduled time period so that the capacity is available for any other Scheduled Instances it is reserved for. Therefore, Amazon EC2 terminates the EC2 instances three minutes before the end of the current scheduled time period.
You can't stop or reboot Scheduled Instances, but you can terminate them manually as needed. If you terminate a Scheduled Instance before its current scheduled time period ends, you can launch it again after a few minutes. Otherwise, you must wait until the next scheduled time period.

The following diagram illustrates the lifecycle of a Scheduled Instance.

```
check availability
|
|
|
purchase
|
|
|
term begins
|
|
|
scheduled time begins
|
|
|
|
|
|
|
|
|
scheduled time ends

EC2 terminates instances

launch Scheduled instance

EC2 launches instances

terminate

|
```

**Service-Linked Roles for Scheduled Instances**

Amazon EC2 creates a service-linked role when you purchase a Scheduled Instance. A service-linked role includes all the permissions that Amazon EC2 requires to call other AWS services on your behalf. For more information, see Using Service-Linked Roles in the IAM User Guide.

Amazon EC2 uses the service-linked role named `AWSServiceRoleForEC2ScheduledInstances` to complete the following actions:

- `ec2:TerminateInstances` - Terminate Scheduled Instances after their schedules complete
- `ec2:CreateTags` - Add system tags to Scheduled Instances

If you purchased Scheduled Instances before October 2017, when Amazon EC2 began supporting this service-linked role, Amazon EC2 created the `AWSServiceRoleForEC2ScheduledInstances` role in your AWS account. For more information, see A New Role Appeared in My Account in the IAM User Guide.

If you no longer need to use Scheduled Instances, we recommend that you delete the `AWSServiceRoleForEC2ScheduledInstances` role. After this role is deleted from your account, Amazon EC2 will create the role again if you purchase Scheduled Instances.

**Purchasing a Scheduled Instance**

To purchase a Scheduled Instance, you can use the Scheduled Reserved Instances Reservation Wizard.

**Warning**

After you purchase a Scheduled Instance, you can't cancel, modify, or resell your purchase.

**To purchase a Scheduled Instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under INSTANCES, choose Scheduled Instances.
3. Choose Purchase Scheduled Instances.
4. On the Find available schedules page, do the following:

   a. Under Create a schedule, select the starting date from Starting on, the schedule recurrence (daily, weekly, or monthly) from Recurring, and the minimum duration from for duration.
that the console ensures that you specify a value for the minimum duration that meets the minimum required utilization for your Scheduled Instance (1,200 hours per year).

b. Under **Instance details**, select the operating system and network from **Platform**. To narrow the results, select one or more instance types from **Instance type** or one or more Availability Zones from **Availability Zone**.

c. Choose **Find schedules**.
d. Under **Available schedules**, select one or more schedules. For each schedule that you select, set the quantity of instances and choose **Add to Cart**.
e. Your cart is displayed at the bottom of the page. When you are finished adding and removing schedules from your cart, choose **Review and purchase**.

5. On the **Review and purchase** page, verify your selections and edit them as needed. When you are finished, choose **Purchase**.

**To purchase a Scheduled Instance using the AWS CLI**

Use the `describe-scheduled-instance-availability` command to list the available schedules that meet your needs, and then use the `purchase-scheduled-instances` command to complete the purchase.

**Launching a Scheduled Instance**

After you purchase a Scheduled Instance, it is available for you to launch during its scheduled time periods.

**To launch a Scheduled Instance using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, under **INSTANCES**, choose **Scheduled Instances**.
3. Select the Scheduled Instance and choose **Launch Scheduled Instances**.
4. On the **Configure** page, complete the launch specification for your Scheduled Instances and choose **Review**.

   **Important**
   
   The launch specification must match the instance type, Availability Zone, network, and platform of the schedule that you purchased.

5. On the **Review** page, verify the launch configuration and modify it as needed. When you are finished, choose **Launch**.

**To launch a Scheduled Instance using the AWS CLI**

Use the `describe-scheduled-instances` command to list your Scheduled Instances, and then use the `run-scheduled-instances` command to launch each Scheduled Instance during its scheduled time periods.
Scheduled Instance Limits

Scheduled Instances are subject to the following limits:

- The following are the only supported instance types: C3, C4, C5, M4, and R3.
- The required term is 365 days (one year).
- The minimum required utilization is 1,200 hours per year.
- You can purchase a Scheduled Instance up to three months in advance.
Spot Instances

Spot Instances enable you to request unused EC2 instances, which can lower your Amazon EC2 costs significantly. The hourly price for a Spot Instance (of each instance type in each Availability Zone) is set by Amazon EC2, and adjusted gradually based on the long-term supply of and demand for Spot Instances. Your Spot Instance runs whenever capacity is available and the maximum price per hour for your request exceeds the Spot price.

Spot Instances are a cost-effective choice if you can be flexible about when your applications run and if your applications can be interrupted. For example, Spot Instances are well-suited for data analysis, batch jobs, background processing, and optional tasks. For more information, see Amazon EC2 Spot Instances.

The key differences between Spot Instances and On-Demand Instances are that Spot Instances can only be launched immediately if there is available capacity, the hourly price for Spot Instances varies based on demand, and Amazon EC2 can interrupt an individual Spot Instance as the price for, or availability of, Spot Instances changes. One strategy is to launch a core group of On-Demand Instances to maintain a minimum level of guaranteed compute resources for your applications, and supplement them with Spot Instances when the opportunity arises.

Another strategy is to launch Spot Instances with a required duration (also known as Spot blocks), which are not interrupted due to changes in the Spot price. For more information, see Specifying a Duration for Your Spot Instances (p. 205).

Concepts

Before you get started with Spot Instances, you should be familiar with the following concepts:

- **Spot Instance pool** – A set of unused EC2 instances with the same instance type, operating system, Availability Zone, and network platform (EC2-Classic or EC2-VPC).
- **Spot price** – The current price of a Spot Instance per hour.
- **Spot Instance request** – Provides the maximum price per hour that you are willing to pay for a Spot Instance. If you don’t specify a maximum price, the default maximum price is the On-Demand price. When the maximum price per hour for your request exceeds the Spot price, Amazon EC2 fulfills your request if capacity is available. A Spot Instance request is either one-time or persistent. Amazon EC2 automatically resubmits a persistent Spot request after the Spot Instance associated with the request is terminated. Your Spot Instance request can optionally specify a duration for the Spot Instances.
- **Spot Fleet** – A set of Spot Instances that is launched based on criteria that you specify. The Spot Fleet selects the Spot Instance pools that meet your needs and launches Spot Instances to meet the target capacity for the fleet. By default, Spot Fleets are set to maintain target capacity by launching replacement instances after Spot Instances in the fleet are terminated. You can submit a Spot Fleet as a one-time request, which does not persist after the instances have been terminated.
- **Spot Instance interruption** – Amazon EC2 terminates, stops, or hibernates your Spot Instance when the Spot price exceeds the maximum price for your request or capacity is no longer available. Amazon EC2 provides a Spot Instance interruption notice, which gives the instance a two-minute warning before it is interrupted.
How to Get Started

The first thing you need to do is get set up to use Amazon EC2. It can also be helpful to have experience launching On-Demand Instances before launching Spot Instances.

Get up and running

- Setting Up with Amazon EC2 (p. 12)
- Getting Started with Amazon EC2 Windows Instances (p. 19)

Spot basics

- How Spot Instances Work (p. 197)
- How Spot Fleet Works (p. 199)

Working with Spot Instances

- Preparing for Interruptions (p. 241)
- Creating a Spot Instance Request (p. 207)
- Getting Request Status Information (p. 237)

Working with Spot Fleets

- Spot Fleet Prerequisites (p. 214)
- Creating a Spot Fleet Request (p. 217)

Related Services

You can provision Spot Instances directly using Amazon EC2. You can also provision Spot Instances using other services in AWS. For more information, see the following documentation.

Amazon EC2 Auto Scaling and Spot Instances

You can create launch configurations with the maximum price you are willing to pay, so that Amazon EC2 Auto Scaling can launch Spot Instances. For more information, see Launching Spot Instances in Your Auto Scaling Group in the Amazon EC2 Auto Scaling User Guide.

Amazon EMR and Spot Instances

There are scenarios where it can be useful to run Spot Instances in an Amazon EMR cluster. For more information, see Spot Instances and When Should You Use Spot Instances in the Amazon EMR Management Guide.

AWS CloudFormation Templates

AWS CloudFormation enables you to create and manage a collection of AWS resources using a template in JSON format. AWS CloudFormation templates can include the maximum price you are willing to pay. For more information, see EC2 Spot Instance Updates - Auto Scaling and CloudFormation Integration.

AWS SDK for Java

You can use the Java programming language to manage your Spot Instances. For more information, see Tutorial: Amazon EC2 Spot Instances and Tutorial: Advanced Amazon EC2 Spot Request Management.
AWS SDK for .NET

You can use the .NET programming environment to manage your Spot Instances. For more information, see Tutorial: Amazon EC2 Spot instances.

**Pricing**

You pay the Spot price for Spot Instances, which is set by Amazon EC2 and adjusted gradually based on the long-term supply of and demand for Spot Instances. If the maximum price for your request exceeds the current Spot price, Amazon EC2 fulfills your request if capacity is available. Your Spot Instances run until you terminate them, capacity is no longer available, or the Spot price exceeds your maximum price.

Spot Instances with a predefined duration use a fixed hourly price that remains in effect for the Spot Instance while it runs.

**View Prices**

To view the current (updated every five minutes) lowest Spot price per region and instance type, see the Spot Instances Pricing page.

To view the Spot price history for the past three months, use the Amazon EC2 console or the describe-spot-price-history command (AWS CLI). For more information, see Spot Instance Pricing History (p. 203).

We independently map Availability Zones to codes for each AWS account. Therefore, you can get different results for the same Availability Zone code (for example, us-west-2a) between different accounts.

**View Billing**

To review your bill, go to your AWS Account Activity page. Your bill contains links to usage reports that provide details about your bill. For more information, see AWS Account Billing.

If you have questions concerning AWS billing, accounts, and events, contact AWS Support.

**How Spot Instances Work**

To use Spot Instances, create a Spot Instance request or a Spot Fleet request. The request can include the maximum price that you are willing to pay per hour per instance (the default is the On-Demand price), and other constraints such as the instance type and Availability Zone. If your maximum price exceeds the current Spot price for the specified instance, and capacity is available, your request is fulfilled immediately. Otherwise, the request is fulfilled whenever the maximum price exceeds the Spot price and the capacity is available. Spot Instances run until you terminate them or until Amazon EC2 must interrupt them (known as a Spot Instance interruption).

When you use Spot Instances, you must be prepared for interruptions. Amazon EC2 can interrupt your Spot Instance when the Spot price exceeds your maximum price, when the demand for Spot Instances rises, or when the supply of Spot Instances decreases. When Amazon EC2 interrupts a Spot Instance, it provides a Spot Instance interruption notice, which gives the instance a two-minute warning before Amazon EC2 interrupts it. You can't enable termination protection for Spot Instances. For more information, see Spot Instance Interruptions (p. 239).

You can't stop and start an Amazon EBS-backed instance if it is a Spot Instance (only the Spot service can stop and start a Spot Instance), but you can reboot or terminate a Spot Instance.

Shutting down a Spot Instance on OS-level results in the Spot Instance being terminated. It is not possible to change this behavior.
Launching Spot Instances in a Launch Group

Specify a launch group in your Spot instance request to tell Amazon EC2 to launch a set of Spot instances only if it can launch them all. In addition, if the Spot service must terminate one of the instances in a launch group (for example, if the Spot price exceeds your maximum price), it must terminate them all. However, if you terminate one or more of the instances in a launch group, Amazon EC2 does not terminate the remaining instances in the launch group.

Although this option can be useful, adding this constraint can lower the chances that your Spot Instance request is fulfilled. It can also increase the chance that your Spot Instances will be terminated.

If you create another successful Spot instance request that specifies the same (existing) launch group as an earlier successful request, then the new instances are added to the launch group. Subsequently, if an instance in this launch group is terminated, all instances in the launch group are terminated, which includes instances launched by the first and second requests.

Launching Spot Instances in an Availability Zone Group

Specify an Availability Zone group in your Spot instance request to tell the Spot service to launch a set of Spot Instances in the same Availability Zone. Amazon EC2 need not interrupt all instances in an Availability Zone group at the same time. If Amazon EC2 must interrupt one of the instances in an Availability Zone group, the others remain running.

Although this option can be useful, adding this constraint can lower the chances that your Spot Instance request is fulfilled.

If you specify an Availability Zone group but don't specify an Availability Zone in the Spot instance request, the result depends on whether you specified the EC2-Classic network, a default VPC, or a nondefault VPC. For more information, see Supported Platforms (p. 551).

EC2-Classic

Amazon EC2 finds the lowest-priced Availability Zone in the region and launches your Spot Instances in that Availability Zone if the lowest price for the group is higher than the current Spot price in that Availability Zone. Amazon EC2 waits until there is enough capacity to launch your Spot Instances together, as long as the Spot price remains lower than the lowest price for the group.

Default VPC

Amazon EC2 uses the Availability Zone for the specified subnet, or if you don't specify a subnet, it selects an Availability Zone and its default subnet, but it might not be the lowest-priced Availability Zone. If you deleted the default subnet for an Availability Zone, then you must specify a different subnet.

Nondefault VPC

Amazon EC2 uses the Availability Zone for the specified subnet.

Launching Spot Instances in a VPC

To take advantage of the features of EC2-VPC when you use Spot Instances, specify in your Spot request that your Spot Instances are to be launched in a VPC. You specify a subnet for your Spot Instances the same way that you specify a subnet for your On-Demand Instances.
The process for making a Spot Instance request that launches Spot Instances in a VPC is the same as the process for making a Spot Instance request that launches Spot Instances in EC2-Classic—except for the following differences:

- You should use the default maximum price (the On-Demand price), or base your maximum price on the Spot price history of Spot Instances in a VPC.
- [Default VPC] If you want your Spot Instance launched in a specific low-priced Availability Zone, you must specify the corresponding subnet in your Spot Instance request. If you do not specify a subnet, Amazon EC2 selects one for you, and the Availability Zone for this subnet might not have the lowest Spot price.
- [Nondefault VPC] You must specify the subnet for your Spot Instance.

**How Spot Fleet Works**

A *Spot Fleet* is a collection, or fleet, of Spot Instances. The Spot Fleet attempts to launch the number of Spot Instances that are required to meet the target capacity that you specified in the Spot Fleet request. The Spot Fleet also attempts to maintain its target capacity fleet if your Spot Instances are interrupted due to a change in Spot prices or available capacity.

A *Spot Instance pool* is a set of unused EC2 instances with the same instance type, operating system, Availability Zone, and network platform (EC2-Classic or EC2-VPC). When you make a Spot Fleet request, you can include multiple launch specifications, that vary by instance type, AMI, Availability Zone, or subnet. The Spot Fleet selects the Spot Instance pools that are used to fulfill the request, based on the launch specifications included in your Spot Fleet request, and the configuration of the Spot Fleet request. The Spot Instances come from the selected pools.

**Contents**

- Spot Fleet Allocation Strategy (p. 199)
- Spot Price Overrides (p. 200)
- Spot Fleet Instance Weighting (p. 200)
- Walkthrough: Using Spot Fleet with Instance Weighting (p. 201)

**Spot Fleet Allocation Strategy**

The allocation strategy for your Spot Fleet determines how it fulfills your Spot Fleet request from the possible Spot Instance pools represented by its launch specifications. The following are the allocation strategies that you can specify in your Spot Fleet request:

- `lowestPrice`
  
  The Spot Instances come from the pool with the lowest price. This is the default strategy.

- `diversified`
  
  The Spot Instances are distributed across all pools.

**Choosing an Allocation Strategy**

You can optimize your Spot Fleets based on your use case.

If your fleet is small or runs for a short time, the probability that your Spot Instances will be interrupted is low, even with all the instances in a single Spot Instance pool. Therefore, the `lowestPrice` strategy is likely to meet your needs while providing the lowest cost.

If your fleet is large or runs for a long time, you can improve the availability of your fleet by distributing the Spot Instances across multiple pools. For example, if your Spot Fleet request specifies 10 pools and
a target capacity of 100 instances, the Spot Fleet launches 10 Spot Instances in each pool. If the Spot price for one pool exceeds your maximum price for this pool, only 10% of your fleet is affected. Using this strategy also makes your fleet less sensitive to increases in the Spot price in any one pool over time.

With the diversified strategy, the Spot Fleet does not launch Spot Instances into any pools with a Spot price that is equal to or higher than the On-Demand price.

**Maintaining Target Capacity**

After Spot Instances are terminated due to a change in the Spot price or available capacity of a Spot Instance pool, the Spot Fleet launches replacement Spot Instances. If the allocation strategy is `lowestPrice`, the Spot Fleet launches replacement instances in the pool where the Spot price is currently the lowest. If the allocation strategy is `diversified`, the Spot Fleet distributes the replacement Spot Instances across the remaining pools.

**Spot Price Overrides**

Each Spot Fleet request can include a global maximum price, or use the default (the On-Demand price). Spot Fleet uses this as the default maximum price for each of its launch specifications.

You can optionally specify a maximum price in one or more launch specifications. This price is specific to the launch specification. If a launch specification includes a specific price, the Spot Fleet uses this maximum price, overriding the global maximum price. Any other launch specifications that do not include a specific maximum price still use the global maximum price.

**Spot Fleet Instance Weighting**

When you request a fleet of Spot Instances, you can define the capacity units that each instance type would contribute to your application's performance, and adjust your maximum price for each Spot Instance pool accordingly using instance weighting.

By default, the price that you specify is per instance hour. When you use the instance weighting feature, the price that you specify is per unit hour. You can calculate your price per unit hour by dividing your price for an instance type by the number of units that it represents. Spot Fleet calculates the number of Spot Instances to launch by dividing the target capacity by the instance weight. If the result isn't an integer, the Spot Fleet rounds it up to the next integer, so that the size of your fleet is not below its target capacity. Spot Fleet can select any pool that you specify in your launch specification, even if the capacity of the instances launched exceeds the requested target capacity.

The following table includes examples of calculations to determine the price per unit for a Spot Fleet request with a target capacity of 10.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Instance weight</th>
<th>Price per instance hour</th>
<th>Price per unit hour</th>
<th>Number of instances launched</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3.xlarge</td>
<td>2</td>
<td>$0.05</td>
<td>.025 (.05 divided by 2)</td>
<td>5 (10 divided by 2)</td>
</tr>
<tr>
<td>r3.8xlarge</td>
<td>8</td>
<td>$0.10</td>
<td>.0125 (.10 divided by 8)</td>
<td>2 (10 divided by 8, result rounded up)</td>
</tr>
</tbody>
</table>

Use Spot Fleet instance weighting as follows to provision the target capacity you want in the pools with the lowest price per unit at the time of fulfillment:
1. Set the target capacity for your Spot Fleet either in instances (the default) or in the units of your choice, such as virtual CPUs, memory, storage, or throughput.
2. Set the price per unit.
3. For each launch configuration, specify the weight, which is the number of units that the instance type represents toward the target capacity.

**Instance Weighting Example**

Consider a Spot Fleet request with the following configuration:

- A target capacity of 24
- A launch specification with an instance type `r3.2xlarge` and a weight of 6
- A launch specification with an instance type `c3.xlarge` and a weight of 5

The weights represent the number of units that instance type represents toward the target capacity. If the first launch specification provides the lowest price per unit (price for `r3.2xlarge` per instance hour divided by 6), the Spot Fleet would launch four of these instances (24 divided by 6).

If the second launch specification provides the lowest price per unit (price for `c3.xlarge` per instance hour divided by 5), the Spot Fleet would launch five of these instances (24 divided by 5, result rounded up).

**Instance Weighting and Allocation Strategy**

Consider a Spot Fleet request with the following configuration:

- A target capacity of 30
- A launch specification with an instance type `c3.2xlarge` and a weight of 8
- A launch specification with an instance type `m3.xlarge` and a weight of 8
- A launch specification with an instance type `r3.xlarge` and a weight of 8

The Spot Fleet would launch four instances (30 divided by 8, result rounded up). With the **lowestPrice** strategy, all four instances come from the pool that provides the lowest price per unit. With the **diversified** strategy, the Spot Fleet launches 1 instance in each of the three pools, and the fourth instance in whichever of the three pools provides the lowest price per unit.

**Walkthrough: Using Spot Fleet with Instance Weighting**

This walkthrough uses a fictitious company called Example Corp to illustrate the process of requesting a Spot Fleet using instance weighting.

**Objective**

Example Corp, a pharmaceutical company, wants to leverage the computational power of Amazon EC2 for screening chemical compounds that might be used to fight cancer.

**Planning**

Example Corp first reviews **Spot Best Practices**. Next, Example Corp determines the following requirements for their Spot Fleet.

**Instance Types**

Example Corp has a compute- and memory-intensive application that performs best with at least 60 GB of memory and eight virtual CPUs (vCPUs). They want to maximize these resources for the application at the lowest possible price. Example Corp decides that any of the following EC2 instance types would meet their needs:
### Target Capacity in Units

With instance weighting, target capacity can equal a number of instances (the default) or a combination of factors such as cores (vCPUs), memory (GiBs), and storage (GBs). By considering the base for their application (60 GB of RAM and eight vCPUs) as 1 unit, Example Corp decides that 20 times this amount would meet their needs. So the company sets the target capacity of their Spot Fleet request to 20.

### Instance Weights

After determining the target capacity, Example Corp calculates instance weights. To calculate the instance weight for each instance type, they determine the units of each instance type that are required to reach the target capacity as follows:

- r3.2xlarge (61.0 GB, 8 vCPUs) = 1 unit of 20
- r3.4xlarge (122.0 GB, 16 vCPUs) = 2 units of 20
- r3.8xlarge (244.0 GB, 32 vCPUs) = 4 units of 20

Therefore, Example Corp assigns instance weights of 1, 2, and 4 to the respective launch configurations in their Spot Fleet request.

### Price Per Unit Hour

Example Corp uses the On-Demand price per instance hour as a starting point for their price. They could also use recent Spot prices, or a combination of the two. To calculate the price per unit hour, they divide their starting price per instance hour by the weight. For example:

<table>
<thead>
<tr>
<th>Instance type</th>
<th>On-Demand price</th>
<th>Instance weight</th>
<th>Price per unit hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3.2xLarge</td>
<td>$0.7</td>
<td>1</td>
<td>$0.7</td>
</tr>
<tr>
<td>r3.4xLarge</td>
<td>$1.4</td>
<td>2</td>
<td>$0.7</td>
</tr>
<tr>
<td>r3.8xLarge</td>
<td>$2.8</td>
<td>4</td>
<td>$0.7</td>
</tr>
</tbody>
</table>

Example Corp could use a global price per unit hour of $0.7 and be competitive for all three instance types. They could also use a global price per unit hour of $0.7 and a specific price per unit hour of $0.9 in the r3.8xlarge launch specification.

### Verifying Permissions

Before creating a Spot Fleet request, Example Corp verifies that it has an IAM role with the required permissions. For more information, see [Spot Fleet Prerequisites](p. 214).

### Creating the Request

Example Corp creates a file, config.json, with the following configuration for its Spot Fleet request:

```json
{
 "SpotPrice": "0.70",
```
Example Corp creates the Spot Fleet request using the following `request-spot-fleet` command:

```
aws ec2 request-spot-fleet --spot-fleet-request-config file://config.json
```

For more information, see Spot Fleet Requests (p. 213).

**Fulfillment**

The allocation strategy determines which Spot Instance pools your Spot Instances come from.

With the `lowestPrice` strategy (which is the default strategy), the Spot Instances come from the pool with the lowest price per unit at the time of fulfillment. To provide 20 units of capacity, the Spot Fleet launches either 20 `r3.2xlarge` instances (20 divided by 1), 10 `r3.4xlarge` instances (20 divided by 2), or 5 `r3.8xlarge` instances (20 divided by 4).

If Example Corp used the `diversified` strategy, the Spot Instances would come from all three pools. The Spot Fleet would launch 6 `r3.2xlarge` instances (which provide 6 units), 3 `r3.4xlarge` instances (which provide 6 units), and 2 `r3.8xlarge` instances (which provide 8 units), for a total of 20 units.

**Spot Instance Pricing History**

When you request Spot Instances, we recommend that you use the default maximum price (the On-Demand price). If you want to specify a maximum price, we recommend that you review the Spot price history before you do so. You can view the Spot price history for the last 90 days, filtering by instance type, operating system, and Availability Zone.

**To view the Spot price history using the console**

1. Open the Amazon EC2 console at `https://console.aws.amazon.com/ec2/`.
2. On the navigation pane, choose Spot Requests.
3. If you are new to Spot Instances, you see a welcome page; choose Get started, scroll to the bottom of the screen, and then choose Cancel.
4. Choose Pricing History. By default, the page displays a graph of the data for Linux t1.micro instances in all Availability Zones over the past day. Move your pointer over the graph to display the prices at specific times in the table below the graph.
5. (Optional) To review the Spot price history for a specific Availability Zone, select an Availability Zone from the list. You can also select a different product, instance type, or date range.

To view the Spot price history using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `describe-spot-price-history` (AWS CLI)
- `Get-EC2SpotPriceHistory` (AWS Tools for Windows PowerShell)

Spot Instance Requests

To use Spot Instances, you create a Spot Instance request that includes the number of instances, the instance type, the Availability Zone, and the maximum price that you are willing to pay per instance hour. If your maximum price exceeds the current Spot price, Amazon EC2 fulfills your request immediately if capacity is available. Otherwise, Amazon EC2 waits until your request can be fulfilled or until you cancel the request.

The following illustration shows how Spot requests work. Notice that the action taken for a Spot Instance interruption depends on the request type (one-time or persistent) and the interruption behavior (hibernate, stop, or terminate). If the request is a persistent request, the request is opened again after your Spot Instance is interrupted.
Spot Instance Request States

A Spot Instance request can be in one of the following states:

- **open**—The request is waiting to be fulfilled.
- **active**—The request is fulfilled and has an associated Spot Instance.
- **failed**—The request has one or more bad parameters.
- **closed**—The Spot Instance was interrupted or terminated.
- **cancelled**—You cancelled the request, or the request expired.

The following illustration represents the transitions between the request states. Notice that the transitions depend on the request type (one-time or persistent).

![Transition Diagram]

A one-time Spot Instance request remains active until Amazon EC2 launches the Spot Instance, the request expires, or you cancel the request. If the Spot price exceeds your maximum price or capacity is not available, your Spot Instance is terminated and the Spot Instance request is closed.

A persistent Spot Instance request remains active until it expires or you cancel it, even if the request is fulfilled. If the Spot price exceeds your maximum price or capacity is not available, your Spot Instance is interrupted. After your instance is interrupted, when the maximum price exceeds the Spot price or capacity becomes available again, the Spot Instance is started (if stopped), the Spot Instance is resumed (if hibernated), or the Spot Instance request is opened again and Amazon EC2 launches a new Spot Instance (if terminated).

You can track the status of your Spot Instance requests, as well as the status of the Spot Instances launched, through the status. For more information, see Spot Request Status (p. 234).

Specifying a Duration for Your Spot Instances

Amazon EC2 does not terminate Spot Instances with a specified duration (also known as Spot blocks) when the Spot price changes. This makes them ideal for jobs that take a finite time to complete, such as batch processing, encoding and rendering, modeling and analysis, and continuous integration.
You can specify a duration of 1, 2, 3, 4, 5, or 6 hours. The price that you pay depends on the specified duration. To view the current prices for a 1 hour duration or a 6 hour duration, see Spot Instance Prices. You can use these prices to estimate the cost of the 2, 3, 4, and 5 hour durations. When a request with a duration is fulfilled, the price for your Spot Instance is fixed, and this price remains in effect until the instance terminates. You are billed at this price for each hour or partial hour that the instance is running. A partial instance hour is billed as a full hour.

When you specify a duration in your Spot request, the duration period for each Spot Instance starts as soon as the instance receives its instance ID. The Spot Instance runs until you terminate it or the duration period ends. At the end of the duration period, Amazon EC2 marks the Spot Instance for termination and provides a Spot Instance termination notice, which gives the instance a two-minute warning before it terminates.

To launch Spot Instances with a specified duration using the console

Select the appropriate request type. For more information, see Creating a Spot Instance Request (p. 207).

To launch Spot Instances with a specified duration using the AWS CLI

To specify a duration for your Spot Instances, include the --block-duration-minutes option with the request-spot-instances command. For example, the following command creates a Spot request that launches Spot Instances that run for two hours:

```
aws ec2 request-spot-instances --instance-count 5 --block-duration-minutes 120 --type "one-time" --launch-specification file://specification.json
```

To retrieve the cost for Spot Instances with a specified duration using the AWS CLI

Use the describe-spot-instance-requests command to retrieve the fixed cost for your Spot Instances with a specified duration. The information is in the actualBlockHourlyPrice field.

Specifying a Tenancy for Your Spot Instances

You can run a Spot Instance on single-tenant hardware. Dedicated Spot Instances are physically isolated from instances that belong to other AWS accounts. For more information, see Dedicated Instances (p. 256) and the Amazon EC2 Dedicated Instances product page.

To run a Dedicated Spot Instance, do one of the following:

- Specify a tenancy of dedicated when you create the Spot Instance request. For more information, see Creating a Spot Instance Request (p. 207).
- Request a Spot Instance in a VPC with an instance tenancy of dedicated. For more information, see Creating a VPC with an Instance Tenancy of Dedicated (p. 258). You cannot request a Spot Instance with a tenancy of default if you request it in a VPC with an instance tenancy of dedicated.

The following instance types support Dedicated Spot Instances.

**Current Generation**

- c4.8xlarge
- c5.16xlarge
- d2.8xlarge
- i3.16xlarge
- m4.10xlarge
- m4.16xlarge
- p2.16xlarge
• r4.16xlarge
• x1.32xlarge

**Previous Generation**
• c3.8xlarge
• cc2.8xlarge
• cr1.8xlarge
• g2.8xlarge
• i2.8xlarge
• r3.8xlarge

**Service-Linked Role for Spot Instance Requests**
Amazon EC2 creates a service-linked role when you request Spot Instances. A service-linked role includes all the permissions that Amazon EC2 requires to call other AWS services on your behalf. For more information, see Using Service-Linked Roles in the IAM User Guide.

Amazon EC2 uses the service-linked role named **AWSServiceRoleForEC2Spot** to complete the following actions:

• ec2:DescribeInstances - Describe Spot Instances
• ec2:StopInstances - Stop Spot Instances
• ec2:StartInstances - Start Spot Instances

If you specify encrypted EBS snapshots for your Spot Instances and you use custom KMS keys for the encryption, you must grant the **AWSServiceRoleForEC2Spot** role access to those KMS keys so that Amazon EC2 can launch Spot Instances on your behalf. The principal is the Amazon Resource Name (ARN) of the **AWSServiceRoleForEC2Spot** role. For more information, see Using Key Policies in AWS KMS.

If you had an active Spot Instance request before October 2017, when Amazon EC2 began supporting this service-linked role, Amazon EC2 created the **AWSServiceRoleForEC2Spot** role in your AWS account. For more information, see A New Role Appeared in My Account in the IAM User Guide.

If you no longer need to use Spot Instances, we recommend that you delete the **AWSServiceRoleForEC2Spot** role. After this role is deleted from your account, Amazon EC2 will create the role again if you request Spot Instances.

**Creating a Spot Instance Request**
The process for requesting a Spot Instance is similar to the process for launching an On-Demand Instance. You can't change the parameters of your Spot request, including your maximum price, after you've submitted the request.

If you request multiple Spot Instances at one time, Amazon EC2 creates separate Spot Instance requests so that you can track the status of each request separately. For more information about tracking Spot requests, see Spot Request Status (p. 234).

**Prerequisites**
Before you begin, decide on your maximum price, how many Spot Instances you'd like, and what instance type to use. To review Spot price trends, see Spot Instance Pricing History (p. 203).

**To create a Spot Instance request using the console**
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the navigation pane, choose Spot Requests.

3. If you are new to Spot Instances, you see a welcome page; choose Get started. Otherwise, choose Request Spot Instances.

4. For Request type, the default is Request, which specifies a one-time Spot request created using a Spot Fleet. To use Spot blocks instead, choose Reserve for duration and select the number of hours for the job to complete.

If you prefer to use Request and Maintain, see Creating a Spot Fleet Request (p. 217).

5. For Target capacity, enter the number of units to request. You can choose instances or performance characteristics that are important to your application workload, such as vCPUs, memory, and storage.

6. For Requirements, do the following:

a. [Spot Fleet] (Optional) For Launch template, choose a launch template. The launch template must specify an Amazon Machine Image (AMI), as you cannot override the AMI using Spot Fleet if you specify a launch template.

b. For AMI, choose one of the basic AMIs provided by AWS, or choose Use custom AMI to specify your own AMI.

c. For Instance type(s), choose Select. Select the instance types that have the minimum hardware specifications that you need (vCPUs, memory, and storage).

d. For Network, your account supports either the EC2-Classic and EC2-VPC platforms, or the EC2-VPC platform only. To find out which platforms your account supports, see Supported Platforms (p. 551).

[Existing VPC] Select the VPC.

[New VPC] Select Create new VPC to go the Amazon VPC console. When you are done, return to the wizard and refresh the list.

[EC2-Classic] Select EC2-Classic.

e. (Optional) For Availability Zones, the default is to let AWS choose the Availability Zones for your Spot Instances. If you prefer, you can specify specific Availability Zones.

[EC2-VPC] Select one or more Availability Zones. If you have more than one subnet in an Availability Zone, select the appropriate subnet from Subnet. To add subnets, select Create new subnet to go to the Amazon VPC console. When you are done, return to the wizard and refresh the list.

[EC2-Classic] Select Select specific zone/subnet, and then select one or more Availability Zones.

f. (Optional) To add storage, specify additional instance store volumes or EBS volumes, depending on the instance type. You can also enable EBS optimization.

g. (Optional) By default, basic monitoring is enabled for your instances. To enable detailed monitoring, select Enable CloudWatch detailed monitoring.

h. (Optional) To run a Dedicated Spot Instance, choose Dedicated - run a dedicated instance for Tenancy.

i. For Security groups, select one or more security groups.

j. [EC2-VPC] To connect to your instances in a VPC, enable Auto-assign IPv4 Public IP.

k. (Optional) To connect to your instances, specify your key pair for Key pair name.

l. (Optional) To launch your Spot Instances with an IAM role, specify your IAM role for IAM instance profile.

m. (Optional) To run a start-up script, copy it to User data.

n. [Spot Fleet] To add a tag, choose Add new tag and type the key and value for the tag. Repeat for each tag.
7. For **Spot request fulfillment**, do the following:
   a. [Spot Fleet] For **Allocation strategy**, choose the strategy that meets your needs. For more information, see Spot Fleet Allocation Strategy (p. 199).
   b. [Spot Fleet] For **Maximum price**, you can use the default maximum price (the On-Demand price) or specify the maximum price you are willing to pay. Your Spot Instances are not launched if your maximum price is lower than the Spot price for the instance types that you selected.
   c. (Optional) To create a request that is valid only during a specific time period, edit **Request valid from** and **Request valid until**.
   d. [Spot Fleet] By default, we terminate your Spot Instances when the request expires. To keep them running after your request expires, clear **Terminate instances at expiration**.

8. (Optional) To register your Spot Instances with a load balancer, choose **Receive traffic from one or more load balancers** and select one or more Classic Load Balancers or target groups.

9. (Optional) To download a copy of the launch configuration for use with the AWS CLI, choose **JSON config**.

10. Choose **Launch**.

   [Spot Fleet] The request type is *fleet*. When the request is fulfilled, requests of type *instance* are added, where the state is *active* and the status is *fulfilled*.

   [Spot block] The request type is *block* and the initial state is *open*. When the request is fulfilled, the state is *active* and the status is *fulfilled*.

**To create a Spot Instance request using the AWS CLI**

Use the following **request-spot-instances** command to create a one-time request:

```bash
aws ec2 request-spot-instances --instance-count 5 --type "one-time" --launch-specification file://specification.json
```

Use the following **request-spot-instances** command to create a persistent request:

```bash
aws ec2 request-spot-instances --instance-count 5 --type "persistent" --launch-specification file://specification.json
```

For example launch specification files to use with these commands, see Spot Request Example Launch Specifications (p. 211). If you download a launch specification file from the console, you must use the **request-spot-fleet** command instead (the console specifies a Spot request using a Spot Fleet).

Amazon EC2 launches your Spot Instance when the maximum price exceeds the Spot price and capacity is available. The Spot Instance runs until it is interrupted or you terminate it yourself. Use the following **describe-spot-instance-requests** command to monitor your Spot Instance request:

```bash
aws ec2 describe-spot-instance-requests --spot-instance-request-ids sir-08b93456
```

**Finding Running Spot Instances**

Amazon EC2 launches a Spot Instance when the maximum price exceeds the Spot price and capacity is available. A Spot Instance runs until it is interrupted or you terminate it yourself. If your maximum price is exactly equal to the Spot price, there is a chance that your Spot Instance will remain running, depending on demand.

**To find running Spot Instances using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Spot Requests**.

   You can see both Spot Instance requests and Spot Fleet requests. If a Spot Instance request has been fulfilled, **Capacity** is the ID of the Spot Instance. For a Spot Fleet, **Capacity** indicates how much of the requested capacity has been fulfilled. To view the IDs of the instances in a Spot Fleet, choose the expand arrow, or select the fleet and then select the **Instances** tab.

3. Alternatively, in the navigation pane, choose **Instances**. In the top right corner, choose the **Show/Hide** icon, and then select **Lifecycle**. For each instance, **Lifecycle** is either normal, spot, or scheduled.

**To find running Spot Instances using the AWS CLI**

To enumerate your Spot Instances, use the `describe-spot-instance-requests` command with the `--query` option as follows:

```
aws ec2 describe-spot-instance-requests --query SpotInstanceRequests[*].{ID:InstanceId}
```

The following is example output:

```
[
 {
 "ID": "i-1234567890abcdef0"
 },
 {
 "ID": "i-0598c7d356e8a48d7"
 }
]
```

Alternatively, you can enumerate your Spot Instances using the `describe-instances` command with the `--filters` option as follows:

```
aws ec2 describe-instances --filters "Name=instance-lifecycle,Values=spot"
```

**Tagging Spot Instance Requests**

To help categorize and manage your Spot Instance requests, you can tag them with metadata of your choice. For more information, see Tagging Your Amazon EC2 Resources (p. 759).

You can assign a tag to a Spot Instance request after you create it. The tags that you create for your Spot Instance requests only apply to the requests. These tags are not added automatically to the Spot Instance that the Spot service launches to fulfill the request. You must add tags to a Spot Instance yourself after the Spot Instance is launched.

**To add a tag to your Spot Instance request or Spot Instance using the AWS CLI**

Use the following `create-tags` command to tag your resources:

```
aws ec2 create-tags --resources sir-08b93456 i-1234567890abcdef0 --tags
Key=purpose,Value=test
```

**Canceling a Spot Instance Request**

If you no longer want your Spot request, you can cancel it. You can only cancel Spot Instance requests that are open or active. Your Spot request is open when your request has not yet been fulfilled and no instances have been launched. Your Spot request is active when your request has been fulfilled, and Spot Instances have launched as a result. If your Spot request is active and has an associated running
Spot Instance, canceling the request does not terminate the instance; you must terminate the running Spot Instance manually.

If the Spot request is a persistent Spot request, it returns to the open state so that a new Spot Instance can be launched. To cancel a persistent Spot request and terminate its Spot Instances, you must cancel the Spot request first and then terminate the Spot Instances. Otherwise, the Spot request can launch a new instance.

To cancel a Spot Instance request using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Spot Requests, and then select the Spot request.
3. Choose Actions, and then choose Cancel spot request.
4. (Optional) If you are finished with the associated Spot Instances, you can terminate them. In the navigation pane, choose Instances, select the instance, choose Actions, choose Instance State, and then choose Terminate.

To cancel a Spot Instance request using the AWS CLI

Use the following cancel-spot-instance-requests command to cancel the specified Spot request:

```
aws ec2 cancel-spot-instance-requests --spot-instance-request-ids sir-08b93456
```

If you are finished with the associated Spot Instances, you can terminate them manually using the following terminate-instances command:

```
aws ec2 terminate-instances --instance-ids i-1234567890abcdef0 i-0598c7d356ebo48d7
```

Spot Request Example Launch Specifications

The following examples show launch configurations that you can use with the request-spot-instances command to create a Spot Instance request. For more information, see Creating a Spot Instance Request (p. 207).

1. Launch Spot Instances (p. 211)
2. Launch Spot Instances in the specified Availability Zone (p. 212)
3. Launch Spot Instances in the specified subnet (p. 212)
4. Launch a Dedicated Spot Instance (p. 213)

Example 1: Launch Spot Instances

The following example does not include an Availability Zone or subnet. Amazon EC2 selects an Availability Zone for you. If your account supports EC2-VPC only, Amazon EC2 launches the instances in the default subnet of the selected Availability Zone. If your account supports EC2-Classic, Amazon EC2 launches the instances in EC2-Classic in the selected Availability Zone.

```
{
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "SecurityGroupIds": ["sg-1a2b3c4d"],
 "InstanceType": "m3.medium",
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::123456789012:instance-profile/my-iam-role"
 }
}
```
Note that you can specify security groups for EC2-Classic either by ID or by name (using the SecurityGroups field). You must specify security groups for EC2-VPC by ID.

Example 2: Launch Spot Instances in the Specified Availability Zone

The following example includes an Availability Zone. If your account supports EC2-VPC only, Amazon EC2 launches the instances in the default subnet of the specified Availability Zone. If your account supports EC2-Classic, Amazon EC2 launches the instances in EC2-Classic in the specified Availability Zone.

```json
{
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "SecurityGroupIds": ["sg-1a2b3c4d"],
 "InstanceType": "m3.medium",
 "Placement": { "AvailabilityZone": "us-west-2a" },
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::123456789012:instance-profile/my-iam-role"
 }
}
```

Example 3: Launch Spot Instances in the Specified Subnet

The following example includes a subnet. Amazon EC2 launches the instances in the specified subnet. If the VPC is a nondefault VPC, the instance does not receive a public IPv4 address by default.

```json
{
 "ImageId": "ami-1a2b3c4d",
 "SecurityGroupIds": ["sg-1a2b3c4d"],
 "InstanceType": "m3.medium",
 "SubnetId": "subnet-1a2b3c4d",
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::123456789012:instance-profile/my-iam-role"
 }
}
```

To assign a public IPv4 address to an instance in a nondefault VPC, specify the AssociatePublicIpAddress field as shown in the following example. When you specify a network interface, you must include the subnet ID and security group ID using the network interface, rather than using the SubnetId and SecurityGroupIds fields shown in example 3.

```json
{
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "InstanceType": "m3.medium",
 "NetworkInterfaces": [
 {
 "DeviceIndex": 0,
 "SubnetId": "subnet-1a2b3c4d",
 "Groups": ["sg-1a2b3c4d"],
 "AssociatePublicIpAddress": true
 }
],
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::123456789012:instance-profile/my-iam-role"
 }
}
```
Example 4: Launch a Dedicated Spot Instance

The following example requests a Spot Instance with a tenancy of dedicated. A Dedicated Spot Instance must be launched in a VPC.

```json
{
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "SecurityGroupIds": ["sg-1a2b3c4d"],
 "InstanceType": "c3.8xlarge",
 "SubnetId": "subnet-1a2b3c4d",
 "Placement": {
 "Tenancy": "dedicated"
 }
}
```

Spot Fleet Requests

To use a Spot Fleet, you create a Spot Fleet request that includes the target capacity, one or more launch specifications for the instances, and the maximum price that you are willing to pay. Amazon EC2 attempts to maintain your Spot Fleet's target capacity as Spot prices change. For more information, see How Spot Fleet Works (p. 199).

There are two types of Spot Fleet requests: request and maintain. You can create a Spot Fleet to submit a one-time request for your desired capacity, or require it to maintain a target capacity over time. Both types of requests benefit from Spot Fleet's allocation strategy.

When you make a one-time request, Spot Fleet places the required requests but will not attempt to replenish Spot Instances if capacity is diminished. If capacity is not available, Spot Fleet does not submit requests in alternative Spot pools.

To maintain a target capacity, Spot Fleet places requests to meet the target capacity and automatically replenish any interrupted instances.

It is not possible to modify the target capacity of a one-time request after it's been submitted. To change the target capacity, cancel the request and submit a new one.

A Spot Fleet request remains active until it expires or you cancel it. When you cancel a Spot Fleet request, you may specify whether canceling your Spot Fleet request terminates the Spot Instances in your Spot Fleet.

Each launch specification includes the information that Amazon EC2 needs to launch an instance—such as an AMI, instance type, subnet or Availability Zone, and one or more security groups.

Contents

- Spot Fleet Request States (p. 214)
- Spot Fleet Prerequisites (p. 214)
- Spot Fleet and IAM Users (p. 215)
- Spot Fleet Health Checks (p. 216)
- Planning a Spot Fleet Request (p. 216)
- Service-Linked Role for Spot Fleet Requests (p. 216)
- Creating a Spot Fleet Request (p. 217)
- Monitoring Your Spot Fleet (p. 219)
- Modifying a Spot Fleet Request (p. 219)
- Canceling a Spot Fleet Request (p. 220)
- Spot Fleet Example Configurations (p. 221)
Spot Fleet Request States

A Spot Fleet request can be in one of the following states:

- **submitted**—The Spot Fleet request is being evaluated and Amazon EC2 is preparing to launch the target number of Spot Instances.
- **active**—The Spot Fleet has been validated and Amazon EC2 is attempting to maintain the target number of running Spot Instances. The request remains in this state until it is modified or cancelled.
- **modifying**—The Spot Fleet request is being modified. The request remains in this state until the modification is fully processed or the Spot Fleet is cancelled. A one-time request cannot be modified, and this state does not apply to such Spot requests.
- **cancelled_running**—The Spot Fleet is cancelled and will not launch additional Spot Instances. Its existing Spot Instances continue to run until they are interrupted or terminated. The request remains in this state until all instances are interrupted or terminated.
- **cancelled_terminating**—The Spot Fleet is cancelled and its Spot Instances are terminating. The request remains in this state until all instances are terminated.
- **cancelled**—The Spot Fleet is cancelled and has no running Spot Instances. The Spot Fleet request is deleted two days after its instances were terminated.

The following illustration represents the transitions between the request states. If you exceed your Spot Fleet limits, the request is cancelled immediately.

![Transition diagram](image)

Spot Fleet Prerequisites

If you use the Amazon EC2 console to create a Spot Fleet, it creates a role named `aws-ec2-spot-fleet-tagging-role` that grants the Spot Fleet permission to request, launch, terminate, and tag instances on your behalf. This role is selected when you create your Spot Fleet request. If you use the AWS CLI or an API instead, you must ensure that this role exists. You can either use the Request Spot Instances wizard (the role is created when you advance to the second page of the wizard) or use the IAM console as follows.

**To create the IAM role for Spot Fleet**

2. In the navigation pane, choose **Roles**.
3. Choose **Create new role**.
4. On the **Select role type** page, choose **Select next to Amazon EC2 Spot Fleet Role**.
5. On the **Attach Policy** page, select the **AmazonEC2SpotFleetRole** policy, and then choose **Next Step**.
6. On the **Set role name and review** page, type a name for the role (for example, `aws-ec2-spot-fleet-tagging-role`) and then choose **Create role**.

7. To grant the Spot Fleet permission to automatically tag the instances it launches, click the row for the new role, choose **Attach Policy**, select the `AmazonEC2SpotFleetTaggingRole` policy, and then choose **Attach Policy**. Choose **Detach Policy** next to the `AmazonEC2SpotFleetRole` policy.

### Spot Fleet and IAM Users

If your IAM users will create or manage a Spot Fleet, be sure to grant them the required permissions as follows.

#### To grant an IAM user permissions for Spot Fleet

2. In the navigation pane, choose **Policies**, and then choose **Create policy**.
3. On the **Create Policy** page, choose **Select** next to **Create Your Own Policy**.
4. On the **Review Policy** page, type a policy name and add the following text to **Policy Document**.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:*"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["iam:ListRoles", "iam:PassRole", "iam:ListInstanceProfiles"],
 "Resource": "*"
 }
]
}
```

The `ec2:*` grants an IAM user permission to call all Amazon EC2 API actions. To limit the user to specific Amazon EC2 API actions, specify those actions instead.

An IAM user must have permission to call the `iam:ListRoles` action to enumerate existing IAM roles, the `iam:PassRole` action to specify the Spot Fleet role, and the `iam:ListInstanceProfiles` action to enumerate existing instance profiles.

(Optional) To enable an IAM user to create roles or instance profiles using the IAM console, you must also add the following actions to the policy:

- `iam:AddRoleToInstanceProfile`
- `iam:AttachRolePolicy`
- `iam:CreateInstanceProfile`
- `iam:CreateRole`
- `iam:GetRole`
- `iam:ListPolicies`

5. Choose **Create Policy**.
6. In the navigation pane, choose **Users**, and then choose the user to submit the Spot Fleet request.
7. On the **Permissions** tab, choose **Add permissions**.
8. Choose **Attach existing policies directly**. Select the policy you created above, choose **Next: Review**, then **Add permissions**.

**Spot Fleet Health Checks**

Spot Fleet checks the health status of the Spot Instances in the fleet every two minutes. The health status of an instance is either **healthy** or **unhealthy**. Spot Fleet determines the health status of an instance using the status checks provided by Amazon EC2. If the status of either the instance status check or the system status check is **impaired** for three consecutive health checks, the health status of the instance is unhealthy. Otherwise, the health status is **healthy**. For more information, see Status Checks for Your Instances (p. 396).

You can configure your Spot Fleet to replace unhealthy instances. After enabling health check replacement, an instance is replaced after its health status is reported as unhealthy. The Spot Fleet could go below its target capacity for up to a few minutes while an unhealthy instance is being replaced.

**Requirements**

- Health check replacement is supported only with Spot Fleets that maintain a target capacity, not with one-time Spot Fleets.
- You can configure your Spot Fleet to replace unhealthy instances only when you create it.
- IAM users can use health check replacement only if they have permission to call the `ec2:DescribeInstanceStatus` action.

**Planning a Spot Fleet Request**

Before you create a Spot Fleet request, review **Spot Best Practices**. Use these best practices when you plan your Spot Fleet request so that you can provision the type of instances you want at the lowest possible price. We also recommend that you do the following:

- Determine whether you want to create a Spot Fleet that submits a one-time request for the desired target capacity, or one that maintains a target capacity over time.
- Determine the instance types that meet your application requirements.
- Determine the target capacity for your Spot Fleet request. You can set target capacity in instances or in custom units. For more information, see **Spot Fleet Instance Weighting** (p. 200).
- Determine your price per unit, if you are using instance weighting. To calculate the price per unit, divide the price per instance hour by the number of units (or weight) that this instance represents. (If you are not using instance weighting, the default price per unit is the price per instance hour.)
- Review the possible options for your Spot Fleet request. For more information, see the **request-spot-fleet** command in the **AWS CLI Command Reference**. For additional examples, see **Spot Fleet Example Configurations** (p. 221).

**Service-Linked Role for Spot Fleet Requests**

Amazon EC2 creates a service-linked role when you request a Spot Fleet. A service-linked role includes all the permissions that Amazon EC2 requires to call other AWS services on your behalf. For more information, see Using Service-Linked Roles in the **IAM User Guide**.

Amazon EC2 uses the service-linked role named `AWSServiceRoleForEC2SpotFleet` to complete the following actions:

- `ec2:RequestSpotInstances` - Request Spot Instances
Amazon Elastic Compute Cloud
User Guide for Windows Instances
Spot Instances

• **ec2:TerminateInstances** - Terminate Spot Instances
• **ec2:DescribeImages** - Describe Amazon Machine Images (AMI) for the Spot Instances
• **ec2:DescribeInstanceStatus** - Describe the status of the Spot Instances
• **ec2:DescribeSubnets** - Describe the subnets for Spot Instances
• **ec2:CreateTags** - Add system tags to Spot Instances

Amazon EC2 also creates the `AWSServiceRoleForEC2Spot` role when you request a Spot Fleet. For more information, see Service-Linked Role for Spot Instance Requests (p. 207).

If you had an active Spot Fleet request before November 2017, when Amazon EC2 began supporting this service-linked role, Amazon EC2 created the `AWSServiceRoleForEC2SpotFleet` role in your AWS account. For more information, see A New Role Appeared in My Account in the *IAM User Guide*.

If you no longer need to use Spot Fleet, we recommend that you delete the `AWSServiceRoleForEC2SpotFleet` role. After this role is deleted from your account, Amazon EC2 will create the role again if you request a Spot Fleet.

**Creating a Spot Fleet Request**

When you create a Spot Fleet request, you must specify information about the Spot Instances to launch, such as the instance type and the maximum price you are willing to pay.

**To create a Spot Fleet request using the console**

2. If you are new to Spot, you see a welcome page; choose Get started. Otherwise, choose Request Spot Instances.
3. For Request type, select Request or Request and Maintain.
4. For Target capacity, type the number of units to request. You can choose instances or performance characteristics that are important to your application workload, such as vCPUs, memory, and storage. If the request type is Request and Maintain, you can specify a target capacity of 0 and add capacity later.
5. For Requirements, do the following:
   a. (Optional) For Launch template, choose a launch template. The launch template must specify an Amazon Machine Image (AMI), as you cannot override the AMI using Spot Fleet if you specify a launch template.
   b. For AMI, choose one of the basic Amazon Machine Images (AMI) provided by AWS, or choose Use custom AMI to use an AMI from our user community, the AWS Marketplace, or one of your own.
   c. For Instance type(s), choose Select. Select the instance types that have the minimum hardware specifications that you need (vCPUs, memory, and storage).
   d. For Network, your account supports either the EC2-Classic and EC2-VPC platforms, or the EC2-VPC platform only. To find out which platforms your account supports, see Supported Platforms (p. 551).

   [Existing VPC] Select the VPC.

   [New VPC] Select Create new VPC to go the Amazon VPC console. When you are done, return to the wizard and refresh the list.

   [EC2-Classic] Select EC2-Classic.

   e. (Optional) For Availability Zones, the default is to let AWS choose the Availability Zones for your Spot Instances. If you prefer, you can specify specific Availability Zones.
[EC2-VPC] Select one or more Availability Zones. If you have more than one subnet in an Availability Zone, select the appropriate subnet from Subnet. To add subnets, select Create new subnet to go to the Amazon VPC console. When you are done, return to the wizard and refresh the list.

[EC2-Classic] Select Select specific zone/subnet, and then select one or more Availability Zones.

f. (Optional) To add storage, specify additional instance store volumes or EBS volumes, depending on the instance type. You can also enable EBS optimization.

g. (Optional) By default, basic monitoring is enabled for your instances. To enable detailed monitoring, select Enable CloudWatch detailed monitoring.

h. (Optional) To replace unhealthy instances in a Request and Maintain Spot Fleet, select Replace unhealthy instances.

i. (Optional) To run a Dedicated Spot Instance, choose Dedicated - run a dedicated instance for Tenancy.

j. (Optional) By default, the Spot service terminates Spot Instances when they are interrupted. If the fleet type is maintain, you can specify that the Spot service hibernates or stops Spot Instances when they are interrupted. To do so, choose the corresponding option from Interruption behavior.

k. For Security groups, select one or more security groups.

l. [EC2-VPC] If you need to connect to your instances in a VPC, you can enable Auto-assign IPv4 Public IP.

m. (Optional) If you need to connect to your instances, specify your key pair using Key pair name.

n. (Optional) To launch your Spot Instances with an IAM role, choose the role for IAM instance profile.

o. (Optional) To run a start-up script, copy it to User data.

p. (Optional) To add a tag, choose Add new tag and type the key and value for the tag. Repeat for each tag.

6. For Spot request fulfillment, do the following:

   a. For Allocation strategy, choose the strategy that meets your needs. For more information, see Spot Fleet Allocation Strategy (p. 199).

   b. For Maximum price, you can use the default maximum price (the On-Demand price) or specify the maximum price you are willing to pay. Your Spot Instances are not launched if your maximum price is lower than the Spot price for the instance types that you selected.

   c. (Optional) To create a request that is valid only during a specific time period, edit Request valid from and Request valid until.

   d. (Optional) By default, we terminate your Spot Instances when the request expires. To keep them running after your request expires, clear Terminate instances at expiration.

7. (Optional) To register your Spot Instances with a load balancer, select Receive traffic from one or more load balancers and select one or more Classic Load Balancers or target groups.

8. (Optional) To download a copy of the launch configuration for use with the AWS CLI, choose JSON config.

9. Choose Launch.

   The request type is fleet. When the request is fulfilled, requests of type instance are added, where the state is active and the status is fulfilled.

To create a Spot Fleet request using the AWS CLI

   • Use the following request-spot-fleet command to create a Spot Fleet request:
aws ec2 request-spot-fleet --spot-fleet-request-config file://config.json

For example configuration files, see Spot Fleet Example Configurations (p. 221).

The following is example output:

```
{
 "SpotFleetRequestId": "sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE"
}
```

**Monitoring Your Spot Fleet**

The Spot Fleet launches Spot Instances when your maximum price exceeds the Spot price and capacity is available. The Spot Instances run until they are interrupted or you terminate them.

**To monitor your Spot Fleet using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Spot Requests.
3. Select your Spot Fleet request. The configuration details are available in the Description tab.
4. To list the Spot Instances for the Spot Fleet, choose the Instances tab.
5. To view the history for the Spot Fleet, choose the History tab.

**To monitor your Spot Fleet using the AWS CLI**

Use the following describe-spot-fleet-requests command to describe your Spot Fleet requests:

```
aws ec2 describe-spot-fleet-requests
```

Use the following describe-spot-fleet-instances command to describe the Spot Instances for the specified Spot Fleet:

```
aws ec2 describe-spot-fleet-instances --spot-fleet-request-id sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE
```

Use the following describe-spot-fleet-request-history command to describe the history for the specified Spot Fleet request:

```
aws ec2 describe-spot-fleet-request-history --spot-fleet-request-id sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE --start-time 2015-05-18T00:00:00Z
```

**Modifying a Spot Fleet Request**

You can modify an active Spot Fleet request to complete the following tasks:

- Increase the target capacity
- Decrease the target capacity

**Note**

It is not possible to modify a one-time Spot Fleet request.
When you increase the target capacity, the Spot Fleet launches the additional Spot Instances according to the allocation strategy for its Spot Fleet request. If the allocation strategy is lowestPrice, the Spot Fleet launches the instances from the lowest-priced Spot Instance pool in the Spot Fleet request. If the allocation strategy is diversified, the Spot Fleet distributes the instances across the pools in the Spot Fleet request.

When you decrease the target capacity, the Spot Fleet cancels any open requests that exceed the new target capacity. You can request that the Spot Fleet terminate Spot Instances until the size of the fleet reaches the new target capacity. If the allocation strategy is lowestPrice, the Spot Fleet terminates the instances with the highest price per unit. If the allocation strategy is diversified, the Spot Fleet terminates instances across the pools. Alternatively, you can request that the Spot Fleet keep the fleet at its current size, but not replace any Spot Instances that are interrupted or that you terminate manually.

When a Spot Fleet terminates an instance because the target capacity was decreased, the instance receives a Spot Instance interruption notice.

To modify a Spot Fleet request using the console

2. Select your Spot Fleet request.
3. Choose Actions, and then choose Modify target capacity.
4. In Modify target capacity, do the following:
   a. Enter the new target capacity.
   b. (Optional) If you are decreasing the target capacity but want to keep the fleet at its current size, deselect Terminate instances.
   c. Choose Submit.

To modify a Spot Fleet request using the AWS CLI

Use the following modify-spot-fleet-request command to update the target capacity of the specified Spot Fleet request:

```bash
aws ec2 modify-spot-fleet-request --spot-fleet-request-id sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE --target-capacity 20
```

You can modify the previous command as follows to decrease the target capacity of the specified Spot Fleet without terminating any Spot Instances as a result:

```bash
aws ec2 modify-spot-fleet-request --spot-fleet-request-id sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE --target-capacity 10 --excess-capacity-termination-policy NoTermination
```

Canceling a Spot Fleet Request

When you are finished using your Spot Fleet, you can cancel the Spot Fleet request. This cancels all Spot requests associated with the Spot Fleet, so that no new Spot Instances are launched for your Spot Fleet. You must specify whether the Spot Fleet should terminate its Spot Instances. If you terminate the instances, the Spot Fleet request enters the cancelled_terminating state. Otherwise, the Spot Fleet request enters the cancelled_running state and the instances continue to run until they are interrupted or you terminate them manually.

To cancel a Spot Fleet request using the console

2. Select your Spot Fleet request.
3. Choose Actions, and then choose Cancel spot request.
4. In Cancel spot request, verify that you want to cancel the Spot Fleet. To keep the fleet at its current size, deselect Terminate instances. When you are ready, choose Confirm.

To cancel a Spot Fleet request using the AWS CLI

Use the following cancel-spot-fleet-requests command to cancel the specified Spot Fleet request and terminate the instances:

```
aws ec2 cancel-spot-fleet-requests --spot-fleet-request-ids sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE --terminate-instances
```

The following is example output:

```
{
 "SuccessfulFleetRequests": [
 {
 "SpotFleetRequestId": "sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE",
 "CurrentSpotFleetRequestState": "cancelled_terminating",
 "PreviousSpotFleetRequestState": "active"
 }
],
 "UnsuccessfulFleetRequests": []
}
```

You can modify the previous command as follows to cancel the specified Spot Fleet request without terminating the instances:

```
aws ec2 cancel-spot-fleet-requests --spot-fleet-request-ids sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE --no-terminate-instances
```

The following is example output:

```
{
 "SuccessfulFleetRequests": [
 {
 "SpotFleetRequestId": "sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE",
 "CurrentSpotFleetRequestState": "cancelled_running",
 "PreviousSpotFleetRequestState": "active"
 }
],
 "UnsuccessfulFleetRequests": []
}
```

Spot Fleet Example Configurations

The following examples show launch configurations that you can use with the request-spot-fleet command to create a Spot Fleet request. For more information, see Creating a Spot Fleet Request (p. 217).

1. Launch Spot Instances using the lowest-priced Availability Zone or subnet in the region (p. 222)
2. Launch Spot Instances using the lowest-priced Availability Zone or subnet in a specified list (p. 222)
3. Launch Spot Instances using the lowest-priced instance type in a specified list (p. 224)
4. Override the price for the request (p. 225)
5. Launch a Spot Fleet using the diversified allocation strategy (p. 226)
6. Launch a Spot Fleet using instance weighting (p. 227)

Example 1: Launch Spot Instances Using the Lowest-Priced Availability Zone or Subnet in the Region

The following example specifies a single launch specification without an Availability Zone or subnet. If your account supports EC2-VPC only, the Spot Fleet launches the instances in the lowest-priced Availability Zone that has a default subnet. If your account supports EC2-Classic, the Spot Fleet launches the instances in EC2-Classic in the lowest-priced Availability Zone. The price you pay will not exceed the On-Demand price.

```json
{
 "TargetCapacity": 20,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "m3.medium",
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::123456789012:instance-profile/my-iam-role"
 }
 }
]
}
```

Example 2: Launch Spot Instances Using the Lowest-Priced Availability Zone or Subnet in a Specified List

The following examples specify two launch specifications with different Availability Zones or subnets, but the same instance type and AMI.

**Availability Zones**

If your account supports EC2-VPC only, the Spot Fleet launches the instances in the default subnet of the lowest-priced Availability Zone that you specified. If your account supports EC2-Classic, the Spot Fleet launches the instances in the lowest-priced Availability Zone that you specified.

```json
{
 "TargetCapacity": 20,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "KeyName": "my-key-pair",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "m3.medium",
 "Placement": {
 "AvailabilityZone": "us-west-2a, us-west-2b"
 }
 }
]
}
```
Subnets

You can specify default subnets or nondefault subnets, and the nondefault subnets can be from a default VPC or a nondefault VPC. The Spot service launches the instances in whichever subnet is in the lowest-priced Availability Zone.

You can't specify different subnets from the same Availability Zone in a Spot Fleet request.

If the instances are launched in a default VPC, they receive a public IPv4 address by default. If the instances are launched in a nondefault VPC, they do not receive a public IPv4 address by default. Use a network interface in the launch specification to assign a public IPv4 address to instances launched in a nondefault VPC. When you specify a network interface, you must include the subnet ID and security group ID using the network interface.

...
Example 3: Launch Spot Instances Using the Lowest-Priced Instance Type in a Specified List

The following examples specify two launch configurations with different instance types, but the same AMI and Availability Zone or subnet. The Spot Fleet launches the instances using the specified instance type with the lowest price.

Availability Zone

```json
{
 "TargetCapacity": 20,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "cc2.8xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 },
 {
 "ImageId": "ami-1a2b3c4d",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "r3.8xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 }
]
}
```

Subnet

```json
{
 "TargetCapacity": 20,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "cc2.8xlarge",
 "_subnetId": "subnet-1a2b3c4d"
 },
 {
 "ImageId": "ami-1a2b3c4d",
 "SecurityGroups": [
 {
 "GroupId": "sg-1a2b3c4d"
 }
],
 "InstanceType": "r3.8xlarge",
 "subnetId": "subnet-1a2b3c4d"
 }
]
}
```
Example 4. Override the Price for the Request

We recommended that you use the default maximum price, which is the On-Demand price. If you prefer, you can specify a maximum price for the fleet request and maximum prices for individual launch specifications.

The following examples specify a maximum price for the fleet request and maximum prices for two of the three launch specifications. The maximum price for the fleet request is used for any launch specification that does not specify a maximum price. The Spot Fleet launches the instances using the instance type with the lowest price.

Availability Zone

```json
{
 "SpotPrice": "1.00",
 "TargetCapacity": 30,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.2xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 },
 "SpotPrice": "0.10"
 },
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.4xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 },
 "SpotPrice": "0.20"
 },
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.8xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 }
]
}
```

Subnet

```json
{
 "SpotPrice": "1.00",
 "TargetCapacity": 30,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.2xlarge",
 "SubnetId": "subnet-1a2b3c4d",
 "SpotPrice": "0.10"
 }
]
}
```
Example 5: Launch a Spot Fleet Using the Diversified Allocation Strategy

The following example uses the diversified allocation strategy. The launch specifications have different instance types but the same AMI and Availability Zone or subnet. The Spot Fleet distributes the 30 instances across the 3 launch specifications, such that there are 10 instances of each type. For more information, see Spot Fleet Allocation Strategy (p. 199).

**Availability Zone**

```
{
 "SpotPrice": "0.70",
 "TargetCapacity": 30,
 "AllocationStrategy": "diversified",
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [

 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c4.2xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 },

 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "m3.2xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 },

 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "r3.2xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 }
 }
]
}
```

**Subnet**

```
{
 "SpotPrice": "0.70",
 "TargetCapacity": 30,
 "AllocationStrategy": "diversified",
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [

 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.4xlarge",
 "SubnetId": "subnet-1a2b3c4d",
 "SpotPrice": "0.20"
 },

 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.8xlarge",
 "SubnetId": "subnet-1a2b3c4d"
 }
]
}
```
Example 6: Launch a Spot Fleet Using Instance Weighting

The following examples use instance weighting, which means that the price is per unit hour instead of per instance hour. Each launch configuration lists a different instance type and a different weight. The Spot Fleet selects the instance type with the lowest price per unit hour. The Spot Fleet calculates the number of Spot Instances to launch by dividing the target capacity by the instance weight. If the result isn't an integer, the Spot Fleet rounds it up to the next integer, so that the size of your fleet is not below its target capacity.

If the `r3.2xlarge` request is successful, Spot provisions 4 of these instances. Divide 20 by 6 for a total of 3.33 instances, then round up to 4 instances.

If the `c3.xlarge` request is successful, Spot provisions 7 of these instances. Divide 20 by 3 for a total of 6.66 instances, then round up to 7 instances.

For more information, see Spot Fleet Instance Weighting (p. 200).

Availability Zone

```
{
 "SpotPrice": "0.70",
 "TargetCapacity": 20,
 "IamFleetRole": "arn:aws:iam::123456789012:role/aws-ec2-spot-fleet-tagging-role",
 "LaunchSpecifications": [
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "r3.2xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 },
 "WeightedCapacity": 6
 },
 {
 "ImageId": "ami-1a2b3c4d",
 "InstanceType": "c3.xlarge",
 "Placement": {
 "AvailabilityZone": "us-west-2b"
 },
 "WeightedCapacity": 3
 }
]
}
```

Subnet
You can also use instance weighting to give priority to an Availability Zone or subnet. For example, the following launch specifications are nearly identical, except that they specify different subnets and weights. The Spot Fleet finds the specification with the highest value for WeightedCapacity, and attempts to provision the request in the least expensive Spot Instance pool in that subnet. The second launch specification does not include a weight, so it defaults to 1.

CloudWatch Metrics for Spot Fleet

Amazon EC2 provides Amazon CloudWatch metrics that you can use to monitor your Spot Fleet.

Important
To ensure accuracy, we recommend that you enable detailed monitoring when using these metrics. For more information, see Enable or Disable Detailed Monitoring for Your Instances (p. 404).

For more information about CloudWatch metrics provided by Amazon EC2, see Monitoring Your Instances Using CloudWatch (p. 404).

Spot Fleet Metrics

The AWS/EC2Spot namespace includes the following metrics, plus the CloudWatch metrics for the Spot Instances in your fleet. For more information, see Instance Metrics (p. 406).
The AWS/EC2Spot namespace includes the following metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvailableInstancePoolsCount</td>
<td>The Spot Instance pools specified in the Spot Fleet request.</td>
</tr>
<tr>
<td>BidsSubmittedForCapacity</td>
<td>The capacity for which Amazon EC2 has submitted bids.</td>
</tr>
<tr>
<td>EligibleInstancePoolCount</td>
<td>The Spot Instance pools specified in the Spot Fleet request where Amazon EC2 can fulfill bids. Amazon EC2 will not fulfill bids in pools where your bid price is less than the Spot price or the Spot price is greater than the price for On-Demand instances.</td>
</tr>
<tr>
<td>FulfilledCapacity</td>
<td>The capacity that Amazon EC2 has fulfilled.</td>
</tr>
<tr>
<td>MaxPercentCapacityAllocation</td>
<td>The maximum value of PercentCapacityAllocation across all Spot Instance pools specified in the Spot Fleet request.</td>
</tr>
<tr>
<td>PendingCapacity</td>
<td>The difference between TargetCapacity and FulfilledCapacity.</td>
</tr>
<tr>
<td>PercentCapacityAllocation</td>
<td>The capacity allocated for the Spot Instance pool for the specified dimensions. To get the maximum value recorded across all Spot Instance pools, use MaxPercentCapacityAllocation.</td>
</tr>
<tr>
<td>TargetCapacity</td>
<td>The target capacity of the Spot Fleet request.</td>
</tr>
<tr>
<td>TerminatingCapacity</td>
<td>The capacity that is being terminated due to Spot Instance interruptions.</td>
</tr>
</tbody>
</table>

If the unit of measure for a metric is Count, the most useful statistic is Average.

**Spot Fleet Dimensions**

To filter the data for your Spot Fleet, you can use the following dimensions.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvailabilityZone</td>
<td>Filter the data by Availability Zone.</td>
</tr>
</tbody>
</table>
View the CloudWatch Metrics for Your Spot Fleet

You can view the CloudWatch metrics for your Spot Fleet using the Amazon CloudWatch console. These metrics are displayed as monitoring graphs. These graphs show data points if the Spot Fleet is active.

Metrics are grouped first by namespace, and then by the various combinations of dimensions within each namespace. For example, you can view all Spot Fleet metrics or Spot Fleet metrics groups by Spot Fleet request ID, instance type, or Availability Zone.

To view Spot Fleet metrics

2. In the navigation pane, under **Metrics**, choose the **EC2 Spot** namespace.
3. (Optional) To filter the metrics by dimension, select one of the following:
   - **Fleet Request Metrics** — Group by Spot Fleet request
   - **By Availability Zone** — Group by Spot Fleet request and Availability Zone
   - **By Instance Type** — Group by Spot Fleet request and instance type
   - **By Availability Zone/Instance Type** — Group by Spot Fleet request, Availability Zone, and instance type
4. To view the data for a metric, select the check box next to the metric.

Automatic Scaling for Spot Fleet

*Automatic scaling* is the ability to increase or decrease the target capacity of your Spot Fleet automatically based on demand. A Spot Fleet can either launch instances (scale out) or terminate instances (scale in), within the range that you choose, in response to one or more scaling policies.

If you are using instance weighting, keep in mind that Spot Fleet can exceed the target capacity as needed, and that fulfilled capacity can be a floating-point number but target capacity must be an integer, so Spot Fleet rounds up to the next integer. You must take these behaviors into account when you look at the outcome of a scaling policy when an alarm is triggered. For example, suppose that the target capacity is 30, the fulfilled capacity is 30.1, and the scaling policy subtracts 1. When the alarm is triggered, the auto scaling process subtracts 1 from 30.1 to get 29.1 and then rounds it up to 30, so no scaling action is taken. As another example, suppose that you selected instance weights of 2, 4, and 8, and a target capacity of 10, but no weight 2 instances were available so Spot Fleet provisioned instances

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FleetRequestId</td>
<td>Filter the data by Spot Fleet request.</td>
</tr>
<tr>
<td>InstanceType</td>
<td>Filter the data by instance type.</td>
</tr>
</tbody>
</table>

230
of weights 4 and 8 for a fulfilled capacity of 12. If the scaling policy decreases target capacity by 20% and an alarm is triggered, the auto scaling process subtracts 12*0.2 from 12 to get 9.6 and then rounds it up to 10, so no scaling action is taken.

You can also configure the cooldown period for a scaling policy. This is the number of seconds after a scaling activity completes where previous trigger-related scaling activities can influence future scaling events. For scale out policies, while the cooldown period is in effect, the capacity that has been added by the previous scale out event that initiated the cooldown is calculated as part of the desired capacity for the next scale out. The intention is to continuously (but not excessively) scale out. For scale in policies, the cooldown period is used to block subsequent scale in requests until it has expired. The intention is to scale in conservatively to protect your application's availability. However, if another alarm triggers a scale out policy during the cooldown period after a scale-in, auto scaling scales out your scalable target immediately.

Spot Fleet supports the following types of scaling policies:

- **Target tracking scaling (p. 231)** — Increase or decrease the current capacity of the fleet based on a target value for a specific metric. This is similar to the way that your thermostat maintains the temperature of your home – you select temperature and the thermostat does the rest.

- **Step scaling (p. 232)** — Increase or decrease the current capacity of the fleet based on a set of scaling adjustments, known as step adjustments, that vary based on the size of the alarm breach.

### Scale Spot Fleet Using a Target Tracking Policy

With target tracking scaling policies, you select a metric and set a target value. Spot Fleet creates and manages the CloudWatch alarms that trigger the scaling policy and calculates the scaling adjustment based on the metric and the target value. The scaling policy adds or removes capacity as required to keep the metric at, or close to, the specified target value. In addition to keeping the metric close to the target value, a target tracking scaling policy also adjusts to the fluctuations in the metric due to a fluctuating load pattern and minimizes rapid fluctuations in the capacity of the fleet.

You can create multiple target tracking scaling policies for a Spot Fleet, provided that each of them uses a different metric. The fleet scales based on the policy that provides the largest fleet capacity. This enables you to cover multiple scenarios and ensure that there is always enough capacity to process your application workloads.

To ensure application availability, the fleet scales out proportionally to the metric as fast as it can, but scales in more gradually.

Note that when a Spot Fleet terminates an instance because the target capacity was decreased, the instance receives a Spot Instance interruption notice.

Do not edit or delete the CloudWatch alarms that Spot Fleet manages for a target tracking scaling policy. Spot Fleet deletes the alarms automatically when you delete the target tracking scaling policy.

### Limits

- The Spot Fleet request must have a request type of **maintain**. Automatic scaling is not supported for one-time requests or Spot blocks.

### To configure a target tracking policy using the console

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Spot Requests**.
3. Select your Spot Fleet request, and then choose the **Auto Scaling** tab.
4. If automatic scaling is not configured, choose **Configure**.
5. **Use Scale capacity between** to set the minimum and maximum capacity for your fleet. Automatic scaling does not scale your fleet below the minimum capacity or above the maximum capacity.

6. For **Policy name**, type a name for the policy.

7. Choose a **Target metric**.

8. Type a **Target value** for the metric.

9. (Optional) Set **Cooldown period** to modify the default cooldown period.

10. (Optional) Select **Disable scale-in** to omit creating a scale-in policy based on the current configuration. You can create a scale-in policy using a different configuration.

11. Choose **Save**.

To configure a target tracking policy using the AWS CLI

1. Register the Spot Fleet request as a scalable target using the `register-scalable-target` command.
2. Create a scaling policy using the `put-scaling-policy` command.

**Scale Spot Fleet Using Step Scaling Policies**

With step scaling policies, you specify CloudWatch alarms to trigger the scaling process. For example, if you want to scale out when CPU utilization reaches a certain level, create an alarm using the `CPUUtilization` metric provided by Amazon EC2.

When you create a step scaling policy, you must specify one of the following scaling adjustment types:

- **Add** — Increase the target capacity of the fleet by a specified number of capacity units or a specified percentage of the current capacity.
- **Remove** — Decrease the target capacity of the fleet by a specified number of capacity units or a specified percentage of the current capacity.
- **Set to** — Set the target capacity of the fleet to the specified number of capacity units.

When an alarm is triggered, the auto scaling process calculates the new target capacity using the fulfilled capacity and the scaling policy, and then updates the target capacity accordingly. For example, suppose that the target capacity and fulfilled capacity are 10 and the scaling policy adds 1. When the alarm is triggered, the auto scaling process adds 1 to 10 to get 11, so Spot Fleet launches 1 instance.

Note that when a Spot Fleet terminates an instance because the target capacity was decreased, the instance receives a Spot Instance interruption notice.

**Limits**

- The Spot Fleet request must have a request type of `maintain`. Automatic scaling is not supported for one-time requests or Spot blocks.

**Prerequisites**

- Consider which CloudWatch metrics are important to your application. You can create CloudWatch alarms based on metrics provided by AWS or your own custom metrics.
- For the AWS metrics that you will use in your scaling policies, enable CloudWatch metrics collection if the service that provides the metrics does not enable it by default.
- If you use the AWS Management Console to enable automatic scaling for your Spot Fleet, it creates a role named `aws-ec2-spot-fleet-autoscale-role` that grants Amazon EC2 Auto Scaling permission to describe the alarms for your policies, monitor the current capacity of the fleet, and modify the capacity of the fleet. If you configure automatic scaling using the AWS CLI or an API, you can use this role if it exists, or manually create your own role for this purpose.
To create a role manually

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Roles.
3. Choose Create New Role.
4. On the Set Role Name page, type a name for the role and then choose Next Step.
5. On the Select Role Type page, choose Select next to Amazon EC2.
6. On the Attach Policy page, select the AmazonEC2SpotFleetAutoscaleRole policy and then choose Next Step.
7. On the Review page, choose Create Role.
8. Select the role that you just created.
10. Change ec2.amazonaws.com to application-autoscaling.amazonaws.com and then choose Update Trust Policy.

To create a CloudWatch alarm

2. In the navigation pane, choose Alarms.
3. Choose Create Alarm.
4. For CloudWatch Metrics by Category, choose a category. For example, choose EC2 Spot Metrics, Fleet Request Metrics.
5. Select a metric, and then choose Next.
6. For Alarm Threshold, type a name and description for the alarm, and set the threshold value and number of time periods for the alarm.
7. (Optional) To receive notification of a scaling event, for Actions, choose New list and type your email address. Otherwise, you can delete the notification now and add one later as needed.
8. Choose Create Alarm.

To configure step scaling policies for your Spot Fleet using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Spot Requests.
3. Select your Spot Fleet request, and then choose the Auto Scaling tab.
4. If automatic scaling is not configured, choose Configure.
5. Use Scale capacity between to set the minimum and maximum capacity for your fleet. Automatic scaling does not scale your fleet below the minimum capacity or above the maximum capacity.
6. Initially, Scaling policies contains policies named ScaleUp and ScaleDown. You can complete these policies, or choose Remove policy to delete them. You can also choose Add policy to add a policy.
7. To define a policy, do the following:
   a. For Policy name, type a name for the policy.
   b. For Policy trigger, select an existing alarm or choose Create new alarm to open the Amazon CloudWatch console and create an alarm.
   c. For Modify capacity, select a scaling adjustment type, select a number, and select a unit.
   d. (Optional) To perform step scaling, choose Define steps. By default, an add policy has a lower bound of -infinity and an upper bound of the alarm threshold. By default, a remove policy has a lower bound of the alarm threshold and an upper bound of +infinity. To add another step, choose Add step.
e. (Optional) To modify the default value for the cooldown period, select a number from **Cooldown period**.

8. Choose **Save**.

**To configure step scaling policies for your Spot Fleet using the AWS CLI**

1. Register the Spot Fleet request as a scalable target using the `register-scalable-target` command.
2. Create a scaling policy using the `put-scaling-policy` command.
3. Create an alarm that triggers the scaling policy using the `put-metric-alarm` command.

**Spot Request Status**

To help you track your Spot Instance requests and plan your use of Spot Instances, use the request status provided by Amazon EC2. For example, the request status can provide the reason why your Spot request isn’t fulfilled yet, or list the constraints that are preventing the fulfillment of your Spot request.

At each step of the process—also called the Spot request **lifecycle**, specific events determine successive request states.

**Contents**

- Life Cycle of a Spot Request (p. 234)
- Getting Request Status Information (p. 237)
- Spot Request Status Codes (p. 237)

**Life Cycle of a Spot Request**

The following diagram shows you the paths that your Spot request can follow throughout its lifecycle, from submission to termination. Each step is depicted as a node, and the status code for each node describes the status of the Spot request and Spot Instance.
Pending evaluation

As soon as you make a Spot Instance request, it goes into the pending-evaluation state unless one or more request parameters is not valid (bad-parameters).

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>pending-evaluation</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>bad-parameters</td>
<td>closed</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Holding

If one or more request constraints are valid but can't be met yet, or if there is not enough capacity, the request goes into a holding state waiting for the constraints to be met. The request options affect the likelihood of the request being fulfilled. For example, if you specify a maximum price below the current Spot price, your request stays in a holding state until the Spot price goes below your maximum price. If you specify an Availability Zone group, the request stays in a holding state until the Availability Zone constraint is met.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>capacity-not-available</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>capacity-oversubscribed</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>price-too-low</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>not-scheduled-yet</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>launch-group-constraint</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>az-group-constraint</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>placement-group-constraint</td>
<td>open</td>
<td>n/a</td>
</tr>
<tr>
<td>constraint-not-fulfillable</td>
<td>open</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Pending evaluation/fulfillment-terminal

Your Spot Instance request can go to a terminal state if you create a request that is valid only during a specific time period and this time period expires before your request reaches the pending fulfillment phase, you cancel the request, or a system error occurs.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>schedule-expired</td>
<td>cancelled</td>
<td>n/a</td>
</tr>
<tr>
<td>canceled-before-fulfillment*</td>
<td>cancelled</td>
<td>n/a</td>
</tr>
<tr>
<td>bad-parameters</td>
<td>failed</td>
<td>n/a</td>
</tr>
<tr>
<td>system-error</td>
<td>closed</td>
<td>n/a</td>
</tr>
</tbody>
</table>
* If you cancel the request.

Pending fulfillment

When the constraints you specified (if any) are met and your maximum price is equal to or higher than the current Spot price, your Spot request goes into the pending-fulfillment state.

At this point, Amazon EC2 is getting ready to provision the instances that you requested. If the process stops at this point, it is likely to be because it was cancelled by the user before a Spot Instance was launched, or because an unexpected system error occurred.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>pending-fulfillment</td>
<td>open</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Fulfilled

When all the specifications for your Spot Instances are met, your Spot request is fulfilled. Amazon EC2 launches the Spot Instances, which can take a few minutes. If a Spot Instance is hibernated or stopped when interrupted, it remains in this state until the request can be fulfilled again or the request is cancelled.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>fulfilled</td>
<td>active</td>
<td>pending → running</td>
</tr>
<tr>
<td>fulfilled</td>
<td>active</td>
<td>stopped → running</td>
</tr>
</tbody>
</table>

Fulfilled-terminal

Your Spot Instances continue to run as long as your maximum price is at or above the Spot price, there is available capacity for your instance type, and you don't terminate the instance. If a change in the Spot price or available capacity requires Amazon EC2 to terminate your Spot Instances, the Spot request goes into a terminal state. For example, if your price equals the Spot price but Spot Instances are not available, the status code is instance-terminated-capacity-oversubscribed. A request also goes into the terminal state if you cancel the Spot request or terminate the Spot Instances.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Request State</th>
<th>Instance State</th>
</tr>
</thead>
<tbody>
<tr>
<td>request-canceled-and-instance-running</td>
<td>cancelled</td>
<td>running</td>
</tr>
<tr>
<td>marked-for-stop</td>
<td>active</td>
<td>running</td>
</tr>
<tr>
<td>marked-for-termination</td>
<td>closed</td>
<td>running</td>
</tr>
<tr>
<td>instance-terminated-by-price</td>
<td>closed (one-time), open (persistent)</td>
<td>terminated</td>
</tr>
<tr>
<td>instance-terminated-by-service</td>
<td>cancelled</td>
<td>terminated</td>
</tr>
<tr>
<td>instance-terminated-by-user</td>
<td>closed or cancelled*</td>
<td>terminated</td>
</tr>
<tr>
<td>instance-terminated-no-capacity</td>
<td>closed (one-time), open (persistent)</td>
<td>terminated</td>
</tr>
<tr>
<td>Status Code</td>
<td>Request State</td>
<td>Instance State</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>instance-terminated-capacity-oversubscribed</td>
<td>closed (one-time), open (persistent)</td>
<td>terminated</td>
</tr>
<tr>
<td>instance-terminated-launch-group-constraint</td>
<td>closed (one-time), open (persistent)</td>
<td>terminated</td>
</tr>
</tbody>
</table>

* The request state is closed if you terminate the instance but do not cancel the request. The request state is cancelled if you terminate the instance and cancel the request. Note that even if you terminate a Spot Instance before you cancel its request, there might be a delay before Amazon EC2 detects that your Spot Instance was terminated. In this case, the request state can either be closed or cancelled.

**Persistent requests**

When your Spot Instances are terminated (either by you or Amazon EC2), if the Spot request is a persistent request, it returns to the pending-evaluation state and then Amazon EC2 can launch a new Spot Instance when the constraints are met.

### Getting Request Status Information

You can get request status information using the AWS Management Console or a command line tool.

**To get request status information using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Spot Requests**, and then select the Spot request.
3. Check the value of **Status** in the **Description** tab.

**To get request status information using the command line**

You can use one of the following commands. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- `describe-spot-instance-requests` (AWS CLI)
- `Get-EC2SpotInstanceRequest` (AWS Tools for Windows PowerShell)

### Spot Request Status Codes

Spot request status information is composed of a status code, the update time, and a status message. Together, these help you determine the disposition of your Spot request.

The following are the Spot request status codes:

- **az-group-constraint**
  
  Amazon EC2 cannot launch all the instances you requested in the same Availability Zone.

- **bad-parameters**
  
  One or more parameters for your Spot request are not valid (for example, the AMI you specified does not exist). The status message indicates which parameter is not valid.

- **cancelled-before-fulfillment**
  
  The user cancelled the Spot request before it was fulfilled.

- **capacity-not-available**
  
  There is not enough capacity available for the instances that you requested.
capacity-oversubscribed

There is not enough capacity available for the instances that you requested.

constraint-not-fulfillable

The Spot request can't be fulfilled because one or more constraints are not valid (for example, the Availability Zone does not exist). The status message indicates which constraint is not valid.

fulfilled

The Spot request is active, and Amazon EC2 is launching your Spot Instances.

instance-terminated-by-price

The Spot price exceeds your maximum price. If your request is persistent, the process restarts, so your request is pending evaluation.

instance-terminated-by-service

Your instance was terminated from a stopped state.

instance-terminated-by-user or spot-instance-terminated-by-user

You terminated a Spot Instance that had been fulfilled, so the request state is closed (unless it's a persistent request) and the instance state is terminated.

instance-terminated-capacity-oversubscribed

Your instance is terminated because the number of Spot requests with maximum prices equal to or higher than your maximum price exceeded the available capacity in this Spot Instance pool. (Note that the Spot price might not have changed.)

instance-terminated-launch-group-constraint

One or more of the instances in your launch group was terminated, so the launch group constraint is no longer fulfilled.

instance-terminated-no-capacity

There is no longer enough Spot capacity available for the instance.

launch-group-constraint

Amazon EC2 cannot launch all the instances that you requested at the same time. All instances in a launch group are started and terminated together.

limit-exceeded

The limit on the number of EBS volumes or total volume storage was exceeded. For more information about these limits and how to request an increase, see Amazon EBS Limits in the Amazon Web Services General Reference.

marked-for-stop

The Spot Instance is marked for stopping.

marked-for-termination

The Spot Instance is marked for termination.

not-scheduled-yet

The Spot request will not be evaluated until the scheduled date.

pending-evaluation

After you make a Spot Instance request, it goes into the pending-evaluation state while the system evaluates the parameters of your request.

pending-fulfillment

Amazon EC2 is trying to provision your Spot Instances.
placement-group-constraint

The Spot request can’t be fulfilled yet because a Spot Instance can’t be added to the placement group at this time.

price-too-low

The request can’t be fulfilled yet because your maximum price is below the Spot price. In this case, no instance is launched and your request remains open.

request-cancelled-and-instance-running

You canceled the Spot request while the Spot Instances are still running. The request is cancelled, but the instances remain running.

schedule-expired

The Spot request expired because it was not fulfilled before the specified date.

system-error

There was an unexpected system error. If this is a recurring issue, please contact customer support for assistance.

Spot Instance Interruptions

Demand for Spot Instances can vary significantly from moment to moment, and the availability of Spot Instances can also vary significantly depending on how many unused EC2 instances are available. It is always possible that your Spot Instance will be interrupted. Therefore, you must ensure that your application is prepared for a Spot Instance interruption.

The following are the possible reasons that Amazon EC2 will interrupt your Spot Instances:

• Price—The Spot price is greater than your maximum price.
• Capacity—If there are not enough unused EC2 instances to meet the demand for Spot Instances, Amazon EC2 interrupts Spot Instances. The order in which the instances are interrupted is determined by Amazon EC2.
• Constraints—If your request includes a constraint such as a launch group or an Availability Zone group, these Spot Instances are terminated as a group when the constraint can no longer be met.

Interruption Behavior

You can specify whether Amazon EC2 should hibernate, stop, or terminate Spot Instances when they are interrupted. You can choose the interruption behavior that meets your needs. The default is to terminate Spot Instances when they are interrupted. To change the interruption behavior, choose an option from Interruption behavior in the console or InstanceInterruptionBehavior in the launch configuration or the launch template.

Stopping Interrupted Spot Instances

You can change the behavior so that Amazon EC2 stops Spot Instances when they are interrupted if the following requirements are met.

Requirements

• For a Spot Instance request, the type must be persistent, not one-time. You cannot specify a launch group in the Spot Instance request.
• For a Spot Fleet request, the type must be maintain, not request.
• The root volume must be an EBS volume, not an instance store volume.

After a Spot instance is stopped by the Spot service, it can only be restarted by the Spot service, and only using the same launch configuration. When capacity is available that matches the Availability Zone and instance type of a Spot Instance that is stopped, the Spot Instance is started. With Spot Fleet, if capacity is available only with a different Availability Zone or instance type, Spot Fleet launches a new Spot Instance using the launch configuration with available capacity.

While a Spot Instance is stopped, you can modify some of its instance attributes, but not the instance type. If you detach or delete an EBS volume, it is not attached when the Spot Instance is started. If you detach the root volume and the Spot service attempts to start the Spot Instance, instance start fails and the Spot service terminates the stopped instance.

You can terminate a Spot instance while it is stopped. If you cancel a Spot request or a Spot Fleet, the Spot service terminates any associated Spot Instances that are stopped.

While a Spot Instance is stopped, you are charged only for the EBS volumes, which are preserved. With Spot Fleet, if you have many stopped instances, you can exceed the limit on the number of EBS volumes for your account.

Hibernating Interrupted Spot Instances

You can change the behavior so that Amazon EC2 hibernates Spot Instances when they are interrupted if the following requirements are met.

Requirements

• For a Spot Instance request, the type must be persistent, not one-time. You cannot specify a launch group in the Spot Instance request.
• For a Spot Fleet request, the type must be maintain, not request.
• The root volume must be an EBS volume, not an instance store volume, and it must be large enough to store the instance memory (RAM) during hibernation.
• The following instances are supported: C3, C4, C5, M4, M5, R3, and R4, with less than 100 GB of memory.
• The following operating systems are supported: Amazon Linux AMI, Ubuntu with an AWS-tuned Ubuntu kernel (linux-aws) greater than 4.4.0-1041, and Windows Server 2008 R2 and later.
• Install the hibernation agent on a supported operating system, or use one of the following AMIs, which already include the agent:
  • Amazon Linux AMI 2017.09.1 or later
  • Ubuntu Xenial 16.04 20171121 or later
  • Windows Server 2008 R2 AMI 2017.11.19 or later
  • Windows Server 2012 or Windows Server 2012 R2 AMI 2017.11.19 or later
  • Windows Server 2016 AMI 2017.11.19 or later
• Start the agent. We recommend that you use user data to start the agent on instance startup. Alternatively, you could start the agent manually.

Recommendation

• We strongly recommend that you use an encrypted EBS volume as the root volume, because instance memory is stored on the root volume during hibernation. This ensures that the contents of memory (RAM) are encrypted when the data is at rest on the volume and when data is moving between the instance and volume. If your AMI does not have an encrypted root volume, you can copy it to a new AMI and request encryption. For more information, see Amazon EBS Encryption (p. 696) and Copying an AMI (p. 74).
When a Spot Instance is hibernated by the Spot service, the EBS volumes are preserved and instance memory (RAM) is preserved on the root volume. The private IP addresses of the instance are also preserved. Instance storage volumes and public IP addresses, other than Elastic IP addresses, are not preserved. While the instance is hibernating, you are charged only for the EBS volumes. With Spot Fleet, if you have many hibernated instances, you can exceed the limit on the number of EBS volumes for your account.

The agent prompts the operating system to hibernate when the instance receive a signal from the Spot service. If the agent is not installed, the underlying operating system doesn't support hibernation, or there isn't enough volume space to save the instance memory, hibernation fails and the Spot service stops the instance instead.

When the Spot service hibernates a Spot Instance, you receive an interruption notice, but you do not have two minutes before the Spot Instance is interrupted. Hibernation begins immediately. While the instance is in the process of hibernating, instance health checks might fail. When the hibernation process completes, the state of the instance is stopped.

After a Spot Instance is hibernated by the Spot service, it can only be resumed by the Spot service. The Spot service resumes the instance when capacity becomes available with a Spot price that is less than your specified maximum price.

For more information, see Preparing for Instance Hibernation (p. 241).

Preparing for Interruptions

Here are some best practices to follow when you use Spot Instances:

- Use the default maximum price, which is the On-Demand price.
- Ensure that your instance is ready to go as soon as the request is fulfilled by using an Amazon Machine Image (AMI) that contains the required software configuration. You can also use user data to run commands at start-up.
- Store important data regularly in a place that won't be affected when the Spot Instance terminates. For example, you can use Amazon S3, Amazon EBS, or DynamoDB.
- Divide the work into small tasks (using a Grid, Hadoop, or queue-based architecture) or use checkpoints so that you can save your work frequently.
- Use Spot Instance interruption notices to monitor the status of your Spot Instances.
- While we make every effort to provide this warning as soon as possible, it is possible that your Spot Instance will be terminated before the warning can be made available. Test your application to ensure that it handles an unexpected instance termination gracefully, even if you are testing for interruption notices. You can do so by running the application using an On-Demand Instance and then terminating the On-Demand Instance yourself.

Preparing for Instance Hibernation

You must install a hibernation agent on your instance, unless you used an AMI that already includes the agent. You must run the agent on instance startup, whether the agent was included in your AMI or you installed it yourself. We suggest starting the agent using user data.

The following procedure helps you prepare a Windows instance. For directions to prepare a Linux instance, see Preparing for Instance Hibernation in the Amazon EC2 User Guide for Linux Instances.

To prepare a Windows instance

1. If your AMI doesn't include the agent, download the following files to the C:\Program Files \Amazon\Hibernate folder on your Windows instance:
   - EC2HibernateAgent.exe
2. Add the following command to user data:

```
<powershell>"C:\Program Files\Amazon\Hibernate\EC2HibernateAgent.exe"</powershell>
```

---

**Spot Instance Interruption Notices**

The best way to protect against Spot Instance interruption is to architect your application to be fault tolerant. In addition, you can take advantage of *Spot Instance interruption notices*, which provide a two-minute warning before Amazon EC2 must interrupt your Spot Instance. We recommend that you check for these warnings every 5 seconds.

This warning is made available as a CloudWatch event and as item in the instance metadata (p. 362) on the Spot Instance.

**EC2 Spot Instance Interruption Warning**

When Amazon EC2 interrupts your Spot Instance, it emits an event that can be detected by Amazon CloudWatch Events. For more information, see the Amazon CloudWatch Events User Guide.

The following is an example of the event for Spot Instance interruption. The possible values for *instance-action* are hibernate, stop, and terminate.

```
{
 "version": "0",
 "id": "12345678-1234-1234-1234-123456789012",
 "detail-type": "EC2 Spot Instance Interruption Warning",
 "source": "aws.ec2",
 "account": "123456789012",
 "time": "yyyy-mm-ddThh:mm:ssZ",
 "region": "us-east-2",
 "resources": ["arn:aws:ec2:us-east-2:123456789012:instance/i-1234567890abcdef0"],
 "detail": {
 "instance-id": "i-1234567890abcdef0",
 "instance-action": "action"
 }
}
```

**instance-action**

If your Spot Instance is marked to be hibernated, stopped, or terminated by the Spot service, the *instance-action* item is present in your instance metadata. You can retrieve *instance-action* as follows.

```
```

The *instance-action* item specifies the action and the approximate time, in UTC, when the action will occur. The following example indicates the time that this instance will be stopped:

```
{"action": "stop", "time": "2017-09-18T08:22:00Z"}
```

The following example indicates the time that this instance will be terminated:

```
{"action": "terminate", "time": "2017-09-18T08:22:00Z"}
```
The following example indicates that hibernation has started immediately:

```json
{"action": "hibernate", "time": "2017-11-28T08:22:00Z"}
```

**termination-time**

If your Spot Instance is marked for termination by the Spot service, the **termination-time** item is present in your instance metadata. This item is maintained for backward compatibility; you should use **instance-action** instead. You can retrieve **termination-time** as follows.

```bash
```

The **termination-time** item specifies the approximate time in UTC when the instance will receive the shutdown signal. For example:

```
2015-01-05T18:02:00Z
```

If Amazon EC2 is not preparing to terminate the instance, or if you terminated the Spot Instance yourself, the **termination-time** item is either not present (so you receive an HTTP 404 error) or contains a value that is not a time value.

If Amazon EC2 fails to terminate the instance, the request status is set to **fulfilled**. Note that **termination-time** remains in the instance metadata with the original approximate time, which is now in the past.

**Spot Instance Data Feed**

To help you understand the charges for your Spot Instances, Amazon EC2 provides a data feed that describes your Spot Instance usage and pricing. This data feed is sent to an Amazon S3 bucket that you specify when you subscribe to the data feed.

Data feed files arrive in your bucket typically once an hour, and each hour of usage is typically covered in a single data file. These files are compressed (gzip) before they are delivered to your bucket. Amazon EC2 can write multiple files for a given hour of usage where files are very large (for example, when file contents for the hour exceed 50 MB before compression).

**Note**

If you don't have a Spot Instance running during a certain hour, you won't receive a data feed file for that hour.

**Contents**

- Data Feed File Name and Format (p. 243)
- Amazon S3 Bucket Requirements (p. 244)
- Subscribing to Your Spot Instance Data Feed (p. 245)
- Deleting Your Spot Instance Data Feed (p. 245)

**Data Feed File Name and Format**

The Spot Instance data feed file name uses the following format (with the date and hour in UTC):

```
bucket-name.s3.amazonaws.com/(optional prefix)/aws-account-id.YYYY-MM-DD-HH.n.unique-id.gz
```
For example, if your bucket name is `myawsbucket` and your prefix is `myprefix`, your file names are similar to the following:

```
myawsbucket.s3.amazonaws.com/myprefix/111122223333.2014-03-17-20.001.pwBdGTJG.gz
```

The Spot Instance data feed files are tab-delimited. Each line in the data file corresponds to one instance hour and contains the fields listed in the following table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>The timestamp used to determine the price charged for this instance usage.</td>
</tr>
<tr>
<td>UsageType</td>
<td>The type of usage and instance type being charged for. For <code>m1.small</code> Spot</td>
</tr>
<tr>
<td></td>
<td>Instances, this field is set to <code>SpotUsage</code>. For all other instance types,</td>
</tr>
<tr>
<td></td>
<td>this field is set to <code>SpotUsage:{instance-type}</code>. For example, <code>SpotUsage:c1.medium</code>.</td>
</tr>
<tr>
<td>Operation</td>
<td>The product being charged for. For Linux Spot Instances, this field is</td>
</tr>
<tr>
<td></td>
<td>set to <code>RunInstances</code>. For Windows Spot Instances, this field is set to</td>
</tr>
<tr>
<td></td>
<td><code>RunInstances:0002</code>. Spot usage is grouped according to Availability Zone.</td>
</tr>
<tr>
<td>InstanceID</td>
<td>The ID of the Spot Instance that generated this instance usage.</td>
</tr>
<tr>
<td>MyBidID</td>
<td>The ID for the Spot Instance request that generated this instance usage.</td>
</tr>
<tr>
<td>MyMaxPrice</td>
<td>The maximum price specified for this Spot Instance request.</td>
</tr>
<tr>
<td>MarketPrice</td>
<td>The Spot price at the time specified in the <code>Timestamp</code> field.</td>
</tr>
<tr>
<td>Charge</td>
<td>The price charged for this instance usage.</td>
</tr>
<tr>
<td>Version</td>
<td>The version included in the data feed file name for this record.</td>
</tr>
</tbody>
</table>

**Amazon S3 Bucket Requirements**

When you subscribe to the data feed, you must specify an Amazon S3 bucket to store the data feed files. Before you choose an Amazon S3 bucket for the data feed, consider the following:

- You must have `FULL_CONTROL` permission to the bucket, which includes permission for the `s3:GetBucketAcl` and `s3:PutBucketAcl` actions.

  If you're the bucket owner, you have this permission by default. Otherwise, the bucket owner must grant your AWS account this permission.

- When you subscribe to a data feed, these permissions are used to update the bucket ACL to give the AWS data feed account `FULL_CONTROL` permission. The AWS data feed account writes data feed files to the bucket. If your account doesn't have the required permissions, the data feed files cannot be written to the bucket.

  **Note**
  
  If you update the ACL and remove the permissions for the AWS data feed account, the data feed files cannot be written to the bucket. You must resubscribe to the data feed to receive the data feed files.

- Each data feed file has its own ACL (separate from the ACL for the bucket). The bucket owner has `FULL_CONTROL` permission to the data files. The AWS data feed account has read and write permissions.

- If you delete your data feed subscription, Amazon EC2 doesn't remove the read and write permissions for the AWS data feed account on either the bucket or the data files. You must remove these permissions yourself.
**Subscribing to Your Spot Instance Data Feed**

To subscribe to your data feed, use the following `create-spot-datafeed-subscription` command:

```
aws ec2 create-spot-datafeed-subscription --bucket myawsbucket [--prefix myprefix]
```

The following is example output:

```
{
 "SpotDatafeedSubscription": {
 "OwnerId": "111122223333",
 "Prefix": "myprefix",
 "Bucket": "myawsbucket",
 "State": "Active"
 }
}
```

**Deleting Your Spot Instance Data Feed**

To delete your data feed, use the following `delete-spot-datafeed-subscription` command:

```
aws ec2 delete-spot-datafeed-subscription
```

**Spot Instance Limits**

Spot Instance requests are subject to the following limits:

**Limits**

- Spot Request Limits (p. 245)
- Spot Fleet Limits (p. 245)
- T2 Instances (p. 246)

**Spot Request Limits**

By default, there is an account limit of 20 Spot Instances per region. If you terminate your Spot Instance but do not cancel the request, the request counts against this limit until Amazon EC2 detects the termination and closes the request.

Spot Instance limits are dynamic. When your account is new, your limit might be lower than 20 to start, but increase over time. In addition, your account might have limits on specific Spot Instance types. If you submit a Spot Instance request and you receive the error `Max spot instance count exceeded`, you can complete the AWS Support Center Create Case form to request an Amazon EC2 instance limit increase. For **Use Case Description**, indicate that you need an increase in your limits for Spot Instance requests. For more information, see Amazon EC2 Service Limits (p. 768).

**Spot Fleet Limits**

The usual Amazon EC2 limits apply to instances launched by a Spot Fleet, such as Spot request price limits, instance limits, and volume limits. In addition, the following limits apply:

- The number of active Spot Fleets per region: 1,000
- The number of launch specifications per fleet: 50
- The size of the user data in a launch specification: 16 KB
- The target capacity per Spot Fleet: 3,000
- The target capacity across all Spot Fleets in a region: 5,000
• A Spot Fleet request can't span regions.
• A Spot Fleet request can't span different subnets from the same Availability Zone.

**T2 Instances**

Launch credits are meant to provide a productive initial launch experience for T2 instances by providing sufficient compute resources to configure the instance. Repeated launches of T2 instances to access new launch credits is not permitted. If you require sustained CPU, you can earn credits (by idling over some period), use **T2 Unlimited** (p. 113), or use an instance type with dedicated CPU (for example, *c4.large*).

**Dedicated Hosts**

An Amazon EC2 Dedicated Host is a physical server with EC2 instance capacity fully dedicated to your use. Dedicated Hosts allow you to use your existing per-socket, per-core, or per-VM software licenses, including Windows Server, Microsoft SQL Server, SUSE, Linux Enterprise Server, and so on.

**Contents**

- Differences between Dedicated Hosts and Dedicated Instances (p. 246)
- Pricing and Billing (p. 246)
- Dedicated Hosts Limitations and Restrictions (p. 248)
- Dedicated Host Configurations (p. 248)
- Using Dedicated Hosts (p. 248)
- Monitoring Dedicated Hosts (p. 256)

**Differences between Dedicated Hosts and Dedicated Instances**

Dedicated Hosts and Dedicated Instances can both be used to launch Amazon EC2 instances onto physical servers that are dedicated for your use.

There are no performance, security, or physical differences between Dedicated Instances and instances on Dedicated Hosts. However, Dedicated Hosts give you additional visibility and control over how instances are placed on a physical server.

When you use Dedicated Hosts, you have control over instance placement on the host using the Host Affinity and Instance Auto-placement settings. With Dedicated Instances, you don't have control over which host your instance launches and runs on. If your organization wants to use AWS, but has an existing software license with hardware compliance requirements, this allows visibility into the host's hardware so you can meet those requirements.

For more information about the differences between Dedicated Hosts and Dedicated Instances, see Amazon EC2 Dedicated Hosts.

For more information about working with Dedicated Hosts and Dedicated Instances, see Modifying Instance Tenancies (p. 252).

**Pricing and Billing**

**On-Demand Dedicated Hosts**

On-Demand billing is automatically activated when you allocate a Dedicated Host to your account.

Rates vary based on the instance type that the Dedicated Host supports and the region in which the Dedicated Host is running. The instance type size or the number of instances that are running on the Dedicated Host do not have an impact on the cost of the host. For more information see Amazon EC2 Dedicated Hosts Pricing.
To terminate On-Demand billing, you must first stop instances running on the Dedicated Host and then release it. For more information, see Managing and Releasing Dedicated Hosts (p. 253).

Dedicated Host Reservations

Dedicated Host Reservations provide a billing discount compared to running On-Demand Dedicated Hosts. Reservations are available in three payment options:

- **No Upfront**—No Upfront Reservations provide you with a discount on your Dedicated Host usage over a term and do not require an upfront payment. Available for a one-year term only.
- **Partial Upfront**—A portion of the reservation must be paid upfront and the remaining hours in the term are billed at a discounted rate. Available in one-year and three-year terms.
- **All Upfront**—Provides the lowest effective price. Available in one-year and three-year terms and covers the entire cost of the term upfront, with no additional charges going forward.

You must have active Dedicated Hosts in your account before you can purchase reservations. Each reservation covers a single, specific Dedicated Host in your account. Reservations are applied to the instance family on the host, not the instance size. If you have three Dedicated Hosts with different instances sizes (m4.xlarge, m4.medium, and m4.large) you can associate a single m4 reservation with all those Dedicated Hosts. The instance family and region of the reservation must match that of the Dedicated Hosts you want to associate it with.

**Note**

When a reservation is associated with a Dedicated Host, the Dedicated Host can't be released until the reservation's term is over.

Purchasing Dedicated Host Reservations

You can purchase Dedicated Host Reservations using the console or the API.

**To purchase Dedicated Host Reservations using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Dedicated Hosts, Dedicated Host Reservations, Purchase Dedicated Host Reservation.
3. On the Purchase Dedicated Host Reservation screen, you can search for offerings using the default settings or you can specify a configuration for the offering.
   - **Host instance family**—The options listed correspond with the Dedicated Hosts in your account that are not assigned to a reservation.
   - **Availability Zone**—The Availability Zone of the Dedicated Hosts in your account that aren't assigned to a reservation.
   - **Payment Option**—The payment option for the offering.
   - **Term**—The term of the reservation. Can be one or three years.
4. Choose Find offering and select an offering.
5. Choose the Dedicated Hosts to associate with the Dedicated Host Reservation and choose Review.
6. Review your order and choose Purchase to complete the transaction.

Viewing Dedicated Host Reservations

You can view information about the Dedicated Hosts associated with your reservation, the term of the reservation, the payment option selected, and the start and end dates of the reservation.

**View details of Dedicated Host Reservations**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the Dedicated Hosts page, choose **Dedicated Host Reservations**.
3. Choose the reservation from the list provided.
4. Choose **Details** for information about the reservation.
5. Choose **Hosts** for information about the Dedicated Hosts the reservation is associated with.

**Dedicated Hosts Limitations and Restrictions**

Before you allocate Dedicated Hosts, take note of the following limitations and restrictions.

- RHEL, SUSE Linux, and Windows AMIs offered by AWS or on the AWS Marketplace cannot be used with Dedicated Hosts.
- Amazon EC2 instance recovery is not supported.
- Up to two On-Demand Dedicated Hosts per instance family, per region can be allocated. It is possible to request a limit increase: [Request to Raise Allocation Limit on Amazon EC2 Dedicated Hosts](#).
- The instances that run on a Dedicated Host can only be launched in a VPC.
- Host limits are independent from instance limits. Instances that you are running on Dedicated Hosts do not count towards your instance limits.
- Auto Scaling groups are not supported.
- Amazon RDS instances are not supported.
- The AWS Free Usage tier is not available for Dedicated Hosts.
- Instance placement control refers to managing instance launches onto Dedicated Hosts. Placement groups are not supported for Dedicated Hosts.

**Dedicated Host Configurations**

Dedicated Hosts are configured to support a single instance type and size capacity. The number of instances you can launch onto a Dedicated Host depends on the instance type that the Dedicated Host is configured to support. For example, if you allocated a `c3.xlarge` Dedicated Host, you'd have the right to launch up to eight `c3.xlarge` instances on the Dedicated Host. To determine the number of instance type sizes that you can run on a particular Dedicated Host, see [Amazon EC2 Dedicated Hosts Pricing](#).

**Using Dedicated Hosts**

To use a Dedicated Host, you first *allocate* hosts for use in your account. You then *launch* instances onto the hosts by specifying host tenancy for the instance. The *instance auto-placement* setting allows you to control whether an instance can launch onto a particular host. When an instance is stopped and restarted, the *Host affinity* setting determines whether it's restarted on the same, or a different, host. If you no longer need an On-Demand host, you can stop the instances running on the host, direct them to launch on a different host, and then *release* the Dedicated Host.
Bring Your Own License

You can use your own software licenses on Dedicated Hosts. These are the general steps to follow in order to bring your own volume licensed machine image into Amazon EC2.

1. Verify that the license terms controlling the use of your machine images (AMIs) allow the usage of a machine image in a virtualized cloud environment. For more information about Microsoft Licensing, see Amazon Web Services and Microsoft Licensing.

2. After you have verified that your machine image can be used within Amazon EC2, import your machine images using the ImportImage API operation made available by the VM Import/Export tools. For information about restrictions and limitations, see VM Import/Export Prerequisites. For information about how to import your VM using ImportImage, see Importing a VM into Amazon EC2 Using ImportImage.

3. If you need a mechanism to track how your images were used in AWS, enable host recording in the AWS Config service. You can use AWS Config to record configuration changes to a Dedicated Host and use the output as a data source for license reporting. For more information, see Tracking Configuration Changes with AWS Config (p. 254).

4. After you've imported your machine image, you can launch instances from this image onto active Dedicated Hosts in your account.

5. When you run these instances, depending on the operating system, you may be required to activate these instances against your own KMS server (for example, Windows Server or Windows SQL Server). You cannot activate your imported Windows AMI against the Amazon Windows KMS server.

Allocating Dedicated Hosts

To begin using Dedicated Hosts, they need to be allocated to your account. You can use the AWS Management Console, interact directly with the API, or use the command line interface to perform these tasks. Follow these steps every time you allocate a Dedicated Host.

To allocate Dedicated Hosts to your account

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the Dedicated Hosts page, choose Allocate Dedicated Host.

3. Configure your host using the options provided:
   a. Instance type—Instance type that is available on the Dedicated Host.
   b. Availability Zone—The Availability Zone for the Dedicated Host.
   c. Allow instance auto-placement—The default setting is Off. The Dedicated Host accepts host tenancy instance launches only (provided capacity is available). When instance auto-placement is On, any instances with the tenancy of host, and matching the Dedicated Host's configuration, can be launched onto the host.
   d. Quantity—The number of hosts to allocate with these settings.

4. Choose Allocate host.

The Dedicated Host capacity is made available in your account immediately.

If you launch instances with tenancy host but do not have any active Dedicated Hosts in your account, you receive an error and the instance launch fails.

Launching Instances onto Dedicated Hosts

After you have allocated a Dedicated Host, you can launch instances onto it. Instances with the tenancy host can be launched onto a specific Dedicated Host or Amazon EC2 can select the appropriate Dedicated Hosts for you (auto-placement). You cannot launch instances with the tenancy host if you
do not have active Dedicated Hosts in your account with available capacity matching the instance type configuration of the instances you are launching.

**Note**
The instances launched onto Dedicated Hosts can only be launched in a VPC. For more information, see *Introduction to VPC*.

Before you launch your instances, take note of the limitations. For more information, see *Dedicated Hosts Limitations and Restrictions (p. 248)*.

**Launching instances onto a Dedicated Host from the Dedicated Hosts page**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Dedicated Hosts** page, select a host, choose **Actions, Launch Instance(s) onto Host**.
3. Select the AMI to use. If you have imported your own AMI, choose **My AMIs** on the left sidebar and select the relevant AMI.
4. Choose the instance type for the Dedicated Host; this is the only instance type you can launch onto the host.
5. On the **Configure Instance Details** page, the **Tenancy** and **Host** options are pre-selected. You can toggle the **Affinity** setting to **On** or **Off**.
   - **On**—If stopped, the instance always restarts on that specific host.
   - **Off**—The instance launches onto the specified Dedicated Host, but is not guaranteed to restart on it if stopped.
6. Complete the rest of the steps and choose **Launch Instances**.

The instance is automatically launched onto the Dedicated Host that you specified. To view the instances on a Dedicated Host, go to the **Dedicated Hosts** page, and select the Dedicated Host that you specified when you launched the instance.

**Launching instances onto a specific Dedicated Host from the Instances page**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Instances** page, choose **Launch Instance**.
3. Select an AMI from the list. If you have imported your own AMI, choose **My AMIs** and select the imported image. Not all AMIs can be used with Dedicated Hosts.
4. Select the type of instance to launch.
5. On the **Configure Instance Details** page, the Dedicated Host settings are:
   - **Tenancy**—**Dedicated host** — Launch this instance on a Dedicated host. If you're not able to choose this, check whether you have selected an incompatible AMI or instance type.
   - **Host**—Select a host. If you are unable to select a Dedicated Host, check:
     - Whether the selected subnet is in a different Availability Zone to the host.
     - That the instance type you've selected matches the instance type that the Dedicated Host supports. If you don't have matching, running hosts, the only option available is **Use auto-placement** but the instance launch fails unless there is available, matching Dedicated Host capacity in your account.
   - **Affinity**—The default setting for this is **Off**. The instance launches onto the specified Dedicated Host, but is not guaranteed to restart on it if stopped.

**Note**
If you are unable to see these settings, check that you have selected a VPC in the **Network** menu.
6. Complete the rest of the configuration steps. Choose **Review and Launch**.
7. Choose **Launch**.
8. Select an existing key pair, or create a new one. Choose **Launch Instances**.

**Launching instances onto any Dedicated Host from the Instances page**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Instances** page, choose **Launch Instance**.
3. Select an AMI from the list. If you have imported your own AMI, choose **My AMIs** and select the imported image. Not all AMIs can be used with Dedicated Hosts.
4. Select the type of instance to launch.
5. On the **Configure Instance Details** page, the Dedicated Host settings are:
   - **Tenancy**—**Dedicated host** — **Launch this instance on a Dedicated host** If you’re not able to choose this, check whether you have selected an incompatible AMI or instance type.
   - **Host**—For this type of launch, keep the setting as **Use auto-placement**.
   - **Affinity**—The default setting for this is **Off**. The instance launches onto any available Dedicated Host in your account, but is not guaranteed to restart on that host if stopped.

   If you are unable to see these settings, check that you have selected a VPC in the **Network** menu.
6. Complete the rest of the configuration steps. Choose **Review and Launch**.
7. Choose **Launch**.
8. Select an existing key pair, or create a new one. Choose **Launch Instances**.

**Understanding Instance Placement and Host Affinity**

Placement control happens on both the instance level and host level.

**Contents**

- Instance Auto-Placement (p. 251)
- Host Affinity (p. 251)
- Modifying Instance Auto-Placement and Host Affinity (p. 252)
- Modifying Instance Host Affinity (p. 252)

**Instance Auto-Placement**

Auto-placement allows you to manage whether instances that you launch are launched onto a specific host, or onto any host that has matching configurations. The default setting for this is **Off**. This means that the Dedicated Host you are allocating only accepts **host** tenancy instances launches that specify the unique host ID. Instances launched without a specified host ID are not able to launch onto a host that has instance auto-placement set to **Off**.

**Host Affinity**

Host Affinity establishes a launch relationship between an instance and a Dedicated Host. When affinity is set to **host**, an instance launched onto a specific host always restarts on the same host if stopped. This applies to both targeted and untargeted launches.

If affinity is set to **default**, and you stop and restart the instance, it can be restarted on any available host. However, it tries to launch back onto the last Dedicated Host on which it ran (on a best-effort basis).
You can modify the relationship between an instance and a Dedicated Host by changing the affinity from `host` to `default` and vice versa. For more information, see Modifying Instance Tenancies (p. 252).

Modifying Instance Auto-Placement and Host Affinity

You can manage instance placement controls using the Amazon EC2 console, the API, or CLI.

To modify the instance placement settings of your instances, first stop the instances and then edit the instance placement settings.

**Note**

If the instance is stopped and restarted, it is not guaranteed to restart on the same Dedicated Host.

**To edit an instance's placement settings (any available hosts)**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the **Instances** page, select the instance to edit.
3. Choose **Actions**, **Instance State**, and **Stop**.
4. Choose **Actions**, **Instance Settings**, and **Modify Instance Placement**.
5. Change the instance tenancy to **Launch this instance on a Dedicated host**.
6. Choose **This instance can run on any one of my Hosts**. The instance launches onto any Dedicated Host that has auto-placement enabled.
7. Choose **Save** to continue.
8. Open the context (right-click) menu on the instance and choose **Instance State, Start**.

**To edit an instance's placement settings (specific Dedicated Host)**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the **Instances** page, select the instance to edit.
3. Choose **Actions**, **Instance State**, and **Stop**.
4. Choose **Actions**, **Instance Settings**, and **Modify Instance Placement**.
5. Change the instance tenancy to **Launch this instance on a Dedicated host**.
6. Choose **This instance can only run on the selected Host**. Then select a value for **Target Host** and choose whether you want the instance to be placed on any available host, or a specific host.
7. Choose **Save** to continue.
8. Open the context (right-click) menu on the instance and choose **Instance State, Start**.

Modifying Instance Host Affinity

If you no longer want an instance to have affinity with a host, you can stop the instance and change its affinity to `default`. This removes the persistence between the instance and the host. However, when you restart the instance, it may launch back onto the same Dedicated Host (depending on Dedicated Host availability in your account, and on a best-effort basis). However, if it is stopped again, it does not restart on the same host.

Modifying Instance Tenancies

You can modify the tenancy of a Dedicated Instance from `dedicated` to `host`, and vice versa if it is not using a Windows, SUSE, or RHEL AMI provided by Amazon EC2. You need to stop your Dedicated Instance to do this. Instances with `shared` tenancy cannot be modified to `host` tenancy.

**Modify instance tenancy from dedicated to host**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose **Instances**, then select the Dedicated Instances to modify.
3. Choose **Actions, Instance State**, and **Stop**.
4. Open the context (right-click) menu on the instance and choose **Instance Settings, Modify Instance Placement**.
5. On the **Modify Instance Placement** page, do the following:
   - **Tenancy**—Choose **Launch this instance on a Dedicated host**.
   - **Affinity**—Choose either **This instance can run on any one of my Hosts** or **This instance can only run on the selected Host**.

6. Choose **Save**.
7. When you restart your instance Amazon EC2 places your instance on an available Dedicated Host in your account, provided it supports the instance type that you're launching.

### Managing and Releasing Dedicated Hosts

You can use the console, interact directly with the API, or use the command line interface to view details about individual instances on a host and release an On-Demand Dedicated Host.

**To view details of instances on a Dedicated Host**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Dedicated Hosts** page, select the host to view more information about.
3. Choose the **Description** tab for information about the host. Choose the **Instances** tab for information about instances running on your host.

**To release a Dedicated Host**

Any running instances on the Dedicated Host need to be stopped before you can release the host. These instances can be migrated to other Dedicated Hosts in your account so that you can continue to use them. For more information, see *Modifying Instance Auto-Placement and Host Affinity* (p. 252). These steps apply only to On-Demand Dedicated Hosts.

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Dedicated Hosts** page, select the Dedicated Host to release.
3. Choose **Actions, Release Hosts**.
4. Confirm your choice by choosing **Release**.

After you release a Dedicated Host, you cannot reuse the same host or host ID again.

When the Dedicated Host is released, you are no longer charged On-Demand billing rates for it. The Dedicated Host status is changed to **released** and you are not able to launch any instances onto that host.

If you've recently released Dedicated Hosts, it may take some time for them to stop counting towards your limit. During this time, you may experience **LimitExceeded** errors when trying to allocate new Dedicated Hosts. If this is the case, try allocating new hosts again after a few minutes.
The instances that were stopped are still available for use and are listed on the Instances page. They retain their host tenancy setting.

## API and CLI Command Overview

You can perform the tasks described in this section using an API or the command line.

### To allocate Dedicated Hosts to your account

- allocate-hosts (AWS CLI)
- AllocateHosts (Amazon EC2 Query API)
- New-EC2Hosts (AWS Tools for Windows PowerShell)

### To describe your Dedicated Hosts

- describe-hosts (AWS CLI)
- DescribeHosts (Amazon EC2 Query API)
- Get-EC2Hosts (AWS Tools for Windows PowerShell)

### To modify your Dedicated Hosts

- modify-hosts (AWS CLI)
- ModifyHosts (Amazon EC2 Query API)
- Edit-EC2Hosts (AWS Tools for Windows PowerShell)

### To modify instance auto-placement

- modify-instance-placement (AWS CLI)
- ModifyInstancePlacement (Amazon EC2 Query API)
- Edit-EC2InstancePlacement (AWS Tools for Windows PowerShell)

### To release your Dedicated Hosts

- release-hosts (AWS CLI)
- ReleaseHosts (Amazon EC2 Query API)
- Remove-EC2Hosts (AWS Tools for Windows PowerShell)

## Tracking Configuration Changes with AWS Config

You can use AWS Config to record configuration changes for Dedicated Hosts, and instances that are launched, stopped, or terminated on them. You can then use the information captured by AWS Config as a data source for license reporting.

AWS Config records configuration information for Dedicated Hosts and instances individually and pairs this information through relationships. There are three reporting conditions.

- **AWS Config recording status**—When On, AWS Config is recording one or more AWS resource types, which can include Dedicated Hosts and Dedicated Instances. To capture the information required for license reporting, verify that hosts and instances are being recorded with the following fields.
- **Host recording status**—When Enabled, the configuration information for Dedicated Hosts is recorded.
• **Instance recording status**—When **Enabled**, the configuration information for Dedicated Instances is recorded.

If any of these three conditions are disabled, the icon in the **Edit Config Recording** button is red. To derive the full benefit of this tool, ensure that all three recording methods are enabled. When all three are enabled, the icon is green. To edit the settings, choose **Edit Config Recording**. You are directed to the **Set up AWS Config** page in the AWS Config console, where you can set up AWS Config and start recording for your hosts, instances, and other supported resource types. For more information, see **Setting up AWS Config using the Console** in the **AWS Config Developer Guide**.

**Note**

AWS Config records your resources after it discovers them, which might take several minutes.

After AWS Config starts recording configuration changes to your hosts and instances, you can get the configuration history of any host that you have allocated or released and any instance that you have launched, stopped, or terminated. For example, at any point in the configuration history of a Dedicated Host, you can look up how many instances are launched on that host alongside the number of sockets and cores on the host. For any of those instances, you can also look up the ID of its Amazon Machine Image (AMI). You can use this information to report on licensing for your own server-bound software that is licensed per-socket or per-core.

You can view configuration histories in any of the following ways.

• **By using the AWS Config console.** For each recorded resource, you can view a timeline page, which provides a history of configuration details. To view this page, choose the gray icon in the **Config Timeline** column of the **Dedicated Hosts** page. For more information, see **Viewing Configuration Details in the AWS Config Console** in the **AWS Config Developer Guide**.

• **By running AWS CLI commands.** First, you can use the **list-discovered-resources** command to get a list of all hosts and instances. Then, you can use the **get-resource-config-history** command to get the configuration details of a host or instance for a specific time interval. For more information, see **View Configuration Details Using the CLI** in the **AWS Config Developer Guide**.

• **By using the AWS Config API in your applications.** First, you can use the **ListDiscoveredResources** action to get a list of all hosts and instances. Then, you can use the **GetResourceConfigHistory** action to get the configuration details of a host or instance for a specific time interval.

For example, to get a list of all of your Dedicated Hosts from AWS Config, run a CLI command such as the following:

```
aws configservice list-discovered-resources --resource-type AWS::EC2::Host
```

To obtain the configuration history of a Dedicated Host from AWS Config, run a CLI command such as the following:

```
aws configservice get-resource-config-history --resource-type AWS::EC2::Instance --resource-id i-36a47fdf
```

**To manage AWS Config settings using the AWS Management Console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. On the **Dedicated Hosts** page, choose **Edit Config Recording**.
3. In the AWS Config console, follow the steps provided to turn on recording. For more information, see **Setting up AWS Config using the Console**.

For more information, see **Viewing Configuration Details in the AWS Config Console**.
To activate AWS Config using the command line or API

- Using the AWS CLI, see Viewing Configuration Details in the AWS Config Console in the AWS Config Developer Guide.
- Using the Amazon EC2 API, see GetResourceConfigHistory.

Monitoring Dedicated Hosts

Amazon EC2 constantly monitors the state of your Dedicated Hosts; updates are communicated on the Amazon EC2 console. You can also obtain information about your Dedicated Hosts using the API or CLI.

The following table illustrates the possible State values in the console.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>available</td>
<td>AWS hasn't detected an issue with the Dedicated Host; no maintenance or repairs are scheduled. Instances can be launched onto this Dedicated Host.</td>
</tr>
<tr>
<td>released</td>
<td>The Dedicated Host has been released. The host ID is no longer in use. Released hosts cannot be reused.</td>
</tr>
<tr>
<td>under-assessment</td>
<td>AWS is exploring a possible issue with the Dedicated Host. If action needs to be taken, you are notified via the AWS Management Console or email. Instances cannot be launched onto a Dedicated Host in this state.</td>
</tr>
<tr>
<td>permanent-failure</td>
<td>An unrecoverable failure has been detected. You receive an eviction notice through your instances and by email. Your instances may continue to run. If you stop or terminate all instances on a Dedicated Host with this state, AWS retires the host. Instances cannot be launched onto Dedicated Hosts in this state.</td>
</tr>
<tr>
<td>released-permanent-failure</td>
<td>AWS permanently releases Dedicated Hosts that have failed and no longer have running instances on them. The Dedicated Host ID is no longer available for use.</td>
</tr>
</tbody>
</table>

Dedicated Instances

Dedicated Instances are Amazon EC2 instances that run in a virtual private cloud (VPC) on hardware that's dedicated to a single customer. Your Dedicated Instances are physically isolated at the host hardware level from instances that belong to other AWS accounts. Dedicated Instances may share hardware with other instances from the same AWS account that are not Dedicated Instances.

**Note**

A Dedicated Host is also a physical server that's dedicated for your use. With a Dedicated Host, you have visibility and control over how instances are placed on the server. For more information, see Dedicated Hosts (p. 246).

**Topics**
Dedicated Instance Basics

Each instance that you launch into a VPC has a tenancy attribute. This attribute has the following values.

<table>
<thead>
<tr>
<th>Tenancy Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Your instance runs on shared hardware.</td>
</tr>
<tr>
<td>dedicated</td>
<td>Your instance runs on single-tenant hardware.</td>
</tr>
<tr>
<td>host</td>
<td>Your instance runs on a Dedicated Host, which is an isolated server with configurations that you can control.</td>
</tr>
</tbody>
</table>

After you launch an instance, there are some limitations to changing its tenancy.

- You cannot change the tenancy of an instance from default to dedicated or host after you've launched it.
- You cannot change the tenancy of an instance from dedicated or host to default after you've launched it.
- You can change the tenancy of an instance from dedicated to host, or from host to dedicated after you've launched it. For more information, see Changing the Tenancy of an Instance (p. 260).

Each VPC has a related instance tenancy attribute. This attribute has the following values.

<table>
<thead>
<tr>
<th>Tenancy Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>An instance launched into the VPC runs on shared hardware by default, unless you explicitly specify a different tenancy during instance launch.</td>
</tr>
<tr>
<td>dedicated</td>
<td>An instance launched into the VPC is a Dedicated Instance by default, unless you explicitly specify a tenancy of host during instance launch. You cannot specify a tenancy of default during instance launch.</td>
</tr>
</tbody>
</table>

You can change the instance tenancy of a VPC from dedicated to default after you create it. You cannot change the instance tenancy of a VPC to dedicated.

To create Dedicated Instances, you can do the following:

- Create the VPC with the instance tenancy set to dedicated (all instances launched into this VPC are Dedicated Instances).
- Create the VPC with the instance tenancy set to default, and specify a tenancy of dedicated for any instances when you launch them.

Dedicated Instances Limitations

Some AWS services or their features won't work with a VPC with the instance tenancy set to dedicated. Check the service's documentation to confirm if there are any limitations.

Some instance types cannot be launched into a VPC with the instance tenancy set to dedicated. For more information about supported instances types, see Amazon EC2 Dedicated Instances.
Amazon EBS with Dedicated Instances

When you launch an Amazon EBS-backed Dedicated Instance, the EBS volume doesn't run on single-tenant hardware.

Reserved Instances with Dedicated Tenancy

To guarantee that sufficient capacity is available to launch Dedicated Instances, you can purchase Dedicated Reserved Instances. For more information, see Reserved Instances (p. 157).

When you purchase a Dedicated Reserved Instance, you are purchasing the capacity to launch a Dedicated Instance into a VPC at a much reduced usage fee; the price break in the usage charge applies only if you launch an instance with dedicated tenancy. However, if you purchase a Reserved Instance with a default tenancy value, you won't get a Dedicated Reserved Instance if you launch an instance with dedicated instance tenancy.

You can't use the modification process to change the tenancy of a Reserved Instance after you've purchased it. However, you can exchange a Convertible Reserved Instance for a new Convertible Reserved Instance with a different tenancy.

Auto Scaling of Dedicated Instances

For information about using Auto Scaling to launch Dedicated Instances, see Auto Scaling in Amazon Virtual Private Cloud in the Amazon EC2 Auto Scaling User Guide.

Dedicated Spot Instances

You can run a Dedicated Spot Instance by specifying a tenancy of dedicated when you create a Spot Instance request. For more information, see Specifying a Tenancy for Your Spot Instances (p. 206).

Pricing for Dedicated Instances

Pricing for Dedicated Instances is different to pricing for On-Demand Instances. For more information, see the Amazon EC2 Dedicated Instances product page.

Working with Dedicated Instances

You can create a VPC with an instance tenancy of dedicated to ensure that all instances launched into the VPC are Dedicated Instances. Alternatively, you can specify the tenancy of the instance during launch.

Topics

- Creating a VPC with an Instance Tenancy of Dedicated (p. 258)
- Launching Dedicated Instances into a VPC (p. 259)
- Displaying Tenancy Information (p. 259)
- Changing the Tenancy of an Instance (p. 260)
- Changing the Tenancy of a VPC (p. 261)

Creating a VPC with an Instance Tenancy of Dedicated

When you create a VPC, you have the option of specifying its instance tenancy. If you're using the Amazon VPC console, you can create a VPC using the VPC wizard or the Your VPCs page.

To create a VPC with an instance tenancy of dedicated (VPC Wizard)

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the dashboard, choose Start VPC Wizard.
3. Select a VPC configuration, and then choose Select.
4. On the next page of the wizard, choose Dedicated from the Hardware tenancy list.
5. Choose Create VPC.

To create a VPC with an instance tenancy of dedicated (Create VPC dialog box)

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Your VPCs, and then Create VPC.
3. For Tenancy, choose Dedicated. Specify the CIDR block, and choose Yes, Create.

To set the tenancy option when you create a VPC using the command line

- create-vpc (AWS CLI)
- New-EC2Vpc (AWS Tools for Windows PowerShell)

If you launch an instance into a VPC that has an instance tenancy of dedicated, your instance is automatically a Dedicated Instance, regardless of the tenancy of the instance.

Launching Dedicated Instances into a VPC

You can launch a Dedicated Instance using the Amazon EC2 launch instance wizard.

To launch a Dedicated Instance into a default tenancy VPC using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. On the Choose an Amazon Machine Image (AMI) page, select an AMI and choose Select.
4. On the Choose an Instance Type page, select the instance type and choose Next: Configure Instance Details.
   
   Note
   Ensure that you choose an instance type that’s supported as a Dedicated Instance. For more information, see Amazon EC2 Dedicated Instances.
   
5. On the Configure Instance Details page, select a VPC and subnet. Choose Dedicated - Run a dedicated instance from the Tenancy list, and then Next: Add Storage.
6. Continue as prompted by the wizard. When you’ve finished reviewing your options on the Review Instance Launch page, choose Launch to choose a key pair and launch the Dedicated Instance.

For more information about launching an instance with a tenancy of host, see Launching Instances onto Dedicated Hosts (p. 249).

To set the tenancy option for an instance during launch using the command line

- run-instances (AWS CLI)
- New-EC2Instance (AWS Tools for Windows PowerShell)

Displaying Tenancy Information

To display tenancy information for your VPC using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Your VPCs.
3. Check the instance tenancy of your VPC in the **Tenancy** column.
4. If the **Tenancy** column is not displayed, choose **Edit Table Columns** (the gear-shaped icon), **Tenancy** in the **Show/Hide Columns** dialog box, and then **Close**.

**To display tenancy information for your instance using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Check the tenancy of your instance in the **Tenancy** column.
4. If the **Tenancy** column is not displayed, do one of the following:
   - Choose **Show/Hide Columns** (the gear-shaped icon), **Tenancy** in the **Show/Hide Columns** dialog box, and then **Close**.
   - Select the instance. The **Description** tab in the details pane displays information about the instance, including its tenancy.

**To describe the tenancy of your VPC using the command line**

- **describe-vpcs** (AWS CLI)
- **Get-EC2Vpc** (AWS Tools for Windows PowerShell)

**To describe the tenancy of your instance using the command line**

- **describe-instances** (AWS CLI)
- **Get-EC2Instance** (AWS Tools for Windows PowerShell)

**To describe the tenancy value of a Reserved Instance using the command line**

- **describe-reserved-instances** (AWS CLI)
- **Get-EC2ReservedInstance** (AWS Tools for Windows PowerShell)

**To describe the tenancy value of a Reserved Instance offering using the command line**

- **describe-reserved-instances-offerings** (AWS CLI)
- **Get-EC2ReservedInstancesOffering** (AWS Tools for Windows PowerShell)

**Changing the Tenancy of an Instance**

Depending on your instance type and platform, you can change the tenancy of a stopped Dedicated Instance to **host** after launching it. The next time the instance starts, it's started on a Dedicated Host that's allocated to your account. For more information about allocating and working with Dedicated Hosts, and the instance types that can be used with Dedicated Hosts, see *Using Dedicated Hosts (p. 248)*. Similarly, you can change the tenancy of a stopped Dedicated Host instance to **dedicated** after launching it. The next time the instance starts, it's started on single-tenant hardware that we control.

**To change the tenancy of an instance using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances** and select your instance.
3. Choose **Actions, Instance State, Stop**.
5. In the Tenancy list, choose whether to run your instance on dedicated hardware or on a Dedicated Host. Choose Save.

To modify the tenancy value of an instance using the command line

- `modify-instance-placement` (AWS CLI)
- `Edit-EC2InstancePlacement` (AWS Tools for Windows PowerShell)

Changing the Tenancy of a VPC

You can change the instance tenancy attribute of a VPC from dedicated to default. Modifying the instance tenancy of the VPC does not affect the tenancy of any existing instances in the VPC. The next time you launch an instance in the VPC, it has a tenancy of default, unless you specify otherwise during launch.

You cannot change the instance tenancy attribute of a VPC to dedicated.

You can modify the instance tenancy attribute of a VPC using the AWS CLI, an AWS SDK, or the Amazon EC2 API only.

To modify the instance tenancy attribute of a VPC using the AWS CLI

- Use the `modify-vpc-tenancy` command to specify the ID of the VPC and instance tenancy value. The only supported value is default.

  ```bash
 aws ec2 modify-vpc-tenancy --vpc-id vpc-1a2b3c4d --instance-tenancy default
  ```

Instance Lifecycle

By working with Amazon EC2 to manage your instances from the moment you launch them through their termination, you ensure that your customers have the best possible experience with the applications or sites that you host on your instances.

The following illustration represents the transitions between instance states.

![Instance Lifecycle Diagram]

Instance Launch

When you launch an instance, it enters the pending state. The instance type that you specified at launch determines the hardware of the host computer for your instance. We use the Amazon Machine Image
(AMI) you specified at launch to boot the instance. After the instance is ready for you, it enters the
**running** state. You can connect to your running instance and use it the way that you'd use a computer
sitting in front of you.

As soon as your instance transitions to the **running** state, you're billed for each hour or partial hour that
you keep the instance running, even if the instance remains idle and you don't connect to it.

For more information, see Launch Your Instance (p. 264) and Connecting to Your Windows
Instance (p. 283).

**Instance Stop and Start (Amazon EBS-Backed
Instances Only)**

If your instance fails a status check or is not running your applications as expected, and if the root
volume of your instance is an Amazon EBS volume, you can stop and start your instance to try to fix the
problem.

When you stop your instance, it enters the **stopping** state, and then the **stopped** state. We don't
charge hourly usage or data transfer fees for your instance after you stop it, but we do charge for the
storage for any Amazon EBS volumes. While your instance is in the **stopped** state, you can modify
certain attributes of the instance, including the instance type.

When you start your instance, it enters the **pending** state, and in most cases, we move the instance
to a new host computer. (Your instance may stay on the same host computer if there are no problems
with the host computer.) When you stop and start your instance, you lose any data on the instance store
volumes on the previous host computer.

If your instance is running in EC2-Classic, it receives a new private IPv4 address, which means that an
Elastic IP address associated with the private IPv4 address is no longer associated with your instance.
If your instance is running in EC2-VPC, it retains its private IPv4 address, which means that an Elastic
IP address associated with the private IPv4 address or network interface is still associated with your
instance. If your instance has an IPv6 address, it retains its IPv6 address.

Each time you transition an instance from **stopped** to **running**, we charge a full instance hour, even if
these transitions happen multiple times within a single hour.

For more information, see Stop and Start Your Instance (p. 287).

**Instance Reboot**

You can reboot your instance using the Amazon EC2 console, a command line tool, and the Amazon EC2
API. We recommend that you use Amazon EC2 to reboot your instance instead of running the operating
system reboot command from your instance.

Rebooting an instance is equivalent to rebooting an operating system; the instance remains on the same
host computer and maintains its public DNS name, private IP address, and any data on its instance store
volumes. It typically takes a few minutes for the reboot to complete, but the time it takes to reboot
depends on the instance configuration.

Rebooting an instance doesn't start a new instance billing hour.

For more information, see Reboot Your Instance (p. 290).

**Instance Retirement**

An instance is scheduled to be retired when AWS detects irreparable failure of the underlying hardware
hosting the instance. When an instance reaches its scheduled retirement date, it is stopped or terminated
by AWS. If your instance root device is an Amazon EBS volume, the instance is stopped, and you can start it again at any time. If your instance root device is an instance store volume, the instance is terminated, and cannot be used again.

For more information, see Instance Retirement (p. 291).

Instance Termination

When you've decided that you no longer need an instance, you can terminate it. As soon as the status of an instance changes to shutting-down or terminated, you stop incurring charges for that instance.

If you enable termination protection, you can't terminate the instance using the console, CLI, or API.

After you terminate an instance, it remains visible in the console for a short while, and then the entry is automatically deleted. You can also describe a terminated instance using the CLI and API. Resources (such as tags) are gradually disassociated from the terminated instance, therefore may no longer be visible on the terminated instance after a short while. You can't connect to or recover a terminated instance.

Each Amazon EBS-backed instance supports the InstanceInitiatedShutdownBehavior attribute, which controls whether the instance stops or terminates when you initiate shutdown from within the instance itself. The default behavior is to stop the instance. You can modify the setting of this attribute while the instance is running or stopped.

Each Amazon EBS volume supports the DeleteOnTermination attribute, which controls whether the volume is deleted or preserved when you terminate the instance it is attached to. The default is to delete the root device volume and preserve any other EBS volumes.

For more information, see Terminate Your Instance (p. 293).

Differences Between Reboot, Stop, and Terminate

The following table summarizes the key differences between rebooting, stopping, and terminating your instance.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reboot</th>
<th>Stop/start (Amazon EBS-backed instances only)</th>
<th>Terminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host computer</td>
<td>The instance stays on the same host computer</td>
<td>In most cases, we move the instance to a new host computer. Your instance may stay on the same host computer if there are no problems with the host computer.</td>
<td>None</td>
</tr>
<tr>
<td>Private and public IPv4 addresses</td>
<td>These addresses stay the same</td>
<td>EC2-Classic: The instance gets new private and public IPv4 addresses</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC2-VPC: The instance keeps its private IPv4 address. The instance gets a new public IPv4 address, unless it has an Elastic IP</td>
<td></td>
</tr>
</tbody>
</table>
### Launch Your Instance

An instance is a virtual server in the AWS Cloud. You launch an instance from an Amazon Machine Image (AMI). The AMI provides the operating system, application server, and applications for your instance.

When you sign up for AWS, you can get started with Amazon EC2 for free using the [AWS Free Tier](https://aws.amazon.com/free/). You can use the free tier to launch and use a micro instance for free for 12 months. If you launch an instance that is not within the free tier, you incur the standard Amazon EC2 usage fees for the instance. For more information, see the [Amazon EC2 Pricing](https://aws.amazon.com/ec2/pricing/).

You can launch an instance using the following methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Amazon EC2 console] Use the launch instance wizard to specify the launch parameters</td>
<td>Launching an Instance Using the Launch Instance Wizard (p. 265)</td>
</tr>
<tr>
<td>[Amazon EC2 console] Create a launch template and launch the instance from the launch template</td>
<td>Launching an Instance from a Launch Template (p. 271)</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reboot</th>
<th>Stop/start (Amazon EBS-backed instances only)</th>
<th>Terminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic IP addresses (IPv4)</td>
<td>The Elastic IP address remains associated with the instance</td>
<td>EC2-Classic: The Elastic IP address is disassociated from the instance</td>
<td>The Elastic IP address is disassociated from the instance</td>
</tr>
<tr>
<td>IPv6 address (EC2-VPC only)</td>
<td>The address stays the same</td>
<td>The instance keeps its IPv6 address</td>
<td>None</td>
</tr>
<tr>
<td>Instance store volumes</td>
<td>The data is preserved</td>
<td>The data is erased</td>
<td>The data is erased</td>
</tr>
<tr>
<td>Root device volume</td>
<td>The volume is preserved</td>
<td>The volume is preserved</td>
<td>The volume is deleted by default</td>
</tr>
<tr>
<td>Billing</td>
<td>The instance billing hour doesn't change.</td>
<td>You stop incurring charges for an instance as soon as its state changes to stopping. Each time an instance transitions from stopped to running, we start a new instance billing hour.</td>
<td>You stop incurring charges for an instance as soon as its state changes to shutting-down.</td>
</tr>
</tbody>
</table>

Operating system shutdown commands always terminate an instance store-backed instance. You can control whether operating system shutdown commands stop or terminate an Amazon EBS-backed instance. For more information, see Changing the Instance Initiated Shutdown Behavior (p. 295).
### Launching an Instance Using Parameters from an Existing Instance (p. 280)

### Launching an AWS Marketplace Instance (p. 281)

### Using Amazon EC2 through the AWS CLI

### Amazon EC2 from the AWS Tools for Windows PowerShell

After you launch your instance, you can connect to it and use it. To begin, the instance state is pending. When the instance state is running, the instance has started booting. There might be a short time before you can connect to the instance. The instance receives a public DNS name that you can use to contact the instance from the internet. The instance also receives a private DNS name that other instances within the same Amazon EC2 network (EC2-Classic or EC2-VPC) can use to contact the instance. For more information about connecting to your instance, see Connecting to Your Windows Instance (p. 283).

When you are finished with an instance, be sure to terminate it. For more information, see Terminate Your Instance (p. 293).

### Launching an Instance Using the Launch Instance Wizard

Before you launch your instance, be sure that you are set up. For more information, see Setting Up with Amazon EC2 (p. 12).

Your AWS account might support both the EC2-Classic and EC2-VPC platforms, depending on when you created your account and which regions you've used. To find out which platform your account supports, see Supported Platforms (p. 551). If your account supports EC2-Classic, you can launch an instance into either platform. If your account supports EC2-VPC only, you can launch an instance into a VPC only.

**Important**

When you launch an instance that's not within the AWS Free Tier, you are charged for the time that the instance is running, even if it remains idle.

### Launching Your Instance from an AMI

When you launch an instance, you must select a configuration, known as an Amazon Machine Image (AMI). An AMI contains the information required to create a new instance. For example, an AMI might contain the software required to act as a web server: for example, Windows, Apache, and your website.

**Tip**

To ensure faster instance launches, break up large requests into smaller batches. For example, create five separate launch requests for 100 instances each instead of one launch request for 500 instances.

**To launch an instance**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation bar at the top of the screen, the current region is displayed. Select the region for the instance. This choice is important because some Amazon EC2 resources can be shared between regions, while others can't. Select the region that meets your needs. For more information, see Resource Locations (p. 751).
3. From the Amazon EC2 console dashboard, choose **Launch Instance**.
4. On the **Choose an Amazon Machine Image (AMI)** page, choose an AMI as follows:
   a. Select the type of AMI to use in the left pane:
      
      **Quick Start**

      A selection of popular AMIs to help you get started quickly. To select an AMI that is eligible for the free tier, choose **Free tier only** in the left pane. (Notice that these AMIs are marked **Free tier eligible**.)

      **My AMIs**

      The private AMIs that you own, or private AMIs that have been shared with you. To view AMIs shared with you, choose **Shared with me** in the left pane.

      **AWS Marketplace**

      An online store where you can buy software that runs on AWS, including AMIs. For more information about launching an instance from the AWS Marketplace, see **Launching an AWS Marketplace Instance** (p. 281).
Community AMIs

The AMIs that AWS community members have made available for others to use. To filter the list of AMIs by operating system, choose the appropriate check box under Operating system. You can also filter by architecture and root device type.

b. Check the Virtualization type listed for each AMI. Notice which AMIs are the type that you need, either hvm or paravirtual. For example, some instance types require HVM.
c. Choose an AMI that meets your needs, and then choose Select.

5. On the Choose an Instance Type page, select the hardware configuration and size of the instance to launch. Larger instance types have more CPU and memory. For more information, see Instance Types (p. 104).

To remain eligible for the free tier, choose the t2.micro instance type. For more information, see T2 Instances (p. 108).

By default, the wizard displays current generation instance types, and selects the first available instance type based on the AMI that you selected. To view previous generation instance types, choose All generations from the filter list.

Note
To set up an instance quickly for testing purposes, choose Review and Launch to accept the default configuration settings, and launch your instance. Otherwise, to configure your instance further, choose Next: Configure Instance Details.

6. On the Configure Instance Details page, change the following settings as necessary (expand Advanced Details to see all the settings), and then choose Next: Add Storage:

- **Number of instances**: Enter the number of instances to launch.

  Note
  To help ensure that you maintain the correct number of instances to handle your application, you can choose Launch into Auto Scaling Group to create a launch configuration and an Auto Scaling group. Auto Scaling scales the number of instances in the group according to your specifications. For more information, see the Amazon EC2 Auto Scaling User Guide.

- **Purchasing option**: Select Request Spot instances to launch a Spot Instance. This adds and removes options from this page. Set your bid price, and optionally update the request type, interruption behavior, and request validity. For more information, see Creating a Spot Instance Request (p. 207).

- Your account may support the EC2-Classic and EC2-VPC platforms, or EC2-VPC only. To find out which platform your account supports, see Supported Platforms (p. 551). If your account supports EC2-VPC only, you can launch your instance into your default VPC or a nondefault VPC. Otherwise, you can launch your instance into EC2-Classic or a nondefault VPC.

  Note
  Some instance types must be launched into a VPC. If you don't have a VPC, you can let the wizard create one for you.

To launch into EC2-Classic:

- **Network**: Select Launch into EC2-Classic.

To launch into a VPC:

- **Network**: Select the VPC, or to create a new VPC, choose Create new VPC to go the Amazon VPC console. When you have finished, return to the wizard and choose Refresh to load your VPC in the list.
• **Subnet:** Select the subnet into which to launch your instance. If your account is EC2-VPC only, select **No preference** to let AWS choose a default subnet in any Availability Zone. To create a new subnet, choose **Create new subnet** to go to the Amazon VPC console. When you are done, return to the wizard and choose **Refresh** to load your subnet in the list.

• **Auto-assign Public IP:** Specify whether your instance receives a public IPv4 address. By default, instances in a default subnet receive a public IPv4 address and instances in a nondefault subnet do not. You can select **Enable** or **Disable** to override the subnet's default setting. For more information, see [Public IPv4 Addresses and External DNS Hostnames](p. 572).

• **Auto-assign IPv6 IP:** Specify whether your instance receives an IPv6 address from the range of the subnet. Select **Enable** or **Disable** to override the subnet's default setting. This option is only available if you've associated an IPv6 CIDR block with your VPC and subnet. For more information, see [Your VPC and Subnets](in the Amazon VPC User Guide).

• **Domain join directory:** Select the AWS Directory Service directory (domain) to which your Windows instance is joined. The directory must be in the same VPC that you selected for your instance. If you select a domain, you must select an IAM role. For more information, see [Launching an Instance](Simple AD and Microsoft AD).

• **IAM role:** Select an AWS Identity and Access Management (IAM) role to associate with the instance. For more information, see [IAM Roles for Amazon EC2](p. 534).

• **Shutdown behavior:** Select whether the instance should stop or terminate when shut down. For more information, see [Changing the Instance Initiated Shutdown Behavior](p. 295).

• **Enable termination protection:** Select this check box to prevent accidental termination. For more information, see [Enabling Termination Protection for an Instance](p. 294).

• **Monitoring:** Select this check box to enable detailed monitoring of your instance using Amazon CloudWatch. Additional charges apply. For more information, see [Monitoring Your Instances Using CloudWatch](p. 404).

• **EBS-Optimized instance:** An Amazon EBS-optimized instance uses an optimized configuration stack and provides additional, dedicated capacity for Amazon EBS I/O. If the instance type supports this feature, select this check box to enable it. Additional charges apply. For more information, see [Amazon EBS–Optimized Instances](p. 691).

• **Tenancy:** If you are launching your instance into a VPC, you can choose to run your instance on isolated, dedicated hardware (**Dedicated**) or on a Dedicated Host (**Dedicated host**). Additional charges may apply. For more information, see [Dedicated Instances](p. 256) and [Dedicated Hosts](p. 246).

• **T2 Unlimited:** (Only valid for T2 instances) Select this check box to enable applications to burst beyond the baseline for as long as needed. Additional charges may apply. For more information, see [T2 Instances](p. 108).

• **Network interfaces:** If you selected a specific subnet, you can specify up to two network interfaces for your instance:
  - For **Network Interface**, select **New network interface** to let AWS create a new interface, or select an existing, available network interface.
  - For **Primary IP**, enter a private IPv4 address from the range of your subnet, or leave **Auto-assign** to let AWS choose a private IPv4 address for you.
  - For **Secondary IP addresses**, choose **Add IP** to assign more than one private IPv4 address to the selected network interface.
  - (IPv6-only) For **IPv6 IPs**, choose **Add IP**, and enter an IPv6 address from the range of the subnet, or leave **Auto-assign** to let AWS choose one for you.
  - Choose **Add Device** to add a secondary network interface. A secondary network interface can reside in a different subnet of the VPC, provided it's in the same Availability Zone as your instance.

For more information, see [Elastic Network Interfaces](p. 595). If you specify more than one network interface, your instance cannot receive a public IPv4 address. Additionally, if you specify an existing network interface for eth0, you cannot override the subnet's public IPv4 setting using...
**Auto-assign Public IP.** For more information, see Assigning a Public IPv4 Address During Instance Launch (p. 577).

- **Kernel ID:** (Only valid for paravirtual (PV) AMIs) Select **Use default** unless you want to use a specific kernel.
- **RAM disk ID:** (Only valid for paravirtual (PV) AMIs) Select **Use default** unless you want to use a specific RAM disk. If you have selected a kernel, you may need to select a specific RAM disk with the drivers to support it.
- **Placement group:** A placement group determines the placement strategy of your instances. Select an existing placement group, or create a new one. This option is only available if you’ve selected an instance type that supports placement groups. For more information, see **Placement Groups** (p. 612).
- **User data:** You can specify user data to configure an instance during launch, or to run a configuration script. To attach a file, select the **As file** option and browse for the file to attach.

7. On the **Add Storage** page, you can specify volumes to attach to the instance besides the volumes specified by the AMI (such as the root device volume). You can change the following options, then choose **Next: Add Tags** when you have finished:

- **Type:** Select instance store or Amazon EBS volumes to associate with your instance. The type of volume available in the list depends on the instance type you’ve chosen. For more information, see Amazon EC2 Instance Store (p. 722) and Amazon EBS Volumes (p. 630).
- **Device:** Select from the list of available device names for the volume.
- **Snapshot:** Enter the name or ID of the snapshot from which to restore a volume. You can also search for public snapshots by typing text into the **Snapshot** field. Snapshot descriptions are case-sensitive.
- **Size:** For Amazon EBS-backed volumes, you can specify a storage size. Even if you have selected an AMI and instance that are eligible for the free tier, to stay within the free tier, you must keep under 30 GiB of total storage.

**Note**
The following Amazon EBS volume considerations apply to Windows boot volumes:

- Windows boot volumes must use an MBR partition table, which limits the usable space to 2 TiB, regardless of volume size.
- Windows boot volumes of 2 TiB (2048 GiB) that have been converted to use a dynamic MBR partition table display an error when examined with Disk Manager.

The following Amazon EBS volume considerations apply to Windows data (non-boot) volumes:

- Windows volumes 2 TiB (2048 GiB) or greater must use a GPT partition table to access the entire volume.
- Amazon EBS volumes over 2048 GiB that are attached to Windows instances at launch are automatically formatted with a GPT partition table.
- Amazon EBS volumes attached to Windows instances after launch must be manually initialized with a GPT partition table. For more information, see Making an Amazon EBS Volume Available for Use.

**Note**
If you increase the size of your root volume at this point (or any other volume created from a snapshot), you need to extend the file system on that volume in order to use the extra space. For more information about extending your file system after your instance has launched, see Modifying the Size, IOPS, or Type of an EBS Volume on Windows (p. 666).

- **Volume Type:** For Amazon EBS volumes, select either a General Purpose SSD, Provisioned IOPS SSD, or Magnetic volume. For more information, see Amazon EBS Volume Types (p. 632).
Note
If you select a Magnetic boot volume, you'll be prompted when you complete the wizard to make General Purpose SSD volumes the default boot volume for this instance and future console launches. (This preference persists in the browser session, and does not affect AMIs with Provisioned IOPS SSD boot volumes.) We recommended that you make General Purpose SSD volumes the default because they provide a much faster boot experience and they are the optimal volume type for most workloads. For more information, see Amazon EBS Volume Types (p. 632).

Note
Some AWS accounts created before 2012 might have access to Availability Zones in us-west-1 or ap-northeast-1 that do not support Provisioned IOPS SSD (io1) volumes. If you are unable to create an io1 volume (or launch an instance with an io1 volume in its block device mapping) in one of these regions, try a different Availability Zone in the region. You can verify that an Availability Zone supports io1 volumes by creating a 4 GiB io1 volume in that zone.

- **IOPS**: If you have selected a Provisioned IOPS SSD volume type, then you can enter the number of I/O operations per second (IOPS) that the volume can support.
- **Delete on Termination**: For Amazon EBS volumes, select this check box to delete the volume when the instance is terminated. For more information, see Preserving Amazon EBS Volumes on Instance Termination (p. 296).
- **Encrypted**: Select this check box to encrypt new Amazon EBS volumes. Amazon EBS volumes that are restored from encrypted snapshots are automatically encrypted. Encrypted volumes may only be attached to supported instance types (p. 697).

8. On the Add Tags page, specify tags (p. 759) by providing key and value combinations. You can tag the instance, the volumes, or both. For Spot Instances, you can tag the Spot Instance request only. Choose Add another tag to add more than one tag to your resources. Choose Next: Configure Security Group when you are done.

9. On the Configure Security Group page, use a security group to define firewall rules for your instance. These rules specify which incoming network traffic is delivered to your instance. All other traffic is ignored. (For more information about security groups, see Amazon EC2 Security Groups for Windows Instances (p. 451).) Select or create a security group as follows, and then choose Review and Launch.

a. To select an existing security group, choose Select an existing security group, and select your security group. (If you are launching into EC2-Classic, the security groups are for EC2-Classic. If you are launching into a VPC, the security groups are for that VPC.)

   **Note**
   (Optional) You can't edit the rules of an existing security group, but you can copy them to a new group by choosing Copy to new. Then you can add rules as described in the next step.

b. To create a new security group, choose Create a new security group. The wizard automatically defines the launch-wizard-x security group and creates an inbound rule to allow you to connect to your instance over RDP (port 3389).

c. You can add rules to suit your needs. For example, if your instance is a web server, open ports 80 (HTTP) and 443 (HTTPS) to allow internet traffic.

   To add a rule, choose Add Rule, select the protocol to open to network traffic, and then specify the source. Choose My IP from the Source list to let the wizard add your computer's public IP address. However, if you are connecting through an ISP or from behind your firewall without a static IP address, you need to find out the range of IP addresses used by client computers.

   **Warning**
   Rules that enable all IP addresses (0.0.0.0/0) to access your instance over SSH or RDP are acceptable for this short exercise, but are unsafe for production environments.
You should authorize only a specific IP address or range of addresses to access your instance.

10. On the Review Instance Launch page, check the details of your instance, and make any necessary changes by choosing the appropriate Edit link.

When you are ready, choose Launch.

11. In the Select an existing key pair or create a new key pair dialog box, you can choose an existing key pair, or create a new one. For example, choose Choose an existing key pair, then select the key pair you created when getting set up.

To launch your instance, select the acknowledgment check box, then choose Launch Instances.

**Important**

If you choose the Proceed without key pair option, you won't be able to connect to the instance unless you choose an AMI that is configured to allow users another way to log in.

12. (Optional) You can create a status check alarm for the instance (additional fees may apply). (If you're not sure, you can always add one later.) On the confirmation screen, choose Create status check alarms and follow the directions. For more information, see Creating and Editing Status Check Alarms (p. 398).

13. If the instance state immediately goes to terminated instead of running, you can get information about why the instance didn't launch. For more information, see Instance terminates immediately (p. 851).

### Launching an Instance from a Launch Template

You can create a launch template that contains the configuration information to launch an instance. Launch templates enable you to store launch parameters so that you do not have to specify them every time you launch an instance. For example, a launch template can contain the AMI ID, instance type, and network settings that you typically use to launch instances. When you launch an instance using the Amazon EC2 console, an AWS SDK, or a command line tool, you can specify the launch template to use.

For each launch template, you can create one or more numbered launch template versions. Each version can have different launch parameters. When you launch an instance from a launch template, you can use any version of the launch template. If you do not specify a version, the default version is used. You can set any version of the launch template as the default version—by default, it's the first version of the launch template.

The following diagram shows a launch template with three versions. The first version specifies the instance type, AMI ID, subnet, and key pair to use to launch the instance. The second version is based on the first version and also specifies a security group for the instance. The third version uses different values for some of the parameters. Version 2 is set as the default version. If you launched an instance from this launch template, the launch parameters from version 2 would be used if no other version were specified.
Launch Template Restrictions

The following rules apply to launch templates and launch template versions:

- You are limited to creating 1,000 launch templates per region and 10,000 versions per launch template.
- Launch parameters are optional. However, you must ensure that your request to launch an instance includes all required parameters. For example, if your launch template does not include an AMI ID, you must specify both the launch template and an AMI ID when you launch an instance.
- Launch template parameters are not validated when you create the launch template. Ensure that you specify the correct values for the parameters and that you use supported parameter combinations. For example, to launch an instance in a placement group, you must specify a supported instance type.
- You can tag a launch template, but you cannot tag a launch template version.
- Launch template versions are numbered in the order in which they are created. When you create a launch template version, you cannot specify the version number yourself.

Using Launch Templates to Control Launch Parameters

A launch template can contain all or some of the parameters to launch an instance. When you launch an instance using a launch template, you can override parameters that are specified in the launch template, or you can specify additional parameters that are not in the launch template.

**Note**

You cannot remove launch template parameters during launch (for example, you cannot specify a null value for the parameter). To remove a parameter, create a new version of the launch template without the parameter and use that version to launch the instance.

To launch instances, IAM users must have permission to use the `ec2:RunInstances` action, and they must have permission to create or use the resources that are created or associated with the instance. You can use resource-level permissions for the `ec2:RunInstances` action to control the launch parameters that users can specify, or you can grant users permission to launch an instance using a launch template instead. This enables you to manage launch parameters in a launch template rather than in an IAM policy, and to use a launch template as an authorization vehicle for launching instances. For example, you can specify that users can only launch instances using a launch template, and that they can only use a specific launch template. You can also control the launch parameters that users can override in the launch template. For example policies, see Launch Templates (p. 517).

Controlling the Use of Launch Templates

By default, IAM users do not have permissions to work with launch templates. You can create an IAM user policy that grants users permissions to create, modify, describe, and delete launch templates and launch
template versions. You can also apply resource-level permissions to some launch template actions to control a user's ability to use specific resources for those actions. For more information, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477) and the following example policies: 12. Working with Launch Templates (p. 526).

Take care when granting users permissions to use the `ec2:CreateLaunchTemplate` and `ec2:CreateLaunchTemplateVersion` actions. These actions do not support resource-level permissions that enable you to control which resources users can specify in the launch template. To restrict the resources that are used to launch an instance, ensure that you grant permissions to create launch templates and launch template versions only to appropriate administrators.

**Creating a Launch Template**

You can create a new launch template using parameters that you define, or you can use an existing instance as the basis for a new launch template.

**To create a new launch template**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Launch Templates, Create launch template.
3. Provide a name and description for the launch template.
4. For Launch template contents, provide the following information.
   - **AMI ID**: Specify an AMI ID from which to launch the instance. You can use an AMI that you own, or you can find a suitable AMI (p. 52).
   - **Instance type**: Choose the instance type. Ensure that the instance type is compatible with the AMI you’ve specified. For more information, see Instance Types (p. 104).
   - **Key pair name**: Specify the key pair for the instance. For more information, see Amazon EC2 Key Pairs and Windows Instances (p. 446).
   - **Network type**: If applicable, choose whether to launch the instance into EC2-Classic or a VPC. This option is not available if your account supports EC2-VPC only. If you choose EC2-Classic, ensure that the specified instance type is supported in EC2-Classic and specify the Availability Zone for the instance. If you choose EC2-VPC, specify the subnet in the Network interfaces section.
5. For Network interfaces, you can specify up to two network interfaces (p. 595) for the instance.
   - **Device**: Specify the device number for the network interface; for example, `eth0` for the primary network interface. If you leave the field blank, AWS creates the primary network interface.
   - **Network interface**: Specify the ID of the network interface or leave blank to let AWS create a new network interface.
   - **Description**: Optionally enter a description for a new network interface.
   - **Subnet**: Specify the subnet in which to create a new network interface. For the primary network interface (`eth0`), this is the subnet in which the instance is launched. If you've specified an existing network interface for `eth0`, the instance is launched in the subnet in which the network interface is located.
   - **Auto-assign public IP**: Specify whether to automatically assign a public IP address to the network interface with the device index of `eth0`. This setting can only be enabled for a single, new network interface.
   - **Primary IP**: Enter a private IPv4 address from the range of your subnet, or leave blank to let AWS choose a private IPv4 address for you.
   - **Secondary IP**: Enter a secondary private IPv4 address from the range of your subnet, or leave blank to let AWS choose one for you.
   - **(IPv6-only) IPv6 IPs**: Enter an IPv6 address from the range of the subnet.
   - **Security group ID**: Enter the ID of a security group in your VPC with which to associate the network interface.
• **Delete on termination**: Choose whether the network interface is deleted when the instance is deleted.

6. For **Storage (Volumes)**, specify volumes to attach to the instance besides the volumes specified by the AMI.

   - **Volume type**: Specify instance store or Amazon EBS volumes with which to associate your instance. The type of volume depends on the instance type that you've chosen. For more information, see [Amazon EC2 Instance Store](#) and [Amazon EBS Volumes](#).
   - **Device name**: Specify a device name for the volume.
   - **Snapshot**: Enter the ID of the snapshot from which to create the volume.
   - **Size**: For Amazon EBS-backed volumes, specify a storage size.
   - **Volume type**: For Amazon EBS volumes, the volume type. For more information, see [Amazon EBS Volume Types](#).
   - **IOPS**: If you have selected a Provisioned IOPS SSD volume type, then you can enter the number of I/O operations per second (IOPS) that the volume can support.
   - **Delete on termination**: For Amazon EBS volumes, select this check box to delete the volume when the instance is terminated. For more information, see [Preserving Amazon EBS Volumes on Instance Termination](#).
   - **Encrypted**: Select this check box to encrypt new Amazon EBS volumes. Amazon EBS volumes that are restored from encrypted snapshots are automatically encrypted. Encrypted volumes may only be attached to supported instance types (p. 697).

7. For **Tags**, specify tags (p. 759) by providing key and value combinations. You can tag the instance, the volumes, or both.

8. For **Security groups**, specify one or more security groups to associate with the instance. For more information, see [Amazon EC2 Security Groups for Windows Instances](#).

9. For **Advanced Details**, expand the section to view the fields and specify any additional parameters for the instance.

   - **IAM instance profile**: Specify an AWS Identity and Access Management (IAM) instance profile to associate with the instance. For more information, see [IAM Roles for Amazon EC2](#).
   - **Shutdown behavior**: Select whether the instance should stop or terminate when shut down. For more information, see [Changing the Instance Initiated Shutdown Behavior](#).
   - **Termination protection**: Select whether to prevent accidental termination. For more information, see [Enabling Termination Protection for an Instance](#).
   - **Monitoring**: Select whether to enable detailed monitoring of the instance using Amazon CloudWatch. Additional charges apply. For more information, see [Monitoring Your Instances Using CloudWatch](#).
   - **Elastic GPU**: Choose an elastic GPU to attach to the instance. Not all instance types support elastic GPUs. For more information, see [Amazon EC2 Elastic GPUs](#).
   - **Placement group name**: Specify a placement group in which to launch the instance. Not all instance types can be launched in a placement group. For more information, see [Placement Groups](#).
   - **EBS-optimized instance**: Provides additional, dedicated capacity for Amazon EBS I/O. Not all instance types support this feature, and additional charges apply. For more information, see [Amazon EBS-Optimized Instances](#).
   - **Tenancy**: Specify whether to run your instance on isolated, dedicated hardware (Dedicated) or on a Dedicated Host (Dedicated host). Additional charges may apply. For more information, see [Dedicated Instances](#) and [Dedicated Hosts](#). If you specify a Dedicated Host, you can choose a specific host and the affinity for the instance.
   - **RAM disk ID**: A RAM disk for the instance. If you have selected a kernel, you may need to select a specific RAM disk with the drivers to support it. Only valid for paravirtual (PV) AMIs.
   - **Kernel ID**: A kernel for the instance. Only valid for paravirtual (PV) AMIs.
• **User data**: You can specify user data to configure an instance during launch, or to run a configuration script. For more information, see Running Commands on Your Windows Instance at Launch (p. 358).

10. Choose **Create launch template**.

**To create a launch template from an existing launch template**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Launch Templates, Create launch template**.
3. Provide a name and description for the launch template.
4. For **Source template**, choose a launch template on which to base the new launch template.
5. For **Source template version**, choose the launch template version on which to base the new launch template.
6. Adjust any launch parameters as required, and choose **Create launch template**.

**To create a launch template using the command line**

• Use the `create-launch-template` (AWS CLI) command. The following example creates a launch template that specifies the subnet in which to launch the instance (`subnet-7b16de0c`), assigns a public IP address and an IPv6 address to the instance, and creates a tag for the instance (Name=webserver).

```bash
aws ec2 create-launch-template --launch-template-name TemplateForWebServer --version-description WebVersion1 --launch-template-data '{"NetworkInterfaces": [{"AssociatePublicIpAddress":true,"DeviceIndex":0,"Ipv6AddressCount":1,"SubnetId":"subnet-7b16de0c"}],"ImageId":"ami-8c1be5f6","InstanceType":"t2.small","TagSpecifications": [{"ResourceType":"instance","Tags": [{"Key": "Name","Value": "webserver"}] }]}'
```

```json
{
 "LaunchTemplate": {
 "LatestVersionNumber": 1,
 "LaunchTemplateName": "TemplateForWebServer",
 "LaunchTemplateId": "lt-01238c059e3466abc",
 "DefaultVersionNumber": 1,
 "CreateTime": "2017-11-27T09:13:24.000Z"
 }
}
```

**To get instance data for a launch template using the command line**

• Use the `get-launch-template-data` (AWS CLI) command and specify the instance ID. You can use the output as a base to create a new launch template or launch template version. By default, the output includes a top-level `LaunchTemplateData` object, which cannot be specified in your launch template data. Use the `--query` option to exclude this object.

```bash
aws ec2 get-launch-template-data --instance-id i-0123d646e8048babc --query 'LaunchTemplateData'
```

```json
{
 "LaunchTemplate": {
 "Monitoring": {},
 "ImageId": "ami-8c1be5f6",
 "BlockDeviceMappings": [

]
 }
}
```
"DeviceName": "/dev/xvda",
"Ebs": {
  "DeleteOnTermination": true
}
],
"EbsOptimized": false,
"Placement": {
  "Tenancy": "default",
  "GroupName": "",
  "AvailabilityZone": "us-east-1a"
},
"InstanceType": "t2.micro",
"NetworkInterfaces": [
  {
    "Description": "",
    "NetworkInterfaceId": "eni-35306abc",
    "PrivateIpAddresses": [
      {
        "Primary": true,
        "PrivateIpAddress": "10.0.0.72"
      }
    ],
    "SubnetId": "subnet-7b16de0c",
    "Groups": [
      "sg-7c227019"
    ],
    "Ipv6Addresses": [
      {
        "Ipv6Address": "2001:db8:1234:1a00::123"
      }
    ],
    "PrivateIpAddress": "10.0.0.72"
  }
]
}

You can write the output directly to a file, for example:

```bash
aws ec2 get-launch-template-data --instance-id i-0123d646e8048babc --query 'LaunchTemplateData' >> instance-data.json
```

Managing Launch Template Versions

You can create launch template versions for a specific launch template, set the default version, and delete versions that you no longer require.

**Topics**

- Creating a Launch Template Version (p. 276)
- Setting the Default Launch Template Version (p. 277)
- Deleting a Launch Template Version (p. 277)

Creating a Launch Template Version

When you create a launch template version, you can specify new launch parameters or use an existing version as the base for the new version.
To create a launch template version using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Launch Templates, and select the launch template.
3. Choose Create launch template, Create a new template version.
4. Specify a description for the launch template version.
5. To create a launch template version from an existing version, select the source template and source template version.
6. Specify or adjust the launch parameters as required, and choose Create launch template. For more information about launch template parameters, see Creating a Launch Template (p. 273).

To view information about launch template versions, select the launch template and choose Versions in the details pane.

To create a launch template version using the command line

- Use the create-launch-template-version (AWS CLI) command. You can specify a source version on which to base the new version. The new version inherits the same launch parameters, except for parameters that you specify in --launch-template-data. The following example creates a new version based on version 1 of the launch template and specifies a different AMI ID.

```bash
aws ec2 create-launch-template-version --launch-template-id lt-0abcd290751193123 --version-description WebVersion2 --source-version 1 --launch-template-data '{"ImageId":"ami-c998b6b2"}'
```

Setting the Default Launch Template Version

You can set the default version for the launch template. When you launch an instance from a launch template and do not specify a version, the instance is launched using the parameters of the default version.

To set the default launch template version using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Launch Templates and select the launch template.
3. Choose Actions, Set default version.
4. For Default version, select the version number and choose Set as default version.

To set the default launch template version using the command line

- Use the modify-launch-template (AWS CLI) command and specify the version that you want to set as the default.

```bash
aws ec2 modify-launch-template --launch-template-id lt-0abcd290751193123 --default-version 2
```

Deleting a Launch Template Version

If you no longer require a launch template version, you can delete it. You cannot replace the version number after you delete it. You cannot delete the default version of the launch template; you must first assign a different version as the default.
To delete a launch template version using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Launch Templates and select the launch template.
3. Choose Actions, Delete template version.
4. Select the version to delete and choose Delete launch template version.

**Note**
If you've specified the launch template version in an Auto Scaling group or a Spot Fleet request, ensure that you update the Auto Scaling group to use a different version.

To delete a launch template version using the command line

- Use the delete-launch-template-versions (AWS CLI) command and specify the version numbers to delete.

```
aws ec2 delete-launch-template-versions --launch-template-id lt-0abcd290751193123 --versions 1
```

Launching an Instance from a Launch Template

You can use the parameters contained in a launch template to launch an instance. You have the option to override or add launch parameters before you launch the instance.

Instances that are launched using a launch template are automatically assigned two tags with the keys `aws:ec2launchtemplate:id` and `aws:ec2launchtemplate:version`. You cannot remove or edit these tags.

To launch an instance from a launch template using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Launch Templates and select the launch template.
3. Choose Actions, Launch instance from template.
4. Select the launch template version to use.
5. (Optional) You can override or add launch template parameters by changing and adding parameters in the Instance details section.
6. Choose Launch instance from template.

To launch an instance from a launch template using the command line

- Use the run-instances AWS CLI command and specify the `--launch-template` parameter. Optionally specify the launch template version to use. If you don't specify the version, the default version is used.

```
aws ec2 run-instances --launch-template LaunchTemplateId=lt-0abcd290751193123,Version=1
```

- To override a launch template parameter, specify the parameter in the run-instances command. The following example overrides the instance type that's specified in the launch template (if any).

```
aws ec2 run-instances --launch-template LaunchTemplateId=lt-0abcd290751193123 --instance-type t2.small
```

- If you specify a nested parameter that's part of a complex structure, the instance is launched using the complex structure as specified in the launch template plus any additional nested parameters that you specify.
In the following example, the instance is launched with the tag `Owner=TeamA` as well as any other tags that are specified in the launch template. If the launch template has an existing tag with a key of `Owner`, the value is replaced with `TeamA`.

```
aws ec2 run-instances --launch-template LaunchTemplateId=lt-0abcd290751193123 --tag-specifications "ResourceType=instance,Tags=[{Key=Owner,Value=TeamA}]"
```

In the following example, the instance is launched with a volume with the device name `/dev/xvdb` as well as any other block device mappings that are specified in the launch template. If the launch template has an existing volume defined for `/dev/xvdb`, its values are replaced with specified values.

```
aws ec2 run-instances --launch-template LaunchTemplateId=lt-0abcd290751193123 --block-device-mappings "DeviceName=/dev/xvdb,Ebs={VolumeSize=20,VolumeType=gp2}"
```

### Using Launch Templates with Amazon EC2 Auto Scaling

You can create an Auto Scaling group and specify a launch template to use for the group. When Amazon EC2 Auto Scaling launches instances in the Auto Scaling group, it uses the launch parameters defined in the associated launch template.

For more information, see Creating an Auto Scaling Group Using a Launch Template in the Amazon EC2 Auto Scaling User Guide.

**To create or update an Amazon EC2 Auto Scaling group with a launch template using the command line**

- Use the `create-auto-scaling-group` or the `update-auto-scaling-group` AWS CLI command and specify the `--launch-template` parameter.

### Using Launch Templates with Spot Fleet

You can create a Spot Fleet request and specify a launch template in the instance configuration. When Amazon EC2 fulfills the Spot Fleet request, it uses the launch parameters defined in the associated launch template. You can override some of the parameters that are specified in the launch template.

For more information, see Spot Fleet Requests (p. 213).

**To create a Spot Fleet request with a launch template using the command line**

- Use the `request-spot-fleet` AWS CLI command. Use the `LaunchTemplateConfigs` parameter to specify the launch template and any overrides for the launch template.

### Deleting a Launch Template

If you no longer require a launch template, you can delete it. Deleting a launch template deletes all of its versions.

**To delete a launch template**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Launch Templates** and select the launch template.
3. Choose **Actions, Delete template**.
4. Choose **Delete launch template**.
To delete a launch template using the command line

- Use the `delete-launch-template` (AWS CLI) command and specify the launch template.

```bash
aws ec2 delete-launch-template --launch-template-id lt-01238c059e3466abc
```

Launching an Instance Using Parameters from an Existing Instance

The Amazon EC2 console provides a Launch More Like This wizard option that enables you to use a current instance as a base for launching other instances. This option automatically populates the Amazon EC2 launch wizard with certain configuration details from the selected instance.

**Note**

The Launch More Like This wizard option does not clone your selected instance; it only replicates some configuration details. To create a copy of your instance, first create an AMI from it, then launch more instances from the AMI.

Alternatively, create a launch template (p. 271) to store the launch parameters for your instances.

The following configuration details are copied from the selected instance into the launch wizard:

- AMI ID
- Instance type
- Availability Zone, or the VPC and subnet in which the selected instance is located
- Public IPv4 address. If the selected instance currently has a public IPv4 address, the new instance receives a public IPv4 address - regardless of the selected instance's default public IPv4 address setting. For more information about public IPv4 addresses, see Public IPv4 Addresses and External DNS Hostnames (p. 572).
- Placement group, if applicable
- IAM role associated with the instance, if applicable
- Shutdown behavior setting (stop or terminate)
- Termination protection setting (true or false)
- CloudWatch monitoring (enabled or disabled)
- Amazon EBS-optimization setting (true or false)
- Tenancy setting, if launching into a VPC (shared or dedicated)
- Kernel ID and RAM disk ID, if applicable
- User data, if specified
- Tags associated with the instance, if applicable
- Security groups associated with the instance
- Association information. If the selected instance is associated with a configuration file, the same file is automatically associated with new instance. If the configuration file includes a joined domain configuration, the new instance is joined to the same domain. For more information about joining a domain, see Launching an Instance (Simple AD and Microsoft AD).

The following configuration details are not copied from your selected instance; instead, the wizard applies their default settings or behavior:

- (VPC only) Number of network interfaces: The default is one network interface, which is the primary network interface (eth0).
- Storage: The default storage configuration is determined by the AMI and the instance type.
To use your current instance as a template

1. On the Instances page, select the instance you want to use.
2. Choose Actions, and then Launch More Like This.
3. The launch wizard opens on the Review Instance Launch page. You can check the details of your instance, and make any necessary changes by clicking the appropriate Edit link.

When you are ready, choose Launch to select a key pair and launch your instance.

Launching an AWS Marketplace Instance

You can subscribe to an AWS Marketplace product and launch an instance from the product's AMI using the Amazon EC2 launch wizard. For more information about paid AMIs, see Paid AMIs (p. 61). To cancel your subscription after launch, you first have to terminate all instances running from it. For more information, see Managing Your AWS Marketplace Subscriptions (p. 64).

To launch an instance from the AWS Marketplace using the launch wizard

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the Amazon EC2 dashboard, choose Launch Instance.
3. On the Choose an Amazon Machine Image (AMI) page, choose the AWS Marketplace category on the left. Find a suitable AMI by browsing the categories, or using the search functionality. Choose Select to choose your product.
4. A dialog displays an overview of the product you've selected. You can view the pricing information, as well as any other information that the vendor has provided. When you're ready, choose Continue.
   **Note**
   You are not charged for using the product until you have launched an instance with the AMI. Take note of the pricing for each supported instance type, as you will be prompted to select an instance type on the next page of the wizard. Additional taxes may also apply to the product.
5. On the Choose an Instance Type page, select the hardware configuration and size of the instance to launch. When you're done, choose Next: Configure Instance Details.
6. On the next pages of the wizard, you can configure your instance, add storage, and add tags. For more information about the different options you can configure, see Launching an Instance Using the Launch Instance Wizard (p. 265). Choose Next until you reach the Configure Security Group page.

   The wizard creates a new security group according to the vendor's specifications for the product. The security group may include rules that allow all IPv4 addresses (0.0.0.0/0) access on SSH (port 22) on Linux or RDP (port 3389) on Windows. We recommend that you adjust these rules to allow only a specific address or range of addresses to access your instance over those ports.

   When you are ready, choose Review and Launch.

7. On the Review Instance Launch page, check the details of the AMI from which you're about to launch the instance, as well as the other configuration details you set up in the wizard. When you're ready, choose Launch to select or create a key pair, and launch your instance.
8. Depending on the product you've subscribed to, the instance may take a few minutes or more to launch. You are first subscribed to the product before your instance can launch. If there are any problems with your credit card details, you will be asked to update your account details. When the launch confirmation page displays, choose View Instances to go to the Instances page.
   **Note**
   You are charged the subscription price as long as your instance is running, even if it is idle. If your instance is stopped, you may still be charged for storage.
9. When your instance is in the running state, you can connect to it. To do this, select your instance in the list and choose Connect. Follow the instructions in the dialog. For more information about connecting to your instance, see Connecting to Your Windows Instance (p. 283).

**Important**
Check the vendor’s usage instructions carefully, as you may need to use a specific user name to log in to the instance. For more information about accessing your subscription details, see Managing Your AWS Marketplace Subscriptions (p. 64).

---

**Launching an AWS Marketplace AMI Instance Using the API and CLI**

To launch instances from AWS Marketplace products using the API or command line tools, first ensure that you are subscribed to the product. You can then launch an instance with the product’s AMI ID using the following methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS CLI</td>
<td>Use the run-instances command, or see the following topic for more information: Launching an Instance.</td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td>Use the New-EC2Instance command, or see the following topic for more information: Launch an Amazon EC2 Instance Using Windows PowerShell</td>
</tr>
<tr>
<td>Query API</td>
<td>Use the RunInstances request.</td>
</tr>
</tbody>
</table>
Connecting to Your Windows Instance

Amazon EC2 instances created from most Windows Amazon Machine Images (AMIs) enable you to connect using Remote Desktop. Remote Desktop uses the Remote Desktop Protocol (RDP) and enables you to connect to and use your instance in the same way you use a computer sitting in front of you. It is available on most editions of Windows and available for Mac OS.

**Important**
The Windows Server 2016 Nano installation option (Nano Server) does not support RDP. For more information, see Connect to a Windows Server 2016 Nano Server Instance (p. 286).

For information about connecting to a Linux instance, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.

**Contents**
- Prerequisites (p. 283)
- Connect to Your Windows Instance (p. 284)
- Connect to a Windows Instance Using Its IPv6 Address (p. 285)
- Connect to a Windows Server 2016 Nano Server Instance (p. 286)
- Transfer Files to Windows Instances (p. 287)

**Prerequisites**

- **Install an RDP client**
  - [Windows] Windows includes an RDP client by default. To verify, type `mstsc` at a Command Prompt window. If your computer doesn't recognize this command, see the Windows home page and search for the download for Remote Desktop Connection.
  - [Mac OS X] Use the Microsoft Remote Desktop app from the Apple App Store.
  - [Linux] Use `rdesktop`.

- **Get the ID of the instance**
  You can get the ID of your instance using the Amazon EC2 console (from the **Instance ID** column). If you prefer, you can use the `describe-instances` (AWS CLI) or `Get-EC2Instance` (AWS Tools for Windows PowerShell) command.

- **Get the public DNS name of the instance**
  You can get the public DNS for your instance using the Amazon EC2 console (check the **Public DNS (IPv4)** column; if this column is hidden, choose the **Show/Hide** icon and select **Public DNS (IPv4)**). If you prefer, you can use the `describe-instances` (AWS CLI) or `Get-EC2Instance` (AWS Tools for Windows PowerShell) command.

- **(IPv6 only) Get the IPv6 address of the instance**
  If you’ve assigned an IPv6 address to your instance, you can optionally connect to the instance using its IPv6 address instead of a public IPv4 address or public IPv4 DNS hostname. Your local computer must have an IPv6 address and must be configured to use IPv6. You can get the IPv6 address of your instance using the Amazon EC2 console (check the **IPv6 IPs** field). If you prefer, you can use the `describe-instances` (AWS CLI) or `Get-EC2Instance` (AWS Tools for Windows PowerShell) command. For more information about IPv6, see IPv6 Addresses (p. 573).

- **Locate the private key**
  Get the fully qualified path to the location on your computer of the `.pem` file for the key pair that you specified when you launched the instance.

- **Enable inbound RDP traffic from your IP address to your instance**
Ensure that the security group associated with your instance allows incoming RDP traffic from your IP address. The default security group does not allow incoming RDP traffic by default. For more information, see Authorizing Inbound Traffic for Your Windows Instances (p. 542).

- For the best experience using Internet Explorer, run the latest version.

**Connect to Your Windows Instance**

To connect to a Windows instance, you must retrieve the initial administrator password and then specify this password when you connect to your instance using Remote Desktop.

The name of the administrator account depends on the language of the operating system. For example, for English, it's Administrator, for French it's Administrateur, and for Portuguese it's Administrador. For more information, see Localized Names for Administrator Account in Windows in the Microsoft TechNet Wiki.

If you've joined your instance to a domain, you can connect to your instance using domain credentials you've defined in AWS Directory Service. On the Remote Desktop login screen, instead of using the local computer name and the generated password, use the fully-qualified user name for the administrator (for example, corp.example.com\Admin) and the password for this account.

The license for the Windows Server operating system (OS) allows two simultaneous remote connections for administrative purposes. The license for Windows Server is included in the price of your Windows instance. If you need more than two simultaneous remote connections, you must purchase a Remote Desktop Services (RDS) license. If you attempt a third connection, an error occurs. For more information, see Configure the Number of Simultaneous Remote Connections Allowed for a Connection.

**To connect to your Windows instance using an RDP client**

1. In the Amazon EC2 console, select the instance, and then choose Connect.
2. In the Connect To Your Instance dialog box, choose Get Password (it will take a few minutes after the instance is launched before the password is available).
3. Choose Browse and navigate to the private key file you created when you launched the instance. Select the file and choose Open to copy the entire contents of the file into the Contents field.
4. Choose Decrypt Password. The console displays the default administrator password for the instance in the Connect To Your Instance dialog box, replacing the link to Get Password shown previously with the actual password.
5. Record the default administrator password, or copy it to the clipboard. You need this password to connect to the instance.
6. Choose Download Remote Desktop File. Your browser prompts you to either open or save the .rdp file. Either option is fine. When you have finished, you can choose Close to dismiss the Connect To Your Instance dialog box.

   - If you opened the .rdp file, you'll see the Remote Desktop Connection dialog box.
   - If you saved the .rdp file, navigate to your downloads directory, and open the .rdp file to display the dialog box.
7. You may get a warning that the publisher of the remote connection is unknown. You can continue to connect to your instance.
8. When prompted, log in to the instance, using the administrator account for the operating system and the password that you recorded or copied previously. If your Remote Desktop Connection already has an administrator account set up, you might have to choose the Use another account option and type the user name and password manually.

   **Note**
   Sometimes copying and pasting content can corrupt data. If you encounter a "Password Failed" error when you log in, try typing in the password manually.
9. Due to the nature of self-signed certificates, you may get a warning that the security certificate could not be authenticated. Use the following steps to verify the identity of the remote computer, or simply choose Yes or Continue to continue if you trust the certificate.

   a. If you are using Remote Desktop Connection from a Windows PC, choose View certificate. If you are using Microsoft Remote Desktop on a Mac, choose Show Certificate.

   b. Choose the Details tab, and scroll down to the Thumbprint entry on a Windows PC, or the SHA1 Fingerprints entry on a Mac. This is the unique identifier for the remote computer's security certificate.

   c. In the Amazon EC2 console, select the instance, choose Actions, and then choose Get System Log.

   d. In the system log output, look for an entry labeled RDPCERTIFICATE-THUMBPRINT. If this value matches the thumbprint or fingerprint of the certificate, you have verified the identity of the remote computer.

   e. If you are using Remote Desktop Connection from a Windows PC, return to the Certificate dialog box and choose OK. If you are using Microsoft Remote Desktop on a Mac, return to the Verify Certificate and choose Continue.

   f. [Windows] Choose Yes in the Remote Desktop Connection window to connect to your instance.

   [Mac OS] Log in as prompted, using the default administrator account and the default administrator password that you recorded or copied previously. Note that you might need to switch spaces to see the login screen. For more information about spaces, see http://support.apple.com/kb/PH14155.

   g. If you receive an error while attempting to connect to your instance, see Remote Desktop can't connect to the remote computer (p. 851).

After you connect, we recommend that you do the following:

- Change the administrator password from the default value. You change the password while logged on to the instance itself, just as you would on any other Windows Server.
- Create another user account with administrator privileges on the instance. Another account with administrator privileges is a safeguard if you forget the administrator password or have a problem with the administrator account. The user account must have permission to access the instance remotely. Open System Properties, choose Remote, and add the user to the Remote Desktop Users group.

Connect to a Windows Instance Using Its IPv6 Address

If you've enabled your VPC for IPv6 and assigned an IPv6 address to your Windows instance, you can use an RDP client to connect to your instance using its IPv6 address instead of a public IPv4 address or public DNS hostname. For more information, see IPv6 Addresses (p. 573).

To connect to your Windows instance using its IPv6 address

1. In the Amazon EC2 console, select the instance, and then choose Connect.

2. In the Connect To Your Instance dialog box, choose Get Password (it will take a few minutes after the instance is launched before the password is available).

3. Choose Browse and navigate to the private key file you created when you launched the instance. Select the file and choose Open to copy the entire contents of the file into the Contents field.

4. Choose Decrypt Password.

5. Copy the default administrator password. You need this password to connect to the instance.

6. Open the RDP client on your computer.

7. [Windows] For the RDP client on a Windows computer, choose Show Options and do the following:
Connect

- For **Computer**, type the IPv6 address of your Windows instance, for example, 2001:db8:1234:1a00:9691:9503:25ad:1761.
- For **User name**, enter **Administrator**.
- Choose **Connect**.

[Mac OS X] For the Microsoft Remote Desktop app, choose **New** and do the following:

- For **PC Name**, enter the IPv6 address of your Windows instance; for example, 2001:db8:1234:1a00:9691:9503:25ad:1761.
- For **User name**, enter **Administrator**.
- Close the dialog box. Under **My Desktops**, select the connection and choose **Start**.

8. Due to the nature of self-signed certificates, you may get a warning that the security certificate could not be authenticated. Use the following steps to verify the identity of the remote computer, or simply choose **Yes** or **Continue** to continue if you trust the certificate.

9. When prompted, enter the password that you recorded or copied previously.

Connect to a Windows Server 2016 Nano Server Instance

Windows Server 2016 Nano Server does not support Remote Desktop connections. To connect to a Windows Server 2016 Nano Server instance, you must connect using Windows PowerShell, as described in the following procedure.

**Prerequisites**

- Ensure that the security group associated with the instance allows inbound TCP traffic from your IP address on port 5985 (HTTP).
- Get the ID of the instance.
- Get the public IP address of the instance. If you use the private IP address, you must connect to the instance from another instance in the same virtual private cloud (VPC).
- Get the fully-qualified path to the location of the .pem file for the key pair that you specified when you launched the instance. You need this to retrieve the Administrator password for the instance.

**To connect to a Nano Server instance**

1. Start a PowerShell session in administrator mode (from **Start**, **Amazon Web Services**, right-click **Windows PowerShell** and choose **Run as administrator**).
2. Store the IP address of your instance in a variable as follows.

```
PS C:\> $ip = "198.51.100.1"
```

3. Add the IP address of your instance to the list of trusted hosts as follows. When prompted for confirmation, press Enter. Note that you must do this step only the first time you connect to this instance from a computer.

```
PS C:\> Set-Item WSMan:\localhost\Client\TrustedHosts $ip
```

4. Retrieve the administrator password for your instance using the **Get-EC2PasswordData** command as follows. Save the password, as you'll need it to connect to the instance.

```
PS C:\> Get-EC2PasswordData -InstanceId i-1234567890abcdef0 -PemFile C:\path\my-key-pair.pem
```
5. Start the session as follows.

```
PS C:\> Enter-PSSession -ComputerName $ip -Credential ~\Administrator
```

6. When prompted for the password, specify the password that you saved. Upon success, the prompt is modified with the IP address of your instance as follows, indicating that any commands will be run on the instance.

```
[198.51.100.1]: PS C:\>
```

7. After you are finished, you can end the session as follows.

```
[198.51.100.1]: PS C:\> Exit-PSSession
```

WS-Management encrypts all transmitted Windows PowerShell data, even when you use HTTP. If you prefer to connect to your Nano Server instance using HTTPS, you must connect using HTTP and enable HTTPS support. Before you can connect using HTTPS, you must also add a rule to the security group associated with the instance that allows inbound TCP traffic from your IP address on port 5986 (HTTPS). For more information, see Configuring WinRM over HTTPS to enable PowerShell remoting on the Microsoft TechNet Blog.

**Transfer Files to Windows Instances**

You can work with your Windows instance the same way that you would work with any Windows server. For example, you can transfer files between a Windows instance and your local computer using the local file sharing feature of the Microsoft Remote Desktop Connection software. If you enable this option, you can access your local files from your Windows instances. You can access local files on hard disk drives, DVD drives, portable media drives, and mapped network drives. For more information, see the following articles from Microsoft:

- Make Local Devices and Resources Available in a Remote Session
- Getting Started with Remote Desktop Client on Mac
- How to copy files to and from Nano Server

**Stop and Start Your Instance**

You can stop and restart your instance if it has an Amazon EBS volume as its root device. The instance retains its instance ID, but can change as described in the Overview (p. 288) section.

When you stop an instance, we shut it down. We don't charge usage for a stopped instance, or data transfer fees, but we do charge for the storage for any Amazon EBS volumes. Each time you start a stopped instance we charge a full instance hour, even if you make this transition multiple times within a single hour.

While the instance is stopped, you can treat its root volume like any other volume, and modify it (for example, repair file system problems or update software). You just detach the volume from the stopped instance, attach it to a running instance, make your changes, detach it from the running instance, and then reattach it to the stopped instance. Make sure that you reattach it using the storage device name that's specified as the root device in the block device mapping for the instance.

If you decide that you no longer need an instance, you can terminate it. As soon as the state of an instance changes to shutting-down or terminated, we stop charging for that instance. For more information, see Terminate Your Instance (p. 293).
Overview

When you stop a running instance, the following happens:

- The instance performs a normal shutdown and stops running; its status changes to stopping and then stopped.
- Any Amazon EBS volumes remain attached to the instance, and their data persists.
- Any data stored in the RAM of the host computer or the instance store volumes of the host computer is gone.
- In most cases, the instance is migrated to a new underlying host computer when it's started.
- EC2-Classic: We release the public and private IPv4 addresses for the instance when you stop the instance, and assign new ones when you restart it.

EC2-VPC: The instance retains its private IPv4 addresses and any IPv6 addresses when stopped and restarted. We release the public IPv4 address and assign a new one when you restart it.

- EC2-Classic: We disassociate any Elastic IP address that's associated with the instance. You're charged for Elastic IP addresses that aren't associated with an instance. When you restart the instance, you must associate the Elastic IP address with the instance; we don't do this automatically.

EC2-VPC: The instance retains its associated Elastic IP addresses. You're charged for any Elastic IP addresses associated with a stopped instance.

- When you stop and start a Windows instance, the EC2Config service performs tasks on the instance, such as changing the drive letters for any attached Amazon EBS volumes. For more information about these defaults and how you can change them, see Configuring a Windows Instance Using the EC2Config Service (p. 307) in the Amazon EC2 User Guide for Windows Instances.

- If you've registered the instance with a load balancer, it's likely that the load balancer won't be able to route traffic to your instance after you've stopped and restarted it. You must de-register the instance from the load balancer after stopping the instance, and then re-register after starting the instance. For more information, see Register or Deregister EC2 Instances for Your Classic Load Balancer in the User Guide for Classic Load Balancers.

- If your instance is in an Auto Scaling group, the Amazon EC2 Auto Scaling service marks the stopped instance as unhealthy, and may terminate it and launch a replacement instance. For more information, see Health Checks for Auto Scaling Instances in the Amazon EC2 Auto Scaling User Guide.

- When you stop a ClassicLink instance, it's unlinked from the VPC to which it was linked. You must link the instance to the VPC again after restarting it. For more information about ClassicLink, see ClassicLink (p. 552).

For more information, see Differences Between Reboot, Stop, and Terminate (p. 263).

You can modify the following attributes of an instance only when it is stopped:

- Instance type
- User data
- Kernel
Stop and Start

- RAM disk

If you try to modify these attributes while the instance is running, Amazon EC2 returns the IncorrectInstanceState error.

Stopping and Starting Your Instances

You can start and stop your Amazon EBS-backed instance using the console or the command line.

By default, when you initiate a shutdown from an Amazon EBS-backed instance (using the shutdown or poweroff command), the instance stops. You can change this behavior so that it terminates instead. For more information, see Changing the Instance Initiated Shutdown Behavior (p. 295).

To stop and start an Amazon EBS-backed instance using the console

1. In the navigation pane, choose Instances, and select the instance.
2. [EC2-Classic] If the instance has an associated Elastic IP address, write down the Elastic IP address and the instance ID shown in the details pane.
3. Choose Actions, select Instance State, and then choose Stop. If Stop is disabled, either the instance is already stopped or its root device is an instance store volume.

   Warning
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. In the confirmation dialog box, choose Yes, Stop. It can take a few minutes for the instance to stop.

   [EC2-Classic] When the instance state becomes stopped, the Elastic IP, Public DNS (IPv4), Private DNS, and Private IPs fields in the details pane are blank to indicate that the old values are no longer associated with the instance.

5. While your instance is stopped, you can modify certain instance attributes. For more information, see Modifying a Stopped Instance (p. 290).
6. To restart the stopped instance, select the instance, and choose Actions, Instance State, Start.
7. In the confirmation dialog box, choose Yes, Start. It can take a few minutes for the instance to enter the running state.

   [EC2-Classic] When the instance state becomes running, the Public DNS (IPv4), Private DNS, and Private IPs fields in the details pane contain the new values that we assigned to the instance.

8. [EC2-Classic] If your instance had an associated Elastic IP address, you must re-associate it as follows:
   a. In the navigation pane, choose Elastic IPs.
   b. Select the Elastic IP address that you wrote down before you stopped the instance.
   c. Choose Actions, and then select Associate address.
   d. Select the instance ID that you wrote down before you stopped the instance, and then choose Associate.

To stop and start an Amazon EBS-backed instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- stop-instances and start-instances (AWS CLI)
- Stop-EC2Instance and Start-EC2Instance (AWS Tools for Windows PowerShell)
Modifying a Stopped Instance

You can change the instance type, user data, and EBS-optimization attributes of a stopped instance using the AWS Management Console or the command line interface. You can't use the AWS Management Console to modify the DeleteOnTermination, kernel, or RAM disk attributes.

To modify an instance attribute

- To change the instance type, see Resizing Your Instance (p. 153).
- To change the user data for your instance, see Configuring Instances with User Data (p. 365).
- To enable or disable EBS-optimization for your instance, see Modifying EBS–Optimization (p. 695).
- To change the DeleteOnTermination attribute of the root volume for your instance, see Updating the Block Device Mapping of a Running Instance (p. 740).

To modify an instance attribute using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-instance-attribute (AWS CLI)
- Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

Troubleshooting

If you have stopped your Amazon EBS-backed instance and it appears "stuck" in the stopping state, you can forcibly stop it. For more information, see Troubleshooting Stopping Your Instance in the Amazon EC2 User Guide for Linux Instances.

Reboot Your Instance

An instance reboot is equivalent to an operating system reboot. In most cases, it takes only a few minutes to reboot your instance. When you reboot an instance, it remains on the same physical host, so your instance keeps its public DNS name (IPv4), private IPv4 address, IPv6 address (if applicable), and any data on its instance store volumes.

Rebooting an instance doesn't start a new instance billing hour, unlike stopping and restarting your instance.

We might schedule your instance for a reboot for necessary maintenance, such as to apply updates that require a reboot. No action is required on your part; we recommend that you wait for the reboot to occur within its scheduled window. For more information, see Scheduled Events for Your Instances (p. 400).

We recommend that you use Amazon EC2 to reboot your instance instead of running the operating system reboot command from your instance. If you use Amazon EC2 to reboot your instance, we perform a hard reboot if the instance does not cleanly shut down within four minutes. If you use AWS CloudTrail, then using Amazon EC2 to reboot your instance also creates an API record of when your instance was rebooted.

If Windows is installing updates on your instance, we recommend that you do not reboot or shut down your instance using the Amazon EC2 console or the command line until all the updates are installed. When you use the Amazon EC2 console or the command line to reboot or shut down your instance, there is a risk that your instance will be hard rebooted. A hard reboot while updates are being installed could throw your instance into an unstable state.
To reboot an instance using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose **Instances**.
3. Select the instance and choose **Actions, Instance State, Reboot**.
4. Choose **Yes, Reboot** when prompted for confirmation.

To reboot an instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see **Accessing Amazon EC2** (p. 3).

- `reboot-instances` (AWS CLI)
- `Restart-EC2Instance` (AWS Tools for Windows PowerShell)

Instance Retirement

An instance is scheduled to be retired when AWS detects irreparable failure of the underlying hardware hosting the instance. When an instance reaches its scheduled retirement date, it is stopped or terminated by AWS. If your instance root device is an Amazon EBS volume, the instance is stopped, and you can start it again at any time. Starting the stopped instance migrates it to new hardware. If your instance root device is an instance store volume, the instance is terminated, and cannot be used again.

Topics

- Identifying Instances Scheduled for Retirement (p. 291)
- Working with Instances Scheduled for Retirement (p. 292)

For more information about types of instance events, see **Scheduled Events for Your Instances** (p. 400).

Identifying Instances Scheduled for Retirement

If your instance is scheduled for retirement, you'll receive an email prior to the event with the instance ID and retirement date. This email is sent to the address that's associated with your account; the same email address that you use to log in to the AWS Management Console. If you use an email account that you do not check regularly, then you can use the Amazon EC2 console or the command line to determine if any of your instances are scheduled for retirement. To update the contact information for your account, go to the **Account Settings** page.

To identify instances scheduled for retirement using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose **EC2 Dashboard**. Under **Scheduled Events**, you can see the events associated with your Amazon EC2 instances and volumes, organized by region.
3. If you have an instance with a scheduled event listed, select its link below the region name to go to the **Events** page.

4. The **Events** page lists all resources with events associated with them. To view instances that are scheduled for retirement, select **Instance resources** from the first filter list, and then **Instance stop or retirement** from the second filter list.

5. If the filter results show that an instance is scheduled for retirement, select it, and note the date and time in the **Start time** field in the details pane. This is your instance retirement date.

**To identify instances scheduled for retirement using the command line**

You can use one of the following commands. For more information about these command line interfaces, see **Accessing Amazon EC2** (p. 3).

- `describe-instance-status` (AWS CLI)
- `Get-EC2InstanceStatus` (AWS Tools for Windows PowerShell)

**Working with Instances Scheduled for Retirement**

There are a number of actions available to you when your instance is scheduled for retirement. The action you take depends on whether your instance root device is an Amazon EBS volume, or an instance store volume. If you do not know what your instance root device type is, you can find out using the Amazon EC2 console or the command line.

**Determining Your Instance Root Device Type**

**To determine your instance root device type using the console**

1. In the navigation pane, select **Events**. Use the filter lists to identify retiring instances, as demonstrated in the procedure above, **Identifying instances scheduled for retirement** (p. 291).

2. In the **Resource Id** column, select the instance ID to go to the **Instances** page.

3. Select the instance and locate the **Root device type** field in the **Description** tab. If the value is **ebs**, then your instance is EBS-backed. If the value is **instance-store**, then your instance is instance store-backed.

**To determine your instance root device type using the command line**

You can use one of the following commands. For more information about these command line interfaces, see **Accessing Amazon EC2** (p. 3).

- `describe-instances` (AWS CLI)
- `Get-EC2Instance` (AWS Tools for Windows PowerShell)

**Managing Instances Scheduled for Retirement**

You can perform one of the actions listed below in order to preserve the data on your retiring instance. It's important that you take this action before the instance retirement date, to prevent unforeseen downtime and data loss.

**Warning**

If your instance store-backed instance passes its retirement date, it's terminated and you cannot recover the instance or any data that was stored on it. Regardless of the root device of your instance, the data on instance store volumes is lost when the instance is retired, even if they are attached to an EBS-backed instance.
### Terminate Your Instance

You can delete your instance when you no longer need it. This is referred to as terminating your instance. As soon as the state of an instance changes to shutting-down or terminated, you stop incurring charges for that instance.

You can't connect to or restart an instance after you've terminated it. However, you can launch additional instances using the same AMI. If you'd rather stop and restart your instance, see Stop and Start Your Instance (p. 287). For more information, see Differences Between Reboot, Stop, and Terminate (p. 263).

**Contents**
- Instance Termination (p. 293)
- Terminating an Instance (p. 294)
- Enabling Termination Protection for an Instance (p. 294)
- Changing the Instance Initiated Shutdown Behavior (p. 295)
- Preserving Amazon EBS Volumes on Instance Termination (p. 296)

### Instance Termination

After you terminate an instance, it remains visible in the console for a short while, and then the entry is automatically deleted. You cannot delete the terminated instance entry yourself. After an instance is terminated, resources such as tags and volumes are gradually disassociated from the instance, therefore may no longer be visible on the terminated instance after a short while.

When an instance terminates, the data on any instance store volumes associated with that instance is deleted.

By default, Amazon EBS root device volumes are automatically deleted when the instance terminates. However, by default, any additional EBS volumes that you attach at launch, or any EBS volumes that you attach to an existing instance persist even after the instance terminates. This behavior is controlled by the volume's `DeleteOnTermination` attribute, which you can modify. For more information, see Preserving Amazon EBS Volumes on Instance Termination (p. 296).

You can prevent an instance from being terminated accidentally by someone using the AWS Management Console, the CLI, and the API. This feature is available for both Amazon EC2 instance store-backed and Amazon EBS-backed instances. Each instance has a `DisableApiTermination` attribute with the default value of `false` (the instance can be terminated through Amazon EC2). You can modify this instance attribute while the instance is running or stopped (in the case of Amazon EBS-backed instances). For more information, see Enabling Termination Protection for an Instance (p. 294).

---

<table>
<thead>
<tr>
<th>Instance Root Device Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBS</td>
<td>Wait for the scheduled retirement date - when the instance is stopped - or stop the instance yourself before the retirement date. You can start the instance again at any time. For more information about stopping and starting your instance, and what to expect when your instance is stopped, such as the effect on public, private and Elastic IP addresses associated with your instance, see Stop and Start Your Instance (p. 287).</td>
</tr>
<tr>
<td>EBS</td>
<td>Create an EBS-backed AMI from your instance, and launch a replacement instance. For more information, see Creating a Custom Windows AMI (p. 65).</td>
</tr>
</tbody>
</table>
You can control whether an instance should stop or terminate when shutdown is initiated from the instance using an operating system command for system shutdown. For more information, see Changing the Instance Initiated Shutdown Behavior (p. 295).

If you run a script on instance termination, your instance might have an abnormal termination, because we have no way to ensure that shutdown scripts run. Amazon EC2 attempts to shut an instance down cleanly and run any system shutdown scripts; however, certain events (such as hardware failure) may prevent these system shutdown scripts from running.

**Terminating an Instance**

You can terminate an instance using the AWS Management Console or the command line.

**To terminate an instance using the console**

1. Before you terminate the instance, verify that you won't lose any data by checking that your Amazon EBS volumes won't be deleted on termination and that you've copied any data that you need from your instance store volumes to Amazon EBS or Amazon S3.
2. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
3. In the navigation pane, choose **Instances**.
4. Select the instance, and choose **Actions, Instance State, Terminate**.
5. Choose **Yes, Terminate** when prompted for confirmation.

**To terminate an instance using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `terminate-instances` (AWS CLI)
- `Stop-EC2Instance` (AWS Tools for Windows PowerShell)

**Enabling Termination Protection for an Instance**

By default, you can terminate your instance using the Amazon EC2 console, command line interface, or API. If you want to prevent your instance from being accidentally terminated using Amazon EC2, you can enable termination protection for the instance. The `DisableApiTermination` attribute controls whether the instance can be terminated using the console, CLI, or API. By default, termination protection is disabled for your instance. You can set the value of this attribute when you launch the instance, while the instance is running, or while the instance is stopped (for Amazon EBS-backed instances).

The `DisableApiTermination` attribute does not prevent you from terminating an instance by initiating shutdown from the instance (using an operating system command for system shutdown) when the `InstanceInitiatedShutdownBehavior` attribute is set. For more information, see Changing the Instance Initiated Shutdown Behavior (p. 295).

**Limits**

You can't enable termination protection for Spot instances — a Spot instance is terminated when the Spot price exceeds your bid price. However, you can prepare your application to handle Spot instance interruptions. For more information, see Spot Instance Interruptions (p. 239).

The `DisableApiTermination` attribute does not prevent Amazon EC2 Auto Scaling from terminating an instance. For instances in an Auto Scaling group, use the following Amazon EC2 Auto Scaling features instead of Amazon EC2 termination protection:
To prevent instances that are part of an Auto Scaling group from terminating on scale in, use instance protection. For more information, see Instance Protection in the Amazon EC2 Auto Scaling User Guide.

To prevent Amazon EC2 Auto Scaling from terminating unhealthy instances, suspend the ReplaceUnhealthy process. For more information, see Suspending and Resuming Scaling Processes in the Amazon EC2 Auto Scaling User Guide.

To specify which instances Amazon EC2 Auto Scaling should terminate first, choose a termination policy. For more information, see Customizing the Termination Policy in the Amazon EC2 Auto Scaling User Guide.

**To enable termination protection for an instance at launch time**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the dashboard, choose Launch Instance and follow the directions in the wizard.
3. On the Configure Instance Details page, select the Enable termination protection check box.

**To enable termination protection for a running or stopped instance**

1. Select the instance, choose Actions, Instance Settings, and then choose Change Termination Protection.
2. Select Yes, Enable.

**To disable termination protection for a running or stopped instance**

1. Select the instance, choose Actions, Instance Settings, and then choose Change Termination Protection.
2. Select Yes, Disable.

**To enable or disable termination protection using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-instance-attribute (AWS CLI)
- Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

**Changing the Instance Initiated Shutdown Behavior**

By default, when you initiate a shutdown from an Amazon EBS-backed instance (using a command such as shutdown, halt, or poweroff), the instance stops. You can change this behavior using the InstanceInitiatedShutdownBehavior attribute for the instance so that it terminates instead. You can update this attribute while the instance is running or stopped.

Note that instance store-backed instances can be terminated but they can't be stopped.

You can update the InstanceInitiatedShutdownBehavior attribute using the Amazon EC2 console or the command line. The InstanceInitiatedShutdownBehavior attribute only applies when you perform a shutdown from the operating system of the instance itself; it does not apply when you stop an instance using the StopInstances API or the Amazon EC2 console.

**To change the shutdown behavior of an instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select the instance, select **Actions, Instance Settings**, and then choose **Change Shutdown Behavior**. The current behavior is already selected.
4. To change the behavior, select an option from the **Shutdown behavior** list, and then select **Apply**.

![Change Shutdown Behavior](change_shutdown_behavior.png)

To change the shutdown behavior of an instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- `modify-instance-attribute` (AWS CLI)
- `Edit-EC2InstanceAttribute` (AWS Tools for Windows PowerShell)

Preserving Amazon EBS Volumes on Instance Termination

When an instance terminates, Amazon EC2 uses the value of the `DeleteOnTermination` attribute for each attached Amazon EBS volume to determine whether to preserve or delete the volume.

By default, the `DeleteOnTermination` attribute for the root volume of an instance is set to `true`. Therefore, the default is to delete the root volume of an instance when the instance terminates.

By default, when you attach an EBS volume to an instance, its `DeleteOnTermination` attribute is set to `false`. Therefore, the default is to preserve these volumes. After the instance terminates, you can take a snapshot of the preserved volume or attach it to another instance.

To verify the value of the `DeleteOnTermination` attribute for an EBS volume that is in-use, look at the instance's block device mapping. For more information, see [Viewing the EBS Volumes in an Instance Block Device Mapping](p. 740).

You can change value of the `DeleteOnTermination` attribute for a volume when you launch the instance or while the instance is running.

**Examples**

- Changing the Root Volume to Persist at Launch Using the Console (p. 297)
- Changing the Root Volume to Persist at Launch Using the Command Line (p. 297)
Changing the Root Volume to Persist at Launch Using the Console

Using the console, you can change the `DeleteOnTermination` attribute when you launch an instance. To change this attribute for a running instance, you must use the command line.

**To change the root volume of an instance to persist at launch using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the console dashboard, select **Launch Instance**.
3. On the **Choose an Amazon Machine Image (AMI)** page, choose an AMI and choose **Select**.
4. Follow the wizard to complete the **Choose an Instance Type** and **Configure Instance Details** pages.
5. On the **Add Storage** page, deselect the **Delete On Termination** check box for the root volume.
6. Complete the remaining wizard pages, and then choose **Launch**.

You can verify the setting by viewing details for the root device volume on the instance's details pane. Next to **Block devices**, click the entry for the root device volume. By default, **Delete on termination** is True. If you change the default behavior, **Delete on termination** is False.

Changing the Root Volume to Persist at Launch Using the Command Line

When you launch an EBS-backed instance, you can use one of the following commands to change the root device volume to persist. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- `run-instances` (AWS CLI)
- `New-EC2Instance` (AWS Tools for Windows PowerShell)

For example, add the following option to your `run-instances` command:

```
--block-device-mappings file://mapping.json
```

Specify the following in `mapping.json`:

```json
[
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": false,
 "SnapshotId": "snap-1234567890abcdef0",
 "VolumeType": "gp2"
 }
 }
]
```

Changing the Root Volume of a Running Instance to Persist Using the Command Line

You can use one of the following commands to change the root device volume of a running EBS-backed instance to persist. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).
• modify-instance-attribute (AWS CLI)
• Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

For example, use the following command:

```
aws ec2 modify-instance-attribute --instance-id i-1234567890abcdef0 --block-device-mappings file://mapping.json
```

Specify the following in `mapping.json`:

```json
[
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": false
 }
 }
]
```

### Recover Your Instance

You can create an Amazon CloudWatch alarm that monitors an Amazon EC2 instance and automatically recovers the instance if it becomes impaired due to an underlying hardware failure or a problem that requires AWS involvement to repair. Terminated instances cannot be recovered. A recovered instance is identical to the original instance, including the instance ID, private IP addresses, Elastic IP addresses, and all instance metadata. For more information about using Amazon CloudWatch alarms to recover an instance, see Create Alarms That Stop, Terminate, Reboot, or Recover an Instance (p. 422). To troubleshoot issues with instance recovery failures, see Troubleshooting Instance Recovery Failures in the Amazon EC2 User Guide for Linux Instances.

When the `StatusCheckFailed_System` alarm is triggered, and the recover action is initiated, you will be notified by the Amazon SNS topic that you selected when you created the alarm and associated the recover action. During instance recovery, the instance is migrated during an instance reboot, and any data that is in-memory is lost. When the process is complete, information is published to the SNS topic you've configured for the alarm. Anyone who is subscribed to this SNS topic will receive an email notification that includes the status of the recovery attempt and any further instructions. You will notice an instance reboot on the recovered instance.

Examples of problems that cause system status checks to fail include:

• Loss of network connectivity
• Loss of system power
• Software issues on the physical host
• Hardware issues on the physical host that impact network reachability

The recover action can also be triggered when an instance is scheduled by AWS to stop or retire due to degradation of the underlying hardware. For more information about scheduled events, see Scheduled Events for Your Instances (p. 400).

The recover action is supported only on instances with the following characteristics:

• Use a C3, C4, C5, M3, M4, M5, R3, R4, T2, or X1 instance type
• Run in a VPC (not EC2-Classic)
• Use shared tenancy (the tenancy attribute is set to default)
• Use EBS volumes only (do not configure instance store volumes). For more information, see 'Recover this instance' is disabled.

If your instance has a public IPv4 address, it retains the public IPv4 address after recovery.

Configuring Your Windows Instance

A Windows instance is a virtual server running Windows Server in the cloud.

After you have successfully launched and logged into your instance, you can make changes to it so that it's configured to meet the needs of a specific application. The following are some common tasks to help you get started.

Contents

• Configuring a Windows Instance Using EC2Launch (p. 299)
• Configuring a Windows Instance Using the EC2Config Service (p. 307)
• Paravirtual Drivers for Windows Server Instances (p. 332)
• Setting the Time for a Windows Instance (p. 347)
• Setting Passwords for Windows Instances (p. 350)
• Adding Windows Components Using Installation Media (p. 351)
• Configuring a Secondary Private IPv4 Address for Your Windows Instance in a VPC (p. 354)
• Running Commands on Your Windows Instance at Launch (p. 358)
• Instance Metadata and User Data (p. 362)

Configuring a Windows Instance Using EC2Launch

EC2Launch is a set of Windows PowerShell scripts that replaces the EC2Config service on Windows Server 2016 AMIs. EC2Launch performs the following tasks by default during the initial instance boot:

• Sets up new wallpaper that renders information about the instance. (Doesn't apply to Nano Server.)
• Sets the computer name.
• Sends instance information to the Amazon EC2 console.
• Sends the RDP certificate thumbprint to the EC2 console. (Doesn't apply to Nano Server.)
• Sets a random password for the administrator account.
• Adds DNS suffixes.
• Dynamically extends the operating system partition to include any unpartitioned space.
• Executes user data (if specified). For more information about specifying user data, see Configuring Instances with User Data (p. 365).

The following tasks help to maintain backward compatibility with the EC2Config service. You can also configure EC2Launch to perform these tasks during startup:

• Initialize secondary EBS volumes.
• Send Windows Event logs to the EC2 console logs.
• Send the Windows is ready to use message to the EC2 console.

Contents

- Verify the EC2Launch Version (p. 300)
- Installing the Latest Version of EC2Launch (p. 300)
- EC2Launch Directory Structure (p. 300)
- Configuring EC2Launch (p. 301)
- Using Sysprep with EC2Launch (p. 303)
- EC2Launch Version History (p. 306)

Verify the EC2Launch Version

Use the following Windows Powershell command to verify the installed version of EC2Launch.

```
PS C:\> Import-Module -Name C:\ProgramData\Amazon\EC2-Windows\Launch\Module\Ec2Launch.psd1; (Get-Module EC2Launch).Version.ToString()
```

Installing the Latest Version of EC2Launch

Use the following procedure to download and install the latest version of EC2Launch on your instances.

To download and install the latest version of EC2Launch

1. If you have already installed and configured EC2Launch on an instance, make a backup of the EC2Launch configuration file. The installation process does not preserve changes in this file. By default, the file is located in the C:\ProgramData\Amazon\EC2-Windows\Launch\Config directory.
2. Download EC2-Windows-Launch.zip to a directory on the instance.
3. Download install.ps1 to the same directory where you downloaded EC2-Windows-Launch.zip.
4. Run install.ps1
5. If you made a backup of the EC2Launch configuration file, copy it to the C:\ProgramData\Amazon \EC2-Windows\Launch\Config directory.

EC2Launch Directory Structure

EC2Launch is installed by default on Windows Server 2016 AMIs in the root directory C:\ProgramData\Amazon\EC2-Windows\Launch.

**Note**

By default, Windows hides files and folders under C:\ProgramData. To view EC2Launch directories and files, you must either type the path in Windows Explorer or change the folder properties to show hidden files and folders.

The Launch directory contains the following subdirectories.

- Scripts — Contains the PowerShell scripts that make up EC2Launch.
- Module — Contains the module for building scripts related to Amazon EC2.
- Config — Contains script configuration files that you can customize.
- Sysprep — Contains Sysprep resources.
• Settings — Contains an application for the Sysprep graphical user interface.
• Logs — Contains log files generated by scripts.

## Configuring EC2Launch

After your instance has been initialized the first time, you can configure EC2Launch to run again and perform different start-up tasks.

### Tasks
- Configure Initialization Tasks (p. 301)
- Initialize Drives and Drive Letter Mappings (p. 302)
- Send Windows Event Logs to the EC2 Console (p. 302)
- Send Windows Is Ready Message After A Successful Boot (p. 303)

### Configure Initialization Tasks

Enable or disable the following tasks using the `LaunchConfig.json` configuration file:

- Set the computer name.
- Set up new wallpaper.
- Add DNS suffix list.
- Extend the boot volume size.
- Specify the administrator password.

### To configure initialization settings

1. On the instance to configure, open the following file in a text editor: C:\ProgramData\Amazon\EC2-Windows\Launch\Config\LaunchConfig.json.
2. Update the following settings as needed and save your changes. Provide a password in `adminPassword` only if `adminPasswordType` is Specify.

```json
{
 "setComputerName": false,
 "setWallpaper": true,
 "addDnsSuffixList": true,
 "extendBootVolumeSize": true,
 "adminPasswordType": "Random, Specify, DoNothing",
 "adminPassword": "Password that adheres to your security policy."
}
```

The password types are defined as follows:

**Random**

EC2Launch generates a password and encrypts it using the user's key. The system disables this setting after the instance is launched so that this password persists if the instance is rebooted or stopped and started.

**Specify**

Choose this option to specify a password in `adminPassword`. If the password does not meet the system requirements, a random password is generated instead. The password is stored in `LaunchConfig.json` as clear text and is deleted after Sysprep sets the administrator password. EC2Launch encrypts the password using the user's key.
DoNothing

Choose this option if you specified a password in the \unattend.xml file. If you choose this option and don't specify a password in \unattend.xml, the system uses the password of the parent AMI.

3. In Windows PowerShell, run the following command so that the system schedules the script to run as a Windows Scheduled Task. The script runs one time during the next boot and then disables these tasks from running again.

```
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeInstance.ps1 -Schedule
```

Initialize Drives and Drive Letter Mappings

Specify settings in the DriveLetterMappingConfig.json file to initialize and format drives and map drive letters to EBS volumes on your EC2 instance. The script performs this operation if the drives have not already been initialized and partitioned.

To map drive letters to volumes

1. Open the C:\ProgramData\Amazon\EC2-Windows\Launch\Config\DriveLetterMappingConfig.json file in a text editor.
2. Specify the following volume settings and save your changes:

```json
{
 "driveLetterMapping": [
 {
 "volumeName": "Temporary Storage 0",
 "driveLetter": "H"
 }
]
}
```
3. In Windows PowerShell, run the following command so that the system schedules the script to run as a Windows Scheduled Task.

```
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeDisks.ps1
```

By default, the script runs only when the instance first boots. To initialize disks each time the instance boots (an option that is backwards compatible with EC2Config), run the following command:

```
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeDisks.ps1 -Schedule
```

You can also initialize attached disks at the instance launch by adding the following path to the PowerShell script in Amazon EC2 user data.

```
<powershell>
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeDisks.ps1
</powershell>
```

Send Windows Event Logs to the EC2 Console

Specify settings in the EventLogConfig.json configuration file to send Windows Event logs to EC2 console logs.
To configure settings to send Windows Event logs

1. On the instance, open the `C:\ProgramData\Amazon\EC2-Windows\Launch\Config\EventLogConfig.json` file in a text editor.

2. Configure the following log settings and save your changes:

```json
{
 "events": [
 {
 "logName": "System",
 "source": "An event source (optional)",
 "level": "Error",
 "numEntries": 3
 }
]
}
```

3. In Windows PowerShell, run the following command so that the system schedules the script to run as a Windows Scheduled Task each time the instance boots.

```
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\SendEventLogs.ps1 -Schedule
```

The logs can take three minutes or more to appear in the EC2 console logs.

Send Windows Is Ready Message After A Successful Boot

The EC2Config service sent the "Windows is ready" message to the EC2 console after every boot. EC2Launch sends this message only after the initial boot. For backwards compatibility with the EC2Config service, you can schedule EC2Launch to send this message after every boot. On the instance, open Windows PowerShell and run the following command. The system schedules the script to run as a Windows Scheduled Task.

```
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\SendWindowsIsReady.ps1 -Schedule
```

Using Sysprep with EC2Launch

Sysprep simplifies the process of duplicating a customized installation of Windows Server 2016. EC2Launch offers a default answer file and batch files for Sysprep that automate and secure the image-preparation process on your AMI. Modifying these files is optional. These files are located in the following directory, by default: `C:\ProgramData\Amazon\EC2-Windows\Launch\Sysprep`.

**Important**
Sysprep is not supported on Windows Server 2016 Nano Server. Also, don't use Sysprep to create an instance backup. Sysprep removes system-specific information. If you remove this information there might be unintended consequences for an instance backup.

The EC2Launch answer file and batch files for Sysprep include the following:

- **Unattend.xml**
  This is the default answer file. If you run `SysprepInstance.ps1` or choose `ShutdownWithSysprep` in the user interface, the system reads the setting from this file.

- **BeforeSysprep.cmd**
  Customize this batch file to run commands before Ec2Launch runs Sysprep.
SysprepSpecialize.cmd

Customize this batch file to run commands during the Sysprep specialize phase.

Running Sysprep with EC2Launch

On the full installation of Windows Server 2016 (with a desktop experience), you can run Sysprep with EC2Launch manually or by using the **EC2 Launch Settings** application.

To run Sysprep using the EC2Launch Settings application

1. In the Amazon EC2 console, locate or create a Windows Server 2016, Datacenter edition AMI.
2. Launch a Windows instance from the AMI.
3. Connect to your Windows instance and customize it.
4. Search for and run the **EC2LaunchSettings** application. It is located in the following directory by default: `C:\ProgramData\Amazon\EC2-Windows\Launch\Settings`.
5. Select or clear options as needed. These settings are stored in the `LaunchConfig.json` file.
6. For **Administrator Password**, do one of the following:
• Choose **Random**. EC2Launch generates a password and encrypts it using the user's key. The system disables this setting after the instance is launched so that this password persists if the instance is rebooted or stopped and started.

• Choose **Specify** and type a password that meets the system requirements. The password is stored in LaunchConfig.json as clear text and is deleted after Sysprep sets the administrator password. If you shut down now, the password is set immediately. EC2Launch encrypts the password using the user's key.

• If you specified a password in the unattend.xml file, choose **DoNothing**. If you choose this option and don't specify a password in unattend.xml, the system sets the password to match the password of the parent AMI.

• If you plan to shut down the system without running sysprep, choose **DoNothing**.

7. Choose **Shutdown with Sysprep**.

**To manually run Sysprep using EC2Launch**

1. In the Amazon EC2 console locate or create a Windows Server 2016, Datacenter edition AMI that you want to duplicate.

2. Launch and connect to your Windows instance.

3. Customize the instance.

4. Specify settings in the LaunchConfig.json file. This file is located in the C:\ProgramData\Amazon\EC2-Windows\Launch\Config directory by default.

   For `adminPasswordType`, specify one of the following values:

   **Random**

   EC2Launch generates a password and encrypts it using the user's key. The system disables this setting after the instance is launched so that this password persists if the instance is rebooted or stopped and started.

   **Specify**

   Choose this option to specify a password in `adminPassword`. If the password does not meet the system requirements, a random password is generated instead. The password is stored in LaunchConfig.json as clear text and is deleted after Sysprep sets the administrator password. EC2Launch encrypts the password using the user's key.

   **DoNothing**

   Choose this option if you specified a password in the unattend.xml file. If you choose this option and don't specify a password in unattend.xml, the system uses the password of the parent AMI.

5. (Optional) Specify settings in unattend.xml and other configuration files. If plan to attend to the installation, then you don't need to make changes in these files. The files are located in the following directory by default: C:\ProgramData\Amazon\EC2-Windows\Launch\Sysprep.

6. In Windows PowerShell, run ./InitializeInstance.ps1 -Schedule. The script is located in the following directory, by default: C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts. This script schedules the instance to initialize during the next boot. You must run this script before you run the SysprepInstance.ps1 script in the next step.

7. In Windows PowerShell, run ./SysprepInstance.ps1. The script is located in the following directory by default: C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts.

You are logged off the instance, and the instance shuts down. If you check the **Instances** page in the Amazon EC2 console, the instance state changes from running to stopping, and then finally to stopped. At this point, it's safe to create an AMI from this instance.
EC2Launch Version History

Windows AMIs starting with Windows Server 2016 include a set of Windows Powershell scripts called EC2Launch. EC2Launch performs tasks during the initial instance boot. For information about the EC2Launch versions included in the Windows AMIs, see see Managed AWS Windows AMIs (p. 77).

To download and install the latest version of EC2Launch, see Installing the Latest Version of EC2Launch (p. 300).

The following table describes the released versions of EC2Launch.

<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.610</td>
<td>Fixed issue with redirecting output and errors to files from user data.</td>
</tr>
</tbody>
</table>
| 1.3.590 | • Added missing instances types in the wallpaper.  
• Fixed an issue with drive letter mapping and disk installation. |
| 1.3.580 | • Fixed Get-Metadata to use the default system proxy settings for web requests.  
• Added a special case for NVMe in disk initialization.  
• Fixed minor issues. |
| 1.3.550 | Added a -NoShutdown option to enable Sysprep with no shutdown. |
| 1.3.540 | Fixed minor issues. |
| 1.3.530 | Fixed minor issues. |
| 1.3.521 | Fixed minor issues. |
| 1.3.0 | • Fixed a hexadecimal length issue for computer name change.  
• Fixed a possible reboot loop for computer name change.  
• Fixed an issue in wallpaper setup. |
| 1.2.0 | • Update to display information about installed operating system (OS) in EC2 system log.  
• Update to display EC2Launch and SSM Agent version in EC2 system log.  
• Fixed minor issues. |
| 1.1.2 | • Update to display ENA driver information in EC2 system log.  
• Update to exclude Hyper-V from primary NIC filter logic.  
• Added KMS server and port into registry key for KMS activation.  
• Improved wallpaper setup for multiple users.  
• Update to clear routes from persistent store. |
EC2Config

<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

### Configuring a Windows Instance Using the EC2Config Service

Windows AMIs prior to Windows Server 2016 include an optional service called the EC2Config service (`EC2Config.exe`). EC2Config starts when the instance boots and performs tasks during startup and each time you stop or start the instance. EC2Config can also perform tasks on demand. Some of these tasks are automatically enabled, while others must be enabled manually. Although optional, this service provides access to advanced features that aren't otherwise available. This service runs in the LocalSystem account.

**Note**

EC2Launch replaces EC2Config on Windows Server 2016 AMIs. For more information, see Configuring a Windows Instance Using EC2Launch (p. 299).

EC2Config uses settings files to control its operation. You can update these settings files using either a graphical tool or by directly editing XML files. The service binaries and additional files are contained in the `%ProgramFiles%\Amazon\EC2ConfigService` directory.

**Contents**

- EC2Config Tasks (p. 307)
- EC2Config and AWS Systems Manager (p. 308)
- EC2Config and Sysprep (p. 308)
- Ec2 Service Properties (p. 308)
- EC2Config Settings Files (p. 312)
- Configure Proxy Settings for the EC2Config Service (p. 315)
- Installing the Latest Version of EC2Config (p. 317)
- Stopping, Restarting, Deleting, or Uninstalling EC2Config (p. 318)
- EC2Config Version History (p. 319)
- Troubleshooting Issues with the EC2Config Service (p. 330)

**EC2Config Tasks**

EC2Config runs initial startup tasks when the instance is first started and then disables them. To run these tasks again, you must explicitly enable them prior to shutting down the instance, or by running Sysprep manually. These tasks are as follows:

- Set a random, encrypted password for the administrator account.
- Generate and install the host certificate used for Remote Desktop Connection.
- Dynamically extend the operating system partition to include any unpartitioned space.
- Execute the specified user data (and Cloud-Init, if it's installed).

EC2Config performs the following tasks every time the instance starts:
• Change the host name to match the private IP address in Hex notation (this task is disabled by default and must be enabled in order to run at instance start).
• Configure the key management server (AWS KMS), check for Windows activation status, and activate Windows as necessary.
• Mount all Amazon EBS volumes and instance store volumes, and map volume names to drive letters.
• Write event log entries to the console to help with troubleshooting (this task is disabled by default and must be enabled in order to run at instance start).
• Write to the console that Windows is ready.
• Add a custom route to the primary network adapter to enable the following IP addresses when multiple NICs are attached: 169.254.169.250, 169.254.169.251, and 169.254.169.254. These addresses are used by Windows Activation and when you access instance metadata.

EC2Config performs the following task every time a user logs in:

• Display wallpaper information to the desktop background.

While the instance is running, you can request that EC2Config perform the following task on demand:

• Run Sysprep and shut down the instance so that you can create an AMI from it. For more information, see Create a Standard Amazon Machine Image Using Sysprep (p. 98).

**EC2Config and AWS Systems Manager**

The EC2Config service processes Systems Manager requests on instances created from AMIs for versions of Windows Server prior to Windows Server 2016 that were published before November 2016.

Instances created from AMIs for versions of Windows Server prior to Windows Server 2016 that were published after November 2016 include the EC2Config service and SSM Agent. EC2Config performs all of the tasks described earlier, and SSM Agent processes requests for Systems Manager capabilities like Run Command and State Manager. For more information, see Configuring a Windows Instance Using EC2Launch (p. 299).

You can use Run Command to upgrade your existing instances to use the latest version of the EC2Config service and SSM Agent. For more information, see Example: Update the SSM Agent in the AWS Systems Manager User Guide.

**EC2Config and Sysprep**

The EC2Config service runs Sysprep, a Microsoft tool that enables you to create a customized Windows AMI that can be reused. When EC2Config calls Sysprep, it uses the files in %ProgramFiles%\Amazon\EC2ConfigService\Settings to determine which operations to perform. You can edit these files indirectly using the Ec2 Service Properties dialog box, or directly using an XML editor or a text editor. However, there are some advanced settings that aren't available in the Ec2 Service Properties dialog box, so you must edit those entries directly.

If you create an AMI from an instance after updating its settings, the new settings are applied to any instance that's launched from the new AMI. For information about creating an AMI, see Creating a Custom Windows AMI (p. 65).

**Ec2 Service Properties**

The following procedure describes how to use the Ec2 Service Properties dialog box to enable or disable settings.
To change settings using the Ec2 Service Properties dialog box

1. Launch and connect to your Windows instance.
2. From the Start menu, click All Programs, and then click EC2ConfigService Settings.

3. On the General tab of the Ec2 Service Properties dialog box, you can enable or disable the following settings.

   **Set Computer Name**

   If this setting is enabled (it is disabled by default), the host name is compared to the current internal IP address at each boot; if the host name and internal IP address do not match, the host name is reset to contain the internal IP address and then the system reboots to pick up the new host name. To set your own host name, or to prevent your existing host name from being modified, do not enable this setting.

   **User Data**

   User data execution enables you to inject scripts into the instance metadata during the first launch. From an instance, you can read user data at http://169.254.169.254/latest/user-data/. The scripts remain static for the life of the instance, persisting when the instance is stopped and started, until it is terminated.

   If you use a large script, we recommend that you use user data to download the script, and then execute it.

   For more information, see User Data Execution (p. 359).

   **Event Log**

   Use this setting to display event log entries on the console during boot for easy monitoring and debugging.

   Click Settings to specify filters for the log entries sent to the console. The default filter sends the three most recent error entries from the system event log to the console.
CloudWatch Logs

Starting with EC2Config version 2.2.5 (version 2.2.6 or later is recommended), you can export all Windows Server messages in the System log, Security log, Application log, and IIS log to CloudWatch Logs and monitor them using CloudWatch metrics. EC2Config version 2.2.10 or later adds the ability to export any event log data, Event Tracing (Windows) data, or text-based log files to CloudWatch Logs. In addition, you can also export performance counter data to CloudWatch. For more information, see Monitoring System, Application, and Custom Log Files in the Amazon CloudWatch User Guide.

1. Select Enable CloudWatch integration, and then click OK.
2. Edit the \Amazon\Ec2ConfigService\Settings\AWS.EC2.Windows.CloudWatch.json file and configure the types of logs you want to send to CloudWatch Logs. For more information, see Sending Logs, Events, and Performance Counters to Amazon CloudWatch (p. 431).

If your instance is running EC2Config version 4.x or later, this option is not available. SSM Agent sends log data to CloudWatch instead.

Wallpaper Information

Use this setting to display system information on the desktop background. The following is an example of the information displayed on the desktop background.

The information displayed on the desktop background is controlled by the settings file EC2ConfigService\Settings\WallpaperSettings.xml.

4. Click the Storage tab. You can enable or disable the following settings.
Root Volume

This setting dynamically extends Disk 0/Volume 0 to include any unpartitioned space. This can be useful when the instance is booted from a root device volume that has a custom size.

Initialize Drives

This setting formats and mounts all volumes attached to the instance during start.

Drive Letter Mapping

The system maps the volumes attached to an instance to drive letters. For Amazon EBS volumes, the default is to assign drive letters going from D: to Z:. For instance store volumes, the default depends on the driver. Citrix PV drivers assign instance store volumes drive letters going from Z: to A:. Red Hat drivers assign instance store volumes drive letters going from D: to Z:.

To choose the drive letters for your volumes, click Mappings. In the DriveLetterSetting dialog box, specify the Volume Name and Drive Letter values for each volume, and then click OK. We recommend that you select drive letters that avoid conflicts with drive letters that are likely to be in use, such as drive letters in the middle of the alphabet.

After you specify a drive letter mapping and attach a volume with same label as one of the volume names that you specified, EC2Config automatically assigns your specified drive letter to that volume. However, the drive letter mapping fails if the drive letter is already in use. Note that EC2Config doesn't change the drive letters of volumes that were already mounted when you specified the drive letter mapping.

5. To save your settings and continue working on them later, click OK to close the Ec2 Service Properties dialog box. If you have finished customizing your instance and want to create an AMI from that instance, see Create a Standard Amazon Machine Image Using Sysprep (p. 98).
EC2Config Settings Files

The settings files control the operation of the EC2Config service. These files are located in the C:\Program Files\Amazon\Ec2ConfigService\Settings directory:

- **ActivationSettings.xml**—Controls product activation using a key management server (KMS).
- **AWS.EC2.Windows.CloudWatch.json**—Controls which performance counters to send to CloudWatch and which logs to send to CloudWatch Logs. For more information about how to change the settings in this file, see Sending Logs, Events, and Performance Counters to Amazon CloudWatch (p. 431).
- **BundleConfig.xml**—Controls how EC2Config prepares an instance store-backed instance for AMI creation.
- **Config.xml**—Controls the primary settings.
- **DriveLetterConfig.xml**—Controls drive letter mappings.
- **EventLogConfig.xml**—Controls the event log information that’s displayed on the console while the instance is booting.
- **WallpaperSettings.xml**—Controls the information that’s displayed on the desktop background.

**ActivationSettings.xml**

This file contains settings that control product activation. When Windows boots, the EC2Config service checks whether Windows is already activated. If Windows is not already activated, it attempts to activate Windows by searching for the specified KMS server.

- **SetAutodiscover**—Indicates whether to detect a KMS automatically.
- **TargetKMS**—Stores the private IP address of a KMS. The KMS must be in the same region as your instance.
- **DiscoverKMS**—Discovers the KMS server from the specified DNS zone.
- **ReadFromUserData**—Gets the KMS server from UserData.
- **LegacySearchZones**—Discovers the KMS server from the specified DNS zone.
- **DoActivate**—Attempts activation using the specified settings in the section. This value can be `true` or `false`.
- **LogResultToConsole**—Displays the result to the console.

**BundleConfig.xml**

This file contains settings that control how EC2Config prepares an instance for AMI creation.

- **AutoSysprep**—Indicates whether to use Sysprep automatically. Change the value to `Yes` to use Sysprep.
- **SetRDP**—Sets a self-signed certificate to the Remote Desktop server. This enables you to securely RDP into the instances. Change the value to `Yes` if the new instances should have the certificate.
  
  This setting is not used with Windows Server 2008 or Windows Server 2012 instances because they can generate their own certificates.
- **SetPasswordAfterSysprep**—Sets a random password on a newly launched instance, encrypts it with the user launch key, and outputs the encrypted password to the console. Change the value of this setting to `No` if the new instances should not be set to a random encrypted password.

**Config.xml**

Plug-ins
• **Ec2SetPassword**—Generates a random encrypted password each time you launch an instance. This feature is disabled by default after the first launch so that reboots of this instance don’t change a password set by the user. Change this setting to **Enabled** to continue to generate passwords each time you launch an instance.

This setting is important if you are planning to create an AMI from your instance.

• **Ec2SetComputerName**—Sets the host name of the instance to a unique name based on the IP address of the instance and reboots the instance. To set your own host name, or prevent your existing host name from being modified, you must disable this setting.

• **Ec2InitializeDrives**—Initializes and formats all volumes during startup. This feature is enabled by default.

• **Ec2EventLog**—Displays event log entries in the console. By default, the three most recent error entries from the system event log are displayed. To specify the event log entries to display, edit the `EventLogConfig.xml` file located in the `EC2ConfigService\Settings` directory. For information about the settings in this file, see [Event Log Key](#) in the MSDN Library.

• **Ec2ConfigureRDP**—Sets up a self-signed certificate on the instance, so users can securely access the instance using Remote Desktop. This feature is disabled on Windows Server 2008 and Windows Server 2012 instances because they can generate their own certificates.

• **Ec2OutputRDP_cert**—Displays the Remote Desktop certificate information to the console so that the user can verify it against the thumbprint.

• **Ec2SetDriveLetter**—Sets the drive letters of the mounted volumes based on user-defined settings. By default, when an Amazon EBS volume is attached to an instance, it can be mounted using the drive letter on the instance. To specify your drive letter mappings, edit the `DriveLetterConfig.xml` file located in the `EC2ConfigService\Settings` directory.

• **Ec2WindowsActivate**—The plug-in handles Windows activation. It checks to see if Windows is activated. If not, it updates the KMS client settings, and then activates Windows.

To modify the KMS settings, edit the `ActivationSettings.xml` file located in the `EC2ConfigService\Settings` directory.

• **Ec2DynamicBootVolumeSize**—Extends Disk 0/Volume 0 to include any unpartitioned space.

• **Ec2HandleUserData**—Creates and executes scripts created by the user on the first launch of an instance after Sysprep is run. Commands wrapped in script tags are saved to a batch file, and commands wrapped in PowerShell tags are saved to a `.ps1` file.

**Global Settings**

• **ManageShutdown**—Ensures that instances launched from instance store-backed AMIs do not terminate while running Sysprep.

• **SetDnsSuffixList**—Sets the DNS suffix of the network adapter for Amazon EC2. This allows DNS resolution of servers running in Amazon EC2 without providing the fully qualified domain name.

• **WaitForMetaDataAvailable**—Ensures that the EC2Config service will wait for metadata to be accessible and the network available before continuing with the boot. This check ensures that EC2Config can obtain information from metadata for activation and other plug-ins.

• **ShouldAddRoutes**—Adds a custom route to the primary network adapter to enable the following IP addresses when multiple NICs are attached: 169.254.169.250, 169.254.169.251, and 169.254.169.254. These addresses are used by Windows Activation and when you access instance metadata.

• **RemoveCredentialsfromSyspreponStartup**—Removes the administrator password from `Sysprep.xml` the next time the service starts. To ensure that this password persists, edit this setting.

**DriveLetterConfig.xml**

This file contains settings that control drive letter mappings. By default, a volume can be mapped to any available drive letter. You can mount a volume to a particular drive letter as follows.
Amazon Elastic Compute Cloud
User Guide for Windows Instances
EC2Config

<?xml version="1.0" standalone="yes"?>
<DriveLetterMapping>
  <Mapping>
    <VolumeName></VolumeName>
    <DriveLetter></DriveLetter>
  </Mapping>
  . . .
  <Mapping>
    <VolumeName></VolumeName>
    <DriveLetter></DriveLetter>
  </Mapping>
</DriveLetterMapping>

- **VolumeName**—The volume label. For example, *My Volume*. To specify a mapping for an instance storage volume, use the label *Temporary Storage X*, where X is a number from 0 to 25.
- **DriveLetter**—The drive letter. For example, *M:*. The mapping fails if the drive letter is already in use.

**EventLogConfig.xml**

This file contains settings that control the event log information that's displayed on the console while the instance is booting. By default, we display the three most recent error entries from the System event log.

- **Category**—The event log key to monitor.
- **ErrorType**—The event type (for example, *Error*, *Warning*, *Information*).
- **NumEntries**—The number of events stored for this category.
- **LastMessageTime**—To prevent the same message from being pushed repeatedly, the service updates this value every time it pushes a message.
- **AppName**—The event source or application that logged the event.

**WallpaperSettings.xml**

This file contains settings that control the information that's displayed on the desktop background. The following information is displayed by default.

- **Hostname**—Displays the computer name.
- **Instance ID**—Displays the ID of the instance.
- **Public IP Address**—Displays the public IP address of the instance.
- **Private IP Address**—Displays the private IP address of the instance.
- **Availability Zone**—Displays the Availability Zone in which the instance is running.
- **Instance Size**—Displays the type of instance.
- **Architecture**—Displays the setting of the PROCESSOR_ARCHITECTURE environment variable.

You can remove any of the information that's displayed by default by deleting its entry. You can add additional instance metadata to display as follows.

```xml
<WallpaperInformation>
 <name>display_name</name>
 <source>metadata</source>
 <identifier>meta-data/path</identifier>
</WallpaperInformation>
```

You can add additional System environment variables to display as follows.
InitializeDrivesSettings.xml

This file contains settings that control how EC2Config initializes drives.

By default, EC2Config initialize drives that were not brought online with the operating system. You can customize the plugin as follows.

```
<InitializeDrivesSettings>
 <SettingsGroup>
 setting
 </SettingsGroup>
</InitializeDrivesSettings>
```

Use a settings group to specify how you want to initialize drives:

**FormatWithTRIM**

Enables the TRIM command when formatting drives. After a drive has been formatted and initialized, the system restores TRIM configuration.

Starting with EC2Config version 3.18, the TRIM command is disabled during the disk format operation by default. This improves formatting times. Use this setting to enable TRIM during the disk format operation for EC2Config version 3.18 and later.

**FormatWithoutTRIM**

Disables the TRIM command when formatting drives and improves formatting times in Windows. After a drive has been formatted and initialized, the system restores TRIM configuration.

**DisableInitializeDrives**

Disables formatting for new drives. Use this setting to initialize drives manually.

Configure Proxy Settings for the EC2Config Service

You can configure the EC2Config service to communicate through a proxy using one of the following methods: the AWS SDK for .NET, the `system.net` element, or Microsoft Group Policy and Internet Explorer. Using the AWS SDK for .NET is the preferred method because you can specify a user name and password.

Methods

- Configure Proxy Settings Using the AWS SDK for .NET (Preferred) (p. 315)
- Configure Proxy Settings Using the `system.net` Element (p. 316)
- Configure Proxy Settings Using Microsoft Group Policy and Microsoft Internet Explorer (p. 317)

Configure Proxy Settings Using the AWS SDK for .NET (Preferred)

You can configure proxy settings for the EC2Config service by specifying the `proxy` element in the `Ec2Config.exe.config` file. For more information, see Configuration Files Reference for AWS SDK for .NET.
**To specify the proxy element in `Ec2Config.exe.config`**

1. Edit the `Ec2Config.exe.config` file on an instance where you want the EC2Config service to communicate through a proxy. By default, the file is located in the following directory: `%ProgramFiles%\Amazon\Ec2ConfigService`.
2. Add the following `aws` element to the `configSections`. Do not add this to any existing `sectionGroups`.

   **For EC2Config versions 3.17 or earlier**
   
   ```xml
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections>
   ```

   **For EC2Config versions 3.18 or later**
   
   ```xml
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
   ```

3. Add the following `aws` element to the `Ec2Config.exe.config` file.

   ```xml
 <aws>
 <proxy
 host="string value"
 port="string value"
 username="string value"
 password="string value" />
 </aws>
   ```

4. Save your changes.

**Configure Proxy Settings Using the `system.net` Element**

You can specify proxy settings in a `system.net` element in the `Ec2Config.exe.config` file. For more information, see [defaultProxy Element (Network Settings)](https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/visual-csharp/system-net) on MSDN.

**To specify the `system.net` element in `Ec2Config.exe.config`**

1. Edit the `Ec2Config.exe.config` file on an instance where you want the EC2Config service to communicate through a proxy. By default, the file is located in the following directory: `%ProgramFiles%\Amazon\Ec2ConfigService`.
2. Add a `defaultProxy` entry to `system.net`. For more information, see [defaultProxy Element (Network Settings)](https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/visual-csharp/system-net) on MSDN.

   For example, the following configuration routes all traffic to use the proxy that is currently configured for Internet Explorer, with the exception of the metadata and licensing traffic, which will bypass the proxy.

   ```xml
 <defaultProxy>
 <proxy usesystemdefault="true" />
 <bypasslist>
 <add address="169.254.169.250" />
 <add address="169.254.169.251" />
 <add address="169.254.169.254" />
 </bypasslist>
 </defaultProxy>
   ```
3. Save your changes.

Configure Proxy Settings Using Microsoft Group Policy and Microsoft Internet Explorer

The EC2Config service runs under the Local System user account. You can specify instance-wide proxy settings for this account in Internet Explorer after you change Group Policy settings on the instance.

To configure proxy settings using Group Policy and Internet Explorer

1. On an instance where you want the EC2Config service to communicate through a proxy, open a Command prompt as an Administrator, type `gpedit.msc`, and press Enter.
2. In the Local Group Policy Editor, under Local Computer Policy, choose Computer Configuration, Administrative Templates, Windows Components, Internet Explorer.
3. In the right-pane, choose Make proxy settings per-machine (rather than per-user) and then choose Edit policy setting.
4. Choose Enabled, and then choose Apply.
5. Open Internet Explorer, and then choose the Tools button.
6. Choose Internet Option, and then choose the Connections tab.
7. Choose LAN settings.
8. Under Proxy server, choose the Use a proxy server for your LAN option.
9. Specify address and port information and then choose OK.

Installing the Latest Version of EC2Config

By default, the EC2Config service is included in AMIs prior to Windows Server 2016. When the EC2Config service is updated, new Windows AMIs from AWS include the latest version of the service. However, you need to update your own Windows AMIs and instances with the latest version of EC2Config.

Note
EC2Launch replaces EC2Config on Windows Server 2016 AMIs. For more information, see Configuring a Windows Instance Using EC2Launch (p. 299).

For information about how to receive notifications for EC2Config updates, see Subscribing to EC2Config Service Notifications (p. 330). For information about the changes in each version, see the EC2Config Version History (p. 319).

Before You Begin

- Verify that you have .NET framework 3.5 SP1 or greater.
- By default, Setup replaces your settings files with default settings files during installation and restarts the EC2Config service when the installation is completed. If you changed EC2Config service settings, copy the config.xml file from the %Program Files%\Amazon\Ec2ConfigService\Settings directory. After you update the EC2Config service, you can restore this file to retain your configuration changes.
- If your version of EC2Config is earlier than version 2.1.19 and you are installing version 2.2.12 or earlier, you must first install version 2.1.19. To install version 2.1.19, download EC2Install_2.1.19.zip, unzip the file, and then run EC2Install.exe.

Note
If your version of EC2Config is earlier than version 2.1.19 and you are installing version 2.3.313 or later, you can install it directly without installing version 2.1.19 first.
Verify the EC2Config Version

Use the following procedure to verify the version of EC2Config that is installed on your instances.

To verify the installed version of EC2Config
1. Launch an instance from your AMI and connect to it.
2. In Control Panel, select Programs and Features.
3. In the list of installed programs, look for Ec2ConfigService. Its version number appears in the Version column.

Update EC2Config

Use the following procedure to download and install the latest version of EC2Config on your instances.

To download and install the latest version of EC2Config
1. Download and unzip the EC2Config installer.
2. Run EC2Install.exe. For a complete list of options, run EC2Install with the /? option. By default, setup displays prompts. To run the command with no prompts, use the /quiet option.
   Important
   To keep the custom settings from the config.xml file that you saved, run EC2Install with the /norestart option, restore your settings, and then restart the EC2Config service manually.
3. If you are running EC2Config version 4.0 or later, you must restart the SSM Agent on the instance from the Microsoft Services snap-in.

Stopping, Restarting, Deleting, or Uninstalling EC2Config

You can manage the EC2Config service just as you would any other service.

To apply updated settings to your instance, you can stop and restart the service. If you're manually installing EC2Config, you must stop the service first.

To stop the EC2Config service
1. Launch and connect to your Windows instance.
2. On the Start menu, point to Administrative Tools, and then click Services.
3. In the list of services, right-click EC2Config, and select Stop.

To restart the EC2Config service
1. Launch and connect to your Windows instance.
2. On the Start menu, point to Administrative Tools, and then click Services.
3. In the list of services, right-click EC2Config, and select Restart.

If you don't need to update the configuration settings, create your own AMI, or use Amazon EC2 Systems Manager (SSM), you can delete and uninstall the service. Deleting a service removes its registry subkey. Uninstalling a service removes the files, the registry subkey, and any shortcuts to the service.

To delete the EC2Config service
1. Start a command prompt window.
2. Run the following command:

```
sc delete ec2config
```

To uninstall EC2Config

1. Launch and connect to your Windows instance.
2. On the Start menu, click Control Panel.
3. Double-click Programs and Features.
4. On the list of programs, select EC2ConfigService, and click Uninstall.

EC2Config Version History

Windows AMIs prior to Windows Server 2016 include an optional service called the EC2Config service (EC2Config.exe). EC2Config starts when the instance boots and performs tasks during startup and each time you stop or start the instance. For information about the EC2Config versions included in the Windows AMIs, see Managed AWS Windows AMIs (p. 77).

You can receive notifications when new versions of the EC2Config service are released. For more information, see Subscribing to EC2Config Service Notifications (p. 330).

The following table describes the released versions of EC2Config. For information about the updates for SSM Agent, see Amazon SSM Agent Release Notes.

<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.2439</td>
<td>New version of SSM Agent (2.2.191.0)</td>
</tr>
<tr>
<td>4.9.2400</td>
<td>New version of SSM Agent (2.2.160.0)</td>
</tr>
</tbody>
</table>
| 4.9.2327 | • New version of SSM Agent (2.2.120.0)  
• Added COM port discovery on Amazon EC2 bare metal instances  
• Added Hyper-V status logging on Amazon EC2 bare metal instances |
| 4.9.2294 | New version of SSM Agent (2.2.103.0) |
| 4.9.2262 | New version of SSM Agent (2.2.93.0) |
| 4.9.2246 | New version of SSM Agent (2.2.82.0) |
| 4.9.2218 | New version of SSM Agent (2.2.64.0) |
| 4.9.2212 | New version of SSM Agent (2.2.58.0) |
| 4.9.2203 | New version of SSM Agent (2.2.45.0) |
| 4.9.2188 | New version of SSM Agent (2.2.30.0) |
| 4.9.2180 | • New version of SSM Agent (2.2.24.0)  
• Added the Elastic GPU plugin for GPU instances |
<p>| 4.9.2143 | New version of SSM Agent (2.2.16.0) |
| 4.9.2140 | New version of SSM Agent (2.1.10.0) |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.2130</td>
<td>New version of SSM Agent (2.1.4.0)</td>
</tr>
<tr>
<td>4.9.2106</td>
<td>New version of SSM Agent (2.0.952.0)</td>
</tr>
<tr>
<td>4.9.2061</td>
<td>New version of SSM Agent (2.0.922.0)</td>
</tr>
<tr>
<td>4.9.2047</td>
<td>New version of SSM Agent (2.0.913.0)</td>
</tr>
<tr>
<td>4.9.2031</td>
<td>New version of SSM Agent (2.0.902.0)</td>
</tr>
<tr>
<td>4.9.2016</td>
<td>• New version of SSM Agent (2.0.879.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed the CloudWatch Logs directory path for Windows Server 2003</td>
</tr>
<tr>
<td>4.9.1981</td>
<td>• New version of SSM Agent (2.0.847.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed the issue with important.txt being generated in EBS volumes.</td>
</tr>
<tr>
<td>4.9.1964</td>
<td>New version of SSM Agent (2.0.842.0)</td>
</tr>
<tr>
<td>4.9.1951</td>
<td>• New version of SSM Agent (2.0.834.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed the issue with drive letter not being mapped from Z: for ephemeral drives.</td>
</tr>
<tr>
<td>4.9.1925</td>
<td>• New version of SSM Agent (2.0.822.0)</td>
</tr>
<tr>
<td></td>
<td>• [Bug] This version is not a valid update target from SSM Agent v4.9.1775.</td>
</tr>
<tr>
<td>4.9.1900</td>
<td>New version of SSM Agent (2.0.805.0)</td>
</tr>
<tr>
<td>4.9.1876</td>
<td>• New version of SSM Agent (2.0.796.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed an issue with output/error redirection for admin userdata execution.</td>
</tr>
<tr>
<td>4.9.1863</td>
<td>• New version of SSM Agent (2.0.790.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed problems with attaching multiple EBS volumes to an Amazon EC2 instance.</td>
</tr>
<tr>
<td></td>
<td>• Improved CloudWatch to take a configuration path, keeping the backwards compatibility.</td>
</tr>
<tr>
<td>4.9.1791</td>
<td>New version of SSM Agent (2.0.767.0)</td>
</tr>
<tr>
<td>4.9.1775</td>
<td>New version of SSM Agent (2.0.761.0)</td>
</tr>
<tr>
<td>4.9.1752</td>
<td>New version of SSM Agent (2.0.755.0)</td>
</tr>
<tr>
<td>4.9.1711</td>
<td>New version of SSM Agent (2.0.730.0)</td>
</tr>
<tr>
<td>4.8.1676</td>
<td>New version of SSM Agent (2.0.716.0)</td>
</tr>
<tr>
<td>4.7.1631</td>
<td>New version of SSM Agent (2.0.682.0)</td>
</tr>
<tr>
<td>4.6.1579</td>
<td>• New version of SSM Agent (2.0.672.0)</td>
</tr>
<tr>
<td></td>
<td>• Fixed agent update issue with v4.3, v4.4, and v4.5</td>
</tr>
<tr>
<td>4.5.1534</td>
<td>New version of SSM Agent (2.0.645.1)</td>
</tr>
<tr>
<td>Version</td>
<td>Details</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>4.4.1503</td>
<td>New version of SSM Agent (2.0.633.0)</td>
</tr>
<tr>
<td>4.3.1472</td>
<td>New version of SSM Agent (2.0.617.1)</td>
</tr>
<tr>
<td>4.2.1442</td>
<td>New version of SSM Agent (2.0.599.0)</td>
</tr>
<tr>
<td>4.1.1378</td>
<td>New version of SSM Agent (2.0.558.0)</td>
</tr>
</tbody>
</table>
| 4.0.1343  | - Run Command, SSM Config, the CloudWatch agent, and domain join support have been moved into another agent called SSM Agent. SSM Agent will be installed as part of the EC2Config upgrade. For more information, see EC2Config and AWS Systems Manager (p. 308).
- If you have a proxy set up in EC2Config, you will need to update your proxy settings for SSM Agent before upgrading. If you do not update the proxy settings, you will not be able to use Run Command to manage your instances. To avoid this, see the following information before updating to the newer version: Installing SSM Agent on Windows.
- If you previously enabled CloudWatch integration on your instances by using a local configuration file (AWS.EC2.Windows.CloudWatch.json), you will need to configure the file to work with SSM Agent. For more information, see Use SSM Agent to Configure CloudWatch (p. 443). |
| 3.19.1153 | - Re-enabled activation plugin for instances with old KMS configuration.
- Change default TRIM behavior to be disabled during disk format operation and added FormatWithTRIM for overriding InitializeDisks plugin with userdata. |
| 3.18.1118 | - Fix to reliably add routes to the primary network adapter.
- Updates to improve support for AWS services. |
| 3.17.1032 | - Fixes duplicate system logs appearing when filters set to same category.
- Fixes to prevent from hanging during disk initialization. |
<p>| 3.16.930  | Added support to log &quot;Window is Ready to use&quot; event to Windows Event Log on start. |
| 3.15.880  | Fix to allow uploading run command output to S3 bucket names with '.' character. |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14.786</td>
<td>Added support to override InitializeDisks plugin settings. For example: To speed up SSD disk initialize, you can temporarily disable TRIM by specifying this in userdata: <code>&lt;InitializeDrivesSettings&gt;&lt;SettingsGroup&gt;FormatWithoutTRIM&lt;/SettingsGroup&gt;&lt;/InitializeDrivesSettings&gt;</code></td>
</tr>
<tr>
<td>3.13.727</td>
<td>SSM RunCommand - Fixes to process commands reliably after windows reboot.</td>
</tr>
</tbody>
</table>
| 3.12.649 | • Fix to gracefully handle reboot when running commands/scripts.  
• Fix to reliably cancel running commands.  
• Add support for (optionally) uploading MSI logs to S3 when installing applications via Run Command. |
| 3.11.521 | • Fixes to enable RDP thumbprint generation for Windows Server 2003.  
• Fixes to include timezone and UTC offset in the EC2Config log lines.  
• SSM support to run commands in parallel.  
• Roll back previous change to bring partitioned disks online. |
| 3.10.442 | • Fix SSM (Simple Systems Manager) configuration failures when installing MSI applications.  
• Fix to reliably bring storage disks online.  
• Updates to improve support for AWS services. |
| 3.9.359  | • Fix in post Sysprep script to leave the configuration of windows update in a default state.  
• Fix the password generation plugin to improve the reliability in getting GPO password policy settings.  
• Restrict EC2Config/SSM log folder permissions to the local Administrators group.  
• Updates to improve support for AWS services. |
| 3.8.294  | • Fixed an issue with CloudWatch that prevented logs from getting uploaded when not on primary drive.  
• Improved the disk initialization process by adding retry logic.  
• Added improved error handling when the SetPassword plugin occasionally failed during AMI creation.  
• Updates to improve support for AWS services. |
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 3.7.308  | - Improvements to the ec2config-cli utility for config testing and troubleshooting within instance.  
|          | - Avoid adding static routes for KMS and metadata service on an OpenVPN adapter.  
|          | - Fixed an issue where user-data execution was not honoring the "persist" tag.  
|          | - Improved error handling when logging to the EC2 console is not available.  
|          | - Updates to improve support for AWS services. |
| 3.6.269  | - Windows activation reliability fix to first use link local address 169.254.0.250/251 for activating windows via KMS  
|          | - Improved proxy handling for SSM, Windows Activation and Domain Join scenarios  
|          | - Fixed an issue where duplicate lines of user accounts were added to the Sysprep answer file |
| 3.5.228  | - Addressed a scenario where the CloudWatch plugin may consume excessive CPU and memory reading Windows Event Logs  
|          | - Added a link to the CloudWatch configuration documentation in the EC2Config Settings UI |
| 3.4.212  | - Fixes to EC2Config when used in combination with VM-Import.  
|          | - Fixed service naming issue in the WiX installer. |
| 3.3.174  | - Improved exception handling for ssm and domain join failures.  
|          | - Change to support SSM schema versioning.  
|          | - Fixed formatting ephemeral disks on Win2K3.  
|          | - Change to support configuring disk size greater than 2TB.  
|          | - Reduced virtual memory usage by setting GC mode to default.  
|          | - Support for downloading artifacts from UNC path in aws:psModule and aws:application plugin.  
<p>|          | - Improved logging for Windows activation plugin. |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 3.2.97   | • Performance improvements by delay loading SSM assemblies.  
          • Improved exception handling for malformed sysprep2008.xml.  
          • Command line support for SSM "Apply" configuration.  
          • Change to support domain join when there is a pending computer rename.  
          • Support for optional parameters in the aws:applications plugin.  
          • Support for command array in aws:psModule plugin. |
| 3.0.54   | • Enable support for Amazon EC2 Systems Manager (SSM).  
          • Automatically domain join EC2 Windows instances to an AWS directory via SSM.  
          • Configure and upload CloudWatch logs/metrics via SSM.  
          • Install PowerShell modules via SSM.  
          • Install MSI applications via SSM. |
| 2.4.233  | • Added scheduled task to recover EC2Config from service startup failures.  
          • Improvements to the Console log error messages.  
          • Updates to improve support for AWS services. |
| 2.3.313  | • Fixed an issue with large memory consumption in some cases when the CloudWatch Logs feature is enabled.  
          • Fixed an upgrade bug so that ec2config versions lower than 2.1.19 can now upgrade to latest.  
          • Updated COM port opening exception to be more friendly and useful in logs.  
          • Ec2configServiceSettings UI disabled resizing and fixed the attribution and version display placement in UI. |
| 2.2.12   | • Handled NullPointerException while querying a registry key for determining Windows Sysprep state which returned null occasionally.  
          • Freed up unmanaged resources in finally block. |
<p>| 2.2.11   | Fixed a issue in CloudWatch plugin for handling empty log lines. |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2.2.10  | • Removed configuring CloudWatch Logs settings through UI.  
        • Enable users to define CloudWatch Logs settings in %ProgramFiles% \Amazon\Ec2ConfigService\Settings \AWS.EC2.Windows.CloudWatch.json file to allow future enhancements. |
| 2.2.9   | Fixed unhandled exception and added logging. |
| 2.2.8   | • Fixes Windows OS version check in EC2Config Installer to support Windows Server 2003 SP1 and later.  
        • Fixes null value handling when reading registry keys related to updating Sysprep config files. |
| 2.2.7   | • Added support for EC2Config to run during Sysprep execution for Windows 2008 and greater.  
        • Improved exception handling and logging for better diagnostics |
| 2.2.6   | • Reduced the load on the instance and on CloudWatch Logs when uploading log events.  
        • Addressed an upgrade issue where the CloudWatch Logs plug-in did not always stay enabled |
| 2.2.5   | • Added support to upload logs to CloudWatch Log Service.  
        • Fixed a race condition issue in Ec2OutputRDPCert plug-in  
        • Changed EC2Config Service recovery option to Restart from TakeNoAction  
        • Added more exception information when EC2Config Crashes |
| 2.2.4   | • Fixed a typo in PostSysprep.cmd  
        • Fixed the bug which EC2Config does not pin itself onto start menu for OS2012+ |
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2.2.3   | • Added option to install EC2Config without service starting immediately upon install. To use, run `Ec2Install.exe start=false` from the command prompt  
• Added parameter in wallpaper plugin to control adding/removing wallpaper. To use, run `Ec2WallpaperInfo.exe set` or `Ec2WallpaperInfo.exe revert` from the command prompt  
• Added checking for RealTimeIsUniversal key, output incorrect settings of the RealTimeIsUniversal registry key to the Console  
• Removed EC2Config dependency on Windows temp folder  
• Removed UserData execution dependency on .Net 3.5 |
| 2.2.2   | • Added check to service stop behavior to check that resources are being released  
• Fixed issue with long execution times when joined to domain |
| 2.2.1   | • Updated Installer to allow upgrades from older versions  
• Fixed Ec2WallpaperInfo bug in .Net4.5 only environment  
• Fixed intermittent driver detection bug  
• Added silent install option. Execute `Ec2Install.exe` with the `-q` option. eg: `Ec2Install.exe -q` |
| 2.2.0   | • Added support for .Net4 and .Net4.5 only environments  
• Updated Installer |
| 2.1.19  | • Added ephemeral disk labeling support when using Intel network driver (eg. C3 instance Type). For more information, see Enhanced Networking on Windows (p. 619).  
• Added AMI Origin Version and AMI Origin Name support to the console output  
• Made changes to the Console Output for consistent formatting/parsing  
• Updated Help File |
| 2.1.18  | • Added EC2Config WMI Object for Completion notification (-Namespace root\Amazon -Class EC2_ConfigService)  
• Improved Performance of Startup WMI query with large Event Logs; could cause prolonged high CPU during initial execution |
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2.1.17  | • Fixed UserData execution issue with Standard Output and Standard Error buffer filling  
• Fixed incorrect RDP thumbprint sometimes appearing in Console Output for >= w2k8 OS  
• Console Output now contains 'RDPCERTIFICATE-SubjectName:' for Windows 2008+, which contains the machine name value  
• Added D:\ to Drive Letter Mapping dropdown  
• Moved Help button to top right and changed look/feel  
• Added Feedback survey link to top right |
| 2.1.16  | • General Tab includes link to EC2Config download page for new Versions  
• Desktop Wallpaper overlay now stored in Users Local Appdata folder instead of My Documents to support MyDoc redirection  
• MSSQLServer name sync'd with system in Post-Sysprep script (2008+)  
• Reordered Application Folder (moved files to Plugin directory and removed duplicate files)  
• Changed System Log Output (Console):  
  *Moved to a date, name, value format for easier parsing (Please start migrating dependencies to new format)  
  *Added 'Ec2SetPassword' plugin status  
  *Added Sysprep Start and End times  
• Fixed issue of Ephemeral Disks not being labeled as 'Temporary Storage' for non-english Operating Systems  
• Fixed EC2Config Uninstall failure after running Sysprep |
| 2.1.15  | • Optimized requests to the Metadata service  
• Metadata now bypass Proxy Settings  
• Ephemeral Disks labeled as 'Temporary Storage' and Important.txt placed on volume when found (Citrix PV drivers only). For more information, see Upgrading PV Drivers on Your Windows Instances (p. 336).  
• Ephemeral Disks assigned drive letters from Z to A (Citrix PV drivers only) - assignment can be overwritten using Drive Letter Mapping plugin with Volume labels 'Temporary Storage X' where x is a number 0-25)  
• UserData now executes immediately following 'Windows is Ready' |
<p>| 2.1.14  | Desktop wallpaper fixes |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2.1.13   | • Desktop wallpaper will display hostname by default  
          • Removed dependency on Windows Time service  
          • Route added in cases where multiple IPs are assigned to a single interface |
| 2.1.11   | • Changes made to Ec2Activation Plugin  
          • -Verifies Activation status every 30 days  
          • -If Grace Period has 90 days remaining (out of 180), reattempts activation |
| 2.1.10   | • Desktop wallpaper overlay no longer persists with Sysprep or Shutdown without Sysprep  
          • Userdata option to execute on every service start with `<persist>true</persist>`  
          • Changed location and name of `/DisableWinUpdate.cmd` to `/Scripts/PostSysprep.cmd`  
          • Administrator password set to not expire by default in `/Scripts/PostSysprep.cmd`  
          • Uninstall will remove EC2Config PostSysprep script from `c:\windows\setup\script \CommandComplete.cmd`  
          • Add Route supports custom interface metrics |
| 2.1.9    | UserData Execution no longer limited to 3851 Characters |
| 2.1.7    | • OS Version and language identifier written to console  
          • EC2Config version written to console  
          • PV driver version written to console  
          • Detection of Bug Check and output to the console on next boot when found  
          • Option added to config.xml to persist Sysprep credentials  
          • Add Route Retry logic in cases of ENI being unavailable at start  
          • User Data execution PID written to console  
          • Minimum generated password length retrieved from GPO  
          • Set service start to retry 3 attempts  
          • Added `S3_DownloadFile.ps1` and `S3_Upload file.ps1` examples to `/Scripts` folder |
<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| **2.1.6** | - Version information added to General tab  
- Renamed the Bundle tab to Image  
- Simplified the process of specifying passwords and moved the password-related UI from the General tab to the Image tab  
- Renamed the Disk Settings tab to Storage  
- Added a Support tab with common tools for troubleshooting  
- Windows Server 2003 `sysprep.ini` set to extend OS partition by default  
- Added the private IP address to the wallpaper  
- Private IP address displayed on wallpaper  
- Added retry logic for Console output  
- Fixed Com port exception for metadata accessibility -- caused EC2Config to terminate before console output is displayed  
- Checks for activation status on every boot -- activates as necessary  
- Fixed issue of relative paths -- caused when manually executing wallpaper shortcut from startup folder; pointing to Administrator/logs  
- Fixed default background color for Windows Server 2003 user (other than Administrator) |
| **2.1.2** | - Console timestamps in UTC (Zulu)  
- Removed appearance of hyperlink on Sysprep tab  
- Addition of feature to dynamically expand Root Volume on first boot for Windows 2008+  
- When Set-Password is enabled, now automatically enables EC2Config to set the password  
- EC2Config checks activation status prior to running Sysprep (presents warning if not activated)  
- Windows Server 2003 `sysprep.xml` now defaults to UTC timezone instead of Pacific  
- Randomized Activation Servers  
- Renamed Drive Mapping tab to Disk Settings  
- Moved Initialize Drives UI items from General to the Disk Settings tab  
- Help button now points to HTML help file  
- Updated HTML help file with changes  
- Updated 'Note' text for Drive Letter Mappings  
- Added `InstallUpdates.ps1` to `/Scripts` folder for automating Patches and cleanup prior to Sysprep |
Amazon Elastic Compute Cloud
User Guide for Windows Instances
EC2Config

<table>
<thead>
<tr>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
</table>
| 2.1.0   | • Desktop wallpaper displays instance information by default upon first logon (not disconnect/reconnect)  
          • PowerShell can be executed from the userdata by surrounding the code with `<powershell>`/</powershell> |

Subscribing to EC2Config Service Notifications

Amazon SNS can notify you when new versions of the EC2Config service are released. Use the following procedure to subscribe to these notifications.

**To subscribe to EC2Config notifications**

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v2/home.
2. In the navigation bar, change the region to US East (N. Virginia), if necessary. You must select this region because the SNS notifications that you are subscribing to were created in this region.
3. In the navigation pane, choose Subscriptions.
4. Choose Create subscription.
5. In the Create subscription dialog box, do the following:
   a. For Topic ARN, use the following Amazon Resource Name (ARN):
   
   ```
 arn:aws:sns:us-east-1:801119661308:ec2-windows-ec2config
   ```
   b. For Protocol, choose Email.
   c. For Endpoint, type an email address that you can use to receive the notifications.
   d. Choose Create subscription.
6. You'll receive an email asking you to confirm your subscription. Open the email and follow the directions to complete your subscription.

Whenever a new version of the EC2Config service is released, we send notifications to subscribers. If you no longer want to receive these notifications, use the following procedure to unsubscribe.

**To unsubscribe from EC2Config notifications**

1. Open the Amazon SNS console.
2. In the navigation pane, choose Subscriptions.
3. Select the subscription and then choose Actions, Delete subscriptions. When prompted for confirmation, choose Delete.

Troubleshooting Issues with the EC2Config Service

The following information can help you troubleshoot issues with the EC2Config service.

**Update EC2Config on an Unreachable Instance**

Use the following procedure to update the EC2Config service on a Windows Server instance that is inaccessible using Remote Desktop.
To update EC2Config on an Amazon EBS-backed Windows instance that you can't connect to

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Locate the affected instance. Open the context (right-click) menu for the instance, choose Instance State, and then choose Stop.

   **Warning**
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. Choose Launch Instance and create a temporary t2.micro instance in the same Availability Zone as the affected instance. Use a different AMI than the one that you used to launch the affected instance.

   **Important**
   If you do not create the instance in the same Availability Zone as the affected instance you will not be able to attach the root volume of the affected instance to the new instance.

5. In the EC2 console, choose Volumes.
6. Locate the root volume of the affected instance. Detach (p. 664) the volume and attach (p. 647) it to the temporary instance that you created earlier. Attach it with the default device name (xvdf).
7. Use Remote Desktop to connect to the temporary instance, and then use the Disk Management utility to make the volume available for use (p. 648).
8. Download the latest version of the EC2Config service. Extract the files from the .zip file to the Temp directory on the drive you attached.
9. On the temporary instance, open the Run dialog box, type regedit, and press Enter.
10. Choose HKEY_LOCAL_MACHINE. From the File menu, choose Load Hive. Choose the drive and then navigate to and open the following file: Windows\System32\config\SOFTWARE. When prompted, specify a key name.
11. Select the key you just loaded and navigate to Microsoft\Windows\CurrentVersion. Choose the RunOnce key. If this key doesn’t exist, choose CurrentVersion from the context (right-click) menu, choose New and then choose Key. Name the key RunOnce.
12. From the context (right-click) menu choose the RunOnce key, choose New and then choose String Value. Enter Ec2Install.exe as the name and C:\Temp\Ec2Install.exe /quiet as the data.
13. Choose the HKEY_LOCAL_MACHINE\specifying key name\Microsoft\Windows NT\CurrentVersion\Winlogon key. From the context (right-click) menu choose New, and then choose String Value. Enter AutoAdminLogon as the name and 1 as the value data.
14. Choose the HKEY_LOCAL_MACHINE\specifying key name\Microsoft\Windows NT\CurrentVersion\Winlogon> key. From the context (right-click) menu choose New, and then choose String Value. Type DefaultUserName as the name and Administrator as the value data.
15. Choose the HKEY_LOCAL_MACHINE\specifying key name\Microsoft\Windows NT\CurrentVersion\Winlogon key. From the context (right-click) menu choose New, and then choose String Value. Type DefaultPassword as the name and enter a password in the value data.
16. In the Registry Editor navigation pane, choose the temporary key that you created when you first opened Registry Editor.
17. From the File menu, choose Unload Hive.
18. In Disk Management Utility, choose the drive you attached earlier, open the context (right-click) menu, and choose Offline.
19. In the Amazon EC2 console, detach the affected volume from the temporary instance and reattach it to your instance with the device name /dev/sda1. You must specify this device name to designate the volume as a root volume.
20. **Stop and Start Your Instance (p. 287)** the instance.
21. After the instance starts, check the system log and verify that you see the message Windows is ready to use.

22. Open Registry Editor and choose HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT \CurrentVersion\Winlogon. Delete the String Value keys you created earlier: AutoAdminLogon, DefaultUserName, and DefaultPassword.

23. Delete or stop the temporary instance you created in this procedure.

Paravirtual Drivers for Windows Server Instances

Windows AMIs contain a set of drivers to permit access to virtualized hardware. These drivers are used by Amazon EC2 to map instance store and Amazon EBS volumes to their devices. The following table shows key differences between the different drivers.

<table>
<thead>
<tr>
<th></th>
<th>RedHat PV</th>
<th>Citrix PV</th>
<th>AWS PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance type</td>
<td>Not supported for all instance types. If you specify an unsupported instance type, the instance is impaired.</td>
<td>Supported for all instance types.</td>
<td>Supported for all instance types.</td>
</tr>
<tr>
<td>Attached volumes</td>
<td>Supports up to 16 attached volumes.</td>
<td>Supports more than 16 attached volumes.</td>
<td>Supports more than 16 attached volumes.</td>
</tr>
<tr>
<td>Network</td>
<td>The driver has known issues where the network connection resets under high loads; for example, fast FTP file transfers.</td>
<td></td>
<td>The driver automatically configures jumbo frames on the network adapter when on a compatible instance type. When the instance is in a cluster placement group (p. 612), this offers better network performance between instances in the cluster placement group.</td>
</tr>
</tbody>
</table>

The following list shows which PV drivers you should run on each version of Windows Server on Amazon EC2.

- Windows Server 2016: AWS PV
• Windows Server 2012 and 2012 R2: AWS PV
• Windows Server 2008 R2: AWS PV
• Windows Server 2008: Citrix PV 5.9

Contents
• AWS PV Drivers (p. 333)
• Citrix PV Drivers (p. 335)
• RedHat PV Drivers (p. 335)
• Subscribing to Notifications (p. 335)
• Upgrading PV Drivers on Your Windows Instances (p. 336)
• Troubleshooting PV Drivers (p. 342)

AWS PV Drivers

The AWS PV drivers are stored in the %ProgramFiles%\Amazon\Xentools directory. This directory also contains public symbols and a command line tool, xenstore_client.exe, that enables you to access entries in XenStore. For example, the following PowerShell command returns the current time from the Hypervisor:

```
PS C:\> [DateTime]::FromFileTimeUTC((gwmi -n root\wmi -cl AWSXenStoreBase).XenTime).ToString("hh:mm:ss")
11:17:00
```

The AWS PV driver components are listed in the Windows registry under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. These driver components are as follows: XENBUS, xeniface, xennet, xenvbd, and xenvif.

AWS PV also has a driver component named LiteAgent, which runs as a Windows service. It handles tasks such as shutdown and restart events from the API. You can access and manage services by running Services.msc from the command line.

Installing the Latest AWS PV Drivers

Amazon Windows AMIs contain a set of drivers to permit access to virtualized hardware. These drivers are used by Amazon EC2 to map instance store and Amazon EBS volumes to their devices. We recommend that you install the latest drivers to improve stability and performance of your EC2 Windows instances.

Installation Options

• You can use AWS Systems Manager to automatically update the PV drivers. For more information, see Automatically Update PV Drivers on EC2 Windows Instances in the AWS Systems Manager User Guide.
• You can download the setup package and run the install program manually. For information about downloading and installing the AWS PV drivers, see Upgrade Windows Server Instances (AWS PV Upgrade) (p. 336).

AWS PV Driver Version History

The following table shows the changes to AWS PV drivers for each driver release.
<table>
<thead>
<tr>
<th>Driver version</th>
<th>Details</th>
<th>Release date</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.6</td>
<td>Stability fixes to make AWS PV drivers more resilient.</td>
<td>26 April 2017</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Added support for Windows Server 2016. Stability fixes for all supported Windows OS versions.</td>
<td>18 Nov 2016</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Stability fixes for support of X1 instance type.</td>
<td>2 Aug 2016</td>
</tr>
</tbody>
</table>
| 7.4.1         | • Performance improvement in AWS PV Storage driver.  
• Stability fixes in AWS PV Storage driver: Fixed an issue where the instances were hitting a system crash with bugcheck code 0x0000DEAD.  
• Stability fixes in AWS PV Network driver.  
• Added support for Windows Server 2008R2. | 12 July 2016 |
| 7.3.2         | • Improved logging and diagnostics.  
• Stability fix in AWS PV Storage driver. In some cases disks may not surface in Windows after reattaching the disk to the instance.  
• Added support for Windows Server 2012. | 24 June 2015 |
| 7.3.1         | TRIM update: Fix related to TRIM requests. This fix stabilizes instances and improves instance performance when managing large numbers of TRIM requests. | |
| 7.3.0         | TRIM support: The AWS PV driver now sends TRIM requests to the hypervisor. Ephemeral disks will properly process TRIM requests given the underlying storage supports TRIM (SSD). Note that EBS-based storage does not support TRIM as of March 2015. | |
| 7.2.5         | • Stability fix in AWS PV Storage drivers: In some cases the AWS PV driver could dereference invalid memory and cause a system failure.  
• Stability fix while generating a crash dump: In some cases the AWS PV driver could get stuck in a race condition when writing a crash dump. Before this release, the issue could only be resolved by forcing the driver to stop and restart which lost the memory dump. | |
| 7.2.4         | Device ID persistence: This driver fix masks the platform PCI device ID and forces the system to always surface the same device ID, even if the instance is moved. More generally, the fix affects how the hypervisor surfaces virtual devices. The fix also includes modifications to the co-installer for the AWS PV drivers so the system persists mapped virtual devices. | |
| 7.2.2         | • Load the AWS PV drivers in Directory Services Restore Mode (DSRM) mode: Directory Services Restore Mode is a safe mode boot option for Windows Server domain controllers.  
• Persist device ID when virtual network adapter device is reattached: This fix forces the system to check the MAC address mapping and persist the device ID. This fix ensures that adapters retain their static settings if the adapters are reattached. | |
Amazon Elastic Compute Cloud  
User Guide for Windows Instances  
PV Drivers

<table>
<thead>
<tr>
<th>Driver version</th>
<th>Details</th>
<th>Release date</th>
</tr>
</thead>
</table>
| 7.2.1          | • Run in safe mode: Fixed an issue where the driver would not load in safe mode. Previously the AWS PV Drivers would only instantiate in normal running systems.  
• Add disks to Microsoft Windows Storage Pools: Previously we synthesized page 83 queries. The fix disabled page 83 support. Note this does not affect storage pools that are used in a cluster environment because PV disks are not valid cluster disks. |              |
| 7.2.0          | Base: The AWS PV base version.                                          |              |

Citrix PV Drivers

The Citrix PV drivers are stored in the %ProgramFiles%\Citrix\XenTools (32-bit instances) or %ProgramFiles(x86)%\Citrix\XenTools (64-bit instances) directory.

The Citrix PV driver components are listed in the Windows registry under HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\services. These driver components are as follows: xenevtchn, xeniface, xennet, Xennet6, xensvc, xenvbd, and xenvif.

Citrix also has a driver component named XenGuestAgent, which runs as a Windows service. It handles tasks such as shutdown and restart events from the API. You can access and manage services by running Services.msc from the command line.

If you are encountering networking errors while performing certain workloads, you may need to disable the TCP offloading feature for the Citrix PV driver. For more information, see TCP Offloading (p. 346).

RedHat PV Drivers

RedHat drivers are supported for legacy instances, but are not recommended on newer instances with more than 12GB of RAM due to driver limitations. Instances with more than 12GB of RAM running RedHat drivers can fail to boot and become inaccessible. We recommend upgrading RedHat drivers to Citrix PV drivers, and then upgrade Citrix PV drivers to AWS PV drivers.

The source files for the RedHat drivers are in the %ProgramFiles%\RedHat (32-bit instances) or %ProgramFiles(x86)%\RedHat (64-bit instances) directory. The two drivers are rhelnet, the RedHat Paravirtualized network driver, and rhelscsi, the RedHat SCSI miniport driver.

Subscribing to Notifications

Amazon SNS can notify you when new versions of EC2 Windows Drivers are released. Use the following procedure to subscribe to these notifications.

To subscribe to EC2 notifications

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v2/home.
2. In the navigation bar, change the region to US East (N. Virginia), if necessary. You must select this region because the SNS notifications that you are subscribing to are in this region.
3. In the navigation pane, choose Subscriptions.
4. Choose Create subscription.
5. In the Create subscription dialog box, do the following:
   a. For TopicARN, copy the following Amazon Resource Name (ARN):
arn:aws:sns:us-east-1:801119661308:ec2-windows-drivers

b. For **Protocol**, choose **Email**.

c. For **Endpoint**, type an email address that you can use to receive the notifications.

d. Choose **Create subscription**.

6. You'll receive a confirmation email. Open the email and follow the directions to complete your subscription.

Whenever new EC2 Windows drivers are released, we send notifications to subscribers. If you no longer want to receive these notifications, use the following procedure to unsubscribe.

**To unsubscribe from Amazon EC2 Windows driver notification**

2. In the navigation pane, choose **Subscriptions**.
3. Select the checkbox for the subscription and then choose **Actions, Delete subscriptions**. When prompted for confirmation, choose **Delete**.

**Upgrading PV Drivers on Your Windows Instances**

To verify which driver your Windows instance uses, open **Network Connections** in Control Panel and view the **Local Area Connection**. Check whether the driver is one of the following:

- AWS PV Network Device
- Citrix PV Ethernet Adapter
- RedHat PV NIC Driver

Alternatively, you can check the output from the `pnputil -e` command.

**Contents**

- Upgrade Windows Server Instances (AWS PV Upgrade) (p. 336)
- Upgrade Windows Server 2016, Nano Edition (AWS PV Upgrade) (p. 337)
- Upgrade a Domain Controller (AWS PV Upgrade) (p. 338)
- Upgrade Windows Server 2008 and 2008 R2 Instances (Redhat to Citrix PV Upgrade) (p. 339)
- Upgrade Your Citrix Xen Guest Agent Service (p. 341)

**Upgrade Windows Server Instances (AWS PV Upgrade)**

Use the following procedure to perform an in-place upgrade of AWS PV drivers, or to upgrade from Citrix PV drivers to AWS PV drivers on Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016. This upgrade is not available for RedHat drivers, or for other versions of Windows Server.

**Important**

If your instances uses Windows Server 2016, Nano edition, see [Upgrade Windows Server 2016, Nano Edition (AWS PV Upgrade) (p. 337)](https://console.aws.amazon.com/ec2/). If your instance is a domain controller, see [Upgrade a Domain Controller (AWS PV Upgrade) (p. 338)](https://console.aws.amazon.com/ec2/). The upgrade process for these instances is different than standard editions of Windows.

**To upgrade AWS PV drivers**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Choose the instance that requires the driver upgrade, open the context (right-click) menu, choose **Instance State**, and then choose **Stop**.

   **Warning**
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. After the instance is stopped, create a backup. Open the context (right-click) menu for the instance, choose **Image**, and then choose **Create Image**.
5. From the context (right-click) menu for the instance, choose **Instance State**, and then choose **Start**.
6. Connect to the instance using Remote Desktop and prepare the instance for upgrade. We recommend that you take all non-system disks offline before you perform this upgrade. Note that this step is not required if you are performing an in-place update of AWS PV drivers. We also recommend setting non-essential services to **Manual** start-up in the Services console.
7. **Download** the latest driver package to the instance.
8. Extract the contents of the folder and then run `AWSPVDriverSetup.msi`.

After running the MSI, the instance automatically reboots and then upgrades the driver. The instance will not be available for up to 15 minutes. After the upgrade is complete and the instance passes both health checks in the Amazon EC2 console, connect to the instance using Remote Desktop and verify that the new driver was installed. In Device Manager, under **Storage Controllers**, locate **AWS PV Storage Host Adapter**. Verify that the driver version is the same as the latest version listed in the Driver Version History table. For more information, see **AWS PV Driver Version History** (p. 333).

   **Note**
   If you previously disabled **TCP Offloading** (p. 346) using Netsh for Citrix PV drivers we recommend that you re-enable this feature after upgrading to AWS PV Drivers. TCP Offloading issues with Citrix drivers are not present in the AWS PV drivers. As a result, TCP Offloading provides better performance with AWS PV drivers.

**Upgrade Windows Server 2016, Nano Edition (AWS PV Upgrade)**

The following procedure describes how to upgrade AWS PV drivers on the Windows Server 2016, Nano edition.

**Before You Begin**

The following procedure uses PowerShell remoting to install the latest driver package on the instance. Before you begin, verify that TCP port 5985 is open on the instance.

**To upgrade AWS PV drivers on Nano edition**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Choose the instance that requires the driver upgrade, open the context (right-click) menu, choose **Instance State**, and then choose **Stop**.

   **Warning**
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. After the instance is stopped, create a backup. Open the context (right-click) menu for the instance, choose **Image**, and then choose **Create Image**.
5. From the context (right-click) menu for the instance, choose **Instance State**, and then choose **Start**.

6. Download and extract the latest driver package to your local computer. The upgrade script runs on your local computer and creates a remote PowerShell session to your Nano instance to install the latest drivers.

7. Navigate to the directory where you unzipped the installation package.

8. Run `UpgradeDriver.ps1` -`HostName <instance public DNS name>` -`UserName <a user with admin rights>`.

   For example, `UpgradeDriver.ps1` -`HostName ec2-123-45-678-90.compute-1.amazonaws.com` -`UserName Administrator`.

9. When prompted, specify the instance password, and press Enter.

The installation can take several minutes to complete. After a successful installation, the system shows the following message: "Upgrade process finished successfully".

**Upgrade a Domain Controller (AWS PV Upgrade)**

Use the following procedure on a domain controller to perform either an in-place upgrade of AWS PV drivers, or to upgrade from Citrix PV drivers to AWS PV drivers.

**To upgrade a domain controller**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).

2. In the navigation pane, choose **Instances**.

3. Choose the instance that requires the driver upgrade, open the context (right-click) menu, choose **Instance State**, and then choose **Stop**.

   **Warning**
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. After the instance is stopped, create a backup. Open the context (right-click) menu for the instance, choose **Image**, and then choose **Create Image**.

5. From the context (right-click) menu for the instance, choose **Instance State**, and then choose **Start**.

6. Run the following command to configure Windows to boot into Directory Services Restore Mode (DSRM):

   ```
 bcdedit /set {default} safeboot dsrepair
   ```

   **Warning**
   Before running this command, confirm that you know the DSRM password. You'll need this information so that you can log in to your instance after the upgrade is complete and the instance automatically reboots.

   The system must boot into DSRM because the upgrade utility removes Citrix PV storage drivers so it can install AWS PV drivers. When Citrix PV storage drivers are not present, secondary drives will not be detected. Domain controllers that use an NTDS folder on secondary drives will not boot because the secondary disk will not be detected.

   **Warning**
   After you run this command do not manually reboot the system. The system will be unreachable because Citrix PV drivers do not support DSRM.

7. Run the following command to add `DisableDCCheck` to the registry:
8. Download the latest driver package to the instance.
9. Extract the contents of the folder and then run AWSPVDriverSetup.msi.

   After running the MSI, the instance automatically reboots and then upgrades the driver. The instance
   will not be available for up to 15 minutes.
10. After the upgrade is complete and the instance passes both health checks in the Amazon EC2
    console, connect to the instance using Remote Desktop.

    **Important**
    You must connect to the instance by specifying user name in the following format
    hostname\administrator. For example, Win2k12TestBox\administrator.
11. Run the following command to remove the DSRM boot configuration:

    bcdedit /deletevalue safeboot
12. Reboot the instance.
13. To complete the upgrade process, verify that the new driver was installed. In Device Manager, under
    Storage Controllers, locate AWS PV Storage Host Adapter. Verify that the driver version is the
    same as the latest version listed in the Driver Version History table. For more information, see AWS
    PV Driver Version History (p. 333).
14. Run the following command to delete DisableDCCheck from the registry:

    reg delete HKLM\SOFTWARE\Wow6432Node\Amazon\AWSPVDriverSetup /v DisableDCCheck

**Note**
If you previously disabled TCP Offloading (p. 346) using Netsh for Citrix PV drivers we
recommend that you re-enable this feature after upgrading to AWS PV Drivers. TCP Offloading
issues with Citrix drivers are not present in the AWS PV drivers. As a result, TCP Offloading
provides better performance with AWS PV drivers.

**Upgrade Windows Server 2008 and 2008 R2 Instances (Redhat to Citrix PV Upgrade)**

Before you start upgrading your RedHat drivers to Citrix PV drivers, make sure you do the following:

- Install the latest version of the EC2Config service. For more information, see Installing the Latest
  Version of EC2Config (p. 317).
- Verify that you have Windows PowerShell 2.0 installed. To verify the version that you have installed,
  run the following command in a PowerShell window:

  PS C:\> $PSVersionTable.PSVersion

If you need to install version 2.0, see Windows Management Framework (Windows PowerShell 2.0,
WinRM 2.0, and BITS 4.0) from Microsoft Support.
- Back up your important information on the instance, or create an AMI from the instance. For more
  information about creating an AMI, see Creating a Custom Windows AMI (p. 65). If you create an AMI,
  make sure that you do the following:
  - Write down your password.
  - Do not run the Sysprep tool manually or using the EC2Config service.
• Set your Ethernet adapter to obtain an IP address automatically using DHCP. For more information, see Configure TCP/IP Settings in the Microsoft TechNet Library.

To upgrade Redhat drivers

1. Connect to your instance and log in as the local administrator. For more information about connecting to your instance, see Connecting to Your Windows Instance (p. 283).
2. In your instance, download the Citrix PV upgrade package.
3. Extract the contents of the upgrade package to a location of your choice.
4. Double-click the Upgrade.bat file. If you get a security warning, click Run.
5. In the Upgrade Drivers dialog box, review the information and click Yes if you are ready to start the upgrade.
6. In the Red Hat Paravirtualized Xen Drivers for Windows uninstaller dialog box, click Yes to remove the RedHat software. Your instance will be rebooted.
   
   **Note**
   
   If you do not see the uninstaller dialog box, click Red Hat Paravirtualize... in the Windows taskbar.

7. Check that the instance has rebooted and is ready to be used.
   
   a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
   b. On the Instances page, right-click your instance and select Get System Log.
   c. The upgrade operations should have restarted the server 3 or 4 times. You can see this in the log file by the number of times Windows is Ready to use is displayed.

8. Connect to your instance and log in as the local administrator.


10. Confirm that the installation is complete. Navigate to the Citrix-WIN_PV folder that you extracted earlier, open the PVUpgrade.log file, and then check for the text INSTALLATION IS COMPLETE.
Upgrade Your Citrix Xen Guest Agent Service

If you are using Citrix PV drivers on Windows Server, you can upgrade the Citrix Xen guest agent service. This Windows service handles tasks such as shutdown and restart events from the API. You can run this upgrade package on any version of Windows Server, as long as the instance is running Citrix PV drivers.

**Important**

Do not perform these steps on Windows Server 2012 or 2012 R2 instances that are running AWS PV drivers.

Before you start upgrading your drivers, make sure you back up your important information on the instance, or create an AMI from the instance. For more information about creating an AMI, see Creating a Custom Windows AMI (p. 65). If you create an AMI, make sure you do the following:

- Do not enable the Sysprep tool in the EC2Config service.
- Write down your password.
- Set your Ethernet adapter to DHCP.

**To upgrade your Citrix Xen guest agent service**

1. Connect to your instance and log in as the local administrator. For more information about connecting to your instance, see Connecting to Your Windows Instance (p. 283).
2. On your instance, download the Citrix upgrade package.
3. Extract the contents of the upgrade package to a location of your choice.
4. Double-click the Upgrade.bat file. If you get a security warning, click Run.
5. In the Upgrade Drivers dialog box, review the information and click Yes if you are ready to start the upgrade.
6. When the upgrade is complete, the PVUpgrade.log file will open and contain the text UPGRADE IS COMPLETE.
7. Reboot your instance.
Troubleshooting PV Drivers

This topic describes solutions to common issues that you might encounter with Amazon EC2 PV drivers.

Contents

- Windows Server 2012 R2 loses network and storage connectivity after an instance reboot (p. 342)
- TCP Offloading (p. 346)
- Time Synchronization (p. 347)

Windows Server 2012 R2 loses network and storage connectivity after an instance reboot

Windows Server 2012 R2 Amazon Machine Images (AMIs) made available before September 10, 2014 can lose network and storage connectivity after an instance reboot. The error in the AWS Management Console system log states: "Difficulty detecting PV driver details for Console Output." The connectivity loss is caused by the Windows Server 2012 R2 Plug and Play Cleanup feature. This feature scans for and disables inactive system devices every 30 days. The feature incorrectly identifies the EC2 network device as inactive and removes it from the system. When this happens, the instance loses network connectivity after a reboot.

For systems that you suspect could be affected by this issue, you can download and run an in-place driver upgrade. If you are unable to perform the in-place driver upgrade, you can run a helper script. The script determines if your instance is affected. If it is affected, and the Amazon EC2 network device has not been removed, the script disables the Plug and Play Cleanup scan. If the Amazon EC2 network device has been removed, the script repairs the device, disables the Plug and Play Cleanup scan, and allows your instance to reboot with network connectivity enabled.

In this section

- Choose How You Want to Fix This Problem (p. 342)
- Method 1 - Enhanced Networking (p. 343)
- Method 2 - Registry configuration (p. 343)
- Run the Remediation Script (p. 345)

Choose How You Want to Fix This Problem

There are two methods for restoring network and storage connectivity to an instance affected by this issue. Choose one of the following methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Prerequisites</th>
<th>Procedure Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1 - Enhanced networking</td>
<td>Enhanced networking is only available in a virtual private cloud (VPC) which requires a C3 instance type. If the server does not currently use the C3 instance type, then you must temporarily change it. Enhanced networking is not available for ec2-classic.</td>
<td>You change the server instance type to a C3 instance. Enhanced networking then enables you to connect to the affected instance and fix the problem. After you fix the problem, you change the instance back to the original instance type. This method is typically faster than Method 2 and less likely to result in user error. You will incur</td>
</tr>
</tbody>
</table>
Method | Prerequisites | Procedure Overview
--- | --- | ---
Method 2 - Registry configuration | Ability to create or access a second server. Ability to change Registry settings. | You detach the root volume from the affected instance, attach it to a different instance, connect, and make changes in the Registry. You will incur additional charges as long as the additional server is running. This method is slower than Method 1, but this method has worked in situations where Method 1 failed to resolve the problem.

Method 1 - Enhanced Networking

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Locate the affected instance. Open the context (right-click) menu for the instance, choose **Instance State**, and then choose **Stop**.

   **Warning**
   
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. After the instance is stopped create a backup. Open the context (right-click) menu for the instance, choose **Image**, and then choose **Create Image**.
5. Change the instance type to any C3 instance type.
6. Start the instance.
7. Connect to the instance using Remote Desktop and then download the AWS PV Drivers Upgrade package to the instance.
8. Extract the contents of the folder and run **AWSPVDriverSetup.msi**.

   After running the MSI, the instance automatically reboots and then upgrades the drivers. The instance will not be available for up to 15 minutes.

9. After the upgrade is complete and the instance passes both health checks in the Amazon EC2 console, connect to the instance using Remote Desktop and verify that the new drivers were installed. In Device Manager, under **Storage Controllers**, locate **AWS PV Storage Host Adapter**. Verify that the driver version is the same as the latest version listed in the Driver Version History table. For more information, see AWS PV Driver Version History (p. 333).
10. Stop the instance and change the instance back to its original instance type.
11. Start the instance and resume normal use.

Method 2 - Registry configuration

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Locate the affected instance. Open the context (right-click) menu for the instance, choose **Instance State**, and then choose **Stop**.
Warning
When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.


Important
If you do not create the instance in the same Availability Zone as the affected instance you will not be able to attach the root volume of the affected instance to the new instance.

5. In the navigation pane, choose Volumes.
6. Locate the root volume of the affected instance. Detach (p. 664) the volume and attach (p. 647) it to the temporary instance you created earlier. Attach it with the default device name (xvdf).
7. Use Remote Desktop to connect to the temporary instance, and then use the Disk Management utility to make the volume available for use (p. 648).
8. On the temporary instance, open the Run dialog box, type regedit, and press Enter.
9. In the Registry Editor navigation pane, choose HKEY_Local_Machine, and then from the File menu choose Load Hive.
10. In the Load Hive dialog box, navigate to Affected Volume\Windows\System32\config\System and type a temporary name in the Key Name dialog box. For example, enter OldSys.
11. In the navigation pane of the Registry Editor, locate the following keys:
   
   HKEY_LOCAL_MACHINE\your_temporary_key_name\ControlSet001\Control\Class\4d36e97d-e325-11ce-bfc1-08002be10318
   
   HKEY_LOCAL_MACHINE\your_temporary_key_name\ControlSet001\Control\Class\4d36e96a-e325-11ce-bfc1-08002be10318
12. For each key, double-click UpperFilters, enter a value of XENFILT, and then click OK.

13. Locate the following key:
    
    HKEY_LOCAL_MACHINE\your_temporary_key_name\ControlSet001\Services\XENBUS\Parameters

14. Create a new string (REG_SZ) with the name ActiveDevice and the following value:
    
    PCI\VEN_5853&DEV_0001&SUBSYS_00015853&REV_01

15. Locate the following key:
16. Change the **Count** from 0 to 1.
17. Locate and delete the following keys:

   **HKEY_LOCAL_MACHINE\your_temporary_key_name\ControlSet001\Services\XENBUS**

   **HKEY_LOCAL_MACHINE\your_temporary_key_name\ControlSet001\Services\xenvbd**
   \StartOverride

   **HKEY_LOCAL_MACHINE \your_temporary_key_name\ControlSet001\Services\xenfilt**
   \StartOverride

18. In the Registry Editor navigation pane, choose the temporary key that you created when you first opened the Registry Editor.
19. From the **File** menu, choose **Unload Hive**.
20. In the Disk Management Utility, choose the drive you attached earlier, open the context (right-click) menu, and choose **Offline**.
21. In the Amazon EC2 console, detach the affected volume from the temporary instance and reattach it to your Windows Server 2012 R2 instance with the device name /dev/sda1. You must specify this device name to designate the volume as a root volume.

22. **Start** the instance.
23. Connect to the instance using Remote Desktop and then download the AWS PV Drivers Upgrade package to the instance.
24. Extract the contents of the folder and run **AWSPVDriverSetup.msi**.

   After running the MSI, the instance automatically reboots and then upgrades the drivers. The instance will not be available for up to 15 minutes.
25. After the upgrade is complete and the instance passes both health checks in the Amazon EC2 console, connect to the instance using Remote Desktop and verify that the new drivers were installed. In Device Manager, under **Storage Controllers**, locate **AWS PV Storage Host Adapter**. Verify that the driver version is the same as the latest version listed in the Driver Version History table. For more information, see **AWS PV Driver Version History** (p. 333).
26. Delete or stop the temporary instance you created in this procedure.

### Run the Remediation Script

If you are unable to perform an in-place driver upgrade or migrate to a newer instance you can run the remediation script to fix the problems caused by the Plug and Play Cleanup task.

### To run the remediation script

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Choose the instance for which you want to run the remediation script. Open the context (right-click) menu for the instance, choose **Instance State**, and then choose **Stop**.

   **Warning**
   When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

4. After the instance is stopped create a backup. Open the context (right-click) menu for the instance, choose **Image**, and then choose **Create Image**.
5. Open the context (right-click) menu for the instance, choose **Instance State**, and then choose **Start**.
6. Connect to the instance by using Remote Desktop and then download the RemediateDriverIssue.zip folder to the instance.
7. Extract the contents of the folder.
8. Run the remediation script according to the instructions in the Readme.txt file. The file is located in the folder where you extracted RemediadeDriverIssue.zip.

**TCP Offloading**

By default, TCP offloading is enabled for the Citrix PV drivers in Windows AMIs. If you encounter transport-level errors or packet transmission errors (as visible on the Windows Performance Monitor)—for example, when you’re running certain SQL workloads—you may need to disable this feature.

**Important**

Disabling TCP offloading may reduce the network performance of your instance.

You do not need to perform this procedure on instances running AWS PV or Intel network drivers.

**To disable TCP offloading for Windows Server 2012 and 2008**

1. Connect to your instance and log in as the local administrator.
2. If you’re using Windows Server 2012, press **Ctrl+Esc** to access the **Start** screen, and then click **Control Panel**. If you’re using Windows Server 2008, click **Start** and select **Control Panel**.
3. Click **Network and Internet**, then **Network and Sharing Center**.
4. Click **Change adapter settings**.
5. Right-click **Citrix PV Ethernet Adapter #0** and select **Properties**.

![Image](image.png)

6. In the **Local Area Connection Properties** dialog box, click **Configure** to open the **Citrix PV Ethernet Adapter #0 Properties** dialog box.
7. On the **Advanced** tab, disable each of the following properties by selecting them in the **Property** list, and selecting **Disabled** from the **Value** list:
   - IPv4 Checksum Offload
   - Large Receive Offload (IPv4)
   - Large Send Offload Version 2 (IPv4)
   - TCP Checksum Offload (IPv4)
   - UDP Checksum Offload (IPv4)
8. Click **OK**.

9. Run the following commands from a Command Prompt window.

   ```
 netsh int ip set global taskoffload=disabled
 netsh int tcp set global chimney=disabled
 netsh int tcp set global rss=disabled
 netsh int tcp set global netdma=disabled
   ```

10. Reboot the instance.

### Time Synchronization

Prior to the release of the 2013.02.13 Windows AMI, the Citrix Xen guest agent could set the system time incorrectly. This can cause your DHCP lease to expire. If you have issues connecting to your instance, you might need to update the agent.

To determine whether you have the updated Citrix Xen guest agent, check whether the `C:\Program Files\Citrix\XenGuestAgent.exe` file is from March 2013. If the date on this file is earlier than that, update the Citrix Xen guest agent service. For more information, see Upgrade Your Citrix Xen Guest Agent Service (p. 341).

### Setting the Time for a Windows Instance

A consistent and accurate time reference is crucial for many server tasks and processes. Most system logs include a time stamp that you can use to determine when problems occur and in what order the
Changing the Time Zone

Windows instances are set to the UTC time zone by default. You can change the time to correspond to your local time zone or a time zone for another part of your network.

To change the time zone on an instance

1. From your instance, open a Command Prompt window.
2. Identify the time zone to use on the instance. To get a list of time zones, use the following command: `tzutil /l`. This command returns a list of all available time zones, using the following format:

```
display name
time zone ID
```

3. Locate the time zone ID to assign to the instance.
4. Assign the time zone to the instance by using the following command:

```
tzutil /s "Pacific Standard Time"
```

The new time zone should take effect immediately.

Configuring Network Time Protocol (NTP)

Windows instances use the time.windows.com NTP server to configure the system time. We recommend that you configure your instance to use the Amazon Time Sync Service. This service uses a fleet of satellite-connected and atomic reference clocks in each AWS Region to deliver accurate current time readings of the Coordinated Universal Time (UTC) global standard. The Amazon Time Sync Service automatically smooths any leap seconds that are added to UTC. This service is available at the 169.254.169.123 IP address for any instance running in a VPC, and your instance does not require internet access to use this service.

Note
Support for the Amazon Time Sync Service on C5 and M5 instances is coming soon.

To verify the NTP configuration

1. From your instance, open a Command Prompt window.
2. Get the current NTP configuration by typing the following command:

```
w32tm /query /configuration
```
This command returns the current configuration settings for the Windows instance.

3. (Optional) Get the status of the current configuration by typing the following command:

```
w32tm /query /status
```

This command returns information such as the last time the instance synced with the NTP server and the poll interval.

**To change the NTP server to use the Amazon Time Sync Service**

1. From the Command Prompt window, run the following command:

```
w32tm /config /manualpeerlist:169.254.169.123 /syncfromflags:manual /update
```

2. Verify your new settings by using the following command:

```
w32tm /query /configuration
```

In the output that's returned, verify that `NtpServer` displays the `169.254.169.123` IP address.

You can change the instance to use a different set of NTP servers if you need to. For example, if you have Windows instances that do not have internet access, you can configure them to use an NTP server located within your private network. Your instance's security group must allow outbound UDP traffic on port 123 (NTP).

**To change the NTP servers**

1. From the Command Prompt window, run the following command:

```
w32tm /config /manualpeerlist:comma-delimited list of NTP servers / syncfromflags:manual /update
```

   Where `comma-delimited list of NTP servers` is the list of NTP servers for the instance to use.

2. Verify your new settings by using the following command:

```
w32tm /query /configuration
```

**Configuring Time Settings for Windows Server 2008 and later**

When you change the time on a Windows instance, you must ensure that the time persists through system restarts. Otherwise, when the instance restarts, it reverts back to using UTC time. For Windows Server 2008 and later, you can persist your time setting by adding a `RealTimeIsUniversal` registry key.

**To set the RealTimeIsUniversal registry key**

1. From the instance, open a Command Prompt window.

2. Use the following command to add the registry key:

```
reg add "HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZoneInformation" /v RealTimeIsUniversal /d 1 /t REG_DWORD /f
```
3. If you are using a Windows Server 2008 AMI (not Windows Server 2008 R2) that was created before February 22, 2013, you should verify that the Microsoft hotfix KB2800213 is installed. If this hotfix is not installed, install it. This hotfix resolves a known issue in which the RealTimelIsUniversal key causes the Windows CPU to run at 100% during Daylight savings events and the start of each calendar year (January 1).

If you are using an AMI running Windows Server 2008 R2 (not Windows Server 2008), you must verify that the Microsoft hotfix KB2922223 is installed. If this hotfix is not installed, install it. This hotfix resolves a known issue in which the RealTimelIsUniversal key prevents the system from updating the CMOS clock.

4. (Optional) Verify that the instance saved the key successfully using the following command:

```
reg query "HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZoneInformation" /s
```

This command returns the subkeys for the TimeZoneInformation registry key. You should see the RealTimelIsUniversal key at the bottom of the list, similar to the following:

```
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZoneInformation
 Bias REG_DWORD 0x1e0
 DaylightBias REG_DWORD 0xffffffffc4
 DaylightName REG_SZ @tzres.dll,-211
 DaylightStart REG_BINARY 000003000200020000000000000000000
 StandardBias REG_DWORD 0x0
 StandardName REG_SZ @tzres.dll,-212
 StandardStart REG_BINARY 00000B000100020000000000000000000
 TimeZoneKeyName REG_SZ Pacific Standard Time
 DynamicDaylightTimeDisabled REG_DWORD 0x0
 ActiveTimeBias REG_DWORD 0x1a4
 RealTimelIsUniversal REG_DWORD 0x1
```

Related Topics

For more information about how the Windows operating system coordinates and manages time, including the addition of a leap second, see the following topics:

- How the Windows Time Service Works (TechNet)
- W32tm (TechNet)
- How the Windows Time service treats a leap second (TechNet)
- The story around Leap Seconds and Windows: It's likely not Y2K (blog)

Setting Passwords for Windows Instances

When you connect to a Windows instance, you must specify a user account and password that has permission to access the instance. The first time that you connect to an instance, you are prompted to specify the Administrator account and the default password. For Windows AMIs prior to Windows Server 2016, the default password is automatically generated by the EC2Config service. On Windows Server 2016 AMIs the EC2Launch service does the generation. For more information about EC2Launch, see Configuring a Windows Instance Using EC2Launch (p. 299).

When you connect to an instance the first time, we recommend that you change the Administrator password from its default value. If you lose your password or it expires, you can generate a new password. For password reset procedures, see Resetting a Lost or Expired Windows Administrator Password (p. 841).
Changing the Administrator Password After Connecting

Use the following procedure to change the Administrator password for a Windows instance.

**Important**
Store the new password in a safe place. You won't be able to retrieve the new password using the Amazon EC2 console. The console can only retrieve the default password. If you attempt to connect to the instance using the default password after changing it, you'll get a “Your credentials did not work” error.

**To change the local Administrator password**

1. Connect to the instance and open a command prompt.
2. Run the following command. If your new password includes special characters, ensure that you enclose the password in double quotes:
   ```
 net user Administrator "new_password"
   ```
3. Store the new password in a safe place.

Adding Windows Components Using Installation Media

Windows Server operating systems include many optional components. Including all optional components in each Amazon EC2 Windows Server AMI is not practical. Instead, we provide you with installation media EBS snapshots that have the necessary files to configure or install components on your Windows instance.

To access and install the optional components, you must find the correct EBS snapshot for your version of Windows Server, create a volume from the snapshot, and attach the volume to your instance.

**Before You Begin**

Use the AWS Management Console or a command line tool to get the instance ID and Availability Zone of your instance. You must create your EBS volume in the same Availability Zone as your instance.

**Adding Windows Components Using the Console**

Use the following procedure to use the AWS Management Console to add Windows components to your instance.

**To add Windows components to your instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Snapshots**.
3. From the **Filter** bar, choose **Public Snapshots**.
4. Add the **Owner** filter and choose **Amazon images**.
5. Add the **Description** filter and type **Windows**.
6. Press Enter
7. Select the snapshot that matches your system architecture and language preference. For example, select **Windows 2016 English Installation Media** if your instance is running Windows Server 2016.
8. Choose **Actions, Create Volume**.
9. In the **Create Volume** dialog box, select the Availability Zone that matches your Windows instance, and then choose **Create**.

10. In the **Volume Successfully Created** message, choose the volume that you just created.

11. Choose **Actions, Attach Volume**.

12. In the **Attach Volume** dialog box, type the instance ID, and choose **Attach**.

13. Connect to your instance and make the volume available. For more information, see Making an Amazon EBS Volume Available for Use (p. 648).

   Important
   Do not initialize the volume.

14. Open **Control Panel, Programs and Features**. Choose **Turn Windows features on or off**. If you are prompted for installation media, specify the EBS volume with the installation media.

---

**Adding Windows Components Using the Tools for Windows PowerShell**

Use the following procedure to use the Tools for Windows PowerShell to add Windows components to your instance.

**To add Windows components to your instance using the Tools for Windows PowerShell**

1. Use the **Get-EC2Snapshot** cmdlet with the owner and description filters to get a list of the available installation media snapshots.

   ```powershell
 PS C:\> Get-EC2Snapshot -Owner amazon -Filter @(Name="description"; Values="Windows*")
 ...
 DataEncryptionKeyId :
 Description : Windows 2016 English Installation Media
 Encrypted : False
 KmsKeyId :
 OwnerAlias : amazon
 OwnerId : 123456789012
 Progress : 100%
 SnapshotId : snap-22da283e
 StartTime : 10/25/2016 8:00:47 PM
 State : completed
 StateMessage :
 Tags : {}
 VolumeId : vol-be5eafcb
 VolumeSize : 6
 ...
 ``

2. In the output, note the ID of the snapshot that matches your system architecture and language preference. For example:

3. Use the **New-EC2Volume** cmdlet to create a volume from the snapshot. Specify the same Availability Zone as your instance.

   ```powershell
   PS C:\> New-EC2Volume -AvailabilityZone us-east-1a -VolumeType gp2 -SnapshotId snap-22da283e
   ...
   Attachments : {}
   AvailabilityZone : us-east-1a
   ```
5. Use the `Add-E2CVolume` cmdlet to attach the volume to your instance.

```
PS C:\> Add-E2CVolume -InstanceId i-087711ddaf98f9489 -VolumeId vol-06aa9e1f6f8b882ed1 -Device xvdh
```

6. Connect to your instance and make the volume available. For more information, see Making an Amazon EBS Volume Available for Use (p. 648).

Important
Do not initialize the volume.

7. Open **Control Panel, Programs and Features**. Choose **Turn Windows features on or off**. If you are prompted for installation media, specify the EBS volume with the installation media.

Adding Windows Components Using the AWS CLI

Use the following procedure to use the AWS CLI to add Windows components to your instance.

To add Windows components to your instance using the AWS CLI

1. Use the `describe-snapshots` command with the `owner-ids` parameter and `description` filter to get a list of the available installation media snapshots.

```
aws ec2 describe-snapshots --owner-ids amazon --filters Name=description,Values=Windows*
```

2. In the output, note the ID of the snapshot that matches your system architecture and language preference. For example:

```
{
    "Snapshots": [
        ...
        {
            "OwnerAlias": "amazon",
            "Description": "Windows 2016 English Installation Media",
            "Encrypted": false,
            "VolumeId": "vol-be5eafcb",
            "State": "completed",
            "VolumeSize": 6,
            "Progress": "100%",
            "StartTime": "2016-10-25T20:00:47.000Z",
            "SnapshotId": "snap-22da283e",
            "OwnerId": "123456789012"
        }
    ]
}
```

3. Use the `create-volume` command to create a volume from the snapshot. Specify the same Availability Zone as your instance.
Configuring a Secondary Private IPv4 Address for Your Windows Instance in a VPC

On the EC2-VPC platform, you can specify multiple private IPv4 addresses for your instances. After you assign a secondary private IPv4 address to an instance in a VPC, you must configure the operating system on the instance to recognize the secondary private IPv4 address.

Configuring the operating system on a Windows instance to recognize a secondary private IPv4 address requires the following:

- Step 1: Configure Static IP Addressing on Your Windows Instance (p. 355)
- Step 2: Configure a Secondary Private IP Address for Your Windows Instance (p. 356)
- Step 3: Configure Applications to Use the Secondary Private IP Address (p. 357)

Note
These instructions are based on Windows Server 2008 R2. The implementation of these steps may vary based on the operating system of the Windows instance.

Prerequisites
Before you begin, make sure you meet the following requirements:

- As a best practice, launch your Windows instances using the latest AMIs. If you are using an older Windows AMI, ensure that it has the Microsoft hot fix referenced in http://support.microsoft.com/kb/2582281.
After you launch your instance in your VPC, add a secondary private IP address. For more information, see Assigning a Secondary Private IPv4 Address (p. 580).

To allow Internet requests to your website after you complete the tasks in these steps, you must configure an Elastic IP address and associate it with the secondary private IP address. For more information, see Associating an Elastic IP Address with the Secondary Private IPv4 Address (p. 582).

Step 1: Configure Static IP Addressing on Your Windows Instance

To enable your Windows instance to use multiple IP addresses, you must configure your instance to use static IP addressing rather than a DHCP server.

Important

When you configure static IP addressing on your instance, the IP address must match exactly what is shown in the console, CLI, or API. If you enter these IP addresses incorrectly, the instance could become unreachable.

To configure static IP addressing on a Windows instance

1. Connect to your instance.
2. Find the IP address, subnet mask, and default gateway addresses for the instance by performing the following steps:
 - At a Command Prompt window, run the following command:
 `ipconfig /all`
 - Review the following section in your output, and note the **IPv4 Address**, **Subnet Mask**, **Default Gateway**, and **DNS Servers** values for the network interface.

 Ethernet adapter Local Area Connection:
 - Connection-specific DNS Suffix :
 - Description :
 - Physical Address :
 - DHCP Enabled :
 - Autoconfiguration Enabled :
 - IPv4 Address : 10.0.0.131
 - Subnet Mask : 255.255.255.0
 - Default Gateway : 10.0.0.1
 - DNS Servers : 10.1.1.10
 - 10.1.1.20

3. Open the **Network and Sharing Center** by running the following command:

 `%SystemRoot%\system32\control.exe ncpa.cpl`

4. Open the context (right-click) menu for the network interface (Local Area Connection) and choose **Properties**.
5. Choose **Internet Protocol Version 4 (TCP/IPv4)**, **Properties**.
6. In the **Internet Protocol Version 4 (TCP/IPv4) Properties** dialog box, choose **Use the following IP address**, enter the following values, and then choose **OK**.
Configuring a Secondary Private IPv4 Address

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The IPv4 address obtained in step 2 above.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>The subnet mask obtained in step 2 above.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>The default gateway address obtained in step 2 above.</td>
</tr>
<tr>
<td>Preferred DNS server</td>
<td>The DNS server obtained in step 2 above.</td>
</tr>
<tr>
<td>Alternate DNS server</td>
<td>The alternate DNS server obtained in step 2 above. If an alternate DNS server was not listed, leave this field blank.</td>
</tr>
</tbody>
</table>

Important

If you set the IP address to any value other than the current IP address, you will lose connectivity to the instance.

You will lose RDP connectivity to the Windows instance for a few seconds while the instance converts from using DHCP to static addressing. The instance retains the same IP address information as before, but now this information is static and not managed by DHCP.

Step 2: Configure a Secondary Private IP Address for Your Windows Instance

After you have set up static IP addressing on your Windows instance, you are ready to prepare a second private IP address.

To configure a secondary IP address for a Windows instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances** and select your instance.
3. On the **Description** tab, note the secondary IP address.
4. Connect to your instance.
5. On your Windows instance, choose **Start**, **Control Panel**.
6. Choose **Network and Internet**, **Network and Sharing Center**.
7. Select the network interface (Local Area Connection) and choose **Properties**.
8. On the **Local Area Connection Properties** page, choose **Internet Protocol Version 4 (TCP/IPv4)**, **Properties, Advanced**.
9. Choose **Add**.
10. In the **TCP/IP Address** dialog box, type the secondary private IP address for **IP address**. For **Subnet mask**, type the same subnet mask that you entered for the primary private IP address in **Step 1: Configure Static IP Addressing on Your Windows Instance** (p. 355), and then choose **Add**.

```
TCP/IP Address
IP address: 10.0.0.14
Subnet mask: 255.255.255.0
```

11. Verify the IP address settings and choose **OK**.

```
Advanced TCP/IP Settings

IP addresses
IP address  Subnet mask
10.0.0.12  255.255.255.0
10.0.0.14  255.255.255.0
```

12. Choose **OK, Close**.
13. To confirm that the secondary IP address has been added to the operating system, at a command prompt, run the command `ipconfig /all`.

Step 3: Configure Applications to Use the Secondary Private IP Address

You can configure any applications to use the secondary private IP address. For example, if your instance is running a website on IIS, you can configure IIS to use the secondary private IP address.

To configure IIS to use the secondary private IP address

1. Connect to your instance.
2. Open Internet Information Services (IIS) Manager.
3. In the **Connections** pane, expand **Sites**.
4. Open the context (right-click) menu for your website and choose **Edit Bindings**.
5. In the **Site Bindings** dialog box, for **Type**, choose **http, Edit**.
6. In the **Edit Site Binding** dialog box, for **IP address**, select the secondary private IP address. (By default, each website accepts HTTP requests from all IP addresses.)

![Edit Site Binding dialog box](image)

7. Choose **OK, Close**.

Configure a Secondary Elastic Network Interface

You can attach a second elastic network interface to the instance.

To configure a second network interface

1. Configure the static IP addressing for the primary elastic network interface as per the procedures above in *Step 1: Configure Static IP Addressing on Your Windows Instance* (p. 355).
2. Configure the static IP addressing for the secondary elastic network interface as per the same procedures.

Running Commands on Your Windows Instance at Launch

When you launch an instance in Amazon EC2, you can pass user data to the instance that can be used to perform common automated configuration tasks and even run scripts after the instance starts.

Contents

- User Data and Scripts (p. 358)
- User Data Execution (p. 359)
- User Data and the Console (p. 360)
- User Data and the Tools for Windows PowerShell (p. 361)

User Data and Scripts

You can specify scripts to execute when an instance starts.

For EC2Config or EC2Launch to execute user data scripts, you must enclose the lines of the specified script within one of the following special tags:

- `<script></script>`
- `<powershell></powershell>`

- Run any command that you can run in a Command Prompt window.
- Example: `<script>dir > c:\test.log</script>`
- `<powershell></powershell>`
- Run any command that you can run at the Windows PowerShell command prompt.
If you use an AMI that includes the AWS Tools for Windows PowerShell, you can also use those cmdlets. If an IAM role is associated with your instance, then you don't need to specify credentials to the cmdlets, as applications that run on the instance can use the role's credentials to access AWS resources such as Amazon S3 buckets.

Example: `<powershell>Read-S3Object -BucketName myS3Bucket -Key myFolder/myFile.zip -File c:\destinationFile.zip</powershell>`

You can separate the commands in a script using line breaks.

If both `script` and `powershell` tags are present, the batch script are run first and the PowerShell script next, regardless of the order in which they appear.

The \Log (EC2Launch) or \Logs (EC2Config) folder contains output from the standard output and standard error streams.

If you're using the Amazon EC2 API or a tool that does not perform base64 encoding of the user data, you must encode the user data yourself. If not, an error is logged about being unable to find `script` or `powershell` tags to execute. The following is an example that encodes using PowerShell.

```powershell
#UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($Script))
```

The following is an example that decodes using PowerShell.

```powershell
#Script = [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String($UserData))
```


User Data Execution

By default, all Amazon AMIs have user data execution enabled for the initial boot. For instances using the EC2Config service, you can specify that user data must be executed on the next boot or restart of the service. For more information, see Ec2 Service Properties (p. 308).

Initial Boot

User data script execution happens under the local administrator user only when a random password is generated. The EC2Config service generates the password and is aware of the credentials briefly (prior to sending to the console). EC2Config doesn't store or track password changes, so when you don't generate a random password, user data execution is performed by the EC2Config service account. If you choose the option to **Shutdown with Sysprep** in EC2Config, user data script execution is enabled, regardless of the setting of the User Data check box.

Similarly, for instances using the EC2Launch service, if you choose the option to **Shutdown with Sysprep**, user data script execution is enabled when the instance is restarted.

Subsequent Boots

Because Amazon AMIs automatically disable user data script execution after the initial boot, you can do one of the following to make user data persist across reboots:

- For EC2Config, specify that user data must be executed on the next boot or restart of the service. For more information, see Ec2 Service Properties (p. 308). You can also use this option if you want to add or change user data for an existing instance.
• For EC2Config, programmatically create a scheduled task to run at system start using `schtasks.exe /Create`, and point the scheduled task to the user data script (or another script) at `C:\Program Files\Amazon\Ec2ConfigService\Scripts\UserScript.ps1`.

• For EC2Config, programmatically enable the user data plug-in in `Config.xml` using a script similar to the following:

```powershell
#EC2SettingsFile="C:\Program Files\Amazon\Ec2ConfigService\Settings\Config.xml"
$xml = [xml](get-content $EC2SettingsFile)
$xmlElement = $xml.get_DocumentElement()
$xmlElementToModify = $xmlElement.Plugins

foreach ($element in $xmlElementToModify.Plugin)
{
    if ($element.name -eq "Ec2SetPassword")
    {
        $element.State="Enabled"
    }
    elseif ($element.name -eq "Ec2HandleUserData")
    {
        $element.State="Enabled"
    }
}
$xml.Save($EC2SettingsFile)
</powershell>
```

• For EC2Config version 2.1.10 and later, or for EC2Launch, you can use `<persist>true</persist>` in the user data to enable the plug-in after user data execution.

```powershell
insert script here
</powershell>
<persist>true</persist>
```

User Data and the Console

When you launch an instance, you specify the script in **Advanced Details, User data** on the **Step 3: Configure Instance Details** page of the Launch Instance wizard. The example in the following image uses the `Rename-Computer` command to change the name of the instance when it boots. When you select **As text**, the Amazon EC2 console performs base64 encoding on the input for you.

You can view the instance metadata for any instance, and you can change the instance metadata for a stopped instance. Select the instance, and then choose **Actions, Instance Settings, View/Change User Data**.
User Data and the Tools for Windows PowerShell

You can use the Tools for Windows PowerShell to specify, modify, and view the user data for your instance. For information about viewing user data from your instance using instance metadata, see Retrieving User Data (p. 366). For information about user data and the AWS CLI, see User Data and the AWS CLI in the Amazon EC2 User Guide for Linux Instances.

Example: Specify User Data at Launch

To specify user data when you launch your instance, use the New-EC2Instance command.

This command does not perform base64 encoding of the user data for you. Use the following commands to encode the user data in a text file.

```
PS C:\> $Script = Get-Content -Raw script.txt
PS C:\> $UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($Script))
```

Use the -UserData parameter to pass the user data to the command.

```
PS C:\> New-EC2Instance -ImageId ami-abcd1234 -MinCount 1 -MaxCount 1 -InstanceType m3.medium -KeyName my-key-pair -SubnetId subnet-12345678 -SecurityGroupIds sg-1a2b3c4d -UserData $UserData
```

Example: Modify the User Data of a Stopped Instance

You can modify the user data of a stopped instance using the Edit-EC2InstanceAttribute command.

This command does not perform base64 encoding of the user data for you. Use the following commands to encode the user data in a text file.

```
PS C:\> $NewScript = Get-Content -Raw new-script.txt
```

User Data and the Tools for Windows PowerShell

You can use the Tools for Windows PowerShell to specify, modify, and view the user data for your instance. For information about viewing user data from your instance using instance metadata, see Retrieving User Data (p. 366). For information about user data and the AWS CLI, see User Data and the AWS CLI in the Amazon EC2 User Guide for Linux Instances.

Example: Specify User Data at Launch

To specify user data when you launch your instance, use the New-EC2Instance command.

This command does not perform base64 encoding of the user data for you. Use the following commands to encode the user data in a text file.

```
PS C:\> $Script = Get-Content -Raw script.txt
PS C:\> $UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($Script))
```

Use the -UserData parameter to pass the user data to the command.

```
PS C:\> New-EC2Instance -ImageId ami-abcd1234 -MinCount 1 -MaxCount 1 -InstanceType m3.medium -KeyName my-key-pair -SubnetId subnet-12345678 -SecurityGroupIds sg-1a2b3c4d -UserData $UserData
```

Example: Modify the User Data of a Stopped Instance

You can modify the user data of a stopped instance using the Edit-EC2InstanceAttribute command.

This command does not perform base64 encoding of the user data for you. Use the following commands to encode the user data in a text file.

```
PS C:\> $NewScript = Get-Content -Raw new-script.txt
```
```
PS C:\> $NewUserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($NewScript))
```

Use the `-UserData` and `-Value` parameters to specify the user data.

```
PS C:\> Edit-EC2InstanceAttribute -InstanceId i-1234567890abcdef0 -Attribute userData -Value $NewUserData
```

Example: View User Data

To retrieve the user data for an instance, use the `Get-EC2InstanceAttribute` command.

```
PS C:\> (Get-EC2InstanceAttribute -InstanceId i-1234567890abcdef0 -Attribute userData).UserData
```

The following is example output. Note that the user data is encoded.

```
PHBvd2Vyc2hlbGw
+DQpSZW5hbWUtQ29tcHV0ZXIgLU5ld05hbWUgdXNlci1kYXRhLXRlc3QNCjwvcG93ZXJzaGVsbD4=
```

Use the following commands to store the encoded user data in a variable and then decode it.

```
PS C:\> $UserData_encoded = (Get-EC2InstanceAttribute -InstanceId i-1234567890abcdef0 -Attribute userData).UserData
PS C:\> [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String($UserData_encoded))
```

The following is example output.

```
<C:\> Rename-Computer -NewName user-data-test
</powershell>
```

Instance Metadata and User Data

Instance metadata is data about your instance that you can use to configure or manage the running instance. Instance metadata is divided into categories. For more information, see Instance Metadata Categories (p. 367).

Important

Although you can only access instance metadata and user data from within the instance itself, the data is not protected by cryptographic methods. Anyone who can access the instance can view its metadata. Therefore, you should take suitable precautions to protect sensitive data (such as long-lived encryption keys). You should not store sensitive data, such as passwords, as user data.

You can also use instance metadata to access user data that you specified when launching your instance. For example, you can specify parameters for configuring your instance, or attach a simple script. You can also use this data to build more generic AMIs that can be modified by configuration files supplied at launch time. For example, if you run web servers for various small businesses, they can all use the same AMI and retrieve their content from the Amazon S3 bucket you specify in the user data at launch. To add a new customer at any time, simply create a bucket for the customer, add their content, and launch your AMI. If you launch more than one instance at the same time, the user data is available to all instances in that reservation.

EC2 instances can also include dynamic data, such as an instance identity document that is generated when the instance is launched. For more information, see Dynamic Data Categories (p. 372).
Retrieving Instance Metadata

Because your instance metadata is available from your running instance, you do not need to use the Amazon EC2 console or the AWS CLI. This can be helpful when you're writing scripts to run from your instance. For example, you can access the local IP address of your instance from instance metadata to manage a connection to an external application.

To view all categories of instance metadata from within a running instance, use the following URI:

Note that you are not billed for HTTP requests used to retrieve instance metadata and user data.

You can use PowerShell cmdlets to retrieve the URI. For example, if you are running version 3.0 or later of PowerShell, use the following cmdlet:

```
```

If you don't want to use PowerShell, you can install a third-party tool such as GNU Wget or cURL.

Important

If you do install a third-party tool on a Windows instance, ensure that you read the accompanying documentation carefully, as the method of calling the HTTP and the output format might be different from what is documented here.

All instance metadata is returned as text (content type `text/plain`). A request for a specific metadata resource returns the appropriate value, or a 404 - Not Found HTTP error code if the resource is not available.

A request for a general metadata resource (the URI ends with a `/`) returns a list of available resources, or a 404 - Not Found HTTP error code if there is no such resource. The list items are on separate lines, terminated by line feeds (ASCII 10).

Examples of Retrieving Instance Metadata

This example gets the available versions of the instance metadata. These versions do not necessarily correlate with an Amazon EC2 API version. The earlier versions are available to you in case you have scripts that rely on the structure and information present in a previous version.

```
PS C:\> Invoke-RestMethod -uri http://169.254.169.254/1.0
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01
2008-09-01
```
This example gets the top-level metadata items. Some items are only available for instances in a VPC. For more information about each of these items, see Instance Metadata Categories (p. 367).

```
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
iam/
instance-action
instance-id
instance-type
local-hostname
local-ipv4
mac
metrics/
network/
placement/
profile
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups
services/
```

These examples get the value of some of the metadata items from the preceding example.

```
ami-12345678

r-fea54097

ip-10-251-50-12.ec2.internal

e2-203-0-113-25.compute-1.amazonaws.com
```

This example shows the information available for a specific network interface (indicated by the MAC address) on an NAT instance in the EC2-Classic platform.

```
macs/02:29:96:8f:6a:2d/
```
This example gets the subnet ID for an instance launched into a VPC.

```bash
subnet-be9b61d7
```

Throttling

We throttle queries to the instance metadata service on a per-instance basis, and we place limits on the number of simultaneous connections from an instance to the instance metadata service.

If you're using the instance metadata service to retrieve AWS security credentials, avoid querying for credentials during every transaction or concurrently from a high number of threads or processes, as this may lead to throttling. Instead, we recommend that you cache the credentials until they start approaching their expiry time.

If you're throttled while accessing the instance metadata service, retry your query with an exponential backoff strategy.

Configuring Instances with User Data

When you specify user data, note the following:

- User data is treated as opaque data: what you give is what you get back. It is up to the instance to be able to interpret it.
- User data is limited to 16 KB. This limit applies to the data in raw form, not base64-encoded form.
- User data must be base64-encoded. The Amazon EC2 console can perform the base64 encoding for you or accept base64-encoded input.
- User data must be decoded when you retrieve it. The data is decoded when you retrieve it using instance metadata and the console.
- User data is executed only at launch. If you stop an instance, modify the user data, and start the instance, the new user data is not executed automatically.

Specify User Data at Launch

You can specify user data when you launch an instance. For more information, see Running Commands on Your Windows Instance at Launch (p. 358).

Modify User Data for a Running Instance

You can modify user data for an existing instance if the root volume is an EBS volume. If the instance is running, you must first stop the instance. The new user data is visible on your instance after you restart it; however, it is not executed.

Warning

When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.
To modify the user data for an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances, and select the instance.
3. Choose Actions, Instance State, Stop.
4. In the confirmation dialog box, click Yes, Stop. It can take a few minutes for the instance to stop.
5. With the instance still selected, choose Actions, select Instance Settings, and then choose View/Change User Data. Note that you can't change the user data if the instance is running, but you can view it.
6. In the View/Change User Data dialog box, update the user data, and then choose Save.

To modify the user data for an instance using the command line

You can modify user data using the AWS CLI and the Tools for Windows PowerShell. For more information, see User Data and the AWS CLI and User Data and the Tools for Windows PowerShell (p. 361).

Retrieving User Data

To retrieve user data from within a running instance, use the following URI:

http://169.254.169.254/latest/user-data

A request for user data returns the data as it is (content type application/octet-stream).

This example returns user data that was provided as comma-separated text:

```
1234,john,reboot,true | 4512,richard, | 173,,,
```

This example returns user data that was provided as line-separated text:

```
[general]
instances: 4

[instance-0]
s3-bucket: <user_name>

[instance-1]
reboot-on-error: yes
```

Retrieving Dynamic Data

To retrieve dynamic data from within a running instance, use the following URI:

This example shows how to retrieve the high-level instance identity categories:

```
rsa2048
```
For more information about dynamic data and examples of how to retrieve it, see Instance Identity Documents (p. 372).

Instance Metadata Categories

The following table lists the categories of instance metadata.

Important
Category names that are formatted in red text are placeholders for data that is unique to your instance; for example, `mac` represents the MAC address for the network interface. You must replace the placeholders with the actual values.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Version Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami-id</td>
<td>The AMI ID used to launch the instance.</td>
<td>1.0</td>
</tr>
<tr>
<td>ami-launch-index</td>
<td>If you started more than one instance at the same time, this value indicates the order in which the instance was launched. The value of the first instance launched is 0.</td>
<td>1.0</td>
</tr>
<tr>
<td>ami-manifest-path</td>
<td>The path to the AMI manifest file in Amazon S3. If you used an Amazon EBS-backed AMI to launch the instance, the returned result is unknown.</td>
<td>1.0</td>
</tr>
<tr>
<td>ancestor-ami-ids</td>
<td>The AMI IDs of any instances that were rebundled to create this AMI. This value will only exist if the AMI manifest file contained an ancestor-amis key.</td>
<td>2007-10-10</td>
</tr>
<tr>
<td>block-device-mapping/ami</td>
<td>The virtual device that contains the root/boot file system.</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>block-device-mapping/ebs (N)</td>
<td>The virtual devices associated with Amazon EBS volumes, if any are present. Amazon EBS volumes are only available in metadata if they were present at launch time or when the instance was last started. The (N) indicates the index of the Amazon EBS volume (such as ebs1 or ebs2).</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>block-device-mapping/ephemeral (N)</td>
<td>The virtual devices associated with ephemeral devices, if any are present. The (N) indicates the index of the ephemeral volume.</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>block-device-mapping/root</td>
<td>The virtual devices or partitions associated with the root devices, or partitions on the virtual device,</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
<td>Version Introduced</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>block-device-mapping/swap</td>
<td>The virtual devices associated with swap. Not always present.</td>
<td>2007-12-15</td>
</tr>
<tr>
<td>elastic-gpus/associations/elastic-gpu-id</td>
<td>If there is an Elastic GPU attached to the instance, contains a JSON string with information about the Elastic GPU, including its ID and connection information.</td>
<td>2016-11-30</td>
</tr>
<tr>
<td>hostname</td>
<td>The private IPv4 DNS hostname of the instance. In cases where multiple network interfaces are present, this refers to the eth0 device (the device for which the device number is 0).</td>
<td>1.0</td>
</tr>
<tr>
<td>iam/info</td>
<td>If there is an IAM role associated with the instance, contains information about the last time the instance profile was updated, including the instance's LastUpdated date, InstanceProfileArn, and InstanceProfileId. Otherwise, not present.</td>
<td>2012-01-12</td>
</tr>
<tr>
<td>iam/security-credentials/role-name</td>
<td>If there is an IAM role associated with the instance, role-name is the name of the role, and role-name contains the temporary security credentials associated with the role (for more information, see Retrieving Security Credentials from Instance Metadata (p. 535)). Otherwise, not present.</td>
<td>2012-01-12</td>
</tr>
<tr>
<td>instance-action</td>
<td>Notifies the instance that it should reboot in preparation for bundling. Valid values: none</td>
<td>2008-09-01</td>
</tr>
<tr>
<td></td>
<td>shutdown</td>
<td>bundle-pending.</td>
</tr>
<tr>
<td>instance-id</td>
<td>The ID of this instance.</td>
<td>1.0</td>
</tr>
<tr>
<td>instance-type</td>
<td>The type of instance. For more information, see Instance Types (p. 104).</td>
<td>2007-08-29</td>
</tr>
<tr>
<td>kernel-id</td>
<td>The ID of the kernel launched with this instance, if applicable.</td>
<td>2008-02-01</td>
</tr>
<tr>
<td>local-hostname</td>
<td>The private IPv4 DNS hostname of the instance. In cases where multiple network interfaces are present, this refers to the eth0 device (the device for which the device number is 0).</td>
<td>2007-01-19</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
<td>Version Introduced</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>local-ipv4</td>
<td>The private IPv4 address of the instance. In cases where multiple network interfaces are present, this refers to the eth0 device (the device for which the device number is 0).</td>
<td>1.0</td>
</tr>
<tr>
<td>mac</td>
<td>The instance's media access control (MAC) address. In cases where multiple network interfaces are present, this refers to the eth0 device (the device for which the device number is 0).</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/device-number</td>
<td>The unique device number associated with that interface. The device number corresponds to the device name; for example, a device-number of 2 is for the eth2 device. This category corresponds to the DeviceIndex and device-index fields that are used by the Amazon EC2 API and the EC2 commands for the AWS CLI.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/ipv4-associations/public-ip</td>
<td>The private IPv4 addresses that are associated with each public-ip address and assigned to that interface.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/ipv6s</td>
<td>The IPv6 addresses associated with the interface. Returned only for instances launched into a VPC.</td>
<td>2016-06-30</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/local-hostname</td>
<td>The interface's local hostname.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/local-ipv4s</td>
<td>The private IPv4 addresses associated with the interface.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/mac</td>
<td>The instance's MAC address.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/owner-id</td>
<td>The ID of the owner of the network interface. In multiple-interface environments, an interface can be attached by a third party, such as Elastic Load Balancing. Traffic on an interface is always billed to the interface owner.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/public-hostname</td>
<td>The interface's public DNS (IPv4). If the instance is in a VPC, this category is only returned if the enableDnsHostnames attribute is set to true. For more information, see Using DNS with Your VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
<td>Version Introduced</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/public-ipv4s</td>
<td>The Elastic IP addresses associated with the interface. There may be multiple IPv4 addresses on an instance.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/security-groups</td>
<td>Security groups to which the network interface belongs. Returned only for instances launched into a VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/security-group-ids</td>
<td>The IDs of the security groups to which the network interface belongs. Returned only for instances launched into a VPC. For more information on security groups in the EC2-VPC platform, see Security Groups for Your VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/subnet-id</td>
<td>The ID of the subnet in which the interface resides. Returned only for instances launched into a VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/subnet-ipv4-cidr-block</td>
<td>The IPv4 CIDR block of the subnet in which the interface resides. Returned only for instances launched into a VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/subnet-ipv6-cidr-blocks</td>
<td>The IPv6 CIDR block of the subnet in which the interface resides. Returned only for instances launched into a VPC.</td>
<td>2016-06-30</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/vpc-id</td>
<td>The ID of the VPC in which the interface resides. Returned only for instances launched into a VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/vpc-ipv4-cidr-block</td>
<td>The primary IPv4 CIDR block of the VPC. Returned only for instances launched into a VPC.</td>
<td>2011-01-01</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/vpc-ipv4-cidr-blocks</td>
<td>The IPv4 CIDR blocks for the VPC. Returned only for instances launched into a VPC.</td>
<td>2016-06-30</td>
</tr>
<tr>
<td>network/interfaces/macs/mac/vpc-ipv6-cidr-blocks</td>
<td>The IPv6 CIDR block of the VPC in which the interface resides. Returned only for instances launched into a VPC.</td>
<td>2016-06-30</td>
</tr>
<tr>
<td>placement/availability-zone</td>
<td>The Availability Zone in which the instance launched.</td>
<td>2008-02-01</td>
</tr>
<tr>
<td>product-codes</td>
<td>Marketplace product codes associated with the instance, if any.</td>
<td>2007-03-01</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
<td>Version Introduced</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>public-hostname</td>
<td>The instance’s public DNS. If the instance is in a VPC, this category is only returned if the enableDnsHostnames attribute is set to true. For more information, see Using DNS with Your VPC.</td>
<td>2007-01-19</td>
</tr>
<tr>
<td>public-ipv4</td>
<td>The public IPv4 address. If an Elastic IP address is associated with the instance, the value returned is the Elastic IP address.</td>
<td>2007-01-19</td>
</tr>
<tr>
<td>public-keys/0/openssh-key</td>
<td>Public key. Only available if supplied at instance launch time.</td>
<td>1.0</td>
</tr>
<tr>
<td>ramdisk-id</td>
<td>The ID of the RAM disk specified at launch time, if applicable.</td>
<td>2007-10-10</td>
</tr>
<tr>
<td>reservation-id</td>
<td>The ID of the reservation.</td>
<td>1.0</td>
</tr>
<tr>
<td>security-groups</td>
<td>The names of the security groups applied to the instance. After launch, you can only change the security groups of instances running in a VPC. Such changes are reflected here and in network/interfaces/macs/mac/security-groups.</td>
<td>1.0</td>
</tr>
<tr>
<td>services/domain</td>
<td>The domain for AWS resources for the region; for example, amazonaws.com for us-east-1.</td>
<td>2014-02-25</td>
</tr>
<tr>
<td>services/partition</td>
<td>The partition that the resource is in. For standard AWS regions, the partition is aws. If you have resources in other partitions, the partition is aws-partitionname. For example, the partition for resources in the China (Beijing) region is aws-cn.</td>
<td>2015-10-20</td>
</tr>
<tr>
<td>spot/instance-action</td>
<td>The action (stop or terminate) and the approximate time, in UTC, when the Spot service will stop or terminate the Spot instance. For more information, see instance-action (p. 242).</td>
<td>2016-11-15</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
<td>Version Introduced</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>spot/termination-time</td>
<td>The approximate time, in UTC, that the operating system for your Spot instance will receive the shutdown signal. This item is present and contains a time value (for example, 2015-01-05T18:02:00Z) only if the Spot instance has been marked for termination by Amazon EC2. The termination-time item is not set to a time if you terminated the Spot instance yourself. For more information, see termination-time (p. 243).</td>
<td>2014-11-05</td>
</tr>
</tbody>
</table>

Dynamic Data Categories

The following table lists the categories of dynamic data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Version introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>fws/instance-monitoring</td>
<td>Value showing whether the customer has enabled detailed one-minute monitoring in CloudWatch. Valid values: enabled</td>
<td>enabled</td>
</tr>
<tr>
<td>instance-identity/document</td>
<td>JSON containing instance attributes, such as instance-id, private IP address, etc. See Instance Identity Documents (p. 372).</td>
<td>2009-04-04</td>
</tr>
<tr>
<td>instance-identity/pkcs7</td>
<td>Used to verify the document's authenticity and content against the signature. See Instance Identity Documents (p. 372).</td>
<td>2009-04-04</td>
</tr>
<tr>
<td>instance-identity/signature</td>
<td>Data that can be used by other parties to verify its origin and authenticity. See Instance Identity Documents (p. 372).</td>
<td>2009-04-04</td>
</tr>
</tbody>
</table>

Instance Identity Documents

An instance identity document is a JSON file that describes an instance. The instance identity document is accompanied by a signature and a PKCS7 signature which can be used to verify the accuracy, origin, and authenticity of the information provided in the document. For example, you may have downloaded free software with paid updates.

The instance identity document is generated when the instance is launched, and exposed to the instance through instance metadata (p. 362). It validates the attributes of the instances, such as the subscribed software, instance size, instance type, operating system, and AMI.

Important

Due to the dynamic nature of instance identity documents and signatures, we recommend retrieving the instance identity document and signature regularly.
Obtaining the Instance Identity Document and Signatures

To retrieve the instance identity document, use the following command from your running instance:

```powershell
```

The following is example output:

```
privateIp          : 10.0.2.174
availabilityZone   : us-west-2a
devpayProductCodes :
version            : 2010-08-31
instanceId         : i-1234567890abcdef0
billingProducts    : {bp-6ba54002}
instantType       : m3.medium
architecture       : x86_64
accountId          : 123456789012
kernelId           :
ramdiskId          :
imageId            : ami-1562d075
region             : us-west-2
```

To retrieve the instance identity signature, use the following command from your running instance:

```powershell
```

The following is example output:

```
dExamplesjNqhjJan7pORLsLs71lJE4V2DhG1yoYVBoUyY9njyBCmhEayaGrhtS/AWY+LPx
lV5qURF5nogwPMxU061CF0pNrm5iFHw9ydyaeamplejJw8xWXPxbuRkCN0TAAlp4RtCAqm4ms
xzoAjlWCBexample=
```

To retrieve the PKCS7 signature, use the following command from your running instance:

```powershell
```

The following is example output:

```
MIICiTCCAfICCCQD6m7oBw0UXoJANBgkgqhkiG9w0BAQUFADBXYDELMAkGA1UEBhMC
VMXc2aJBGqNVBAGtAldBMRWdQyDVQCHEw72ZWFd0Gx1MQ8wDQYDVQQKEwZbbwF6
b24xPDASBGNVBBsTC01BTSd25b2x1MRtwEAYDVQDEwUUXNQ2lsYWMyHsAd
BgkqhkiG9w0BCQEWE5vbg251QGFYXpvbi5jb20wnhcNMTEbND1MJa0NTIwWhcN
MTtwNDIOMJa0NTIwXcjBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAoGAgFtYXpvbi5jb20w
hccNMTEbND1MJa0NTIwWhcNM
```

373
Upgrading an Amazon EC2 Windows Instance to a Newer Version of Windows Server

There are two methods to upgrade an earlier version of Windows Server running on an instance: in-place upgrade and migration (also called side-by-side upgrade). An in-place upgrade upgrades the operating system files while your personal settings and files are intact. A migration involves capturing settings, configurations, and data and porting these to a newer operating system on a fresh Amazon EC2 instance.

Microsoft has traditionally recommended migrating to a newer version of Windows Server instead of upgrading. Migrating can result in fewer upgrade errors or issues, but can take longer than an in-place upgrade because of the need to provision a new instance, plan for and port applications, and adjust configurations settings on the new instance. An in-place upgrade can be faster, but software incompatibilities can produce errors.

Contents

- Performing a Server Migration (p. 374)
- Performing an In-Place Upgrade (p. 374)
- Troubleshooting an Upgrade (p. 378)

Performing a Server Migration

Migrating involves capturing settings, configurations, and data and porting these to a newer operating system on separate hardware. After validation, the migrated system can be promoted to production. You can migrate instances by launching a new instance from an AMI of the new operating system. You can streamline the process further by using AWS CloudFormation and Amazon EC2 Systems Manager to automatically apply settings and configurations to the new system with little manual work.

To migrate your server

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose AMIs, Owned by me, and Public images.
3. For Search, add the following filters and press Enter. The Search values are case-sensitive.
 - Owner: Amazon images
4. Launch a new instance from an AMI.
5. Log on to the new instance and install all updates.
6. Perform an application installation and configuration changes.
7. Test the server.
8. When validated, promote the server to production.

Performing an In-Place Upgrade

Before you perform an in-place upgrade, you must determine which network drivers the instance is running. PV network drivers enable you to access your instance using Remote Desktop. Starting with Windows Server 2008 R2, instances use either AWS PV, Intel Network Adapter, or the Enhanced Networking drivers. Instances with Windows Server 2003 and Windows Server 2008 use Citrix PV drivers. For more information, see Paravirtual Drivers for Windows Server Instances (p. 332).
Before You Begin an In-Place Upgrade

Complete the following tasks and note the following important details before you begin your in-place upgrade.

- Read the Microsoft documentation to understand the upgrade requirements, known issues, and restrictions. Also review the official instructions for upgrading.
 - Upgrading to Windows Server 2008
 - Upgrading to Windows Server 2008 R2
 - Upgrade Options for Windows Server 2012
 - Upgrade Options for Windows Server 2012 R2
 - Upgrade and conversion options for Windows Server 2016
- We do not recommend performing an operating system upgrade on a T1 or T2 instance type. These types of instances might not have enough resources to manage the upgrade process. To upgrade one of these instances, you must resize the instance to another instance type, perform the upgrade, and then resize it back to a T1 or T2 instance type. For more information, see Resizing Your Instance (p. 153).
- Verify that the root volume on your Windows instance has enough free disk space. The Windows Setup process might not warn you of insufficient disk space. For information about how much disk space is required to upgrade a specific operating system, see the Microsoft documentation. If the volume does not have enough space, it can be expanded. For more information, see Modifying the Size, IOPS, or Type of an EBS Volume on Windows (p. 666).
- Determine your upgrade path. You must upgrade the operating system to the same architecture. For example, you must upgrade a 32-bit system to a 32-bit system. Windows Server 2008 R2 and later are 64-bit only.
- Disable antivirus and anti-spyware software and firewalls. These types of software can conflict with the upgrade process. Re-enable antivirus and anti-spyware software and firewalls after the upgrade completes.
- The Upgrade Helper Service only supports instances running Citrix PV drivers. If the instance is running Red Hat drivers, you must manually upgrade those drivers (p. 336) first.

Upgrade an Instance In-Place with AWS PV, Intel Network Adapter, or the Enhanced Networking Drivers

Use the following procedure to upgrade a Windows Server instance using the AWS PV, Intel Network Adapter, or the Enhanced Networking network drivers.

To perform the in-place upgrade

1. Create an AMI of the system you plan to upgrade for either backup or testing purposes. You can then perform the upgrade on the copy to simulate a test environment. If the upgrade completes, you can switch traffic to this instance with little downtime. If the upgrade fails, you can revert to the backup. For more information, see Creating a Custom Windows AMI (p. 65).
2. Ensure that your Windows Server instance is using the latest network drivers. See Upgrading PV Drivers on Your Windows Instances (p. 336) for information on upgrading your AWS PV driver.
3. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
4. In the navigation pane, choose Instances. Locate the instance. Make a note of the instance ID and Availability Zone for the instance. You need this information later in this procedure.
5. If you are upgrading from Windows Server 2012 or 2012 R2 to Windows Server 2016, do the following on your instance before proceeding:
a. Uninstall the EC2Config service. For more information, see Stopping, Restarting, Deleting, or Uninstalling EC2Config (p. 318).
b. Install the EC2Launch service. For more information, see Installing the Latest Version of EC2Launch (p. 300).
c. Install the Amazon SSM Agent. For more information, see Installing SSM Agent.
6. Create a new volume from a Windows Server installation media snapshot.
 a. In the navigation pane, choose Snapshots, Public Snapshots.
 b. Add the Owner filter and choose Amazon images.
 c. Add the Description filter and type Windows. Press Enter.
 d. Select the snapshot that matches the system architecture and language preference you are upgrading to. For example, select Windows 2016 English Installation Media to upgrade to Windows Server 2016.
 e. Choose Actions, Create Volume.
 f. In the Create Volume dialog box, choose the Availability Zone that matches your Windows instance, and choose Create.
7. In the Volume Successfully Created message, choose the volume that you just created.
8. Choose Actions, Attach Volume.
9. In the Attach Volume dialog box, type the instance ID and choose Attach.
10. Begin the upgrade by using Windows PowerShell to open the installation media volume you attached to the instance.
 a. If you are upgrading to Windows Server 2016, run the following:

```
./setup.exe /auto upgrade
```

If you are upgrading to an earlier version of Windows Server, run the following:

```
Sources/setup.exe
```

b. For Select the operating system you want to install, select the full installation SKU for your Windows Server instance, and choose Next.

c. For Which type of installation do you want?, choose Upgrade.

d. Complete the wizard.

Windows Server Setup copies and processes files. After several minutes, your Remote Desktop session closes. The time it takes to upgrade depends on the number of applications and server roles running on your Windows Server instance. The upgrade process could take as little as 40 minutes or several hours. The instance fails status check 1 of 2 during the upgrade process. When the upgrade completes, both status checks pass. You can check the system log for console output or use Amazon CloudWatch metrics for disk and CPU activity to determine whether the upgrade is progressing.

Note

If upgrading to Windows Server 2016, after the upgrade is complete you can change the desktop background manually to remove the previous operating system name if desired.

If the instance has not passed both status checks after several hours, see Troubleshooting an Upgrade (p. 378).

Upgrade an Instance In-Place with Citrix PV Drivers

Citrix PV drivers are used in Windows Server 2003 and 2008. There is a known issue during the upgrade process where Windows Setup removes portions of the Citrix PV drivers that enable you to connect to
the instance by using Remote Desktop. To avoid this problem, the following procedure describes how to use the Upgrade Helper Service during your in-place upgrade.

Using the Upgrade Helper Service

You must run the Upgrade Helper Service before you start the upgrade. After you run it, the utility creates a Windows service that executes during the post-upgrade steps to correct the driver state. The executable is written in C# and can run on .NET Framework versions 2.0 through 4.0.

When you run Upgrade Helper Service on the system before the upgrade, it performs the following tasks:

- Creates a new Windows service called UpgradeHelperService.
- Verifies that Citrix PV drivers are installed.
- Checks for unsigned boot critical drivers and presents a warning if any are found. Unsigned boot critical drivers could cause system failure after the upgrade if the drivers are not compatible with the newer Windows Server version.

When you run Upgrade Helper Service on the system after the upgrade, it performs the following tasks:

- Enables the RealTimeIsUniversal registry key for correct time synchronization.
- Restores the missing PV driver by executing the following command:
  ```
  pnputil -i -a "C:\Program Files (x86)\Citrix\XenTools\*.inf"
  ```
- Installs the missing device by executing the following command:
  ```
  C:\Temp\EC2DriverUtils.exe install "C:\Program Files (x86)\Citrix\XenTools\xevtchn.inf" ROOT \XENEVTCHN
  ```
- Automatically removes UpgradeHelperService when complete.

Performing the Upgrade on Instances Running Citrix PV Drivers

To complete the upgrade, you must attach the installation media volume to your EC2 instance and use UpgradeHelperService.exe.

To upgrade a Windows Server instance running Citrix PV drivers

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances and locate the instance. Make a note of the instance ID and Availability Zone for the instance. You need this information later in this procedure.
3. Create a new volume from a Windows Server installation media snapshot.
 a. In the navigation pane, choose Snapshots, Public Snapshots.
 b. Add the Owner filter and choose Amazon images.
 c. Add the Description filter and type Windows. Press Enter.
 d. Select the snapshot that matches the system architecture of your instance. For example, Windows 2008 64-bit Installation Media.
 e. Choose Actions, Create Volume.
 f. In the Create Volume dialog box, select the Availability Zone that matches your Windows instance, and choose Create.
4. In the Volume Successfully Created dialog box, choose the volume that you just created.
5. Choose Actions, Attach Volume.
6. In the Attach Volume dialog box, type the instance ID and choose Attach.
7. On your Windows instance, on the C:\ drive, create a folder named temp.
Important
This folder must be available in the same location after the upgrade. Creating the folder in a Windows system folder or a user profile folder, such as the desktop, can cause the upgrade to fail.

8. Download OSUpgrade.zip and extract the files into the C:\temp folder.
9. Run C:\temp\UpgradeHelperService.exe review the C:\temp\Log.txt file for any warnings.
10. Use Knowledge Base article 950376 from Microsoft to uninstall PowerShell from a Windows 2003 instance.
11. Begin the upgrade by using Windows Explorer to open the installation media volume that you attached to the instance.
12. Run the Sources\Setup.exe file.
13. For **Select the operating system you want to install**, select the full installation SKU for your Windows Server instance, and then choose **Next**.
14. For **Which type of installation do you want?**, choose **Upgrade**.
15. Complete the wizard.

Windows Server Setup copies and processes files. After several minutes, your Remote Desktop session closes. The time it takes to upgrade depends on the number of applications and server roles running on your Windows Server instance. The upgrade process could take as little as 40 minutes or several hours. The instance fails status check 1 of 2 during the upgrade process. When the upgrade completes, both status checks pass. You can check the system log for console output or use Amazon CloudWatch metrics for disk and CPU activity to determine whether the upgrade is progressing.

Post Upgrade Tasks

1. Log in to the instance to initiate an upgrade for the .NET Framework and reboot the system when prompted.
2. Install the latest version of the EC2Config service. For more information, see Installing the Latest Version of EC2Config (p. 317).
3. Install Microsoft hotfix KB2800213.
4. Install Microsoft hotfix KB2922223.
5. If you upgraded to Windows Server 2012 R2, we recommend that you upgrade the PV drivers to AWS PV drivers. For more information, see Windows Server 2012 R2.
6. Re-enable antivirus and anti-spyware software and firewalls.

Troubleshooting an Upgrade

AWS provides upgrade support for issues or problems with the Upgrade Helper Service, an AWS utility that helps you perform in-place upgrades involving Citrix PV drivers.

After the upgrade, the instance might temporarily experience higher than average CPU utilization while the .NET Runtime Optimization service optimizes the .NET framework. This is expected behavior.

If the instance has not passed both status checks after several hours, check the following:

- If you upgraded to Windows Server 2008 and both status checks fail after several hours, the upgrade may have failed and be presenting a prompt to Click OK to confirm rolling back. Because the console is not accessible at this state, there is no way to click the button. To get around this, perform a reboot via the Amazon EC2 console or API. The reboot takes ten minutes or more to initiate. The instance might become available after 25 minutes.
- Remove applications or server roles from the server and try again.
If the instance does not pass both status checks after removing applications or server roles from the server, do the following.

- Stop the instance and attach the root volume to another instance. For more information, see the description of how to stop and attach the root volume to another instance in "Waiting for the metadata service" (p. 856).
- Analyze Windows Setup log files and event logs for failures.

For other issues or problems with an operating system upgrade or migration, we recommend reviewing the articles listed in Before You Begin an In-Place Upgrade (p. 375).

Identify EC2 Windows Instances

You may benefit from being able to determine whether a system is an EC2 instance. There are two methods that you can use to identify an EC2 instance.

For information about identifying Linux instances, see Identify EC2 Linux Instances in the Amazon EC2 User Guide for Linux Instances.

Inspecting the System UUID

You can get the system UUID and look for the presence of the characters "EC2" in the beginning octet of the UUID. This method to determine whether a system is an EC2 instance is quick but potentially inaccurate because there is a small chance that a system that is not an EC2 instance could have a UUID that starts with these characters. Furthermore, EC2 instances using SMBIOS 2.4 might represent the UUID in little-endian format, therefore the "EC2" characters do not appear at the beginning of the UUID. For a definitive approach, see Inspecting the Instance Identity Document (p. 379).

Example: Get the UUID using WMI or Windows PowerShell

Use the Windows Management Instrumentation command line (WMIC) as follows:

```
wmic path win32_computersystemproduct get uuid
```

Alternatively, if you're using Windows PowerShell, use the `Get-WmiObject` cmdlet as follows:

```
PS C:\> Get-WmiObject -query "select uuid from Win32_ComputerSystemProduct" | Select UUID
```

In the following example output, the UUID starts with "EC2", which indicates that the system is probably an EC2 instance.

```
EC2AE145-D1DC-13B2-94ED-01234ABCDEF
```

For instances using SMBIOS 2.4, the UUID might be represented in little-endian format; for example:

```
45E12AEC-DCD1-B213-94ED-01234ABCDEF
```

Inspecting the Instance Identity Document

For a definitive and cryptographically verified method of identifying an EC2 instance, check the instance identity document, including its signature. These documents are available on every EC2 instance at the
For more information, see Instance Identity Documents (p. 372).
Amazon EC2 Elastic GPUs

An elastic GPU is a GPU resource that you can attach to your Amazon EC2 instance to accelerate the graphics performance of your applications. Elastic GPUs come in multiple sizes and are a low-cost alternative to using GPU graphics instance types (such as the G2 instance type). You have the flexibility to choose an instance type that meets the compute, memory, and storage needs of your application, and then choose an elastic GPU for your instance that meets the graphics acceleration requirements of your workload.

Elastic GPUs are suited for applications that require a small or intermittent amount of additional GPU for graphics acceleration, and that use OpenGL graphics support. If you need access to full, directly attached GPUs and use of DirectX, CUDA, or Open Computing Language (OpenCL) parallel computing frameworks, use an accelerated computing instance type instance instead. For more information, see Windows Accelerated Computing Instances (p. 135).

Topics
• Elastic GPU Basics (p. 381)
• Working with Elastic GPUs (p. 383)
• Using CloudWatch Metrics to Monitor Your Elastic GPUs (p. 387)
• Troubleshooting (p. 389)

Elastic GPU Basics

To use an elastic GPU, launch an instance and specify an elastic GPU type to attach to the instance during launch. AWS finds available elastic GPU capacity and establishes a network connection between your instance and the elastic GPU.

The following instance types support elastic GPUs:

• c3 | c4 | c5
• m3 | m4 | m5
• r3 | r4
• t2.medium (or greater)
• x1
• d2
• i3

The following elastic GPU types are available. You can attach any elastic GPU type to any supported instance type.

<table>
<thead>
<tr>
<th>GPU type</th>
<th>GPU memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eg1.medium</td>
<td>1024</td>
</tr>
<tr>
<td>eg1.large</td>
<td>2048</td>
</tr>
<tr>
<td>eg1.xlarge</td>
<td>4096</td>
</tr>
</tbody>
</table>
An elastic GPU does not form part of the hardware of your instance. Instead, the elastic GPU is network-attached through a network interface, known as the *elastic GPU network interface*. When you launch an instance with an elastic GPU, the elastic GPU network interface is created in your VPC for you. The elastic GPU network interface is created in the same subnet and VPC as your instance and is assigned a private IPv4 address from that subnet. The elastic GPU attached to your Amazon EC2 instance is allocated from a pool of available elastic GPUs in the same Availability Zone as your instance.

Elastic GPUs support up to and including the OpenGL 4.3 API standards, which can be used for batch applications or 3D graphics acceleration. An Amazon-optimized OpenGL library on your instance detects the attached elastic GPU. It directs OpenGL API calls from your instance to the elastic GPU, which then processes the requests and returns the results. Traffic between the instance and the elastic GPU uses the same bandwidth as the instance's network traffic so it is recommended that you have adequate network bandwidth available. Consult your software vendor for any OpenGL compliance and version questions.

To use an elastic GPU, you do not require a device driver but your instance must have the Amazon-optimized OpenGL library and Elastic GPU agents installed. For more information, see Installing and Updating the Elastic GPU Packages (p. 384).

Note

An elastic GPU is not visible or accessible through the device manager of your instance.

By default, the default security group for your VPC is associated with the elastic GPU network interface. The elastic GPU network traffic uses the TCP protocol and port 2007. Ensure that the security group for your instance allows for this. For more information, see Configuring Your Security Groups (p. 383).

Pricing for Elastic GPUs

You are charged for each second that an elastic GPU is attached to an instance in the running state when the elastic GPU is in the Ok state. You are not charged for an elastic GPU attached to an instance that is in the pending, stopping, stopped, shutting-down, or terminated state. You are also not charged when an elastic GPU is in the Unknown or Impaired state.

Elastic GPU Limitations

Before you start using elastic GPUs, be aware of the following limitations:

- You can attach one elastic GPU to an instance at a time, and only during instance launch.
- You cannot share an elastic GPU between instances.
- You cannot detach an elastic GPU from an instance or transfer it to another instance. If you no longer require an elastic GPU, you must terminate your instance. If you want to change the elastic GPU type,
Working with Elastic GPUs

You can launch an instance and associate it with an elastic GPU during launch. You must then manually install the necessary libraries on your instance that enable communication with the elastic GPU.

Topics
- Configuring Your Security Groups (p. 383)
- Launching an Instance with an Elastic GPU (p. 384)
- Installing and Updating the Elastic GPU Packages (p. 384)
- Verifying Elastic GPU Functionality on Your Instance (p. 385)
- Viewing Elastic GPU Information (p. 386)
- Submitting Feedback (p. 387)

Configuring Your Security Groups

You should create a new security group for the elastic GPU network interface. To ensure communication between your instance and the elastic GPU, the security group rules must include a rule that allows both inbound and outbound TCP traffic over port 2007 from your instance's network interface, or from the security group associated with your instance.

To create the security group for your elastic GPU network interface

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups, Create Security Group.
3. For Security group name type a value such as Elastic GPUs Security Group. For Description, type a value. For VPC ID, enter a VPC with which to associate the security group and then choose Create.
4. Select the security group that you just created and choose Actions, Edit inbound rules.
5. Create the ingress security group rule:
 a. For Type, choose Custom TCP Rule. For Protocol, choose TCP. For Port Range, enter 2007. For Source, choose Custom and enter the ID of the security group that you created in the previous step.
 b. Choose Save.
4. Select the security group that you just created and choose Actions, Edit outbound rules.
5. Create the egress security group rule:
 a. For Type, choose Custom TCP Rule. For Protocol, choose TCP. For Port Range, enter 0–65535. For Destination, choose Custom and enter the ID of the security group you created in the previous step.
b. Choose **Save**.

For more information about security groups, see Amazon EC2 Security Groups for Windows Instances (p. 451).

Launching an Instance with an Elastic GPU

You can associate an elastic GPU to an instance during launch. If the launch fails, it may be for one of the following reasons:

- Insufficient elastic GPU capacity
- Exceeded limit on elastic GPUs in the region
- Not enough private IPv4 addresses in your VPC to create a network interface for the elastic GPU

For more information, see Elastic GPU Limitations (p. 382).

To associate an elastic GPU during instance launch using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the dashboard, choose **Launch Instance**.
3. Select an AMI and an instance type. For more information about supported AMIs and instance types, see Elastic GPU Basics (p. 381).
4. On the **Configure Instance Details** page, select a VPC and subnet in which to launch your instance.
5. Choose **Add GPU**, and select a GPU type.
6. On the **Add Storage** and **Add Tags** pages, choose the options that meet your instance needs.
7. On the **Configure Security Group** page, choose **Select an existing security group** and select the security group that you created in the Configuring Your Security Groups (p. 383) step. Add additional security groups as needed to meet your needs.
8. Choose **Review and Launch** to review your instance options and then choose **Launch** to complete the instance creation process.

To associate an elastic GPU during instance launch using the command line

You can use the `run-instances` AWS CLI command. It may be necessary to update to the latest version of the AWS CLI to use this feature.

```bash
aws ec2 run-instances --elastic-gpu-specification Type=eg1.medium --region us-east-1
--image-id ami-1a2b3c4d --subnet subnet-11223344 --instance-type r4.large --key-name keypair_name --security-group-ids sg-1234
```

Alternatively, you can use the **New-EC2Instance** Tools for Windows PowerShell command.

Installing and Updating the Elastic GPU Packages

Your instance requires Amazon-optimized OpenGL libraries and Elastic GPU agents in order to use the elastic GPU.

Installing the Elastic GPU packages on an instance with Elastic GPU enabled

1. Launch an instance with the desired elastic GPU type.
2. After connecting to the instance, download the Elastic GPU driver installer and open it up to install it. The installation manager connects to the Elastic GPU endpoint and downloads the latest version of all required components.
3. Reboot the instance to verify.

Verifying Elastic GPU Functionality on Your Instance

The Elastic GPU packages on your instance include tools that you can use to view the status of the elastic GPU, and to verify that OpenGL commands from your instance to the elastic GPU are functional.

If your instance was launched with an AMI that does not have the Elastic GPU packages pre-installed, you can download and install them yourself. For more information, see Installing and Updating the Elastic GPU Packages (p. 384).

Contents

• Using the Elastic GPU Status Monitor (p. 385)
• Using the Elastic GPU Command Line Tool (p. 385)

Using the Elastic GPU Status Monitor

You can use the status monitor tool to view information about the status of an attached elastic GPU. By default, this tool is available in the notification area of the taskbar in your Windows instance and shows the status of the elastic GPU as healthy, updating, or out of service.

Healthy
The elastic GPU is enabled and healthy.

Updating
The status of the elastic GPU is currently updating, and may take a few minutes to display.

Out of service
The elastic GPU is out of service. Choose Read More to get more information about the error.

Using the Elastic GPU Command Line Tool

The Elastic GPU command line tool can be used to check the status of the elastic GPU. If there is a problem with the elastic GPU functionality, it returns an error message.

To launch the tool, open a command prompt from within your instance and enter the following:

C:\Program Files\Amazon\EC2ElasticGPUs\manager\egcli.exe

If the elastic GPU is available and functioning normally, you receive the following output:

EG Infrastructure is available.
Instance ID egpu-f6d94dafa66df4883b284e96db7397ee6
Instance Type eg1.large
EG Version 1.0.0.885 (Manager) / 1.0.0.95 (OpenGL Library) / 1.0.0.69 (OpenGL Redirector)
EG Status: Healthy
JSON Message:
{
 "version": "2016-11-30",
}
Otherwise, the tool returns an error and a message explaining the reason for the error.

The following parameters are supported:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>json</td>
<td>Boolean</td>
<td>If enabled, shows the JSON message that accompanies the status.</td>
<td>true</td>
</tr>
<tr>
<td>imds</td>
<td>Boolean</td>
<td>If enabled, checks the instance metadata to verify if the elastic GPU is available.</td>
<td>true</td>
</tr>
</tbody>
</table>

To use these parameters, you can use the following syntax:

```
[-|--|--] [argument]=|:| [value]
```

For example, the following command disables the JSON message output:

```
EG-CLI.exe --json false
```

Viewing Elastic GPU Information

You can view information about the elastic GPU attached to your instance, including its ID and state.

To view information about an elastic GPU using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances** and select your instance.
3. In the details pane, you can view information about the elastic GPU by looking at the **Elastic GPU**, **Elastic GPU type**, and **Elastic GPU status** fields.

To view information about an elastic GPU using the command line

You can use the `describe-elastic-gpus` AWS CLI command:

```
aws ec2 describe-elastic-gpus
```

You can use the `describe-network-interfaces` AWS CLI command and filter by owner ID to view information about the elastic GPU network interface.

```
aws ec2 describe-network-interfaces --filters "Name=attachment.instance-owner-id,Values=amazon-elastic-graphics"
```

Alternatively, you can use the following Tools for Windows PowerShell commands:

- `Get-EC2ElasticGpu`
- `Get-EC2NetworkInterface`
To view information about an elastic GPU using instance metadata

You can view information about an elastic GPU from within the instance by accessing the instance metadata.

To view information about an elastic GPU using PowerShell

1. Access your Windows instance that is using an elastic GPU.
2. From PowerShell, use this command to query the metadata of your elastic GPU:

```powershell
```

For example:

```powershell
```

To view information about an elastic GPU from a browser

1. Access your Windows instance that is using an elastic GPU.
2. From your browser, navigate to this URL to query the metadata of your elastic GPU:

```text
```

For example:

```text
```

Submitting Feedback

You can submit feedback about your experience with Elastic GPUs so the team can make further improvements by using the following steps.

To submit feedback using the Elastic GPU Status Monitor

1. Open the Elastic GPU Status Monitor. This tool is available in the notification area of the taskbar in your Windows instance.
2. Choose Feedback in the lower left corner.
3. Enter your feedback and choose Submit.

Using CloudWatch Metrics to Monitor Your Elastic GPUs

You can monitor your elastic GPUs using Amazon CloudWatch, which collects metrics about your elastic GPU. These statistics are recorded for a period of two weeks, so that you can access historical information and gain a better perspective on how your service is performing.
By default, elastic GPUs send metric data to CloudWatch in 5-minute periods.

For more information about Amazon CloudWatch, see the Amazon CloudWatch User Guide.

Elastic GPU Metrics and Dimensions

You can use the following procedures to view the metrics for elastic GPUs.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations within each namespace.

2. If necessary, change the region. From the navigation bar, select the region where your elastic GPU resides. For more information, see Regions and Endpoints.
3. In the navigation pane, choose Metrics.
4. Under All metrics, select a metrics category, and then scroll down to view the full list of metrics.

To view metrics using the AWS CLI

- At a command prompt, use the following command:

```
aws cloudwatch list-metrics --namespace "AWS/ElasticGPUs"
```

CloudWatch displays the following metrics for the Elastic GPU service.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPUConnectivityCheckFailed</td>
<td>Reports whether connectivity to the elastic GPU is active or has failed. A value of zero (0) indicates that the connection is active. A value of one (1) indicates a connectivity failure. Units: Count</td>
</tr>
<tr>
<td>GPUHealthCheckFailed</td>
<td>Reports whether the elastic GPU has passed a status health check in the last minute. A value of zero (0) indicates that the status check passed. A value of one (1) indicates a status check failure. Units: Count</td>
</tr>
<tr>
<td>GPUMemoryUtilization</td>
<td>The GPU memory used.</td>
</tr>
<tr>
<td></td>
<td>Units: MiB</td>
</tr>
</tbody>
</table>

You can filter the elastic GPU data using the following dimensions.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGPUId</td>
<td>This dimension filters the data by the elastic GPU.</td>
</tr>
</tbody>
</table>
Creating CloudWatch Alarms to Monitor Elastic GPUs

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state. An alarm watches a single metric over a time period you specify, and sends a notification to an Amazon SNS topic based on the value of the metric relative to a given threshold over a number of time periods.

For example, you can create an alarm that monitors the health of an elastic GPU and sends a notification when the elastic GPU fails a status health check for three consecutive 5-minute periods.

To create an alarm for elastic GPU health status

2. In the navigation pane, choose Alarms, Create Alarm.
3. Choose Elastic GPU Metrics.
4. Select the elastic GPU and the GPUHealthCheckFailed metric and choose Next.
5. Configure the alarm as follows, and choose Create Alarm when you are done:
 - Under Alarm Threshold, enter a name and description for your alarm. For Whenever, choose => and enter 1. Enter 3 for the consecutive periods.
 - Under Actions, select an existing notification list or choose New list to create a new one.
 - Under Alarm Preview, select a period of 5 minutes.

Troubleshooting

The following are common errors and troubleshooting steps.

Contents

- Investigating Application Performance Issues (p. 389)
- Resolving Unhealthy Status Issues (p. 391)

Investigating Application Performance Issues

Elastic GPU uses the instance network to send OpenGL commands to a remotely attached graphics card. In addition, a desktop running an OpenGL application with an elastic GPU is usually accessed using a remote access technology. It is important to distinguish between a performance problem related to the OpenGL rendering or the desktop remote access technology.

OpenGL Rendering Performance Issues

The OpenGL rendering performance is determined by the amount of OpenGL commands and frames generated on the remote instance.

Rendering performance may vary depending on the following factors:

- GPU performance
- Network performance
An easy way to evaluate performance is to display the number of rendered frames on the remote instance. Elastic GPUs display a maximum of 25 FPS on the remote instance to achieve the best perceived quality while reducing network usage.

To show the number of frames produced

1. Open the following file in a text editor. If the file does not exist, create it.

   ```
   C:\Program Files\Amazon\EC2ElasticGPUs\conf\eg.conf
   ```

2. Identify the `[Application]` section, or add it if it is not present, and add the following configuration parameter:

   ```
   [Application]
   show_fps=1
   ```

3. Restart the application and check the FPS again.

If the FPS reaches 15-25 FPS when updating the rendered scene, then the elastic GPU is performing at peak performance and any other performance problems you experience are likely related to the remote access to the instance desktop. If that is the case, see the Remote Access Performance Issues section.

If the FPS number is lower than 15, you can try the following:

- Improve GPU performance by selecting a more powerful elastic GPU type.
- Improve overall network performance by using these tips:
 - Check the amount of incoming and outgoing bandwidth to and from the elastic GPU endpoint. The elastic GPU endpoint can be retrieved with the following PowerShell command:

    ```
    ```

 - The network traffic from the instance to the elastic GPU endpoint relates to the volume of commands the OpenGL application is producing.
 - The network traffic from the elastic GPU endpoint to the instance relates to the number of frames generated by the GPU.
 - If you see the network usage reaching the instances maximum network throughput, try using an instance with a higher network throughput allowance.
- Improve CPU performance:
 - Applications may require a lot of CPU resources in addition to what the elastic GPU requires. If Windows Task Manager is reporting a high usage of CPU resources, try using an instance with more CPU power.

Remote Access Performance Issues

An instance with an attached elastic GPU can be accessed using different remote access technologies. Performance and quality may vary depending on:

- The remote access technology
• Instance performance
• Client performance
• Network latency and bandwidth between the client and the instance

Possible choices for the remote access protocol include:
• Microsoft Remote Desktop Connection
• NICE DCV
• VNC

For more information about optimization, see the specific protocol.

Resolving Unhealthy Status Issues

If the elastic GPU is in an unhealthy state, the following are troubleshooting steps you can use to resolve the issue.

Topics
• Stop and Start the Instance (p. 391)
• Verify the Installed Components (p. 391)
• Check the Amazon EC2 Elastic GPU Logs (p. 391)

Stop and Start the Instance

If your elastic GPU is in an unhealthy state, stopping the instance and starting it again is the simplest option. For more details, see Stopping and Starting Your Instances (p. 289).

Warning
When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

Verify the Installed Components

Open the Windows Control Panel and confirm that the following components are installed:

• Amazon EC2 Elastic GPUs Manager
• Amazon EC2 Elastic GPUs OGL
• Amazon EC2 Elastic GPUs OGLRD

If any of these items are missing, see Installing and Updating the Elastic GPU Packages (p. 384) to do a manual installation.

Check the Amazon EC2 Elastic GPU Logs

Open the Windows Event Viewer and search for errors in the following sources:

• EC2 Elastic GPUs Manager
• EC2 Elastic GPUs Manager Agent
• EC2 Elastic GPUs Manager GUI
Monitoring Amazon EC2

Monitoring is an important part of maintaining the reliability, availability, and performance of your Amazon Elastic Compute Cloud (Amazon EC2) instances and your AWS solutions. You should collect monitoring data from all of the parts in your AWS solutions so that you can more easily debug a multi-point failure if one occurs. Before you start monitoring Amazon EC2, however, you should create a monitoring plan that should include:

- What are your goals for monitoring?
- What resources you will monitor?
- How often you will monitor these resources?
- What monitoring tools will you use?
- Who will perform the monitoring tasks?
- Who should be notified when something goes wrong?

After you have defined your monitoring goals and have created your monitoring plan, the next step is to establish a baseline for normal Amazon EC2 performance in your environment. You should measure Amazon EC2 performance at various times and under different load conditions. As you monitor Amazon EC2, you should store a history of monitoring data that you’ve collected. You can compare current Amazon EC2 performance to this historical data to help you to identify normal performance patterns and performance anomalies, and devise methods to address them. For example, you can monitor CPU utilization, disk I/O, and network utilization for your Amazon EC2 instances. When performance falls outside your established baseline, you might need to reconfigure or optimize the instance to reduce CPU utilization, improve disk I/O, or reduce network traffic.

To establish a baseline you should, at a minimum, monitor the following items:

<table>
<thead>
<tr>
<th>Item to Monitor</th>
<th>Amazon EC2 Metric</th>
<th>Monitoring Script/CloudWatch Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU utilization</td>
<td>CPUUtilization (p. 406)</td>
<td></td>
</tr>
<tr>
<td>Memory utilization</td>
<td></td>
<td>[Linux instances] Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
<tr>
<td>Memory used</td>
<td></td>
<td>[Windows instances] Configure Integration with CloudWatch</td>
</tr>
<tr>
<td>Memory available</td>
<td></td>
<td>[Linux instances] Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Windows instances] Configure Integration with CloudWatch</td>
</tr>
<tr>
<td>Network utilization</td>
<td>NetworkIn (p. 406)</td>
<td></td>
</tr>
</tbody>
</table>
Automated and Manual Monitoring

AWS provides various tools that you can use to monitor Amazon EC2. You can configure some of these tools to do the monitoring for you, while some of the tools require manual intervention.

Topics
- Automated Monitoring Tools (p. 393)
- Manual Monitoring Tools (p. 394)

Automated Monitoring Tools

You can use the following automated monitoring tools to watch Amazon EC2 and report back to you when something is wrong:

- **System Status Checks** - monitor the AWS systems required to use your instance to ensure they are working properly. These checks detect problems with your instance that require AWS involvement to repair. When a system status check fails, you can choose to wait for AWS to fix the issue or you can

<table>
<thead>
<tr>
<th>Item to Monitor</th>
<th>Amazon EC2 Metric</th>
<th>Monitoring Script/CloudWatch Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NetworkOut (p. 406)</td>
</tr>
<tr>
<td>NetworkOut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk performance</td>
<td>DiskReadOps (p. 406)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DiskWriteOps (p. 406)</td>
<td></td>
</tr>
<tr>
<td>Disk Swap utilization [Linux instances]</td>
<td></td>
<td>Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
<tr>
<td>Swap used [Linux instances]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page File utilization (Windows instances only)</td>
<td></td>
<td>Configure Integration with CloudWatch</td>
</tr>
<tr>
<td>Page File used (Windows instances only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page File available (Windows instances only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk Reads/Writes</td>
<td>DiskReadBytes (p. 406)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DiskWriteBytes (p. 406)</td>
<td></td>
</tr>
<tr>
<td>Disk Space utilization [Linux instances]</td>
<td></td>
<td>Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
<tr>
<td>Disk Space used [Linux instances]</td>
<td></td>
<td>Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
<tr>
<td>Disk Space available [Linux instances only]</td>
<td></td>
<td>Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances</td>
</tr>
</tbody>
</table>
resolve it yourself (for example, by stopping and restarting or terminating and replacing an instance). Examples of problems that cause system status checks to fail include:

- Loss of network connectivity
- Loss of system power
- Software issues on the physical host
- Hardware issues on the physical host that impact network reachability

For more information, see Status Checks for Your Instances (p. 396).

- **Instance Status Checks** - monitor the software and network configuration of your individual instance. These checks detect problems that require your involvement to repair. When an instance status check fails, typically you will need to address the problem yourself (for example by rebooting the instance or by making modifications in your operating system). Examples of problems that may cause instance status checks to fail include:
 - Failed system status checks
 - Misconfigured networking or startup configuration
 - Exhausted memory
 - Corrupted file system
 - Incompatible kernel

For more information, see Status Checks for Your Instances (p. 396).

- **Amazon CloudWatch Alarms** - watch a single metric over a time period you specify, and perform one or more actions based on the value of the metric relative to a given threshold over a number of time periods. The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. Alarms invoke actions for sustained state changes only. CloudWatch alarms will not invoke actions simply because they are in a particular state, the state must have changed and been maintained for a specified number of periods. For more information, see Monitoring Your Instances Using CloudWatch (p. 404).

- **Amazon CloudWatch Events** - automate your AWS services and respond automatically to system events. Events from AWS services are delivered to CloudWatch Events in near real time, and you can specify automated actions to take when an event matches a rule you write. For more information, see What is Amazon CloudWatch Events?.

- **Amazon CloudWatch Logs** - monitor, store, and access your log files from Amazon EC2 instances, AWS CloudTrail, or other sources. For more information, see What is Amazon CloudWatch Logs?.

- **Amazon EC2 Monitoring Scripts** - Perl scripts that can monitor memory, disk, and swap file usage in your instances. For more information, see Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances.

- **AWS Management Pack for Microsoft System Center Operations Manager** - links Amazon EC2 instances and the Windows or Linux operating systems running inside them. The AWS Management Pack is an extension to Microsoft System Center Operations Manager. It uses a designated computer in your datacenter (called a watcher node) and the Amazon Web Services APIs to remotely discover and collect information about your AWS resources. For more information, see AWS Management Pack for Microsoft System Center (p. 785).

Manual Monitoring Tools

Another important part of monitoring Amazon EC2 involves manually monitoring those items that the monitoring scripts, status checks, and CloudWatch alarms don't cover. The Amazon EC2 and CloudWatch console dashboards provide an at-a-glance view of the state of your Amazon EC2 environment.

- **Amazon EC2 Dashboard** shows:
 - Service Health and Scheduled Events by region
 - Instance state
• Status checks
• Alarm status
• Instance metric details (In the navigation pane click **Instances**, select an instance, and then click the **Monitoring** tab)
• Volume metric details (In the navigation pane click **Volumes**, select a volume, and then click the **Monitoring** tab)
• Amazon CloudWatch Dashboard shows:
 • Current alarms and status
 • Graphs of alarms and resources
 • Service health status

In addition, you can use CloudWatch to do the following:
• Graph Amazon EC2 monitoring data to troubleshoot issues and discover trends
• Search and browse all your AWS resource metrics
• Create and edit alarms to be notified of problems
• See at-a-glance overviews of your alarms and AWS resources

Best Practices for Monitoring

Use the following best practices for monitoring to help you with your Amazon EC2 monitoring tasks.

• Make monitoring a priority to head off small problems before they become big ones.
• Create and implement a monitoring plan that collects monitoring data from all of the parts in your AWS solution so that you can more easily debug a multi-point failure if one occurs. Your monitoring plan should address, at a minimum, the following questions:
 • What are your goals for monitoring?
 • What resources you will monitor?
 • How often you will monitor these resources?
 • What monitoring tools will you use?
 • Who will perform the monitoring tasks?
 • Who should be notified when something goes wrong?
• Automate monitoring tasks as much as possible.
• Check the log files on your EC2 instances.

Monitoring the Status of Your Instances

You can monitor the status of your instances by viewing status checks and scheduled events for your instances. A status check gives you the information that results from automated checks performed by Amazon EC2. These automated checks detect whether specific issues are affecting your instances. The status check information, together with the data provided by Amazon CloudWatch, gives you detailed operational visibility into each of your instances.

You can also see status on specific events scheduled for your instances. Events provide information about upcoming activities such as rebooting or retirement that are planned for your instances, along with the scheduled start and end time of each event.

Contents

• Status Checks for Your Instances (p. 396)
Status Checks for Your Instances

With instance status monitoring, you can quickly determine whether Amazon EC2 has detected any problems that might prevent your instances from running applications. Amazon EC2 performs automated checks on every running EC2 instance to identify hardware and software issues. You can view the results of these status checks to identify specific and detectable problems. This data augments the information that Amazon EC2 already provides about the intended state of each instance (such as pending, running, stopping) as well as the utilization metrics that Amazon CloudWatch monitors (CPU utilization, network traffic, and disk activity).

Status checks are performed every minute and each returns a pass or a fail status. If all checks pass, the overall status of the instance is **OK**. If one or more checks fail, the overall status is **impaired**. Status checks are built into Amazon EC2, so they cannot be disabled or deleted. You can, however, create or delete alarms that are triggered based on the result of the status checks. For example, you can create an alarm to warn you if status checks fail on a specific instance. For more information, see Creating and Editing Status Check Alarms (p. 398).

You can also create an Amazon CloudWatch alarm that monitors an Amazon EC2 instance and automatically recovers the instance if it becomes impaired due to an underlying issue. For more information, see Recover Your Instance (p. 298).

Contents
- Types of Status Checks (p. 396)
- Viewing Status Checks (p. 397)
- Reporting Instance Status (p. 398)
- Creating and Editing Status Check Alarms (p. 398)

Types of Status Checks

There are two types of status checks: system status checks and instance status checks.

System Status Checks

Monitor the AWS systems on which your instance runs. These checks detect underlying problems with your instance that require AWS involvement to repair. When a system status check fails, you can choose to wait for AWS to fix the issue, or you can resolve it yourself. For instances backed by Amazon EBS, you can stop and start the instance yourself, which in most cases migrates it to a new host computer. For instances backed by instance store, you can terminate and replace the instance.

The following are examples of problems that can cause system status checks to fail:

- Loss of network connectivity
- Loss of system power
- Software issues on the physical host
- Hardware issues on the physical host that impact network reachability

Instance Status Checks

Monitor the software and network configuration of your individual instance. These checks detect problems that require your involvement to repair. When an instance status check fails, typically you will
need to address the problem yourself (for example, by rebooting the instance or by making instance configuration changes).

The following are examples of problems that can cause instance status checks to fail:

- Failed system status checks
- Incorrect networking or startup configuration
- Exhausted memory
- Corrupted file system
- Status checks that occur during instance reboot or while a Windows instance store-backed instance is being bundled report an instance status check failure until the instance becomes available again.

Viewing Status Checks

Amazon EC2 provides you with several ways to view and work with status checks.

Viewing Status Using the Console

You can view status checks using the AWS Management Console.

To view status checks using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. On the **Instances** page, the **Status Checks** column lists the operational status of each instance.
4. To view the status of a specific instance, select the instance, and then choose the **Status Checks** tab.
5. If you have an instance with a failed status check and the instance has been unreachable for over 20 minutes, choose **AWS Support** to submit a request for assistance.

Viewing Status Using the Command Line or API

You can view status checks for running instances using the `describe-instance-status` (AWS CLI) command.

To view the status of all instances, use the following command:

```bash
aws ec2 describe-instance-status
```

To get the status of all instances with a instance status of `impaired`:

```bash
aws ec2 describe-instance-status --filters Name=instance-status.status,Values=impaired
```
To get the status of a single instance, use the following command:

```
aws ec2 describe-instance-status --instance-ids i-1234567890abcdef0
```

Alternatively, use the following commands:

- `Get-EC2InstanceStatus` (AWS Tools for Windows PowerShell)
- `DescribeInstanceStatus` (Amazon EC2 Query API)

Reporting Instance Status

You can provide feedback if you are having problems with an instance whose status is not shown as impaired, or want to send AWS additional details about the problems you are experiencing with an impaired instance.

We use reported feedback to identify issues impacting multiple customers, but do not respond to individual account issues. Providing feedback does not change the status check results that you currently see for the instance.

Reporting Status Feedback Using the Console

To report instance status using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select the instance.
4. Select the **Status Checks** tab, and then choose **Submit feedback**.
5. Complete the **Report Instance Status** form, and then choose **Submit**.

Reporting Status Feedback Using the Command Line or API

Use the following `report-instance-status` (AWS CLI) command to send feedback about the status of an impaired instance:

```
aws ec2 report-instance-status --instances i-1234567890abcdef0 --status impaired --reason-codes code
```

Alternatively, use the following commands:

- `Send-EC2InstanceStatus` (AWS Tools for Windows PowerShell)
- `ReportInstanceStatus` (Amazon EC2 Query API)

Creating and Editing Status Check Alarms

You can create instance status and system status alarms to notify you when an instance has a failed status check.

Creating a Status Check Alarm Using the Console

You can create status check alarms for an existing instance to monitor instance status or system status. You can configure the alarm to send you a notification by email or stop, terminate, or recover an instance when it fails an instance status check or system status check (p. 396).
To create a status check alarm

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance.
4. Select the Status Checks tab, and then choose Create Status Check Alarm.
5. Select Send a notification to. Choose an existing SNS topic, or click create topic to create a new one. If creating a new topic, in With these recipients, enter your email address and the addresses of any additional recipients, separated by commas.
6. (Optional) Choose Take the action, and then select the action that you'd like to take.
7. In Whenever, select the status check that you want to be notified about.

 Note
 If you selected Recover this instance in the previous step, select Status Check Failed (System).
8. In For at least, set the number of periods you want to evaluate and in consecutive periods, select the evaluation period duration before triggering the alarm and sending an email.
9. (Optional) In Name of alarm, replace the default name with another name for the alarm.
10. Choose Create Alarm.

Important
If you added an email address to the list of recipients or created a new topic, Amazon SNS sends a subscription confirmation email message to each new address. Each recipient must confirm the subscription by clicking the link contained in that message. Alert notifications are sent only to confirmed addresses.

Creating a Status Check Alarm Using the AWS CLI

In the following example, the alarm publishes a notification to an SNS topic, arn:aws:sns:us-west-2:111122223333:my-sns-topic, when the instance fails either the instance check or system status check for at least two consecutive periods. The metric is StatusCheckFailed.

To create a status check alarm using the CLI

1. Select an existing SNS topic or create a new one. For more information, see Using the AWS CLI with Amazon SNS in the AWS Command Line Interface User Guide.
2. Use the following list-metrics command to view the available Amazon CloudWatch metrics for Amazon EC2:

 aws cloudwatch list-metrics --namespace AWS/EC2

3. Use the following put-metric-alarm command to create the alarm:
Scheduled Events for Your Instances

AWS can schedule events for your instances, such as a reboot, stop/start, or retirement. These events do not occur frequently. If one of your instances will be affected by a scheduled event, AWS sends an email to the email address that's associated with your AWS account prior to the scheduled event, with details about the event, including the start and end date. Depending on the event, you might be able to take action to control the timing of the event.

To update the contact information for your account so that you can be sure to be notified about scheduled events, go to the Account Settings page.

Contents
- Types of Scheduled Events (p. 400)
- Viewing Scheduled Events (p. 400)
- Working with Instances Scheduled to Stop or Retire (p. 402)
- Working with Instances Scheduled for Reboot (p. 402)
- Working with Instances Scheduled for Maintenance (p. 403)

Types of Scheduled Events

Amazon EC2 supports the following types of scheduled events for your instances:

- **Instance stop**: The instance will be stopped. When you start it again, it's migrated to a new host computer. Applies only to instances backed by Amazon EBS.
- **Instance retirement**: The instance will be stopped or terminated.
- **Reboot**: Either the instance will be rebooted (instance reboot) or the host computer for the instance will be rebooted (system reboot).
- **System maintenance**: The instance might be temporarily affected by network maintenance or power maintenance.

Viewing Scheduled Events

In addition to receiving notification of scheduled events in email, you can check for scheduled events.
To view scheduled events for your instances using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, click **Events**. Any resources with an associated event are displayed. You can filter by resource type, or by specific event types. You can select the resource to view details.

3. Alternatively, in the navigation pane, choose **EC2 Dashboard**. Any resources with an associated event are displayed under **Scheduled Events**.

4. Note that some events are also shown for affected resources. For example, in the navigation pane, choose **Instances**, and then select an instance. If the instance has an associated instance stop or instance retirement event, it is displayed in the lower pane.

To view scheduled events for your instances using the command line or API

Use the following AWS CLI command:

```
aws ec2 describe-instance-status --instance-id i-1234567890abcdef0
```

The following is example output showing an instance retirement event:

```json
{
   "InstanceStatuses": [
      {
         "InstanceStatus": {
            "Status": "ok",
            "Details": [
               {
                  "Status": "passed",
                  "Name": "reachability"
               }
            ]
         },
      },
      "AvailabilityZone": "us-west-2a",
      "InstanceId": "i-1234567890abcdef0",
      "InstanceState": {
         "Code": 16,
      }
   ]
}
```
Alternatively, use the following commands:

- `Get-EC2InstanceStatus` (AWS Tools for Windows PowerShell)
- `DescribeInstanceStatus` (Amazon EC2 Query API)

Working with Instances Scheduled to Stop or Retire

When AWS detects irreparable failure of the underlying host computer for your instance, it schedules the instance to stop or terminate, depending on the type of root device for the instance. If the root device is an EBS volume, the instance is scheduled to stop. If the root device is an instance store volume, the instance is scheduled to terminate. For more information, see Instance Retirement (p. 291).

Important

Any data stored on instance store volumes is lost when an instance is stopped or terminated. This includes instance store volumes that are attached to an instance that has an EBS volume as the root device. Be sure to save data from your instance store volumes that you will need later before the instance is stopped or terminated.

Actions for Instances Backed by Amazon EBS

You can wait for the instance to stop as scheduled. Alternatively, you can stop and start the instance yourself, which migrates it to a new host computer. For more information about stopping your instance, as well as information about the changes to your instance configuration when it's stopped, see Stop and Start Your Instance (p. 287).

Actions for Instances Backed by Instance Store

We recommend that you launch a replacement instance from your most recent AMI and migrate all necessary data to the replacement instance before the instance is scheduled to terminate. Then, you can terminate the original instance, or wait for it to terminate as scheduled.

Working with Instances Scheduled for Reboot

When AWS needs to perform tasks such as installing updates or maintaining the underlying host computer, it can schedule an instance or the underlying host computer for the instance for a reboot. Regardless of any existing instances that are scheduled for reboot, a new instance launch does not require a reboot, as the updates are already applied on the underlying host.
You can determine whether the reboot event is an instance reboot or a system reboot.

To view the type of scheduled reboot event using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Events**.
3. Select **Instance resources** from the filter list, and then select your instance.
4. In the bottom pane, locate **Event type**. The value is either **system-reboot** or **instance-reboot**.

To view the type of scheduled reboot event using the AWS CLI

Use the following `describe-instance-status` command:

```
aws ec2 describe-instance-status --instance-ids i-1234567890abcdef0
```

Actions for Instance Reboot

You can wait for the instance reboot to occur within its scheduled maintenance window. Alternatively, you can reboot your instance yourself at a time that is convenient for you. For more information, see **Reboot Your Instance** (p. 290).

After you reboot your instance, the scheduled event for the instance reboot is canceled immediately and the event's description is updated. The pending maintenance to the underlying host computer is completed, and you can begin using your instance again after it has fully booted.

Actions for System Reboot

It is not possible for you to reboot the system yourself. We recommend that you wait for the system reboot to occur during its scheduled maintenance window. A system reboot typically completes in a matter of minutes, the instance retains its IP address and DNS name, and any data on local instance store volumes is preserved. After the system reboot has occurred, the scheduled event for the instance is cleared, and you can verify that the software on your instance is operating as you expect.

Alternatively, if it is necessary to maintain the instance at a different time, you can stop and start an EBS-backed instance, which migrates it to a new host. However, the data on the local instance store volumes would not be preserved. In the case of an instance store-backed instance, you can launch a replacement instance from your most recent AMI.

Working with Instances Scheduled for Maintenance

When AWS needs to maintain the underlying host computer for an instance, it schedules the instance for maintenance. There are two types of maintenance events: network maintenance and power maintenance.

During network maintenance, scheduled instances lose network connectivity for a brief period of time. Normal network connectivity to your instance will be restored after maintenance is complete.

During power maintenance, scheduled instances are taken offline for a brief period, and then rebooted. When a reboot is performed, all of your instance's configuration settings are retained.

After your instance has rebooted (this normally takes a few minutes), verify that your application is working as expected. At this point, your instance should no longer have a scheduled event associated with it, or the description of the scheduled event begins with **[Completed]**. It sometimes takes up to 1 hour for this instance status to refresh. Completed maintenance events are displayed on the Amazon EC2 console dashboard for up to a week.
Actions for Instances Backed by Amazon EBS

You can wait for the maintenance to occur as scheduled. Alternatively, you can stop and start the instance, which migrates it to a new host computer. For more information about stopping your instance, as well as information about the changes to your instance configuration when it's stopped, see Stop and Start Your Instance (p. 287).

Actions for Instances Backed by Instance Store

You can wait for the maintenance to occur as scheduled. Alternatively, if you want to maintain normal operation during a scheduled maintenance window, you can launch a replacement instance from your most recent AMI, migrate all necessary data to the replacement instance before the scheduled maintenance window, and then terminate the original instance.

Monitoring Your Instances Using CloudWatch

You can monitor your instances using Amazon CloudWatch, which collects and processes raw data from Amazon EC2 into readable, near real-time metrics. These statistics are recorded for a period of 15 months, so that you can access historical information and gain a better perspective on how your web application or service is performing.

By default, Amazon EC2 sends metric data to CloudWatch in 5-minute periods. To send metric data for your instance to CloudWatch in 1-minute periods, you can enable detailed monitoring on the instance. For more information, see Enable or Disable Detailed Monitoring for Your Instances (p. 404).

The Amazon EC2 console displays a series of graphs based on the raw data from Amazon CloudWatch. Depending on your needs, you might prefer to get data for your instances from Amazon CloudWatch instead of the graphs in the console.

For more information about Amazon CloudWatch, see the Amazon CloudWatch User Guide.

Contents

- Enable or Disable Detailed Monitoring for Your Instances (p. 404)
- List the Available CloudWatch Metrics for Your Instances (p. 406)
- Get Statistics for Metrics for Your Instances (p. 414)
- Graph Metrics for Your Instances (p. 421)
- Create a CloudWatch Alarm for an Instance (p. 421)
- Create Alarms That Stop, Terminate, Reboot, or Recover an Instance (p. 422)

Enable or Disable Detailed Monitoring for Your Instances

By default, your instance is enabled for basic monitoring. You can optionally enable detailed monitoring. After you enable detailed monitoring, the Amazon EC2 console displays monitoring graphs with a 1-minute period for the instance. The following table describes basic and detailed monitoring for instances.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Data is available automatically in 5-minute periods at no charge.</td>
</tr>
</tbody>
</table>
Enable Detailed Monitoring

You can enable detailed monitoring on an instance as you launch it or after the instance is running or stopped.

To enable detailed monitoring for an existing instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance, choose Actions, CloudWatch Monitoring, Enable Detailed Monitoring.
4. In the Enable Detailed Monitoring dialog box, choose Yes, Enable.
5. Choose Close.

To enable detailed monitoring when launching an instance using the console

When launching an instance using the AWS Management Console, select the Monitoring check box on the Configure Instance Details page.

To enable detailed monitoring for an existing instance using the AWS CLI

Use the following monitor-instances command to enable detailed monitoring for the specified instances.

```
aws ec2 monitor-instances --instance-ids i-1234567890abcdef0
```

To enable detailed monitoring when launching an instance using the AWS CLI

Use the run-instances command with the --monitoring flag to enable detailed monitoring.

```
aws ec2 run-instances --image-id ami-09092360 --monitoring Enabled=true...
```

Disabling Detailed Monitoring

You can disable detailed monitoring on an instance as you launch it or after the instance is running or stopped.

To disable detailed monitoring using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance, choose Actions, CloudWatch Monitoring, Disable Detailed Monitoring.
4. In the Disable Detailed Monitoring dialog box, choose Yes, Disable.
5. Choose Close.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed</td>
<td>Data is available in 1-minute periods for an additional cost. To get this level of data, you must specifically enable it for the instance. For the instances where you've enabled detailed monitoring, you can also get aggregated data across groups of similar instances. For information about pricing, see the Amazon CloudWatch product page.</td>
</tr>
</tbody>
</table>
To disable detailed monitoring using the AWS CLI

Use the following `unmonitor-instances` command to disable detailed monitoring for the specified instances.

```
aws ec2 unmonitor-instances --instance-ids i-1234567890abcdef0
```

List the Available CloudWatch Metrics for Your Instances

Amazon EC2 sends metrics to Amazon CloudWatch. You can use the AWS Management Console, the AWS CLI, or an API to list the metrics that Amazon EC2 sends to CloudWatch. By default, each data point covers the previous 5 minutes of activity for the instance. If you've enabled detailed monitoring, each data point covers the previous 1 minute of activity.

For information about getting the statistics for these metrics, see Get Statistics for Metrics for Your Instances (p. 414).

Instance Metrics

The `AWS/EC2` namespace includes the following CPU credit metrics for your T2 instances.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUCreditUsage</td>
<td>[T2 instances] The number of CPU credits used by the instance for CPU utilization. One CPU credit equals one vCPU running at 100% utilization for one minute or an equivalent combination of vCPUs, utilization, and time (for example, one vCPU running at 50% utilization for two minutes or two vCPUs running at 25% utilization for two minutes).</td>
</tr>
<tr>
<td></td>
<td>CPU credit metrics are available at a five-minute frequency only. If you specify a period greater than five minutes, use the <code>Sum</code> statistic instead of the <code>Average</code> statistic.</td>
</tr>
<tr>
<td></td>
<td>Units: Credits (vCPU-minutes)</td>
</tr>
<tr>
<td>CPUCreditBalance</td>
<td>[T2 instances] The number of earned CPU credits accumulated since the instance was launched, less the credits used, up to a maximum number based on the instance size.</td>
</tr>
<tr>
<td></td>
<td>Credits are stored in the credit balance after they are earned, and removed from the credit balance when they are used. The credit balance has a maximum limit, determined by the instance size. If the credit balance has reached the limit, additional earned credits are not added to the balance.</td>
</tr>
<tr>
<td></td>
<td>The credits in the <code>CPUCreditBalance</code> are available for the instance to use to burst beyond its baseline CPU utilization.</td>
</tr>
<tr>
<td></td>
<td>Credits on a running instance do not expire. However, if you stop an instance, it loses all the credits in the credit balance.</td>
</tr>
<tr>
<td></td>
<td>CPU credit metrics are available at a five-minute frequency only.</td>
</tr>
<tr>
<td></td>
<td>Units: Credits (vCPU-minutes)</td>
</tr>
</tbody>
</table>
List Available Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUSurplusCreditBalance</td>
<td>[T2 instances] The number of surplus credits that have been used by a T2 Unlimited instance when its CPUCreditBalance is zero. The CPUSurplusCreditBalance is paid down by earned CPU credits. Units: Credits (vCPU-minutes)</td>
</tr>
<tr>
<td>CPUSurplusCreditsCharged</td>
<td>[T2 instances] The number of surplus credits that have been used by a T2 Unlimited instance that are not offset by earned CPU credits. CPUSurplusCreditsCharged tracks the surplus credits that incur an additional charge, and represents the difference between CPUSurplusCreditBalance and CPUCreditBalance. Units: Credits (vCPU-minutes)</td>
</tr>
</tbody>
</table>

The AWS/EC2 namespace includes the following instance metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUUtilization</td>
<td>The percentage of allocated EC2 compute units that are currently in use on the instance. This metric identifies the processing power required to run an application upon a selected instance. To use the percentiles statistic, you must enable detailed monitoring. Depending on the instance type, tools in your operating system can show a lower percentage than CloudWatch when the instance is not allocated a full processor core. Units: Percent</td>
</tr>
<tr>
<td>DiskReadOps</td>
<td>Completed read operations from all instance store volumes available to the instance in a specified period of time. To calculate the average I/O operations per second (IOPS) for the period, divide the total operations in the period by the number of seconds in that period. Units: Count</td>
</tr>
<tr>
<td>DiskWriteOps</td>
<td>Completed write operations to all instance store volumes available to the instance in a specified period of time. To calculate the average I/O operations per second (IOPS) for the period, divide the total operations in the period by the number of seconds in that period. Units: Count</td>
</tr>
<tr>
<td>DiskReadBytes</td>
<td>Bytes read from all instance store volumes available to the instance. This metric is used to determine the volume of the data the application reads from the hard disk of the instance. This can be used to determine the speed of the application.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes received during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>DiskWriteBytes</td>
<td>Bytes written to all instance store volumes available to the instance. This metric is used to determine the volume of the data the application writes onto the hard disk of the instance. This can be used to determine the speed of the application.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes received during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkIn</td>
<td>The number of bytes received on all network interfaces by the instance. This metric identifies the volume of incoming network traffic to a single instance.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes received during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkOut</td>
<td>The number of bytes sent out on all network interfaces by the instance. This metric identifies the volume of outgoing network traffic from a single instance.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes sent during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkPacketsIn</td>
<td>The number of packets received on all network interfaces by the instance. This metric identifies the volume of incoming traffic in terms of the number of packets on a single instance. This metric is available for basic monitoring only.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Statistics: Minimum, Maximum, Average</td>
</tr>
</tbody>
</table>
List Available Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkPacketsOut</td>
<td>The number of packets sent out on all network interfaces by the instance. This metric identifies the volume of outgoing traffic in terms of the number of packets on a single instance. This metric is available for basic monitoring only.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td></td>
<td>Statistics: Minimum, Maximum, Average</td>
</tr>
</tbody>
</table>

The AWS/EC2 namespace includes the following status checks metrics. By default, status check metrics are available at a 1-minute frequency at no charge. For a newly-launched instance, status check metric data is only available after the instance has completed the initialization state (within a few minutes of the instance entering the running state). For more information about EC2 status checks, see Status Checks For Your Instances.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatusCheckFailed</td>
<td>Reports whether the instance has passed both the instance status check and the system status check in the last minute.</td>
</tr>
<tr>
<td></td>
<td>This metric can be either 0 (passed) or 1 (failed).</td>
</tr>
<tr>
<td></td>
<td>By default, this metric is available at a 1-minute frequency at no charge.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td>StatusCheckFailed_Instance</td>
<td>Reports whether the instance has passed the instance status check in the last minute.</td>
</tr>
<tr>
<td></td>
<td>This metric can be either 0 (passed) or 1 (failed).</td>
</tr>
<tr>
<td></td>
<td>By default, this metric is available at a 1-minute frequency at no charge.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td>StatusCheckFailed_System</td>
<td>Reports whether the instance has passed the system status check in the last minute.</td>
</tr>
<tr>
<td></td>
<td>This metric can be either 0 (passed) or 1 (failed).</td>
</tr>
<tr>
<td></td>
<td>By default, this metric is available at a 1-minute frequency at no charge.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
</tbody>
</table>

The AWS/EC2 namespace includes the following Amazon EBS metrics for your C5 and M5 instances.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBSReadOps</td>
<td>Completed read operations from all Amazon EBS volumes attached to the instance in a specified period of time.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>To calculate the average read I/O operations per second (Read IOPS) for the period, divide the total operations in the period by the number of seconds in that period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to calculate the Read IOPS. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>EBSWriteOps</td>
<td>Completed write operations to all EBS volumes attached to the instance in a specified period of time.</td>
</tr>
<tr>
<td></td>
<td>To calculate the average write I/O operations per second (Write IOPS) for the period, divide the total operations in the period by the number of seconds in that period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to calculate the Write IOPS. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td>EBSReadBytes</td>
<td>Bytes read from all EBS volumes attached to the instance in a specified period of time.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes read during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Read Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td>EBSWriteBytes</td>
<td>Bytes written to all EBS volumes attached to the instance in a specified period of time.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes written during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Write Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td>EBSIOBalance%</td>
<td>Available only for the smaller C5 and M5 instance sizes. Provides information about the percentage of I/O credits remaining in the burst bucket. This metric is available for basic monitoring only.</td>
</tr>
</tbody>
</table>
List Available Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBSByteBalance%</td>
<td>Available only for the smaller C5 and M5 instance sizes. Provides information about the percentage of throughput credits remaining in the burst bucket. This metric is available for basic monitoring only. The Sum statistic is not applicable to this metric. Unit: Percent</td>
</tr>
</tbody>
</table>

For information about the metrics provided for your EBS volumes, see [Amazon EBS Metrics](#). For information about the metrics provided for your Spot fleets, see [CloudWatch Metrics for Spot Fleet](#).

Amazon EC2 Dimensions

You can use the following dimensions to refine the metrics returned for your instances.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoScalingGroupName</td>
<td>This dimension filters the data you request for all instances in a specified capacity group. An Auto Scaling group is a collection of instances you define if you're using Auto Scaling. Available for Amazon EC2 metrics when the instances are in such an Auto Scaling group. Available for instances with Detailed or Basic Monitoring enabled.</td>
</tr>
<tr>
<td>ImageId</td>
<td>This dimension filters the data you request for all instances running this Amazon EC2 Amazon Machine Image (AMI). Available for instances with Detailed Monitoring enabled.</td>
</tr>
<tr>
<td>InstanceId</td>
<td>This dimension filters the data you request for the identified instance only. This helps you pinpoint an exact instance from which to monitor data.</td>
</tr>
<tr>
<td>InstanceType</td>
<td>This dimension filters the data you request for all instances running with this specified instance type. This helps you categorize your data by the type of instance running. For example, you might compare data from an m1.small instance and an m1.large instance to determine which has the better business value for your application. Available for instances with Detailed Monitoring enabled.</td>
</tr>
</tbody>
</table>

Listing Metrics Using the Console

Metrics are grouped first by namespace, and then by the various dimension combinations within each namespace. For example, you can view all metrics provided by Amazon EC2, or metrics grouped by instance ID, instance type, image (AMI) ID, or Auto Scaling group.

To view available metrics by category

2. In the navigation pane, choose **Metrics**.
3. Select the EC2 metric namespace.

4. Select a metric dimension (for example, Per-Instance Metrics).

5. To sort the metrics, use the column heading. To graph a metric, select the check box next to the metric. To filter by resource, choose the resource ID and then choose Add to search. To filter by metric, choose the metric name and then choose Add to search.
Listing Metrics Using the AWS CLI

Use the `list-metrics` command to list the CloudWatch metrics for your instances.

To list all the available metrics for Amazon EC2

The following example specifies the `AWS/EC2` namespace to view all the metrics for Amazon EC2.

```
aws cloudwatch list-metrics --namespace AWS/EC2
```

The following is example output:

```
{
    "Metrics": [
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "NetworkOut"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "CPUUtilization"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "DiskReadBytes"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "DiskReadOps"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "DiskWriteBytes"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "DiskWriteOps"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "NetworkIn"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "NetworkOut"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "NetworkPacketsIn"
        },
        {
            "Namespace": "AWS/EC2",
            "Dimensions": [
                {
                    "Name": "InstanceId",
                    "Value": "i-1234567890abcdef0"
                }
            ],
            "MetricName": "NetworkPacketsOut"
        }
    ]
}
```
To list all the available metrics for an instance

The following example specifies the AWS/EC2 namespace and the InstanceId dimension to view the results for the specified instance only.

```
aws cloudwatch list-metrics --namespace AWS/EC2 --dimensions
    Name=InstanceId,Value=i-1234567890abcdef0
```

To list a metric across all instances

The following example specifies the AWS/EC2 namespace and a metric name to view the results for the specified metric only.

```
aws cloudwatch list-metrics --namespace AWS/EC2 --metric-name CPUUtilization
```

Get Statistics for Metrics for Your Instances

You can get statistics for the CloudWatch metrics for your instances.

Contents

- Statistics Overview (p. 414)
- Get Statistics for a Specific Instance (p. 415)
- Aggregate Statistics Across Instances (p. 417)
- Aggregate Statistics by Auto Scaling Group (p. 419)
- Aggregate Statistics by AMI (p. 420)

Statistics Overview

Statistics are metric data aggregations over specified periods of time. CloudWatch provides statistics based on the metric data points provided by your custom data or provided by other services in AWS to CloudWatch. Aggregations are made using the namespace, metric name, dimensions, and the data point unit of measure, within the time period you specify. The following table describes the available statistics.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>The lowest value observed during the specified period. You can use this value to determine low volumes of activity for your application.</td>
</tr>
<tr>
<td>Maximum</td>
<td>The highest value observed during the specified period. You can use this value to determine high volumes of activity for your application.</td>
</tr>
<tr>
<td>Sum</td>
<td>All values submitted for the matching metric added together. This statistic can be useful for determining the total volume of a metric.</td>
</tr>
<tr>
<td>Average</td>
<td>The value of Sum / SampleCount during the specified period. By comparing this statistic with the Minimum and Maximum, you can determine the full scope of a metric</td>
</tr>
</tbody>
</table>
Get Statistics for Metrics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and how close the average use is to the Minimum and Maximum. This comparison helps you to know when to increase or decrease your resources as needed.</td>
</tr>
<tr>
<td>SampleCount</td>
<td>The count (number) of data points used for the statistical calculation.</td>
</tr>
<tr>
<td>pNN.NN</td>
<td>The value of the specified percentile. You can specify any percentile, using up to two decimal places (for example, p95.45).</td>
</tr>
</tbody>
</table>

Get Statistics for a Specific Instance

The following examples show you how to use the AWS Management Console or the AWS CLI to determine the maximum CPU utilization of a specific EC2 instance.

Requirements

- You must have the ID of the instance. You can get the instance ID using the AWS Management Console or the `describe-instances` command.
- By default, basic monitoring is enabled, but you can enable detailed monitoring. For more information, see Enable or Disable Detailed Monitoring for Your Instances (p. 404).

To display the CPU utilization for a specific instance using the console

2. In the navigation pane, choose **Metrics**.
3. Select the EC2 metric namespace.
4. Select the Per-Instance Metrics dimension.
5. In the search field, type **CPUUtilization** and press Enter. Select the row for the specific instance, which displays a graph for the **CPUUtilization** metric for the instance. To name the graph, choose the pencil icon. To change the time range, select one of the predefined values or choose **custom**.

6. To change the statistic or the period for the metric, choose the **Graphed metrics** tab. Choose the column heading or an individual value, and then choose a different value.
To get the CPU utilization for a specific instance using the AWS CLI

Use the following `get-metric-statistics` command to get the `CPUUtilization` metric for the specified instance, using the specified period and time interval:

```
aws cloudwatch get-metric-statistics --namespace AWS/EC2 --metric-name CPUUtilization --period 3600 --statistics Maximum --dimensions Name=InstanceId,Value=i-1234567890abcdef0 --start-time 2016-10-18T23:18:00 --end-time 2016-10-19T23:18:00
```

The following is example output. Each value represents the maximum CPU utilization percentage for a single EC2 instance.

```
{
  "Datapoints": [
    {
      "Timestamp": "2016-10-19T00:18:00Z",
      "Maximum": 0.33000000000000002,
      "Unit": "Percent"
    },
    {
      "Timestamp": "2016-10-19T03:18:00Z",
      "Maximum": 99.670000000000002,
      "Unit": "Percent"
    },
    {
      "Timestamp": "2016-10-19T07:18:00Z",
      "Maximum": 0.34000000000000002,
      "Unit": "Percent"
    },
    {
      "Timestamp": "2016-10-19T12:18:00Z",
      "Maximum": 0.34000000000000002,
      "Unit": "Percent"
    },
    ...
  ],
  "Label": "CPUUtilization"
}
```

Aggregate Statistics Across Instances

Aggregate statistics are available for the instances that have detailed monitoring enabled. Instances that use basic monitoring are not included in the aggregates. In addition, Amazon CloudWatch does not aggregate data across regions. Therefore, metrics are completely separate between regions. Before you
can get statistics aggregated across instances, you must enable detailed monitoring (at an additional charge), which provides data in 1-minute periods.

This example shows you how to use detailed monitoring to get the average CPU usage for your EC2 instances. Because no dimension is specified, CloudWatch returns statistics for all dimensions in the AWS/EC2 namespace.

Important
This technique for retrieving all dimensions across an AWS namespace does not work for custom namespaces that you publish to Amazon CloudWatch. With custom namespaces, you must specify the complete set of dimensions that are associated with any given data point to retrieve statistics that include the data point.

To display average CPU utilization across your instances

2. In the navigation pane, choose **Metrics**.
3. Select the **EC2** namespace and then select **Across All Instances**.
4. Select the row that contains **CPUUtilization**, which displays a graph for the metric for all your EC2 instances. To name the graph, choose the pencil icon. To change the time range, select one of the predefined values or choose **custom**.

5. To change the statistic or the period for the metric, choose the **Graphed metrics** tab. Choose the column heading or an individual value, and then choose a different value.

To get average CPU utilization across your instances

Use the **get-metric-statistics** command as follows to get the average of the **CPUUtilization** metric across your instances.

```
aws cloudwatch get-metric-statistics --namespace AWS/EC2 --metric-name CPUUtilization \
--period 3600 --statistics "Average" "SampleCount" \
--start-time 2016-10-11T23:18:00 --end-time 2016-10-12T23:18:00
```

The following is example output:
Aggregate Statistics by Auto Scaling Group

You can aggregate statistics for the EC2 instances in an Auto Scaling group. Note that Amazon CloudWatch cannot aggregate data across regions. Metrics are completely separate between regions.

This example shows you how to retrieve the total bytes written to disk for one Auto Scaling group. The total is computed for one-minute periods for a 24-hour interval across all EC2 instances in the specified Auto Scaling group.

To display DiskWriteBytes for the instances in an Auto Scaling group using the console

2. In the navigation pane, choose Metrics.
3. Select the EC2 namespace and then select By Auto Scaling Group.
4. Select the row for the DiskWriteBytes metric and the specific Auto Scaling group, which displays a graph for the metric for the instances in the Auto Scaling group. To name the graph, choose the pencil icon. To change the time range, select one of the predefined values or choose custom.
5. To change the statistic or the period for the metric, choose the Graphed metrics tab. Choose the column heading or an individual value, and then choose a different value.

To display DiskWriteBytes for the instances in an Auto Scaling group using the AWS CLI

Use the get-metric-statistics command as follows.

```
aws cloudwatch get-metric-statistics --namespace AWS/EC2 --metric-name DiskWriteBytes --period 3600 --statistics "Sum" "SampleCount" --dimensions Name=AutoScalingGroupName,Value=my-asg --start-time 2016-10-16T23:18:00 --end-time 2016-10-18T23:18:00
```

The following is example output:

```
{
 "Datapoints": [
  {
   "SampleCount": 238.0,
   "Timestamp": "2016-10-12T07:18:00Z",
   "Average": 0.038235294117647062,
   "Unit": "Percent"
  },
  {
   "SampleCount": 240.0,
   "Timestamp": "2016-10-12T09:18:00Z",
   "Average": 0.16670833333333332,
   "Unit": "Percent"
  },
  {
   "SampleCount": 238.0,
   "Timestamp": "2016-10-11T23:18:00Z",
   "Average": 0.041596638655462197,
   "Unit": "Percent"
  },
  ...
 ],
 "Label": "CPUUtilization"
}
```
Aggregate Statistics by AMI

You can aggregate statistics for your instances that have detailed monitoring enabled. Instances that use basic monitoring are not included. Note that Amazon CloudWatch cannot aggregate data across regions. Metrics are completely separate between regions.

Before you can get statistics aggregated across instances, you must enable detailed monitoring (at an additional charge), which provides data in 1-minute periods. For more information, see Enable or Disable Detailed Monitoring for Your Instances (p. 404).

This example shows you how to determine average CPU utilization for all instances that use a specific Amazon Machine Image (AMI). The average is over 60-second time intervals for a one-day period.

To display the average CPU utilization by AMI using the console

2. In the navigation pane, choose Metrics.
3. Select the EC2 namespace and then select By Image (AMI) Id.
4. Select the row for the CPUUtilization metric and the specific AMI, which displays a graph for the metric for the specified AMI. To name the graph, choose the pencil icon. To change the time range, select one of the predefined values or choose custom.
5. To change the statistic or the period for the metric, choose the Graphed metrics tab. Choose the column heading or an individual value, and then choose a different value.

To get the average CPU utilization for an image ID

Use the get-metric-statistics command as follows.

```
aws cloudwatch get-metric-statistics --namespace AWS/EC2 --metric-name CPUUtilization --period 3600
--statistics Average --dimensions Name=ImageId,Value=ami-3c47a355 --start-time 2016-10-10T00:00:00 --end-time 2016-10-11T00:00:00
```

The following is example output. Each value represents an average CPU utilization percentage for the EC2 instances running the specified AMI.

```
{
  "Datapoints": [
    
    
    "Timestamp": "2016-10-10T07:00:00Z",
    "Average": 0.04100000000000009,
    "Unit": "Percent"
  ],
}
```
Graph Metrics for Your Instances

After you launch an instance, you can open the Amazon EC2 console and view the monitoring graphs for an instance on the Monitoring tab. Each graph is based on one of the available Amazon EC2 metrics.

The following graphs are available:

- Average CPU Utilization (Percent)
- Average Disk Reads (Bytes)
- Average Disk Writes (Bytes)
- Maximum Network In (Bytes)
- Maximum Network Out (Bytes)
- Summary Disk Read Operations (Count)
- Summary Disk Write Operations (Count)
- Summary Status (Any)
- Summary Status Instance (Count)
- Summary Status System (Count)

For more information about the metrics and the data they provide to the graphs, see List the Available CloudWatch Metrics for Your Instances (p. 406).

Graph Metrics Using the CloudWatch Console

You can also use the CloudWatch console to graph metric data generated by Amazon EC2 and other AWS services. For more information, see Graph Metrics in the Amazon CloudWatch User Guide.

Create a CloudWatch Alarm for an Instance

You can create a CloudWatch alarm that monitors CloudWatch metrics for one of your instances. CloudWatch will automatically send you a notification when the metric reaches a threshold you specify. You can create a CloudWatch alarm using the Amazon EC2 console, or using the more advanced options provided by the CloudWatch console.

To create an alarm using the CloudWatch console

For examples, see Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide.

To create an alarm using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance.
4. On the Monitoring tab, choose Create Alarm.
5. On the Create Alarm page, do the following:
 a. Choose create topic. For Send a notification to, type a name for the SNS topic. For With these recipients, type one or more email addresses to receive notification.
 b. Specify the metric and the criteria for the policy. For example, you can leave the default settings for Whenever (Average of CPU Utilization). For Is, choose \(\geq \) and type 80 percent. For For at least, type 1 consecutive period of 5 Minutes.
 c. Choose Create Alarm.

Create Alarms That Stop, Terminate, Reboot, or Recover an Instance

Using Amazon CloudWatch alarm actions, you can create alarms that automatically stop, terminate, reboot, or recover your instances. You can use the stop or terminate actions to help you save money when you no longer need an instance to be running. You can use the reboot and recover actions to automatically reboot those instances or recover them onto new hardware if a system impairment occurs.

Every alarm action you create uses alarm action ARNs. One set of ARNs is more secure because it requires you to have the EC2ActionsAccess IAM role in your account. This IAM role enables you to perform stop, terminate, or reboot actions—previously you could not execute an action if you were using an IAM role. Existing alarms that use the previous alarm action ARNs do not require this IAM role, however it is recommended that you change the ARN and add the role when you edit an existing alarm that uses these ARNs.

The EC2ActionsAccess role enables AWS to perform alarm actions on your behalf. When you create an alarm action for the first time using the Amazon EC2 or Amazon CloudWatch consoles, AWS automatically creates this role for you.

There are a number of scenarios in which you might want to automatically stop or terminate your instance. For example, you might have instances dedicated to batch payroll processing jobs or scientific
computing tasks that run for a period of time and then complete their work. Rather than letting those instances sit idle (and accrue charges), you can stop or terminate them, which can help you to save money. The main difference between using the stop and the terminate alarm actions is that you can easily restart a stopped instance if you need to run it again later, and you can keep the same instance ID and root volume. However, you cannot restart a terminated instance. Instead, you must launch a new instance.

You can add the stop, terminate, reboot, or recover actions to any alarm that is set on an Amazon EC2 per-instance metric, including basic and detailed monitoring metrics provided by Amazon CloudWatch (in the AWS/EC2 namespace), as well as any custom metrics that include the InstanceId dimension, as long as its value refers to a valid running Amazon EC2 instance.

Console Support

You can create alarms using the Amazon EC2 console or the CloudWatch console. The procedures in this documentation use the Amazon EC2 console. For procedures that use the CloudWatch console, see Create Alarms That Stop, Terminate, Reboot, or Recover an Instance in the Amazon CloudWatch User Guide.

Permissions

If you are an AWS Identity and Access Management (IAM) user, you must have the following permissions to create or modify an alarm:

- `ec2:DescribeInstanceStatus` and `ec2:DescribeInstances` — For all alarms on Amazon EC2 instance status metrics
- `ec2:StopInstances` — For alarms with stop actions
- `ec2:TerminateInstances` — For alarms with terminate actions
- `ec2:DescribeInstanceRecoveryAttribute`, and `ec2:RecoverInstances` — For alarms with recover actions

If you have read/write permissions for Amazon CloudWatch but not for Amazon EC2, you can still create an alarm but the stop or terminate actions won’t be performed on the Amazon EC2 instance. However, if you are later granted permission to use the associated Amazon EC2 APIs, the alarm actions you created earlier are performed. For more information about IAM permissions, see Permissions and Policies in the IAM User Guide.

If you want to use an IAM role to stop, terminate, or reboot an instance using an alarm action, you can only use the EC2ActionsAccess role. Other IAM roles are not supported. If you are using another IAM role, you cannot stop, terminate, or reboot the instance. However, you can still see the alarm state and perform any other actions such as Amazon SNS notifications or Amazon EC2 Auto Scaling policies.

Contents

- Adding Stop Actions to Amazon CloudWatch Alarms (p. 423)
- Adding Terminate Actions to Amazon CloudWatch Alarms (p. 424)
- Adding Reboot Actions to Amazon CloudWatch Alarms (p. 425)
- Adding Recover Actions to Amazon CloudWatch Alarms (p. 426)
- Using the Amazon CloudWatch Console to View Alarm and Action History (p. 427)
- Amazon CloudWatch Alarm Action Scenarios (p. 427)

Adding Stop Actions to Amazon CloudWatch Alarms

You can create an alarm that stops an Amazon EC2 instance when a certain threshold has been met. For example, you may run development or test instances and occasionally forget to shut them off. You can
Create Alarms That Stop, Terminate, Reboot, or Recover an Instance

create an alarm that is triggered when the average CPU utilization percentage has been lower than 10 percent for 24 hours, signaling that it is idle and no longer in use. You can adjust the threshold, duration, and period to suit your needs, plus you can add an Amazon Simple Notification Service (Amazon SNS) notification, so that you receive an email when the alarm is triggered.

Instances that use an Amazon EBS volume as the root device can be stopped or terminated, whereas instances that use the instance store as the root device can only be terminated.

To create an alarm to stop an idle instance using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under INSTANCES, choose Instances.
4. In the Alarm Details for dialog box, choose Create Alarm.
5. If you want to receive an email when the alarm is triggered, in the Create Alarm for dialog box, for Send a notification to, choose an existing Amazon SNS topic, or choose Create Topic to create a new one.

To create a new topic, for Send a notification to, type a name for the topic, and then for With these recipients, type the email addresses of the recipients (separated by commas). After you create the alarm, you will receive a subscription confirmation email that you must accept before you can get notifications for this topic.

6. Choose Take the action, and then choose the Stop this instance radio button.
7. If prompted, select Create IAM role: EC2ActionsAccess to automatically create an IAM role so that AWS can automatically stop the instance on your behalf when the alarm is triggered.
8. For Whenever, choose the statistic you want to use and then choose the metric. In this example, choose Average and CPU Utilization.
9. For Is, define the metric threshold. In this example, type 10 percent.
10. For For at least, choose the sampling period for the alarm. In this example, type 24 consecutive periods of one hour.
11. To change the name of the alarm, for Name this alarm, type a new name. Alarm names must contain only ASCII characters.

If you don’t type a name for the alarm, Amazon CloudWatch automatically creates one for you.

Note
You can adjust the alarm configuration based on your own requirements before creating the alarm, or you can edit them later. This includes the metric, threshold, duration, action, and notification settings. However, after you create an alarm, you cannot edit its name later.

12. Choose Create Alarm.

Adding Terminate Actions to Amazon CloudWatch Alarms

You can create an alarm that terminates an EC2 instance automatically when a certain threshold has been met (as long as termination protection is not enabled for the instance). For example, you might want to terminate an instance when it has completed its work, and you don’t need the instance again. If you might want to use the instance later, you should stop the instance instead of terminating it. For information on enabling and disabling termination protection for an instance, see Enabling Termination Protection for an Instance in the Amazon EC2 User Guide for Linux Instances.

To create an alarm to terminate an idle instance using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under INSTANCES, choose Instances.

4. In the Alarm Details for dialog box, choose Create Alarm.

5. If you want to receive an email when the alarm is triggered, in the Create Alarm for dialog box, for Send a notification to, choose an existing Amazon SNS topic, or choose Create Topic to create a new one.

To create a new topic, for Send a notification to, type a name for the topic, and then for With these recipients, type the email addresses of the recipients (separated by commas). After you create the alarm, you will receive a subscription confirmation email that you must accept before you can get notifications for this topic.

6. Select Take the action, and then choose Terminate this instance.

7. If prompted, select Create IAM role: EC2ActionsAccess to automatically create an IAM role so that AWS can automatically stop the instance on your behalf when the alarm is triggered.

8. For Whenever, choose a statistic and then choose the metric. In this example, choose Average and CPU Utilization.

9. For Is, define the metric threshold. In this example, type 10 percent.

10. For For at least, choose the sampling period for the alarm. In this example, type 24 consecutive periods of one hour.

11. To change the name of the alarm, for Name this alarm, type a new name. Alarm names must contain only ASCII characters.

 If you don't type a name for the alarm, Amazon CloudWatch automatically creates one for you.

 Note
 You can adjust the alarm configuration based on your own requirements before creating the alarm, or you can edit them later. This includes the metric, threshold, duration, action, and notification settings. However, after you create an alarm, you cannot edit its name later.

12. Choose Create Alarm.

Adding Reboot Actions to Amazon CloudWatch Alarms

You can create an Amazon CloudWatch alarm that monitors an Amazon EC2 instance and automatically reboots the instance. The reboot alarm action is recommended for Instance Health Check failures (as opposed to the recover alarm action, which is suited for System Health Check failures). An instance reboot is equivalent to an operating system reboot. In most cases, it takes only a few minutes to reboot your instance. When you reboot an instance, it remains on the same physical host, so your instance keeps its public DNS name, private IP address, and any data on its instance store volumes.

Rebooting an instance doesn't start a new instance billing hour, unlike stopping and restarting your instance. For more information, see Reboot Your Instance in the Amazon EC2 User Guide for Linux Instances.

Important
To avoid a race condition between the reboot and recover actions, avoid setting the same evaluation period for both a reboot alarm and a recover alarm. We recommend that you set reboot alarms to three evaluation periods of one minute each.

To create an alarm to reboot an instance using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under INSTANCES, choose Instances.
4. In the Alarm Details for dialog box, choose Create Alarm.
5. If you want to receive an email when the alarm is triggered, in the Create Alarm for dialog box, for Send a notification to, choose an existing Amazon SNS topic, or choose Create Topic to create a new one.

To create a new topic, for Send a notification to, type a name for the topic, and for With these recipients, type the email addresses of the recipients (separated by commas). After you create the alarm, you will receive a subscription confirmation email that you must accept before you can get notifications for this topic.

6. Select Take the action, and then choose Reboot this instance.

7. If prompted, select Create IAM role: EC2ActionsAccess to automatically create an IAM role so that AWS can automatically stop the instance on your behalf when the alarm is triggered.

8. For Whenever, choose Status Check Failed (Instance).

9. For For at least, type 3.

10. For consecutive period(s) of, choose 1 minute.

11. To change the name of the alarm, for Name of alarm, type a new name. Alarm names must contain only ASCII characters.

If you don't type a name for the alarm, Amazon CloudWatch automatically creates one for you.

12. Choose Create Alarm.

Adding Recover Actions to Amazon CloudWatch Alarms

You can create an Amazon CloudWatch alarm that monitors an Amazon EC2 instance. If the instance becomes impaired due to an underlying hardware failure or a problem that requires AWS involvement to repair, you can automatically recover the instance. Terminated instances cannot be recovered. A recovered instance is identical to the original instance, including the instance ID, private IP addresses, Elastic IP addresses, and all instance metadata.

When the StatusCheckFailed_System alarm is triggered, and the recover action is initiated, you are notified by the Amazon SNS topic that you chose when you created the alarm and associated the recover action. During instance recovery, the instance is migrated during an instance reboot, and any data that is in-memory is lost. When the process is complete, information is published to the SNS topic you’ve configured for the alarm. Anyone who is subscribed to this SNS topic receives an email notification that includes the status of the recovery attempt and any further instructions. You notice an instance reboot on the recovered instance.

The recover action can be used only with StatusCheckFailed_System, not with StatusCheckFailed_Instance.

The following problems can cause system status checks to fail:

- Loss of network connectivity
- Loss of system power
- Software issues on the physical host
- Hardware issues on the physical host that impact network reachability

The recover action is supported only on instances with the following characteristics:

- Use a C3, C4, C5, M3, M4, R3, R4, T2, or X1 instance type
- Run in a VPC (not EC2-Classic)
- Use shared tenancy (the tenancy attribute is set to default)
- Use EBS volumes only (do not configure instance store volumes). For more information, see ‘Recover this instance’ is disabled.
If your instance has a public IP address, it retains the public IP address after recovery.

Important
To avoid a race condition between the reboot and recover actions, avoid setting the same evaluation period for both a reboot alarm and a recover alarm. We recommend that you set recover alarms to two evaluation periods of one minute each.

To create an alarm to recover an instance using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under INSTANCES, choose Instances.
4. In the Alarm Details for dialog box, choose Create Alarm.
5. To receive an email when the alarm is triggered, in the Create Alarm for dialog box, for Send a notification to, choose an existing Amazon SNS topic, or choose Create Topic to create a new one.

To create a new topic, for Send a notification to, type a name for the topic, and for With these recipients, type the email addresses of the recipients (separated by commas). After you create the alarm, you will receive a subscription confirmation email that you must accept before you can get email for this topic.
6. Select Take the action, and then choose Recover this instance.
7. If prompted, select Create IAM role: EC2ActionsAccess to automatically create an IAM role so that AWS can automatically stop the instance on your behalf when the alarm is triggered.
8. For Whenever, choose Status Check Failed (System).
9. For For at least, type 2.
10. For consecutive period(s) of, choose 1 minute.
11. To change the name of the alarm, for Name of alarm, type a new name. Alarm names must contain only ASCII characters.

If you don't type a name for the alarm, Amazon CloudWatch automatically creates one for you.
12. Choose Create Alarm.

Using the Amazon CloudWatch Console to View Alarm and Action History

You can view alarm and action history in the Amazon CloudWatch console. Amazon CloudWatch keeps the last two weeks' worth of alarm and action history.

To view the history of triggered alarms and actions

2. In the navigation pane, choose Alarms.
3. Select an alarm.
4. The Details tab shows the most recent state transition along with the time and metric values.
5. Choose the History tab to view the most recent history entries.

Amazon CloudWatch Alarm Action Scenarios

You can use the Amazon EC2 console to create alarm actions that stop or terminate an Amazon EC2 instance when certain conditions are met. In the following screen capture of the console page where you
Scenarios for Setting Alarm Actions

Scenario 1: Stop Idle Development and Test Instances
Create an alarm that stops an instance used for software development or testing when it has been idle for at least an hour.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>CPUUtilization</td>
<td><= 10%</td>
</tr>
<tr>
<td></td>
<td>60 minutes</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Scenario 2: Stop Idle Instances
Create an alarm that stops an instance and sends an email when the instance has been idle for 24 hours.
Create Alarms That Stop, Terminate, Reboot, or Recover an Instance

Scenario 3: Send Email About Web Servers with Unusually High Traffic

Create an alarm that sends email when an instance exceeds 10 GB of outbound network traffic per day.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td>NetworkOut</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>10 GB</td>
</tr>
<tr>
<td></td>
<td>1 day</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Scenario 4: Stop Web Servers with Unusually High Traffic

Create an alarm that stops an instance and send a text message (SMS) if outbound traffic exceeds 1 GB per hour.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop and send SMS</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td>NetworkOut</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>1 GB</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Scenario 5: Stop an Instance Experiencing a Memory Leak

Create an alarm that stops an instance when memory utilization reaches or exceeds 90%, so that application logs can be retrieved for troubleshooting.

Note
The MemoryUtilization metric is a custom metric. In order to use the MemoryUtilization metric, you must install the Perl scripts for Linux instances. For more information, see Monitoring Memory and Disk Metrics for Amazon EC2 Linux Instances.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>MemoryUtilization</td>
<td>>= 90%</td>
</tr>
<tr>
<td></td>
<td>1 minute</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Scenario 6: Stop an Impaired Instance

Create an alarm that stops an instance that fails three consecutive status checks (performed at 5-minute intervals).

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>StatusCheckFailed_System</td>
<td>>= 1</td>
</tr>
<tr>
<td></td>
<td>15 minutes</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Scenario 7: Terminate Instances When Batch Processing Jobs Are Complete

Create an alarm that terminates an instance that runs batch jobs when it is no longer sending results data.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminate</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
</tbody>
</table>
Automating Amazon EC2 with CloudWatch Events

Amazon CloudWatch Events enables you to automate your AWS services and respond automatically to system events such as application availability issues or resource changes. Events from AWS services are delivered to CloudWatch Events in near real time. You can write simple rules to indicate which events are of interest to you, and the automated actions to take when an event matches a rule. The actions that can be automatically triggered include the following:

- Invoking an AWS Lambda function
- Invoking Amazon EC2 Run Command
- Relaying the event to Amazon Kinesis Data Streams
- Activating an AWS Step Functions state machine
- Notifying an Amazon SNS topic or an AWS SMS queue

Some examples of using CloudWatch Events with Amazon EC2 include:

- Activating a Lambda function whenever a new Amazon EC2 instance starts.
- Notifying an Amazon SNS topic when an Amazon EBS volume is created or modified.
- Sending a command to one or more Amazon EC2 instances using Amazon EC2 Run Command whenever a certain event in another AWS service occurs.

For more information, see the Amazon CloudWatch Events User Guide.

Sending Logs, Events, and Performance Counters to Amazon CloudWatch

You can configure your Amazon EC2 instances to send Windows Server logs, events, and performance counters to Amazon CloudWatch Logs and Amazon CloudWatch Events. Amazon EC2 offers several methods for configuring your instances to export this data. The method you choose will depend, in part, on the version of Windows Server you are running and the version of the configuration agent running on your instance. It will also depend on whether you want to manually configure your instances to use a local configuration file or remotely configure them using Systems Manager Run Command or Systems Manager State Manager. For more information about CloudWatch Logs, see the Amazon CloudWatch Logs User Guide. For more information about Systems Manager, see the AWS Systems Manager User Guide.

Note
We refer to CloudWatch Logs, CloudWatch Events, and CloudWatch collectively as CloudWatch, unless otherwise noted.
Amazon EC2 instances use an agent to send log data to CloudWatch. With Windows Server 2008 to Windows Server 2012 R2, the agent is either the EC2Config service or SSM Agent. With Windows Server 2016, the agent is SSM Agent. For more information, see Installing and Configuring SSM Agent.

Contents
- Methods to Send Instance Metrics to CloudWatch (p. 432)
- Preliminary Tasks for Configuring Integration with CloudWatch (p. 432)
- Configure Instances for CloudWatch (p. 441)

Methods to Send Instance Metrics to CloudWatch

The following table describes the methods available to integrate with CloudWatch.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Manager Run Command</td>
<td>Complete the prerequisites for Systems Manager. Create a Systems Manager document and remotely send commands to the instances. The agent on the instances (SSM Agent) starts to send data to CloudWatch within a few minutes. For more information, see Use Systems Manager Run Command (p. 441).</td>
</tr>
<tr>
<td>Pros</td>
<td>Commands are executed remotely.</td>
</tr>
<tr>
<td>Cons</td>
<td>Requires additional setup.</td>
</tr>
<tr>
<td>Systems Manager State Manager</td>
<td>Complete the prerequisites for Systems Manager. Create a Systems Manager document and associate it with one or more instances. The agent on the instances starts to send data according to the schedule defined in the association. For more information, see Use Systems Manager State Manager (p. 442).</td>
</tr>
<tr>
<td>Pros</td>
<td>Commands are executed remotely on a schedule.</td>
</tr>
<tr>
<td>Cons</td>
<td>Requires additional setup.</td>
</tr>
<tr>
<td>Local configuration file</td>
<td>Create a Systems Manager document and copy it to each instance. Copy any updates to the configuration file to each instance manually as well. The agent on the instance (SSM Agent or EC2Config) starts sending data to CloudWatch within a few minutes. For more information, see Use a Local Configuration File (p. 443).</td>
</tr>
<tr>
<td>Pros</td>
<td>No additional setup required.</td>
</tr>
<tr>
<td>Cons</td>
<td>Legacy process. Requires logging in to each instance.</td>
</tr>
</tbody>
</table>

Preliminary Tasks for Configuring Integration with CloudWatch

Complete the following preliminary tasks to configure integration with CloudWatch. These tasks apply to all methods for configuring instances to send logs, events, and performance counters to CloudWatch.

Tasks
- Download the Sample Configuration File (p. 433)
- Configure the JSON File for CloudWatch (p. 433)
- Create an IAM User and Role for Systems Manager (p. 440)
Download the Sample Configuration File

Download the following sample file to your computer: AWS.EC2.Windows.CloudWatch.json.

Configure the JSON File for CloudWatch

You determine which logs, events, and performance counters are sent to CloudWatch by specifying your choices in a configuration file. The process of creating this file and specifying your choices can take 30 minutes or more to complete. After you have completed this task once, you can reuse the configuration file on all of your instances.

Important
Use UTF-8 without BOM encoding for the CloudWatch.json file. If you don't, CloudWatch might not read the configuration file correctly.

Steps

- Step 1: Configure Settings for CloudWatch (p. 433)
- Step 2: Configure the Data to Send (p. 434)
- Step 3: Configure Flow Control (p. 439)

Step 1: Configure Settings for CloudWatch

By specifying credentials, a region, and a metric namespace for CloudWatch, you enable an instance to send performance counter data to CloudWatch. If you don't want to send performance counter data, you can skip this procedure. To send the same performance counter data to different locations, add additional sections with unique IDs (for example, CloudWatch2 and CloudWatch3) and a different region for each ID.

To configure settings to send performance counter data to CloudWatch

1. In the JSON file, locate the CloudWatch section near the bottom of the file.

   ```json
   {
     "Id": "CloudWatch",
     "Parameters": {
       "AccessKey": "",
       "SecretKey": "",
       "Region": "us-west-1",
       "NameSpace": "Windows/Default"
     }
   },
   ```

2. (Optional) If you are using a local configuration file with local credentials, type your access key ID for `AccessKey` and your secret access key for `SecretKey`.

 Important
 If you use Systems Manager Run Command or State Manager, do not provide credentials in the configuration file, as there is a chance that they could be exposed in log files, including debug log files. You'll configure credentials using an IAM role.
3. For Region, type the region where you want to send log data (for example us-east-2). Although you can send performance counters to a different region from where you send your log data, we recommend that you set this parameter to the same region where your instance is running.

4. For NameSpace, type the metric namespace where performance counter data will be written.

Next, specify credentials, region, log group name, and a log stream namespace. This enables the instance to send log data to CloudWatch Logs. To send the same log data to different locations, add additional sections with unique IDs (for example, CloudWatchLogs2 and CloudWatchLogs3) and a different region for each ID.

To configure settings to send log data to CloudWatch Logs

1. In the JSON file, locate the CloudWatchLogs section.

   ```json
   {
     "Id": "CloudWatchLogs",
     "FullName":
     "Parameters": {
       "AccessKey": "",
       "SecretKey": "",
       "Region": "us-east-1",
       "LogGroup": "Default-Log-Group",
       "LogStream": "{{instance_id}}"
     }
   },
   ```

2. (Optional) If you are using a local configuration file with local credentials, type your access key ID for AccessKey and your secret access key for SecretKey.

 Important

 If you use Systems Manager Run Command or State Manager, do not provide credentials in the configuration file, as there is a chance that they could be exposed in log files, including debug log files. You'll configure credentials using an IAM role.

3. For Region, type the region where you want to send log data (for example, us-east-2).
4. For LogGroup, type the name for your log group. This name will appear on the Log Groups screen in the CloudWatch console.
5. For LogStream, type the destination log stream. This name will appear on the Log Groups > Streams screen in the CloudWatch console.

 If you use {{instance_id}}, the default, the log stream name is the instance ID of this instance.

 If you specify a log stream name that doesn't already exist, CloudWatch Logs automatically creates it for you. You can define a log stream name using a literal string, the predefined variables {{instance_id}}, {{hostname}}, and {{ip_address}}, or a combination of these.

Step 2: Configure the Data to Send

You can send performance counters, event log data, Event Tracing for Windows (ETW) data, and other log data to Amazon CloudWatch Logs and Amazon CloudWatch Events.

To configure the performance counters to send to CloudWatch

1. Locate the PerformanceCounter section.

   ```json
   {
     "Id": "PerformanceCounter",
   }
2. You can select any performance counters that are available in Performance Monitor. You can select different categories to upload to CloudWatch as metrics, such as .NET CLR Data, ASP.NET Applications, HTTP Service, Memory, or Process and Processors.

For each performance counter, copy the PerformanceCounter section and change the Id parameter to make it unique (for example, PerformanceCounter2). Update the other parameters as necessary.

3. For CategoryName, type the performance counter category. To find the available categories and counters, do the following:
   a. Open Performance Monitor. (To find Performance Monitor, right-click the Start menu, choose Search, and type perfmon.)
   b. In the navigation pane, choose Monitoring Tools, Performance Monitor.
   c. In the results pane, choose the green + (plus) button. The categories and counters are listed in the Add Counters dialog box.

4. For CounterName, type the name of the performance counter.

5. For InstanceName, type values from the Add Counters dialog box in Performance Monitor, which can be one of the following:
   - Blank, if the selected object has no instances.
   - A single instance of the selected object.
   - _Total to use the aggregate of all instances.

Do not use an asterisk (*) to indicate all instances because each performance counter component only supports one metric.

6. For MetricName, type the CloudWatch metric that you want performance data to appear under.

7. For Unit, type the appropriate unit of measure for the metric. The possible values are as follows:


8. (Optional) To specify a dimension for your metric, type a dimension name and value for DimensionName and DimensionValue. These parameters provide another view when listing metrics. You can also use the same dimension for multiple metrics so that you can view all metrics belonging to a specific dimension.

**Note**

If the SSM Agent or the CloudWatch plugin is stopped, performance counter data is not logged in CloudWatch. This behavior is different than custom logs or Windows Event logs. Custom logs and Windows Event logs preserve performance counter data and upload it to CloudWatch after the SSM Agent or the CloudWatch plugin is available.
To send Windows application event log data to CloudWatch Logs

1. In the JSON file, locate the `ApplicationEventLog` section.

```json
{
 "Id": "ApplicationEventLog",
 "Parameters": {
 "LogName": "Application",
 "Levels": "1"
 }
},
```

2. For `Levels`, specify the type of messages to upload. You can specify one of the following values:
   - 1 – Upload only error messages.
   - 2 – Upload only warning messages.
   - 4 – Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3 uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1), warning messages (2), and information messages (4).

To send security log data to CloudWatch Logs

1. In the JSON file, locate the `SecurityEventLog` section.

```json
{
 "Id": "SecurityEventLog",
 "Parameters": {
 "LogName": "Security",
 "Levels": "7"
 }
},
```

2. For `Levels`, type 7 to upload all messages.

To send system event log data to CloudWatch Logs

1. In the JSON file, locate the `SystemEventLog` section.

```json
{
 "Id": "SystemEventLog",
 "Parameters": {
 "LogName": "System",
 "Levels": "7"
 }
},
```

2. For `Levels`, specify the type of messages to upload. You can specify one of the following values:
   - 1 – Upload only error messages.
   - 2 – Upload only warning messages.
You can combine values to include more than one type of message. For example, a value of 3 uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1), warning messages (2), and information messages (4).

To send other types of event log data to CloudWatch Logs

1. In the JSON file, add a new section.

```json
{
 "Id": "",
 "Parameters": {
 "LogName": "",
 "Levels": "7"
 }
}
```

2. For Id, type a name for the log to upload (for example, WindowsBackup).
3. For LogName, type the name of the log to upload. You can find the name of the log as follows.
   a. Open Event Viewer.
   b. In the navigation pane, choose Applications and Services Logs.
   c. Navigate to the log, and then choose Actions, Properties.
4. For Levels, specify the type of messages to upload. You can specify one of the following values:
   - 1 – Upload only error messages.
   - 2 – Upload only warning messages.
   - 4 – Upload only information messages.

You can combine values to include more than one type of message. For example, a value of 3 uploads error messages (1) and warning messages (2). A value of 7 uploads error messages (1), warning messages (2), and information messages (4).

To send Event Tracing for Windows data to CloudWatch Logs

ETW (Event Tracing for Windows) provides an efficient and detailed logging mechanism that applications can write logs to. Each ETW is controlled by a session manager that can start and stop the logging session. Each session has a provider and one or more consumers.

1. In the JSON file, locate the ETW section.

```json
{
 "Id": "ETW",
 "Parameters": {
 "LogName": "Microsoft-Windows-WinINet/Analytic",
 "Levels": "7"
 }
}
```

2. For LogName, type the name of the log to upload.
3. For **Levels**, specify the type of messages to upload. You can specify one of the following values:

- **1** – Upload only error messages.
- **2** – Upload only warning messages.
- **4** – Upload only information messages.

You can combine values to include more than one type of message. For example, a value of **3** uploads error messages (**1**) and warning messages (**2**). A value of **7** uploads error messages (**1**), warning messages (**2**), and information messages (**4**).

**To send custom logs (any text-based log file) to CloudWatch Logs**

1. In the JSON file, locate the **CustomLogs** section.

   ```json
 {
 "Id": "CustomLogs",
 "Parameters": {
 "LogDirectoryPath": "C:\\CustomLogs\\",
 "TimestampFormat": "MM/dd/yyyy HH:mm:ss",
 "Encoding": "UTF-8",
 "Filter": ",",
 "CultureName": "en-US",
 "TimeZoneKind": "Local",
 "LineCount": "5"
 }
 },

 2. For **LogDirectoryPath**, type the path where logs are stored on your instance.

 3. For **TimestampFormat**, type the timestamp format you want to use. For a list of supported values, see the [Custom Date and Time Format Strings](#) topic on MSDN.

 Important

 Your source log file must have the timestamp at the beginning of each log line and there must be a space following the timestamp.

 4. For **Encoding**, type the file encoding to use (for example, UTF-8). For a list of supported values, see the [Encoding Class](#) topic on MSDN.

 Note

 Use the encoding name, not the display name.

 5. (Optional) For **Filter**, type the prefix of log names. Leave this parameter blank to monitor all files. For a list of supported values, see the [FileSystemWatcherFilter Property](#) topic on MSDN.

 6. (Optional) For **CultureName**, type the locale where the timestamp is logged. If **CultureName** is blank, it defaults to the same locale currently used by your Windows instance. For a list of supported values, see [National Language Support (NLS) API Reference](#) in the Microsoft documentation.

 Note

 The div, div-MV, hu, and hu-HU values are not supported.

 7. (Optional) For **TimeZoneKind**, type **Local** or **UTC**. You can set this to provide time zone information when no time zone information is included in your log's timestamp. If this parameter is left blank and if your timestamp doesn't include time zone information, CloudWatch Logs defaults to the local time zone. This parameter is ignored if your timestamp already contains time zone information.

 8. (Optional) For **LineCount**, type the number of lines in the header to identify the log file. For example, IIS log files have virtually identical headers. You could enter **3**, which would read the first three lines of the log file's header to identify it. In IIS log files, the third line is the date and...
To send IIS log data to CloudWatch Logs

1. In the JSON file, locate the IISLog section.

   ```json
   {
       "Id": "IISLogs",
       "Parameters": {
           "LogDirectoryPath": "C:\inetpub\logs\LogFiles\W3SVC1",
           "TimestampFormat": "yyyy-MM-dd HH:mm:ss",
           "Encoding": "UTF-8",
           "Filter": "",
           "CultureName": "en-US",
           "TimeZoneKind": "UTC",
           "LineCount": "5"
       }
   },
   
   2. For LogDirectoryPath, type the folder where IIS logs are stored for an individual site (for example, C:\inetpub\logs\LogFiles\W3SVCn).

      **Note**
      Only W3C log format is supported. IIS, NCSA, and Custom formats are not supported.

3. For TimestampFormat, type the timestamp format you want to use. For a list of supported values, see the Custom Date and Time Format Strings topic on MSDN.

4. For Encoding, type the file encoding to use (for example, UTF-8). For a list of supported values, see the Encoding Class topic on MSDN.

    **Note**
    Use the encoding name, not the display name.

5. (Optional) For Filter, type the prefix of log names. Leave this parameter blank to monitor all files. For a list of supported values, see the FileSystemWatcherFilter Property topic on MSDN.

6. (Optional) For CultureName, type the locale where the timestamp is logged. If CultureName is blank, it defaults to the same locale currently used by your Windows instance. For a list of supported values, see the National Language Support (NLS) API Reference topic on MSDN.

    **Note**
    The div, div-MV, hu, and hu-HU values are not supported.

7. (Optional) For TimeZoneKind, type Local or UTC. You can set this to provide time zone information when no time zone information is included in your log's timestamp. If this parameter is left blank and if your timestamp doesn't include time zone information, CloudWatch Logs defaults to the local time zone. This parameter is ignored if your timestamp already contains time zone information.

8. (Optional) For LineCount, type the number of lines in the header to identify the log file. For example, IIS log files have virtually identical headers. You could enter 3, which would read the first three lines of the log file's header to identify it. In IIS log files, the third line is the date and time stamp, which is different between log files. For this reason, we recommend including at least one line of actual log data to uniquely fingerprint the log file.

Step 3: Configure Flow Control

Each data type must have a corresponding destination in the Flows section. For example, to send a performance counter defined in the PerformanceCounter section to the destination
defined in the CloudWatch section, add PerformanceCounter, CloudWatch to the Flows section. Similarly, to send the custom log, ETW log, and system log to CloudWatch Logs, add (CustomLogs, ETW, SystemEventLog), CloudWatchLogs.

**Warning**
Adding a step that is not valid blocks the flow. For example, if you add a disk metric step, but your instance doesn’t have a disk, all steps in the flow are blocked.

Note that you can send the same performance counter or log file to more than one destination. For example, to send the application log to two different destinations that you defined in the CloudWatchLogs section, add ApplicationEventLog, (CloudWatchLogs, CloudWatchLogs2) to the Flows section.

**To configure flow control**

1. In the AWS.EC2.Windows.CloudWatch.json file, locate the Flows section.

```json
"Flows": {
 "Flows": [
 "PerformanceCounter, CloudWatch",
 "(PerformanceCounter, PerformanceCounter2), CloudWatch2",
 "(CustomLogs, ETW, SystemEventLog), CloudWatchLogs",
 "CustomLogs, CloudWatchLogs2",
 "ApplicationEventLog, (CloudWatchLogs, CloudWatchLogs2)"
]
}
```

2. For Flows, add each data type that to be uploaded (for example, ApplicationEventLog) and its destination (for example, CloudWatchLogs).

**Create an IAM User and Role for Systems Manager**

If you plan to use a local configuration file with local credentials, then you can skip this task.

An IAM role for instance credentials is required when you use Systems Manager Run Command or State Manager and optional when you use a local configuration file. This role enables Systems Manager to perform actions on the instance. You can optionally create a unique IAM user account for configuring and running Systems Manager. For more information, see Configuring Access to Systems Manager in the [AWS Systems Manager User Guide](https://docs.aws.amazon.com/systems-manager/latest/userguide/). For information about how to attach an IAM role to an existing instance, see Attaching an IAM Role to an Instance (p. 539).

**Verify Systems Manager Prerequisites**

If you plan to use a local configuration file, then you can skip this task.

Before you use either Systems Manager Run Command or State Manager to configure integration with CloudWatch, verify that your instances meet the minimum requirements. For more information, see Systems Manager Prerequisites in the [AWS Systems Manager User Guide](https://docs.aws.amazon.com/systems-manager/latest/userguide/).

**Verify Internet Access**

Your Amazon EC2 Windows Server instances and managed instances must have outbound internet access in order to send log and event data to CloudWatch. For more information about how to configure internet access, see Internet Gateways in the [Amazon VPC User Guide](https://docs.aws.amazon.com/vpc/latest/userguide/).
Next Step

After you complete the preliminary tasks for configuring integration with CloudWatch, you can perform the procedure required to complete the integration. For more information, see Configure Instances for CloudWatch (p. 441).

Configure Instances for CloudWatch

Choose from the following methods to configure integration with CloudWatch:

- Use Run Command (p. 441)
- Use State Manager (p. 442)
- Use a Local Configuration File (p. 443)

Before You Begin

Verify that you have completed the prerequisites. For more information, see Preliminary Tasks for Configuring Integration with CloudWatch (p. 432).

Use Systems Manager Run Command

Run Command enables you to manage the configuration of your instances on demand. You specify a Systems Manager document, specify parameters, and execute the command on one or more instance. The SSM agent on the instance processes the command and configures the instance as specified.

You can use Run Command to configure integration with CloudWatch. After you configure integration, the SSM Agent sends all the logs you configured in your JSON file to CloudWatch. The time frame varies for when the information is sent. For the application, system, security, and event tracing (Windows) logs, the system sends all information generated within the first minute of integration being enabled. Logs that occurred before this time are not included. For any custom log files and Internet Information Services (IIS) logs, State Manager reads the log files from the beginning.

If you previously enabled CloudWatch integration by using the EC2Config service, Run Command settings override the EC2Config settings stored on the instance. By default, these settings are stored in the following file on the instance:

```
C:\Program Files\Amazon\Ec2ConfigService\Settings\AWS.EC2.Windows.CloudWatch.json
```

To configure integration with CloudWatch using Run Command

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Systems Manager Services, Run Command.
3. Choose Run a command.
4. For Command document, choose AWS-ConfigureCloudWatch.
5. For Target instances, choose the instances to integrate with CloudWatch. If you do not see an instance in this list, it might not be configured for Run Command. For more information, see Systems Manager Prerequisites in the AWS Systems Manager User Guide.
6. For Status, choose Enabled.
7. For Properties, copy and paste your JSON content.
8. Complete the remaining optional fields and choose Run.

Use the following procedure to view the results of command execution in the Amazon EC2 console.
To view command output in the console

1. Select a command.
2. Choose the Output tab.
3. Choose View Output. The command output page shows the results of your command execution.

Use Systems Manager State Manager

State Manager enables you to manage the configuration of your Windows instances while they are running. You create a configuration document, which describes configuration tasks (for example, sending performance counters to CloudWatch and logs to CloudWatch Logs), and associate the configuration document with one or more running Windows instances. The SSM agent on the instance processes the configuration document and configures the instance as specified.

You can use Systems Manager State Manager (formerly called SSM Config) to configure integration with CloudWatch. After you configure integration, the SSM Agent sends all the logs you configured in your JSON file to CloudWatch. The time frame varies for when the information is sent. For the application, system, security, and event tracing (Windows) logs, the system sends all information generated within the first minute of integration being enabled. Logs that occurred before this time are not included. If you disable logging and then later re-enable logging, State Manager sends logs from where it left off. For any custom log files and Internet Information Services (IIS) logs, State Manager reads the log files from the beginning.

If you previously enabled CloudWatch integration by using the EC2Config service, State Manager settings override the EC2Config settings stored on the instance. By default, these settings are stored in the following file on the instance: C:\Program Files\Amazon\Ec2ConfigService\Settings\AWS.EC2.Windows.CloudWatch.json.

To configure integration with CloudWatch using State Manager

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Systems Manager Services, State Manager.
3. Choose Create an association.
4. For Document, choose AWS-ConfigureCloudWatch.
5. For Document Version, choose Default version at runtime.
6. For Targets, choose the instances to integrate with CloudWatch. If you do not see an instance in this list, it might not be configured for Run Command. For more information, see Systems Manager Prerequisites in the AWS Systems Manager User Guide.
7. For Schedule, choose how often you want Systems Manager to apply this policy. This indicates how often you want Systems Manager to ensure the integration with CloudWatch is still valid. This does not affect the frequency when the SSM Agent sends data to CloudWatch.
8. For Parameters, Status, choose Enabled. For Properties, copy and paste your JSON content.
9. (Optional) To send command output to an Amazon S3 bucket, choose Advanced, Write to S3.

   Important
   The Amazon EC2 console truncates output after 2500 characters. Configure an Amazon S3 bucket before executing commands using Systems Manager so that you can view the full output, beyond 2500 characters, in your bucket. For more information, see Create a Bucket in the Amazon Simple Storage Service Getting Started Guide.

11. Choose the association you just created, and then choose Apply Association Now.
Use a Local Configuration File

The procedure to configure your instances using a local configuration file depends on the agent and the version of the agent that you're using. The SSM Agent is the only agent compatible with Windows Server 2016. With Windows Server 2008 to Windows Server 2012 R2, you must determine which version of EC2Config is running on your instance. For more information, see Installing the Latest Version of EC2Config (p. 317).

Agent
- Use SSM Agent to Configure CloudWatch (p. 443)
- Use EC2Config 4.x to Configure CloudWatch (p. 443)
- Use EC2Config 3.x or Earlier to Configure CloudWatch (p. 444)

Use SSM Agent to Configure CloudWatch

The following procedure describes how to configure CloudWatch using the SSM Agent on Amazon EC2 Windows Server 2016 instances.

To configure CloudWatch using SSM Agent

1. Download the latest version of the SSM Agent to your instance. For more information, see Installing SSM Agent on Windows.
2. Open the AWS.EC2.Windows.CloudWatch.json file, and change IsEnabled to true. This tells the agent to start sending data to CloudWatch immediately after it is started or restarted.
3. Save the file with the same name in the following folder on your Windows Server 2016 instance: C:\Program Files\Amazon\SSM\Plugins\awsCloudWatch\.
4. Start or restart the SSM agent (AmazonSSMAgent.exe) using the Windows Services control panel or by sending the following command in PowerShell:

   PS C:\> Restart-Service AmazonSSMAgent

After the SSM agent restarts, it detects the local configuration file and configures the instance for CloudWatch integration. If you change parameters and settings in the local configuration file, you need to restart the SSM agent to pick up the changes. If you want to disable CloudWatch integration on the instance, change IsEnabled to false and save your changes in the configuration file.

Use EC2Config 4.x to Configure CloudWatch

To configure CloudWatch using EC2Config 4.x

1. Download the latest version of EC2Config to your instance. For more information, see Installing the Latest Version of EC2Config (p. 317).
2. (Optional) If you have an existing JSON file from an EC2Config 3.x integration with CloudWatch, open the file, and add the IsEnabled section. This tells the agent to start sending data to CloudWatch immediately after it is started or restarted.

   The IsEnabled section must be located on the same level as the EngineConfiguration section. The following example illustrates this:

```json
{
 "isEnabled": true,
 "EngineConfiguration": {
 "PollInterval": "00:00:15",
 "Components": [...
```
3. Save the file with the same name in the following folder on your Windows Server 2008 through Windows Server 2012 R2 instance: C:\Program Files\Amazon\SSM\Plugins\awsCloudWatch \\.

4. Start or restart the SSM agent (AmazonSSMAgent.exe) using the Windows Services control panel or using the following PowerShell command:

   PS C:\> Restart-Service AmazonSSMAgent

After the SSM agent restarts, it detects the local configuration file and configures the instance for CloudWatch integration. If you change parameters and settings in the local configuration file, you need to restart the SSM agent to pick up the changes. If you want to disable CloudWatch integration on the instance, change IsEnabled to false and save your changes in the configuration file.

Use EC2Config 3.x or Earlier to Configure CloudWatch

Use the following procedure if you need to run an older version of EC2Config on your instances and continue to integrate with CloudWatch.

To configure CloudWatch using EC2Config 3.x or earlier

1. Connect to your Windows instance.
2. From the Start menu, choose All Programs, and then choose EC2ConfigService Settings.
3. On the General tab of the Ec2 Service Properties dialog box, under CloudWatch Logs, choose Enable CloudWatch Logs integration, and then choose OK.
4. If you made changes to the AWS.EC2.Windows.CloudWatch.json file, then you must restart the EC2Config service. For more information, see Stopping, Restarting, Deleting, or Uninstalling EC2Config (p. 318).

To enable CloudWatch Logs using user data

You can enable CloudWatch Logs by adding the following script to the user data field when you launch an instance. EC2Config will run this script every time your instance is restarted to make sure that CloudWatch Logs integration is enabled. To run this script only when an instance is first launched, remove <persist>true</persist> from the script.

```powershell
#EC2SettingsFile="C:\Program Files\Amazon\EC2ConfigService\Settings\Config.xml"
$xml = [xml](get-content $EC2SettingsFile)
$xmlElement = $xml.get_DocumentElement()
$xmlElementToModify = $xmlElement.Plugins
foreach ($element in $xmlElementToModify.Plugin)
{
 if ($element.name -eq "AWS.EC2.Windows.CloudWatch.PlugIn")
 {
 $element.State="Enabled"
 }
}
```
$xml.Save($EC2SettingsFile)
</powershell>
<persist>true</persist>
Network and Security

Amazon EC2 provides the following network and security features.

Features

- Amazon EC2 Key Pairs and Windows Instances (p. 446)
- Amazon EC2 Security Groups for Windows Instances (p. 451)
- Controlling Access to Amazon EC2 Resources (p. 466)
- Amazon EC2 and Amazon Virtual Private Cloud (p. 544)
- Amazon EC2 Instance IP Addressing (p. 571)
- Elastic IP Addresses (p. 586)
- Elastic Network Interfaces (p. 595)
- Placement Groups (p. 612)
- Network Maximum Transmission Unit (MTU) for Your EC2 Instance (p. 616)
- Enhanced Networking on Windows (p. 619)

If you access Amazon EC2 using the command line tools or an API, you'll need your access key ID and secret access key. For more information, see How Do I Get Security Credentials? in the Amazon Web Services General Reference.

You can launch an instance into one of two platforms: EC2-Classic or EC2-VPC. An instance that's launched into EC2-Classic or a default VPC is automatically assigned a public IP address. An instance that's launched into a nondefault VPC can be assigned a public IP address on launch. For more information about EC2-Classic and EC2-VPC, see Supported Platforms (p. 551).

Instances can fail or terminate for reasons outside of your control. If an instance fails and you launch a replacement instance, the replacement has a different public IP address than the original. However, if your application needs a static IP address, you can use an Elastic IP address.

You can use security groups to control who can access your instances. These are analogous to an inbound network firewall that enables you to specify the protocols, ports, and source IP ranges that are allowed to reach your instances. You can create multiple security groups and assign different rules to each group. You can then assign each instance to one or more security groups, and we use the rules to determine which traffic is allowed to reach the instance. You can configure a security group so that only specific IP addresses or specific security groups have access to the instance.

Amazon EC2 Key Pairs and Windows Instances

Amazon EC2 uses public–key cryptography to encrypt and decrypt login information. Public–key cryptography uses a public key to encrypt a piece of data, such as a password, then the recipient uses the private key to decrypt the data. The public and private keys are known as a key pair.

To log in to your instance, you must create a key pair, specify the name of the key pair when you launch the instance, and provide the private key when you connect to the instance. With Windows instances, you use the private key to obtain the administrator password and then log in using RDP. For more
Creating a Key Pair

You can use Amazon EC2 to create your key pair. For more information, see Creating a Key Pair Using Amazon EC2 (p. 447).

Alternatively, you could use a third-party tool and then import the public key to Amazon EC2. For more information, see Importing Your Own Public Key to Amazon EC2 (p. 448).

Each key pair requires a name. Be sure to choose a name that is easy to remember. Amazon EC2 associates the public key with the name that you specify as the key name.

Amazon EC2 stores the public key only, and you store the private key. Anyone who possesses your private key can decrypt your login information, so it's important that you store your private keys in a secure place.

The keys that Amazon EC2 uses are 2048-bit SSH-2 RSA keys. You can have up to five thousand key pairs per region.

Launching and Connecting to Your Instance

When you launch an instance, you should specify the name of the key pair you plan to use to connect to the instance. If you don't specify the name of an existing key pair when you launch an instance, you won't be able to connect to the instance. When you connect to the instance, you must specify the private key that corresponds to the key pair you specified when you launched the instance.

Contents

• Creating a Key Pair Using Amazon EC2 (p. 447)
• Importing Your Own Public Key to Amazon EC2 (p. 448)
• Retrieving the Public Key for Your Key Pair on Linux (p. 449)
• Retrieving the Public Key for Your Key Pair on Windows (p. 450)
• Retrieving the Public Key for Your Key Pair From Your Instance (p. 450)
• Verifying Your Key Pair's Fingerprint (p. 450)
• Deleting Your Key Pair (p. 451)
• Connecting to Your Windows Instance if You Lose Your Private Key (p. 451)

Creating a Key Pair Using Amazon EC2

You can create a key pair using the Amazon EC2 console or the command line. After you create a key pair, you can specify it when you launch your instance.

To create your key pair using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under NETWORK & SECURITY, choose Key Pairs.

   Note
   The navigation pane is on the left side of the Amazon EC2 console. If you do not see the pane, it might be minimized; choose the arrow to expand the pane.

3. Choose Create Key Pair.
4. Enter a name for the new key pair in the Key pair name field of the Create Key Pair dialog box, and then choose Create.
5. The private key file is automatically downloaded by your browser. The base file name is the name you specified as the name of your key pair, and the file name extension is \.pem. Save the private key file in a safe place.

**Important**
This is the only chance for you to save the private key file. You'll need to provide the name of your key pair when you launch an instance and the corresponding private key each time you connect to the instance.

To create your key pair using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- create-key-pair (AWS CLI)
- New-EC2KeyPair (AWS Tools for Windows PowerShell)

## Importing Your Own Public Key to Amazon EC2

Instead of using Amazon EC2 to create your key pair, you can create an RSA key pair using a third-party tool and then import the public key to Amazon EC2. For example, you can use `ssh-keygen` (a tool provided with the standard OpenSSH installation) to create a key pair. Alternatively, Java, Ruby, Python, and many other programming languages provide standard libraries that you can use to create an RSA key pair.

Amazon EC2 accepts the following formats:

- OpenSSH public key format
- Base64 encoded DER format
- SSH public key file format as specified in RFC4716

Amazon EC2 does not accept DSA keys. Make sure your key generator is set up to create RSA keys.

Supported lengths: 1024, 2048, and 4096.

### To create a key pair using a third-party tool

1. Generate a key pair with a third-party tool of your choice.
2. Save the public key to a local file. For example, `C:\keys\my-key-pair.pub`. The file name extension for this file is not important.
3. Save the private key to a different local file that has the .pem extension. For example, `C:\keys\my-key-pair.pem`. Save the private key file in a safe place. You'll need to provide the name of your key pair when you launch an instance and the corresponding private key each time you connect to the instance.

Use the following steps to import your key pair using the Amazon EC2 console.

### To import the public key

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, under NETWORK & SECURITY, choose Key Pairs.
3. Choose Import Key Pair.
4. In the Import Key Pair dialog box, choose Browse, and select the public key file that you saved previously. Enter a name for the key pair in the Key pair name field, and choose Import.
To import the public key using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `import-key-pair` (AWS CLI)
- `Import-EC2KeyPair` (AWS Tools for Windows PowerShell)

After the public key file is imported, you can verify that the key pair was imported successfully using the Amazon EC2 console as follows.

To verify that your key pair was imported

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region in which you created the key pair.
3. In the navigation pane, under NETWORK & SECURITY, choose Key Pairs.
4. Verify that the key pair that you imported is in the displayed list of key pairs.

To view your key pair using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `describe-key-pairs` (AWS CLI)
- `Get-EC2KeyPair` (AWS Tools for Windows PowerShell)

Retrieving the Public Key for Your Key Pair on Linux

On your local Linux or Mac computer, you can use the `ssh-keygen` command to retrieve the public key for your key pair.

To retrieve the public key from your computer

1. Use the `ssh-keygen` command on a computer to which you've downloaded your private key:

   ```bash
 ssh-keygen -y
   ```

2. When prompted to enter the file in which the key is, specify the path to your .pem file; for example:

   ```bash
 /path_to_key_pair/my-key-pair.pem
   ```

3. The command returns the public key:

   ```bash
 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQClKsfkNkuSevGj3eYhCe53pcjqP3maAhDFcvBS706VhZ2ItxClh+PnDSUIaw+WNQn/mZpHtK/a/gU8jEzoOWWkM4yxyb/wB96xbiFveSFJuOp/d6RJhJG1O1iBXr1aL3nBlntIcki7PH7bxJMRt3vyw3jyU71LMTjYtwB+QhYXUMOzce5pjk5/i8sE5tjnV3iAog/cQk+0FzZgaeeJAAHo+CY/5WrUBkRbMeFr6HcKkxJdWPkyQS3xqC0+FmoUofeZ21ICb15IMuexKpx4rW1+z7wB3RbBQoQzd8v7yeb70sI1FnWOHY0qFU0XAz46RA8QFYiCNYwI3f05p6KLxEXAMPLE
   ```

   If this command fails, ensure that you've changed the permissions on your key pair file so that only you can view it by running the following command:

   ```bash
 chmod 400 my-key-pair.pem
   ```
Retrieving the Public Key for Your Key Pair on Windows

On your local Windows computer, you can use PuTTYgen to get the public key for your key pair.

Start PuTTYgen, choose Load, and select the .ppk or .pem file. PuTTYgen displays the public key.

Retrieving the Public Key for Your Key Pair From Your Instance

The public key that you specified when you launched an instance is also available to you through its instance metadata. To view the public key that you specified when launching the instance, use the following command from your instance:

```
```

If you change the key pair that you use to connect to the instance, we don't update the instance metadata to show the new public key; you'll continue to see the public key for the key pair you specified when you launched the instance in the instance metadata.

For more information, see Retrieving Instance Metadata (p. 363).

Verifying Your Key Pair's Fingerprint

On the Key Pairs page in the Amazon EC2 console, the Fingerprint column displays the fingerprints generated from your key pairs. AWS calculates the fingerprint differently depending on whether the key pair was generated by AWS or a third-party tool. If you created the key pair using AWS, the fingerprint is calculated using an SHA-1 hash function. If you created the key pair with a third-party tool and uploaded the public key to AWS, or if you generated a new public key from an existing AWS-created private key and uploaded it to AWS, the fingerprint is calculated using an MD5 hash function.

You can use the fingerprint that's displayed on the Key Pairs page to verify that the private key you have on your local machine matches the public key that's stored in AWS.

If you created your key pair using AWS, you can use the OpenSSL tools to generate a fingerprint from the private key file:

```
C:\> openssl pkcs8 -in path_to_private_key -inform PEM -outform DER -topk8 -nocrypt | openssl sha1 -c
```

If you created your key pair using a third-party tool and uploaded the public key to AWS, you can use the OpenSSL tools to generate a fingerprint from the private key file on your local machine:

```
C:\> openssl rsa -in path_to_private_key -pubout -outform DER | openssl md5 -c
```
Deleting Your Key Pair

When you delete a key pair, you are only deleting Amazon EC2's copy of the public key. Deleting a key pair doesn't affect the private key on your computer or the public key on any instances already launched using that key pair. You can't launch a new instance using a deleted key pair, but you can continue to connect to any instances that you launched using a deleted key pair, as long as you still have the private key (.pem) file.

Note

If you're using an Auto Scaling group (for example, in an Elastic Beanstalk environment), ensure that the key pair you're deleting is not specified in your launch configuration. Amazon EC2 Auto Scaling launches a replacement instance if it detects an unhealthy instance; however, the instance launch fails if the key pair cannot be found.

You can delete a key pair using the Amazon EC2 console or the command line.

To delete your key pair using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, under NETWORK & SECURITY, choose Key Pairs.
3. Select the key pair and choose Delete.
4. When prompted, choose Yes.

To delete your key pair using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- delete-key-pair (AWS CLI)
- Remove-EC2KeyPair (AWS Tools for Windows PowerShell)

Connecting to Your Windows Instance if You Lose Your Private Key

When you connect to a newly launched Windows instance, you decrypt the password for the Administrator account using the private key for the key pair that you specified when you launched the instance.

If you lose the Administrator password and you no longer have the private key, you can no longer access this Windows instance. You can replace the instance with a new instance that you launch with a new key pair and reset the Administrator password. For more information, see Resetting a Lost or Expired Windows Administrator Password (p. 841).

Amazon EC2 Security Groups for Windows Instances

A security group acts as a virtual firewall that controls the traffic for one or more instances. When you launch an instance, you associate one or more security groups with the instance. You add rules to each
security group that allow traffic to or from its associated instances. You can modify the rules for a security group at any time; the new rules are automatically applied to all instances that are associated with the security group. When we decide whether to allow traffic to reach an instance, we evaluate all the rules from all the security groups that are associated with the instance.

If you need to allow traffic to a Linux instance, see Amazon EC2 Security Groups for Linux Instances in the Amazon EC2 User Guide for Linux Instances.

Topics
- Security Groups for EC2-Classic (p. 452)
- Security Groups for EC2-VPC (p. 452)
- Security Group Rules (p. 453)
- Default Security Groups (p. 455)
- Custom Security Groups (p. 455)
- Working with Security Groups (p. 456)
- Security Group Rules Reference (p. 460)

If you have requirements that aren't met by security groups, you can maintain your own firewall on any of your instances in addition to using security groups.

Your account may support EC2-Classic in some regions, depending on when you created it. For more information, see Supported Platforms (p. 551). Security groups for EC2-Classic are separate to security groups for EC2-VPC.

Security Groups for EC2-Classic

If you're using EC2-Classic, you must use security groups created specifically for EC2-Classic. When you launch an instance in EC2-Classic, you must specify a security group in the same region as the instance. You can't specify a security group that you created for a VPC when you launch an instance in EC2-Classic.

After you launch an instance in EC2-Classic, you can't change its security groups. However, you can add rules to or remove rules from a security group, and those changes are automatically applied to all instances that are associated with the security group.

In EC2-Classic, you can have up to 500 security groups in each region for each account. You can associate an instance with up to 500 security groups and add up to 100 rules to a security group.

Security Groups for EC2-VPC

When you launch an instance in a VPC, you must specify a security group that's created for the VPC. If your account supports EC2-Classic, you can't specify a security group that you created for EC2-Classic when you launch an instance in a VPC. Security groups for EC2-VPC have additional capabilities that aren't supported by security groups for EC2-Classic. For more information, see Differences Between Security Groups for EC2-Classic and EC2-VPC in the Amazon VPC User Guide.

After you launch an instance in a VPC, you can change its security groups. Security groups are associated with network interfaces. Changing an instance's security groups changes the security groups associated with the primary network interface (eth0). For more information, see Changing an Instance's Security Groups in the Amazon VPC User Guide. You can also change the security groups associated with any other network interface. For more information, see Changing the Security Group (p. 607).

Security groups for EC2-VPC have separate limits. For more information, see Amazon VPC Limits in the Amazon VPC User Guide. The security groups for EC2-Classic do not count against the security group limit for EC2-VPC.
Your VPC can be enabled for IPv6. For more information, see IP addressing in Your VPC in the Amazon VPC User Guide. You can add rules to your VPC security groups to enable inbound and outbound IPv6 traffic.

## Security Group Rules

The rules of a security group control the inbound traffic that's allowed to reach the instances that are associated with the security group and the outbound traffic that's allowed to leave them.

The following are the characteristics of security group rules:

- By default, security groups allow all outbound traffic.
- You can't change the outbound rules for an EC2-Classic security group.
- Security group rules are always permissive; you can't create rules that deny access.
- Security groups are stateful — if you send a request from your instance, the response traffic for that request is allowed to flow in regardless of inbound security group rules. For VPC security groups, this also means that responses to allowed inbound traffic are allowed to flow out, regardless of outbound rules. For more information, see Connection Tracking (p. 454).
- You can add and remove rules at any time. Your changes are automatically applied to the instances associated with the security group after a short period.

**Note**

The effect of some rule changes may depend on how the traffic is tracked. For more information, see Connection Tracking (p. 454).

- When you associate multiple security groups with an instance, the rules from each security group are effectively aggregated to create one set of rules. We use this set of rules to determine whether to allow access.

**Note**

You can assign multiple security groups to an instance, therefore an instance can have hundreds of rules that apply. This might cause problems when you access the instance. We recommend that you condense your rules as much as possible.

For each rule, you specify the following:

- **Protocol**: The protocol to allow. The most common protocols are 6 (TCP) 17 (UDP), and 1 (ICMP).
- **Port range**: For TCP, UDP, or a custom protocol, the range of ports to allow. You can specify a single port number (for example, 22), or range of port numbers (for example, 7000–8000).
- **ICMP type and code**: For ICMP, the ICMP type and code.
- **Source or destination**: The source (inbound rules) or destination (outbound rules) for the traffic. Specify one of these options:
  - An individual IPv4 address. You must use the /32 prefix length; for example, 203.0.113.1/32.
  - (VPC only) An individual IPv6 address. You must use the /128 prefix length; for example 2001:db8:1234:1a00::123/128.
  - A range of IPv4 addresses, in CIDR block notation, for example, 203.0.113.0/24.
  - (VPC only) A range of IPv6 addresses, in CIDR block notation, for example, 2001:db8:1234:1a00::/64.
- **Another security group.** This allows instances associated with the specified security group to access instances associated with this security group. This does not add rules from the source security group to this security group. You can specify one of the following security groups:
  - The current security group.
  - EC2-Classic: A different security group for EC2-Classic in the same region.
  - EC2-Classic: A security group for another AWS account in the same region (add the AWS account ID as a prefix; for example, 111122223333/sg-edcd9784).
Security Group Rules

- **EC2-VPC**: A different security group for the same VPC or a peer VPC in a VPC peering connection.
- **(Optional) Description**: You can add a description for the rule; for example, to help you identify it later. A description can be up to 255 characters in length. Allowed characters are a-z, A-Z, 0-9, spaces, and _-:/@#,@\$^.

When you specify a security group as the source or destination for a rule, the rule affects all instances associated with the security group. Incoming traffic is allowed based on the private IP addresses of the instances that are associated with the source security group (and not the public IP or Elastic IP addresses). For more information about IP addresses, see Amazon EC2 Instance IP Addressing (p. 571). If your security group rule references a security group in a peer VPC, and the referenced security group or VPC peering connection is deleted, the rule is marked as stale. For more information, see Working with Stale Security Group Rules in the Amazon VPC Peering Guide.

If there is more than one rule for a specific port, we apply the most permissive rule. For example, if you have a rule that allows access to TCP port 3389 (RDP) from IP address 203.0.113.1 and another rule that allows access to TCP port 3389 from everyone, everyone has access to TCP port 3389.

### Connection Tracking

Your security groups use connection tracking to track information about traffic to and from the instance. Rules are applied based on the connection state of the traffic to determine if the traffic is allowed or denied. This allows security groups to be stateful — responses to inbound traffic are allowed to flow out of the instance regardless of outbound security group rules, and vice versa. For example, if you initiate an ICMP ping command to your instance from your home computer, and your inbound security group rules allow ICMP traffic, information about the connection (including the port information) is tracked. Response traffic from the instance for the ping command is not tracked as a new request, but rather as an established connection and is allowed to flow out of the instance, even if your outbound security group rules restrict outbound ICMP traffic.

Not all flows of traffic are tracked. If a security group rule permits TCP or UDP flows for all traffic (0.0.0.0/0) and there is a corresponding rule in the other direction that permits all response traffic (0.0.0.0/0) for all ports (0-65535), then that flow of traffic is not tracked. The response traffic is therefore allowed to flow based on the inbound or outbound rule that permits the response traffic, and not on tracking information.

In the following example, the security group has specific inbound rules for TCP and ICMP traffic, and an outbound rule that allows all outbound traffic.

<table>
<thead>
<tr>
<th>Inbound rules</th>
<th>Protocol type</th>
<th>Port number</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22 (SSH)</td>
<td></td>
<td>203.0.113.1/32</td>
</tr>
<tr>
<td>TCP</td>
<td>80 (HTTP)</td>
<td></td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>ICMP</td>
<td>All</td>
<td></td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outbound rules</th>
<th>Protocol type</th>
<th>Port number</th>
<th>Destination IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td></td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>

TCP traffic on port 22 (SSH) to and from the instance is tracked, because the inbound rule allows traffic from 203.0.113.1/32 only, and not all IP addresses (0.0.0.0/0). TCP traffic on port 80 (HTTP) to
and from the instance is not tracked, because both the inbound and outbound rules allow all traffic (0.0.0.0/0). ICMP traffic is always tracked, regardless of rules.

An existing flow of traffic that is tracked may not be interrupted when you remove the security group rule that enables that flow. Instead, the flow is interrupted when it's stopped by you or the other host for at least a few minutes (or up to 5 days for established TCP connections). For UDP, this may require terminating actions on the remote side of the flow. An untracked flow of traffic is immediately interrupted if the rule that enables the flow is removed or modified. For example, if you remove a rule that allows all inbound SSH traffic to the instance, then your existing SSH connections to the instance are immediately dropped.

For protocols other than TCP, UDP, or ICMP, only the IP address and protocol number is tracked. If your instance sends traffic to another host (host B), and host B initiates the same type of traffic to your instance in a separate request within 600 seconds of the original request or response, your instance accepts it regardless of inbound security group rules, because it's regarded as response traffic.

For VPC security groups, to ensure that traffic is immediately interrupted when you remove a security group rule, or to ensure that all inbound traffic is subject to firewall rules, you can use a network ACL for your subnet — network ACLs are stateless and therefore do not automatically allow response traffic. For more information, see Network ACLs in the Amazon VPC User Guide.

Default Security Groups

Your AWS account automatically has a default security group per VPC and per region for EC2-Classic. If you don't specify a security group when you launch an instance, the instance is automatically associated with the default security group.

A default security group is named default, and it has an ID assigned by AWS. The following are the default rules for each default security group:

- Allows all inbound traffic from other instances associated with the default security group (the security group specifies itself as a source security group in its inbound rules)
- Allows all outbound traffic from the instance.

You can add or remove the inbound rules for any EC2-Classic default security group. You can add or remove outbound rules for any VPC default security group.

You can't delete a default security group. If you try to delete the EC2-Classic default security group, you'll get the following error: Client.InvalidGroup.Reserved: The security group 'default' is reserved. If you try to delete a VPC default security group, you'll get the following error: Client.CannotDelete: the specified group: "sg-51530134" name: "default" cannot be deleted by a user.

Custom Security Groups

If you don’t want your instances to use the default security group, you can create your own security groups and specify them when you launch your instances. You can create multiple security groups to reflect the different roles that your instances play; for example, a web server or a database server.

When you create a security group, you must provide it with a name and a description. Security group names and descriptions can be up to 255 characters in length, and are limited to the following characters:

- EC2-Classic: ASCII characters
- EC2-VPC: a-z, A-Z, 0-9, spaces, and _.-:/#@[]+=&;\$*
A security group name cannot start with `sg-`. For EC2-Classic, the security group name must be unique within your account for the region. For EC2-VPC, the name must be unique within the VPC.

The following are the default rules for a security group that you create:

- Allows no inbound traffic
- Allows all outbound traffic

After you've created a security group, you can change its inbound rules to reflect the type of inbound traffic that you want to reach the associated instances. In EC2-VPC, you can also change its outbound rules.

For more information about the types of rules you can add to security groups, see Security Group Rules Reference (p. 460).

## Working with Security Groups

You can create, view, update, and delete security groups and security group rules using the Amazon EC2 console.

### Contents

- Creating a Security Group (p. 456)
- Describing Your Security Groups (p. 457)
- Adding Rules to a Security Group (p. 458)
- Updating Security Group Rules (p. 459)
- Deleting Rules from a Security Group (p. 459)
- Deleting a Security Group (p. 460)

### Creating a Security Group

You can create a custom security group using the Amazon EC2 console. For EC2-VPC, you must specify the VPC for which you're creating the security group.

**To create a new security group using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
4. Specify a name and description for the security group.
5. (EC2-Classic only) To create a security group for use in EC2-Classic, choose No VPC.
   
   (EC2-VPC) For VPC, choose a VPC ID to create a security group for that VPC.
6. You can start adding rules, or you can choose Create to create the security group now (you can always add rules later). For more information about adding rules, see Adding Rules to a Security Group (p. 458).

**To create a security group using the command line**

- `create-security-group` (AWS CLI)
The Amazon EC2 console enables you to copy the rules from an existing security group to a new security group.

To copy a security group using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
3. Select the security group you want to copy, choose Actions, Copy to new.
4. The Create Security Group dialog opens, and is populated with the rules from the existing security group. Specify a name and description for your new security group. In the VPC list, choose No VPC to create a security group for EC2-Classic, or choose a VPC ID to create a security group for that VPC. When you are done, choose Create.

You can assign a security group to an instance when you launch the instance. When you add or remove rules, those changes are automatically applied to all instances to which you've assigned the security group.

After you launch an instance in EC2-Classic, you can't change its security groups. After you launch an instance in a VPC, you can change its security groups. For more information, see Changing an Instance's Security Groups in the Amazon VPC User Guide.

[EC2-VPC] To modify the security groups for an instance using the command line

- modify-instance-attribute (AWS CLI)
- Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

Describing Your Security Groups

You can view information about your security groups using the Amazon EC2 console or the command line.

To describe your security groups for EC2-Classic using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
3. Select Network Platforms from the filter list, then choose EC2-Classic.
4. Select a security group. The Description tab displays general information. The Inbound tab displays the inbound rules.

To describe your security groups for EC2-VPC using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
3. Select Network Platforms from the filter list, then choose EC2-VPC.
4. Select a security group. We display general information in the Description tab, inbound rules on the Inbound tab, and outbound rules on the Outbound tab.

To describe one or more security groups using the command line

- describe-security-groups (AWS CLI)
Adding Rules to a Security Group

When you add a rule to a security group, the new rule is automatically applied to any instances associated with the security group.

For more information about choosing security group rules for specific types of access, see Security Group Rules Reference (p. 460).

To add rules to a security group using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups and select the security group.
3. On the Inbound tab, choose Edit.
4. In the dialog, choose Add Rule and do the following:
   - For Type, select the protocol.
   - If you select a custom TCP or UDP protocol, specify the port range in Port Range.
   - If you select a custom ICMP protocol, choose the ICMP type name from Protocol, and, if applicable, the code name from Port Range.
   - For Source, choose one of the following:
     - Custom: in the provided field, you must specify an IP address in CIDR notation, a CIDR block, or another security group.
     - Anywhere: automatically adds the 0.0.0.0/0 IPv4 CIDR block. This option enables all traffic of the specified type to reach your instance. This is acceptable for a short time in a test environment, but it's unsafe for production environments. In production, authorize only a specific IP address or range of addresses to access your instance.
       
       **Note**
       If your security group is in a VPC that's enabled for IPv6, the Anywhere option creates two rules—one for IPv4 traffic (0.0.0.0/0) and one for IPv6 traffic (::/0).
     - My IP: automatically adds the public IPv4 address of your local computer.
   - For Description, you can optionally specify a description for the rule.

For more information about the types of rules that you can add, see Security Group Rules Reference (p. 460).

5. Choose Save.

6. For a VPC security group, you can also specify outbound rules. On the Outbound tab, choose Edit, Add Rule, and do the following:
   - For Type, select the protocol.
   - If you select a custom TCP or UDP protocol, specify the port range in Port Range.
   - If you select a custom ICMP protocol, choose the ICMP type name from Protocol, and, if applicable, the code name from Port Range.
   - For Destination, choose one of the following:
     - Custom: in the provided field, you must specify an IP address in CIDR notation, a CIDR block, or another security group.
     - Anywhere: automatically adds the 0.0.0.0/0 IPv4 CIDR block. This option enables outbound traffic to all IP addresses.
       
       **Note**
       If your security group is in a VPC that's enabled for IPv6, the Anywhere option creates two rules—one for IPv4 traffic (0.0.0.0/0) and one for IPv6 traffic (::/0).
     - My IP: automatically adds the IP address of your local computer.
• For **Description**, you can optionally specify a description for the rule.

7. Choose **Save**.

**To add one or more ingress rules to a security group using the command line**

- `authorize-security-group-ingress` (AWS CLI)
- `Grant-EC2SecurityGroupIngress` (AWS Tools for Windows PowerShell)

**[EC2-VPC] To add one or more egress rules to a security group using the command line**

- `authorize-security-group-egress` (AWS CLI)
- `Grant-EC2SecurityGroupEgress` (AWS Tools for Windows PowerShell)

**Updating Security Group Rules**

When you modify the protocol, port range, or source or destination of an existing security group rule using the console, the console deletes the existing rule and adds a new one for you.

**To update a security group rule using the console**

1. Open the Amazon EC2 console at `https://console.aws.amazon.com/ec2/`.
2. In the navigation pane, choose **Security Groups**.
3. Select the security group to update, and choose **Inbound Rules** to update a rule for inbound traffic or **Outbound Rules** to update a rule for outbound traffic.
4. Choose **Edit**. Modify the rule entry as required and choose **Save**.

To update the protocol, port range, or source or destination of an existing rule using the Amazon EC2 API or a command line tool, you cannot modify the rule. Instead, you must delete the existing rule and add a new rule. To update the rule description only, you can use the `update-security-group-rule-descriptions-ingress` and `update-security-group-rule-descriptions-egress` commands.

**To update the description for an ingress security group rule using the command line**

- `update-security-group-rule-descriptions-ingress` (AWS CLI)
- `Update-EC2SecurityGroupRuleIngressDescription` (AWS Tools for Windows PowerShell)

**[EC2-VPC] To update the description for an egress security group rule using the command line**

- `update-security-group-rule-descriptions-egress` (AWS CLI)
- `Update-EC2SecurityGroupRuleEgressDescription` (AWS Tools for Windows PowerShell)

**Deleting Rules from a Security Group**

When you delete a rule from a security group, the change is automatically applied to any instances associated with the security group.

**To delete a security group rule using the console**

1. Open the Amazon EC2 console at `https://console.aws.amazon.com/ec2/`. 
2. In the navigation pane, choose Security Groups.
3. Select a security group.
4. On the Inbound tab (for inbound rules) or Outbound tab (for outbound rules), choose Edit. Choose Delete (a cross icon) next to each rule to delete.
5. Choose Save.

To remove one or more ingress rules from a security group using the command line
- revoke-security-group-ingress (AWS CLI)
- Revoke-EC2SecurityGroupIngress (AWS Tools for Windows PowerShell)

[EC2-VPC] To remove one or more egress rules from a security group using the command line
- revoke-security-group-egress (AWS CLI)
- Revoke-EC2SecurityGroupEgress (AWS Tools for Windows PowerShell)

Deleting a Security Group

You can't delete a security group that is associated with an instance. You can't delete the default security group. You can't delete a security group that is referenced by a rule in another security group in the same VPC. If your security group is referenced by one of its own rules, you must delete the rule before you can delete the security group.

To delete a security group using the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
4. Choose Yes, Delete.

To delete a security group using the command line
- delete-security-group (AWS CLI)
- Remove-EC2SecurityGroup (AWS Tools for Windows PowerShell)

Security Group Rules Reference

You can create a security group and add rules that reflect the role of the instance that's associated with the security group. For example, an instance that's configured as a web server needs security group rules that allow inbound HTTP and HTTPS access, and a database instance needs rules that allow access for the type of database, such as access over port 3306 for MySQL.

The following are examples of the kinds of rules that you can add to security groups for specific kinds of access.

Topics
- Web server (p. 461)
- Database server (p. 461)
- Access from another instance in the same group (p. 462)
Web server

The following inbound rules allow HTTP and HTTPS access from any IP address. If your VPC is enabled for IPv6, you can add rules to control inbound HTTP and HTTPS traffic from IPv6 addresses.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Source IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>80</td>
<td>0.0.0.0/0</td>
<td>Allows inbound HTTP access from any IPv4 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>443</td>
<td>0.0.0.0/0</td>
<td>Allows inbound HTTPS access from any IPv4 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>80</td>
<td>::/0</td>
<td>(VPC only) Allows inbound HTTP access from any IPv6 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>443</td>
<td>::/0</td>
<td>(VPC only) Allows inbound HTTPS access from any IPv6 address</td>
</tr>
</tbody>
</table>

Database server

The following inbound rules are examples of rules you might add for database access, depending on what type of database you're running on your instance. For more information about Amazon RDS instances, see the Amazon Relational Database Service User Guide.

For the source IP, specify one of the following:

- A specific IP address or range of IP addresses in your local network
- A security group ID for a group of instances that access the database

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>1433</td>
<td>The default port to access a Microsoft SQL Server database, for example, on an Amazon RDS instance</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>3306</td>
<td>The default port to access a MySQL or</td>
</tr>
</tbody>
</table>
The following table describes the inbound rule for a VPC security group that enables associated instances to communicate with each other. The rule allows all types of traffic.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Destination IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>80 (HTTP)</td>
<td>0.0.0.0/0</td>
<td>Allows outbound HTTP access to any IPv4 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>443 (HTTPS)</td>
<td>0.0.0.0/0</td>
<td>Allows outbound HTTPS access to any IPv4 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>80 (HTTP)</td>
<td>::/0</td>
<td>(IPv6-enabled VPC only) Allows outbound HTTP access to any IPv6 address</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>443 (HTTPS)</td>
<td>::/0</td>
<td>(IPv6-enabled VPC only) Allows outbound HTTPS access to any IPv6 address</td>
</tr>
</tbody>
</table>

Access from another instance in the same group

To allow instances that are associated with the same security group to communicate with each other, you must explicitly add rules for this.

The following table describes the inbound rule for a VPC security group that enables associated instances to communicate with each other. The rule allows all types of traffic.
The following table describes inbound rules for an EC2-Classic security group that enable associated instances to communicate with each other. The rules allow all types of traffic.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Ports</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>1</td>
<td>0 - 65535 (All)</td>
<td>The ID of the security group</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>0 - 65535 (All)</td>
<td>The ID of the security group</td>
</tr>
<tr>
<td>UDP</td>
<td>17</td>
<td>0 - 65535 (All)</td>
<td>The ID of the security group</td>
</tr>
</tbody>
</table>

**Access from local computer**

To connect to your instance, your security group must have inbound rules that allow SSH access (for Linux instances) or RDP access (for Windows instances).

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Source IP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>22 (SSH)</td>
<td>The public IPv4 address of your computer, or a range of IP addresses in your local network. If your VPC is enabled for IPv6 and your instance has an IPv6 address, you can enter an IPv6 address or range.</td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>3389 (RDP)</td>
<td>The public IPv4 address of your computer, or a range of IP addresses in your local network. If your VPC is enabled for IPv6 and your instance has an IPv6 address, you can enter an IPv6 address or range.</td>
<td></td>
</tr>
</tbody>
</table>

**Path MTU Discovery**

The path MTU is the maximum packet size that's supported on the path between the originating host and the receiving host. If a host sends a packet that's larger than the MTU of the receiving host or that's larger than the MTU of a device along the path, the receiving host returns the following ICMP message:
To ensure that your instance can receive this message and the packet does not get dropped, you must add an ICMP rule to your inbound security group rules.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>ICMP type</th>
<th>ICMP code</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>1</td>
<td>3 (Destination Unreachable)</td>
<td>4 (Fragmentation Needed and Don't Fragment was Set)</td>
<td>The IP addresses of the hosts that communicate with your instance</td>
</tr>
</tbody>
</table>

**Ping your instance**

The `ping` command is a type of ICMP traffic. To ping your instance, you must add the following inbound ICMP rule.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>ICMP type</th>
<th>ICMP code</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>1</td>
<td>8 (Echo)</td>
<td>N/A</td>
<td>The public IPv4 address of your computer, or a range of IPv4 addresses in your local network</td>
</tr>
</tbody>
</table>

To use the `ping6` command to ping the IPv6 address for your instance, you must add the following inbound ICMPv6 rule.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>ICMP type</th>
<th>ICMP code</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMPv6</td>
<td>58</td>
<td>128 (Echo)</td>
<td>0</td>
<td>The IPv6 address of your computer, or a range of IPv6 addresses in your local network</td>
</tr>
</tbody>
</table>

**DNS server**

If you've set up your EC2 instance as a DNS server, you must ensure that TCP and UDP traffic can reach your DNS server over port 53.

For the source IP, specify one of the following:

- A specific IP address or range of IP addresses in a network
- A security group ID for a group of instances in your network that require access to the DNS server

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>53</td>
</tr>
</tbody>
</table>
Amazon Elastic Compute Cloud
User Guide for Windows Instances
Security Group Rules Reference

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>17</td>
<td>53</td>
</tr>
</tbody>
</table>

Amazon EFS file system

If you're using an Amazon EFS file system with your Amazon EC2 instances, the security group that you associate with your Amazon EFS mount targets must allow traffic over the NFS protocol.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Ports</th>
<th>Source IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>2049 (NFS)</td>
<td></td>
<td>The ID of the security group. Allows inbound NFS access from resources (including the mount target) associated with this security group.</td>
</tr>
</tbody>
</table>

To mount an Amazon EFS file system on your Amazon EC2 instance, you must connect to your instance. Therefore, the security group associated with your instance must have rules that allow inbound SSH from your local computer or local network.

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Ports</th>
<th>Source IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>22 (SSH)</td>
<td></td>
<td>The IP address range of your local computer, or the range of IP addresses for your network. Allows inbound SSH access from your local computer.</td>
</tr>
</tbody>
</table>

Elastic Load Balancing

If you're using a load balancer, the security group associated with your load balancer must have rules that allow communication with your instances or targets.

### Inbound

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Source IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>The listener port</td>
<td></td>
<td>For an Internet-facing load-balancer: 0.0.0.0/0 (all IPv4 addresses) For an internal load-balancer: the IPv4 CIDR block of the VPC Allows inbound traffic on the load balancer listener port.</td>
</tr>
</tbody>
</table>
### Outbound

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Destination IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>The instance listener port</td>
<td>The ID of the instance security group</td>
<td>Allow outbound traffic to instances on the instance listener port.</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>The health check port</td>
<td>The ID of the instance security group</td>
<td>Allow outbound traffic to instances on the health check port.</td>
</tr>
</tbody>
</table>

The security group rules for your instances must allow the load balancer to communicate with your instances on both the listener port and the health check port.

### Inbound

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Protocol number</th>
<th>Port</th>
<th>Source IP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>6</td>
<td>The instance listener port</td>
<td>The ID of the load balancer security group</td>
<td>Allow traffic from the load balancer on the instance listener port.</td>
</tr>
<tr>
<td>TCP</td>
<td>6</td>
<td>The health check port</td>
<td>The ID of the load balancer security group</td>
<td>Allow traffic from the load balancer on the health check port.</td>
</tr>
</tbody>
</table>


### Controlling Access to Amazon EC2 Resources

Your security credentials identify you to services in AWS and grant you unlimited use of your AWS resources, such as your Amazon EC2 resources. You can use features of Amazon EC2 and AWS Identity and Access Management (IAM) to allow other users, services, and applications to use your Amazon EC2 resources without sharing your security credentials. You can use IAM to control how other users use resources in your AWS account, and you can use security groups to control access to your Amazon EC2 instances. You can choose to allow full use or limited use of your Amazon EC2 resources.

### Contents

- Network Access to Your Instance (p. 467)
- Amazon EC2 Permission Attributes (p. 467)
- IAM and Amazon EC2 (p. 467)
- IAM Policies for Amazon EC2 (p. 468)
- IAM Roles for Amazon EC2 (p. 534)
- Authorizing Inbound Traffic for Your Windows Instances (p. 542)
Network Access to Your Instance

A security group acts as a firewall that controls the traffic allowed to reach one or more instances. When you launch an instance, you assign it one or more security groups. You add rules to each security group that control traffic for the instance. You can modify the rules for a security group at any time; the new rules are automatically applied to all instances to which the security group is assigned.

For more information, see Authorizing Inbound Traffic for Your Windows Instances (p. 542).

Amazon EC2 Permission Attributes

Your organization might have multiple AWS accounts. Amazon EC2 enables you to specify additional AWS accounts that can use your Amazon Machine Images (AMIs) and Amazon EBS snapshots. These permissions work at the AWS account level only; you can't restrict permissions for specific users within the specified AWS account. All users in the AWS account that you've specified can use the AMI or snapshot.

Each AMI has a LaunchPermission attribute that controls which AWS accounts can access the AMI. For more information, see Making an AMI Public (p. 56).

Each Amazon EBS snapshot has a createVolumePermission attribute that controls which AWS accounts can use the snapshot. For more information, see Sharing an Amazon EBS Snapshot (p. 690).

IAM and Amazon EC2

IAM enables you to do the following:

- Create users and groups under your AWS account
- Assign unique security credentials to each user under your AWS account
- Control each user's permissions to perform tasks using AWS resources
- Allow the users in another AWS account to share your AWS resources
- Create roles for your AWS account and define the users or services that can assume them
- Use existing identities for your enterprise to grant permissions to perform tasks using AWS resources

By using IAM with Amazon EC2, you can control whether users in your organization can perform a task using specific Amazon EC2 API actions and whether they can use specific AWS resources.

This topic helps you answer the following questions:

- How do I create groups and users in IAM?
- How do I create a policy?
- What IAM policies do I need to carry out tasks in Amazon EC2?
- How do I grant permissions to perform actions in Amazon EC2?
- How do I grant permissions to perform actions on specific resources in Amazon EC2?

Creating an IAM Group and Users

To create an IAM group

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Groups and then choose Create New Group.
3. For Group Name, type a name for your group, and then choose Next Step.
4. On the **Attach Policy** page, select an AWS managed policy and then choose **Next Step**. For example, for Amazon EC2, one of the following AWS managed policies might meet your needs:
   - PowerUserAccess
   - ReadOnlyAccess
   - AmazonEC2FullAccess
   - AmazonEC2ReadOnlyAccess

5. Choose **Create Group**.

Your new group is listed under **Group Name**.

**To create an IAM user, add the user to your group, and create a password for the user**

1. In the navigation pane, choose **Users**, **Add user**.
2. For **User name**, type a user name.
3. For **Access type**, select both **Programmatic access** and **AWS Management Console access**.
4. For **Console password**, choose one of the following:
   - **Autogenerated password**. Each user gets a randomly generated password that meets the current password policy in effect (if any). You can view or download the passwords when you get to the **Final** page.
   - **Custom password**. Each user is assigned the password that you type in the box.
5. Choose **Next: Permissions**.
6. On the **Set permissions** page, choose **Add user to group**. Select the check box next to the group that you created earlier and choose **Next: Review**.
7. Choose **Create user**.
8. To view the users' access keys (access key IDs and secret access keys), choose **Show** next to each password and secret access key to see. To save the access keys, choose **Download .csv** and then save the file to a safe location.
   
   **Important**
   You cannot retrieve the secret access key after you complete this step; if you misplace it you must create a new one.

9. Choose **Close**.
10. Give each user his or her credentials (access keys and password); this enables them to use services based on the permissions you specified for the IAM group.

**Related Topics**

For more information about IAM, see the following:

- IAM Policies for Amazon EC2 (p. 468)
- IAM Roles for Amazon EC2 (p. 534)
- AWS Identity and Access Management (IAM)
- IAM User Guide

**IAM Policies for Amazon EC2**

By default, IAM users don't have permission to create or modify Amazon EC2 resources, or perform tasks using the Amazon EC2 API. (This means that they also can't do so using the Amazon EC2 console or CLI.) To allow IAM users to create or modify resources and perform tasks, you must create IAM policies that
grant IAM users permission to use the specific resources and API actions they'll need, and then attach those policies to the IAM users or groups that require those permissions.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform the specified tasks on the specified resources. For more general information about IAM policies, see Permissions and Policies in the IAM User Guide. For more information about managing and creating custom IAM policies, see Managing IAM Policies.

**Getting Started**

An IAM policy must grant or deny permissions to use one or more Amazon EC2 actions. It must also specify the resources that can be used with the action, which can be all resources, or in some cases, specific resources. The policy can also include conditions that you apply to the resource.

Amazon EC2 partially supports resource-level permissions. This means that for some EC2 API actions, you cannot specify which resource a user is allowed to work with for that action; instead, you have to allow users to work with all resources for that action.

<table>
<thead>
<tr>
<th>Task</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand the basic structure of a policy</td>
<td>Policy Syntax (p. 469)</td>
</tr>
<tr>
<td>Define actions in your policy</td>
<td>Actions for Amazon EC2 (p. 470)</td>
</tr>
<tr>
<td>Define specific resources in your policy</td>
<td>Amazon Resource Names for Amazon EC2 (p. 471)</td>
</tr>
<tr>
<td>Apply conditions to the use of the resources</td>
<td>Condition Keys for Amazon EC2 (p. 473)</td>
</tr>
<tr>
<td>Work with the available resource-level permissions for Amazon EC2</td>
<td>Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477)</td>
</tr>
<tr>
<td>Test your policy</td>
<td>Checking That Users Have the Required Permissions (p. 477)</td>
</tr>
<tr>
<td>Example policies for a CLI or SDK</td>
<td>Example Policies for Working with the AWS CLI or an AWS SDK (p. 503)</td>
</tr>
<tr>
<td>Example policies for the Amazon EC2 console</td>
<td>Example Policies for Working in the Amazon EC2 Console (p. 526)</td>
</tr>
</tbody>
</table>

**Policy Structure**

The following topics explain the structure of an IAM policy.

**Topics**

- Policy Syntax (p. 469)
- Actions for Amazon EC2 (p. 470)
- Amazon Resource Names for Amazon EC2 (p. 471)
- Condition Keys for Amazon EC2 (p. 473)
- Checking That Users Have the Required Permissions (p. 477)

**Policy Syntax**

An IAM policy is a JSON document that consists of one or more statements. Each statement is structured as follows:
There are various elements that make up a statement:

- **Effect**: The effect can be Allow or Deny. By default, IAM users don't have permission to use resources and API actions, so all requests are denied. An explicit allow overrides the default. An explicit deny overrides any allows.

- **Action**: The action is the specific API action for which you are granting or denying permission. To learn about specifying action, see Actions for Amazon EC2 (p. 470).

- **Resource**: The resource that's affected by the action. Some Amazon EC2 API actions allow you to include specific resources in your policy that can be created or modified by the action. To specify a resource in the statement, you need to use its Amazon Resource Name (ARN). For more information about specifying the ARN value, see Amazon Resource Names for Amazon EC2 (p. 471). For more information about which API actions support which ARNs, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477). If the API action does not support ARNs, use the * wildcard to specify that all resources can be affected by the action.

- **Condition**: Conditions are optional. They can be used to control when your policy is in effect. For more information about specifying conditions for Amazon EC2, see Condition Keys for Amazon EC2 (p. 473).

For more information about example IAM policy statements for Amazon EC2, see Example Policies for Working with the AWS CLI or an AWS SDK (p. 503).

### Actions for Amazon EC2

In an IAM policy statement, you can specify any API action from any service that supports IAM. For Amazon EC2, use the following prefix with the name of the API action: ec2:. For example: ec2:RunInstances and ec2:CreateImage.

To specify multiple actions in a single statement, separate them with commas as follows:

```json
"Action": ["ec2:action1", "ec2:action2"]
```

You can also specify multiple actions using wildcards. For example, you can specify all actions whose name begins with the word "Describe" as follows:

```json
"Action": "ec2:Describe***"
```

To specify all Amazon EC2 API actions, use the * wildcard as follows:

```json
"Action": "ec2:*"
```

For a list of Amazon EC2 actions, see Actions in the Amazon EC2 API Reference.
Amazon Resource Names for Amazon EC2

Each IAM policy statement applies to the resources that you specify using their ARNs.

**Important**
Currently, not all API actions support individual ARNs. We'll add support for additional API actions and ARNs for additional Amazon EC2 resources later. For information about which ARNs you can use with which Amazon EC2 API actions, as well as supported condition keys for each ARN, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

An ARN has the following general syntax:

```
arn:aws:[service]:[region]:[account]:resourceType/resourcePath
```

- **service**
  The service (for example, ec2).
- **region**
  The region for the resource (for example, us-east-1).
- **account**
  The AWS account ID, with no hyphens (for example, 123456789012).
- **resourceType**
  The type of resource (for example, instance).
- **resourcePath**
  A path that identifies the resource. You can use the * wildcard in your paths.

For example, you can indicate a specific instance (i-1234567890abcdef0) in your statement using its ARN as follows:

```
"Resource": "arn:aws:ec2:us-east-1:123456789012:instance/i-1234567890abcdef0"
```

You can also specify all instances that belong to a specific account by using the * wildcard as follows:

```
"Resource": "arn:aws:ec2:us-east-1:123456789012:instance/*"
```

To specify all resources, or if a specific API action does not support ARNs, use the * wildcard in the Resource element as follows:

```
"Resource": "*"
```

The following table describes the ARNs for each type of resource used by the Amazon EC2 API actions.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>ARN</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Amazon EC2 resources</td>
<td>arn:aws:ec2:*</td>
</tr>
<tr>
<td>All Amazon EC2 resources owned by the specified account in the specified region</td>
<td>arn:aws:ec2:region:account:*</td>
</tr>
<tr>
<td></td>
<td>Where cgw-id is cgw-xxxxxxxxx</td>
</tr>
</tbody>
</table>

471
<table>
<thead>
<tr>
<th>Resource Type</th>
<th>ARN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Where dhcp-options-id is dopt-xxxxxxxxxx</td>
</tr>
<tr>
<td>Image</td>
<td>arn:aws:ec2:region:account:image/image-id</td>
</tr>
<tr>
<td></td>
<td>Where image-id is the ID of the AMI, AKI, or ARI, and account isn't used</td>
</tr>
<tr>
<td>Instance</td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
</tr>
<tr>
<td></td>
<td>Where instance-id is i-xxxxxxxx or i-xxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>Instance profile</td>
<td>arn:aws:iam::account:instance-profile/instance-profile-name</td>
</tr>
<tr>
<td></td>
<td>Where instance-profile-name is the name of the instance profile, and region isn't used</td>
</tr>
<tr>
<td>Internet gateway</td>
<td>arn:aws:ec2:region:account:internet-gateway/igw-id</td>
</tr>
<tr>
<td></td>
<td>Where igw-id is igw-xxxxxxxx</td>
</tr>
<tr>
<td>Key pair</td>
<td>arn:aws:ec2:region:account:key-pair/key-pair-name</td>
</tr>
<tr>
<td></td>
<td>Where key-pair-name is the key pair name (for example, gsg-keypair)</td>
</tr>
<tr>
<td></td>
<td>Where launch-template-id is lt-xxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>NAT gateway</td>
<td>arn:aws:ec2:region:account:natgateway/natgateway-id</td>
</tr>
<tr>
<td></td>
<td>Where natgateway-id is nat-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where nacl-id is acl-xxxxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where eni-id is eni-xxxxxxxx</td>
</tr>
<tr>
<td>Placement group</td>
<td>arn:aws:ec2:region:account:placement-group/placement-group-name</td>
</tr>
<tr>
<td></td>
<td>Where placement-group-name is the placement group name (for example, my-cluster)</td>
</tr>
<tr>
<td>Reserved Instance</td>
<td>arn:aws:ec2:region:account:reserved-instances/reservation-id</td>
</tr>
<tr>
<td></td>
<td>Where reservation-id is xxxxxxx-xxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where route-table-id is rtb-xxxxxxxxxx</td>
</tr>
<tr>
<td>Resource Type</td>
<td>ARN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Where security-group-id is sg-xxxxxxxx</td>
</tr>
<tr>
<td>Snapshot</td>
<td>arn:aws:ec2:region::snapshot/snapshot-id</td>
</tr>
<tr>
<td></td>
<td>Where snapshot-id is snap-xxxxxxx or snap-xxxxxxxxxxxxxxxxxxxxxxx, and</td>
</tr>
<tr>
<td></td>
<td>account isn't used</td>
</tr>
<tr>
<td>Spot Instance request</td>
<td>arn:aws:ec2:region:account:spot-instances-request/spot-instance-</td>
</tr>
<tr>
<td></td>
<td>request-id</td>
</tr>
<tr>
<td></td>
<td>Where spot-instance-request-id is sir-xxxxxx</td>
</tr>
<tr>
<td>Subnet</td>
<td>arn:aws:ec2:region:account:subnet/subnet-id</td>
</tr>
<tr>
<td></td>
<td>Where subnet-id is subnet-xxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where volume-id is vol-xxxxxxx or vol-xxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>VPC</td>
<td>arn:aws:ec2:region:account:vpc/vpc-id</td>
</tr>
<tr>
<td></td>
<td>Where vpc-id is vpc-xxxxxxx</td>
</tr>
<tr>
<td>VPC peering connection</td>
<td>arn:aws:ec2:region:account:vpc-peering-connection/vpc-peering-</td>
</tr>
<tr>
<td></td>
<td>connection-id</td>
</tr>
<tr>
<td></td>
<td>Where vpc-peering-connection-id is pcx-xxxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where vpn-connection-id is vpn-xxxxxx</td>
</tr>
<tr>
<td></td>
<td>Where vpn-gateway-id is vgw-xxxxxx</td>
</tr>
</tbody>
</table>

Many Amazon EC2 API actions involve multiple resources. For example, AttachVolume attaches an Amazon EBS volume to an instance, so an IAM user must have permissions to use the volume and the instance. To specify multiple resources in a single statement, separate their ARNs with commas, as follows:

"Resource": ["arn1", "arn2"]

For more general information about ARNs, see Amazon Resource Names (ARN) and AWS Service Namespaces in the Amazon Web Services General Reference. For more information about the resources that are created or modified by the Amazon EC2 actions, and the ARNs that you can use in your IAM policy statements, see Granting IAM Users Required Permissions for Amazon EC2 Resources in the Amazon EC2 API Reference.

**Condition Keys for Amazon EC2**

In a policy statement, you can optionally specify conditions that control when it is in effect. Each condition contains one or more key-value pairs. Condition keys are not case-sensitive. We've defined AWS-wide condition keys, plus additional service-specific condition keys.
If you specify multiple conditions, or multiple keys in a single condition, we evaluate them using a logical AND operation. If you specify a single condition with multiple values for one key, we evaluate the condition using a logical OR operation. For permissions to be granted, all conditions must be met.

You can also use placeholders when you specify conditions. For example, you can grant an IAM user permission to use resources with a tag that specifies his or her IAM user name. For more information, see Policy Variables in the IAM User Guide.

**Important**
Many condition keys are specific to a resource, and some API actions use multiple resources. If you write a policy with a condition key, use the Resource element of the statement to specify the resource to which the condition key applies. If not, the policy may prevent users from performing the action at all, because the condition check fails for the resources to which the condition key does not apply. If you do not want to specify a resource, or if you've written the Action element of your policy to include multiple API actions, then you must use the ...IfExists condition type to ensure that the condition key is ignored for resources that do not use it. For more information, see ...IfExists Conditions in the IAM User Guide.

Amazon EC2 implements the following service-specific condition keys. For information about which condition keys you can use with which Amazon EC2 resources, on an action-by-action basis, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

<table>
<thead>
<tr>
<th>Condition Key</th>
<th>Key-Value Pair</th>
<th>Evaluation Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>ec2:AccepterVpc</td>
<td>&quot;ec2:AccepterVpc&quot;: &quot;vpc-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td></td>
<td>Where vpc-arn is the VPC ARN for the accepter VPC in a VPC peering connection</td>
<td></td>
</tr>
<tr>
<td>ec2:AuthorizedUser</td>
<td>&quot;ec2:AuthorizedUser&quot;: &quot;principal-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td></td>
<td>Where principal-arn is the ARN for the principal (for example, arn:aws:iam::123456789012:root)</td>
<td></td>
</tr>
<tr>
<td>ec2:AvailabilityZone</td>
<td>&quot;ec2:AvailabilityZone&quot;: &quot;az-api-name&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where az-api-name is the name of the Availability Zone (for example, us-east-2a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To list your Availability Zones, use describe-availability-zones</td>
<td></td>
</tr>
<tr>
<td>ec2:CreateAction</td>
<td>&quot;ec2:CreateAction&quot;: &quot;api-name&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where api-name is the name of the resource-creating action (for example, RunInstances)</td>
<td></td>
</tr>
<tr>
<td>ec2:EbsOptimized</td>
<td>&quot;ec2:EbsOptimized&quot;: &quot;optimized-flag&quot;</td>
<td>Boolean, Null</td>
</tr>
<tr>
<td></td>
<td>Where optimized-flag is true</td>
<td>false (for an instance)</td>
</tr>
<tr>
<td>ec2:ElasticGpuType</td>
<td>&quot;ec2:ElasticGpuType&quot;: &quot;elastic-gpu-type&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where elastic-gpu-type is the name of the elastic GPU type</td>
<td></td>
</tr>
<tr>
<td>ec2:Encrypted</td>
<td>&quot;ec2:Encrypted&quot;: &quot;encrypted-flag&quot;</td>
<td>Boolean, Null</td>
</tr>
<tr>
<td></td>
<td>Where encrypted-flag is true</td>
<td>false (for an EBS volume)</td>
</tr>
<tr>
<td>ec2:ImageType</td>
<td>&quot;ec2:ImageType&quot;: &quot;image-type-api-name&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where image-type-api-name is ami</td>
<td>aki</td>
</tr>
<tr>
<td>Condition Key</td>
<td>Key-Value Pair</td>
<td>Evaluation Types</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ec2:InstanceProfile</td>
<td>&quot;instance-profile-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td>Where instance-profile-arn is the instance profile ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:InstanceType</td>
<td>&quot;instance-type-api-name&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td>Where instance-type-api-name is the name of the instance type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:IsLaunchTemplateResource</td>
<td>&quot;launch-template-resource-flag&quot;</td>
<td>Boolean, Null</td>
</tr>
<tr>
<td>Where launch-template-resource-flag is true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>ec2:LaunchTemplate</td>
<td>&quot;launch-template-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td>Where launch-template-arn is the launch template ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:Owner</td>
<td>&quot;account-id&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td>Where account-id is amazon</td>
<td>aws-marketplace</td>
<td>aws-account-id</td>
</tr>
<tr>
<td>ec2:ParentSnapshot</td>
<td>&quot;snapshot-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td>Where snapshot-arn is the snapshot ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:ParentVolume</td>
<td>&quot;volume-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td>Where volume-arn is the volume ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:Permission</td>
<td>&quot;permission&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td>Where permission is INSTANCE-ATTACH</td>
<td>EIP-ASSOCIATE</td>
<td></td>
</tr>
<tr>
<td>ec2:PlacementGroup</td>
<td>&quot;placement-group-arn&quot;</td>
<td>ARN, Null</td>
</tr>
<tr>
<td>Where placement-group-arn is the placement group ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:PlacementGroupStrategy</td>
<td>&quot;placement-group-strategy&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td>Where placement-group-strategy is cluster</td>
<td>spread</td>
<td></td>
</tr>
<tr>
<td>ec2:ProductCode</td>
<td>&quot;product-code&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td>Where product-code is the product code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ec2:Public</td>
<td>&quot;public-flag&quot;</td>
<td>Boolean, Null</td>
</tr>
<tr>
<td>Where public-flag is true</td>
<td>false (for an AMI)</td>
<td></td>
</tr>
<tr>
<td>ec2:Region</td>
<td>&quot;region-name&quot;</td>
<td>String, Null</td>
</tr>
</tbody>
</table>
| Where region-name is the name of the region (for example, us-east-2). To list your regions, use describe-regions. This condition key can be used with all Amazon EC2 actions.
### Condition Key | Key-Value Pair | Evaluation Types
--- | --- | ---
`ec2:RequesterVpc` | `"ec2:RequesterVpc":"vpc-arn"` | ARN, Null

Where `vpc-arn` is the VPC ARN for the requester VPC in a VPC peering connection.

`ec2:ReservedInstancesOfferingType` | `"ec2:ReservedInstancesOfferingType":"offering-type"` | String, Null

Where `offering-type` is **No Upfront** | **Partial Upfront** | **All Upfront**

`ec2:ResourceTag` | `"ec2:ResourceTag/tag-key":"tag-value"` | String, Null

Where `tag-key` and `tag-value` are the tag-key pair.

`ec2:RootDeviceType` | `"ec2:RootDeviceType":"root-device-type-name"` | String, Null

Where `root-device-type-name` is **ebs** | **instance-store**

`ec2:SnapshotTime` | `"ec2:SnapshotTime":"time"` | Date, Null

Where `time` is the snapshot creation time (for example, 2013-06-01T00:00:00Z).

`ec2:Subnet` | `"ec2:Subnet":"subnet-arn"` | ARN, Null

Where `subnet-arn` is the subnet ARN.

`ec2:Tenancy` | `"ec2:Tenancy":"tenancy-attribute"` | String, Null

Where `tenancy-attribute` is **default** | **dedicated** | **host**

`ec2:VolumeIops` | `"ec2:VolumeIops":"volume-iops"` | Numeric, Null

Where `volume-iops` is the input/output operations per second (IOPS). For more information, see Amazon EBS Volume Types (p. 632).

`ec2:VolumeSize` | `"ec2:VolumeSize":"volume-size"` | Numeric, Null

Where `volume-size` is the size of the volume, in GiB.

`ec2:VolumeType` | `"ec2:VolumeType":"volume-type-name"` | String, Null

Where `volume-type-name` is **gp2** for General Purpose SSD volumes, **io1** for Provisioned IOPS SSD volumes, **st1** for Throughput Optimized HDD volumes, **sc1** for Cold HDD volumes, or **standard** for Magnetic volumes.

`ec2:Vpc` | `"ec2:Vpc":"vpc-arn"` | ARN, Null

Where `vpc-arn` is the VPC ARN.

Amazon EC2 also implements the AWS-wide condition keys. For more information, see [Information Available in All Requests](https://docs.aws.amazon.com/IAM/latest/UserGuide/awsdafg informaciónallrequests.html) in the IAM User Guide.

The `ec2:SourceInstanceARN` key can be used for conditions that specify the ARN of the instance from which a request is made. This condition key is available AWS-wide and is not service-specific. For policy examples, see [Allows an EC2 Instance to Attach or Detach Volumes](https://docs.aws.amazon.com/IAM/latest/UserGuide/awsdafg allowsinstanceattachdetachvolumes.html) and [11: Allowing a Specific Instance](https://docs.aws.amazon.com/IAM/latest/UserGuide/awsdafg specifyinginstance.html).
to View Resources in Other AWS Services (p. 525). The `ec2:SourceInstanceARN` key cannot be used as a variable to populate the ARN for the `Resource` element in a statement.

The following AWS condition keys were introduced for Amazon EC2 and are supported by a limited number of additional services.

<table>
<thead>
<tr>
<th>Condition Key</th>
<th>Key/Value Pair</th>
<th>Evaluation Types</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aws:RequestTag/tag-key</code></td>
<td>&quot;aws:Request/tag-key&quot;:&quot;tag-value&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where <code>tag-key</code> and <code>tag-value</code> are the tag key-value pair</td>
<td></td>
</tr>
<tr>
<td><code>aws:TagKeys</code></td>
<td>&quot;aws:TagKeys&quot;&quot;:&quot;tag-key&quot;</td>
<td>String, Null</td>
</tr>
<tr>
<td></td>
<td>Where <code>tag-key</code> is a list of tag keys (for example, [&quot;A&quot;,&quot;B&quot;])</td>
<td></td>
</tr>
</tbody>
</table>

For example policy statements for Amazon EC2, see Example Policies for Working with the AWS CLI or an AWS SDK (p. 503).

Checking That Users Have the Required Permissions

After you've created an IAM policy, we recommend that you check whether it grants users the permissions to use the particular API actions and resources they need before you put the policy into production.

First, create an IAM user for testing purposes, and then attach the IAM policy that you created to the test user. Then, make a request as the test user.

If the Amazon EC2 action that you are testing creates or modifies a resource, you should make the request using the `DryRun` parameter (or run the AWS CLI command with the `--dry-run` option). In this case, the call completes the authorization check, but does not complete the operation. For example, you can check whether the user can terminate a particular instance without actually terminating it. If the test user has the required permissions, the request returns `DryRunOperation`; otherwise, it returns `UnauthorizedOperation`.

If the policy doesn't grant the user the permissions that you expected, or is overly permissive, you can adjust the policy as needed and retest until you get the desired results.

**Important**

It can take several minutes for policy changes to propagate before they take effect. Therefore, we recommend that you allow five minutes to pass before you test your policy updates.

If an authorization check fails, the request returns an encoded message with diagnostic information. You can decode the message using the `DecodeAuthorizationMessage` action. For more information, see `DecodeAuthorizationMessage` in the AWS Security Token Service API Reference, and `decode-authorization-message` in the AWS CLI Command Reference.

Supported Resource-Level Permissions for Amazon EC2 API Actions

*Resource-level permissions* refers to the ability to specify which resources users are allowed to perform actions on. Amazon EC2 has partial support for resource-level permissions. This means that for certain Amazon EC2 actions, you can control when users are allowed to use those actions based on conditions that have to be fulfilled, or specific resources that users are allowed to use. For example, you can grant users permissions to launch instances, but only of a specific type, and only using a specific AMI.
The following table describes the Amazon EC2 API actions that currently support resource-level permissions, as well as the supported resources (and their ARNs) and condition keys for each action. When specifying an ARN, you can use the * wildcard in your paths; for example, when you cannot or do not want to specify exact resource IDs. For examples of using wildcards, see Example Policies for Working with the AWS CLI or an AWS SDK (p. 503).

Important
If an Amazon EC2 API action is not listed in this table, then it does not support resource-level permissions. If an Amazon EC2 API action does not support resource-level permissions, you can grant users permissions to use the action, but you have to specify a * for the resource element of your policy statement. For an example, see 1: Read-Only Access (p. 504). For a list of Amazon EC2 API actions that currently do not support resource-level permissions, see Unsupported Resource-Level Permissions in the Amazon EC2 API Reference.

All Amazon EC2 actions support the ec2:Region condition key. For an example, see 2: Restricting Access to a Specific Region (p. 504).

<table>
<thead>
<tr>
<th>API Action</th>
<th>Resources</th>
<th>Condition Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcceptVpcPeeringConnection</td>
<td>VPC peering connection</td>
<td>ec2:AccepterVpc</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc-peering-connection/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>VPC</td>
<td>ec2:RequesterVpc</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>Where vpc-id is a VPC owned by the accepter.</td>
<td></td>
</tr>
<tr>
<td>AssociateIamInstanceProfile</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>AttachClassicLinkVpc</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td>Where the security group is the security group for the VPC.</td>
<td>ec2:Vpc</td>
</tr>
<tr>
<td>VPC</td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>AttachVolume</td>
<td>arn:aws:ec2:region:account:instance/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td>Volume</td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ParentSnapshot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Volumelops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>AuthorizeSecurityGroupEgress</td>
<td>security group</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:security-group/*</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>AuthorizeSecurityGroupIngress</td>
<td>security group</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:security-group/*</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>CreateLaunchTemplateVersion</td>
<td>launch template</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>CreateNetworkInterfacePermission</td>
<td>network interface</td>
<td>ec2:AuthorizedUser</td>
</tr>
<tr>
<td>CreateRoute</td>
<td>Route table</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>CreateTags</td>
<td>Amazon FPGA image (AFI)</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:fpga-image/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:fpga-image/afi-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DHCP options set</td>
<td>arn:aws:ec2:region:account:dhcp-options/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Image</td>
<td>arn:aws:ec2:region::image/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::image/image-id</td>
<td>ec2:ImageType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Public</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Instance</td>
<td>arn:aws:ec2:region:account:instance/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Internet gateway</td>
<td>arn:aws:ec2:region:account:internet-gateway/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td>Launch template</td>
<td>arn:aws:ec2:region:account:launch-template/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td>NAT gateway</td>
<td>arn:aws:ec2:region:account:_natgateway/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:_natgateway/natgateway-id</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:network-interface/eni-id</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Reserved Instance | arn:aws:ec2:region:account:reserved-instances/* | ec2:AvailabilityZone  
|                | arn:aws:ec2:region:account:reserved-instances/reservation-id          | ec2:CreateAction  
|                |                                                                       | ec2:InstanceType  
|                |                                                                       | ec2:ReservedInstancesOfferingType  
|                |                                                                       | ec2:Region  
|                |                                                                       | ec2:ResourceTag/tag-key  
|                |                                                                       | ec2:Tenancy  
|                |                                                                       | aws:RequestTag/tag-key  
|                |                                                                       | aws:TagKeys  
| Route table    | arn:aws:ec2:region:account:route-table/* | ec2:CreateAction  
|                |                                                                       | ec2:ResourceTag/tag-key  
|                |                                                                       | ec2:Vpc  
|                |                                                                       | aws:RequestTag/tag-key  
|                |                                                                       | aws:TagKeys  
|                | arn:aws:ec2:region:account:security-group/security-group-id          | ec2:Region  
|                |                                                                       | ec2:ResourceTag/tag-key  
|                |                                                                       | ec2:Vpc  
|                |                                                                       | aws:RequestTag/tag-key  
|                |                                                                       | aws:TagKeys  
| Snapshot       | arn:aws:ec2:region::snapshot/*                                          | ec2:CreateAction  
|                | arn:aws:ec2:region::snapshot/snapshot-id                               | ec2:Owner  
|                |                                                                       | ec2:ParentVolume  
|                |                                                                       | ec2:Region  
|                |                                                                       | ec2:ResourceTag/tag-key  
|                |                                                                       | ec2:SnapshotTime  
|                |                                                                       | ec2:VolumeSize  
|                |                                                                       | aws:RequestTag/tag-key  
<p>|                |                                                                       | aws:TagKeys  |</p>
<table>
<thead>
<tr>
<th>API Action</th>
<th>Resources</th>
<th>Condition Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Instance request</td>
<td>arn:aws:ec2:region:account:spot-instances-request/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Subnet</td>
<td>arn:aws:ec2:region:account:subnet/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:subnet/subnet-id</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Vpc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Volume</td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:volume/volume-id</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Encrypted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ParentSnapshot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Volumelops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>VPC</td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc/vpc-id</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------</td>
</tr>
<tr>
<td>VPN connection</td>
<td>arn:aws:ec2:region:account:vpn-connection/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>VPN gateway</td>
<td>arn:aws:ec2:region:account:vpn-gateway/*</td>
<td>ec2:CreateAction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>CreateVolume</td>
<td>Volume</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:Encrypted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ParentSnapshot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Volumelops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>CreateVpcPeeringConnection</td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>VPC</td>
<td>arn:aws:ec2:region:account:vpc/vpc-id</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td>Where vpc-id is a requester VPC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VPC peering connection</td>
<td>ec2:AccepterVpc</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc-peering-connection/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RequesterVpc</td>
</tr>
<tr>
<td>DeleteCustomerGateway</td>
<td>Customer gateway</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:customer-gateway/cgw-id</td>
<td></td>
</tr>
</tbody>
</table>

485
<table>
<thead>
<tr>
<th>API Action</th>
<th>Resources</th>
<th>Condition Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeleteDhcpOptions</td>
<td>DHCP options set</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteInternetGateway</td>
<td>Internet gateway</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteLaunchTemplate</td>
<td>Launch template</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteLaunchTemplateVersions</td>
<td>Launch template</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteNetworkAcl</td>
<td>Network ACL</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteNetworkAclEntry</td>
<td>Network ACL</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteRoute</td>
<td>Route table</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DeleteRouteTable</td>
<td>Route table</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------</td>
<td>-----------------------------------------</td>
</tr>
<tr>
<td>DeleteTags</td>
<td>Amazon FPGA image (AFI) arn:aws:ec2:region:account:fpga-image/*</td>
<td>ec2:Region ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>DHCP options set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td>arn:aws:ec2:region:image/*</td>
<td>ec2:Region ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:image/image-id</td>
<td>aws:RequestTag/tag-key aws:TagKeys</td>
</tr>
<tr>
<td>Instance</td>
<td>arn:aws:ec2:region:account:instance/*</td>
<td>ec2:Region ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>NAT gateway</td>
<td>arn:aws:ec2:region:account:natgateway/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:natgateway/natgateway-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:network-interface/eni-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td>Reserved Instance</td>
<td>arn:aws:ec2:region:account:reserved-instances/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:reserved-instances/reservation-id</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:reserved-instances/reservation-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td>Route table</td>
<td>arn:aws:ec2:region:account:route-table/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:security-group/security-group-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td>Snapshot</td>
<td>arn:aws:ec2:region::snapshot/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::snapshot/snapshot-id</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::snapshot/snapshot-id</td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::snapshot/snapshot-id</td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Spot Instance request</td>
<td>arn:aws:ec2:region:account:spot-instances-request/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Subnet</td>
<td>arn:aws:ec2:region:account:subnet/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>Volume</td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>VPC</td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>VPN connection</td>
<td>arn:aws:ec2:region:account:vpn-connection/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>VPN gateway</td>
<td>arn:aws:ec2:region:account:vpn-gateway/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:RequestTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aws:TagKeys</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>DeleteVolume</td>
<td>Volume</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:Encrypted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td>DeleteVpcPeeringConnection</td>
<td>VPC peering connection</td>
<td>ec2:AccepterVpc</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc-peering-connection/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RequesterVpc</td>
</tr>
<tr>
<td>DetachClassicLinkVpc</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>VPC</td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc/*</td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:vpc/vpc-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>DetachVolume</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:Encrypted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td>DisableVpcClassicLink</td>
<td>VPC</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>DisassociateIamInstanceProfile</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td><strong>API Action</strong></td>
<td><strong>Resources</strong></td>
<td><strong>Condition Keys</strong></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>EnableVpcClassicLink</td>
<td>VPC</td>
<td>ec2:Region, ec2:ResourceTag/tag-key, ec2:Tenancy</td>
</tr>
<tr>
<td>GetConsoleScreenshot</td>
<td>Instance</td>
<td>ec2:AvailabilityZone, ec2:EbsOptimized, ec2:InstanceProfile, ec2:InstanceType, ec2:PlacementGroup, ec2:Region, ec2:ResourceTag/tag-key, ec2:RootDeviceType, ec2:Tenancy</td>
</tr>
<tr>
<td>ModifyLaunchTemplate</td>
<td>Launch template</td>
<td>ec2:Region, ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>RebootInstances</td>
<td>Instance</td>
<td>ec2:AvailabilityZone, ec2:EbsOptimized, ec2:InstanceProfile, ec2:InstanceType, ec2:PlacementGroup, ec2:Region, ec2:ResourceTag/tag-key, ec2:RootDeviceType, ec2:Tenancy</td>
</tr>
<tr>
<td>RejectVpcPeeringConnection</td>
<td>VPC peering connection</td>
<td>ec2:AccepterVpc, ec2:Region, ec2:ResourceTag/tag-key, ec2:RequesterVpc</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>ReplaceIamInstanceProfile</td>
<td>Instance</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:instance/instance-id</td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>ReplaceRoute</td>
<td>Route table</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>RevokeSecurityGroupEgress</td>
<td>Security group</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:security-group/*</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>RevokeSecurityGroupIngress</td>
<td>Security group</td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:security-group/*</td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td>RunInstances</td>
<td>Elastic GPU</td>
<td>ec2:ElasticGpuType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:elastic-gpu/*</td>
<td>ec2:LaunchTemplate</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:elastic-gpu/*</td>
<td>ec2:Region</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Image</td>
<td><code>arn:aws:ec2:region::image/*</code>&lt;br&gt;<code>arn:aws:ec2:region::image/image-id</code></td>
<td><code>ec2:imageType</code>&lt;br&gt;<code>ec2:isLaunchTemplateResource</code>&lt;br&gt;<code>ec2:LaunchTemplate</code>&lt;br&gt;<code>ec2:Owner</code>&lt;br&gt;<code>ec2:Public</code>&lt;br&gt;<code>ec2:Region</code>&lt;br&gt;<code>ec2:RootDeviceType</code>&lt;br&gt;<code>ec2:ResourceTag/tag-key</code></td>
</tr>
<tr>
<td>Instance</td>
<td><code>arn:aws:ec2:region:account:instance/*</code></td>
<td><code>ec2:AvailabilityZone</code>&lt;br&gt;<code>ec2:EbsOptimized</code>&lt;br&gt;<code>ec2:isLaunchTemplateResource</code>&lt;br&gt;<code>ec2:InstanceProfile</code>&lt;br&gt;<code>ec2:InstanceType</code>&lt;br&gt;<code>ec2:LaunchTemplate</code>&lt;br&gt;<code>ec2:PlacementGroup</code>&lt;br&gt;<code>ec2:Region</code>&lt;br&gt;<code>ec2:RootDeviceType</code>&lt;br&gt;<code>ec2:Tenancy</code>&lt;br&gt;<code>aws:RequestTag/tag-key</code>&lt;br&gt;<code>aws:TagKeys</code></td>
</tr>
<tr>
<td>Key pair</td>
<td><code>arn:aws:ec2:region:account:key-pair/*</code>&lt;br&gt;<code>arn:aws:ec2:region:account:key-pair/key-pair-name</code></td>
<td><code>ec2:isLaunchTemplateResource</code>&lt;br&gt;<code>ec2:LaunchTemplate</code>&lt;br&gt;<code>ec2:Region</code></td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:LaunchTemplate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Subnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Vpc</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region:account:placement-group/placement-group-name</td>
<td>ec2:LaunchTemplate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroupStrategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Vpc</td>
</tr>
<tr>
<td>Snapshot</td>
<td>arn:aws:ec2:region::snapshot/*</td>
<td>ec2:IsLaunchTemplateResource</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::snapshot/snapshot-id</td>
<td>ec2:LaunchTemplate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Owner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ParentVolume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:SnapshotTime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td>Subnet</td>
<td>arn:aws:ec2:region:account:subnet/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:LaunchTemplate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Vpc</td>
</tr>
<tr>
<td>API Action</td>
<td>Resources</td>
<td>Condition Keys</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
</tbody>
</table>
|              | Volume                                         | ec2:AvailabilityZone  
|              | arn:aws:ec2:region:account:volume/*           | ec2:Encrypted                                       |
|              |                                                | ec2:isLaunchTemplateResource                        |
|              |                                                | ec2:LaunchTemplate                                  |
|              |                                                | ec2:ParentSnapshot                                  |
|              |                                                | ec2:Region                                          |
|              |                                                | ec2:Volumelops                                      |
|              |                                                | ec2:VolumeSize                                      |
|              |                                                | ec2:VolumeType                                      |
|              |                                                | aws:RequestTag/tag-key                              |
|              |                                                | aws:TagKeys                                         |
| StartInstances | Instance                                      | ec2:AvailabilityZone  
|              | arn:aws:ec2:region:account:instance/instance-id | ec2:InstanceProfile                                |
|              |                                                | ec2:InstanceType                                    |
|              |                                                | ec2:PlacementGroup                                  |
|              |                                                | ec2:Region                                          |
|              |                                                | ec2:ResourceTag/tag-key                             |
|              |                                                | ec2:RootDeviceType                                  |
|              |                                                | ec2:Tenancy                                         |
| StopInstances | Instance                                      | ec2:AvailabilityZone  
|              | arn:aws:ec2:region:account:instance/instance-id | ec2:InstanceProfile                                |
|              |                                                | ec2:InstanceType                                    |
|              |                                                | ec2:PlacementGroup                                  |
|              |                                                | ec2:Region                                          |
|              |                                                | ec2:ResourceTag/tag-key                             |
|              |                                                | ec2:RootDeviceType                                  |
|              |                                                | ec2:Tenancy                                         |
Resource-Level Permissions for RunInstances

The RunInstances API action launches one or more instances, and creates and uses a number of Amazon EC2 resources. The action requires an AMI and creates an instance; and the instance must be associated with a security group. Launching into a VPC requires a subnet, and creates a network interface. Launching from an Amazon EBS-backed AMI creates a volume. The user must have permissions to use these resources, so they must be specified in the Resource element of any policy that uses resource-level permissions for the ec2:RunInstances action. If you don't intend to use resource-level permissions with the ec2:RunInstances action, you can specify the * wildcard in the Resource element of your statement instead of individual ARNs.

If you are using resource-level permissions, the following table describes the minimum resources required to use the ec2:RunInstances action.

<table>
<thead>
<tr>
<th>Type of launch</th>
<th>Resources required</th>
<th>Condition keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ec2:EbsOptimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>Launching into EC2-Classic using a snapshot-backed AMI</td>
<td>arn:aws:ec2:region:account:instance/snapshot/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:EbsOptimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>Launching into a VPC using an EBS-backed AMI</td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:EbsOptimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>Launching from an EBS-backed AMI</td>
<td>arn:aws:ec2:region:account:volume/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:EbsOptimized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceProfile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:InstanceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:PlacementGroup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:RootDeviceType</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ec2:Tenancy</td>
</tr>
<tr>
<td>Type of launch</td>
<td>Resources required</td>
<td>Condition keys</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::image/* (or a specific AMI ID)</td>
<td>ec2:ImageType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:owner:security-group/* (or a specific security group ID)</td>
<td>ec2:Owner</td>
</tr>
<tr>
<td>Launching into EC2-Classic using an Amazon EBS-backed AMI</td>
<td>arn:aws:ec2::region::account:instance/*</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:region::image/* (or a specific AMI ID)</td>
<td>ec2:ImageType</td>
</tr>
<tr>
<td></td>
<td>arn:aws:ec2:owner:security-group/* (or a specific security group ID)</td>
<td>ec2:Owner</td>
</tr>
<tr>
<td>Type of launch</td>
<td>Resources required</td>
<td>Condition keys</td>
</tr>
<tr>
<td>----------------------------------------------------</td>
<td>--------------------------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Launching into a VPC using an instance store-backed AMI</td>
<td><code>arn:aws:ec2:region:account:volume/*</code></td>
<td><code>ec2:AvailabilityZone</code></td>
</tr>
<tr>
<td></td>
<td><code>ec2:ParentSnapshot</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ec2:Region</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ec2:Volumelops</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ec2:VolumeSize</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ec2:VolumeType</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>arn:aws:ec2:region:account:instance/*</code></td>
<td><code>ec2:AvailabilityZone</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:EbsOptimized</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:InstanceProfile</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:InstanceType</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:PlacementGroup</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Region</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:RootDeviceType</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Tenancy</code></td>
</tr>
<tr>
<td></td>
<td><code>arn:aws:ec2:region::image/*</code> (or a specific AMI ID)</td>
<td><code>ec2:ImageType</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Owner</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Public</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Region</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:RootDeviceType</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:ResourceTag/tag-key</code></td>
</tr>
<tr>
<td></td>
<td><code>arn:aws:ec2:region:account:securitygroup/*</code> (or a specific security group ID)</td>
<td><code>ec2:Region</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:ResourceTag/tag-key</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Vpc</code></td>
</tr>
<tr>
<td></td>
<td><code>arn:aws:ec2:region:account:networkinterface/*</code> (or a specific network interface ID)</td>
<td><code>ec2:AvailabilityZone</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Region</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Subnet</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:ResourceTag/tag-key</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ec2:Vpc</code></td>
</tr>
<tr>
<td>Type of launch</td>
<td>Resources required</td>
<td>Condition keys</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
### Type of launch

<table>
<thead>
<tr>
<th>Resources required</th>
<th>Condition keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ec2:ParentSnapshot</td>
</tr>
<tr>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>ec2:Volumelops</td>
</tr>
<tr>
<td></td>
<td>ec2:VolumeSize</td>
</tr>
<tr>
<td></td>
<td>ec2:VolumeType</td>
</tr>
<tr>
<td>arn:aws:ec2:region:account:subnet/* (or a specific subnet ID)</td>
<td>ec2:AvailabilityZone</td>
</tr>
<tr>
<td></td>
<td>ec2:Region</td>
</tr>
<tr>
<td></td>
<td>ec2:ResourceTag/tag-key</td>
</tr>
<tr>
<td></td>
<td>ec2:Vpc</td>
</tr>
</tbody>
</table>

We recommend that you also specify the key pair resource in your policy — even though it's not required to launch an instance, you can't connect to your instance without a key pair. For examples of using resource-level permissions with the `ec2:RunInstances` action, see 5: Launching Instances (RunInstances) (p. 508).

For additional information about resource-level permissions in Amazon EC2, see the following AWS Security Blog post: Demystifying EC2 Resource-Level Permissions.

### Resource-Level Permissions for RunInstances and Launch Templates

You can create a launch template (p. 271) that contains the parameters to launch an instance. When users use the `ec2:RunInstances` action, they can specify the launch template to use to launch instances. You can apply resource-level permissions for the launch template resource for the `ec2:RunInstances` action. For example, you can specify that users can only launch instances using a launch template, and that they must use a specific launch template. You can also control the parameters that users can or cannot override in the launch template. This enables you to manage the parameters for launching an instance in a launch template rather than an IAM policy. For example policies, see Launch Templates (p. 517).

### Resource-Level Permissions for Tagging

Some resource-creating Amazon EC2 API actions enable you to specify tags when you create the resource. For more information, see Tagging Your Resources (p. 761).

To enable users to tag resources on creation, they must have permissions to use the action that creates the resource (for example, `ec2:RunInstances` or `ec2:CreateVolume`). If tags are specified in the resource-creating action, Amazon performs additional authorization on the `ec2:CreateTags` action to verify if users have permissions to create tags. Therefore, users must also have explicit permissions to use the `ec2:CreateTags` action.

For the `ec2:CreateTags` action, you can use the `ec2:CreateAction` condition key to restrict tagging permissions to the resource-creating actions only. For example, the following policy allows users to launch instances and apply any tags to instances and volumes during launch. Users are not permitted to tag any existing resources (they cannot call the `ec2:CreateTags` action directly).
Similarly, the following policy allows users to create volumes and apply any tags to the volumes during volume creation. Users are not permitted to tag any existing resources (they cannot call the `ec2:CreateTags` action directly).

```json
{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateVolume"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateTags"],
 "Resource": "arn:aws:ec2:region:account:*/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction" : "CreateVolume"
 }
 }
 }
]
}
```

The `ec2:CreateTags` action is only evaluated if tags are applied during the resource-creating action. Therefore, a user that has permissions to create a resource (assuming there are no tagging conditions) does not require permissions to use the `ec2:CreateTags` action if no tags are specified in the request. However, if the user attempts to create a resource with tags, the request fails if the user does not have permissions to use the `ec2:CreateTags` action.

The `ec2:CreateTags` action is also evaluated if tags are provided in a launch template and the launch template is specified in the `ec2:RunInstances` action. For an example policy, see Applying Tags in a Launch Template (p. 516).
You can control the tag keys and values that are applied to resources by using the following condition keys:

- **aws:RequestTag**: To indicate that a particular tag key or tag key and value must be present in a request. Other tags can also be specified in the request.
  - Use with the `StringEquals` condition operator to enforce a specific tag key and value combination, for example, to enforce the tag `cost-center=cc123`:
    ```json
 "StringEquals": { "aws:RequestTag/cost-center": "cc123" }
    ```
  - Use with the `StringLike` condition operator to enforce a specific tag key in the request; for example, to enforce the tag key `purpose`:
    ```json
 "StringLike": { "aws:RequestTag/purpose": "*" }
    ```

- **aws:TagKeys**: To enforce the tag keys that are used in the request.
  - Use with the `ForAllValues` modifier to enforce specific tag keys if they are provided in the request (if tags are specified in the request, only specific tag keys are allowed; no other tags are allowed). For example, the tag keys `environment` or `cost-center` are allowed:
    ```json
 "ForAllValues:StringEquals": { "aws:TagKeys": ["environment","cost-center"] }
    ```
  - Use with the `ForAnyValue` modifier to enforce the presence of at least one of the specified tag keys in the request. For example, at least one of the tag keys `environment` or `webserver` must be present in the request:
    ```json
 "ForAnyValue:StringEquals": { "aws:TagKeys": ["environment","webserver"] }
    ```

These condition keys can be applied to resource-creating actions that support tagging, as well as the `ec2:CreateTags` and `ec2:DeleteTags` actions.

To force users to specify tags when they create a resource, you must use the `aws:RequestTag` condition key or the `aws:TagKeys` condition key with the `ForAnyValue` modifier on the resource-creating action. The `ec2:CreateTags` action is not evaluated if a user does not specify tags for the resource-creating action.

For conditions, the condition key is not case-sensitive and the condition value is case-sensitive. Therefore, to enforce the case-sensitivity of a tag key, use the `aws:TagKeys` condition key, where the tag key is specified as a value in the condition.

For more information about multi-value conditions, see [Creating a Condition That Tests Multiple Key Values in the IAM User Guide](https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html). For example IAM policies, see [Example Policies for Working with the AWS CLI or an AWS SDK](https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html). For examples of IAM policies specific to Amazon VPC, see [Controlling Access to Amazon VPC Resources](https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_vpc.html).

### Example Policies for Working with the AWS CLI or an AWS SDK

The following examples show policy statements that you could use to control the permissions that IAM users have to Amazon EC2. These policies are designed for requests that are made with the AWS CLI or an AWS SDK. For example policies for working in the Amazon EC2 console, see [Example Policies for Working in the Amazon EC2 Console](https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html). For examples of IAM policies specific to Amazon VPC, see [Controlling Access to Amazon VPC Resources](https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_vpc.html).

### Contents

- 1: Read-Only Access (p. 504)
- 2: Restricting Access to a Specific Region (p. 504)
1: Read-Only Access

The following policy grants users permissions to use all Amazon EC2 API actions whose names begin with `Describe`. The `Resource` element uses a wildcard to indicate that users can specify all resources with these API actions. The * wildcard is also necessary in cases where the API action does not support resource-level permissions. For more information about which ARNs you can use with which Amazon EC2 API actions, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

Users don't have permission to perform any actions on the resources (unless another statement grants them permission to do so) because they're denied permission to use API actions by default.

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 }]
}
```

2: Restricting Access to a Specific Region

The following policy grants users permissions to use all Amazon EC2 API actions in the EU (Frankfurt) region only. Users cannot view, create, modify, or delete resources in any other region.

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ec2:Region": "eu-central-1"
 }
 }
 }]
}
```

3: Working with Instances

Topics
IAM Policies

- Describe, Launch, Stop, Start, and Terminate All Instances (p. 505)
- Describe All Instances, and Stop, Start, and Terminate Only Particular Instances (p. 505)

Describe, Launch, Stop, Start, and Terminate All Instances

The following policy grants users permissions to use the API actions specified in the Action element. The Resource element uses a * wildcard to indicate that users can specify all resources with these API actions. The * wildcard is also necessary in cases where the API action does not support resource-level permissions. For more information about which ARNs you can use with which Amazon EC2 API actions, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

The users don't have permission to use any other API actions (unless another statement grants them permission to do so) because users are denied permission to use API actions by default.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeImages",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeAvailabilityZones",
 "ec2:RunInstances",
 "ec2:TerminateInstances",
 "ec2:StopInstances",
 "ec2:StartInstances"
],
 "Resource": "*
 }
]
}
```

Describe All Instances, and Stop, Start, and Terminate Only Particular Instances

The following policy allows users to describe all instances, to start and stop only instances i-1234567890abcdef0 and i-0598c7d356eba48d7, and to terminate only instances in the US East (N. Virginia) Region (us-east-1) with the resource tag "purpose=test".

The first statement uses a * wildcard for the Resource element to indicate that users can specify all resources with the action; in this case, they can list all instances. The * wildcard is also necessary in cases where the API action does not support resource-level permissions (in this case, ec2:DescribeInstances). For more information about which ARNs you can use with which Amazon EC2 API actions, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

The second statement uses resource-level permissions for the StopInstances and StartInstances actions. The specific instances are indicated by their ARNs in the Resource element.

The third statement allows users to terminate all instances in the US East (N. Virginia) Region (us-east-1) that belong to the specified AWS account, but only where the instance has the tag "purpose=test". The Condition element qualifies when the policy statement is in effect.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:DescribeInstances"],
 "Resource": "*
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:StopInstances"],
 "Resource": "*
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource": "*
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:StartInstances"],
 "Resource": "*
 }
]
}
```
4. Working with Volumes

Topics

• Attaching and Detaching Volumes (p. 506)
• Creating a Volume (p. 507)
• Creating a Volume with Tags (p. 507)

Attaching and Detaching Volumes

When an API action requires a caller to specify multiple resources, you must create a policy statement that allows users to access all required resources. If you need to use a Condition element with one or more of these resources, you must create multiple statements as shown in this example.

The following policy allows users to attach volumes with the tag "volume_user=iam-user-name" to instances with the tag "department=dev", and to detach those volumes from those instances. If you attach this policy to an IAM group, the aws:username policy variable gives each IAM user in the group permission to attach or detach volumes from the instances with a tag named volume_user that has his or her IAM user name as a value.

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["ec2:AttachVolume", "ec2:DetachVolume"],
 "Condition": { "StringEquals": { "ec2:ResourceTag/department": "dev" } }
 }, {
 "Effect": "Allow",
 "Action": ["ec2:AttachVolume", "ec2:DetachVolume"],
 "Condition": { "StringEquals": { "ec2:ResourceTag/department": "dev" } }
 }
}
```
Creating a Volume

The following policy allows users to use the CreateVolume API action. The user is allowed to create a volume only if the volume is encrypted and only if the volume size is less than 20 GiB.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateVolume"],
 "Condition": {
 "NumericLessThan": {"ec2:VolumeSize": "20"},
 "Bool": {"ec2:Encrypted": "true"}
 }
 }
]
}
```

Creating a Volume with Tags

The following policy includes the aws:RequestTag condition key that requires users to tag any volumes they create with the tags costcenter=115 and stack=prod. The aws:TagKeys condition key uses the ForAllValues modifier to indicate that only the keys costcenter and stack are allowed in the request (no other tags can be specified). If users don't pass these specific tags, or if they don't specify tags at all, the request fails.

For resource-creating actions that apply tags, users must also have permissions to use the CreateTags action. The second statement uses the ec2:CreateAction condition key to allow users to create tags only in the context of CreateVolume. Users cannot tag existing volumes or any other resources. For more information, see Resource-Level Permissions for Tagging (p. 501).

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreateTaggedVolumes",
 "Effect": "Allow",
 "Action": "ec2:CreateVolume",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/costcenter": "115",
 "aws:RequestTag/stack": "prod"
 }
 }
 }
]
}
```
The following policy allows users to create a volume without having to specify tags. The CreateTags action is only evaluated if tags are specified in the CreateVolume request. If users do specify tags, the tag must be purpose=test. No other tags are allowed in the request.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateTags"],
 "Condition": { "StringEquals": { "ec2:CreateAction": "CreateVolume" } }
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateVolume"],
 "Resource": "*",
 "Condition": {
 "StringEquals": { "aws:RequestTag/purpose": "test", "ec2:CreateAction": "CreateVolume" },
 "ForAllValues:StringEquals": { "aws:TagKeys": "purpose" }
 }
 }
]
}
```

5: Launching Instances (RunInstances)

The RunInstances API action launches one or more instances. RunInstances requires an AMI and creates an instance; and users can specify a key pair and security group in the request. Launching into EC2-VPC requires a subnet, and creates a network interface. Launching from an Amazon EBS-backed AMI creates a volume. Therefore, the user must have permissions to use these Amazon EC2 resources. You can create a policy statement that requires users to specify an optional parameter on RunInstances, or restricts users to particular values for a parameter.

For more information about the resource-level permissions that are required to launch an instance, see Resource-Level Permissions for RunInstances (p. 497).
By default, users don't have permissions to describe, start, stop, or terminate the resulting instances. One way to grant the users permission to manage the resulting instances is to create a specific tag for each instance, and then create a statement that enables them to manage instances with that tag. For more information, see 3: Working with Instances (p. 504).

Topics
- AMI (p. 509)
- Instance Type (p. 510)
- Subnet (p. 511)
- EBS Volumes (p. 512)
- Applying Tags (p. 513)
- Applying Tags in a Launch Template (p. 516)
- Attaching an Elastic GPU (p. 516)
- Launch Templates (p. 517)

AMI

The following policy allows users to launch instances using only the specified AMIs, ami-9e1670f7 and ami-45cf5c3c. The users can't launch an instance using other AMIs (unless another statement grants the users permission to do so).

```
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region::image/ami-9e1670f7",
 "arn:aws:ec2:region::image/ami-45cf5c3c",
 "arn:aws:ec2:region:account:instance/**",
 "arn:aws:ec2:region:account:volume/**",
 "arn:aws:ec2:region:account:key-pair/**",
 "arn:aws:ec2:region:account:security-group/**",
 "arn:aws:ec2:region:account:subnet/**",
]
 }]
}
```

Alternatively, the following policy allows users to launch instances from all AMIs owned by Amazon. The Condition element of the first statement tests whether ec2:Owner is amazon. The users can't launch an instance using other AMIs (unless another statement grants the users permission to do so).

```
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region::image/ami-*"
],
 "Condition": {
 "StringEquals": {
 "ec2:Owner": "amazon"
 }
 }
 }]
}
```
IAM Policies

### [EC2-Classic only] The following policy allows users to launch instances using only the AMIs that have the specified tag, "department=dev", associated with them. The users can't launch instances using other AMIs because the Condition element of the first statement requires that users specify an AMI that has this tag. Users can only launch into EC2-Classic, as the policy does not grant permissions for the subnet and network interface resources. The second statement uses a wildcard to enable users to create instance resources, and requires users to specify the key pair project_keypair and the security group sg-1a2b3c4d. Users are still able to launch instances without a key pair.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region::image/ami-*"
],
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/department": "dev"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region:account:instance/*",
 "arn:aws:ec2:region:account:subnet/*",
 "arn:aws:ec2:region:account:volume/*",
 "arn:aws:ec2:region:account:key-pair/project_keypair",
 "arn:aws:ec2:region:account:security-group/*",
 "arn:aws:ec2:region:account:security-group/sg-1a2b3c4d"
]
 }
]
}
```

### Instance Type

The following policy allows users to launch instances using only the t2.micro or t2.small instance type, which you might do to control costs. The users can't launch larger instances because the Condition element of the first statement tests whether ec2:InstanceType is either t2.micro or t2.small.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region:account:instance/*",
 "arn:aws:ec2:region:account:volume/*",
 "arn:aws:ec2:region:account:key-pair/project_keypair",
 "arn:aws:ec2:region:account:security-group/*",
 "arn:aws:ec2:region:account:security-group/sg-1a2b3c4d"
]
 }
]
}
```
"Action": "ec2:RunInstances",
"Resource": [  
  "arn:aws:ec2:region:account:instance/*"
],
"Condition": {  
  "StringEquals": {  
    "ec2:InstanceType": ["t2.micro", "t2.small"]
  }
},
{
  "Effect": "Allow",
  "Action": "ec2:RunInstances",
  "Resource": [
    "arn:aws:ec2:region::image/ami-*",
    "arn:aws:ec2:region:account:subnet/*",
    "arn:aws:ec2:region:account:volume/*",
    "arn:aws:ec2:region:account:key-pair/*",
    "arn:aws:ec2:region:account:security-group/*"
  ]
}
]
}

Alternatively, you can create a policy that denies users permissions to launch any instances except t2.micro and t2.small instance types.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": "ec2:RunInstances",
      "Resource": [  
        "arn:aws:ec2:region:account:instance/*"
      ],
      "Condition": {  
        "StringNotEquals": {  
          "ec2:InstanceType": ["t2.micro", "t2.small"]
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": "ec2:RunInstances",
      "Resource": [
        "arn:aws:ec2:region::image/ami-*",
        "arn:aws:ec2:region:account:subnet/*",
        "arn:aws:ec2:region:account:instance/*",
        "arn:aws:ec2:region:account:volume/*",
        "arn:aws:ec2:region:account:key-pair/*",
        "arn:aws:ec2:region:account:security-group/*"
      ]
    }
  ]
}
]

**Subnet**

The following policy allows users to launch instances using only the specified subnet, subnet-12345678. The group can't launch instances into any another subnet (unless another statement grants the users permission to do so). Users are still able to launch instances into EC2-Classic.
Alternatively, you could create a policy that denies users permissions to launch an instance into any other subnet. The statement does this by denying permission to create a network interface, except where subnet subnet-12345678 is specified. This denial overrides any other policies that are created to allow launching instances into other subnets. Users are still able to launch instances into EC2-Classic.

```
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Action": "ec2:RunInstances",
 "Resource": [
],
 "Condition": {
 "ArnNotEquals": {
 }
 }
 },
 {"Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region:image/ami-*",
 "arn:aws:ec2:region:account:instance/*",
 "arn:aws:ec2:region:account:subnet/*",
 "arn:aws:ec2:region:account:volume/*",
 "arn:aws:ec2:region:account:security-group/*"
]
 }
}
```

**EBS Volumes**

The following policy allows users to launch instances only if the EBS volumes for the instance are encrypted. The user must launch an instance from an AMI that was created with encrypted snapshots, to ensure that the root volume is encrypted. Any additional volume that the user attaches to the instance during launch must also be encrypted.

```
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:region:image/ami-*",
 "arn:aws:ec2:region:account:instance/*",
 "arn:aws:ec2:region:account:subnet/*",
 "arn:aws:ec2:region:account:volume/*",
 "arn:aws:ec2:region:account:security-group/*"
]
 }
}
```
Applying Tags

The following policy allows users to launch instances and tag the instances during creation. For resource-creating actions that apply tags, users must have permissions to use the CreateTags action. The second statement uses the ec2:CreateAction condition key to allow users to create tags only in the context of RunInstances, and only for instances. Users cannot tag existing resources, and users cannot tag volumes using the RunInstances request.

For more information, see Resource-Level Permissions for Tagging (p. 501).
The following policy includes the `aws:RequestTag` condition key that requires users to tag any instances and volumes that are created by `RunInstances` with the tags `environment=production` and `purpose=webserver`. The `aws:TagKeys` condition key uses the `ForAllValues` modifier to indicate that only the keys `environment` and `purpose` are allowed in the request (no other tags can be specified). If no tags are specified in the request, the request fails.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances"
],
 "Resource": [
 "arn:aws:ec2:region::image/*",
 "arn:aws:ec2:region::account:subnet/**",
 "arn:aws:ec2:region::account:network-interface/**",
 "arn:aws:ec2:region::account:security-group/**",
 "arn:aws:ec2:region::account:key-pair/**"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": "production",
 "aws:RequestTag/purpose": "webserver"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["environment","purpose"]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances"
],
 "Resource": [
 "arn:aws:ec2:region::account:volume/**",
 "arn:aws:ec2:region::account:instance/**"
],
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "RunInstances"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:region::account:*/**",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "RunInstances"
 }
 }
 }
]
}
```

The following policy uses the `ForAnyValue` modifier on the `aws:TagKeys` condition to indicate that at least one tag must be specified in the request, and it must contain the key `environment` or `webserver`. The tag must be applied to both instances and volumes. Any tag values can be specified in the request.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances"
],
 "Resource": [
 "arn:aws:ec2:region::account:subnet/**",
 "arn:aws:ec2:region::account:network-interface/**",
 "arn:aws:ec2:region::account:security-group/**",
 "arn:aws:ec2:region::account:key-pair/**"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": "production",
 "aws:RequestTag/purpose": "webserver"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["environment","purpose"]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances"
],
 "Resource": [
 "arn:aws:ec2:region::account:volume/**",
 "arn:aws:ec2:region::account:instance/**"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": "production",
 "aws:RequestTag/purpose": "webserver"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:region::account:*/**",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "RunInstances"
 }
 }
 }
]
}
```
In the following policy, users do not have to specify tags in the request, but if they do, the tag must be purpose=test. No other tags are allowed. Users can apply the tags to any taggable resource in the RunInstances request.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:RunInstances"]
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateTags"]
 }
]
}
```
Applying Tags in a Launch Template

In the following example, users can launch instances, but only if they use a specific launch template (lt-09477bcd97b0d310e). The `ec2:IsLaunchTemplateResource` condition key prevents users from overriding any of the launch template parameters. The second part of the statement allows users to tag instances on creation—this part of the statement is necessary if tags are specified for the instance in the launch template.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:region:account:launch-template/lt-09477bcd97b0d310e",
 },
 "Bool": {
 "ec2:IsLaunchTemplateResource": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": ["ec2:CreateTags"],
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "RunInstances"
 }
 }
 }
]
}
```

Attaching an Elastic GPU

In the following policy, users can launch an instance and specify an elastic GPU to attach to the instance. Users can launch instances in any region, but they can only attach an elastic GPU during a launch in the us-east-2 region.

The `ec2:ElasticGpuType` condition key uses the `ForAnyValue` modifier to indicate that only the elastic GPU types `eg1.medium` and `eg1.large` are allowed in the request.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:AttachElasticGpu"],
 "Condition": {
 "StringEquals": {
 "ec2:ElasticGpuType": ["eg1.medium", "eg1.large"
 }
 }
 }
]
}
```
"Statement": [  
  {  
    "Effect": "Allow",  
    "Action": [  
      "ec2:RunInstances"  
    ],  
    "Resource": [  
      "arn:aws:ec2::*:account:elastic-gpu/*"  
    ],  
    "Condition": {  
      "StringEquals": {  
        "ec2:Region": "us-east-2"  
      },  
      "ForAnyValue:StringLike": {  
        "ec2:ElasticGpuType": [  
          "eg1.medium",  
          "eg1.large"  
        ]  
      }  
    }  
  },  
  {  
    "Effect": "Allow",  
    "Action": "ec2:RunInstances",  
    "Resource": [  
      "arn:aws:ec2::*:image/ami-*",  
      "arn:aws:ec2::*:account:network-interface/*",  
      "arn:aws:ec2::*:account:instance/*",  
      "arn:aws:ec2::*:account:subnet/*",  
      "arn:aws:ec2::*:account:volume/*",  
      "arn:aws:ec2::*:account:key-pair/*",  
      "arn:aws:ec2::*:account:security-group/*"  
    ]  
  }  
]  
}  
}  

Launch Templates  

In the following example, users can launch instances, but only if they use a specific launch template (lt-09477bcd97b0d310e). Users can override any parameters in the launch template by specifying the parameters in the RunInstances action.

{  
  "Version": "2012-10-17",  
  "Statement": [  
    {  
      "Effect": "Allow",  
      "Action": "ec2:RunInstances",  
      "Resource": "*",  
      "Condition": {  
        "ArnLike": {  
          "ec2:LaunchTemplate": "arn:aws:ec2:region:account:launch-template/lt-09477bcd97b0d310e"  
        }  
      }  
    }  
  ]  
}  

In this example, users can launch instances only if they use a launch template. The policy uses the ec2:IsLaunchTemplateResource condition key to prevent users from overriding any of the launch template parameters in the RunInstances request.
The following example policy allows users to launch instances, but only if they use a launch template. Users cannot override the subnet and network interface parameters in the request; these parameters can only be specified in the launch template. The first part of the statement uses the NotResource element to allow all other resources except subnets and network interfaces. The second part of the statement allows the subnet and network interface resources, but only if they are sourced from the launch template.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "arn:aws:ec2:region:account:network-interface/*"],
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:region:account:launch-template/**"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": ["arn:aws:ec2:region:account:subnet/*",
 "arn:aws:ec2:region:account:network-interface/*"],
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:region:account:launch-template/**"
 },
 "Bool": {
 "ec2:IsLaunchTemplateResource": "true"
 }
 }
 }
]
}
```

The following example allows users to launch instances only if they use a launch template, and only if the launch template has the tag Purpose=Webservers. Users cannot override any of the launch template parameters in the RunInstances action.

```json
{
```

518
6. Working with ClassicLink

You can enable a VPC for ClassicLink and then link an EC2-Classic instance to the VPC. You can also view your ClassicLink-enabled VPCs, and all of your EC2-Classic instances that are linked to a VPC. You can create policies with resource-level permission for the `ec2:EnableVpcClassicLink`, `ec2:DisableVpcClassicLink`, `ec2:AttachClassicLinkVpc`, and `ec2:DetachClassicLinkVpc` actions to control how users are able to use those actions. Resource-level permissions are not supported for `ec2:Describe*` actions.

Topics
- Full Permissions to Work with ClassicLink (p. 519)
- Enable and Disable a VPC for ClassicLink (p. 520)
- Link Instances (p. 520)
- Unlink Instances (p. 521)

Full Permissions to Work with ClassicLink

The following policy grants users permissions to view ClassicLink-enabled VPCs and linked EC2-Classic instances, to enable and disable a VPC for ClassicLink, and to link and unlink instances from a ClassicLink-enabled VPC.

```json
"Version": "2012-10-17",
"Statement": [{
 "Effect": "Allow",
 "Resource": "*"
}
]
Enable and Disable a VPC for ClassicLink

The following policy allows user to enable and disable VPCs for ClassicLink that have the specific tag 'purpose=classiclink'. Users cannot enable or disable any other VPCs for ClassicLink.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:*VpcClassicLink",
            "Condition": {
                "StringEquals": {
                    "ec2:ResourceTag/purpose":"classiclink"
                }
            }
        }
    ]
}
```

Link Instances

The following policy grants users permissions to link instances to a VPC only if the instance is an m3.large instance type. The second statement allows users to use the VPC and security group resources, which are required to link an instance to a VPC.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Condition": {
                "StringEquals": {
                    "ec2:InstanceType":"m3.large"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Resource": [
                "arn:aws:ec2:region:account:vpc/**",
                "arn:aws:ec2:region:account:security-group/**"
            ]
        }
    ]
}
```

The following policy grants users permissions to link instances to a specific VPC (vpc-1a2b3c4d) only, and to associate only specific security groups from the VPC to the instance (sg-1122aabb and sg-aabb2233). Users cannot link an instance to any other VPC, and they cannot specify any other of the VPC security groups to associate with the instance in the request.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Condition": {
                "StringEquals": {
                    "ec2:ResourceTag/purpose": "classiclink"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Resource": [
                "arn:aws:ec2:region:account:instance:sg-aabb2233"
            ]
        }
    ]
}
```
Unlink Instances

The following grants users permission to unlink any linked EC2-Classic instance from a VPC, but only if the instance has the tag "unlink=true". The second statement grants users permissions to use the VPC resource, which is required to unlink an instance from a VPC.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Resource": [  
                "arn:aws:ec2:region:account:vpc/vpc-1a2b3c4d",
                "arn:aws:ec2:region:account:instance/*",
                "arn:aws:ec2:region:account:security-group/sg-aabb2233"
            ]
        }
    ]
}
```

7. Working with Reserved Instances

The following policy gives users permission to view, modify, and purchase Reserved Instances in your account.

It is not possible to set resource-level permissions for individual Reserved Instances. This policy means that users have access to all the Reserved Instances in the account.

The Resource element uses a * wildcard to indicate that users can specify all resources with the action; in this case, they can list and modify all Reserved Instances in the account. They can also purchase Reserved Instances using the account credentials. The * wildcard is also necessary in cases where the API action does not support resource-level permissions.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:AttachClassicLinkVpc",
            "Resource": [  
                "arn:aws:ec2:region:account:vpc/vpc-1a2b3c4d",
                "arn:aws:ec2:region:account:instance/*",
                "arn:aws:ec2:region:account:security-group/sg-aabb2233"
            ]
        }
    ]
}
```
To allow users to view and modify the Reserved Instances in your account, but not purchase new Reserved Instances:

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:DescribeReservedInstances",
                "ec2:ModifyReservedInstances",
                "ec2:DescribeAvailabilityZones"
            ],
            "Resource": "*"
        }
    ]
}
```

8. Tagging Resources

The following policy allows users to use the CreateTags action to apply tags to an instance only if the tag contains the key `environment` and the value `production`. The `ForAllValues` modifier is used with the `aws:TagKeys` condition key to indicate that only the key `environment` is allowed in the request (no other tags are allowed). The user cannot tag any other resource types.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:CreateTags"
            ],
            "Condition": {
                "StringEquals": {
                    "aws:RequestTag/environment": "production"
                },
                "ForAllValues/StringEquals": {
                    "aws:TagKeys": [
                        "environment"
                    ]
                }
            }
        }
    ]
}
```

The following policy allows users to tag any taggable resource that already has a tag with a key of `owner` and a value of the IAM username. In addition, users must specify a tag with a key of `environment` and a value of either `test` or `prod` in the request. Users can specify additional tags in the request.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:CreateTags"
            ],
            "Condition": {
                "StringEquals": {
                    "aws:RequestTag/environment": "production"
                },
                "ForAllValues/StringEquals": {
                    "aws:TagKeys": [
                        "environment"
                    ]
                }
            }
        }
    ]
}
```
You can create an IAM policy that allows users to delete specific tags for a resource. For example, the following policy allows users to delete tags for a volume if the tag keys specified in the request are `environment` or `cost-center`. Any value can be specified for the tag but the tag key must match either of the specified keys.

Note

If you delete a resource, all tags associated with the resource are also deleted. Users do not need permissions to use the `ec2:DeleteTags` action to delete a resource that has tags; they only need permissions to perform the deleting action.

```json
```

This policy allows users to delete only the `environment=prod` tag on any resource, and only if the resource is already tagged with a key of `owner` and a value of the IAM username. Users cannot delete any other tags for a resource.

```json
```
9: Working with IAM Roles

The following policy allows users to attach, replace, and detach an IAM role to instances that have the tag `department=test`. Replacing or detaching an IAM role requires an association ID, therefore the policy also grants users permission to use the `ec2:DescribeIamInstanceProfileAssociations` action.

IAM users must have permission to use the `iam:PassRole` action in order to pass the role to the instance.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:AssociateIamInstanceProfile",
                "ec2:ReplaceIamInstanceProfileAssociation",
                "ec2:DisassociateIamInstanceProfile"
            ],
            "Condition": {
                "StringEquals": {
                    "ec2:ResourceTag/department": "test"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": "ec2:DescribeIamInstanceProfileAssociations",
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": "iam:PassRole",
            "Resource": "*"
        }
    ]
}
```

The following policy allows users to attach or replace an IAM role for any instance. Users can only attach or replace IAM roles with names that begin with `TestRole-`. For the `iam:PassRole` action, ensure that you specify the name of the IAM role and not the instance profile (if the names are different). For more information, see Instance Profiles (p. 535).

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:AssociateIamInstanceProfile",
                "ec2:ReplaceIamInstanceProfileAssociation"
            ],
            "Resource": "*"
        }
    ]
}
```
10: Working with Route Tables

The following policy allows users to add, remove, and replace routes for route tables that are associated with VPC vpc-ec43eb89 only. To specify a VPC for the ec2:Vpc condition key, you must specify the full ARN of the VPC.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["ec2:DeleteRoute", "ec2:CreateRoute", "ec2:ReplaceRoute"],
      "Condition": {
        "StringEquals": {
          "ec2:Vpc": "arn:aws:ec2:region:account:vpc/vpc-ec43eb89"
        }
      }
    }
  ]
}
```

11: Allowing a Specific Instance to View Resources in Other AWS Services

The following is an example of a policy that you might attach to an IAM role. The policy allows an instance to view resources in various AWS services. It uses the ec2:SourceInstanceARN condition key to specify that the instance from which the request is made must be instance i-093452212644b0dd6. If the same IAM role is associated with another instance, the other instance cannot perform any of these actions.

The ec2:SourceInstanceARN key is an AWS-wide condition key, therefore it can be used for other service actions, not just Amazon EC2.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["ec2:DescribeVolumes", "s3:ListAllMyBuckets", "dynamodb:ListTables"],
      "Condition": {
        "StringEquals": {
          "ec2:SourceInstanceARN": "i-093452212644b0dd6"
        }
      }
    }
  ]
}
```
12. Working with Launch Templates

The following policy allows users to create a launch template version and modify a launch template, but only for a specific launch template (lt-09477bcd97b0d3abc). Users cannot work with other launch templates.

```json
```

The following policy allows users to delete any launch template and launch template version, provided that the launch template has the tag Purpose=Testing.

```json
```

Example Policies for Working in the Amazon EC2 Console

You can use IAM policies to grant users permissions to view and work with specific resources in the Amazon EC2 console. You can use the example policies in the previous section; however, they are
Amazon Elastic Compute Cloud
User Guide for Windows Instances
IAM Policies

designed for requests that are made with the AWS CLI or an AWS SDK. The console uses additional API actions for its features, so these policies may not work as expected. For example, a user that has permission to use only the DescribeVolumes API action will encounter errors when trying to view volumes in the console. This section demonstrates policies that enable users to work with specific parts of the console.

Topics
- 1: Read-Only Access (p. 527)
- 2: Using the EC2 Launch Wizard (p. 528)
- 3: Working with Volumes (p. 530)
- 4: Working with Security Groups (p. 531)
- 5: Working with Elastic IP Addresses (p. 533)
- 6: Working with Reserved Instances (p. 533)

Note
To help you work out which API actions are required to perform tasks in the console, you can use a service such as AWS CloudTrail. For more information, see the AWS CloudTrail User Guide. If your policy does not grant permission to create or modify a specific resource, the console displays an encoded message with diagnostic information. You can decode the message using the DecodeAuthorizationMessage API action for AWS STS, or the decode-authorization-message command in the AWS CLI.

For additional information about creating policies for the Amazon EC2 console, see the following AWS Security Blog post: Granting Users Permission to Work in the Amazon EC2 Console.

1: Read-Only Access

To allow users to view all resources in the Amazon EC2 console, you can use the same policy as the following example: 1: Read-Only Access (p. 504). Users cannot perform any actions on those resources or create new resources, unless another statement grants them permission to do so.

a. View instances, AMIs, and snapshots

Alternatively, you can provide read-only access to a subset of resources. To do this, replace the * wildcard in the ec2:Describe API action with specific ec2:Describe actions for each resource. The following policy allows users to view all instances, AMIs, and snapshots in the Amazon EC2 console. The ec2:DescribeTags action allows users to view public AMIs. The console requires the tagging information to display public AMIs; however, you can remove this action to allow users to view only private AMIs.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "ec2:DescribeInstances", "ec2:DescribeImages",
            "ec2:DescribeTags", "ec2:DescribeSnapshots"
         ],
         "Resource": "*"
      }
   ]
}
```

Note
Currently, the Amazon EC2 ec2:Describe* API actions do not support resource-level permissions, so you cannot control which individual resources users can view in the console.
Therefore, the * wildcard is necessary in the Resource element of the above statement. For more information about which ARNs you can use with which Amazon EC2 API actions, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477).

b. View instances and CloudWatch metrics

The following policy allows users to view instances in the Amazon EC2 console, as well as CloudWatch alarms and metrics in the Monitoring tab of the Instances page. The Amazon EC2 console uses the CloudWatch API to display the alarms and metrics, so you must grant users permission to use the cloudwatch:DescribeAlarms and cloudwatch:GetMetricStatistics actions.

```json
{
    "Version": "2012-10-17",
    "Statement": [{
        "Effect": "Allow",
        "Action": [
            "ec2:DescribeInstances",
            "cloudwatch:DescribeAlarms",
            "cloudwatch:GetMetricStatistics"
        ],
        "Resource": "*"
    }]
}
```

2: Using the EC2 Launch Wizard

The Amazon EC2 launch wizard is a series of screens with options to configure and launch an instance. Your policy must include permission to use the API actions that allow users to work with the wizard's options. If your policy does not include permission to use those actions, some items in the wizard cannot load properly, and users cannot complete a launch.

a. Basic launch wizard access

To complete a launch successfully, users must be given permission to use the ec2:RunInstances API action, and at least the following API actions:

- ec2:DescribeImages: To view and select an AMI.
- ec2:DescribeVpcs: To view the available network options, which are EC2-Classic and a list of VPCs. This is required even if you are not launching into a VPC.
- ec2:DescribeSubnets: If launching into a VPC, to view all available subnets for the chosen VPC.
- ec2:DescribeSecurityGroups: To view the security groups page in the wizard. Users can select an existing security group.
- ec2:DescribeKeyPairs or ec2:CreateKeyPair: To select an existing key pair, or create a new one.

```json
{
    "Version": "2012-10-17",
    "Statement": [{
        "Effect": "Allow",
        "Action": [
            "ec2:DescribeInstances", "ec2:DescribeImages",
            "ec2:DescribeKeyPairs", "ec2:DescribeVpcs", "ec2:DescribeSubnets",
            "ec2:DescribeSecurityGroups"
        ],
        "Resource": "*"
    }]
}
```
You can add API actions to your policy to provide more options for users, for example:

- **ec2:DescribeAvailabilityZones**: If launching into EC2-Classic, to view and select a specific Availability Zone.
- **ec2:DescribeNetworkInterfaces**: If launching into a VPC, to view and select existing network interfaces for the selected subnet.
- **ec2:CreateSecurityGroup**: To create a new security group; for example, to create the wizard’s suggested launch–wizard-x security group. However, this action alone only creates the security group; it does not add or modify any rules. To add inbound rules, users must be granted permission to use the **ec2:AuthorizeSecurityGroupIngress** API action. To add outbound rules to VPC security groups, users must be granted permission to use the **ec2:AuthorizeSecurityGroupEgress** API action. To modify or delete existing rules, users must be granted permission to use the relevant **ec2:RevokeSecurityGroup** API action.
- **ec2:CreateTags**: To tag the resources that are created by RunInstances. For more information, see Resource-Level Permissions for Tagging (p. 501). If users do not have permission to use this action and they attempt to apply tags on the tagging page of the launch wizard, the launch fails.

Important
Be careful about granting users permission to use the **ec2:CreateTags** action. This limits your ability to use the **ec2:ResourceTag** condition key to restrict the use of other resources; users can change a resource’s tag in order to bypass those restrictions.

Currently, the Amazon EC2 **Describe*** API actions do not support resource-level permissions, so you cannot restrict which individual resources users can view in the launch wizard. However, you can apply resource-level permissions on the **ec2:RunInstances** API action to restrict which resources users can use to launch an instance. The launch fails if users select options that they are not authorized to use.

b. Restrict access to specific instance type, subnet, and region

The following policy allows users to launch **m1.small** instances using AMIs owned by Amazon, and only into a specific subnet (subnet-1a2b3c4d). Users can only launch in the sa-east-1 region. If users select a different region, or select a different instance type, AMI, or subnet in the launch wizard, the launch fails.

The first statement grants users permission to view the options in the launch wizard, as demonstrated in the example above. The second statement grants users permission to use the network interface, volume, key pair, security group, and subnet resources for the **ec2:RunInstances** action, which are required to launch an instance into a VPC. For more information about using the **ec2:RunInstances** action, see 5: Launching Instances (RunInstances) (p. 508). The third and fourth statements grant users permission to use the instance and AMI resources respectively, but only if the instance is an **m1.small** instance, and only if the AMI is owned by Amazon.

```json
{"Version": "2012-10-17",
"Statement": [{
  "Effect": "Allow",
  "Action": [
    "ec2:DescribeInstances", "ec2:DescribeImages",
    "ec2:DescribeKeyPairs","ec2:DescribeVpcs", "ec2:DescribeSubnets",
    "ec2:DescribeSecurityGroups"
  ],
}]
}
3: Working with Volumes

The following policy grants users permission to view and create volumes, and attach and detach volumes to specific instances.

Users can attach any volume to instances that have the tag "purpose=test", and also detach volumes from those instances. To attach a volume using the Amazon EC2 console, it is helpful for users to have permission to use the ec2:DescribeInstances action, as this allows them to select an instance from a pre-populated list in the Attach Volume dialog box. However, this also allows users to view all instances on the Instances page in the console, so you can omit this action.

In the first statement, the ec2:DescribeAvailabilityZones action is necessary to ensure that a user can select an Availability Zone when creating a volume.

Users cannot tag the volumes that they create (either during or after volume creation).
The following policy grants users permission to view security groups in the Amazon EC2 console, and to add and remove inbound and outbound rules for existing security groups that have the tag Department=Test.

Note

You can't modify outbound rules for EC2-Classic security groups. For more information about security groups, see Amazon EC2 Security Groups for Windows Instances (p. 451).

In the first statement, the ec2:DescribeTags action allows users to view tags in the console, which makes it easier for users to identify the security groups that they are allowed to modify.
b. Working with the Create Security Group dialog box

You can create a policy that allows users to work with the Create Security Group dialog box in the Amazon EC2 console. To use this dialog box, users must be granted permission to use at least the following API actions:

- `ec2:CreateSecurityGroup`: To create a new security group.
- `ec2:DescribeVpcs`: To view a list of existing VPCs in the VPC list. This action is not required for creating security groups in EC2-Classic.

With these permissions, users can create a new security group successfully, but they cannot add any rules to it. To work with rules in the Create Security Group dialog box, you can add the following API actions to your policy:

- `ec2:AuthorizeSecurityGroupIngress`: To add inbound rules.
- `ec2:AuthorizeSecurityGroupEgress`: To add outbound rules to VPC security groups.
- `ec2:RevokeSecurityGroupIngress`: To modify or delete existing inbound rules. This is useful to allow users to use the Copy to new feature in the console. This feature opens the Create Security Group dialog box and populates it with the same rules as the security group that was selected.
- `ec2:RevokeSecurityGroupEgress`: To modify or delete outbound rules for VPC security groups. This is useful to allow users to modify or delete the default outbound rule that allows all outbound traffic.
- `ec2:DeleteSecurityGroup`: To cater for when invalid rules cannot be saved. The console first creates the security group, and then adds the specified rules. If the rules are invalid, the action fails, and the console attempts to delete the security group. The user remains in the Create Security Group dialog box so that they can correct the invalid rule and try to create the security group again. This API action is not required, but if a user is not granted permission to use it and attempts to create a security group with invalid rules, the security group is created without any rules, and the user must add them afterward.

Currently, the `ec2:CreateSecurityGroup` API action does not support resource-level permissions; however, you can apply resource-level permissions to the `ec2:AuthorizeSecurityGroupIngress` and `ec2:AuthorizeSecurityGroupEgress` actions to control how users can create rules.

The following policy grants users permission to use the Create Security Group dialog box, and to create inbound and outbound rules for security groups that are associated with a specific VPC (`vpc-1a2b3c4d`). Users can create security groups for EC2-Classic or another VPC, but they cannot add any rules to them. Similarly, users cannot add any rules to any existing security group that's not associated with VPC `vpc-1a2b3c4d`. Users are also granted permission to view all security groups in the console. This makes it easier for users to identify the security groups to which they can add inbound rules. This policy also grants users permission to delete security groups that are associated with VPC `vpc-1a2b3c4d`.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups", "ec2:CreateSecurityGroup", "ec2:DescribeVpcs"
]
 }
]
}
```
5: Working with Elastic IP Addresses

To allow users to view Elastic IP addresses in the Amazon EC2 console, you must grant users permission to use the `ec2:DescribeAddresses` action.

To allow users to work with Elastic IP addresses, you can add the following actions to your policy.

- `ec2:AllocateAddress`: To allocate an address for use in VPC or EC2-Classic.
- `ec2:ReleaseAddress`: To release an Elastic IP address.
- `ec2:AssociateAddress`: To associate an Elastic IP address with an instance or a network interface.
- `ec2:DescribeNetworkInterfaces` and `ec2:DescribeInstances`: To work with the Associate address screen. The screen displays the available instances or network interfaces to which you can associate an Elastic IP address. For an EC2-Classic instance, users only need permission to use `ec2:DescribeInstances`.
- `ec2:DisassociateAddress`: To disassociate an Elastic IP address from an instance or a network interface.

The following policy allows users to view, allocate, and associate Elastic IP addresses with instances. Users cannot associate Elastic IP addresses with network interfaces, disassociate Elastic IP addresses, or release them.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeAddresses",
 "ec2:AllocateAddress",
 "ec2:DescribeInstances",
 "ec2:AssociateAddress"
],
 "Resource": "*"
 }
]
}
```

6: Working with Reserved Instances

The following policy can be attached to an IAM user. It gives the user access to view and modify Reserved Instances in your account, as well as purchase new Reserved Instances in the AWS Management Console.
This policy allows users to view all the Reserved Instances, as well as On-Demand Instances, in the account. It's not possible to set resource-level permissions for individual Reserved Instances.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeReservedInstances",
 "ec2:ModifyReservedInstances",
 "ec2:PurchaseReservedInstancesOffering",
 "ec2:DescribeInstances",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeReservedInstancesOfferings"
],
 "Resource": "*"
 }
]
}
```

The `ec2:DescribeAvailabilityZones` action is necessary to ensure that the Amazon EC2 console can display information about the Availability Zones in which you can purchase Reserved Instances. The `ec2:DescribeInstances` action is not required, but ensures that the user can view the instances in the account and purchase reservations to match the correct specifications.

You can adjust the API actions to limit user access, for example removing `ec2:DescribeInstances` and `ec2:DescribeAvailabilityZones` means the user has read-only access.

## IAM Roles for Amazon EC2

Applications must sign their API requests with AWS credentials. Therefore, if you are an application developer, you need a strategy for managing credentials for your applications that run on EC2 instances. For example, you can securely distribute your AWS credentials to the instances, enabling the applications on those instances to use your credentials to sign requests, while protecting your credentials from other users. However, it's challenging to securely distribute credentials to each instance, especially those that AWS creates on your behalf, such as Spot Instances or instances in Auto Scaling groups. You must also be able to update the credentials on each instance when you rotate your AWS credentials.

We designed IAM roles so that your applications can securely make API requests from your instances, without requiring you to manage the security credentials that the applications use. Instead of creating and distributing your AWS credentials, you can delegate permission to make API requests using IAM roles as follows:

1. Create an IAM role.
2. Define which accounts or AWS services can assume the role.
3. Define which API actions and resources the application can use after assuming the role.
4. Specify the role when you launch your instance, or attach the role to a running or stopped instance.
5. Have the application retrieve a set of temporary credentials and use them.

For example, you can use IAM roles to grant permissions to applications running on your instances that need to use a bucket in Amazon S3. You can specify permissions for IAM roles by creating a policy in JSON format. These are similar to the policies that you create for IAM users. If you change a role, the change is propagated to all instances.

You cannot attach multiple IAM roles to a single instance, but you can attach a single IAM role to multiple instances. For more information about creating and using IAM roles, see Roles in the IAM User Guide.

You can apply resource-level permissions to your IAM policies to control the users' ability to attach, replace, or detach IAM roles for an instance. For more information, see Supported Resource-Level
Instance Profiles

Amazon EC2 uses an *instance profile* as a container for an IAM role. When you create an IAM role using the IAM console, the console creates an instance profile automatically and gives it the same name as the role to which it corresponds. If you use the Amazon EC2 console to launch an instance with an IAM role or to attach an IAM role to an instance, you choose the instance based on a list of instance profile names.

If you use the AWS CLI, API, or an AWS SDK to create a role, you create the role and instance profile as separate actions, with potentially different names. If you then use the AWS CLI, API, or an AWS SDK to launch an instance with an IAM role or to attach an IAM role to an instance, specify the instance profile name.

An instance profile can contain only one IAM role. This limit cannot be increased.

For more information, see Instance Profiles in the IAM User Guide.

Retrieving Security Credentials from Instance Metadata

An application on the instance retrieves the security credentials provided by the role from the instance metadata item `iam/security-credentials/role-name`. The application is granted the permissions for the actions and resources that you’ve defined for the role through the security credentials associated with the role. These security credentials are temporary and we rotate them automatically. We make new credentials available at least five minutes before the expiration of the old credentials.

**Warning**

If you use services that use instance metadata with IAM roles, ensure that you don’t expose your credentials when the services make HTTP calls on your behalf. The types of services that could expose your credentials include HTTP proxies, HTML/CSS validator services, and XML processors that support XML inclusion.

The following command retrieves the security credentials for an IAM role named `s3access`.

```
```

The following is example output.

```
{
"Code" : "Success",
"LastUpdated" : "2012-04-26T16:39:16Z",
"Type" : "AWS-HMAC",
"AccessKeyId" : "ASIAIOSFODNN7EXAMPLE",
"SecretAccessKey" : "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
"Token" : "token",
"Expiration" : "2017-05-17T15:09:54Z"
}
```

For applications, AWS CLI, and Tools for Windows PowerShell commands that run on the instance, you do not have to explicitly get the temporary security credentials — the AWS SDKs, AWS CLI, and Tools for
Windows PowerShell automatically get the credentials from the EC2 instance metadata service and use them. To make a call outside of the instance using temporary security credentials (for example, to test IAM policies), you must provide the access key, secret key, and the session token. For more information, see Using Temporary Security Credentials to Request Access to AWS Resources in the IAM User Guide.

For more information about instance metadata, see Instance Metadata and User Data (p. 362).

**Granting an IAM User Permission to Pass an IAM Role to an Instance**

To enable an IAM user to launch an instance with an IAM role or to attach or replace an IAM role for an existing instance, you must grant the user permission to pass the role to the instance.

The following IAM policy grants users permission to launch instances (ec2:RunInstances) with an IAM role, or to attach or replace an IAM role for an existing instance (ec2:AssociateIamInstanceProfile and ec2:ReplaceIamInstanceProfileAssociation).

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances",
 "ec2:AssociateIamInstanceProfile",
 "ec2:ReplaceIamInstanceProfileAssociation"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*"
 }
]
}
```

This policy grants IAM users access to all your roles by specifying the resource as "*" in the policy. However, consider whether users who launch instances with your roles (ones that exist or that you create later on) might be granted permissions that they don't need or shouldn't have.

**Working with IAM Roles**

You can create an IAM role and attach it to an instance during or after launch. You can also replace or detach an IAM role for an instance.

**Contents**

- Creating an IAM Role (p. 536)
- Launching an Instance with an IAM Role (p. 538)
- Attaching an IAM Role to an Instance (p. 539)
- Detaching an IAM Role (p. 540)
- Replacing an IAM Role (p. 541)

**Creating an IAM Role**

You must create an IAM role before you can launch an instance with that role or attach it to an instance.
To create an IAM role using the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose **Roles**, **Create role**.
3. On the **Select role type** page, choose **EC2** and the **EC2** use case. Choose **Next: Permissions**.
4. On the **Attach permissions policy** page, select an AWS managed policy that grants your instances access to the resources that they need.
5. On the **Review** page, type a name for the role and choose **Create role**.

Alternatively, you can use the AWS CLI to create an IAM role.

To create an IAM role and instance profile using the AWS CLI

- Create an IAM role with a policy that allows the role to use an Amazon S3 bucket.
  
  a. Create the following trust policy and save it in a text file named `ec2-role-trust-policy.json`.

      ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
 }
      ```

  b. Create the `s3access` role and specify the trust policy that you created.

      ```bash
 aws iam create-role --role-name s3access --assume-role-policy-document file://ec2-role-trust-policy.json
 {
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
 }
]
 },
 "RoleId": "AROAIIZKPBKSZLEXAMPLE",
 "CreateDate": "2013-12-12T23:46:37.247Z",
 "RoleName": "s3access",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/s3access"
 }
 }
      ```

  c. Create an access policy and save it in a text file named `ec2-role-access-policy.json`. For example, this policy grants administrative permissions for Amazon S3 to applications running on the instance.

      ```json
 {
      ```
IAM Roles

```json
"Version": "2012-10-17",
"Statement": [
{
 "Effect": "Allow",
 "Action": ["s3:*"],
 "Resource": ["*"]
}
]
```

d. Attach the access policy to the role.

```bash
aws iam put-role-policy --role-name s3access --policy-name S3-Permissions --policy-document file://ec2-role-access-policy.json
```

e. Create an instance profile named s3access-profile.

```bash
aws iam create-instance-profile --instance-profile-name s3access-profile
```

```json
{
 "InstanceProfile": {
 "InstanceProfileId": "AIPAJTLBPJLEGREXAMPLE",
 "Roles": [],
 "CreateDate": "2013-12-12T23:53:34.093Z",
 "InstanceProfileName": "s3access-profile",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:instance-profile/s3access-profile"
 }
}
```

f. Add the s3access role to the s3access-profile instance profile.

```bash
aws iam add-role-to-instance-profile --instance-profile-name s3access-profile --role-name s3access
```

For more information about these commands, see `create-role`, `put-role-policy`, and `create-instance-profile` in the AWS CLI Command Reference.

Alternatively, you can use the following AWS Tools for Windows PowerShell commands:

- `New-IAMRole`
- `Register-IAMRolePolicy`
- `New-IAMInstanceProfile`

### Launching an Instance with an IAM Role

After you've created an IAM role, you can launch an instance, and associate that role with the instance during launch.

**Important**

After you create an IAM role, it may take several seconds for the permissions to propagate. If your first attempt to launch an instance with a role fails, wait a few seconds before trying again.

For more information, see Troubleshooting Working with Roles in the IAM User Guide.

#### To launch an instance with an IAM role using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the dashboard, choose Launch Instance.
3. Select an AMI and instance type and then choose Next: Configure Instance Details.
4. On the **Configure Instance Details** page, for **IAM role**, select the IAM role that you created.

   **Note**
   The IAM role list displays the name of the instance profile that you created when you created your IAM role. If you created your IAM role using the console, the instance profile was created for you and given the same name as the role. If you created your IAM role using the AWS CLI, API, or an AWS SDK, you may have named your instance profile differently.

5. Configure any other details, then follow the instructions through the rest of the wizard, or choose **Review and Launch** to accept default settings and go directly to the **Review Instance Launch** page.

6. Review your settings, then choose **Launch** to choose a key pair and launch your instance.

7. If you are using the Amazon EC2 API actions in your application, retrieve the AWS security credentials made available on the instance and use them to sign the requests. The AWS SDK does this for you.

```bash
```

Alternatively, you can use the AWS CLI to associate a role with an instance during launch. You must specify the instance profile in the command.

**To launch an instance with an IAM role using the AWS CLI**

1. Use the `run-instances` command to launch an instance using the instance profile. The following example shows how to launch an instance with the instance profile.

   ```bash
 aws ec2 run-instances --image-id ami-11aa22bb --iam-instance-profile Name="s3access-profile" --key-name my-key-pair --security-groups my-security-group --subnet-id subnet-1a2b3c4d
   ```

   Alternatively, use the **New-EC2Instance** Tools for Windows PowerShell command.

2. If you are using the Amazon EC2 API actions in your application, retrieve the AWS security credentials made available on the instance and use them to sign the requests. The AWS SDK does this for you.

   ```bash
   ```

**Attaching an IAM Role to an Instance**

After you've created an IAM role, you can attach it to a running or stopped instance.

**To attach an IAM role to an instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select the instance, choose **Actions, Instance Settings, Attach/Replace IAM role**.
4. Select the IAM role to attach to your instance, and choose **Apply**.

**To attach an IAM role to an instance using the AWS CLI**

1. If required, describe your instances to get the ID of the instance to which to attach the role.

   ```bash
 aws ec2 describe-instances
   ```
2. Use the `associate-iam-instance-profile` command to attach the IAM role to the instance by specifying the instance profile. You can use the Amazon Resource Name (ARN) of the instance profile, or you can use its name.

```
aws ec2 associate-iam-instance-profile --instance-id i-1234567890abcdef0 --iam-instance-profile Name="TestRole-1"
```

Alternatively, use the following Tools for Windows PowerShell commands:

- Get-EC2Instance
- Register-EC2IamInstanceProfile

**Detaching an IAM Role**

You can detach an IAM role from a running or stopped instance.

**To detach an IAM role from an instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select the instance, choose **Actions**, **Instance Settings**, **Attach/Replace IAM role**.
4. For **IAM role**, choose **No Role**. Choose **Apply**.
5. In the confirmation dialog box, choose **Yes, Detach**.

**To detach an IAM role from an instance using the AWS CLI**

1. If required, use `describe-iam-instance-profile-associations` to describe your IAM instance profile associations and get the association ID for the IAM instance profile to detach.

```
aws ec2 describe-iam-instance-profile-associations
```

```json
{
 "IamInstanceProfileAssociations": [
 {
 "InstanceId": "i-088ce778fbbfe4361",
 "State": "associated",
 "AssociationId": "iip-assoc-04d38f17eb68c0a4fa",
 "IamInstanceProfile": {
 "Id": "AIPAJEDNCAA64SSD265D6",
 "Arn": "arn:aws:iam::123456789012:instance-profile/TestRole-2"
 }
 }
]
}
```
2. Use the `disassociate-iam-instance-profile` command to detach the IAM instance profile using its association ID.

```bash
aws ec2 disassociate-iam-instance-profile --association-id iip-assoc-0044d817db6c0a4ba
```

```json
{
 "IamInstanceProfileAssociation": {
 "InstanceId": "i-087711ddaf98f9489",
 "State": "disassociating",
 "AssociationId": "iip-assoc-0044d817db6c0a4ba",
 "IamInstanceProfile": {
 "Id": "AIPAJEDKX7QYKW7GS",
 "Arn": "arn:aws:iam::123456789012:instance-profile/TestRole-2"
 }
 }
}
```

Alternatively, use the following Tools for Windows PowerShell commands:

- `Get-EC2IamInstanceProfileAssociation`
- `Unregister-EC2IamInstanceProfile`

### Replacing an IAM Role

You can replace an IAM role for a running instance. You can do this if you want to change the IAM role for an instance without detaching the existing one first; for example, to ensure that API actions performed by applications running on the instance are not interrupted.

#### To replace an IAM role for an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance, choose Actions, Instance Settings, Attach/Replace IAM role.
4. Select the IAM role to attach to your instance, and choose Apply.

#### To replace an IAM role for an instance using the AWS CLI

1. If required, describe your IAM instance profile associations to get the association ID for the IAM instance profile to replace.

```bash
aws ec2 describe-iam-instance-profile-associations
```

2. Use the `replace-iam-instance-profile-association` command to replace the IAM instance profile by specifying the association ID for the existing instance profile and the ARN or name of the instance profile that should replace it.

```bash
aws ec2 replace-iam-instance-profile-association --association-id iip-assoc-0044d817db6c0a4ba --iam-instance-profile Name="TestRole-2"
```

```json
{
 "IamInstanceProfileAssociation": {
 "InstanceId": "i-087711ddaf98f9489",
 "State": "associating",
 "AssociationId": "iip-assoc-09654be48e33b91e0",
 "IamInstanceProfile": {
 "Id": "AIPAJCJEDKX7QYKW7GS",
 "Arn": "arn:aws:iam::123456789012:instance-profile/TestRole-2"
 }
 }
}
```
Alternatively, use the following Tools for Windows PowerShell commands:

- Get-EC2IamInstanceProfileAssociation
- Set-EC2IamInstanceProfileAssociation

**Authorizing Inbound Traffic for Your Windows Instances**

Security groups enable you to control traffic to your instance, including the kind of traffic that can reach your instance. For example, you can allow computers from only your home network to access your instance using RDP. If your instance is a web server, you can allow all IP addresses to access your instance via HTTP, so that external users can browse the content on your web server.

To enable network access to your instance, you must allow inbound traffic to your instance. To open a port for inbound traffic, add a rule to a security group that you associated with your instance when you launched it.

To connect to your instance, you must set up a rule to authorize RDP traffic from your computer's public IPv4 address. To allow RDP traffic from additional IP address ranges, add another rule for each range you need to authorize.

If you've enabled your VPC for IPv6 and launched your instance with an IPv6 address, you can connect to your instance using its IPv6 address instead of a public IPv4 address. Your local computer must have an IPv6 address and must be configured to use IPv6.

If you need to enable network access to a Linux instance, see Authorizing Inbound Traffic for Your Linux Instances in the Amazon EC2 User Guide for Linux Instances.

**Before You Start**

Decide who requires access to your instance; for example, a single host or a specific network that you trust such as your local computer's public IPv4 address. The security group editor in the Amazon EC2 console can automatically detect the public IPv4 address of your local computer for you. Alternatively, you can use the search phrase "what is my IP address" in an internet browser, or use the following service: Check IP. If you are connecting through an ISP or from behind your firewall without a static IP address, you need to find out the range of IP addresses used by client computers.

**Warning**

If you use 0.0.0.0/0, you enable all IPv4 addresses to access your instance using RDP. If you use ::/0, you enable all IPv6 address to access your instance. This is acceptable for a short time in a test environment, but it's unsafe for production environments. In production, you authorize only a specific IP address or range of addresses to access your instance.

For more information about security groups, see Amazon EC2 Security Groups for Windows Instances (p. 451).

Windows Firewall may also block incoming traffic. If you're having trouble setting up access to your instance, you may have to disable Windows Firewall. For more information, see Remote Desktop can't connect to the remote computer (p. 851).
Adding a Rule for Inbound RDP Traffic to a Windows Instance

Security groups act as a firewall for associated instances, controlling both inbound and outbound traffic at the instance level. You must add rules to a security group that enable you to connect to your Windows instance from your IP address using RDP.

**To add a rule to a security group for inbound RDP traffic over IPv4 using the console**

1. In the navigation pane of the Amazon EC2 console, choose **Instances**. Select your instance and look at the **Description** tab; **Security groups** lists the security groups that are associated with the instance. Choose **view rules** to display a list of the rules that are in effect for the instance.
2. In the navigation pane, choose **Security Groups**. Select one of the security groups associated with your instance.
3. In the details pane, on the **Inbound** tab, choose **Edit**. In the dialog, choose **Add Rule**, and then choose **RDP** from the **Type** list.
4. In the **Source** field, choose **My IP** to automatically populate the field with the public IPv4 address of your local computer. Alternatively, choose **Custom** and specify the public IPv4 address of your computer or network in CIDR notation. For example, if your IPv4 address is 203.0.113.25, specify 203.0.113.25/32 to list this single IPv4 address in CIDR notation. If your company allocates addresses from a range, specify the entire range, such as 203.0.113.0/24.

   For information about finding your IP address, see **Before You Start** (p. 542).
5. Choose **Save**.

*(VPC only)* If you launched an instance with an IPv6 address and want to connect to your instance using its IPv6 address, you must add rules that allow inbound IPv6 traffic over RDP.

**To add a rule to a security group for inbound RDP traffic over IPv6 using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Security Groups**. Select the security group for your instance.
3. Choose **Inbound**, **Edit**, **Add Rule**.
4. For **Type**, choose **RDP**.
5. In the **Source** field, specify the IPv6 address of your computer in CIDR notation. For example, if your IPv6 address is 2001:db8:1234:1a00:9691:9503:25ad:1761, specify 2001:db8:1234:1a00:9691:9503:25ad:1761/128 to list this single IPv6 address in CIDR notation. If your company allocates addresses from a range, specify the entire range, such as 2001:db8:1234:1a00::/64.
6. Choose **Save**.

**Note**

Be sure to run the following commands on your local system, not on the instance itself. For more information about these command line interfaces, see **Accessing Amazon EC2** (p. 3).

**To add a rule to a security group using the command line**

1. Find the security group that is associated with your instance using one of the following commands:
   - **describe-instance-attribute** (AWS CLI)
     ```
 aws ec2 describe-instance-attribute --instance-id instance_id --attribute groupSet
     ```
   - **Get-EC2InstanceAttribute** (AWS Tools for Windows PowerShell)
   - **describe-instance-attribute** (AWS CLI)
     ```
 aws ec2 describe-instance-attribute --instance-id instance_id --attribute groupSet
     ```
   - **Get-EC2InstanceAttribute** (AWS Tools for Windows PowerShell)
Both commands return a security group ID, which you use in the next step.

2. Add the rule to the security group using one of the following commands:

- **authorize-security-group-ingress** (AWS CLI)

  ```bash
 aws ec2 authorize-security-group-ingress --group-id security_group_id --protocol tcp --port 3389 --cidr cidr_ip_range
  ```

- **Grant-EC2SecurityGroupIngress** (AWS Tools for Windows PowerShell)

  The `Grant-EC2SecurityGroupIngress` command needs an `IpPermission` parameter, which describes the protocol, port range, and IP address range to be used for the security group rule. The following command creates the `IpPermission` parameter:

  ```powershell
 $ip1 = @{ IpProtocol="tcp"; FromPort="3389"; ToPort="3389"; IpRanges="cidr_ip_range" }
  ```

  ```powershell
 PS C:\> Grant-EC2SecurityGroupIngress -GroupId security_group_id -IpPermission @($ip1)
  ```

### Assigning a Security Group to an Instance

You can assign a security group to an instance when you launch the instance. When you add or remove rules, those changes are automatically applied to all instances to which you've assigned the security group.

After you launch an instance in EC2-Classic, you can't change its security groups. After you launch an instance in a VPC, you can change its security groups. For more information, see Changing an Instance's Security Groups in the Amazon VPC User Guide.

### Amazon EC2 and Amazon Virtual Private Cloud

Amazon Virtual Private Cloud (Amazon VPC) enables you to define a virtual network in your own logically isolated area within the AWS cloud, known as a virtual private cloud (VPC). You can launch your AWS resources, such as instances, into your VPC. Your VPC closely resembles a traditional network that you might operate in your own data center, with the benefits of using AWS's scalable infrastructure. You can configure your VPC; you can select its IP address range, create subnets, and configure route tables, network gateways, and security settings. You can connect instances in your VPC to the internet. You can connect your VPC to your own corporate data center, making the AWS cloud an extension of your data center. To protect the resources in each subnet, you can use multiple layers of security, including security groups and network access control lists. For more information, see the Amazon VPC User Guide.

Your account may support both the EC2-VPC and EC2-Classic platforms, on a region-by-region basis. If you created your account after 2013-12-04, it supports EC2-VPC only. To find out which platforms your account supports, see Supported Platforms (p. 551). If your accounts supports EC2-VPC only, we create a default VPC for you. A default VPC is a VPC that is already configured and ready for you to use. You can launch instances into your default VPC immediately. For more information, see Your Default VPC and Subnets in the Amazon VPC User Guide. If your account supports EC2-Classic and EC2-VPC, you can launch instances into either platform. Regardless of which platforms your account supports, you can create your own nondefault VPC, and configure it as you need.
Benefits of Using a VPC

By launching your instances into a VPC instead of EC2-Classic, you gain the ability to:

- Assign static private IPv4 addresses to your instances that persist across starts and stops
- Assign multiple IPv4 addresses to your instances
- Define network interfaces, and attach one or more network interfaces to your instances
- Change security group membership for your instances while they're running
- Control the outbound traffic from your instances (egress filtering) in addition to controlling the inbound traffic to them (ingress filtering)
- Add an additional layer of access control to your instances in the form of network access control lists (ACL)
- Run your instances on single-tenant hardware
- Assign IPv6 addresses to your instances

Differences Between EC2-Classic and EC2-VPC

The following table summarizes the differences between instances launched in EC2-Classic, instances launched in a default VPC, and instances launched in a nondefault VPC.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EC2-Classic</th>
<th>Default VPC</th>
<th>Nondefault VPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public IPv4 address (from Amazon's public IP address pool)</td>
<td>Your instance receives a public IPv4 address.</td>
<td>Your instance launched in a default subnet receives a public IPv4 address by default, unless you specify otherwise during launch, or you modify the subnet's public IPv4 address attribute.</td>
<td>Your instance doesn't receive a public IPv4 address by default, unless you specify otherwise during launch, or you modify the subnet's public IPv4 address attribute.</td>
</tr>
<tr>
<td>Private IPv4 address</td>
<td>Your instance receives a private IPv4 address from the EC2-Classic range each time it's started.</td>
<td>Your instance receives a static private IPv4 address from the address range of your default VPC.</td>
<td>Your instance receives a static private IPv4 address from the address range of your VPC.</td>
</tr>
<tr>
<td>Multiple private IPv4 addresses</td>
<td>We select a single private IP address for your instance; multiple IP addresses are not supported.</td>
<td>You can assign multiple private IPv4 addresses to your instance.</td>
<td>You can assign multiple private IPv4 addresses to your instance.</td>
</tr>
</tbody>
</table>
### Differences Between EC2-Classic and EC2-VPC

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EC2-Classic</th>
<th>Default VPC</th>
<th>Nondefault VPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic IP address (IPv4)</td>
<td>An Elastic IP is disassociated from your instance when you stop it.</td>
<td>An Elastic IP remains associated with your instance when you stop it.</td>
<td>An Elastic IP remains associated with your instance when you stop it.</td>
</tr>
<tr>
<td>DNS hostnames</td>
<td>DNS hostnames are enabled by default.</td>
<td>DNS hostnames are enabled by default.</td>
<td>DNS hostnames are disabled by default.</td>
</tr>
<tr>
<td>Security group</td>
<td>A security group can reference security groups that belong to other AWS accounts. You can create up to 500 security groups in each region.</td>
<td>A security group can reference security groups for your VPC only. You can create up to 500 security groups per VPC.</td>
<td>A security group can reference security groups for your VPC only. You can create up to 500 security groups per VPC.</td>
</tr>
<tr>
<td>Security group association</td>
<td>You can assign an unlimited number of security groups to an instance when you launch it. You can't change the security groups of your running instance. You can either modify the rules of the assigned security groups, or replace the instance with a new one (create an AMI from the instance, launch a new instance from this AMI with the security groups that you need, disassociate any Elastic IP address from the original instance and associate it with the new instance, and then terminate the original instance).</td>
<td>You can assign up to 5 security groups to an instance. You can assign security groups to your instance when you launch it and while it's running.</td>
<td>You can assign up to 5 security groups to an instance. You can assign security groups to your instance when you launch it and while it's running.</td>
</tr>
<tr>
<td>Security group rules</td>
<td>You can add rules for inbound traffic only. You can add up to 100 rules to a security group.</td>
<td>You can add rules for inbound and outbound traffic. You can add up to 50 rules to a security group.</td>
<td>You can add rules for inbound and outbound traffic. You can add up to 50 rules to a security group.</td>
</tr>
<tr>
<td>Tenancy</td>
<td>Your instance runs on shared hardware.</td>
<td>You can run your instance on shared hardware or single-tenant hardware.</td>
<td>You can run your instance on shared hardware or single-tenant hardware.</td>
</tr>
<tr>
<td>Characteristic</td>
<td>EC2-Classic</td>
<td>Default VPC</td>
<td>Nondefault VPC</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Accessing the Internet</td>
<td>Your instance can access the Internet. Your instance automatically receives a public IP address, and can access the Internet directly through the AWS network edge.</td>
<td>By default, your instance can access the Internet. Your instance receives a public IP address by default. An Internet gateway is attached to your default VPC, and your default subnet has a route to the Internet gateway.</td>
<td>By default, your instance cannot access the Internet. Your instance doesn't receive a public IP address by default. Your VPC may have an Internet gateway, depending on how it was created.</td>
</tr>
<tr>
<td>IPv6 addressing</td>
<td>IPv6 addressing is not supported. You cannot assign IPv6 addresses to your instances.</td>
<td>You can optionally associate an IPv6 CIDR block with your VPC, and assign IPv6 addresses to instances in your VPC.</td>
<td>You can optionally associate an IPv6 CIDR block with your VPC, and assign IPv6 addresses to instances in your VPC.</td>
</tr>
</tbody>
</table>

The following diagram shows instances in each platform. Note the following:

- Instances 1, 2, 3, and 4 are in the EC2-Classic platform. 1 and 2 were launched by one account, and 3 and 4 were launched by a different account. These instances can communicate with each other, can access the Internet directly.
- Instances 5 and 6 are in different subnets in the same VPC in the EC2-VPC platform. They were launched by the account that owns the VPC; no other account can launch instances in this VPC. These instances can communicate with each other and can access instances in EC2-Classic and the Internet through the Internet gateway.
Sharing and Accessing Resources Between EC2-Classic and EC2-VPC

Some resources and features in your AWS account can be shared or accessed between the EC2-Classic and EC2-VPC platforms, for example, through ClassicLink. For more information about ClassicLink, see ClassicLink (p. 552).
If your account supports EC2-Classic, you might have set up resources for use in EC2-Classic. If you want to migrate from EC2-Classic to a VPC, you must recreate those resources in your VPC. For more information about migrating from EC2-Classic to a VPC, see Migrating from a Windows Instance in EC2-Classic to a Windows Instance in a VPC (p. 562).

The following resources can be shared or accessed between EC2-Classic and a VPC.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td></td>
</tr>
<tr>
<td>Bundle task</td>
<td></td>
</tr>
<tr>
<td>EBS volume</td>
<td></td>
</tr>
<tr>
<td>Elastic IP address (IPv4)</td>
<td>You can migrate an Elastic IP address from EC2-Classic to EC2-VPC. You can't migrate an Elastic IP address that was originally allocated for use in a VPC to EC2-Classic. For more information, see Migrating an Elastic IP Address from EC2-Classic to EC2-VPC (p. 589).</td>
</tr>
<tr>
<td>Instance</td>
<td>An EC2-Classic instance can communicate with instances in a VPC using public IPv4 addresses, or you can use ClassicLink to enable communication over private IPv4 addresses. You can't migrate an instance from EC2-Classic to a VPC. However, you can migrate your application from an instance in EC2-Classic to an instance in a VPC. For more information, see Migrating from a Windows Instance in EC2-Classic to a Windows Instance in a VPC (p. 562).</td>
</tr>
<tr>
<td>Key pair</td>
<td></td>
</tr>
<tr>
<td>Load balancer</td>
<td>If you're using ClassicLink, you can register a linked EC2-Classic instance with a load balancer in a VPC, provided that the VPC has a subnet in the same Availability Zone as the instance. You can't migrate a load balancer from EC2-Classic to a VPC. You can't register an instance in a VPC with a load balancer in EC2-Classic.</td>
</tr>
<tr>
<td>Placement group</td>
<td></td>
</tr>
<tr>
<td>Reserved Instance</td>
<td>You can change the network platform for your Reserved Instances from EC2-Classic to EC2-VPC.</td>
</tr>
<tr>
<td>Security group</td>
<td>A linked EC2-Classic instance can use a VPC security groups through ClassicLink to control traffic to and from the VPC. VPC instances can't use EC2-Classic security groups. You can't migrate a security group from EC2-Classic to a VPC. You can copy rules from a security group in EC2-Classic to a security group</td>
</tr>
</tbody>
</table>
Instance Types Available Only in a VPC

Instances of the following instance types are not supported in EC2-Classic and must be launched in a VPC:

- General purpose: M4, M5, T2
- Compute optimized: C4, C5
- Memory optimized: R4, X1
- Storage optimized: H1, I3
- Accelerated computing: F1, G3, P2, P3

If your account supports EC2-Classic but you have not created a nondefault VPC, you can do one of the following to launch a VPC-only instance:

- Create a nondefault VPC and launch your VPC-only instance into it by specifying a subnet ID or a network interface ID in the request. Note that you must create a nondefault VPC if you do not have a default VPC and you are using the AWS CLI, Amazon EC2 API, or AWS SDK to launch a VPC-only instance. For more information, see Create a Virtual Private Cloud (VPC) (p. 15).
- Launch your VPC-only instance using the Amazon EC2 console. The Amazon EC2 console creates a nondefault VPC in your account and launches the instance into the subnet in the first Availability Zone. The console creates the VPC with the following attributes:
  - One subnet in each Availability Zone, with the public IPv4 addressing attribute set to true so that instances receive a public IPv4 address. For more information, see IP Addressing in Your VPC in the Amazon VPC User Guide.
  - An Internet gateway, and a main route table that routes traffic in the VPC to the Internet gateway. This enables the instances you launch in the VPC to communicate over the Internet. For more information, see Internet Gateways in the Amazon VPC User Guide.
  - A default security group for the VPC and a default network ACL that is associated with each subnet. For more information, see Security in Your VPC in the Amazon VPC User Guide.

If you have other resources in EC2-Classic, you can take steps to migrate them to EC2-VPC. For more information, see Migrating from a Windows Instance in EC2-Classic to a Windows Instance in a VPC (p. 562).

Amazon VPC Documentation

For more information about Amazon VPC, see the following documentation.
Supported Platforms

Amazon EC2 supports the following platforms. Your AWS account is capable of launching instances either into both platforms or only into EC2-VPC, on a region by region basis.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Introduced In</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2-Classic</td>
<td>The original release of Amazon EC2</td>
<td>Your instances run in a single, flat network that you share with other customers.</td>
</tr>
<tr>
<td>EC2-VPC</td>
<td>The original release of Amazon VPC</td>
<td>Your instances run in a virtual private cloud (VPC) that’s logically isolated to your AWS account.</td>
</tr>
</tbody>
</table>

For more information about the availability of either platform in your account, see Availability in the Amazon VPC User Guide. For more information about the differences between EC2-Classic and EC2-VPC, see Differences Between EC2-Classic and EC2-VPC (p. 545).

Supported Platforms in the Amazon EC2 Console

The Amazon EC2 console indicates which platforms you can launch instances into for the selected region, and whether you have a default VPC in that region.

Verify that the region you’ll use is selected in the navigation bar. On the Amazon EC2 console dashboard, look for Supported Platforms under Account Attributes. If there are two values, EC2 and VPC, you can launch instances into either platform. If there is one value, VPC, you can launch instances only into EC2-VPC.

If you can launch instances only into EC2-VPC, we create a default VPC for you. Then, when you launch an instance, we launch it into your default VPC, unless you create a nondefault VPC and specify it when you launch the instance.

EC2-VPC

The dashboard displays the following under Account Attributes to indicate that the account supports only the EC2-VPC platform, and has a default VPC with the identifier vpc-1a2b3c4d.

Supported Platforms
VPC

Default VPC
vpc-1a2b3c4d

If your account supports only EC2-VPC, you can select a VPC from the Network list, and a subnet from the Subnet list when you launch an instance using the launch wizard.
EC2-Classic, EC2-VPC

The dashboard displays the following under Account Attributes to indicate that the account supports both the EC2-Classic and EC2-VPC platforms.

Supported Platforms
- EC2
- VPC

If your account supports EC2-Classic and EC2-VPC, you can launch into EC2-Classic using the launch wizard by selecting Launch into EC2-Classic from the Network list. To launch into a VPC, you can select a VPC from the Network list, and a subnet from the Subnet list.

Related Topic

For more information about how you can tell which platforms you can launch instances into, see Detecting Your Supported Platforms in the Amazon VPC User Guide.

ClassicLink

ClassicLink allows you to link your EC2-Classic instance to a VPC in your account, within the same region. This allows you to associate the VPC security groups with the EC2-Classic instance, enabling communication between your EC2-Classic instance and instances in your VPC using private IPv4 addresses. ClassicLink removes the need to make use of public IPv4 addresses or Elastic IP addresses to enable communication between instances in these platforms. For more information about private and public IPv4 addresses, see IP Addressing in Your VPC.

ClassicLink is available to all users with accounts that support the EC2-Classic platform, and can be used with any EC2-Classic instance. To find out which platform your account supports, see Supported Platforms (p. 551). For more information about the benefits of using a VPC, see Amazon EC2 and Amazon Virtual Private Cloud (p. 544). For more information about migrating your resources to a VPC, see Migrating from a Windows Instance in EC2-Classic to a Windows Instance in a VPC (p. 562).

There is no additional charge for using ClassicLink. Standard charges for data transfer and instance usage apply.

Note

EC2-Classic instances cannot be enabled for IPv6 communication. You can associate an IPv6 CIDR block with your VPC and assign IPv6 address to resources in your VPC, however, communication between a ClassicLinked instance and resources in the VPC is over IPv4 only.

Contents
- ClassicLink Basics (p. 552)
- ClassicLink Limitations (p. 555)
- Working with ClassicLink (p. 556)
- API and CLI Overview (p. 559)
- Example: ClassicLink Security Group Configuration for a Three-Tier Web Application (p. 560)

ClassicLink Basics

There are two steps to linking an EC2-Classic instance to a VPC using ClassicLink. First, you must enable the VPC for ClassicLink. By default, all VPCs in your account are not enabled for ClassicLink, to maintain
their isolation. After you've enabled the VPC for ClassicLink, you can then link any running EC2-Classic instance in the same region in your account to that VPC. Linking your instance includes selecting security groups from the VPC to associate with your EC2-Classic instance. After you've linked the instance, it can communicate with instances in your VPC using their private IP addresses, provided the VPC security groups allow it. Your EC2-Classic instance does not lose its private IP address when linked to the VPC.

**Note**

Linking your instance to a VPC is sometimes referred to as *attaching* your instance.

A linked EC2-Classic instance can communicate with instances in a VPC, but it does not form part of the VPC. If you list your instances and filter by VPC, for example, through the DescribeInstances API request, or by using the **Instances** screen in the Amazon EC2 console, the results do not return any EC2-Classic instances that are linked to the VPC. For more information about viewing your linked EC2-Classic instances, see Viewing Your ClassicLink-Enabled VPCs and Linked EC2-Classic Instances (p. 557).

By default, if you use a public DNS hostname to address an instance in a VPC from a linked EC2-Classic instance, the hostname resolves to the instance's public IP address. The same occurs if you use a public DNS hostname to address a linked EC2-Classic instance from an instance in the VPC. If you want the public DNS hostname to resolve to the private IP address, you can enable ClassicLink DNS support for the VPC. For more information, see Enabling ClassicLink DNS Support (p. 558).

If you no longer require a ClassicLink connection between your instance and the VPC, you can unlink the EC2-Classic instance from the VPC. This disassociates the VPC security groups from the EC2-Classic instance. A linked EC2-Classic instance is automatically unlinked from a VPC when it's stopped. After you've unlinked all linked EC2-Classic instances from the VPC, you can disable ClassicLink for the VPC.

**Using Other AWS Services in Your VPC With ClassicLink**

Linked EC2-Classic instances can access the following AWS services in the VPC: Amazon Redshift, Amazon ElastiCache, Elastic Load Balancing, and Amazon RDS. However, instances in the VPC cannot access the AWS services provisioned by the EC2-Classic platform using ClassicLink.

If you use Elastic Load Balancing, you can register your linked EC2-Classic instances with the load balancer. You must create your load balancer in the ClassicLink-enabled VPC and enable the Availability Zone in which the instance runs. If you terminate the linked EC2-Classic instance, the load balancer deregisters the instance.

If you use Amazon EC2 Auto Scaling, you can create an Amazon EC2 Auto Scaling group with instances that are automatically linked to a specified ClassicLink-enabled VPC at launch. For more information, see Linking EC2-Classic Instances to a VPC in the Amazon EC2 Auto Scaling User Guide.

If you use Amazon RDS instances or Amazon Redshift clusters in your VPC, and they are publicly accessible (accessible from the Internet), the endpoint you use to address those resources from a linked EC2-Classic instance by default resolves to a public IP address. If those resources are not publicly accessible, the endpoint resolves to a private IP address. To address a publicly accessible RDS instance or Redshift cluster over private IP using ClassicLink, you must use their private IP address or private DNS hostname, or you must enable ClassicLink DNS support for the VPC.

If you use a private DNS hostname or a private IP address to address an RDS instance, the linked EC2-Classic instance cannot use the failover support available for Multi-AZ deployments.

You can use the Amazon EC2 console to find the private IP addresses of your Amazon Redshift, Amazon ElastiCache, or Amazon RDS resources.

**To locate the private IP addresses of AWS resources in your VPC**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Network Interfaces**.
3. Check the descriptions of the network interfaces in the Description column. A network interface that's used by Amazon Redshift, Amazon ElastiCache, or Amazon RDS will have the name of the service in the description. For example, a network interface that's attached to an Amazon RDS instance will have the following description: RDSNetworkInterface.

4. Select the required network interface.

5. In the details pane, get the private IP address from the Primary private IPv4 IP field.

**Controlling the Use of ClassicLink**

By default, IAM users do not have permission to work with ClassicLink. You can create an IAM policy that grants users permissions to enable or disable a VPC for ClassicLink, link or unlink an instance to a ClassicLink-enabled VPC, and to view ClassicLink-enabled VPCs and linked EC2-Classic instances. For more information about IAM policies for Amazon EC2, see IAM Policies for Amazon EC2 (p. 468).

For more information about policies for working with ClassicLink, see the following example: 6. Working with ClassicLink (p. 519).

**Security Groups in ClassicLink**

Linking your EC2-Classic instance to a VPC does not affect your EC2-Classic security groups. They continue to control all traffic to and from the instance. This excludes traffic to and from instances in the VPC, which is controlled by the VPC security groups that you associated with the EC2-Classic instance. EC2-Classic instances that are linked to the same VPC cannot communicate with each other through the VPC; regardless of whether they are associated with the same VPC security group. Communication between EC2-Classic instances is controlled by the EC2-Classic security groups associated with those instances. For an example of a security group configuration, see Example: ClassicLink Security Group Configuration for a Three-Tier Web Application (p. 560).

After you've linked your instance to a VPC, you cannot change which VPC security groups are associated with the instance. To associate different security groups with your instance, you must first unlink the instance, and then link it to the VPC again, choosing the required security groups.

**Routing for ClassicLink**

When you enable a VPC for ClassicLink, a static route is added to all of the VPC route tables with a destination of 10.0.0.0/8 and a target of local. This allows communication between instances in the VPC and any EC2-Classic instances that are then linked to the VPC. If you add a custom route table to a ClassicLink-enabled VPC, a static route is automatically added with a destination of 10.0.0.0/8 and a target of local. When you disable ClassicLink for a VPC, this route is automatically deleted in all of the VPC route tables.

VPCs that are in the 10.0.0.0/16 and 10.1.0.0/16 IP address ranges can be enabled for ClassicLink only if they do not have any existing static routes in route tables in the 10.0.0.0/8 IP address range, excluding the local routes that were automatically added when the VPC was created. Similarly, if you've enabled a VPC for ClassicLink, you may not be able to add any more specific routes to your route tables within the 10.0.0.0/8 IP address range.

**Important**

If your VPC CIDR block is a publicly routable IP address range, consider the security implications before you link an EC2-Classic instance to your VPC. For example, if your linked EC2-Classic instance receives an incoming Denial of Service (DoS) request flood attack from a source IP address that falls within the VPC's IP address range, the response traffic is sent into your VPC. We strongly recommend that you create your VPC using a private IP address range as specified in RFC 1918.

For more information about route tables and routing in your VPC, see Route Tables in the Amazon VPC User Guide.
Enabling a VPC Peering Connection for ClassicLink

If you have a VPC peering connection between two VPCs, and there are one or more EC2-Classic instances that are linked to one or both of the VPCs via ClassicLink, you can extend the VPC peering connection to enable communication between the EC2-Classic instances and the instances in the VPC on the other side of the VPC peering connection. This enables the EC2-Classic instances and the instances in the VPC to communicate using private IP addresses. To do this, you can enable a local VPC to communicate with a linked EC2-Classic instance in a peer VPC, or you can enable a local linked EC2-Classic instance to communicate with instances in a peer VPC.

If you enable a local VPC to communicate with a linked EC2-Classic instance in a peer VPC, a static route is automatically added to your route tables with a destination of 10.0.0.0/8 and a target of local.

For more information and examples, see Configurations With ClassicLink in the Amazon VPC Peering Guide.

ClassicLink Limitations

To use the ClassicLink feature, you need to be aware of the following limitations:

- You can link an EC2-Classic instance to only one VPC at a time.
- If you stop your linked EC2-Classic instance, it's automatically unlinked from the VPC and the VPC security groups are no longer associated with the instance. You can link your instance to the VPC again after you've restarted it.
- You cannot link an EC2-Classic instance to a VPC that's in a different region or a different AWS account.
- VPCs configured for dedicated hardware tenancy cannot be enabled for ClassicLink. Contact AWS support to request that your dedicated tenancy VPC be allowed to be enabled for ClassicLink.

  Important
  EC2-Classic instances are run on shared hardware. If you've set the tenancy of your VPC to dedicated because of regulatory or security requirements, then linking an EC2-Classic instance to your VPC may not conform to those requirements, as you will be allowing a shared tenancy resource to address your isolated resources directly using private IP addresses. If you want to enable your dedicated VPC for ClassicLink, provide a detailed motivation in your request to AWS support.

- VPCs with routes that conflict with the EC2-Classic private IP address range of 10/8 cannot be enabled for ClassicLink. This does not include VPCs with 10.0.0.0/16 and 10.1.0.0/16 IP address ranges that already have local routes in their route tables. For more information, see Routing for ClassicLink (p. 554).
- You cannot associate a VPC Elastic IP address with a linked EC2-Classic instance.
- ClassicLink does not support transitive relationships out of the VPC. Your linked EC2-Classic instance will not have access to any VPN connection, VPC endpoint, or Internet gateway associated with the VPC. Similarly, resources on the other side of a VPN connection, or an Internet gateway will not have access to a linked EC2-Classic instance.
- You cannot use ClassicLink to link a VPC instance to a different VPC, or to a EC2-Classic resource. To establish a private connection between VPCs, you can use a VPC peering connection. For more information, see the Amazon VPC Peering Guide.
- If you link your EC2-Classic instance to a VPC in the 172.16.0.0/16 range, and you have a DNS server running on the 172.16.0.23/32 IP address within the VPC, then your linked EC2-Classic instance will not be able to access the VPC DNS server. To work around this issue, run your DNS server on a different IP address within the VPC.
Working with ClassicLink

You can use the Amazon EC2 and Amazon VPC consoles to work with the ClassicLink feature. You can enable or disable a VPC for ClassicLink, and link and unlink EC2-Classic instances to a VPC.

Note
The ClassicLink features are only visible in the consoles for accounts and regions that support EC2-Classic.

Tasks
• Enabling a VPC for ClassicLink (p. 556)
• Linking an Instance to a VPC (p. 556)
• Creating a VPC with ClassicLink Enabled (p. 557)
• Linking an EC2-Classic Instance to a VPC at Launch (p. 557)
• Viewing Your ClassicLink-Enabled VPCs and Linked EC2-Classic Instances (p. 557)
• Enabling ClassicLink DNS Support (p. 558)
• Disabling ClassicLink DNS Support (p. 558)
• Unlinking a EC2-Classic Instance from a VPC (p. 558)
• Disabling ClassicLink for a VPC (p. 559)

Enabling a VPC for ClassicLink

To link an EC2-Classic instance to a VPC, you must first enable the VPC for ClassicLink. You cannot enable a VPC for ClassicLink if the VPC has routing that conflicts with the EC2-Classic private IP address range. For more information, see Routing for ClassicLink (p. 554).

To enable a VPC for ClassicLink

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Your VPCs.
3. Choose a VPC, and then choose Actions, Enable ClassicLink.
4. In the confirmation dialog box, choose Yes, Enable.

Linking an Instance to a VPC

After you've enabled a VPC for ClassicLink, you can link an EC2-Classic instance to it.

Note
You can only link a running EC2-Classic instance to a VPC. You cannot link an instance that's in the stopped state.

To link an instance to a VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the running EC2-Classic instance, choose Actions, ClassicLink, Link to VPC. You can select more than one instance to link to the same VPC.
4. In the dialog box that displays, select a VPC from the list. Only VPCs that have been enabled for ClassicLink are displayed.
5. Select one or more of the VPC security groups to associate with your instance. When you are done, choose Link to VPC.
Creating a VPC with ClassicLink Enabled

You can create a new VPC and immediately enable it for ClassicLink by using the VPC wizard in the Amazon VPC console.

To create a VPC with ClassicLink enabled

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the Amazon VPC dashboard, choose Start VPC Wizard.
3. Select one of the VPC configuration options and choose Select.
4. On the next page of the wizard, choose Yes for Enable ClassicLink. Complete the rest of the steps in the wizard to create your VPC. For more information about using the VPC wizard, see Scenarios for Amazon VPC in the Amazon VPC User Guide.

Linking an EC2-Classic Instance to a VPC at Launch

You can use the launch wizard in the Amazon EC2 console to launch an EC2-Classic instance and immediately link it to a ClassicLink-enabled VPC.

To link an instance to a VPC at launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the Amazon EC2 dashboard, choose Launch Instance.
3. Select an AMI, and then choose an instance type. On the Configure Instance Details page, ensure that you select Launch into EC2-Classic from the Network list.
   Note: Some instance types, such as T2 instance types, can only be launched into a VPC. Ensure that you select an instance type that can be launched into EC2-Classic.
4. In the Link to VPC (ClassicLink) section, select a VPC from Link to VPC. Only ClassicLink-enabled VPCs are displayed. Select the security groups from the VPC to associate with the instance. Complete the other configuration options on the page, and then complete the rest of the steps in the wizard to launch your instance. For more information about using the launch wizard, see Launching Your Instance from an AMI (p. 265).

Viewing Your ClassicLink-Enabled VPCs and Linked EC2-Classic Instances

You can view all of your ClassicLink-enabled VPCs in the Amazon VPC console, and your linked EC2-Classic instances in the Amazon EC2 console.

To view your ClassicLink-enabled VPCs

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Your VPCs.
3. Select a VPC, and in the Summary tab, look for the ClassicLink field. A value of Enabled indicates that the VPC is enabled for ClassicLink.
4. Alternatively, look for the ClassicLink column, and view the value that's displayed for each VPC (Enabled or Disabled). If the column is not visible, choose Edit Table Columns (the gear-shaped icon), select the ClassicLink attribute, and then choose Close.

To view your linked EC2-Classic instances

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select an EC2-Classic instance, and in the **Description** tab, look for the **ClassicLink** field. If the instance is linked to a VPC, the field displays the ID of the VPC to which the instance is linked. If the instance is not linked to any VPC, the field displays **Unlinked**.
4. Alternatively, you can filter your instances to display only linked EC2-Classic instances for a specific VPC or security group. In the search bar, start typing **ClassicLink**, select the relevant ClassicLink resource attribute, and then select the security group ID or the VPC ID.

**Enabling ClassicLink DNS Support**

You can enable ClassicLink DNS support for your VPC so that DNS hostnames that are addressed between linked EC2-Classic instances and instances in the VPC resolve to private IP addresses and not public IP addresses. For this feature to work, your VPC must be enabled for DNS hostnames and DNS resolution.

**Note**
If you enable ClassicLink DNS support for your VPC, your linked EC2-Classic instance can access any private hosted zone associated with the VPC. For more information, see Working with Private Hosted Zones in the *Amazon Route 53 Developer Guide*.

**To enable ClassicLink DNS support**
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose **Your VPCs**.
3. Select your VPC, and choose **Actions**, **Edit ClassicLink DNS Support**.
4. Choose **Yes** to enable ClassicLink DNS support, and choose **Save**.

**Disabling ClassicLink DNS Support**

You can disable ClassicLink DNS support for your VPC so that DNS hostnames that are addressed between linked EC2-Classic instances and instances in the VPC resolve to public IP addresses and not private IP addresses.

**To disable ClassicLink DNS support**
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose **Your VPCs**.
3. Select your VPC, and choose **Actions**, **Edit ClassicLink DNS Support**.
4. Choose **No** to disable ClassicLink DNS support, and choose **Save**.

**Unlinking a EC2-Classic Instance from a VPC**

If you no longer require a ClassicLink connection between your EC2-Classic instance and your VPC, you can unlink the instance from the VPC. Unlinking the instance disassociates the VPC security groups from the instance.

**Note**
A stopped instance is automatically unlinked from a VPC.

**To unlink an instance from a VPC**
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**, and select your instance.
3. In the Actions list, select **ClassicLink, Unlink Instance**. You can select more than one instance to unlink from the same VPC.
4. Choose **Yes** in the confirmation dialog box.

**Disabling ClassicLink for a VPC**

If you no longer require a connection between EC2-Classic instances and your VPC, you can disable ClassicLink on the VPC. You must first unlink all linked EC2-Classic instances that are linked to the VPC.

**To disable ClassicLink for a VPC**

1. Open the Amazon VPC console at [https://console.aws.amazon.com/vpc/](https://console.aws.amazon.com/vpc/).
2. In the navigation pane, choose **Your VPCs**.
3. Select your VPC, then choose **Actions, Disable ClassicLink**.
4. In the confirmation dialog box, choose **Yes, Disable**.

**API and CLI Overview**

You can perform the tasks described on this page using the command line or the Query API. For more information about the command line interfaces and a list of available API actions, see *Accessing Amazon EC2* (p. 3).

**Enable a VPC for ClassicLink**

- `enable-vpc-classic-link` (AWS CLI)
- `Enable-EC2VpcClassicLink` (AWS Tools for Windows PowerShell)
- `EnableVpcClassicLink` (Amazon EC2 Query API)

**Link (attach) an EC2-Classic instance to a VPC**

- `attach-classic-link-vpc` (AWS CLI)
- `Add-EC2ClassicLinkVpc` (AWS Tools for Windows PowerShell)
- `AttachClassicLinkVpc` (Amazon EC2 Query API)

**Unlink (detach) an EC2-Classic instance from a VPC**

- `detach-classic-link-vpc` (AWS CLI)
- `Dismount-EC2ClassicLinkVpc` (AWS Tools for Windows PowerShell)
- `DetachClassicLinkVpc` (Amazon EC2 Query API)

**Disable ClassicLink for a VPC**

- `disable-vpc-classic-link` (AWS CLI)
- `Disable-EC2VpcClassicLink` (AWS Tools for Windows PowerShell)
- `DisableVpcClassicLink` (Amazon EC2 Query API)

**Describe the ClassicLink status of VPCs**

- `describe-vpc-classic-link` (AWS CLI)
Example: ClassicLink Security Group Configuration for a Three-Tier Web Application

In this example, you have an application with three instances: a public-facing web server, an application server, and a database server. Your web server accepts HTTPS traffic from the Internet, and then communicates with your application server over TCP port 6001. Your application server then communicates with your database server over TCP port 6004. You're in the process of migrating your entire application to a VPC in your account. You've already migrated your application server and your database server to your VPC. Your web server is still in EC2-Classic and linked to your VPC via ClassicLink.

You want a security group configuration that allows traffic to flow only between these instances. You have four security groups: two for your web server (sg-1a1a1a1a and sg-2b2b2b2b), one for your application server (sg-3c3c3c3c), and one for your database server (sg-4d4d4d4d).

The following diagram displays the architecture of your instances, and their security group configuration.
Security Groups for Your Web Server (sg-1a1a1a1a and sg-2b2b2b2b)

You have one security group in EC2-Classic, and the other in your VPC. You associated the VPC security group with your web server instance when you linked the instance to your VPC via ClassicLink. The VPC security group enables you to control the outbound traffic from your web server to your application server.

The following are the security group rules for the EC2-Classic security group (sg-1a1a1a1a).

<table>
<thead>
<tr>
<th>Inbound</th>
<th>Source</th>
<th>Type</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0.0.0/0</td>
<td>HTTPS</td>
<td>443</td>
<td>Allows Internet traffic to reach your web server.</td>
</tr>
</tbody>
</table>

The following are the security group rules for the VPC security group (sg-2b2b2b2b).
Migrating from EC2-Classic to a VPC

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg-3c3c3c3c</td>
<td>TCP</td>
<td>6001</td>
<td>Allows outbound traffic from your web server to your application server in your VPC (or to any other instance associated with sg-3c3c3c3c).</td>
</tr>
</tbody>
</table>

### Security Group for Your Application Server (sg-3c3c3c3c)

The following are the security group rules for the VPC security group that's associated with your application server.

#### Inbound

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg-2b2b2b2b</td>
<td>TCP</td>
<td>6001</td>
<td>Allows the specified type of traffic from your web server (or any other instance associated with sg-2b2b2b2b) to reach your application server.</td>
</tr>
</tbody>
</table>

#### Outbound

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg-4d4d4d4d</td>
<td>TCP</td>
<td>6004</td>
<td>Allows outbound traffic from the application server to the database server (or to any other instance associated with sg-4d4d4d4d).</td>
</tr>
</tbody>
</table>

### Security Group for Your Database Server (sg-4d4d4d4d)

The following are the security group rules for the VPC security group that's associated with your database server.

#### Inbound

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Port Range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg-3c3c3c3c</td>
<td>TCP</td>
<td>6004</td>
<td>Allows the specified type of traffic from your application server (or any other instance associated with sg-3c3c3c3c) to reach your database server.</td>
</tr>
</tbody>
</table>

### Migrating from a Windows Instance in EC2-Classic to a Windows Instance in a VPC

Your AWS account might support both EC2-Classic and EC2-VPC, depending on when you created your account and which regions you've used. For more information, and to find out which platform your account supports, see Supported Platforms (p. 551). For more information about the benefits of using a VPC, and the differences between EC2-Classic and EC2-VPC, see Amazon EC2 and Amazon Virtual Private Cloud (p. 544).
You create and use resources in your AWS account. Some resources and features, such as enhanced networking and certain instance types, can be used only in a VPC. Some resources can be shared between EC2-Classic and a VPC, while some can't. For more information, see Sharing and Accessing Resources Between EC2-Classic and EC2-VPC (p. 548).

If your account supports EC2-Classic, you might have set up resources for use in EC2-Classic. If you want to migrate from EC2-Classic to a VPC, you must recreate those resources in your VPC.

There are two ways of migrating to a VPC. You can do a full migration, or you can do an incremental migration over time. The method you choose depends on the size and complexity of your application in EC2-Classic. For example, if your application consists of one or two instances running a static website, and you can afford a short period of downtime, you can do a full migration. If you have a multi-tier application with processes that cannot be interrupted, you can do an incremental migration using ClassicLink. This allows you to transfer functionality one component at a time until your application is running fully in your VPC.

If you need to migrate a Linux instance, see Migrating a Linux Instance from EC2-Classic to a VPC in the Amazon EC2 User Guide for Linux Instances.

Contents
- Full Migration to a VPC (p. 563)
- Incremental Migration to a VPC Using ClassicLink (p. 568)

Full Migration to a VPC

Complete the following tasks to fully migrate your application from EC2-Classic to a VPC.

Tasks
- Step 1: Create a VPC (p. 563)
- Step 2: Configure Your Security Group (p. 564)
- Step 3: Create an AMI from Your EC2-Classic Instance (p. 564)
- Step 4: Launch an Instance Into Your VPC (p. 565)
- Example: Migrating a Simple Web Application (p. 566)

Step 1: Create a VPC

To start using a VPC, ensure that you have one in your account. You can create one using one of these methods:

- Use a new, EC2-VPC-only AWS account. Your EC2-VPC-only account comes with a default VPC in each region, which is ready for you to use. Instances that you launch are by default launched into this VPC, unless you specify otherwise. For more information about your default VPC, see Your Default VPC and Subnets. Use this option if you'd prefer not to set up a VPC yourself, or if you do not need specific requirements for your VPC configuration.
- In your existing AWS account, open the Amazon VPC console and use the VPC wizard to create a new VPC. For more information, see Scenarios for Amazon VPC. Use this option if you want to set up a VPC quickly in your existing EC2-Classic account, using one of the available configuration sets in the wizard. You'll specify this VPC each time you launch an instance.
- In your existing AWS account, open the Amazon VPC console and set up the components of a VPC according to your requirements. For more information, see Your VPC and Subnets. Use this option if you have specific requirements for your VPC, such as a particular number of subnets. You'll specify this VPC each time you launch an instance.
Step 2: Configure Your Security Group

You cannot use the same security groups between EC2-Classic and a VPC. However, if you want your instances in your VPC to have the same security group rules as your EC2-Classic instances, you can use the Amazon EC2 console to copy your existing EC2-Classic security group rules to a new VPC security group.

Important

You can only copy security group rules to a new security group in the same AWS account in the same region. If you've created a new AWS account, you cannot use this method to copy your existing security group rules to your new account. You'll have to create a new security group, and add the rules yourself. For more information about creating a new security group, see Amazon EC2 Security Groups for Windows Instances (p. 451).

To copy your security group rules to a new security group

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Security Groups.
3. Select the security group that's associated with your EC2-Classic instance, then choose Actions and select Copy to new.
4. In the Create Security Group dialog box, specify a name and description for your new security group. Select your VPC from the VPC list.
5. The Inbound tab is populated with the rules from your EC2-Classic security group. You can modify the rules as required. In the Outbound tab, a rule that allows all outbound traffic has automatically been created for you. For more information about modifying security group rules, see Amazon EC2 Security Groups for Windows Instances (p. 451).

Note

If you've defined a rule in your EC2-Classic security group that references another security group, you will not be able to use the same rule in your VPC security group. Modify the rule to reference a security group in the same VPC.

6. Choose Create.

Step 3: Create an AMI from Your EC2-Classic Instance

An AMI is a template for launching your instance. You can create your own AMI based on an existing EC2-Classic instance, then use that AMI to launch instances into your VPC.

For more information, see Creating a Custom Windows AMI (p. 65).

(Optional) Store Your Data on Amazon EBS Volumes

You can create an Amazon EBS volume and use it to back up and store the data on your instance—like you would use a physical hard drive. Amazon EBS volumes can be attached and detached from any instance in the same Availability Zone. You can detach a volume from your instance in EC2-Classic, and attach it to a new instance that you launch into your VPC in the same Availability Zone.

For more information about Amazon EBS volumes, see the following topics:

- Amazon EBS Volumes (p. 630)
- Creating an Amazon EBS Volume (p. 644)
- Attaching an Amazon EBS Volume to an Instance (p. 647)

To back up the data on your Amazon EBS volume, you can take periodic snapshots of your volume. If you need to, you can restore an Amazon EBS volume from your snapshot. For more information about Amazon EBS snapshots, see the following topics:
Step 4: Launch an Instance Into Your VPC

After you've created an AMI, you can launch an instance into your VPC. The instance will have the same data and configurations as your existing EC2-Classic instance.

You can either launch your instance into a VPC that you've created in your existing account, or into a new, VPC-only AWS account.

Using Your Existing EC2-Classic Account

You can use the Amazon EC2 launch wizard to launch an instance into your VPC.

To launch an instance into your VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the dashboard, choose Launch Instance.
3. On the Choose an Amazon Machine Image page, select the My AMIs category, and select the AMI you created.
4. On the Choose an Instance Type page, select the type of instance, and choose Next: Configure Instance Details.
5. On the Configure Instance Details page, select your VPC from the Network list. Select the required subnet from the Subnet list. Configure any other details you require, then go through the next pages of the wizard until you reach the Configure Security Group page.
6. Select Select an existing group, and select the security group you created earlier. Choose Review and Launch.
7. Review your instance details, then choose Launch to specify a key pair and launch your instance.

For more information about the parameters you can configure in each step of the wizard, see Launching an Instance Using the Launch Instance Wizard (p. 265).

Using Your New, VPC-Only Account

To launch an instance in your new AWS account, you'll first have to share the AMI you created with your new account. You can then use the Amazon EC2 launch wizard to launch an instance into your default VPC.

To share an AMI with your new AWS account

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Switch to the account in which you created your AMI.
3. In the navigation pane, choose AMIs.
4. In the Filter list, ensure Owned by me is selected, then select your AMI.
5. In the Permissions tab, choose Edit. Enter the account number of your new AWS account, choose Add Permission, and then choose Save.

To launch an instance into your default VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Switch to your new AWS account.
3. In the navigation pane, choose AMIs.
4. In the Filter list, select Private images. Select the AMI that you shared from your EC2-Classic account, then choose Launch.
5. On the Choose an Instance Type page, select the type of instance, and choose Next: Configure Instance Details.
6. On the Configure Instance Details page, your default VPC should be selected in the Network list. Configure any other details you require, then go through the next pages of the wizard until you reach the Configure Security Group page.
7. Select Select an existing group, and select the security group you created earlier. Choose Review and Launch.
8. Review your instance details, then choose Launch to specify a key pair and launch your instance.

For more information about the parameters you can configure in each step of the wizard, see Launching an Instance Using the Launch Instance Wizard (p. 265).

Example: Migrating a Simple Web Application

In this example, you use AWS to host your gardening website. To manage your website, you have three running instances in EC2-Classic. Instances A and B host your public-facing web application, and you use an Elastic Load Balancer to load balance the traffic between these instances. You've assigned Elastic IP addresses to instances A and B so that you have static IP addresses for configuration and administration tasks on those instances. Instance C holds your MySQL database for your website. You've registered the domain name www.garden.example.com, and you've used Route 53 to create a hosted zone with an alias record set that's associated with the DNS name of your load balancer.

The first part of migrating to a VPC is deciding what kind of VPC architecture will suit your needs. In this case, you've decided on the following: one public subnet for your web servers, and one private subnet for your database server. As your website grows, you can add more web servers and database servers to your subnets. By default, instances in the private subnet cannot access the Internet; however, you can enable Internet access through a Network Address Translation (NAT) device in the public subnet. You may want to set up a NAT device to support periodic updates and patches from the Internet for your database server. You'll migrate your Elastic IP addresses to EC2-VPC, and create an Elastic Load Balancer in your public subnet to load balance the traffic between your web servers.
To migrate your web application to a VPC, you can follow these steps:

- **Create a VPC:** In this case, you can use the VPC wizard in the Amazon VPC console to create your VPC and subnets. The second wizard configuration creates a VPC with one private and one public subnet, and launches and configures a NAT device in your public subnet for you. For more information, see Scenario 2: VPC with Public and Private Subnets in the Amazon VPC User Guide.

- **Create AMIs from your instances:** Create an AMI from one of your web servers, and a second AMI from your database server. For more information, see Step 3: Create an AMI from Your EC2-Classic Instance (p. 564).

- **Configure your security groups:** In your EC2-Classic environment, you have one security group for your web servers, and another security group for your database server. You can use the Amazon EC2 console to copy the rules from each security group into new security groups for your VPC. For more information, see Step 2: Configure Your Security Group (p. 564).

  **Tip**
  Create the security groups that are referenced by other security groups first.

- **Launch an instance into your new VPC:** Launch replacement web servers into your public subnet, and launch your replacement database server into your private subnet. For more information, see Step 4: Launch an Instance Into Your VPC (p. 565).

- **Configure your NAT device:** If you are using a NAT instance, you must create security group for it that allows HTTP and HTTPS traffic from your private subnet. For more information, see NAT Instances. If you are using a NAT gateway, traffic from your private subnet is automatically allowed.
• **Configure your database:** When you created an AMI from your database server in EC2-Classic, all the configuration information that was stored in that instance was copied to the AMI. You may have to connect to your new database server and update the configuration details; for example, if you configured your database to grant full read, write, and modification permissions to your web servers in EC2-Classic, you'll have to update the configuration files to grant the same permissions to your new VPC web servers instead.

• **Configure your web servers:** Your web servers will have the same configuration settings as your instances in EC2-Classic. For example, if you configured your web servers to use the database in EC2-Classic, update your web servers’ configuration settings to point to your new database instance.

  **Note**
  By default, instances launched into a nondefault subnet are not assigned a public IP address, unless you specify otherwise at launch. Your new database server may not have a public IP address. In this case, you can update your web servers’ configuration file to use your new database server's private DNS name. Instances in the same VPC can communicate with each other via private IP address.

• **Migrate your Elastic IP addresses:** Disassociate your Elastic IP addresses from your web servers in EC2-Classic, and then migrate them to EC2-VPC. After you've migrated them, you can associate them with your new web servers in your VPC. For more information, see [Migrating an Elastic IP Address from EC2-Classic to EC2-VPC](p. 569).

• **Create a new load balancer:** To continue using Elastic Load Balancing to load balance the traffic to your instances, make sure you understand the various ways you can configure your load balancer in VPC. For more information, see [Elastic Load Balancing in Amazon VPC](p. 569).

• **Update your DNS records:** After you've set up your load balancer in your public subnet, ensure that your [www.garden.example.com](http://www.garden.example.com) domain points to your new load balancer. To do this, you'll need to update your DNS records and update your alias record set in Route 53. For more information about using Route 53, see [Getting Started with Route 53](p. 569).

• **Shut down your EC2-Classic resources:** After you've verified that your web application is working from within the VPC architecture, you can shut down your EC2-Classic resources to stop incurring charges for them. Terminate your EC2-Classic instances, and release your EC2-Classic Elastic IP addresses.

### Incremental Migration to a VPC Using ClassicLink

The ClassicLink feature makes it easier to manage an incremental migration to a VPC. ClassicLink allows you to link an EC2-Classic instance to a VPC in your account in the same region, allowing your new VPC resources to communicate with the EC2-Classic instance using private IPv4 addresses. You can then migrate functionality to the VPC one step at a time. This topic provides some basic steps for managing an incremental migration from EC2-Classic to a VPC.

For more information about ClassicLink, see [ClassicLink](p. 552).

**Topics**

- Step 1: Prepare Your Migration Sequence (p. 569)
- Step 2: Create a VPC (p. 569)
- Step 3: Enable Your VPC for ClassicLink (p. 569)
- Step 4: Create an AMI from Your EC2-Classic Instance (p. 569)
- Step 5: Launch an Instance Into Your VPC (p. 570)
- Step 6: Link Your EC2-Classic Instances to Your VPC (p. 570)
- Step 7: Complete the VPC Migration (p. 571)
Step 1: Prepare Your Migration Sequence

To use ClassicLink effectively, you must first identify the components of your application that must be migrated to the VPC, and then confirm the order in which to migrate that functionality.

For example, you have an application that relies on a presentation web server, a backend database server, and authentication logic for transactions. You may decide to start the migration process with the authentication logic, then the database server, and finally, the web server.

Step 2: Create a VPC

To start using a VPC, ensure that you have one in your account. You can create one using one of these methods:

- In your existing AWS account, open the Amazon VPC console and use the VPC wizard to create a new VPC. For more information, see Scenarios for Amazon VPC. Use this option if you want to set up a VPC quickly in your existing EC2-Classic account, using one of the available configuration sets in the wizard. You'll specify this VPC each time you launch an instance.

- In your existing AWS account, open the Amazon VPC console and set up the components of a VPC according to your requirements. For more information, see Your VPC and Subnets. Use this option if you have specific requirements for your VPC, such as a particular number of subnets. You'll specify this VPC each time you launch an instance.

Step 3: Enable Your VPC for ClassicLink

After you've created a VPC, you can enable it for ClassicLink. For more information about ClassicLink, see ClassicLink (p. 552).

To enable a VPC for ClassicLink

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Your VPCs.
3. Select your VPC, and then select Enable ClassicLink from the Actions list.
4. In the confirmation dialog box, choose Yes, Enable.

Step 4: Create an AMI from Your EC2-Classic Instance

An AMI is a template for launching your instance. You can create your own AMI based on an existing EC2-Classic instance, then use that AMI to launch instances into your VPC.

For more information, see Creating a Custom Windows AMI (p. 65).

(Optional) Store Your Data on Amazon EBS Volumes

You can create an Amazon EBS volume and use it to back up and store the data on your instance—like you would use a physical hard drive. Amazon EBS volumes can be attached and detached from any instance in the same Availability Zone. You can detach a volume from your instance in EC2-Classic, and attach it to a new instance that you launch into your VPC in the same Availability Zone.

For more information about Amazon EBS volumes, see the following topics:

- Amazon EBS Volumes (p. 630)
- Creating an Amazon EBS Volume (p. 644)
- Attaching an Amazon EBS Volume to an Instance (p. 647)
To back up the data on your Amazon EBS volume, you can take periodic snapshots of your volume. If you need to, you can restore an Amazon EBS volume from your snapshot. For more information about Amazon EBS snapshots, see the following topics:

- Amazon EBS Snapshots (p. 680)
- Creating an Amazon EBS Snapshot (p. 683)
- Restoring an Amazon EBS Volume from a Snapshot (p. 646)

Step 5: Launch an Instance Into Your VPC

The next step in the migration process is to launch instances into your VPC so that you can start transferring functionality to them. You can use the AMIs that you created in the previous step to launch instances into your VPC. The instances will have the same data and configurations as your existing EC2-Classic instances.

To launch an instance into your VPC using your custom AMI

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the dashboard, choose Launch Instance.
3. On the Choose an Amazon Machine Image page, select the My AMIs category, and select the AMI you created.
4. On the Choose an Instance Type page, select the type of instance, and choose Next: Configure Instance Details.
5. On the Configure Instance Details page, select your VPC from the Network list. Select the required subnet from the Subnet list. Configure any other details you require, then go through the next pages of the wizard until you reach the Configure Security Group page.
6. Select Select an existing group, and select the security group you created earlier. Choose Review and Launch.
7. Review your instance details, then choose Launch to specify a key pair and launch your instance.

For more information about the parameters you can configure in each step of the wizard, see Launching an Instance Using the Launch Instance Wizard (p. 265).

After you've launched your instance and it's in the running state, you can connect to it and configure it as required.

Step 6: Link Your EC2-Classic Instances to Your VPC

After you've configured your instances and made the functionality of your application available in the VPC, you can use ClassicLink to enable private IP communication between your new VPC instances and your EC2-Classic instances.

To link an instance to a VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select your EC2-Classic instance, then choose Actions, ClassicLink, and Link to VPC.
   
   Note
   
   Ensure that your instance is in the running state.
4. In the dialog box, select your ClassicLink-enabled VPC (only VPCs that are enabled for ClassicLink are displayed).
5. Select one or more of the VPC security groups to associate with your instance. When you are done, choose Link to VPC.
Step 7: Complete the VPC Migration

Depending on the size of your application and the functionality that must be migrated, repeat steps 4 to 6 until you've moved all the components of your application from EC2-Classic into your VPC.

After you've enabled internal communication between the EC2-Classic and VPC instances, you must update your application to point to your migrated service in your VPC, instead of your service in the EC2-Classic platform. The exact steps for this depend on your application's design. Generally, this includes updating your destination IP addresses to point to the IP addresses of your VPC instances instead of your EC2-Classic instances. You can migrate your Elastic IP addresses that you are currently using in the EC2-Classic platform to the EC2-VPC platform. For more information, see Migrating an Elastic IP Address from EC2-Classic to EC2-VPC (p. 589).

After you've completed this step and you've tested that the application is functioning from your VPC, you can terminate your EC2-Classic instances, and disable ClassicLink for your VPC. You can also clean up any EC2-Classic resources that you may no longer need to avoid incurring charges for them; for example, you can release Elastic IP addresses, and delete the volumes that were associated with your EC2-Classic instances.

Amazon EC2 Instance IP Addressing

We provide your instances with IP addresses and IPv4 DNS hostnames. These can vary depending on whether you launched the instance in the EC2-Classic platform or in a virtual private cloud (VPC). For information about the EC2-Classic and EC2-VPC platforms, see Supported Platforms (p. 551).

Amazon EC2 and Amazon VPC support both the IPv4 and IPv6 addressing protocols. By default, Amazon EC2 and Amazon VPC use the IPv4 addressing protocol; you can't disable this behavior. When you create a VPC, you must specify an IPv4 CIDR block (a range of private IPv4 addresses). You can optionally assign an IPv6 CIDR block to your VPC and subnets, and assign IPv6 addresses from that block to instances in your subnet. IPv6 addresses are reachable over the Internet. For more information about IPv6, see IP Addressing in Your VPC in the Amazon VPC User Guide.

IPv6 is not supported for the EC2-Classic platform.

Contents

- Private IPv4 Addresses and Internal DNS Hostnames (p. 571)
- Public IPv4 Addresses and External DNS Hostnames (p. 572)
- Elastic IP Addresses (IPv4) (p. 573)
- Amazon DNS Server (p. 573)
- IPv6 Addresses (p. 573)
- IP Address Differences Between EC2-Classic and EC2-VPC (p. 574)
- Working with IP Addresses for Your Instance (p. 575)
- Multiple IP Addresses (p. 579)

Private IPv4 Addresses and Internal DNS Hostnames

A private IPv4 address is an IP address that's not reachable over the Internet. You can use private IPv4 addresses for communication between instances in the same network (EC2-Classic or a VPC). For more information about the standards and specifications of private IPv4 addresses, see RFC 1918. We allocate private IPv4 addresses to instances using DHCP.

Note

You can create a VPC with a publicly routable CIDR block that falls outside of the private IPv4 address ranges specified in RFC 1918. However, for the purposes of this documentation, we refer
to private IPv4 addresses (or 'private IP addresses') as the IP addresses that are within the IPv4 CIDR range of your VPC.

When you launch an instance, we allocate a primary private IPv4 address for the instance. Each instance is also given an internal DNS hostname that resolves to the primary private IPv4 address; for example, ip-10-251-50-12.ec2.internal. You can use the internal DNS hostname for communication between instances in the same network, but we can't resolve the DNS hostname outside the network that the instance is in.

An instance launched in a VPC receives a primary private IP address from the IPv4 address range of the subnet. For more information, see Subnet Sizing in the Amazon VPC User Guide. If you don't specify a primary private IP address when you launch the instance, we select an available IP address in the subnet's IPv4 range for you. Each instance in a VPC has a default network interface (eth0) that is assigned the primary private IPv4 address. You can also specify additional private IPv4 addresses, known as secondary private IPv4 addresses. Unlike primary private IP addresses, secondary private IP addresses can be reassigned from one instance to another. For more information, see Multiple IP Addresses (p. 579).

For instances launched in EC2-Classic, we release the private IPv4 address when the instance is stopped or terminated. If you restart your stopped instance, it receives a new private IPv4 address.

For instances launched in a VPC, a private IPv4 address remains associated with the network interface when the instance is stopped and restarted, and is released when the instance is terminated.

If you create a custom firewall configuration in EC2-Classic, you must create a rule in your firewall that allows inbound traffic from port 53 (DNS)—with a destination port from the ephemeral range—from the address of the Amazon DNS server; otherwise, internal DNS resolution from your instances fails. If your firewall doesn't automatically allow DNS query responses, then you need to allow traffic from the IP address of the Amazon DNS server. To get the IP address of the Amazon DNS server, use the following command from within your instance:

```
ipconfig /all | findstr /c:"DNS Servers"
```

### Public IPv4 Addresses and External DNS Hostnames

A public IP address is an IPv4 address that's reachable from the Internet. You can use public addresses for communication between your instances and the Internet.

Each instance that receives a public IP address is also given an external DNS hostname; for example, ec2-203-0-113-25.compute-1.amazonaws.com. We resolve an external DNS hostname to the public IP address of the instance outside the network of the instance, and to the private IPv4 address of the instance from within the network of the instance. The public IP address is mapped to the primary private IP address through network address translation (NAT). For more information about NAT, see RFC 1631: The IP Network Address Translator (NAT).

When you launch an instance in EC2-Classic, we automatically assign a public IP address to the instance from the EC2-Classic public IPv4 address pool. You cannot modify this behavior. When you launch an instance into a VPC, your subnet has an attribute that determines whether instances launched into that subnet receive a public IP address from the EC2-VPC public IPv4 address pool. By default, we assign a public IP address to instances launched in a default VPC, and we don't assign a public IP address to instances launched in a nondefault subnet.

You can control whether your instance in a VPC receives a public IP address by doing the following:

- Modifying the public IP addressing attribute of your subnet. For more information, see Modifying the Public IPv4 Addressing Attribute for Your Subnet in the Amazon VPC User Guide.
- Enabling or disabling the public IP addressing feature during launch, which overrides the subnet's public IP addressing attribute. For more information, see Assigning a Public IPv4 Address During Instance Launch (p. 577).
A public IP address is assigned to your instance from Amazon's pool of public IPv4 addresses, and is not associated with your AWS account. When a public IP address is disassociated from your instance, it is released back into the public IPv4 address pool, and you cannot reuse it.

You cannot manually associate or disassociate a public IP address from your instance. Instead, in certain cases, we release the public IP address from your instance, or assign it a new one:

- We release the public IP address for your instance when it's stopped or terminated. Your stopped instance receives a new public IP address when it's restarted.
- We release the public IP address for your instance when you associate an Elastic IP address with your instance, or when you associate an Elastic IP address with the primary network interface (eth0) of your instance in a VPC. When you disassociate the Elastic IP address from your instance, it receives a new public IP address.
- If the public IP address of your instance in a VPC has been released, it will not receive a new one if there is more than one network interface attached to your instance.

If you require a persistent public IP address that can be associated to and from instances as you require, use an Elastic IP address instead. For example, if you use dynamic DNS to map an existing DNS name to a new instance's public IP address, it might take up to 24 hours for the IP address to propagate through the Internet. As a result, new instances might not receive traffic while terminated instances continue to receive requests. To solve this problem, use an Elastic IP address. You can allocate your own Elastic IP address, and associate it with your instance. For more information, see Elastic IP Addresses (p. 586).

If your instance is in a VPC and you assign it an Elastic IP address, it receives an IPv4 DNS hostname if DNS hostnames are enabled. For more information, see Using DNS with Your VPC in the Amazon VPC User Guide.

Note
Instances that access other instances through their public NAT IP address are charged for regional or Internet data transfer, depending on whether the instances are in the same region.

Elastic IP Addresses (IPv4)

An Elastic IP address is a public IPv4 address that you can allocate to your account. You can associate it to and from instances as you require, and it's allocated to your account until you choose to release it. For more information about Elastic IP addresses and how to use them, see Elastic IP Addresses (p. 586).

We do not support Elastic IP addresses for IPv6.

Amazon DNS Server

Amazon provides a DNS server that resolves Amazon-provided IPv4 DNS hostnames to IPv4 addresses. In EC2-Classic, the Amazon DNS server is located at 172.16.0.23. In EC2-VPC, the Amazon DNS server is located at the base of your VPC network range plus two. For more information, see Amazon DNS Server in the Amazon VPC User Guide.

IPv6 Addresses

You can optionally associate an IPv6 CIDR block with your VPC, and associate IPv6 CIDR blocks with your subnets. The IPv6 CIDR block for your VPC is automatically assigned from Amazon's pool of IPv6 addresses; you cannot choose the range yourself. For more information, see the following topics in the Amazon VPC User Guide:

- VPC and Subnet Sizing for IPv6
- Associating an IPv6 CIDR Block with Your VPC
- Associating an IPv6 CIDR Block with Your Subnet
IPv6 addresses are globally unique, and therefore reachable over the Internet. Your instance in a VPC receives an IPv6 address if an IPv6 CIDR block is associated with your VPC and subnet, and if one of the following is true:

- Your subnet is configured to automatically assign an IPv6 address to an instance during launch. For more information, see Modifying the IPv6 Addressing Attribute for Your Subnet.
- You assign an IPv6 address to your instance during launch.
- You assign an IPv6 address to the primary network interface of your instance after launch.
- You assign an IPv6 address to a network interface in the same subnet, and attach the network interface to your instance after launch.

When your instance receives an IPv6 address during launch, the address is associated with the primary network interface (eth0) of the instance. You can disassociate the IPv6 address from the network interface. We do not support IPv6 DNS hostnames for your instance.

An IPv6 address persists when you stop and start your instance, and is released when you terminate your instance. You cannot reassign an IPv6 address while it's assigned to another network interface—you must first unassign it.

You can assign additional IPv6 addresses to your instance by assigning them to a network interface attached to your instance. The number of IPv6 addresses you can assign to a network interface and the number of network interfaces you can attach to an instance varies per instance type. For more information, see IP Addresses Per Network Interface Per Instance Type (p. 597).

**IP Address Differences Between EC2-Classic and EC2-VPC**

The following table summarizes the differences between IP addresses for instances launched in EC2-Classic, instances launched in a default subnet, and instances launched in a nondefault subnet.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EC2-Classic</th>
<th>Default Subnet</th>
<th>Nondefault Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public IP address</td>
<td>Your instance receives a public IP address.</td>
<td>Your instance receives a public IP address by default, unless you specify otherwise during launch, or you modify the subnet's public IP address attribute.</td>
<td>Your instance doesn't receive a public IP address by default, unless you specify otherwise during launch, or you modify the subnet's public IP address attribute.</td>
</tr>
<tr>
<td>(from Amazon's public IPv4 address pool)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private IPv4 address</td>
<td>Your instance receives a private IP address from the EC2-Classic range each time it's started.</td>
<td>Your instance receives a static private IPv address from the IPv4 address range of your default subnet.</td>
<td>Your instance receives a static private IPv address from the IPv4 address range of your subnet.</td>
</tr>
<tr>
<td>Multiple IPv4 addresses</td>
<td>We select a single private IP address for your instance; multiple IP addresses are not supported.</td>
<td>You can assign multiple private IP addresses to your instance.</td>
<td>You can assign multiple private IP addresses to your instance.</td>
</tr>
<tr>
<td>Network interfaces</td>
<td>IP addresses are associated with the instance; network interfaces aren't supported.</td>
<td>IP addresses are associated with a network interface. Each instance has one or more network interfaces.</td>
<td>IP addresses are associated with a network interface. Each instance has one or more network interfaces.</td>
</tr>
</tbody>
</table>
### Working with IP Addresses for Your Instance

You can view the IP addresses assigned to your instance, assign a public IPv4 address to your instance during launch, or assign an IPv6 address to your instance during launch.

**Contents**
- Determining Your Public, Private, and Elastic IP Addresses (p. 575)
- Determining Your IPv6 Addresses (p. 576)
- Assigning a Public IPv4 Address During Instance Launch (p. 577)
- Assigning an IPv6 Address to an Instance (p. 578)
- Unassigning an IPv6 Address From an Instance (p. 579)

### Determining Your Public, Private, and Elastic IP Addresses

You can use the Amazon EC2 console to determine the private IPv4 addresses, public IPv4 addresses, and Elastic IP addresses of your instances. You can also determine the public IPv4 and private IPv4 addresses of your instance from within your instance by using instance metadata. For more information, see Instance Metadata and User Data (p. 362).

**To determine your instance's private IPv4 addresses using the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose Instances.
3. Select your instance. In the details pane, get the private IPv4 address from the Private IPs field, and get the internal DNS hostname from the Private DNS field.
4. (VPC only) If you have one or more secondary private IPv4 addresses assigned to network interfaces that are attached to your instance, get those IP addresses from the Secondary private IPs field.
5. (VPC only) Alternatively, in the navigation pane, choose Network Interfaces, and then select the network interface that's associated with your instance.
6. Get the primary private IP address from the **Primary private IPv4 IP** field, and the internal DNS hostname from the **Private DNS (IPv4)** field.

7. If you've assigned secondary private IP addresses to the network interface, get those IP addresses from the **Secondary private IPv4 IPs** field.

### To determine your instance's public IPv4 addresses using the console

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Select your instance. In the details pane, get the public IP address from the **IPv4 Public IP** field, and get the external DNS hostname from the **Public DNS (IPv4)** field.
4. If one or more Elastic IP addresses have been associated with the instance, get the Elastic IP addresses from the **Elastic IPs** field.

**Note**

If your instance does not have a public IPv4 address, but you've associated an Elastic IP address with a network interface for the instance, the **IPv4 Public IP** field displays the Elastic IP address.

5. (VPC only) Alternatively, in the navigation pane, choose **Network Interfaces**, and then select a network interface that's associated with your instance.

6. Get the public IP address from the **IPv4 Public IP** field. An asterisk (*) indicates the public IPv4 address or Elastic IP address that's mapped to the primary private IPv4 address.

**Note**

The public IPv4 address is displayed as a property of the network interface in the console, but it's mapped to the primary private IPv4 address through NAT. Therefore, if you inspect the properties of your network interface on your instance, for example, through `ifconfig` (Linux) or `ipconfig` (Windows), the public IPv4 address is not displayed. To determine your instance's public IPv4 address from within the instance, you can use instance metadata.

### To determine your instance's IPv4 addresses using instance metadata

1. Connect to your instance.
2. Use the following command to access the private IP address:

   ```powershell
   ```

3. Use the following command to access the public IP address:

   ```powershell
   ```

   **Note**

   Note that if an Elastic IP address is associated with the instance, the value returned is that of the Elastic IP address.

### Determining Your IPv6 Addresses

(VPC only) You can use the Amazon EC2 console to determine the IPv6 addresses of your instances.

### To determine your instance's IPv6 addresses using the console

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Instances**.
3. Select your instance. In the details pane, get the IPv6 addresses from IPv6 IPs.

**To determine your instance's IPv6 addresses using instance metadata**

1. Connect to your instance.
2. Use the following command to view the IPv6 address (you can get the MAC address from http://169.254.169.254/latest/meta-data/network/interfaces/macs/):

   ```powershell
   ```

---

### Assigning a Public IPv4 Address During Instance Launch

If you launch an instance in EC2-Classic, it is assigned a public IPv4 address by default. You can't modify this behavior.

In a VPC, all subnets have an attribute that determines whether instances launched into that subnet are assigned a public IP address. By default, nondefault subnets have this attribute set to false, and default subnets have this attribute set to true. When you launch an instance, a public IPv4 addressing feature is also available for you to control whether your instance is assigned a public IPv4 address; you can override the default behavior of the subnet's IP addressing attribute. The public IPv4 address is assigned from Amazon's pool of public IPv4 addresses, and is assigned to the network interface with the device index of eth0. This feature depends on certain conditions at the time you launch your instance.

**Important**

You can't manually disassociate the public IP address from your instance after launch. Instead, it's automatically released in certain cases, after which you cannot reuse it. For more information, see Public IPv4 Addresses and External DNS Hostnames (p. 572). If you require a persistent public IP address that you can associate or disassociate at will, assign an Elastic IP address to the instance after launch instead. For more information, see Elastic IP Addresses (p. 586).

**To access the public IP addressing feature when launching an instance**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. Select an AMI and an instance type, and then choose Next: Configure Instance Details.
4. On the Configure Instance Details page, for Network, select a VPC. The Auto-assign Public IP list is displayed. Choose Enable or Disable to override the default setting for the subnet.

**Important**

You cannot auto-assign a public IP address if you specify more than one network interface. Additionally, you cannot override the subnet setting using the auto-assign public IP feature if you specify an existing network interface for eth0.

5. Follow the steps on the next pages of the wizard to complete your instance's setup. For more information about the wizard configuration options, see Launching an Instance Using the Launch Instance Wizard (p. 265). On the final Review Instance Launch page, review your settings, and then choose Launch to choose a key pair and launch your instance.
6. On the Instances page, select your new instance and view its public IP address in IPv4 Public IP field in the details pane.

The public IP addressing feature is only available during launch. However, whether you assign a public IP address to your instance during launch or not, you can associate an Elastic IP address with your instance after it's launched. For more information, see Elastic IP Addresses (p. 586). You can also
modify your subnet's public IPv4 addressing behavior. For more information, see Modifying the Public IPv4 Addressing Attribute for Your Subnet.

To enable or disable the public IP addressing feature using the command line

- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
  - Use the `--associate-public-ip-address` or the `--no-associate-public-ip-address` option with the `run-instances` command (AWS CLI)
  - Use the `-AssociatePublicIp` parameter with the `New-EC2Instance` command (AWS Tools for Windows PowerShell)

Assigning an IPv6 Address to an Instance

If your VPC and subnet have IPv6 CIDR blocks associated with them, you can assign an IPv6 address to your instance during or after launch. The IPv6 address is assigned from the IPv6 address range of the subnet, and is assigned to the network interface with the device index of eth0.

To assign an IPv6 address to an instance during launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Select an AMI, an instance type, and choose Next: Configure Instance Details.
   
   **Note**
   
   Ensure that you select an instance type that supports IPv6 addresses. For more information, see Instance Types (p. 104).
3. On the Configure Instance Details page, for Network, select a VPC and for Subnet, select a subnet. For Auto-assign IPv6 IP, choose Enable.
4. Follow the remaining steps in the wizard to launch your instance.

Alternatively, you can assign an IPv6 address to your instance after launch.

To assign an IPv6 address to your instance after launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select your instance, choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Assign new IP. You can specify an IPv6 address from the range of the subnet, or leave the Auto-assign value to let Amazon choose an IPv6 address for you.
5. Choose Save.

   **Note**
   
   If you launched your instance using Amazon Linux 2016.09.0 or later, or Windows Server 2008 R2 or later, your instance is configured for IPv6, and no additional steps are needed to ensure that the IPv6 address is recognized on the instance. If you launched your instance from an older AMI, you may have to configure your instance manually. For more information, see Configure IPv6 on Your Instances in the Amazon VPC User Guide.

To assign an IPv6 address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
Multiple IP Addresses

• Use the --ipv6-addresses option with the run-instances command (AWS CLI)
• Use the Ipv6Addresses property for -NetworkInterface in the New-EC2Instance command (AWS Tools for Windows PowerShell)
• assign-ipv6-addresses (AWS CLI)
• Register-EC2Ipv6AddressList (AWS Tools for Windows PowerShell)

Unassigning an IPv6 Address From an Instance

You can unassign an IPv6 address from an instance using the Amazon EC2 console.

To unassign an IPv6 address from an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select your instance, choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Unassign for the IPv6 address to unassign.
5. Choose Yes, Update.

To unassign an IPv6 address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

• unassign-ipv6-addresses (AWS CLI)
• Unregister-EC2Ipv6AddressList (AWS Tools for Windows PowerShell).

Multiple IP Addresses

In EC2-VPC, you can specify multiple private IPv4 and IPv6 addresses for your instances. The number of network interfaces and private IPv4 and IPv6 addresses that you can specify for an instance depends on the instance type. For more information, see IP Addresses Per Network Interface Per Instance Type (p. 597).

It can be useful to assign multiple IP addresses to an instance in your VPC to do the following:

• Host multiple websites on a single server by using multiple SSL certificates on a single server and associating each certificate with a specific IP address.
• Operate network appliances, such as firewalls or load balancers, that have multiple IP addresses for each network interface.
• Redirect internal traffic to a standby instance in case your instance fails, by reassigning the secondary IP address to the standby instance.

Contents

• How Multiple IP Addresses Work (p. 579)
• Working with Multiple IPv4 Addresses (p. 580)
• Working with Multiple IPv6 Addresses (p. 584)

How Multiple IP Addresses Work

The following list explains how multiple IP addresses work with network interfaces:
You can assign a secondary private IPv4 address to any network interface. The network interface can be attached to or detached from the instance.

You can assign multiple IPv6 addresses to a network interface that's in a subnet that has an associated IPv6 CIDR block.

You must choose the secondary IPv4 from the IPv4 CIDR block range of the subnet for the network interface.

You must choose IPv6 addresses from the IPv6 CIDR block range of the subnet for the network interface.

Security groups apply to network interfaces, not to IP addresses. Therefore, IP addresses are subject to the security group of the network interface in which they're specified.

Multiple IP addresses can be assigned and unassigned to network interfaces attached to running or stopped instances.

Secondary private IPv4 addresses that are assigned to a network interface can be reassigned to another one if you explicitly allow it.

An IPv6 address cannot be reassigned to another network interface; you must first unassign the IPv6 address from the existing network interface.

When assigning multiple IP addresses to a network interface using the command line tools or API, the entire operation fails if one of the IP addresses can't be assigned.

Primary private IPv4 addresses, secondary private IPv4 addresses, Elastic IP addresses, and IPv6 addresses remain with the network interface when it is detached from an instance or attached to another instance.

Although you can't move the primary network interface from an instance, you can reassign the secondary private IPv4 address of the primary network interface to another network interface.

You can move any additional network interface from one instance to another.

The following list explains how multiple IP addresses work with Elastic IP addresses (IPv4 only):

- Each private IPv4 address can be associated with a single Elastic IP address, and vice versa.
- When a secondary private IPv4 address is reassigned to another interface, the secondary private IPv4 address retains its association with an Elastic IP address.
- When a secondary private IPv4 address is unassigned from an interface, an associated Elastic IP address is automatically disassociated from the secondary private IPv4 address.

### Working with Multiple IPv4 Addresses

You can assign a secondary private IPv4 address to an instance, associate an Elastic IPv4 address with a secondary private IPv4 address, and unassign a secondary private IPv4 address.

#### Contents

- Assigning a Secondary Private IPv4 Address (p. 580)
- Configuring the Operating System on Your Instance to Recognize the Secondary Private IPv4 Address (p. 582)
- Associating an Elastic IP Address with the Secondary Private IPv4 Address (p. 582)
- Viewing Your Secondary Private IPv4 Addresses (p. 583)
- Unassigning a Secondary Private IPv4 Address (p. 583)

### Assigning a Secondary Private IPv4 Address

You can assign the secondary private IPv4 address to the network interface for an instance as you launch the instance, or after the instance is running. This section includes the following procedures.
• To assign a secondary private IPv4 address when launching an instance in EC2-VPC (p. 581)
• To assign a secondary IPv4 address during launch using the command line (p. 581)
• To assign a secondary private IPv4 address to a network interface (p. 582)
• To assign a secondary private IPv4 to an existing instance using the command line (p. 582)

**To assign a secondary private IPv4 address when launching an instance in EC2-VPC**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. Choose **Launch Instance**.
3. Select an AMI, then choose an instance type and choose **Next: Configure Instance Details**.
4. On the **Configure Instance Details** page, for **Network**, select a VPC and for **Subnet**, select a subnet.
5. In the **Network Interfaces** section, do the following, and then choose **Next: Add Storage**:
   
   • To add another network interface, choose **Add Device**. The console enables you to specify up to two network interfaces when you launch an instance. After you launch the instance, choose **Network Interfaces** in the navigation pane to add additional network interfaces. The total number of network interfaces that you can attach varies by instance type. For more information, see [IP Addresses Per Network Interface Per Instance Type](#) (p. 597).

   **Important**
   
   When you add a second network interface, the system can no longer auto-assign a public IPv4 address. You will not be able to connect to the instance over IPv4 unless you assign an Elastic IP address to the primary network interface (eth0). You can assign the Elastic IP address after you complete the Launch wizard. For more information, see [Working with Elastic IP Addresses](#) (p. 589).

   • For each network interface, under **Secondary IP addresses**, choose **Add IP**, and then enter a private IP address from the subnet range, or accept the default **Auto-assign** value to let Amazon select an address.
6. On the next **Add Storage** page, you can specify volumes to attach to the instance besides the volumes specified by the AMI (such as the root device volume), and then choose **Next: Add Tags**.
7. On the **Add Tags** page, specify tags for the instance, such as a user-friendly name, and then choose **Next: Configure Security Group**.
8. On the **Configure Security Group** page, select an existing security group or create a new one. Choose **Review and Launch**.
9. On the **Review Instance Launch** page, review your settings, and then choose **Launch** to choose a key pair and launch your instance. If you’re new to Amazon EC2 and haven’t created any key pairs, the wizard prompts you to create one.

**Important**

After you have added a secondary private IP address to a network interface, you must connect to the instance and configure the secondary private IP address on the instance itself. For more information, see [Configuring the Operating System on Your Instance to Recognize the Secondary Private IPv4 Address](#) (p. 582).

**To assign a secondary IPv4 address during launch using the command line**

• You can use one of the following commands. For more information about these command line interfaces, see [Accessing Amazon EC2](#) (p. 3).

   • The **--secondary-private-ip-addresses** option with the **run-instances** command (AWS CLI)
   • Define **-NetworkInterface** and specify the **PrivateIpAddresses** parameter with the **New-EC2Instance** command (AWS Tools for Windows PowerShell).
To assign a secondary private IPv4 address to a network interface

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces, and then select the network interface attached to the instance.
3. Choose Actions, Manage IP Addresses.
4. Under IPv4 Addresses, choose Assign new IP.
5. Enter a specific IPv4 address that's within the subnet range for the instance, or leave the field blank to let Amazon select an IP address for you.
6. (Optional) Choose Allow reassignment to allow the secondary private IP address to be reassigned if it is already assigned to another network interface.
7. Choose Yes, Update.

Alternatively, you can assign a secondary private IPv4 address to an instance. Choose Instances in the navigation pane, select the instance, and then choose Actions, Networking, Manage IP Addresses. You can configure the same information as you did in the steps above. The IP address is assigned to the primary network interface (eth0) for the instance.

To assign a secondary private IPv4 to an existing instance using the command line

- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
  - assign-private-ip-addresses (AWS CLI)
  - Register-EC2PrivateIpAddress (AWS Tools for Windows PowerShell)

Configuring the Operating System on Your Instance to Recognize the Secondary Private IPv4 Address

After you assign a secondary private IPv4 address to your instance, you need to configure the operating system on your instance to recognize the secondary private IP address.

For information about configuring a Windows instance, see Configuring a Secondary Private IPv4 Address for Your Windows Instance in a VPC (p. 354).

Associating an Elastic IP Address with the Secondary Private IPv4 Address

To associate an Elastic IP address with a secondary private IPv4 address in EC2-VPC

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Choose Actions, and then select Associate address.
4. For Network interface, select the network interface, and then select the secondary IP address from the Private IP list.
5. Choose Associate.

To associate an Elastic IP address with a secondary private IPv4 address using the command line

- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
  - associate-address (AWS CLI)
Viewing Your Secondary Private IPv4 Addresses

To view the private IPv4 addresses assigned to a network interface in EC2-VPC
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface with private IP addresses to view.
4. On the Details tab in the details pane, check the Primary private IPv4 IP and Secondary private IPv4 IPs fields for the primary private IPv4 address and any secondary private IPv4 addresses assigned to the network interface.

To view the private IPv4 addresses assigned to an instance
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance with private IPv4 addresses to view.
4. On the Description tab in the details pane, check the Private IPs and Secondary private IPs fields for the primary private IPv4 address and any secondary private IPv4 addresses assigned to the instance through its network interface.

Unassigning a Secondary Private IPv4 Address

If you no longer require a secondary private IPv4 address, you can unassign it from the instance or the network interface. When a secondary private IPv4 address is unassigned from a network interface, the Elastic IP address (if it exists) is also disassociated.

To unassign a secondary private IPv4 address from an instance
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select an instance, choose Actions, Networking, Manage IP Addresses.
4. Under IPv4 Addresses, choose Unassign for the IPv4 address to unassign.
5. Choose Yes, Update.

To unassign a secondary private IPv4 address from a network interface
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface, choose Actions, Manage IP Addresses.
4. Under IPv4 Addresses, choose Unassign for the IPv4 address to unassign.
5. Choose Yes, Update.

To unassign a secondary private IPv4 address using the command line
- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
  - unassign-private-ip-addresses (AWS CLI)
Working with Multiple IPv6 Addresses

You can assign multiple IPv6 addresses to your instance, view the IPv6 addresses assigned to your instance, and unassign IPv6 addresses from your instance.

Contents
- Assigning Multiple IPv6 Addresses (p. 584)
- Viewing Your IPv6 Addresses (p. 585)
- Unassigning an IPv6 Address (p. 586)

Assigning Multiple IPv6 Addresses

You can assign one or more IPv6 addresses to your instance during launch or after launch. To assign an IPv6 address to an instance, the VPC and subnet in which you launch the instance must have an associated IPv6 CIDR block. For more information, see VPCs and Subnets in the Amazon VPC User Guide.

To assign multiple IPv6 addresses during launch

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the dashboard, choose Launch Instance.
3. Select an AMI, choose an instance type, and choose Next: Configure Instance Details. Ensure that you choose an instance type that support IPv6. For more information, see Instance Types (p. 104).
4. On the Configure Instance Details page, select a VPC from the Network list, and a subnet from the Subnet list.
5. In the Network Interfaces section, do the following, and then choose Next: Add Storage:
   - To assign a single IPv6 address to the primary network interface (eth0), under IPv6 IPs, choose Add IP. To add a secondary IPv6 address, choose Add IP again. You can enter an IPv6 address from the range of the subnet, or leave the default Auto-assign value to let Amazon choose an IPv6 address from the subnet for you.
   - Choose Add Device to add another network interface and repeat the steps above to add one or more IPv6 addresses to the network interface. The console enables you to specify up to two network interfaces when you launch an instance. After you launch the instance, choose Network Interfaces in the navigation pane to add additional network interfaces. The total number of network interfaces that you can attach varies by instance type. For more information, see IP Addresses Per Network Interface Per Instance Type (p. 597).
6. Follow the next steps in the wizard to attach volumes and tag your instance.
7. On the Configure Security Group page, select an existing security group or create a new one. If you want your instance to be reachable over IPv6, ensure that your security group has rules that allow access from IPv6 addresses. For more information, see Security Group Rules Reference (p. 460). Choose Review and Launch.
8. On the Review Instance Launch page, review your settings, and then choose Launch to choose a key pair and launch your instance. If you’re new to Amazon EC2 and haven’t created any key pairs, the wizard prompts you to create one.

You can use the Instances screen Amazon EC2 console to assign multiple IPv6 addresses to an existing instance. This assigns the IPv6 addresses to the primary network interface (eth0) for the instance. To assign a specific IPv6 address to the instance, ensure that the IPv6 address is not already assigned to another instance or network interface.
To assign multiple IPv6 addresses to an existing instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select your instance, choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Assign new IP for each IPv6 address you want to add. You can specify an IPv6 address from the range of the subnet, or leave the Auto-assign value to let Amazon choose an IPv6 address for you.
5. Choose Yes, Update.

Alternatively, you can assign multiple IPv6 addresses to an existing network interface. The network interface must have been created in a subnet that has an associated IPv6 CIDR block. To assign a specific IPv6 address to the network interface, ensure that the IPv6 address is not already assigned to another network interface.

To assign multiple IPv6 addresses to a network interface

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select your network interface, choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Assign new IP for each IPv6 address you want to add. You can specify an IPv6 address from the range of the subnet, or leave the Auto-assign value to let Amazon choose an IPv6 address for you.
5. Choose Yes, Update.

CLI Overview

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- Assign an IPv6 address during launch:
  - Use the --ipv6-addresses or --ipv6-address-count options with the run-instances command (AWS CLI)
  - Define -NetworkInterface and specify the Ipv6Addresses or Ipv6AddressCount parameters with the New-EC2Instance command (AWS Tools for Windows PowerShell).
- Assign an IPv6 address to a network interface:
  - assign-ipv6-addresses (AWS CLI)
  - Register-EC2Ipv6AddressList (AWS Tools for Windows PowerShell)

Viewing Your IPv6 Addresses

You can view the IPv6 addresses for an instance or for a network interface.

To view the IPv6 addresses assigned to an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select your instance. In the details pane, review the IPv6 IPs field.

To view the IPv6 addresses assigned to a network interface

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Network Interfaces**.
3. Select your network interface. In the details pane, review the **IPv6 IPs** field.

**CLI Overview**

You can use one of the following commands. For more information about these command line interfaces, see *Accessing Amazon EC2* (p. 3).

- **View the IPv6 addresses for an instance:**
  - `describe-instances` (AWS CLI)
- **View the IPv6 addresses for a network interface:**
  - `describe-network-interfaces` (AWS CLI)
  - `Get-EC2NetworkInterface` (AWS Tools for Windows PowerShell)

**Unassigning an IPv6 Address**

You can unassign an IPv6 address from the primary network interface of an instance, or you can unassign an IPv6 address from a network interface.

**To unassign an IPv6 address from an instance**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select your instance, choose **Actions, Manage IP Addresses**.
4. Under **IPv6 Addresses**, choose **Unassign** for the IPv6 address to unassign.
5. Choose **Yes, Update**.

**To unassign an IPv6 address from a network interface**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Network Interfaces**.
3. Select your network interface, choose **Actions, Manage IP Addresses**.
4. Under **IPv6 Addresses**, choose **Unassign** for the IPv6 address to unassign.
5. Choose **Save**.

**CLI Overview**

You can use one of the following commands. For more information about these command line interfaces, see *Accessing Amazon EC2* (p. 3).

- `unassign-ipv6-addresses` (AWS CLI)

**Elastic IP Addresses**

An *Elastic IP address* is a static IPv4 address designed for dynamic cloud computing. An Elastic IP address is associated with your AWS account. With an Elastic IP address, you can mask the failure of an instance or software by rapidly remapping the address to another instance in your account.
An Elastic IP address is a public IPv4 address, which is reachable from the internet. If your instance does not have a public IPv4 address, you can associate an Elastic IP address with your instance to enable communication with the internet; for example, to connect to your instance from your local computer.

We currently do not support Elastic IP addresses for IPv6.

**Topics**
- Elastic IP Address Basics (p. 587)
- Elastic IP Address Differences for EC2-Classic and EC2-VPC (p. 587)
- Working with Elastic IP Addresses (p. 589)
- Using Reverse DNS for Email Applications (p. 595)
- Elastic IP Address Limit (p. 595)

**Elastic IP Address Basics**

The following are the basic characteristics of an Elastic IP address:

- To use an Elastic IP address, you first allocate one to your account, and then associate it with your instance or a network interface.
- When you associate an Elastic IP address with an instance or its primary network interface, the instance's public IPv4 address (if it had one) is released back into Amazon's pool of public IPv4 addresses. You cannot reuse a public IPv4 address. For more information, see Public IPv4 Addresses and External DNS Hostnames (p. 572).
- You can disassociate an Elastic IP address from a resource, and reassociate it with a different resource.
- A disassociated Elastic IP address remains allocated to your account until you explicitly release it.
- To ensure efficient use of Elastic IP addresses, we impose a small hourly charge if an Elastic IP address is not associated with a running instance, or if it is associated with a stopped instance or an unattached network interface. While your instance is running, you are not charged for one Elastic IP address associated with the instance, but you are charged for any additional Elastic IP addresses associated with the instance. For more information, see Amazon EC2 Pricing.
- An Elastic IP address is for use in a specific region only.
- When you associate an Elastic IP address with an instance that previously had a public IPv4 address, the public DNS hostname of the instance changes to match the Elastic IP address.
- We resolve a public DNS hostname to the public IPv4 address or the Elastic IP address of the instance outside the network of the instance, and to the private IPv4 address of the instance from within the network of the instance.

If your account supports EC2-Classic, the use and behavior of Elastic IP addresses for EC2-Classic and EC2-VPC may differ. For more information, see Elastic IP Address Differences for EC2-Classic and EC2-VPC (p. 587).

**Elastic IP Address Differences for EC2-Classic and EC2-VPC**

If your account supports EC2-Classic, there's one pool of Elastic IP addresses for use with the EC2-Classic platform and another for use with the EC2-VPC platform. You can't associate an Elastic IP address that you allocated for use with a VPC with an instance in EC2-Classic, and vice-versa. However, you can migrate an Elastic IP address you've allocated for use in the EC2-Classic platform to the EC2-VPC platform. You cannot migrate an Elastic IP address to another region. For more information about EC2-Classic and EC2-VPC, see Supported Platforms (p. 551).
When you associate an Elastic IP address with an instance in EC2-Classic, a default VPC, or an instance in a nondefault VPC in which you assigned a public IPv4 to the eth0 network interface during launch, the instance's current public IPv4 address is released back into the public IP address pool. If you disassociate an Elastic IP address from the instance, the instance is automatically assigned a new public IPv4 address within a few minutes. However, if you have attached a second network interface to an instance in a VPC, the instance is not automatically assigned a new public IPv4 address. For more information about public IPv4 addresses, see Public IPv4 Addresses and External DNS Hostnames (p. 572).

For information about using an Elastic IP address with an instance in a VPC, see Elastic IP Addresses in the Amazon VPC User Guide.

The following table lists the differences between Elastic IP addresses on EC2-Classic and EC2-VPC. For more information about the differences between private and public IP addresses, see IP Address Differences Between EC2-Classic and EC2-VPC (p. 574).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EC2-Classic</th>
<th>EC2-VPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocating an Elastic IP address</td>
<td>When you allocate an Elastic IP address, it's for use in EC2-Classic; however, you can migrate an Elastic IP address to the EC2-VPC platform. For more information, see Migrating an Elastic IP Address from EC2-Classic to EC2-VPC (p. 589).</td>
<td>When you allocate an Elastic IP address, it's for use only in a VPC.</td>
</tr>
<tr>
<td>Associating an Elastic IP address</td>
<td>You associate an Elastic IP address with an instance.</td>
<td>An Elastic IP address is a property of a network interface. You can associate an Elastic IP address with an instance by updating the network interface attached to the instance. For more information, see Elastic Network Interfaces (p. 595).</td>
</tr>
<tr>
<td>Reassociating an Elastic IP address</td>
<td>If you try to associate an Elastic IP address that's already associated with another instance, the address is automatically associated with the new instance.</td>
<td>If your account supports EC2-VPC only, and you try to associate an Elastic IP address that's already associated with another instance, the address is automatically associated with the new instance. If you're using a VPC in an EC2-Classic account, and you try to associate an Elastic IP address that's already associated with another instance, it succeeds only if you allowed reassociation.</td>
</tr>
<tr>
<td>Associating an Elastic IP address with a target that has an existing Elastic IP address</td>
<td>The existing Elastic IP address is disassociated from the instance, but remains allocated to your account.</td>
<td>If your account supports EC2-VPC only, the existing Elastic IP address is disassociated from the instance, but remains allocated to your account. If you're using a VPC in an EC2-Classic account, you cannot associate an Elastic IP address with a network interface or instance that has an existing Elastic IP address.</td>
</tr>
<tr>
<td>Stopping an instance</td>
<td>If you stop an instance, its Elastic IP address is disassociated, and you must</td>
<td>If you stop an instance, its Elastic IP address remains associated.</td>
</tr>
</tbody>
</table>
Migrating an Elastic IP Address from EC2-Classic to EC2-VPC

If your account supports EC2-Classic, you can migrate Elastic IP addresses that you've allocated for use in the EC2-Classic platform to the EC2-VPC platform, within the same region. This can assist you to migrate your resources from EC2-Classic to a VPC; for example, you can launch new web servers in your VPC, and then use the same Elastic IP addresses that you used for your web servers in EC2-Classic for your new VPC web servers.

After you've migrated an Elastic IP address to EC2-VPC, you cannot use it in the EC2-Classic platform; however, if required, you can restore it to EC2-Classic. After you've restored an Elastic IP address to EC2-Classic, you cannot use it in EC2-VPC until you migrate it again. You can only migrate an Elastic IP address from EC2-Classic to EC2-VPC. You cannot migrate an Elastic IP address that was originally allocated for use in EC2-VPC to EC2-Classic.

To migrate an Elastic IP address, it must not be associated with an instance. For more information about disassociating an Elastic IP address from an instance, see Disassociating an Elastic IP Address and Reassociating with a Different Instance (p. 592).

You can migrate as many EC2-Classic Elastic IP addresses as you can have in your account. However, when you migrate an Elastic IP address to EC2-VPC, it counts against your Elastic IP address limit for EC2-VPC. You cannot migrate an Elastic IP address if it will result in you exceeding your limit. Similarly, when you restore an Elastic IP address to EC2-Classic, it counts against your Elastic IP address limit for EC2-Classic. For more information, see Elastic IP Address Limit (p. 595).

You cannot migrate an Elastic IP address that has been allocated to your account for less than 24 hours. For more information, see Moving an Elastic IP Address (p. 592).

Working with Elastic IP Addresses

The following sections describe how you can work with Elastic IP addresses.

Tasks

- Allocating an Elastic IP Address (p. 590)
- Describing Your Elastic IP Addresses (p. 590)
- Tagging an Elastic IP Address (p. 591)
- Associating an Elastic IP Address with a Running Instance (p. 591)
- Disassociating an Elastic IP Address and Reassociating with a Different Instance (p. 592)
- Moving an Elastic IP Address (p. 592)
Allocating an Elastic IP Address

You can allocate an Elastic IP address using the Amazon EC2 console or the command line. If your account supports EC2-Classic, you can allocate an address for use in EC2-Classic or in EC2-VPC.

To allocate an Elastic IP address for use in EC2-VPC using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Choose Allocate new address.
4. (EC2-Classic accounts) Choose VPC, and then choose Allocate. Close the confirmation screen.
5. (VPC-only accounts) Choose Allocate, and close the confirmation screen.

To allocate an Elastic IP address for use in EC2-Classic using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Choose Allocate new address.
4. Select Classic, and then choose Allocate. Close the confirmation screen.

To allocate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- allocate-address (AWS CLI)
- New-EC2Address (AWS Tools for Windows PowerShell)

Describing Your Elastic IP Addresses

You can describe an Elastic IP address using the Amazon EC2 or the command line.

To describe your Elastic IP addresses using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select a filter from the Resource Attribute list to begin searching. You can use multiple filters in a single search.

To describe your Elastic IP addresses using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-addresses (AWS CLI)
- Get-EC2Address (AWS Tools for Windows PowerShell)
Tagging an Elastic IP Address

You can assign custom tags to your Elastic IP addresses to categorize them in different ways, for example, by purpose, owner, or environment. This helps you to quickly find a specific Elastic IP address based on the custom tags you've assigned it.

**Note**

Cost allocation tracking using Elastic IP address tags is not supported.

You can tag an Elastic IP address using the Amazon EC2 console or the command line tools.

**To tag an Elastic IP address using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select the Elastic IP address to tag and choose Tags.
4. Choose Add/Edit Tags.
5. In the Add/Edit Tags dialog box, choose Create Tag, and then specify the key and value for the tag.
6. (Optional) Choose Create Tag to add additional tags to the Elastic IP address.
7. Choose Save.

**To tag an Elastic IP address using the command line**

Use one of the following commands:

- **create-tags** (AWS CLI)

  ```
 aws ec2 create-tags --resources eipalloc-12345678 --tags Key=Owner,Value=TeamA
  ```

- **New-EC2Tag** (AWS Tools for Windows PowerShell)

  The New-EC2Tag command needs a Tag parameter, which specifies the key and value pair to be used for the Elastic IP address tag. The following commands create the Tag parameter:

  ```
 PS C:\> $tag = New-Object Amazon.EC2.Model.Tag
 PS C:\> $tag.Key = "Owner"
 PS C:\> $tag.Value = "TeamA"
  ```

  ```
 PS C:\> New-EC2Tag -Resource eipalloc-12345678 -Tag $tag
  ```

Associating an Elastic IP Address with a Running Instance

You can associate an Elastic IP address to an instance using the Amazon EC2 console or the command line.

(VPC only) If you're associating an Elastic IP address with your instance to enable communication with the internet, you must also ensure that your instance is in a public subnet. For more information, see Internet Gateways in the Amazon VPC User Guide.

**To associate an Elastic IP address with an instance using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select an Elastic IP address and choose Actions, Associate address.
4. Select the instance from Instance and then choose Associate.

To associate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- associate-address (AWS CLI)
- Register-EC2Address (AWS Tools for Windows PowerShell)

Disassociating an Elastic IP Address and Reassociating with a Different Instance

You can disassociate an Elastic IP address and then reassociate it using the Amazon EC2 console or the command line.

To disassociate and reassociate an Elastic IP address using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select the Elastic IP address, choose Actions, and then select Disassociate address.
4. Choose Disassociate address.
5. Select the address that you disassociated in the previous step. For Actions, choose Associate address.
6. Select the new instance from Instance, and then choose Associate.

To disassociate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- disassociate-address (AWS CLI)
- Unregister-EC2Address (AWS Tools for Windows PowerShell)

To associate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- associate-address (AWS CLI)
- Register-EC2Address (AWS Tools for Windows PowerShell)

Moving an Elastic IP Address

You can move an Elastic IP address from EC2-Classic to EC2-VPC using the Amazon EC2 console or the Amazon VPC console. This option is only available if your account supports EC2-Classic.

To move an Elastic IP address to EC2-VPC using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select the Elastic IP address, and choose Actions, Move to VPC scope.
4. In the confirmation dialog box, choose Move Elastic IP.

**Note**
You can tag an Elastic IP address after you have moved it from EC2-Classic to EC2-VPC.

You can restore an Elastic IP address to EC2-Classic using the Amazon EC2 console or the Amazon VPC console.

**To restore an Elastic IP address to EC2-Classic using the Amazon EC2 console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose Elastic IPs.
3. Select the Elastic IP address, choose Actions, Restore to EC2 scope.
4. In the confirmation dialog box, choose Restore.

**Note**
If you choose to restore a previously migrated Elastic IP address to EC2-Classic, the tags assigned to the Elastic IP address after migration are lost.

After you've performed the command to move or restore your Elastic IP address, the process of migrating the Elastic IP address can take a few minutes. Use the `describe-moving-addresses` command to check whether your Elastic IP address is still moving, or has completed moving.

After you've moved your Elastic IP address to EC2-VPC, you can view its allocation ID on the Elastic IPs page in the Allocation ID field.

If the Elastic IP address is in a moving state for longer than 5 minutes, contact [https://aws.amazon.com/premiumsupport/](https://aws.amazon.com/premiumsupport/).

**To move an Elastic IP address using the Amazon EC2 Query API or AWS CLI**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- move-address-to-vpc (AWS CLI)
- MoveAddressToVpc (Amazon EC2 Query API)
- Move-EC2AddressToVpc (AWS Tools for Windows PowerShell)

**To restore an Elastic IP address to EC2-Classic using the Amazon EC2 Query API or AWS CLI**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- restore-address-to-classic (AWS CLI)
- RestoreAddressToClassic (Amazon EC2 Query API)
- Restore-EC2AddressToClassic (AWS Tools for Windows PowerShell)

**To describe the status of your moving addresses using the Amazon EC2 Query API or AWS CLI**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-moving-addresses (AWS CLI)
- DescribeMovingAddresses (Amazon EC2 Query API)
- Get-EC2Address (AWS Tools for Windows PowerShell)
To retrieve the allocation ID for your migrated Elastic IP address in EC2-VPC

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-addresses (AWS CLI)
- DescribeAddresses (Amazon EC2 Query API)
- Get-EC2Address (AWS Tools for Windows PowerShell)

Releasing an Elastic IP Address

If you no longer need an Elastic IP address, we recommend that you release it (the address must not be associated with an instance). You incur charges for any Elastic IP address that’s allocated for use with EC2-Classic but not associated with an instance.

You can release an Elastic IP address using the Amazon EC2 console or the command line.

To release an Elastic IP address using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Elastic IPs.
3. Select the Elastic IP address, choose Actions, and then select Release addresses. Choose Release when prompted.

To release an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- release-address (AWS CLI)
- Remove-EC2Address (AWS Tools for Windows PowerShell)

Recovering an Elastic IP Address

If you have released your Elastic IP address, you might be able to recover it. The following rules apply:

- You can only recover an Elastic IP address that was originally allocated for use in EC2-VPC, or that was moved from EC2-Classic to EC2-VPC.
- You cannot recover an Elastic IP address if it has been allocated to another AWS account, or if it will result you in exceeding your Elastic IP address limit.
- You cannot recover tags associated with an Elastic IP address.

Currently, you can recover an Elastic IP address using the Amazon EC2 API or a command line tool only.

To recover an Elastic IP address using the command line

1. (AWS CLI) Use the allocate-address command and specify the IP address using the --address parameter.

   ```
 aws ec2 allocate-address --domain vpc --address 203.0.113.3
   ```

2. (AWS Tools for Windows PowerShell) Use the New-EC2Address command and specify the IP address using the -Address parameter.
Using Reverse DNS for Email Applications

If you intend to send email to third parties from an instance, we suggest you provision one or more Elastic IP addresses and provide them to us. AWS works with ISPs and internet anti-spam organizations to reduce the chance that your email sent from these addresses will be flagged as spam.

In addition, assigning a static reverse DNS record to your Elastic IP address used to send email can help avoid having email flagged as spam by some anti-spam organizations. Note that a corresponding forward DNS record (record type A) pointing to your Elastic IP address must exist before we can create your reverse DNS record.

If a reverse DNS record is associated with an Elastic IP address, the Elastic IP address is locked to your account and cannot be released from your account until the record is removed.

To remove email sending limits, or to provide us with your Elastic IP addresses and reverse DNS records, go to the Request to Remove Email Sending Limitations page.

Elastic IP Address Limit

By default, all AWS accounts are limited to five (5) Elastic IP addresses per region, because public (IPv4) internet addresses are a scarce public resource. We strongly encourage you to use an Elastic IP address primarily for the ability to remap the address to another instance in the case of instance failure, and to use DNS hostnames for all other inter-node communication.

If you feel your architecture warrants additional Elastic IP addresses, complete the Amazon EC2 Elastic IP Address Request Form. Describe your use case so that we can understand your need for additional addresses.

Elastic Network Interfaces

An elastic network interface (referred to as a network interface in this documentation) is a logical networking component in a VPC that represents a virtual network card.

A network interface can include the following attributes:

- A primary private IPv4 address from the IPv4 address range of your VPC
- One or more secondary private IPv4 addresses from the IPv4 address range of your VPC
- One Elastic IP address (IPv4) per private IPv4 address
- One public IPv4 address
- One or more IPv6 addresses
- One or more security groups
- A MAC address
- A source/destination check flag
- A description

You can create and configure network interfaces in your account and attach them to instances in your VPC. Your account might also have requester-managed network interfaces, which are created and managed by AWS services to enable you to use other resources and services. You cannot
manage these network interfaces yourself. For more information, see Requester-Managed Network Interfaces (p. 611).

All network interfaces have the `eni-xxxxxxxx` resource identifier.

**Important**
The term 'elastic network interface' is sometimes shortened to 'ENI'. This is not the same as the Elastic Network Adapter (ENA), which is a custom interface that optimizes network performance on some instance types. For more information, see Enhanced Networking on Windows (p. 619).

**Contents**
- Network Interface Basics (p. 596)
- IP Addresses Per Network Interface Per Instance Type (p. 597)
- Scenarios for Network Interfaces (p. 601)
- Best Practices for Configuring Network Interfaces (p. 603)
- Working with Network Interfaces (p. 603)
- Requester-Managed Network Interfaces (p. 611)

**Network Interface Basics**

You can create a network interface, attach it to an instance, detach it from an instance, and attach it to another instance. The attributes of a network interface follow it as it's attached or detached from an instance and reattached to another instance. When you move a network interface from one instance to another, network traffic is redirected to the new instance.

You can also modify the attributes of your network interface, including changing its security groups and managing its IP addresses.

Every instance in a VPC has a default network interface, called the *primary network interface* (eth0). You cannot detach a primary network interface from an instance. You can create and attach additional network interfaces. The maximum number of network interfaces that you can use varies by instance type. For more information, see IP Addresses Per Network Interface Per Instance Type (p. 597).

**Public IPv4 addresses for network interfaces**

In a VPC, all subnets have a modifiable attribute that determines whether network interfaces created in that subnet (and therefore instances launched into that subnet) are assigned a public IPv4 address. For more information, see IP Addressing Behavior for Your Subnet in the *Amazon VPC User Guide*. The public IPv4 address is assigned from Amazon's pool of public IPv4 addresses. When you launch an instance, the IP address is assigned to the primary network interface (eth0) that's created.

When you create a network interface, it inherits the public IPv4 addressing attribute from the subnet. If you later modify the public IPv4 addressing attribute of the subnet, the network interface keeps the setting that was in effect when it was created. If you launch an instance and specify an existing network interface for eth0, the public IPv4 addressing attribute is determined by the network interface.

For more information, see Public IPv4 Addresses and External DNS Hostnames (p. 572).

**IPv6 addresses for network interfaces**

You can associate an IPv6 CIDR block with your VPC and subnet, and assign one or more IPv6 addresses from the subnet range to a network interface.

All subnets have a modifiable attribute that determines whether network interfaces created in that subnet (and therefore instances launched into that subnet) are automatically assigned an IPv6 address from the range of the subnet. For more information, see IP Addressing Behavior for Your Subnet in the *Amazon VPC User Guide*. When you launch an instance, the IPv6 address is assigned to the primary network interface (eth0) that's created.
Monitoring IP Traffic

You can enable a VPC flow log on your network interface to capture information about the IP traffic going to and from a network interface. After you've created a flow log, you can view and retrieve its data in Amazon CloudWatch Logs. For more information, see VPC Flow Logs in the Amazon VPC User Guide.

IP Addresses Per Network Interface Per Instance Type

The following table lists the maximum number of network interfaces per instance type, and the maximum number of private IPv4 addresses and IPv6 addresses per network interface. The limit for IPv6 addresses is separate from the limit for private IPv4 addresses per network interface. Not all instance types support IPv6 addressing. Network interfaces, multiple private IPv4 addresses, and IPv6 addresses are only available for instances running in a VPC. For more information, see Multiple IP Addresses (p. 579). For more information about IPv6 in VPC, see IP Addressing in Your VPC in the Amazon VPC User Guide.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Maximum Network Interfaces</th>
<th>IPv4 Addresses per Interface</th>
<th>IPv6 Addresses per Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1.medium</td>
<td>2</td>
<td>6</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>c1.xlarge</td>
<td>4</td>
<td>15</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>c3.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c3.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c3.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c3.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c3.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c4.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c4.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c4.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c4.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c4.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c5.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c5.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c5.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>c5.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c5.9xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c5.18xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Instance Type</td>
<td>Maximum Network Interfaces</td>
<td>IPv4 Addresses per Interface</td>
<td>IPv6 Addresses per Interface</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>cc2.8xlarge</td>
<td>8</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>cr1.8xlarge</td>
<td>8</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>d2.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>d2.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>d2.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>f1.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>f1.16xlarge</td>
<td>8</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>g2.2xlarge</td>
<td>4</td>
<td>15</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>g2.8xlarge</td>
<td>8</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>g3.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>g3.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>g3.16xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>h1.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>h1.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>h1.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>h1.16xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>hs1.8xlarge</td>
<td>8</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>i2.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>i2.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>i2.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>i2.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>i3.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>i3.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
### IP Addresses Per Network Interface Per Instance Type

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Maximum Network Interfaces</th>
<th>IPv4 Addresses per Interface</th>
<th>IPv6 Addresses per Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>i3.16xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>m1.small</td>
<td>2</td>
<td>4</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m1.medium</td>
<td>2</td>
<td>6</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m1.large</td>
<td>3</td>
<td>10</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m1.xlarge</td>
<td>4</td>
<td>15</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m2.xlarge</td>
<td>4</td>
<td>15</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m2.2xlarge</td>
<td>4</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m2.4xlarge</td>
<td>8</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m3.medium</td>
<td>2</td>
<td>6</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m3.large</td>
<td>3</td>
<td>10</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m3.xlarge</td>
<td>4</td>
<td>15</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m3.2xlarge</td>
<td>4</td>
<td>30</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>m4.large</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>m4.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>m4.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>m4.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m4.16xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m5.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>m5.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>m5.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>m5.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m5.12xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>m5.24xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Instance Type</td>
<td>Maximum Network Interfaces</td>
<td>IPv4 Addresses per Interface</td>
<td>IPv6 Addresses per Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>p2.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>p2.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>p2.16xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>p3.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>p3.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>p3.16xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>r3.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>r3.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>r3.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>r3.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>r3.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>r4.large</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>r4.xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>r4.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>r4.4xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>r4.8xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>r4.16xlarge</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>t1.micro</td>
<td>2</td>
<td>2</td>
<td>IPv6 not supported</td>
</tr>
<tr>
<td>t2.nano</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t2.micro</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>t2.small</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>t2.medium</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>t2.large</td>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>t2.xlarge</td>
<td>3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>t2.2xlarge</td>
<td>3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>x1.16xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>x1.32xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>x1e.xlarge</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>x1e.2xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Instance Type</td>
<td>Maximum Network Interfaces</td>
<td>IPv4 Addresses per Interface</td>
<td>IPv6 Addresses per Interface</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>x1e.4xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>x1e.8xlarge</td>
<td>4</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Scenarios for Network Interfaces

Attaching multiple network interfaces to an instance is useful when you want to:

- Create a management network.
- Use network and security appliances in your VPC.
- Create dual-homed instances with workloads/roles on distinct subnets.
- Create a low-budget, high-availability solution.

Creating a Management Network

You can create a management network using network interfaces. In this scenario, the secondary network interface on the instance handles public traffic and the primary network interface handles backend management traffic and is connected to a separate subnet in your VPC that has more restrictive access controls. The public interface, which may or may not be behind a load balancer, has an associated security group that allows access to the server from the internet (for example, allow TCP port 80 and 443 from 0.0.0.0/0, or from the load balancer) while the private facing interface has an associated security group allowing RDP access only from an allowed range of IP addresses either within the VPC or from the internet, a private subnet within the VPC or a virtual private gateway.

To ensure failover capabilities, consider using a secondary private IPv4 for incoming traffic on a network interface. In the event of an instance failure, you can move the interface and/or secondary private IPv4 address to a standby instance.
Use Network and Security Appliances in Your VPC

Some network and security appliances, such as load balancers, network address translation (NAT) servers, and proxy servers prefer to be configured with multiple network interfaces. You can create and attach secondary network interfaces to instances in a VPC that are running these types of applications and configure the additional interfaces with their own public and private IP addresses, security groups, and source/destination checking.

Creating Dual-homed Instances with Workloads/Roles on Distinct Subnets

You can place a network interface on each of your web servers that connects to a mid-tier network where an application server resides. The application server can also be dual-homed to a backend network (subnet) where the database server resides. Instead of routing network packets through the dual-homed instances, each dual-homed instance receives and processes requests on the front end, initiates a connection to the backend, and then sends requests to the servers on the backend network.

Create a Low Budget High Availability Solution

If one of your instances serving a particular function fails, its network interface can be attached to a replacement or hot standby instance pre-configured for the same role in order to rapidly recover the service. For example, you can use a network interface as your primary or secondary network interface to a critical service such as a database instance or a NAT instance. If the instance fails, you (or more likely, the code running on your behalf) can attach the network interface to a hot standby instance. Because the interface maintains its private IP addresses, Elastic IP addresses, and MAC address, network traffic begins flowing to the standby instance as soon as you attach the network interface to the replacement instance. Users experience a brief loss of connectivity between the time the instance fails and the time that the network interface is attached to the standby instance, but no changes to the VPC route table or your DNS server are required.
Best Practices for Configuring Network Interfaces

- You can attach a network interface to an instance when it's running (hot attach), when it's stopped (warm attach), or when the instance is being launched (cold attach).
- You can detach secondary (ethN) network interfaces when the instance is running or stopped. However, you can't detach the primary (eth0) interface.
- You can attach a network interface in one subnet to an instance in another subnet in the same VPC; however, both the network interface and the instance must reside in the same Availability Zone.
- When launching an instance from the CLI or API, you can specify the network interfaces to attach to the instance for both the primary (eth0) and additional network interfaces.
- Launching an Amazon Linux or Windows Server instance with multiple network interfaces automatically configures interfaces, private IPv4 addresses, and route tables on the operating system of the instance.
- A warm or hot attach of an additional network interface may require you to manually bring up the second interface, configure the private IPv4 address, and modify the route table accordingly. Instances running Amazon Linux or Windows Server automatically recognize the warm or hot attach and configure themselves.
- Attaching another network interface to an instance (for example, a NIC teaming configuration) cannot be used as a method to increase or double the network bandwidth to or from the dual-homed instance.
- If you attach two or more network interfaces from the same subnet to an instance, you may encounter networking issues such as asymmetric routing. If possible, use a secondary private IPv4 address on the primary network interface instead. For more information, see Assigning a Secondary Private IPv4 Address (p. 580). If you need to use multiple network interfaces, you must configure the network interfaces to use static routing. For more information, see Configure a Secondary Elastic Network Interface (p. 358).

Working with Network Interfaces

You can work with network interfaces using the Amazon EC2 console or the command line.

Contents
- Creating a Network Interface (p. 604)
- Deleting a Network Interface (p. 604)
- Viewing Details about a Network Interface (p. 604)
- Attaching a Network Interface When Launching an Instance (p. 605)
- Attaching a Network Interface to a Stopped or Running Instance (p. 606)
- Detaching a Network Interface from an Instance (p. 607)
- Changing the Security Group (p. 607)
- Changing the Source or Destination Checking (p. 608)
- Associating an Elastic IP Address (IPv4) (p. 608)
- Disassociating an Elastic IP Address (IPv4) (p. 609)
- Assigning an IPv6 Address (p. 609)
- Unassigning an IPv6 Address (p. 610)
- Changing Termination Behavior (p. 610)
- Adding or Editing a Description (p. 610)
- Adding or Editing Tags (p. 611)
Creating a Network Interface

You can create a network interface in a subnet. You can't move the network interface to another subnet after it's created, and you can only attach the network interface to instances in the same Availability Zone.

To create a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Choose Create Network Interface.
4. For Description, enter a descriptive name.
5. For Subnet, select the subnet.
6. For Private IP (or IPv4 Private IP), enter the primary private IPv4 address. If you don't specify an IPv4 address, we select an available private IPv4 address from within the selected subnet.
7. (IPv6 only) If you selected a subnet that has an associated IPv6 CIDR block, you can optionally specify an IPv6 address in the IPv6 IP field.
8. For Security groups, select one or more security groups.
9. Choose Yes, Create.

To create a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- create-network-interface (AWS CLI)
- New-EC2NetworkInterface (AWS Tools for Windows PowerShell)

Deleting a Network Interface

To delete an instance, you must first detach the network interface. Deleting a network interface releases all attributes associated with the interface and releases any private IP addresses or Elastic IP addresses to be used by another instance.

To delete a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select a network interface and choose Delete.
4. In the Delete Network Interface dialog box, choose Yes, Delete.

To delete a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- delete-network-interface (AWS CLI)
- Remove-EC2NetworkInterface (AWS Tools for Windows PowerShell)

Viewing Details about a Network Interface

You can view all the network interfaces in your account.
To describe a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface.
4. To view the details, choose Details.

To describe a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-network-interfaces (AWS CLI)
- Get-EC2NetworkInterface (AWS Tools for Windows PowerShell)

To describe a network interface attribute using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-network-interface-attribute (AWS CLI)

Attaching a Network Interface When Launching an Instance

You can specify an existing network interface or attach an additional network interface when you launch an instance.

Note
If an error occurs when attaching a network interface to your instance, this causes the instance launch to fail.

To attach a network interface when launching an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. Select an AMI and instance type and choose Next: Configure Instance Details.
4. On the Configure Instance Details page, select a VPC for Network, and a subnet for Subnet.
5. In the Network Interfaces section, the console enables you to specify up to two network interfaces (new, existing, or a combination) when you launch an instance. You can also enter a primary IPv4 address and one or more secondary IPv4 addresses for any new interface.

You can add additional network interfaces to the instance after you launch it. The total number of network interfaces that you can attach varies by instance type. For more information, see IP Addresses Per Network Interface Per Instance Type (p. 597).

Note
If you specify more than one network interface, you cannot auto-assign a public IPv4 address to your instance.

6. (IPv6 only) If you're launching an instance into a subnet that has an associated IPv6 CIDR block, you can specify IPv6 addresses for any network interfaces that you attach. Under IPv6 IPs, choose Add IP. To add a secondary IPv6 address, choose Add IP again. You can enter an IPv6 address from the
range of the subnet, or leave the default Auto-assign value to let Amazon choose an IPv6 address from the subnet for you.

7. Choose Next: Add Storage.

8. On the Add Storage page, you can specify volumes to attach to the instance besides the volumes specified by the AMI (such as the root device volume), and then choose Next: Add Tags.

9. On the Add Tags page, specify tags for the instance, such as a user-friendly name, and then choose Next: Configure Security Group.

10. On the Configure Security Group page, you can select a security group or create a new one. Choose Review and Launch.

   **Note**
   If you specified an existing network interface in step 5, the instance is associated with the security group for that network interface, regardless of any option that you select in this step.

11. On the Review Instance Launch page, details about the primary and additional network interface are displayed. Review the settings, and then choose Launch to choose a key pair and launch your instance. If you're new to Amazon EC2 and haven't created any key pairs, the wizard prompts you to create one.

**To attach a network interface when launching an instance using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- run-instances (AWS CLI)
- New-EC2Instance (AWS Tools for Windows PowerShell)

**Attaching a Network Interface to a Stopped or Running Instance**

You can attach a network interface to any of your stopped or running instances in your VPC, using either the Instances or Network Interfaces pages of the Amazon EC2 console.

**Note**
If the public IPv4 address on your instance is released, it does not receive a new one if there is more than one network interface attached to the instance. For more information about the behavior of public IPv4 addresses, see Public IPv4 Addresses and External DNS Hostnames (p. 572).

**To attach a network interface to an instance using the Instances page**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
4. In the Attach Network Interface dialog box, select the network interface and choose Attach.

**To attach a network interface to an instance using the Network Interfaces page**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Attach.
4. In the Attach Network Interface dialog box, select the instance and choose Attach.
To attach a network interface to an instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `attach-network-interface` (AWS CLI)
- `Add-EC2NetworkInterface` (AWS Tools for Windows PowerShell)

Detaching a Network Interface from an Instance

You can detach a secondary network interface at any time, using either the Instances or Network Interfaces page of the Amazon EC2 console.

To detach a network interface from an instance using the Instances page

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
4. In the Detach Network Interface dialog box, select the network interface and choose Detach.

To detach a network interface from an instance using the Network Interfaces page

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Detach.
4. In the Detach Network Interface dialog box, choose Yes, Detach. If the network interface fails to detach from the instance, choose Force detachment, and then try again.

To detach a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `detach-network-interface` (AWS CLI)
- `Dismount-EC2NetworkInterface` (AWS Tools for Windows PowerShell)

Changing the Security Group

You can change the security groups that are associated with a network interface. When you create the security group, be sure to specify the same VPC as the subnet for the network interface.

**Note**
To change security group membership for interfaces owned by other services, such as Elastic Load Balancing, use the console or command line interface for that service.

To change the security group of a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
4. In the Change Security Groups dialog box, select the security groups to use, and choose Save.

To change the security group of a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-network-interface-attribute (AWS CLI)
- Edit-EC2NetworkInterfaceAttribute (AWS Tools for Windows PowerShell)

Changing the Source or Destination Checking

The Source/Destination Check attribute controls whether source/destination checking is enabled on the instance. Disabling this attribute enables an instance to handle network traffic that isn't specifically destined for the instance. For example, instances running services such as network address translation, routing, or a firewall should set this value to disabled. The default value is enabled.

To change source/destination checking for a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Actions, Change Source/Dest Check.
4. In the dialog box, choose Enabled (if enabling) or Disabled (if disabling), and Save.

To change source/destination checking for a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-network-interface-attribute (AWS CLI)
- Edit-EC2NetworkInterfaceAttribute (AWS Tools for Windows PowerShell)

Associating an Elastic IP Address (IPv4)

If you have an Elastic IP address (IPv4), you can associate it with one of the private IPv4 addresses for the network interface. You can associate one Elastic IP address with each private IPv4 address.

You can associate an Elastic IP address using the Amazon EC2 console or the command line.

To associate an Elastic IP address using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Actions, Associate Address.
4. In the Associate Elastic IP Address dialog box, select the Elastic IP address from the Address list.
5. For Associate to private IP address, select the private IPv4 address to associate with the Elastic IP address.
6. Choose Allow reassociation to allow the Elastic IP address to be associated with the specified network interface if it's currently associated with another instance or network interface, and then choose Associate Address.
To associate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `associate-address` (AWS CLI)
- `Register-EC2Address` (AWS Tools for Windows PowerShell)

Disassociating an Elastic IP Address (IPv4)

If the network interface has an Elastic IP address (IPv4) associated with it, you can disassociate the address, and then either associate it with another network interface or release it back to the address pool. This is the only way to associate an Elastic IP address with an instance in a different subnet or VPC using a network interface, as network interfaces are specific to a particular subnet.

You can disassociate an Elastic IP address using the Amazon EC2 console or the command line.

To disassociate an Elastic IP address using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Actions, Disassociate Address.
4. In the Disassociate IP Address dialog box, choose Yes, Disassociate.

To disassociate an Elastic IP address using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `disassociate-address` (AWS CLI)
- `Unregister-EC2Address` (AWS Tools for Windows PowerShell)

Assigning an IPv6 Address

You can assign one or more IPv6 addresses to a network interface. The network interface must be in a subnet that has an associated IPv6 CIDR block. To assign a specific IPv6 address to the network interface, ensure that the IPv6 address is not already assigned to another network interface.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces and select the network interface.
3. Choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Assign new IP. Specify an IPv6 address from the range of the subnet. To let AWS choose an address for you, leave the Auto-assign value.
5. Choose Yes, Update.

To assign an IPv6 address to a network interface using the command line

- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

  - `assign-ipv6-addresses` (AWS CLI)
  - `Register-EC2Ipv6AddressList` (AWS Tools for Windows PowerShell)
Unassigning an IPv6 Address

You can unassign an IPv6 address from a network interface using the Amazon EC2 console.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces and select the network interface.
3. Choose Actions, Manage IP Addresses.
4. Under IPv6 Addresses, choose Unassign for the IPv6 address to remove.
5. Choose Yes, Update.

To unassign an IPv6 address from a network interface using the command line

- You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
  - unassign-ipv6-addresses (AWS CLI)
  - Unregister-EC2Ipv6AddressList (AWS Tools for Windows PowerShell)

Changing Termination Behavior

You can set the termination behavior for a network interface that's attached to an instance. You can specify whether the network interface should be automatically deleted when you terminate the instance to which it's attached.

You can change the terminating behavior for a network interface using the Amazon EC2 console or the command line.

To change the termination behavior for a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and choose Actions, Change Termination Behavior.
4. In the Change Termination Behavior dialog box, select the Delete on termination check box if you want the network interface to be deleted when you terminate an instance.

To change the termination behavior for a network interface using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-network-interface-attribute (AWS CLI)
- Edit-EC2NetworkInterfaceAttribute (AWS Tools for Windows PowerShell)

Adding or Editing a Description

You can change the description for a network interface using the Amazon EC2 console or the command line.

To change the description for a network interface using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Network Interfaces**.
3. Select the network interface and choose **Actions**, **Change Description**.
4. In the **Change Description** dialog box, enter a description for the network interface, and then choose **Save**.

**To change the description for a network interface using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- modify-network-interface-attribute (AWS CLI)
- Edit-EC2NetworkInterfaceAttribute (AWS Tools for Windows PowerShell)

**Adding or Editing Tags**

Tags are metadata that you can add to a network interface. Tags are private and are only visible to your account. Each tag consists of a key and an optional value. For more information about tags, see Tagging Your Amazon EC2 Resources (p. 759).

**To add or edit tags for a network interface using the console**

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Network Interfaces**.
3. Select the network interface.
4. In the details pane, choose **Tags**, **Add/Edit Tags**.
5. In the **Add/Edit Tags** dialog box, choose **Create Tag** for each tag to create, and enter a key and optional value. When you're done, choose **Save**.

**To add or edit tags for a network interface using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- create-tags (AWS CLI)
- New-EC2Tag (AWS Tools for Windows PowerShell)

**Requester-Managed Network Interfaces**

A requester-managed network interface is a network interface that an AWS service creates in your VPC. This network interface can represent an instance for another service, such as an Amazon RDS instance, or it can enable you to access another service or resource, such as an AWS PrivateLink service, or an Amazon ECS task.

You cannot modify or detach a requester-managed network interface. If you delete the resource that the network interface represents, the AWS service detaches and deletes the network interface for you. To change the security groups for a requester-managed network interface, you might have to use the console or command line tools for that service. For more information, see the service-specific documentation.

You can tag a requester-managed network interface. For more information, see Adding or Editing Tags (p. 611).
You can view the requester-managed network interfaces that are in your account.

To view requester-managed network interfaces using the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Network Interfaces.
3. Select the network interface and view the following information on the details pane:
   - **Attachment owner**: If you created the network interface, this field displays your AWS account ID. Otherwise, it displays an alias or ID for the principal or service that created the network interface.
   - **Description**: Provides information about the purpose of the network interface; for example, "VPC Endpoint Interface".

To view requester-managed network interfaces using the command line
1. Use the `describe-network-interfaces` AWS CLI command to describe the network interfaces in your account.
   ```bash
 aws ec2 describe-network-interfaces
   ```
2. In the output, the **RequesterManaged** field displays `true` if the network interface is managed by another AWS service.
   ```json
 {
 "Status": "in-use",
 ...
 "Description": "VPC Endpoint Interface vpce-089f2123488812123",
 "NetworkInterfaceId": "eni-c8fbc27e",
 "VpcId": "vpc-1a2b3c4d",
 "PrivateIpAddresses": [
 {
 "PrivateDnsName": "ip-10-0-2-227.ec2.internal",
 "Primary": true,
 "PrivateIpAddress": "10.0.2.227"
 }
],
 "RequesterManaged": true,
 ...
 }
   ```
   Alternatively, use the **Get-EC2NetworkInterface** Tools for Windows PowerShell command.

## Placement Groups

You can launch instances in a *placement group*, which determines how instances are placed on underlying hardware. When you create a placement group, you specify one of the following strategies for the group:

- **Cluster**—clusters instances into a low-latency group in a single Availability Zone
- **Spread**—spreads instances across underlying hardware

There is no charge for creating a placement group.

**Contents**
- Cluster Placement Groups (p. 613)
Cluster Placement Groups

A cluster placement group is a logical grouping of instances within a single Availability Zone. Placement groups are recommended for applications that benefit from low network latency, high network throughput, or both. To provide the lowest latency, and the highest packet-per-second network performance for your placement group, choose an instance type that supports enhanced networking. For more information, see Enhanced Networking (p. 619).

We recommend that you launch the number of instances that you need in the placement group in a single launch request and that you use the same instance type for all instances in the placement group. If you try to add more instances to the placement group later, or if you try to launch more than one instance type in the placement group, you increase your chances of getting an insufficient capacity error.

If you stop an instance in a placement group and then start it again, it still runs in the placement group. However, the start fails if there isn’t enough capacity for the instance.

If you receive a capacity error when launching an instance in a placement group that already has running instances, stop and start all of the instances in the placement group, and try the launch again. Restarting the instances may migrate them to hardware that has capacity for all the requested instances.

Spread Placement Groups

A spread placement group is a group of instances that are each placed on distinct underlying hardware.

Spread placement groups are recommended for applications that have a small number of critical instances that should be kept separate from each other. Launching instances in a spread placement group reduces the risk of simultaneous failures that might occur when instances share the same underlying hardware. Spread placement groups provide access to distinct hardware, and are therefore suitable for mixing instance types or launching instances over time.

A spread placement group can span multiple Availability Zones, and you can have a maximum of seven running instances per Availability Zone per group.

If you start or launch an instance in a spread placement group and there is insufficient unique hardware to fulfill the request, the request fails. Amazon EC2 makes more distinct hardware available over time, so you can try your request again later.

Placement Group Rules and Limitations

Before you use placement group groups, be aware of the following rules:

• The name you specify for a placement group must be unique within your AWS account for the region.
• The following are the only instance types that you can use when you launch an instance into a placement group:
  • General purpose: m4.large | m4.xlarge | m4.2xlarge | m4.4xlarge | m4.10xlarge | m4.16xlarge | m5.large | m5.xlarge | m5.2xlarge | m5.4xlarge | m5.12xlarge | m5.24xlarge
• Compute optimized: c3.large | c3.xlarge | c3.2xlarge | c3.4xlarge | c3.8xlarge | c4.large | c4.xlarge | c4.2xlarge | c4.4xlarge | c4.8xlarge | c5.large | c5.xlarge | c5.2xlarge | c5.4xlarge | c5.9xlarge | c5.16xlarge | cc2.8xlarge
• Memory optimized: r3.large | r3.xlarge | r3.2xlarge | r3.4xlarge | r3.8xlarge | r4.large | r4.xlarge | r4.2xlarge | r4.4xlarge | r4.8xlarge | r4.16xlarge | x1.16xlarge | x1.32xlarge | x1e.xlarge | x1e.2xlarge | x1e.4xlarge | x1e.8xlarge | x1e.16xlarge | x1e.32xlarge | cr1.8xlarge
• Storage optimized: d2.xlarge | d2.2xlarge | d2.4xlarge | d2.8xlarge | h1.2xlarge | h1.4xlarge | h1.8xlarge | h1.16xlarge | i2.xlarge | i2.2xlarge | i2.4xlarge | i3.8xlarge | i3.16xlarge | i3.2xlarge | i3.4xlarge | i3.8xlarge | i3.16xlarge | hs1.8xlarge
• Accelerated computing: f1.2xlarge | f1.16xlarge | g2.2xlarge | g2.8xlarge | g3.4xlarge | g3.8xlarge | g3.16xlarge | p2.xlarge | p2.8xlarge | p2.16xlarge | p3.2xlarge | p3.8xlarge | p3.16xlarge

You can’t merge placement groups. Instead, you must terminate the instances in one placement group, and then relaunch those instances into the other placement group.

You can’t move an existing instance into a placement group. You can create an AMI from your existing instance, and then launch a new instance from the AMI into a placement group.

Reserved Instances provide a capacity reservation for EC2 instances in a specific Availability Zone. The capacity reservation can be used by instances in a placement group. However, it is not possible to explicitly reserve capacity for a placement group.

The following rules apply to cluster placement groups:

• A cluster placement group can’t span multiple Availability Zones.
• The maximum network throughput speed of traffic between two instances in a cluster placement group is limited by the slower of the two instances. For applications with high-throughput requirements, choose an instance type with 10–Gbps or 25–Gbps network connectivity. For more information about instance type network performance, see the Amazon EC2 Instance Types Matrix.
• For current generation instance types that are enabled for enhanced networking, the following applies:
  • Traffic between instances within the same AWS Region that is addressed using private IPv4 or IPv6 addresses can use 5 Gbps for single-flow traffic and up to 25 Gbps for multi-flow traffic.
  • Instances within a cluster placement group can use up to 10 Gbps for single-flow traffic.
  • Traffic to and from Amazon S3 buckets within the same AWS Region over the public IP address space or through a VPC endpoint can use all available instance aggregate bandwidth.
• You can launch multiple instance types into a cluster placement group. However, this reduces the likelihood that the required capacity will be available for your launch to succeed. We recommend using the same instance type for all instances in a cluster placement group.
• Network traffic to the internet and over an AWS Direct Connect connection to on-premises resources is limited to 5 Gbps.

The following rules apply to spread placement groups:

• A spread placement group supports a maximum of seven running instances per Availability Zone. For example, in an AWS Region that has three Availability Zones, you can have a total of 21 running instances in the group (seven per zone).
• Spread placement groups are not supported for Dedicated Instances or Dedicated Hosts.

Creating a Placement Group

You can create a placement group using the Amazon EC2 console or the command line.
To create a placement group using the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Placement Groups, Create Placement Group.
3. Specify a name for the group and choose the strategy.
4. Choose Create.

To create a placement group using the command line
- create-placement-group (AWS CLI)
- New-EC2PlacementGroup (AWS Tools for Windows PowerShell)

Launching Instances in a Placement Group

You can create an AMI specifically for the instances to be launched in a placement group. To do this, launch an instance and install the required software and applications on the instance. Then, create an AMI from the instance. For more information, see Creating a Custom Windows AMI (p. 65).

To launch instances into a placement group using the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Choose Launch Instance. Complete the wizard as directed, taking care to do the following:
   - On the Choose an Amazon Machine Image (AMI) page, select an AMI. To select an AMI you created, choose My AMIs.
   - On the Choose an Instance Type page, select an instance type that can be launched into a placement group.
   - On the Configure Instance Details page, enter the total number of instances that you need in this placement group, as you might not be able to add instances to the placement group later.
   - On the Configure Instance Details page, select the placement group that you created from Placement group. If you do not see the Placement group list on this page, verify that you have selected an instance type that can be launched into a placement group, as this option is not available otherwise.

To launch instances into a placement group using the command line
1. Create an AMI for your instances using one of the following commands:
   - create-image (AWS CLI)
   - New-EC2Image (AWS Tools for Windows PowerShell)
2. Launch instances into your placement group using one of the following options:
   - --placement with run-instances (AWS CLI)
   - -PlacementGroup with New-EC2Instance (AWS Tools for Windows PowerShell)

Deleting a Placement Group

If you need to replace a placement group or no longer need one, you can delete it. Before you can delete your placement group, you must terminate all instances that you launched into the placement group.
To terminate instances and delete a placement group using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select and terminate all instances in the placement group. You can verify that the instance is in a placement group before you terminate it by checking the value of Placement Group in the details pane.
4. In the navigation pane, choose Placement Groups.
5. Select the placement group and choose Delete Placement Group.
6. When prompted for confirmation, choose Delete.

To terminate instances and delete a placement group using the command line

You can use one of the following sets of commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- terminate-instances and delete-placement-group (AWS CLI)
- Remove-EC2Instance and Remove-EC2PlacementGroup (AWS Tools for Windows PowerShell)

Network Maximum Transmission Unit (MTU) for Your EC2 Instance

The maximum transmission unit (MTU) of a network connection is the size, in bytes, of the largest permissible packet that can be passed over the connection. The larger the MTU of a connection, the more data that can be passed in a single packet. Ethernet packets consist of the frame, or the actual data you are sending, and the network overhead information that surrounds it.

Ethernet frames can come in different formats, and the most common format is the standard Ethernet v2 frame format. It supports 1500 MTU, which is the largest Ethernet packet size supported over most of the Internet. The maximum supported MTU for an instance depends on its instance type. All Amazon EC2 instance types support 1500 MTU, and many current instance sizes support 9001 MTU, or jumbo frames.

Contents

- Jumbo Frames (9001 MTU) (p. 616)
- Path MTU Discovery (p. 617)
- Check the Path MTU Between Two Hosts (p. 617)
- Check and Set the MTU on Your Windows Instance (p. 618)
- Troubleshooting (p. 619)

Jumbo Frames (9001 MTU)

Jumbo frames allow more than 1500 bytes of data by increasing the payload size per packet, and thus increasing the percentage of the packet that is not packet overhead. Fewer packets are needed to send the same amount of usable data. However, outside of a given AWS region (EC2-Classic), a single VPC, or a VPC peering connection, you will experience a maximum path of 1500 MTU. VPN connections and traffic sent over an Internet gateway are limited to 1500 MTU. If packets are over 1500 bytes, they are fragmented, or they are dropped if the Don’t Fragment flag is set in the IP header.
Jumbo frames should be used with caution for Internet-bound traffic or any traffic that leaves a VPC. Packets are fragmented by intermediate systems, which slows down this traffic. To use jumbo frames inside a VPC and not slow traffic that's bound for outside the VPC, you can configure the MTU size by route, or use multiple elastic network interfaces with different MTU sizes and different routes.

For instances that are collocated inside a cluster placement group, jumbo frames help to achieve the maximum network throughput possible, and they are recommended in this case. For more information, see Placement Groups (p. 612).

The following instances support jumbo frames:

- General purpose: M3, M4, M5, T2
- Compute optimized: C3, C4, C5, CC2
- Accelerated computing: F1, G2, G3, P2, P3
- Memory optimized: CR1, R3, R4, X1
- Storage optimized: D2, H1, HS1, I2, I3

### Path MTU Discovery

Path MTU Discovery is used to determine the path MTU between two devices. The path MTU is the maximum packet size that's supported on the path between the originating host and the receiving host. If a host sends a packet that's larger than the MTU of the receiving host or that's larger than the MTU of a device along the path, the receiving host or device returns the following ICMP message: Destination Unreachable: Fragmentation Needed and Don't Fragment was Set (Type 3, Code 4). This instructs the original host to adjust the MTU until the packet can be transmitted.

By default, security groups do not allow any inbound ICMP traffic. To ensure that your instance can receive this message and the packet does not get dropped, you must add a Custom ICMP Rule with the Destination Unreachable protocol to the inbound security group rules for your instance. For more information, see Path MTU Discovery (p. 463).

**Important**

Modifying your instance's security group to allow path MTU discovery does not guarantee that jumbo frames will not be dropped by some routers. An Internet gateway in your VPC will forward packets up to 1500 bytes only. 1500 MTU packets are recommended for Internet traffic.

### Check the Path MTU Between Two Hosts

You can check the path MTU between two hosts using the `mturoute.exe` command, which you can download and install from http://www.elifulkerson.com/projects/mturoute.php.

**To check path MTU using mturoute.exe**

2. Open a Command Prompt window and change to the directory where you downloaded `mturoute.exe`.
3. Use the following command to check the path MTU between your EC2 instance and another host. You can use a DNS name or an IP address as the destination. If the destination is another EC2 instance, verify that the security group allows inbound UDP traffic. This example checks the path MTU between an EC2 instance and www.elifulkerson.com.

```
\mturoute.exe www.elifulkerson.com
* ICMP Fragmentation is not permitted. *
```
Check and Set the MTU on Your Windows Instance

Some drivers are configured to use jumbo frames, and others are configured to use standard frame sizes. You might want to use jumbo frames for network traffic within your VPC or standard frames for Internet traffic. Whatever your use case, we recommend that you verify that your instances behave as expected.

ENA Driver

You can change the MTU setting using Device Manager or the `Set-NetAdapterAdvancedProperty` command.

To get the current MTU setting using the `Get-NetAdapterAdvancedProperty` command, use the following command. Check the entry for the interface name MTU. A value of 9000 indicates that Jumbo frames are enabled. Jumbo frames are disabled by default.

```
Get-NetAdapterAdvancedProperty -Name "Ethernet"
```

Enable jumbo frames as follows:

```
Set-NetAdapterAdvancedProperty -Name "Ethernet" -RegistryKeyword "MTU" -RegistryValue 9000
```

Disable jumbo frames as follows:

```
Set-NetAdapterAdvancedProperty -Name "Ethernet" -RegistryKeyword "MTU" -RegistryValue 1500
```

Intel SRIOV 82599 Driver

You can change the MTU setting using Device Manager or the `Set-NetAdapterAdvancedProperty` command.

To get the current MTU setting using the `Get-NetAdapterAdvancedProperty` command, use the following command. Check the entry for the interface name JumboPacket. A value of 9014 indicates that Jumbo frames are enabled. (Note that the MTU size includes the header and the payload.) Jumbo frames are disabled by default.

```
Get-NetAdapterAdvancedProperty -Name "Ethernet"
```

Enable jumbo frames as follows:

```
Set-NetAdapterAdvancedProperty -Name "Ethernet" -RegistryKeyword "JumboPacket" -RegistryValue 9014
```

Disable jumbo frames as follows:
Set-NetAdapterAdvancedProperty -Name "Ethernet" -RegistryKeyword "*JumboPacket" - RegistryValue 1514

AWS PV Driver

You cannot change the MTU setting using Device Manager, but you can change it using the netsh command.

Get the current MTU setting using the following command. The name of the interface can vary. In the output, look for an entry with the name "Ethernet," "Ethernet 2," or "Local Area Connection". You'll need the interface name to enable or disable jumbo frames. A value of 9000 indicates that Jumbo frames are enabled.

netsh interface ipv4 show subinterface

Enable jumbo frames as follows:

netsh interface ipv4 set subinterface "Ethernet" mtu=9000

Disable jumbo frames as follows:

netsh interface ipv4 set subinterface "Ethernet" mtu=1500

Troubleshooting

If you experience connectivity issues between your EC2 instance and an Amazon Redshift cluster when using jumbo frames, see Queries Appear to Hang in the Amazon Redshift Cluster Management Guide

Enhanced Networking on Windows

Enhanced networking uses single root I/O virtualization (SR-IOV) to provide high-performance networking capabilities on supported instance types (p. 619). SR-IOV is a method of device virtualization that provides higher I/O performance and lower CPU utilization when compared to traditional virtualized network interfaces. Enhanced networking provides higher bandwidth, higher packet per second (PPS) performance, and consistently lower inter-instance latencies. There is no additional charge for using enhanced networking.

Contents

- Enhanced Networking Types (p. 619)
- Enabling Enhanced Networking on Your Instance (p. 620)
- Enabling Enhanced Networking with the Intel 82599 VF Interface on Windows Instances in a VPC (p. 620)
- Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on Windows Instances in a VPC (p. 623)

Enhanced Networking Types

Depending on your instance type, enhanced networking can be enabled using one of the following mechanisms:
Intel 82599 Virtual Function (VF) interface

The Intel 82599 Virtual Function interface supports network speeds of up to 10 Gbps for supported instance types.

C3, C4, D2, I2, R3, and M4 (excluding m4.16xlarge) instances use the Intel 82599 VF interface for enhanced networking.

Elastic Network Adapter (ENA)

The Elastic Network Adapter (ENA) supports network speeds of up to 25 Gbps for supported instance types.

C5, F1, G3, H1, I3, M5, P2, P3, R4, X1, and m4.16xlarge instances use the Elastic Network Adapter for enhanced networking.

To find out which instance types support 10 or 25 Gbps network speeds, see Amazon EC2 Instance Types.

Enabling Enhanced Networking on Your Instance

If your instance type supports the Intel 82599 VF interface for enhanced networking, follow the procedures in Enabling Enhanced Networking with the Intel 82599 VF Interface on Windows Instances in a VPC (p. 620).

If your instance type supports the Elastic Network Adapter for enhanced networking, follow the procedures in Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on Windows Instances in a VPC (p. 623).

Note

If you've configured your instance to use static IP addressing (p. 355) and you resize the instance to an instance type that supports enhanced networking (for example, from T2 to M4), you may get a warning about a potential IP address conflict when you reconfigure static IP addressing. To prevent this, enable DHCP on the network interface for your instance before you change the instance type. From your instance, open the Network and Sharing Center, go to Internet Protocol Version 4 (TCP/IPv4) Properties for the network interface, and choose Obtain an IP address automatically. Change the instance type and reconfigure static IP addressing on the network interface.

Enabling Enhanced Networking with the Intel 82599 VF Interface on Windows Instances in a VPC

Amazon EC2 provides enhanced networking capabilities to C3, C4, D2, I2, R3, and M4 (excluding m4.16xlarge) instances with the Intel 82599 VF interface, which uses the Intel ixgbevf driver.

To prepare for enhanced networking with the Intel 82599 VF interface, set up your instance as follows:

- Launch the instance from a 64-bit HVM AMI. You can't enable enhanced networking on Windows Server 2008 and Windows Server 2003. Enhanced networking is already enabled for Windows Server 2012 R2 and Windows Server 2016 AMIs. Windows Server 2012 R2 includes Intel driver 1.0.15.3 and we recommend that you upgrade that driver to the latest version using the Pnputil.exe utility.
- Launch the instance in a VPC. (You can't enable enhanced networking if the instance is in EC2-Classic.)
- Install and configure the AWS CLI or the AWS Tools for Windows PowerShell on any computer you choose, preferably your local desktop or laptop. For more information, see Accessing Amazon EC2 (p. 3). Enhanced networking cannot be managed from the Amazon EC2 console.
- If you have important data on the instance that you want to preserve, you should back that data up now by creating an AMI from your instance. Updating kernels and kernel modules, as well as
enabling the sriovNetSupport attribute, may render incompatible instances or operating systems unreachable; if you have a recent backup, your data will still be retained if this happens.

Contents

• Testing Whether Enhanced Networking with the Intel 82599 VF Interface is Enabled (p. 621)
• Enabling Enhanced Networking with the Intel 82599 VF Interface on Windows (p. 622)

Testing Whether Enhanced Networking with the Intel 82599 VF Interface is Enabled

Enhanced networking with the Intel 82599 VF interface is enabled if the driver is installed on your instance and the sriovNetSupport attribute is set.

Driver

To verify that the driver is installed, connect to your instance and open Device Manager. You should see "Intel(R) 82599 Virtual Function" listed under Network adapters.

Instance Attribute (sriovNetSupport)

To check whether an instance has the enhanced networking sriovNetSupport attribute set, use one of the following commands:

• describe-instance-attribute (AWS CLI)

```
aws ec2 describe-instance-attribute --instance-id instance_id --attribute sriovNetSupport
```

• Get-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

```
Get-EC2InstanceAttribute -InstanceId instance-id -Attribute sriovNetSupport
```

If the attribute isn't set, SriovNetSupport is empty; otherwise, it is set as follows:

```
"SriovNetSupport": {
 "Value": "simple"
},
```

Image Attribute (sriovNetSupport)

To check whether an AMI already has the enhanced networking sriovNetSupport attribute set, use one of the following commands:

• describe-image-attribute (AWS CLI)

```
aws ec2 describe-image-attribute --image-id ami_id --attribute sriovNetSupport
```

Note that this command only works for images that you own. You receive an AuthFailure error for images that do not belong to your account.

• Get-EC2ImageAttribute (AWS Tools for Windows PowerShell)

```
Get-EC2ImageAttribute -ImageId ami-id -Attribute sriovNetSupport
```
If the attribute isn't set, `SriovNetSupport` is empty; otherwise, it is set as follows:

```
"SriovNetSupport": {
 "Value": "simple"
},
```

**Enabling Enhanced Networking with the Intel 82599 VF Interface on Windows**

If you launched your instance and it does not have enhanced networking enabled already, you must download and install the required network adapter driver on your instance, and then set the `sriovNetSupport` instance attribute to activate enhanced networking. You can only enable this attribute on supported instance types. For more information, see Enhanced Networking Types (p. 619).

**Important**

Windows Server enhanced networking is already enabled for Windows Server 2012 R2 and Windows Server 2016 AMIs. However, Windows Server 2012 R2 includes Intel driver 1.0.15.3 and we recommend that you upgrade that driver to the latest version using the Pnputil.exe utility as described here.

**Warning**

There is no way to disable the enhanced networking attribute after you've enabled it.

**To enable enhanced networking**

1. Connect to your instance and log in as the local administrator.
2. [Windows Server 2016] Run the following EC2Launch PowerShell script to configure the instance after the driver is installed.

   ```powershell
 PS C:\> C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeInstance.ps1 -Schedule
   ```

3. From the instance, install the driver as follows:
   a. Download the Intel network adapter driver for your operating system:
      - Windows Server 2008 R2
      - Windows Server 2012
      - Windows Server 2012 R2
      - Windows Server 2016
   b. In the Download folder, locate the PROWinx64.exe file. Rename this file PROWinx64.zip.
   c. Open a context (right-click) menu on PROWinx64.zip and choose Extract All. Specify a destination path and choose Extract.
   d. Open a command prompt window, go to the folder with the extracted files, and use the pnputil utility to add and install the INF file in the driver store.

   **Windows Server 2016**
   ```
 pnputil -i -a PROXGB\Winx64\NDIS65\vxn65x64.inf
   ```

   **Windows Server 2012 R2**
   ```
 pnputil -i -a PROXGB\Winx64\NDIS64\vxn64x64.inf
   ```

   **Windows Server 2012**
   ```
 pnputil -i -a PROXGB\Winx64\NDIS64\vxn64x64.inf
   ```
Enabling Enhanced Networking: ENA

From your local computer, stop the instance using the Amazon EC2 console or one of the following commands: stop-instances (AWS CLI), Stop-EC2Instance (AWS Tools for Windows PowerShell). If your instance is managed by AWS OpsWorks, you should stop the instance in the AWS OpsWorks console so that the instance state remains in sync.

From your local computer, enable the enhanced networking attribute using one of the following commands:

- modify-instance-attribute (AWS CLI)

```bash
aws ec2 modify-instance-attribute --instance-id instance_id --sriov-net-support simple
```

- Edit-EC2InstanceAttribute (AWS Tools for Windows PowerShell)

```powershell
Edit-EC2InstanceAttribute -InstanceId instance_id -SriovNetSupport "simple"
```

(Optional) Create an AMI from the instance, as described in Creating a Custom Windows AMI (p. 65). The AMI inherits the enhanced networking attribute from the instance. Therefore, you can use this AMI to launch another instance with enhanced networking enabled by default.

From your local computer, start the instance using the Amazon EC2 console or one of the following commands: start-instances (AWS CLI), Start-EC2Instance (AWS Tools for Windows PowerShell). If your instance is managed by AWS OpsWorks, you should start the instance in the AWS OpsWorks console so that the instance state remains in sync.

Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on Windows Instances in a VPC

To prepare for enhanced networking with the ENA network adapter, set up your instance as follows:

- Launch the instance in a VPC. (You can't enable enhanced networking if the instance is in EC2-Classic.)
- Install and configure the AWS CLI or the AWS Tools for Windows PowerShell on any computer you choose, preferably your local desktop or laptop. For more information, see Accessing Amazon EC2 (p. 3). Enhanced networking cannot be managed from the Amazon EC2 console.
- If you have important data on the instance that you want to preserve, you should back that data up now by creating an AMI from your instance. Updating kernels and kernel modules, as well as enabling the enaSupport attribute, may render incompatible instances or operating systems unreachable; if you have a recent backup, your data will still be retained if this happens.

Contents

- Testing Whether Enhanced Networking with ENA Is Enabled (p. 624)
- Enabling Enhanced Networking with ENA on Windows (p. 624)
- Amazon ENA Driver Versions (p. 626)
Testing Whether Enhanced Networking with ENA Is Enabled

To test whether enhanced networking with ENA is already enabled, verify that the driver is installed on your instance and that the enaSupport attribute is set.

**Instance Attribute (enaSupport)**

To check whether an instance has the enhanced networking enaSupport attribute set, use one of the following commands. If the attribute is set, the response is true.

- **describe-instances (AWS CLI)**
  
  ```
 aws ec2 describe-instances --instance-ids instance_id --query "Reservations[].Instances[].EnaSupport"
  ```

- **Get-EC2Instance (Tools for Windows PowerShell)**
  
  ```
 (Get-EC2Instance -InstanceId instance-id).Instances.EnaSupport
  ```

**Image Attribute (enaSupport)**

To check whether an AMI has the enhanced networking enaSupport attribute set, use one of the following commands. If the attribute is set, the response is true.

- **describe-images (AWS CLI)**
  
  ```
 aws ec2 describe-images --image-id ami_id --query "Images[].EnaSupport"
  ```

- **Get-EC2Image (Tools for Windows PowerShell)**
  
  ```
 (Get-EC2Image -ImageId ami_id).EnaSupport
  ```

Enabling Enhanced Networking with ENA on Windows

If you launched your instance and it does not have enhanced networking enabled already, you must download and install the required network adapter driver on your instance, and then set the enaSupport instance attribute to activate enhanced networking. You can only enable this attribute on supported instance types and only if the ENA driver is installed. For more information, see Enhanced Networking Types (p. 619).

**To enable enhanced networking with ENA**

1. Connect to your instance and log in as the local administrator.
2. [Windows Server 2016] Run the following EC2Launch PowerShell script to configure the instance after the driver is installed.

   ```
 PS C:\> C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeInstance.ps1 -Schedule
   ```

3. From the instance, install the driver as follows:

   a. Download the Amazon ENA adapter driver for your operating system:
      
      - Windows Server 2008 R2
      - Windows Server 2012 and later
b. Extract the zip archive.

c. Change to the folder that corresponds to your OS version. (For Windows Server 2016, use the 2012R2 folder.) This folder contains the following driver files: ena.cat, ena.inf, and ena.sys.

d. Install the driver using the following command:

    pnputil -i -a ena.inf

The following is example output if the installation is successful:

```
Microsoft PnP Utility
Processing inf : ena.inf
Successfully installed the driver on a device on the system.
Driver package added successfully.
Published name : oem9.inf
Total attempted: 1
Number successfully imported: 1
```

4. From your local computer, stop the instance using the Amazon EC2 console or one of the following commands: stop-instances (AWS CLI), Stop-EC2Instance (AWS Tools for Windows PowerShell). If your instance is managed by AWS OpsWorks, you should stop the instance in the AWS OpsWorks console so that the instance state remains in sync.

5. Enable ENA support on your instance as follows:

   a. From your local computer, check the EC2 instance ENA support attribute on your instance by running one of the following commands. If the attribute is not enabled, the output will be "[]" or blank. EnaSupport is set to false by default.

      • `describe-instances` (AWS CLI)

        ```
 aws ec2 describe-instances --instance-ids instance_id --query "Reservations[].Instances[].EnaSupport"
        ```

      • `Get-EC2Instance` (Tools for Windows PowerShell)

        ```
 (Get-EC2Instance -InstanceId instance-id).Instances.EnaSupport
        ```

   b. To enable ENA support, run one of the following commands:

      • `modify-instance-attribute` (AWS CLI)

        ```
 aws ec2 modify-instance-attribute --instance-id instance_id --ena-support
        ```

      • `Edit-EC2InstanceAttribute` (AWS Tools for Windows PowerShell)

        ```
 Edit-EC2InstanceAttribute -InstanceId instance_id -EnaSupport $true
        ```

If you encounter problems when you restart the instance, you can also disable ENA support using one of the following commands:

   • `modify-instance-attribute` (AWS CLI)

        ```
 aws ec2 modify-instance-attribute --instance-id instance_id --no-ena-support
        ```
Enabling Enhanced Networking: ENA

- **Edit-EC2InstanceAttribute** (AWS Tools for Windows PowerShell)

  ```powershell
 Edit-EC2InstanceAttribute -InstanceId instance_id -EnaSupport $false
  ```

c. Verify that the attribute has been set to `true` using `describe-instances` or `Get-EC2Instance` as shown previously. You should now see the following output:

  ```json
 [true]
  ```

6. From your local computer, start the instance using the Amazon EC2 console or one of the following commands: `start-instances` (AWS CLI), `Start-EC2Instance` (AWS Tools for Windows PowerShell). If your instance is managed by AWS OpsWorks, you should start the instance using the AWS OpsWorks console so that the instance state remains in sync.

7. On the instance, validate that the ENA driver is installed and enabled as follows:
   a. Right-click the network icon and choose **Open Network and Sharing Center**.
   b. Choose the Ethernet adapter (for example, **Ethernet 2**).
   c. Choose **Details**. For **Network Connection Details**, check that **Description** is **Amazon Elastic Network Adapter**.

8. (Optional) Create an AMI from the instance. The AMI inherits the `enaSupport` attribute from the instance. Therefore, you can use this AMI to launch another instance with ENA enabled by default. For more information, see **Creating a Custom Windows AMI** (p. 65).

### Amazon ENA Driver Versions

Windows AMIs include the Amazon ENA driver to enable enhanced networking. The following table summarizes the changes for each release.

<table>
<thead>
<tr>
<th>Driver version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.9.0</td>
<td>Includes some reliability fixes. Applies only to Windows Server 2008 R2. Not recommended for other versions of Windows Server.</td>
</tr>
</tbody>
</table>
Storage

Amazon EC2 provides you with flexible, cost effective, and easy-to-use data storage options for your instances. Each option has a unique combination of performance and durability. These storage options can be used independently or in combination to suit your requirements.

After reading this section, you should have a good understanding about how you can use the data storage options supported by Amazon EC2 to meet your specific requirements. These storage options include the following:

- Amazon Elastic Block Store (p. 628)
- Amazon EC2 Instance Store (p. 722)
- Amazon Elastic File System (Amazon EFS) (p. 729)
- Amazon Simple Storage Service (Amazon S3) (p. 729)

The following figure shows the relationship between these types of storage.

![Diagram of storage types]

**Amazon EBS**

Amazon EBS provides durable, block-level storage volumes that you can attach to a running instance. You can use Amazon EBS as a primary storage device for data that requires frequent and granular updates. For example, Amazon EBS is the recommended storage option when you run a database on an instance.

An EBS volume behaves like a raw, unformatted, external block device that you can attach to a single instance. The volume persists independently from the running life of an instance. After an EBS volume is attached to an instance, you can use it like any other physical hard drive. As illustrated in the previous figure, multiple volumes can be attached to an instance. You can also detach an EBS volume from one instance and attach it to another instance. You can dynamically change the configuration of a volume attached to an instance. EBS volumes can also be created as encrypted volumes using the Amazon EBS encryption feature. For more information, see Amazon EBS Encryption (p. 696).
To keep a backup copy of your data, you can create a snapshot of an EBS volume, which is stored in Amazon S3. You can create an EBS volume from a snapshot, and attach it to another instance. For more information, see Amazon Elastic Block Store (p. 628).

**Amazon EC2 Instance Store**

Many instances can access storage from disks that are physically attached to the host computer. This disk storage is referred to as instance store. Instance store provides temporary block-level storage for instances. The data on an instance store volume persists only during the life of the associated instance; if you stop or terminate an instance, any data on instance store volumes is lost. For more information, see Amazon EC2 Instance Store (p. 722).

**Amazon EFS File System**

Amazon EFS provides scalable file storage for use with Amazon EC2. You can create an EFS file system and configure your instances to mount the file system. You can use an EFS file system as a common data source for workloads and applications running on multiple instances. For more information, see Amazon Elastic File System (Amazon EFS) (p. 729).

**Amazon S3**

Amazon S3 provides access to reliable and inexpensive data storage infrastructure. It is designed to make web-scale computing easier by enabling you to store and retrieve any amount of data, at any time, from within Amazon EC2 or anywhere on the web. For example, you can use Amazon S3 to store backup copies of your data and applications. Amazon EC2 uses Amazon S3 to store EBS snapshots and instance store-backed AMIs. For more information, see Amazon Simple Storage Service (Amazon S3) (p. 729).

**Adding Storage**

Every time you launch an instance from an AMI, a root storage device is created for that instance. The root storage device contains all the information necessary to boot the instance. You can specify storage volumes in addition to the root device volume when you create an AMI or launch an instance using block device mapping. For more information, see Block Device Mapping (p. 733).

You can also attach EBS volumes to a running instance. For more information, see Attaching an Amazon EBS Volume to an Instance (p. 647).

---

**Amazon Elastic Block Store (Amazon EBS)**

Amazon Elastic Block Store (Amazon EBS) provides block level storage volumes for use with EC2 instances. EBS volumes are highly available and reliable storage volumes that can be attached to any running instance that is in the same Availability Zone. EBS volumes that are attached to an EC2 instance are exposed as storage volumes that persist independently from the life of the instance. With Amazon EBS, you pay only for what you use. For more information about Amazon EBS pricing, see the Projecting Costs section of the Amazon Elastic Block Store page.

Amazon EBS is recommended when data must be quickly accessible and requires long-term persistence. EBS volumes are particularly well-suited for use as the primary storage for file systems, databases, or for any applications that require fine granular updates and access to raw, unformatted, block-level storage. Amazon EBS is well suited to both database-style applications that rely on random reads and writes, and to throughput-intensive applications that perform long, continuous reads and writes.

For simplified data encryption, you can launch your EBS volumes as encrypted volumes. Amazon EBS encryption offers you a simple encryption solution for your EBS volumes without the need for you to build, manage, and secure your own key management infrastructure. When you create an encrypted EBS volume and attach it to a supported instance type, data stored at rest on the volume, disk I/O, and
snapshots created from the volume are all encrypted. The encryption occurs on the servers that hosts EC2 instances, providing encryption of data-in-transit from EC2 instances to EBS storage. For more information, see Amazon EBS Encryption (p. 696).

Amazon EBS encryption uses AWS Key Management Service (AWS KMS) master keys when creating encrypted volumes and any snapshots created from your encrypted volumes. The first time you create an encrypted EBS volume in a region, a default master key is created for you automatically. This key is used for Amazon EBS encryption unless you select a Customer Master Key (CMK) that you created separately using the AWS Key Management Service. Creating your own CMK gives you more flexibility, including the ability to create, rotate, disable, define access controls, and audit the encryption keys used to protect your data. For more information, see the AWS Key Management Service Developer Guide.

You can attach multiple volumes to the same instance within the limits specified by your AWS account. Your account has a limit on the number of EBS volumes that you can use, and the total storage available to you. For more information about these limits, and how to request an increase in your limits, see Request to Increase the Amazon EBS Volume Limit.

Contents
- Features of Amazon EBS (p. 629)
- Amazon EBS Volumes (p. 630)
- Amazon EBS Snapshots (p. 680)
- Amazon EBS–Optimized Instances (p. 691)
- Amazon EBS Encryption (p. 696)
- Amazon EBS and NVMe (p. 700)
- Amazon EBS Volume Performance on Windows Instances (p. 701)
- Amazon CloudWatch Events for Amazon EBS (p. 716)

Features of Amazon EBS

- You can create EBS General Purpose SSD (gp2), Provisioned IOPS SSD (io1), Throughput Optimized HDD (st1), and Cold HDD (sc1) volumes up to 16 TiB in size. You can mount these volumes as devices on your Amazon EC2 instances. You can mount multiple volumes on the same instance, but each volume can be attached to only one instance at a time. You can dynamically change the configuration of a volume attached to an instance. For more information, see Creating an Amazon EBS Volume (p. 644).
- With General Purpose SSD (gp2) volumes, you can expect base performance of 3 IOPS/GiB, with the ability to burst to 3,000 IOPS for extended periods of time. Gp2 volumes are ideal for a broad range of use cases such as boot volumes, small and medium-size databases, and development and test environments. Gp2 volumes support up to 10,000 IOPS and 160 MB/s of throughput. For more information, see General Purpose SSD (gp2) Volumes (p. 635).
- With Provisioned IOPS SSD (io1) volumes, you can provision a specific level of I/O performance. Io1 volumes support up to 32,000 IOPS and 500 MB/s of throughput. This allows you to predictably scale to tens of thousands of IOPS per EC2 instance. For more information, see Provisioned IOPS SSD (io1) Volumes (p. 637).
- Throughput Optimized HDD (st1) volumes provide low-cost magnetic storage that defines performance in terms of throughput rather than IOPS. With throughput of up to 500 MiB/s, this volume type is a good fit for large, sequential workloads such as Amazon EMR, ETL, data warehouses, and log processing. For more information, see Throughput Optimized HDD (st1) Volumes (p. 637).
- Cold HDD (sc1) volumes provide low-cost magnetic storage that defines performance in terms of throughput rather than IOPS. With throughput of up to 250 MiB/s, sc1 is a good fit ideal for large, sequential, cold-data workloads. If you require infrequent access to your data and are looking to save costs, sc1 provides inexpensive block storage. For more information, see Cold HDD (sc1) Volumes (p. 640).
EBS volumes behave like raw, unformatted block devices. You can create a file system on top of these volumes, or use them in any other way you would use a block device (like a hard drive). For more information on creating file systems and mounting volumes, see Making an Amazon EBS Volume Available for Use (p. 648).

You can use encrypted EBS volumes to meet a wide range of data-at-rest encryption requirements for regulated/audited data and applications. For more information, see Amazon EBS Encryption (p. 696).

You can create point-in-time snapshots of EBS volumes, which are persisted to Amazon S3. Snapshots protect data for long-term durability, and they can be used as the starting point for new EBS volumes. The same snapshot can be used to instantiate as many volumes as you wish. These snapshots can be copied across AWS regions. For more information, see Amazon EBS Snapshots (p. 680).

EBS volumes are created in a specific Availability Zone, and can then be attached to any instances in that same Availability Zone. To make a volume available outside of the Availability Zone, you can create a snapshot and restore that snapshot to a new volume anywhere in that region. You can copy snapshots to other regions and then restore them to new volumes there, making it easier to leverage multiple AWS regions for geographical expansion, data center migration, and disaster recovery. For more information, see Creating an Amazon EBS Snapshot (p. 683), Restoring an Amazon EBS Volume from a Snapshot (p. 646), and Copying an Amazon EBS Snapshot (p. 687).

A large repository of public data set snapshots can be restored to EBS volumes and seamlessly integrated into AWS cloud-based applications. For more information, see Using Public Data Sets (p. 748).

Performance metrics, such as bandwidth, throughput, latency, and average queue length, are available through the AWS Management Console. These metrics, provided by Amazon CloudWatch, allow you to monitor the performance of your volumes to make sure that you are providing enough performance for your applications without paying for resources you don't need. For more information, see Amazon EBS Volume Performance on Windows Instances (p. 701).

Amazon EBS Volumes

An Amazon EBS volume is a durable, block-level storage device that you can attach to a single EC2 instance. You can use EBS volumes as primary storage for data that requires frequent updates, such as the system drive for an instance or storage for a database application. You can also use them for throughput-intensive applications that perform continuous disk scans. EBS volumes persist independently from the running life of an EC2 instance. After a volume is attached to an instance, you can use it like any other physical hard drive. EBS volumes are flexible. For current-generation volumes attached to current-generation instance types, you can dynamically increase size, modify provisioned IOPS capacity, and change volume type on live production volumes. Amazon EBS provides the following volume types: General Purpose SSD (gp2), Provisioned IOPS SSD (io1), Throughput Optimized HDD (st1), Cold HDD (sc1), and Magnetic (standard, a previous-generation type). They differ in performance characteristics and price, allowing you to tailor your storage performance and cost to the needs of your applications. For more information, see Amazon EBS Volume Types (p. 632).
Benefits of Using EBS Volumes

EBS volumes provide several benefits that are not supported by instance store volumes.

• **Data availability**

  When you create an EBS volume in an Availability Zone, it is automatically replicated within that zone to prevent data loss due to failure of any single hardware component. After you create a volume, you can attach it to any EC2 instance in the same Availability Zone. After you attach a volume, it appears as a native block device similar to a hard drive or other physical device. At that point, the instance can interact with the volume just as it would with a local drive. The instance can format the EBS volume with a file system, such as NTFS, and then install applications.

  An EBS volume can be attached to only one instance at a time within the same Availability Zone. However, multiple volumes can be attached to a single instance. If you attach multiple volumes to a device that you have named, you can stripe data across the volumes for increased I/O and throughput performance.

  You can get monitoring data for your EBS volumes at no additional charge (this includes data for the root device volumes for EBS-backed instances). For more information, see Monitoring Volumes with CloudWatch (p. 651).

• **Data persistence**

  An EBS volume is off-instance storage that can persist independently from the life of an instance. You continue to pay for the volume usage as long as the data persists.

  By default, EBS volumes that are attached to a running instance automatically detach from the instance with their data intact when that instance is terminated. The volume can then be reattached to a new instance, enabling quick recovery. If you are using an EBS-backed instance, you can stop and restart that instance without affecting the data stored in the attached volume. The volume remains attached throughout the stop-start cycle. This enables you to process and store the data on your volume indefinitely, only using the processing and storage resources when required. The data persists on the volume until the volume is deleted explicitly. The physical block storage used by deleted EBS volumes is overwritten with zeroes before it is allocated to another account. If you are dealing with sensitive data, you should consider encrypting your data manually or storing the data on a volume protected by Amazon EBS encryption. For more information, see Amazon EBS Encryption (p. 696).

  By default, EBS volumes that are created and attached to an instance at launch are deleted when that instance is terminated. You can modify this behavior by changing the value of the flag `DeleteOnTermination` to `false` when you launch the instance. This modified value causes the volume to persist even after the instance is terminated, and enables you to attach the volume to another instance.

• **Data encryption**

  For simplified data encryption, you can create encrypted EBS volumes with the Amazon EBS encryption feature. All EBS volume types support encryption. You can use encrypted EBS volumes to meet a wide range of data-at-rest encryption requirements for regulated/audited data and applications. Amazon EBS encryption uses 256-bit Advanced Encryption Standard algorithms (AES-256) and an Amazon-managed key infrastructure. The encryption occurs on the server that hosts the EC2 instance, providing encryption of data-in-transit from the EC2 instance to Amazon EBS storage. For more information, see Amazon EBS Encryption (p. 696).

  Amazon EBS encryption uses AWS Key Management Service (AWS KMS) master keys when creating encrypted volumes and any snapshots created from your encrypted volumes. The first time you create an encrypted EBS volume in a region, a default master key is created for you automatically. This key
is used for Amazon EBS encryption unless you select a customer master key (CMK) that you created separately using AWS KMS. Creating your own CMK gives you more flexibility, including the ability to create, rotate, disable, define access controls, and audit the encryption keys used to protect your data. For more information, see the AWS Key Management Service Developer Guide.

- **Snapshots**

Amazon EBS provides the ability to create snapshots (backups) of any EBS volume and write a copy of the data in the volume to Amazon S3, where it is stored redundantly in multiple Availability Zones. The volume does not need to be attached to a running instance in order to take a snapshot. As you continue to write data to a volume, you can periodically create a snapshot of the volume to use as a baseline for new volumes. These snapshots can be used to create multiple new EBS volumes or move volumes across Availability Zones. Snapshots of encrypted EBS volumes are automatically encrypted.

When you create a new volume from a snapshot, it's an exact copy of the original volume at the time the snapshot was taken. EBS volumes that are restored from encrypted snapshots are automatically encrypted. By optionally specifying a different Availability Zone, you can use this functionality to create duplicate a volume in that zone. The snapshots can be shared with specific AWS accounts or made public. When you create snapshots, you incur charges in Amazon S3 based on the volume's total size. For a successive snapshot of the volume, you are only charged for any additional data beyond the volume's original size.

Snapshots are incremental backups, meaning that only the blocks on the volume that have changed after your most recent snapshot are saved. If you have a volume with 100 GiB of data, but only 5 GiB of data have changed since your last snapshot, only the 5 GiB of modified data is written to Amazon S3. Even though snapshots are saved incrementally, the snapshot deletion process is designed so that you need to retain only the most recent snapshot in order to restore the volume.

To help categorize and manage your volumes and snapshots, you can tag them with metadata of your choice. For more information, see Tagging Your Amazon EC2 Resources (p. 759).

- **Flexibility**

EBS volumes support live configuration changes while in production. You can modify volume type, volume size, and IOPS capacity without service interruptions.

### Amazon EBS Volume Types

Amazon EBS provides the following volume types, which differ in performance characteristics and price, so that you can tailor your storage performance and cost to the needs of your applications. The volume types fall into two categories:

- SSD-backed volumes optimized for transactional workloads involving frequent read/write operations with small I/O size, where the dominant performance attribute is IOPS
- HDD-backed volumes optimized for large streaming workloads where throughput (measured in MiB/s) is a better performance measure than IOPS

The following table describes the use cases and performance characteristics for each volume type:

<table>
<thead>
<tr>
<th>Volume Type</th>
<th>Solid-State Drives (SSD)</th>
<th>Hard disk Drives (HDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Volume Type</strong></td>
<td>General Purpose SSD (gp2)*</td>
<td>Provisioned IOPS SSD (io1)</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>General purpose SSD volume that</td>
<td>Highest-performance SSD volume for</td>
</tr>
</tbody>
</table>
**Solid-State Drives (SSD)** balances price and performance for a wide variety of workloads. **Hard disk Drives (HDD)** designed for frequently accessed, throughput-intensive workloads; for less frequently accessed workloads.

### Use Cases

- **Recommended for most workloads**
- **System boot volumes**
- **Virtual desktops**
- **Low-latency interactive apps**
- **Development and test environments**

- **Critical business applications that require sustained IOPS performance, or more than 10,000 IOPS or 160 MiB/s of throughput per volume**
- **Large database workloads, such as:**
  - MongoDB
  - Cassandra
  - Microsoft SQL Server
  - MySQL
  - PostgreSQL
  - Oracle

- **Streaming workloads requiring consistent, fast throughput at a low price**
- **Big data**
- **Data warehouses**
- **Log processing**
- **Cannot be a boot volume**

- **Throughput-oriented storage for large volumes of data that is infrequently accessed**
- **Scenarios where the lowest storage cost is important**
- **Cannot be a boot volume**

<table>
<thead>
<tr>
<th>API Name</th>
<th>gp2</th>
<th>io1</th>
<th>st1</th>
<th>sc1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Volume Size</strong></td>
<td>1 GiB - 16 TiB</td>
<td>4 GiB - 16 TiB</td>
<td>500 GiB - 16 TiB</td>
<td>500 GiB - 16 TiB</td>
</tr>
<tr>
<td><strong>Max. IOPS</strong>/Volume</td>
<td>10,000</td>
<td>32,000</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td><strong>Max. Throughput/Volume</strong></td>
<td>160 MiB/s</td>
<td>500 MiB/s***</td>
<td>500 MiB/s</td>
<td>250 MiB/s</td>
</tr>
<tr>
<td><strong>Max. IOPS/Instance</strong></td>
<td>80,000</td>
<td>80,000</td>
<td>80,000</td>
<td>80,000</td>
</tr>
<tr>
<td><strong>Max. Throughput/Instance†</strong></td>
<td>1,750 MiB/s</td>
<td>1,750 MiB/s</td>
<td>1,750 MiB/s</td>
<td>1,750 MiB/s</td>
</tr>
<tr>
<td><strong>Dominant Performance Attribute</strong></td>
<td>IOPS</td>
<td>IOPS</td>
<td>MiB/s</td>
<td>MiB/s</td>
</tr>
</tbody>
</table>

* Default volume type

** gp2/io1 based on 16 KiB I/O size, st1/sc1 based on 1 MiB I/O size

*** An io1 volume created before 12/6/2017 will not achieve this throughput until modified in some way. For more information, see Modifying the Size, IOPS, or Type of an EBS Volume on Windows.
To achieve this throughput, you must have an instance that supports it, such as r4.8xlarge or x1.32xlarge. For more information, see Amazon EBS–Optimized Instances.

The following table describes previous-generation EBS volume types. If you need higher performance or performance consistency than previous-generation volumes can provide, we recommend that you consider using General Purpose SSD (gp2) or other current volume types. For more information, see Previous Generation Volumes.

<table>
<thead>
<tr>
<th>Previous Generation Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Volume Type</strong></td>
</tr>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td><strong>Use Cases</strong></td>
</tr>
<tr>
<td><strong>API Name</strong></td>
</tr>
<tr>
<td><strong>Volume Size</strong></td>
</tr>
<tr>
<td><strong>Max. IOPS/Volume</strong></td>
</tr>
<tr>
<td><strong>Max. Throughput/Volume</strong></td>
</tr>
<tr>
<td><strong>Max. IOPS/Instance</strong></td>
</tr>
<tr>
<td><strong>Max. Throughput/Instance</strong></td>
</tr>
<tr>
<td><strong>Dominant Performance Attribute</strong></td>
</tr>
</tbody>
</table>

**Note**

The following Amazon EBS volume considerations apply to Windows boot volumes:

- Windows boot volumes must use an MBR partition table, which limits the usable space to 2 TiB, regardless of volume size.
- Windows boot volumes of 2 TiB (2048 GiB) that have been converted to use a dynamic MBR partition table display an error when examined with Disk Manager.

The following Amazon EBS volume considerations apply to Windows data (non-boot) volumes:

- Windows volumes 2 TiB (2048 GiB) or greater must use a GPT partition table to access the entire volume.
- Amazon EBS volumes over 2048 GiB that are attached to Windows instances at launch are automatically formatted with a GPT partition table.
- Amazon EBS volumes attached to Windows instances after launch must be manually initialized with a GPT partition table. For more information, see Making an Amazon EBS Volume Available for Use.

There are several factors that can affect the performance of EBS volumes, such as instance configuration, I/O characteristics, and workload demand. For more information about getting the most out of your EBS volumes, see Amazon EBS Volume Performance on Windows Instances (p. 701).

For more information about pricing for these volume types, see Amazon EBS Pricing.
General Purpose SSD (gp2) Volumes

General Purpose SSD (gp2) volumes offer cost-effective storage that is ideal for a broad range of workloads. These volumes deliver single-digit millisecond latencies and the ability to burst to 3,000 IOPS for extended periods of time. Between a minimum of 100 IOPS (at 33.33 GiB and below) and a maximum of 10,000 IOPS (at 3,334 GiB and above), baseline performance scales linearly at 3 IOPS per GiB of volume size. AWS designs gp2 volumes to deliver the provisioned performance 99% of the time. A gp2 volume can range in size from 1 GiB to 16 TiB.

I/O Credits and Burst Performance

The performance of gp2 volumes is tied to volume size, which determines the baseline performance level of the volume and how quickly it accumulates I/O credits; larger volumes have higher baseline performance levels and accumulate I/O credits faster. I/O credits represent the available bandwidth that your gp2 volume can use to burst large amounts of I/O when more than the baseline performance is needed. The more credits your volume has for I/O, the more time it can burst beyond its baseline performance level and the better it performs when more performance is needed. The following diagram shows the burst-bucket behavior for gp2.

Each volume receives an initial I/O credit balance of 5.4 million I/O credits, which is enough to sustain the maximum burst performance of 3,000 IOPS for 30 minutes. This initial credit balance is designed to provide a fast initial boot cycle for boot volumes and to provide a good bootstrapping experience for other applications. Volumes earn I/O credits at the baseline performance rate of 3 IOPS per GiB of volume size. For example, a 100 GiB gp2 volume has a baseline performance of 300 IOPS.

When your volume requires more than the baseline performance I/O level, it draws on I/O credits in the credit balance to burst to the required performance level, up to a maximum of 3,000 IOPS. Volumes larger than 1,000 GiB have a baseline performance that is equal or greater than the maximum burst performance, and their I/O credit balance never depletes. When your volume uses fewer I/O credits than
it earns in a second, unused I/O credits are added to the I/O credit balance. The maximum I/O credit balance for a volume is equal to the initial credit balance (5.4 million I/O credits).

The following table lists several volume sizes and the associated baseline performance of the volume (which is also the rate at which it accumulates I/O credits), the burst duration at the 3,000 IOPS maximum (when starting with a full credit balance), and the time in seconds that the volume would take to refill an empty credit balance.

<table>
<thead>
<tr>
<th>Volume size (GiB)</th>
<th>Baseline performance (IOPS)</th>
<th>Maximum burst duration @ 3,000 IOPS (seconds)</th>
<th>Seconds to fill empty credit balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1862</td>
<td>54,000</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>2,000</td>
<td>18,000</td>
</tr>
<tr>
<td>214 (Min. size for max. throughput)</td>
<td>642</td>
<td>2,290</td>
<td>8,412</td>
</tr>
<tr>
<td>250</td>
<td>750</td>
<td>2,400</td>
<td>7,200</td>
</tr>
<tr>
<td>500</td>
<td>1,500</td>
<td>3,600</td>
<td>3,600</td>
</tr>
<tr>
<td>750</td>
<td>2,250</td>
<td>7,200</td>
<td>2,400</td>
</tr>
<tr>
<td>1,000</td>
<td>3,000</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
<tr>
<td>3,334 (Min. size for max. IOPS)</td>
<td>10,000</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
<tr>
<td>16,384 (16 TiB, max. volume size)</td>
<td>10,000</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
</tbody>
</table>

* Bursting and I/O credits are only relevant to volumes under 1,000 GiB, where burst performance exceeds baseline performance.

The burst duration of a volume is dependent on the size of the volume, the burst IOPS required, and the credit balance when the burst begins. This is shown in the following equation:

\[
\text{Burst duration} = \frac{\text{Credit balance}}{(\text{Burst IOPS}) - 3(\text{Volume size in GiB})}
\]

**What happens if I empty my I/O credit balance?**

If your gp2 volume uses all of its I/O credit balance, the maximum IOPS performance of the volume remains at the baseline IOPS performance level (the rate at which your volume earns credits) and the volume's maximum throughput is reduced to the baseline IOPS multiplied by the maximum I/O size. Throughput can never exceed 160 MiB/s. When I/O demand drops below the baseline level and unused credits are added to the I/O credit balance, the maximum IOPS performance of the volume again exceeds the baseline. For example, a 100 GiB gp2 volume with an empty credit balance has a baseline performance of 300 IOPS and a throughput limit of 75 MiB/s (300 I/O operations per second * 256 KiB per I/O operation = 75 MiB/s). The larger a volume is, the greater the baseline performance is and the faster it replenishes the credit balance. For more information about how IOPS are measured, see I/O Characteristics.

If you notice that your volume performance is frequently limited to the baseline level (due to an empty I/O credit balance), you should consider using a larger gp2 volume (with a higher baseline performance...
level) or switching to an io1 volume for workloads that require sustained IOPS performance greater than 10,000 IOPS.

For information about using CloudWatch metrics and alarms to monitor your burst bucket balance, see Monitoring the Burst Bucket Balance for gp2, st1, and sc1 Volumes (p. 644).

**Throughput Performance**

The throughput limit for gp2 volumes is 128 MiB/s for volumes less than or equal to 170 GiB and 160 MiB/s for volumes over 170 GiB.

**Provisioned IOPS SSD (io1) Volumes**

Provisioned IOPS SSD (io1) volumes are designed to meet the needs of I/O-intensive workloads, particularly database workloads, that are sensitive to storage performance and consistency. Unlike gp2, which uses a bucket and credit model to calculate performance, an io1 volume allows you to specify a consistent IOPS rate when you create the volume, and Amazon EBS delivers within 10 percent of the provisioned IOPS performance 99.9 percent of the time over a given year.

An io1 volume can range in size from 4 GiB to 16 TiB and you can provision 100 up to 32,000 IOPS per volume. The maximum ratio of provisioned IOPS to requested volume size (in GiB) is 50:1. For example, a 100 GiB volume can be provisioned with up to 5,000 IOPS. Any volume 640 GiB in size or greater allows provisioning up to the 32,000 IOPS maximum (50 × 640 GiB = 32,000).

The throughput limit of io1 volumes is 256 KiB/s for each IOPS provisioned, up to a maximum of 500 MiB/s (at 32,000 IOPS).

Your per-I/O latency experience depends on the IOPS provisioned and your workload pattern. For the best per-I/O latency experience, we recommend that you provision an IOPS-to-GiB ratio greater than 2:1. For example, a 2,000 IOPS volume should be smaller than 1,000 GiB.

**Note**

Some AWS accounts created before 2012 might have access to Availability Zones in us-west-1 or ap-northeast-1 that do not support Provisioned IOPS SSD (io1) volumes. If you are unable to create an io1 volume (or launch an instance with an io1 volume in its block device mapping) in one of these regions, try a different Availability Zone in the region. You can verify that an Availability Zone supports io1 volumes by creating a 4 GiB io1 volume in that zone.

**Throughput Optimized HDD (st1) Volumes**

Throughput Optimized HDD (st1) volumes provide low-cost magnetic storage that defines performance in terms of throughput rather than IOPS. This volume type is a good fit for large, sequential workloads.
such as Amazon EMR, ETL, data warehouses, and log processing. Bootable st1 volumes are not supported.

Throughput Optimized HDD (st1) volumes, though similar to Cold HDD (sc1) volumes, are designed to support frequently accessed data.

Note
This volume type is optimized for workloads involving large, sequential I/O, and we recommend that customers with workloads performing small, random I/O use gp2. For more information, see Inefficiency of Small Read/Writes on HDD (p. 643).

Throughput Credits and Burst Performance

Like gp2, st1 uses a burst-bucket model for performance. Volume size determines the baseline throughput of your volume, which is the rate at which the volume accumulates throughput credits. Volume size also determines the burst throughput of your volume, which is the rate at which you can spend credits when they are available. Larger volumes have higher baseline and burst throughput. The more credits your volume has, the longer it can drive I/O at the burst level.

The following diagram shows the burst-bucket behavior for st1.

Subject to throughput and throughput-credit caps, the available throughput of an st1 volume is expressed by the following formula:

\[
(Volume \, size) \times (Credit \, accumulation \, rate \, per \, TiB) = Throughput
\]

For a 1-TiB st1 volume, burst throughput is limited to 250 MiB/s, the bucket fills with credits at 40 MiB/s, and it can hold up to 1 TiB-worth of credits.

Larger volumes scale these limits linearly, with throughput capped at a maximum of 500 MiB/s. After the bucket is depleted, throughput is limited to the baseline rate of 40 MiB/s per TiB.

On volume sizes ranging from 0.5 to 16 TiB, baseline throughput varies from 20 to a cap of 500 MiB/s, which is reached at 12.5 TiB as follows:

\[
\frac{40 \, \text{MiB/s}}{12.5 \, \text{TiB}} = 500 \, \text{MiB/s}
\]

Burst throughput varies from 125 MiB/s to a cap of 500 MiB/s, which is reached at 2 TiB as follows:

\[
\frac{250 \, \text{MiB/s}}{2 \, \text{TiB}} = 500 \, \text{MiB/s}
\]
The following table states the full range of base and burst throughput values for st1:

<table>
<thead>
<tr>
<th>Volume Size (TiB)</th>
<th>ST1 Base Throughput (MiB/s)</th>
<th>ST1 Burst Throughput (MiB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>20</td>
<td>125</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>240</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>280</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>320</td>
<td>500</td>
</tr>
<tr>
<td>9</td>
<td>360</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>440</td>
<td>500</td>
</tr>
<tr>
<td>12</td>
<td>480</td>
<td>500</td>
</tr>
<tr>
<td>12.5</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>13</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>14</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>15</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>16</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

The following diagram plots the table values:

---

**Note**

When you create a snapshot of a Throughput Optimized HDD (st1) volume, performance may drop as far as the volume's baseline value while the snapshot is in progress.

For information about using CloudWatch metrics and alarms to monitor your burst bucket balance, see Monitoring the Burst Bucket Balance for gp2, st1, and sc1 Volumes (p. 644).
Cold HDD (sc1) Volumes

Cold HDD (sc1) volumes provide low-cost magnetic storage that defines performance in terms of throughput rather than IOPS. With a lower throughput limit than st1, sc1 is a good fit ideal for large, sequential cold-data workloads. If you require infrequent access to your data and are looking to save costs, sc1 provides inexpensive block storage. Bootable sc1 volumes are not supported.

Cold HDD (sc1) volumes, though similar to Throughput Optimized HDD (st1) volumes, are designed to support infrequently accessed data.

**Note**

This volume type is optimized for workloads involving large, sequential I/O, and we recommend that customers with workloads performing small, random I/O use gp2. For more information, see Inefficiency of Small Read/Writes on HDD (p. 643).

Throughput Credits and Burst Performance

Like gp2, sc1 uses a burst-bucket model for performance. Volume size determines the baseline throughput of your volume, which is the rate at which the volume accumulates throughput credits. Volume size also determines the burst throughput of your volume, which is the rate at which you can spend credits when they are available. Larger volumes have higher baseline and burst throughput. The more credits your volume has, the longer it can drive I/O at the burst level.

**SC1 burst bucket**

Subject to throughput and throughput-credit caps, the available throughput of an sc1 volume is expressed by the following formula:

\[(\text{Volume size}) \times (\text{Credit accumulation rate per TiB}) = \text{Throughput}\]

For a 1-TiB sc1 volume, burst throughput is limited to 80 MiB/s, the bucket fills with credits at 12 MiB/s, and it can hold up to 1 TiB-worth of credits.

Larger volumes scale these limits linearly, with throughput capped at a maximum of 250 MiB/s. After the bucket is depleted, throughput is limited to the baseline rate of 12 MiB/s per TiB.

On volume sizes ranging from 0.5 to 16 TiB, baseline throughput varies from 6 MiB/s to a maximum of 192 MiB/s, which is reached at 16 TiB as follows:

\[
\begin{align*}
12 \text{ MiB/s} \\
16 \text{ TiB} \times \frac{12}{1} \text{ MiB/s} = 192 \text{ MiB/s}
\end{align*}
\]

Burst throughput varies from 40 MiB/s to a cap of 250 MiB/s, which is reached at 3.125 TiB as follows:

\[
\begin{align*}
80 \text{ MiB/s} \\
3.125 \text{ TiB} \times \frac{80}{640} \text{ MiB/s} = 250 \text{ MiB/s}
\end{align*}
\]
The following table states the full range of base and burst throughput values for sc1:

<table>
<thead>
<tr>
<th>Volume Size (TiB)</th>
<th>SC1 Base Throughput (MiB/s)</th>
<th>SC1 Burst Throughput (MiB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>240</td>
</tr>
<tr>
<td>3.125</td>
<td>37.5</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>250</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>250</td>
</tr>
<tr>
<td>7</td>
<td>84</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>96</td>
<td>250</td>
</tr>
<tr>
<td>9</td>
<td>108</td>
<td>250</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>11</td>
<td>132</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>144</td>
<td>250</td>
</tr>
<tr>
<td>13</td>
<td>156</td>
<td>250</td>
</tr>
<tr>
<td>14</td>
<td>168</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>180</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>192</td>
<td>250</td>
</tr>
</tbody>
</table>

The following diagram plots the table values:

![Diagram](image)

**Note**

When you create a snapshot of a Cold HDD (sc1) volume, performance may drop as far as the volume's baseline value while the snapshot is in progress.

For information about using CloudWatch metrics and alarms to monitor your burst bucket balance, see [Monitoring the Burst Bucket Balance for gp2, st1, and sc1 Volumes (p. 644)].
Magnetic (standard)

Magnetic volumes are backed by magnetic drives and are suited for workloads where data is accessed infrequently, and scenarios where low-cost storage for small volume sizes is important. These volumes deliver approximately 100 IOPS on average, with burst capability of up to hundreds of IOPS, and they can range in size from 1 GiB to 1 TiB.

Note
Magnetic is a Previous Generation Volume. For new applications, we recommend using one of the newer volume types. For more information, see Previous Generation Volumes.

For information about using CloudWatch metrics and alarms to monitor your burst bucket balance, see Monitoring the Burst Bucket Balance for gp2, st1, and sc1 Volumes (p. 644).

Performance Considerations When Using HDD Volumes

For optimal throughput results using HDD volumes, plan your workloads with the following considerations in mind.

Throughput Optimized HDD vs. Cold HDD

The st1 and sc1 bucket sizes vary according to volume size, and a full bucket contains enough tokens for a full volume scan. However, larger st1 and sc1 volumes take longer for the volume scan to complete due to per-instance and per-volume throughput limits. Volumes attached to smaller instances are limited to the per-instance throughput rather than the st1 or sc1 throughput limits.

Both st1 and sc1 are designed for performance consistency of 90% of burst throughput 99% of the time. Non-compliant periods are approximately uniformly distributed, targeting 99% of expected total throughput each hour.

The following table shows ideal scan times for volumes of various size, assuming full buckets and sufficient instance throughput.

In general, scan times are expressed by this formula:

\[
\text{Volume size} \div \text{Throughput} = \text{Scan time}
\]

For example, taking the performance consistency guarantees and other optimizations into account, an st1 customer with a 5-TiB volume can expect to complete a full volume scan in 2.91 to 3.27 hours.

For example, taking the performance consistency guarantees and other optimizations into account, an st1 customer with a 5-TiB volume can expect to complete a full volume scan in 2.91 to 3.27 hours.

Similarly, an sc1 customer with a 5-TiB volume can expect to complete a full volume scan in 5.83 to 6.54 hours.

<table>
<thead>
<tr>
<th>Volume size</th>
<th>Scan time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 TiB</td>
<td>5 TiB</td>
</tr>
<tr>
<td>500 MiB/s</td>
<td>0.00047684 TiB/s</td>
</tr>
<tr>
<td>10,486 s</td>
<td>2.91 hours (optimal)</td>
</tr>
</tbody>
</table>

2.91 hours + --------------- = 3.27 hours (minimum expected) (0.90)(0.99) ≈ From expected performance of 90% of burst 99% of the time

| 5 TiB       |
| 5 TiB       |
| 0.000238418 TiB/s |
| 20972 s     | 5.83 hours (optimal) |
5.83 hours
---------------- = 6.54 hours (minimum expected)
(0.90)(0.99)

<table>
<thead>
<tr>
<th>Volume Size (TiB)</th>
<th>ST1 Scan Time with Burst (Hours)*</th>
<th>SC1 Scan Time with Burst (Hours)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.17</td>
<td>3.64</td>
</tr>
<tr>
<td>2</td>
<td>1.17</td>
<td>3.64</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>3.64</td>
</tr>
<tr>
<td>4</td>
<td>2.33</td>
<td>4.66</td>
</tr>
<tr>
<td>5</td>
<td>2.91</td>
<td>5.83</td>
</tr>
<tr>
<td>6</td>
<td>3.50</td>
<td>6.99</td>
</tr>
<tr>
<td>7</td>
<td>4.08</td>
<td>8.16</td>
</tr>
<tr>
<td>8</td>
<td>4.66</td>
<td>9.32</td>
</tr>
<tr>
<td>9</td>
<td>5.24</td>
<td>10.49</td>
</tr>
<tr>
<td>10</td>
<td>5.83</td>
<td>11.65</td>
</tr>
<tr>
<td>11</td>
<td>6.41</td>
<td>12.82</td>
</tr>
<tr>
<td>12</td>
<td>6.99</td>
<td>13.98</td>
</tr>
<tr>
<td>13</td>
<td>7.57</td>
<td>15.15</td>
</tr>
<tr>
<td>14</td>
<td>8.16</td>
<td>16.31</td>
</tr>
<tr>
<td>15</td>
<td>8.74</td>
<td>17.48</td>
</tr>
<tr>
<td>16</td>
<td>9.32</td>
<td>18.64</td>
</tr>
</tbody>
</table>

* These scan times assume an average queue depth (rounded to the nearest whole number) of four or more when performing 1 MiB of sequential I/O.

Therefore if you have a throughput-oriented workload that needs to complete scans quickly (up to 500 MiB/s), or requires several full volume scans a day, use st1. If you are optimizing for cost, your data is relatively infrequently accessed, and you don’t need more than 250 MiB/s of scanning performance, then use sc1.

**Inefficiency of Small Read/Writes on HDD**

The performance model for st1 and sc1 volumes is optimized for sequential I/Os, favoring high-throughput workloads, offering acceptable performance on workloads with mixed IOPS and throughput, and discouraging workloads with small, random I/O.

For example, an I/O request of 1 MiB or less counts as a 1 MiB I/O credit. However, if the I/Os are sequential, they are merged into 1 MiB I/O blocks and count only as a 1 MiB I/O credit.

**Limitations on per-Instance Throughput**

Throughput for st1 and sc1 volumes is always determined by the smaller of the following:
• Throughput limits of the volume
• Throughput limits of the instance

As for all Amazon EBS volumes, we recommend that you select an appropriate EBS-optimized EC2 instance in order to avoid network bottlenecks. For more information, see Amazon EBS-Optimized Instances.

Monitoring the Burst Bucket Balance for gp2, st1, and sc1 Volumes

You can monitor the burst-bucket level for gp2, st1, and sc1 volumes using the EBS BurstBalance metric available in Amazon CloudWatch. This metric shows the percentage of I/O credits (for gp2) or throughput credits (for st1 and sc1) remaining in the burst bucket. For more information about the BurstBalance metric and other metrics related to I/O, see I/O Characteristics and Monitoring. CloudWatch also allows you to set an alarm that notifies you when the BurstBalance value falls to a certain level. For more information, see Creating Amazon CloudWatch Alarms.

Creating an Amazon EBS Volume

You can create an Amazon EBS volume that you can then attach to any EC2 instance within the same Availability Zone. You can choose to create an encrypted EBS volume, but encrypted volumes can only be attached to selected instance types. For more information, see Supported Instance Types (p. 697). You can use IAM policies to enforce encryption on new volumes. For more information, see the example IAM policies in 4. Working with Volumes (p. 506) and 5: Launching Instances (RunInstances) (p. 508).

You can also create and attach EBS volumes when you launch instances by specifying a block device mapping. For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265) and Block Device Mapping (p. 733). You can restore volumes from previously created snapshots. For more information, see Restoring an Amazon EBS Volume from a Snapshot (p. 646).

You can apply tags to EBS volumes at the time of creation. With tagging, you can simplify tracking of your Amazon EC2 resource inventory. Tagging on creation can be combined with an IAM policy to enforce tagging on new volumes. For more information, see Tagging Your Resources.

If you are creating a volume for a high-performance storage scenario, you should make sure to use a Provisioned IOPS SSD (io1) volume and attach it to an instance with enough bandwidth to support your application, such as an EBS-optimized instance or an instance with 10-Gigabit network connectivity. The same advice holds for Throughput Optimized HDD (st1) and Cold HDD (sc1) volumes. For more information, see Amazon EC2 Instance Configuration (p. 703).

New EBS volumes receive their maximum performance the moment that they are available and do not require initialization (formerly known as pre-warming). However, storage blocks on volumes that were restored from snapshots must be initialized (pulled down from Amazon S3 and written to the volume) before you can access the block. This preliminary action takes time and can cause a significant increase in the latency of an I/O operation the first time each block is accessed. For most applications, amortizing this cost over the lifetime of the volume is acceptable. Performance is restored after the data is accessed once. For more information, see Initializing Amazon EBS Volumes (p. 709).

To create an EBS volume using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region in which you would like to create your volume. This choice is important because some Amazon EC2 resources can be shared between regions, while others can’t. For more information, see Resource Locations (p. 751).
3. In the navigation pane, choose ELASTIC BLOCK STORE, Volumes.
4. Choose Create Volume.
5. **For Volume Type**, choose a volume type. For more information, see *Amazon EBS Volume Types* (p. 632).

   **Note**
   Some AWS accounts created before 2012 might have access to Availability Zones in us-west-1 or ap-northeast-1 that do not support Provisioned IOPS SSD (io1) volumes. If you are unable to create an io1 volume (or launch an instance with an io1 volume in its block device mapping) in one of these regions, try a different Availability Zone in the region. You can verify that an Availability Zone supports io1 volumes by creating a 4 GiB io1 volume in that zone.

6. **For Size (GiB)**, type the size of the volume.

   **Note**
   The following Amazon EBS volume considerations apply to Windows boot volumes:
   
   - Windows boot volumes must use an MBR partition table, which limits the usable space to 2 TiB, regardless of volume size.
   - Windows boot volumes of 2 TiB (2048 GiB) that have been converted to use a dynamic MBR partition table display an error when examined with Disk Manager.

   The following Amazon EBS volume considerations apply to Windows data (non-boot) volumes:
   
   - Windows volumes 2 TiB (2048 GiB) or greater must use a GPT partition table to access the entire volume.
   - Amazon EBS volumes over 2048 GiB that are attached to Windows instances at launch are automatically formatted with a GPT partition table.
   - Amazon EBS volumes attached to Windows instances after launch must be manually initialized with a GPT partition table. For more information, see *Making an Amazon EBS Volume Available for Use*.

7. With a Provisioned IOPS SSD volume, for **IOPS**, type the maximum number of input/output operations per second (IOPS) that the volume should support.

8. **For Availability Zone**, choose the Availability Zone in which to create the volume. EBS volumes can only be attached to EC2 instances within the same Availability Zone.

9. (Optional) To create an encrypted volume, select the **Encrypted** box and choose the master key you want to use when encrypting the volume. You can choose the default master key for your account, or you can choose any customer master key (CMK) that you have previously created using the AWS Key Management Service. Available keys are visible in the **Master Key** menu, or you can paste the full ARN of any key that you have access to. For more information, see the *AWS Key Management Service Developer Guide*.

   **Note**
   Encrypted volumes can only be attached to selected instance types. For more information, see *Supported Instance Types* (p. 697).

10. (Optional) Choose **Create additional tags** to add tags to the volume. For each tag, provide a tag key and a tag value.

11. Choose **Create Volume**.

### To create an EBS volume using the command line

You can use one of the following commands. For more information about these command line interfaces, see *Accessing Amazon EC2* (p. 3).

- **create-volume** (AWS CLI)
- **New-EC2Volume** (AWS Tools for Windows PowerShell)

---

645
Restoring an Amazon EBS Volume from a Snapshot

You can restore an Amazon EBS volume with data from a snapshot stored in Amazon S3. You need to know the ID of the snapshot you want to restore your volume from and you need to have access permissions for the snapshot. For more information on snapshots, see Amazon EBS Snapshots (p. 680).

New volumes created from existing EBS snapshots load lazily in the background. This means that after a volume is created from a snapshot, there is no need to wait for all of the data to transfer from Amazon S3 to your EBS volume before your attached instance can start accessing the volume and all its data. If your instance accesses data that hasn't yet been loaded, the volume immediately downloads the requested data from Amazon S3, and continues loading the rest of the data in the background.

EBS volumes that are restored from encrypted snapshots are automatically encrypted. Encrypted volumes can only be attached to selected instance types. For more information, see Supported Instance Types (p. 697).

Because of security constraints, you cannot directly restore an EBS volume from a shared encrypted snapshot that you do not own. You must first create a copy of the snapshot, which you will own. You can then restore a volume from that copy. For more information, see Amazon EBS Encryption.

New EBS volumes receive their maximum performance the moment that they are available and do not require initialization (formerly known as pre-warming). However, storage blocks on volumes that were restored from snapshots must be initialized (pulled down from Amazon S3 and written to the volume) before you can access the block. This preliminary action takes time and can cause a significant increase in the latency of an I/O operation the first time each block is accessed. Performance is restored after the data is accessed once.

For most applications, amortizing the initialization cost over the lifetime of the volume is acceptable. To ensure that your restored volume always functions at peak capacity in production, you can force the immediate initialization of the entire volume using `dd` or `fio`. For more information, see Initializing Amazon EBS Volumes (p. 709).

To restore an EBS volume from a snapshot using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that your snapshot is located in.
3. In the navigation pane, choose ELASTIC BLOCK STORE, Volumes.
4. Choose Create Volume.
5. For Volume Type, choose a volume type. For more information, see Amazon EBS Volume Types (p. 632).
6. For Snapshot, start typing the ID or description of the snapshot from which you are restoring the volume, and choose it from the list of suggested options.

Volumes that are restored from encrypted snapshots can only be attached to instances that support Amazon EBS encryption. For more information, see Supported Instance Types (p. 697).
7. For **Size (GiB)**, type the size of the volume, or verify that the default size of the snapshot is adequate.

**Note**
If you specify both a volume size and a snapshot, the size must be equal to or greater than the snapshot size. When you select a volume type and a snapshot, the minimum and maximum sizes for the volume are shown next to **Size**. Any AWS Marketplace product codes from the snapshot are propagated to the volume.

**Note**
The following Amazon EBS volume considerations apply to Windows boot volumes:

- Windows boot volumes must use an MBR partition table, which limits the usable space to 2 TiB, regardless of volume size.
- Windows boot volumes of 2 TiB (2048 GiB) that have been converted to use a dynamic MBR partition table display an error when examined with Disk Manager.

The following Amazon EBS volume considerations apply to Windows data (non-boot) volumes:

- Windows volumes 2 TiB (2048 GiB) or greater must use a GPT partition table to access the entire volume.
- Amazon EBS volumes over 2048 GiB that are attached to Windows instances at launch are automatically formatted with a GPT partition table.
- Amazon EBS volumes attached to Windows instances after launch must be manually initialized with a GPT partition table. For more information, see Making an Amazon EBS Volume Available for Use.

8. With a Provisioned IOPS SSD volume, for **IOPS**, type the maximum number of input/output operations per second (IOPS) that the volume should support.

9. For **Availability Zone**, choose the Availability Zone in which to create the volume. EBS volumes can only be attached to EC2 instances in the same Availability Zone.

10. (Optional) Choose **Create additional tags** to add tags to the volume. For each tag, provide a tag key and a tag value.

11. Choose **Create Volume**.

12. After you've restored a volume from a snapshot, you can attach it to an instance to begin using it. For more information, see Attaching an Amazon EBS Volume to an Instance (p. 647).

13. If you restored a snapshot to a larger volume than the default for that snapshot, you must extend the file system on the volume to take advantage of the extra space. For more information, see Modifying the Size, IOPS, or Type of an EBS Volume on Windows (p. 666).

**To restore an EBS volume using the command line**

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `create-volume` (AWS CLI)
- `New-EC2Volume` (AWS Tools for Windows PowerShell)

**Attaching an Amazon EBS Volume to an Instance**

You can attach an EBS volume to one of your instances that is in the same Availability Zone as the volume.
Prerequisites

- Determine the device names to use. For more information, see Device Naming on Windows Instances (p. 732).
- Determine how many volumes you can attach to your instance. For more information, see Instance Volume Limits (p. 731).
- If a volume is encrypted, it can only be attached to an instance that supports Amazon EBS encryption. For more information, see Supported Instance Types (p. 697).
- If a volume has an AWS Marketplace product code:
  - The volume can only be attached to a stopped instance.
  - You must be subscribed to the AWS Marketplace code that is on the volume.
  - The configuration (instance type, operating system) of the instance must support that specific AWS Marketplace code. For example, you cannot take a volume from a Windows instance and attach it to a Linux instance.
  - AWS Marketplace product codes are copied from the volume to the instance.

To attach an EBS volume to an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. Select a volume and choose Actions, Attach Volume.
4. In the Attach Volume dialog box, start typing the name or ID of the instance to attach the volume to for Instance, and select it from the list of options (only instances that are in the same Availability Zone as the volume are displayed).
5. You can keep the suggested device name, or enter a different supported device name.
   
   Important
   The block device driver for the instance assigns the actual volume name when mounting the volume, and the name assigned can be different from the name that Amazon EC2 recommends.
6. Choose Attach.
7. Connect to your instance and make the volume available. For more information, see Making an Amazon EBS Volume Available for Use (p. 648).

To attach an EBS volume to an instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- attach-volume (AWS CLI)
- Add-EC2Volume (AWS Tools for Windows PowerShell)

Making an Amazon EBS Volume Available for Use

After you attach an Amazon EBS volume to your instance, it is exposed as a block device. You can format the volume with any file system and then mount it. After you make the EBS volume available for use, you can access it in the same ways that you access any other volume. Any data written to this file system is written to the EBS volume and is transparent to applications using the device.

You can take snapshots of your EBS volume for backup purposes or to use as a baseline when you create another volume. For more information, see Amazon EBS Snapshots (p. 680).
Making the Volume Available on Windows

Use the following procedure to make the volume available. You can get directions for volumes on a Linux instance from Making the Volume Available on Linux in the Amazon EC2 User Guide for Linux Instances.

To make an EBS volume available for use on Windows

1. Log in to your Windows instance using Remote Desktop. For more information, see, Connecting to Your Windows Instance (p. 283).
2. Start the Disk Management utility. On the taskbar, open the context (right-click) menu for the Windows logo and choose Disk Management.
   
   Note
   

3. Bring the volume online. In the lower pane, open the context (right-click) menu for the left panel for the disk for the EBS volume. Choose Online.

4. (Conditional) You must initialize the disk before you can use it.

   Warning
   
   If you're mounting a volume that already has data on it (for example, a public data set, or a volume that you created from a snapshot), do not reformat the volume or you will delete the existing data.

   If the disk is not initialized, initialize it as follows. Open the context (right-click) menu for the left panel for the disk and choose Initialize Disk. In the Initialize Disk dialog box, select a partition style and choose OK.
5. Open the context (right-click) menu for the right panel for the disk and choose **New Simple Volume**. Complete the wizard.
Viewing Volume Information

You can view descriptive information for your Amazon EBS volumes in a selected region at a time in the AWS Management Console. You can also view detailed information about a single volume, including the size, volume type, whether the volume is encrypted, which master key was used to encrypt the volume, and the specific instance to which the volume is attached.

View information about an EBS volume using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. To view more information about a volume, select it. In the details pane, you can inspect the information provided about the volume.

To view what EBS (or other) volumes are attached to an Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. To view more information about an instance, select it.
4. In the details pane, you can inspect the information provided about root and block devices.

To view information about an EBS volume using the command line

You can use one of the following commands to view volume attributes. For more information, see Accessing Amazon EC2 (p. 3).

- describe-volumes (AWS CLI)
- Get-EC2Volume (AWS Tools for Windows PowerShell)

Monitoring the Status of Your Volumes

Amazon Web Services (AWS) automatically provides data, such as Amazon CloudWatch metrics and volume status checks, that you can use to monitor your Amazon Elastic Block Store (Amazon EBS) volumes.

Contents

- Monitoring Volumes with CloudWatch (p. 651)
- Monitoring Volumes with Status Checks (p. 655)
- Monitoring Volume Events (p. 657)
- Working with an Impaired Volume (p. 659)
- Working with the AutoEnableIO Volume Attribute (p. 662)

Monitoring Volumes with CloudWatch

CloudWatch metrics are statistical data that you can use to view, analyze, and set alarms on the operational behavior of your volumes.

The following table describes the types of monitoring data available for your Amazon EBS volumes.
### EBS Volumes

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Data is available automatically in 5-minute periods at no charge. This includes data for the root device volumes for EBS-backed instances.</td>
</tr>
<tr>
<td>Detailed</td>
<td>Provisioned IOPS SSD (io1) volumes automatically send one-minute metrics to CloudWatch.</td>
</tr>
</tbody>
</table>

When you get data from CloudWatch, you can include a `Period` request parameter to specify the granularity of the returned data. This is different than the period that we use when we collect the data (5-minute periods). We recommend that you specify a period in your request that is equal to or larger than the collection period to ensure that the returned data is valid.

You can get the data using either the CloudWatch API or the Amazon EC2 console. The console takes the raw data from the CloudWatch API and displays a series of graphs based on the data. Depending on your needs, you might prefer to use either the data from the API or the graphs in the console.

### Amazon EBS Metrics

Amazon Elastic Block Store (Amazon EBS) sends data points to CloudWatch for several metrics. Amazon EBS General Purpose SSD (gp2), Throughput Optimized HDD (st1), Cold HDD (sc1), and Magnetic (standard) volumes automatically send five-minute metrics to CloudWatch. Provisioned IOPS SSD (io1) volumes automatically send one-minute metrics to CloudWatch. Data is only reported to CloudWatch when the volume is attached to an instance. For more information about how to monitor Amazon EBS, see Monitoring the Status of Your Volumes in the Amazon EC2 User Guide for Linux Instances.

The AWS/EBS namespace includes the following metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VolumeReadBytes</td>
<td>Provides information on the I/O operations in a specified period of time. The <code>Sum</code> statistic reports the total number of bytes transferred during the period. The <code>Average</code> statistic reports the average size of each I/O operation during the period, except on volumes attached to C5 and M5 instances, where the average represents the average over the specified period. The <code>SampleCount</code> statistic reports the total number of I/O operations during the period, except on volumes attached to C5 and M5 instances, where the sample count represents the number of data points used in the statistical calculation. Data is reported to CloudWatch only when the volume is active. The <code>Minimum</code> and <code>Maximum</code> statistics on this metric are supported only by volumes attached to a C5 or M5 instance. Units: Bytes</td>
</tr>
<tr>
<td>VolumeWriteBytes</td>
<td></td>
</tr>
<tr>
<td>VolumeReadOps</td>
<td>The total number of I/O operations in a specified period of time. To calculate the average I/O operations per second (IOPS) for the period, divide the total operations in the period by the number of seconds in that period. The <code>Minimum</code> and <code>Maximum</code> statistics on this metric are supported only by volumes attached to a C5 or M5 instance. Units: Count</td>
</tr>
<tr>
<td>VolumeWriteOps</td>
<td></td>
</tr>
</tbody>
</table>
### Metric Description

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VolumeTotalReadTime</td>
<td>The total number of seconds spent by all operations that completed in a specified period of time. If multiple requests are submitted at the same time, this total could be greater than the length of the period. For example, for a period of 5 minutes (300 seconds): if 700 operations completed during that period, and each operation took 1 second, the value would be 700 seconds. The <strong>Average</strong> statistic on this metric is not relevant for volumes attached to C5 and M5 instances. The <strong>Minimum</strong> and <strong>Maximum</strong> statistics on this metric are supported only by volumes attached to a C5 or M5 instance. <strong>Units:</strong> Seconds</td>
</tr>
<tr>
<td>VolumeTotalWriteTime</td>
<td></td>
</tr>
<tr>
<td>VolumeIdleTime</td>
<td>The total number of seconds in a specified period of time when no read or write operations were submitted. The <strong>Average</strong> statistic on this metric is not relevant for volumes attached to C5 and M5 instances. The <strong>Minimum</strong> and <strong>Maximum</strong> statistics on this metric are supported only by volumes attached to a C5 or M5 instance. <strong>Units:</strong> Seconds</td>
</tr>
<tr>
<td>VolumeQueueLength</td>
<td>The number of read and write operation requests waiting to be completed in a specified period of time. The <strong>Sum</strong> statistic on this metric is not relevant for volumes attached to C5 and M5 instances. The <strong>Minimum</strong> and <strong>Maximum</strong> statistics on this metric are supported only by volumes attached to a C5 or M5 instance. <strong>Units:</strong> Count</td>
</tr>
<tr>
<td>VolumeThroughputPercentage</td>
<td>Used with Provisioned IOPS SSD volumes only. The percentage of I/O operations per second (IOPS) delivered of the total IOPS provisioned for an Amazon EBS volume. Provisioned IOPS SSD volumes deliver within 10 percent of the provisioned IOPS performance 99.9 percent of the time over a given year. During a write, if there are no other pending I/O requests in a minute, the metric value will be 100 percent. Also, a volume's I/O performance may become degraded temporarily due to an action you have taken (for example, creating a snapshot of a volume during peak usage, running the volume on a non-EBS-optimized instance, or accessing data on the volume for the first time). <strong>Units:</strong> Percent</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Metric | Description
--- | ---
VolumeConsumedReadWriteOps | Used with Provisioned IOPS SSD volumes only. The total amount of read and write operations (normalized to 256K capacity units) consumed in a specified period of time.

I/O operations that are smaller than 256K each count as 1 consumed IOPS. I/O operations that are larger than 256K are counted in 256K capacity units. For example, a 1024K I/O would count as 4 consumed IOPS.

Units: Count

BurstBalance | Used with General Purpose SSD (gp2), Throughput Optimized HDD (st1), and Cold HDD (sc1) volumes only. Provides information about the percentage of I/O credits (for gp2) or throughput credits (for st1 and sc1) remaining in the burst bucket. Data is reported to CloudWatch only when the volume is active. If the volume is not attached, no data is reported.

The `Sum` statistic on this metric is not relevant for volumes attached to C5 and M5 instances.

Units: Percent

### Dimensions for Amazon EBS Metrics

The only dimension that Amazon EBS sends to CloudWatch is the volume ID. This means that all available statistics are filtered by volume ID.

### Graphs in the Amazon EC2 Console

After you create a volume, you can view the volume's monitoring graphs in the Amazon EC2 console. Select a volume on the `Volumes` page in the console and choose `Monitoring`. The following table lists the graphs that are displayed. The column on the right describes how the raw data metrics from the CloudWatch API are used to produce each graph. The period for all the graphs is 5 minutes.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Description using raw metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Bandwidth (KiB/s)</td>
<td><code>Sum(VolumeReadBytes) / Period / 1024</code></td>
</tr>
<tr>
<td>Write Bandwidth (KiB/s)</td>
<td><code>Sum(VolumeWriteBytes) / Period / 1024</code></td>
</tr>
<tr>
<td>Read Throughput (IOPS)</td>
<td><code>Sum(VolumeReadOps) / Period</code></td>
</tr>
<tr>
<td>Write Throughput (IOPS)</td>
<td><code>Sum(VolumeWriteOps) / Period</code></td>
</tr>
<tr>
<td>Avg Queue Length (Operations)</td>
<td><code>Avg(VolumeQueueLength)</code></td>
</tr>
<tr>
<td>% Time Spent Idle</td>
<td><code>Sum(VolumeIdleTime) / Period × 100</code></td>
</tr>
<tr>
<td>Avg Read Size (KiB/Operation)</td>
<td><code>Avg(VolumeReadBytes) / 1024</code></td>
</tr>
</tbody>
</table>

**Note**

For C5 and M5 instances, use the following formula to derive Average Read Size:

\[
\frac{\text{Sum}(\text{VolumeReadBytes})}{\text{Sum}(\text{VolumeReadOps})} / 1024
\]
Graph	Description using raw metrics
Avg Write Size (KiB/Operation) | $\text{Avg}(\text{VolumeWriteBytes}) / 1024$

**Note**
For C5 and M5 instances, use the following formula to derive Average Write Size:

$\frac{\sum(\text{VolumeWriteBytes})}{\sum(\text{VolumeWriteOps})} / 1024$

The VolumeWriteBytes and VolumeWriteOps metrics are available in the EBS CloudWatch console.

Avg Read Latency (ms/Operation) | $\text{Avg}(\text{VolumeTotalReadTime}) \times 1000$

**Note**
For C5 and M5 instances, use the following formula to derive Average Read Latency:

$\frac{\sum(\text{VolumeTotalReadTime})}{\sum(\text{VolumeReadOps})} \times 1000$

The VolumeTotalReadTime and VolumeReadOps metrics are available in the EBS CloudWatch console.

Avg Write Latency (ms/Operation) | $\text{Avg}(\text{VolumeTotalWriteTime}) \times 1000$

**Note**
For C5 and M5 instances, use the following formula to derive Average Write Latency:

$\frac{\sum(\text{VolumeTotalWriteTime})}{\sum(\text{VolumeWriteOps})} \times 1000$

The VolumeTotalWriteTime and VolumeWriteOps metrics are available in the EBS CloudWatch console.

For the average latency graphs and average size graphs, the average is calculated over the total number of operations (read or write, whichever is applicable to the graph) that completed during the period.

**Monitoring Volumes with Status Checks**

Volume status checks enable you to better understand, track, and manage potential inconsistencies in the data on an Amazon EBS volume. They are designed to provide you with the information that you need to determine whether your Amazon EBS volumes are impaired, and to help you control how a potentially inconsistent volume is handled.

Volume status checks are automated tests that run every 5 minutes and return a pass or fail status. If all checks pass, the status of the volume is *ok*. If a check fails, the status of the volume is *impaired*. If the status is *insufficient-data*, the checks may still be in progress on the volume. You can view the results of volume status checks to identify any impaired volumes and take any necessary actions.

When Amazon EBS determines that a volume's data is potentially inconsistent, the default is that it disables I/O to the volume from any attached EC2 instances, which helps to prevent data corruption. After I/O is disabled, the next volume status check fails, and the volume status is *impaired*. In addition, you'll see an event that lets you know that I/O is disabled, and that you can resolve the impaired status of the volume by enabling I/O to the volume. We wait until you enable I/O to give you the opportunity to decide whether to continue to let your instances use the volume, or to run a consistency check using a command, such as *chkdsk*, before doing so.
Note

Volume status is based on the volume status checks, and does not reflect the volume state. Therefore, volume status does not indicate volumes in the error state (for example, when a volume is incapable of accepting I/O.)

If the consistency of a particular volume is not a concern for you, and you'd prefer that the volume be made available immediately if it's impaired, you can override the default behavior by configuring the volume to automatically enable I/O. If you enable the AutoEnableIO volume attribute, the volume status check continues to pass. In addition, you'll see an event that lets you know that the volume was determined to be potentially inconsistent, but that its I/O was automatically enabled. This enables you to check the volume's consistency or replace it at a later time.

The I/O performance status check compares actual volume performance to the expected performance of a volume and alerts you if the volume is performing below expectations. This status check is only available for io1 volumes that are attached to an instance and is not valid for General Purpose SSD (gp2), Throughput Optimized HDD (st1), Cold HDD (sc1), or Magnetic (standard) volumes. The I/O performance status check is performed once every minute and CloudWatch collects this data every 5 minutes, so it may take up to 5 minutes from the moment you attach a io1 volume to an instance for this check to report the I/O performance status.

Important

While initializing io1 volumes that were restored from snapshots, the performance of the volume may drop below 50 percent of its expected level, which causes the volume to display a warning state in the I/O Performance status check. This is expected, and you can ignore the warning state on io1 volumes while you are initializing them. For more information, see Initializing Amazon EBS Volumes (p. 709).

The following table lists statuses for Amazon EBS volumes.

<table>
<thead>
<tr>
<th>Volume status</th>
<th>I/O enabled status</th>
<th>I/O performance status (only available for Provisioned IOPS volumes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ok</td>
<td>Enabled (I/O Enabled or I/O Auto-Enabled)</td>
<td>Normal (Volume performance is as expected)</td>
</tr>
<tr>
<td>warning</td>
<td>Enabled (I/O Enabled or I/O Auto-Enabled)</td>
<td>Degraded (Volume performance is below expectations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe Degraded (Volume performance is well below expectations)</td>
</tr>
<tr>
<td>impaired</td>
<td>Enabled (I/O Enabled or I/O Auto-Enabled)</td>
<td>Stalled (Volume performance is severely impacted)</td>
</tr>
<tr>
<td></td>
<td>Disabled (Volume is offline and pending recovery, or is waiting for the user to enable I/O)</td>
<td>Not Available (Unable to determine I/O performance because I/O is disabled)</td>
</tr>
<tr>
<td>insufficient-data</td>
<td>Enabled (I/O Enabled or I/O Auto-Enabled)</td>
<td>Insufficient Data</td>
</tr>
<tr>
<td></td>
<td>Insufficient Data</td>
<td></td>
</tr>
</tbody>
</table>

To view and work with status checks, you can use the Amazon EC2 console, the API, or the command line interface.
To view status checks in the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. On the EBS Volumes page, use the Volume Status column lists the operational status of each volume.
4. To view an individual volume's status, select the volume, and choose Status Checks.

5. If you have a volume with a failed status check (status is impaired), see Working with an Impaired Volume (p. 659).

Alternatively, you can use the Events pane to view all events for your instances and volumes in a single pane. For more information, see Monitoring Volume Events (p. 657).

To view volume status information with the command line

You can use one of the following commands to view the status of your Amazon EBS volumes. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- describe-volume-status (AWS CLI)
- Get-EC2VolumeStatus (AWS Tools for Windows PowerShell)

Monitoring Volume Events

When Amazon EBS determines that a volume's data is potentially inconsistent, it disables I/O to the volume from any attached EC2 instances by default. This causes the volume status check to fail, and creates a volume status event that indicates the cause of the failure.

To automatically enable I/O on a volume with potential data inconsistencies, change the setting of the AutoEnableIO volume attribute. For more information about changing this attribute, see Working with an Impaired Volume (p. 659).
Each event includes a start time that indicates the time at which the event occurred, and a duration that indicates how long I/O for the volume was disabled. The end time is added to the event when I/O for the volume is enabled.

Volume status events include one of the following descriptions:

Awaiting Action: Enable IO

Volume data is potentially inconsistent. I/O is disabled for the volume until you explicitly enable it. The event description changes to **IO Enabled** after you explicitly enable I/O.

**IO Enabled**

I/O operations were explicitly enabled for this volume.

**IO Auto-Enabled**

I/O operations were automatically enabled on this volume after an event occurred. We recommend that you check for data inconsistencies before continuing to use the data.

**Normal**

For io1 volumes only. Volume performance is as expected.

**Degraded**

For io1 volumes only. Volume performance is below expectations.

** Severely Degraded**

For io1 volumes only. Volume performance is well below expectations.

**Stalled**

For io1 volumes only. Volume performance is severely impacted.

You can view events for your volumes using the Amazon EC2 console, the API, or the command line interface.

**To view events for your volumes in the console**

1. Open the Amazon EC2 console at [https://console.aws.amazon.com/ec2/](https://console.aws.amazon.com/ec2/).
2. In the navigation pane, choose **Events**.
3. All instances and volumes that have events are listed. You can filter by volume to view only volume status. You can also filter on specific status types.
4. Select a volume to view its specific event.
If you have a volume where I/O is disabled, see Working with an Impaired Volume (p. 659). If you have a volume where I/O performance is below normal, this might be a temporary condition due to an action you have taken (e.g., creating a snapshot of a volume during peak usage, running the volume on an instance that cannot support the I/O bandwidth required, accessing data on the volume for the first time, etc.).

To view events for your volumes with the command line

You can use one of the following commands to view event information for your Amazon EBS volumes. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `describe-volume-status` (AWS CLI)
- `Get-EC2VolumeStatus` (AWS Tools for Windows PowerShell)

Working with an Impaired Volume

This section discusses your options if a volume is impaired because the volume's data is potentially inconsistent.

Options

- Option 1: Perform a Consistency Check on the Volume Attached to its Instance (p. 660)
• Option 2: Perform a Consistency Check on the Volume Using Another Instance (p. 661)
• Option 3: Delete the Volume If You No Longer Need It (p. 662)

Option 1: Perform a Consistency Check on the Volume Attached to its Instance

The simplest option is to enable I/O and then perform a data consistency check on the volume while the volume is still attached to its Amazon EC2 instance.

To perform a consistency check on an attached volume

1. Stop any applications from using the volume.
2. Enable I/O on the volume.

   a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
   b. In the navigation pane, choose Volumes.
   c. Select the volume on which to enable I/O operations.
   d. In the details pane, choose Enable Volume IO.
   e. In Enable Volume IO, choose Yes, Enable.
3. Check the data on the volume.

   a. Run the chkdsk command.
   b. (Optional) Review any available application or system logs for relevant error messages.
   c. If the volume has been impaired for more than 20 minutes you can contact support. Choose Troubleshoot, and then on the Troubleshoot Status Checks dialog box, choose Contact Support to submit a support case.

To enable I/O for a volume with the command line

You can use one of the following commands to view event information for your Amazon EBS volumes. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

• enable-volume-io (AWS CLI)
• Enable-EC2VolumeIO (AWS Tools for Windows PowerShell)
Option 2: Perform a Consistency Check on the Volume Using Another Instance

Use the following procedure to check the volume outside your production environment.

**Important**
This procedure may cause the loss of write I/Os that were suspended when volume I/O was disabled.

To perform a consistency check on a volume in isolation

1. Stop any applications from using the volume.
2. Detach the volume from the instance.
   a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
   b. In the navigation pane, choose Volumes.
   c. Select the volume to detach.
   d. Choose Actions, Force Detach Volume. You’ll be prompted for confirmation.
3. Enable I/O on the volume.
   a. In the navigation pane, choose Volumes.
   b. Select the volume that you detached in the previous step.
   c. In the details pane, choose Enable Volume IO.
   d. In the Enable Volume IO dialog box, choose Yes, Enable.
4. Attach the volume to another instance. For information, see Launch Your Instance (p. 264) and Attaching an Amazon EBS Volume to an Instance (p. 647).
5. Check the data on the volume.
   a. Run the chkdsk command.
   b. (Optional) Review any available application or system logs for relevant error messages.
   c. If the volume has been impaired for more than 20 minutes, you can contact support. Choose Troubleshoot, and then in the troubleshooting dialog box, choose Contact Support to submit a support case.
To enable I/O for a volume with the command line

You can use one of the following commands to view event information for your Amazon EBS volumes. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `enable-volume-io` (AWS CLI)
- `Enable-EC2VolumeIO` (AWS Tools for Windows PowerShell)

Option 3: Delete the Volume If You No Longer Need It

If you want to remove the volume from your environment, simply delete it. For information about deleting a volume, see Deleting an Amazon EBS Volume (p. 666).

If you have a recent snapshot that backs up the data on the volume, you can create a new volume from the snapshot. For information about creating a volume from a snapshot, see Restoring an Amazon EBS Volume from a Snapshot (p. 646).

Working with the AutoEnableIO Volume Attribute

When Amazon EBS determines that a volume's data is potentially inconsistent, it disables I/O to the volume from any attached EC2 instances by default. This causes the volume status check to fail, and creates a volume status event that indicates the cause of the failure. If the consistency of a particular volume is not a concern, and you prefer that the volume be made available immediately if it's impaired, you can override the default behavior by configuring the volume to automatically enable I/O. If you enable the `AutoEnableIO` volume attribute, I/O between the volume and the instance is automatically re-enabled and the volume's status check will pass. In addition, you'll see an event that lets you know that the volume was in a potentially inconsistent state, but that its I/O was automatically enabled. When this event occurs, you should check the volume's consistency and replace it if necessary. For more information, see Monitoring Volume Events (p. 657).

This section explains how to view and modify the `AutoEnableIO` attribute of a volume using the Amazon EC2 console, the command line interface, or the API.

To view the `AutoEnableIO` attribute of a volume in the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. Select the volume.
4. In the lower pane, choose Status Checks.
5. In the Status Checks tab, Auto-Enable IO displays the current setting for your volume, either Enabled or Disabled.
To modify the AutoEnableIO attribute of a volume in the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. Select the volume.
4. At the top of the Volumes page, choose Actions.
5. Choose Change Auto-Enable IO Setting.
6. In the Change Auto-Enable IO Setting dialog box, select the Auto-Enable Volume IO option to automatically enable I/O for an impaired volume. To disable the feature, clear the option.
7. Choose **Save**.

Alternatively, instead of completing steps 4-6 in the previous procedure, choose **Status Checks, Edit**.

**To view or modify the AutoEnableIO attribute of a volume with the command line**

You can use one of the following commands to view the `AutoEnableIO` attribute of your Amazon EBS volumes. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- `describe-volume-attribute` (AWS CLI)
- `Get-EC2VolumeAttribute` (AWS Tools for Windows PowerShell)

To modify the `AutoEnableIO` attribute of a volume, you can use one of the commands below.

- `modify-volume-attribute` (AWS CLI)
- `Edit-EC2VolumeAttribute` (AWS Tools for Windows PowerShell)

**Detaching an Amazon EBS Volume from an Instance**

You can detach an Amazon EBS volume from an instance explicitly or by terminating the instance. However, if the instance is running, you must first unmount the volume from the instance.

If an EBS volume is the root device of an instance, you must stop the instance before you can detach the volume.

When a volume with an AWS Marketplace product code is detached from an instance, the product code is no longer associated with the instance.

**Important**

After you detach a volume, you are still charged for volume storage as long as the storage amount exceeds the limit of the AWS Free Tier. You must delete a volume to avoid incurring further charges. For more information, see [Deleting an Amazon EBS Volume](p. 666).

This example unmounts the volume and then explicitly detaches it from the instance. This is useful when you want to terminate an instance or attach a volume to a different instance. To verify that the volume is no longer attached to the instance, see [Viewing Volume Information](p. 651).

You can reattach a volume that you detached (without unmounting it), but it might not get the same mount point and the data on the volume might be out of sync if there were writes to the volume in progress when it was detached.

**To detach an EBS volume using the console**

1. Unmount the volume. Choose **Disk Management**, right-click the volume, and then choose **Change Drive Letter and Path**. Select the mount point and choose **Remove**.
2. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
3. In the navigation pane, choose Volumes.
4. Select a volume and choose Actions, Detach Volume.
5. In the confirmation dialog box, choose Yes, Detach.

To detach an EBS volume from an instance using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- detach-volume (AWS CLI)
- Dismount-EC2Volume (AWS Tools for Windows PowerShell)

Troubleshooting

The following are common problems encountered when detaching volumes, and how to resolve them.

**Note**

To guard against the possibility of data loss, take a snapshot of your volume before attempting to unmount it. Forced detachment of a stuck volume can cause damage to the file system or the data it contains or an inability to attach a new volume using the same device name, unless you reboot the instance.

- If you encounter problems while detaching a volume through the Amazon EC2 console, it may be helpful to use the describe-volumes CLI command to diagnose the issue. For more information, see describe-volumes.
- If your volume stays in the detaching state, you can force the detachment by choosing Force Detach. Use this option only as a last resort to detach a volume from a failed instance, or if you are detaching a volume with the intention of deleting it. The instance doesn't get an opportunity to flush file system caches or file system metadata. If you use this option, you must perform the file system check and repair procedures.
- If you've tried to force the volume to detach multiple times over several minutes and it stays in the detaching state, you can post a request for help to the Amazon EC2 forum. To help expedite a resolution, include the volume ID and describe the steps that you've already taken.
- When you attempt to detach a volume that is still mounted, the volume can become stuck in the busy state while it is trying to detach. The following output from describe-volumes shows an example of this condition:

```
aws ec2 describe-volumes --region us-west-2 --volume-ids vol-1234abcd
{
 "Volumes": [
 {
 "AvailabilityZone": "us-west-2b",
 "Attachments": [
 {
 "AttachTime": "2016-07-21T23:44:52.000Z",
 "InstanceId": "i-fedc9876",
 "VolumeId": "vol-1234abcd",
 "State": "busy",
 "DeleteOnTermination": false,
 "Device": "/dev/sdf"

When you encounter this state, detachment can be delayed indefinitely until you unmount the volume, force detachment, reboot the instance, or all three.
Deleting an Amazon EBS Volume

After you no longer need an Amazon EBS volume, you can delete it. After deletion, its data is gone and the volume can't be attached to any instance. However, before deletion, you can store a snapshot of the volume, which you can use to re-create the volume later.

To delete a volume, it must be in the available state (not attached to an instance). For more information, see Detaching an Amazon EBS Volume from an Instance (p. 664).

To delete an EBS volume using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Volumes.
3. Select a volume and choose Actions, Delete Volume.
4. In the confirmation dialog box, choose Yes, Delete.

To delete an EBS volume using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- delete-volume (AWS CLI)
- Remove-EC2Volume (AWS Tools for Windows PowerShell)

Modifying the Size, IOPS, or Type of an EBS Volume on Windows

If your current-generation Amazon EBS volume is attached to a current-generation EC2 instance type, you can increase its size, change its volume type, or (for an io1 volume) adjust its IOPS performance, all without detaching it. You can apply these changes to detached volumes as well. For more information about the current generation instance types, see Current Generation Instances.

Note

Many previous-generation instance types also support modification of EBS volumes without detachment. (The warnings appearing for some of these instance types may be safely ignored.) These include:

- C1 (with warning)
- C3
- CC2 (with warning)
- CR1 (with warning)
- G2
- I2
- M1 (with warning)
- M3
- R3

If you are using an unsupported previous-generation instance type, or if you encounter an error while attempting a volume modification, follow the procedures in Appendix: Starting and Stopping an Instance to Modify an EBS Volume (p. 679).
In general, the following steps are involved in modifying a volume:

1. **Issue the modification command.** For more information, see Modifying an EBS Volume from the Console (p. 670) and Modifying an EBS Volume from the Command Line (p. 670).

2. **Monitor the progress of the modification.** For more information, see Monitoring the Progress of Volume Modifications (p. 671).

3. **If the size of the volume was modified, extend the volume's file system to take advantage of the increased storage capacity.** For more information, see Extending a Windows File System after Resizing the Volume (p. 675).

Additionally, you can use Amazon CloudWatch Events and AWS CloudFormation to automate the actions associated with volume modification.

There is no charge to modify the configuration of a volume. You are charged at the new volume configuration price after a modification starts. For more information, see the Amazon Elastic Block Store section on the Amazon EBS Pricing page.

Important

Before modifying a volume that contains valuable data, it is a best practice to create a snapshot of the volume in case you need to roll back your changes. For information about EBS snapshots, see Creating an Amazon EBS Snapshot.

Contents

- Constraints on Modifying EBS Volume Size (p. 667)
- Modifying an EBS Volume from the Console (p. 670)
- Modifying an EBS Volume from the Command Line (p. 670)
- Monitoring the Progress of Volume Modifications (p. 671)
- Extending a Windows File System after Resizing the Volume (p. 675)
- Limitations When Modifying EBS Volumes (p. 678)
- Appendix: Starting and Stopping an Instance to Modify an EBS Volume (p. 679)

Constraints on Modifying EBS Volume Size

Modifications to the size of an Amazon EBS volume are constrained by the physics and arithmetic of block data storage, as well as by the implementation decisions of operating system and file system designers. AWS imposes additional limits on volume size to safeguard the reliability of its services.

As a service, EBS abstracts the massively distributed storage of a data center into virtual hard disk drives. To an operating system installed on an EC2 instance, an attached EBS volume appears to be a physical hard disk drive containing 512-byte disk sectors. The OS manages the allocation of data blocks (or clusters) onto those virtual sectors through its storage management utilities. The allocation is in conformity with a volume partitioning scheme, such as master boot record (MBR) or GUID partition table (GPT), and within the capabilities of the installed file system (ext4, NTFS, and so on).

EBS is not aware of the data contained in its virtual disk sectors; it only ensures the integrity of the sectors. This means that AWS actions and OS actions are completely independent of each other. When modifying volume size, be aware of the capabilities and limits of both. For example, you can increase the size of an EBS volume to as much as 16 TiB, but whether the OS recognizes all of that capacity depends on its own design characteristics and on how the volume is partitioned.

This section describes the most important factors that limit the usable size of an EBS volume.

AWS Service Limitations

Amazon EBS currently supports a maximum volume size of 16 TiB.
Amazon EC2 requires Windows boot volumes to use MBR partitioning. As discussed in Partitioning Schemes (p. 668), this means that boot volumes cannot be bigger than 2 TiB. Windows data volumes are not subject to this limitation and may be GPT-partitioned.

Partitioning Schemes

Among other impacts, the partitioning scheme determines how many logical data blocks can be uniquely addressed in a single volume. For more information, see Data Block Sizes (p. 668). Two partitioning schemes are in common use on Linux and Windows systems: master boot record (MBR) and GUID partition table (GPT). The important differences between the two can be summarized as follows:

- **MBR**

 MBR uses a 32-bit data structure to store block addresses. This means that each data block is mapped with one of 2^{32} possible integers. The maximum addressable size of a volume is given by:
 \[(2^{32} - 1) \times \text{Block size} = \text{Number of addressable blocks}\]

 The block size for MBR volumes is conventionally limited to 512 bytes. Therefore:
 \[(2^{32} - 1) \times 512 \text{ bytes} = 2 \text{ TiB} - 512 \text{ bytes}\]

 Engineering workarounds to increase this 2-TiB limit for MBR volumes have not met with widespread industry adoption. Consequently, Linux and Windows never detect an MBR volume as being larger than 2 TiB even if AWS shows its size to be larger.

- **GPT**

 GPT uses a 64-bit data structure to store block addresses. This means that each data block is mapped with one of 2^{64} possible integers. The maximum addressable size of a volume is given by:
 \[(2^{64} - 1) \times \text{Block size} = \text{Number of addressable blocks}\]

 The block size for GPT volumes is commonly 4,096 bytes. Therefore:
 \[(2^{64} - 1) \times 4,096 \text{ bytes} = 8 \text{ ZiB} - 4,096 \text{ bytes} = 8 \text{ billion TiB} - 4,096 \text{ bytes}\]

 Real-world computer systems don’t support anything close to this theoretical maximum. Implemented file-system size is currently limited to 50 TiB for ext4 and 256 TiB for NTFS—both of which exceed the 16-TiB limit imposed by AWS.

Data Block Sizes

Data storage on a modern hard drive is managed through logical block Addressing, an abstraction layer that allows the operating system to read and write data in logical blocks without knowing much about the underlying hardware. The OS relies on the storage device to map the blocks to its physical sectors. EBS advertises 512-byte sectors to the operating system, which reads and writes data to disk using data blocks that are a multiple of the sector size.

The industry default size for logical data blocks is currently 4,096 bytes (4 KiB). Because certain workloads benefit from a smaller or larger block size, file systems support non-default block sizes that can be specified during formatting. Scenarios in which non-default block sizes should be used are outside the scope of this topic, but the choice of block size has consequences for the storage capacity of the volume. The following table shows storage capacity as a function of block size:
Block Size and Resulting Volume Capacity

<table>
<thead>
<tr>
<th>Block size</th>
<th>Max. volume size</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 KiB (default)</td>
<td>16 TiB</td>
</tr>
<tr>
<td>8 KiB</td>
<td>32 TiB</td>
</tr>
<tr>
<td>16 KiB</td>
<td>64 TiB</td>
</tr>
<tr>
<td>32 KiB</td>
<td>128 TiB</td>
</tr>
<tr>
<td>64 KiB (maximum)</td>
<td>256 TiB</td>
</tr>
</tbody>
</table>

The EBS-imposed limit on volume size is currently equal to the maximum size enabled by 4-KiB data blocks.

Summary

The following table summarizes the theoretical and implemented storage capacities for the most commonly used file systems on Amazon EBS.

MBR vs. GPT volume sizes for popular file systems, assuming 4,096-byte block size

<table>
<thead>
<tr>
<th>Partitioning Scheme</th>
<th>Max. addressable blocks</th>
<th>Theoretical max. size (blocks × block size)</th>
<th>Ext4 implemented max. size*</th>
<th>XFS implemented max. size**</th>
<th>NTFS implemented max. size***</th>
<th>Max. supported by EBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>2³²</td>
<td>2 TiB</td>
<td>2 TiB</td>
<td>2 TiB</td>
<td>2 TiB</td>
<td>2 TiB</td>
</tr>
<tr>
<td>GPT</td>
<td>2⁶⁴</td>
<td>8 ZiB = 8 × 1024³ TiB</td>
<td>1 EiB = 1024² TiB (50 TiB certified on RHEL7)</td>
<td>500 TiB</td>
<td>256 TiB</td>
<td>16 TiB</td>
</tr>
</tbody>
</table>

** https://access.redhat.com/solutions/1532

Recommendations for Windows Volumes

By default, Windows initializes volumes with a master boot record (MBR) partition table. Because MBR supports only volumes smaller than 2 TiB (2,048 GiB), Windows prevents you from resizing MBR volumes beyond this limit. In such a case, the Extend Volume option is greyed-out in the Windows Disk Management utility. If you use the AWS Management Console or AWS CLI to create an MBR-partitioned volume that exceeds the size limit, Windows cannot detect or use the additional space. For recommendations for Linux volumes, see Recommendations for Linux Volumes in the Amazon EC2 User Guide for Linux Instances.

To overcome this limitation, you can create a new, larger volume with a GUID partition table (GPT) and copy over the data from the original MBR volume.
To create a GPT volume

1. Create a new, empty volume of the desired size in the Availability Zone of the EC2 instance and attach it to your instance.

 Note
 The new volume must not be a volume restored from a snapshot.

2. Log in to your Windows system and open **Disk Management** (diskmgmt.exe).

3. Open the context (right-click) menu for the new disk and choose **Online**.

4. In the **Initialize Disk** window, select the new disk and choose **GPT (GUID Partition Table)**, **OK**.

5. When initialization is complete, copy the data from the original volume to the new volume, using a tool such as robocopy or teracopy.

6. In **Disk Management**, change the drive letters to appropriate values and take the old volume offline.

7. In the Amazon EC2 console, detach the old volume from the instance, reboot the instance to verify that it functions properly, and delete the old volume.

Modifying an EBS Volume from the Console

The following procedure shows how to apply available volume modifications from the Amazon EC2 console.

To modify an EBS volume using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose **Volumes**, select the volume to modify, and then choose **Actions, Modify Volume**.

3. The **Modify Volume** window displays the volume ID and the volume's current configuration, including type, size, and IOPS. You can change any or all of these settings in a single action. Set new configuration values as follows:

 - To modify the type, choose a value for **Volume Type**.
 - To modify the size, enter an allowed integer value for **Size**.
 - If you chose **Provisioned IOPS (IO1)** as your volume type, enter an allowed integer value for **IOPS**.

4. After you have specified all of the modifications to apply, choose **Modify, Yes**.

5. Modifying volume size has no practical effect until you also extend the volume's file system to make use of the new storage capacity. For more information, see Extending a Windows File System after Resizing the Volume (p. 675).

Modifying an EBS Volume from the Command Line

The following example demonstrates how an EBS volume can be modified from the command line using the AWS CLI. Depending on your default configuration, you may need to specify information such as Region and Availability Zone. The ID of the source volume being modified is required, and you must have appropriate permissions to carry out the action. When an **io1** volume is the modification target, you must specify its level of provisioned IOPS. Multiple modification actions (to change capacity, IOPS, or type) may be performed in a single command.

For example, an EBS volume is configured as follows:

- **Volume ID**: `vol-11111111111111111`
- **Volume size**: 100 GiB
- **Volume type**: gp2

You can change the volume configuration to the following:
• Volume size: 200 GiB
• Volume type: io1
• Provisioning level: 10,000 IOPS

Apply the above modifications with the following command:

```
aws ec2 modify-volume --region us-east-1 --volume-id vol-11111111111111111 --size 200 --volume-type io1 --iops 10000
```

The command yields output similar to the following:

```
{
   "VolumeModification": {
      "TargetSize": 200,
      "TargetVolumeType": "io1",
      "ModificationState": "modifying",
      "VolumeId": "vol-11111111111111111",
      "TargetIops": 10000,
      "StartTime": "2017-01-19T22:21:02.959Z",
      "Progress": 0,
      "OriginalVolumeType": "gp2",
      "OriginalIops": 300,
      "OriginalSize": 100
   }
}
```

Note

Modifying volume size has no practical effect until you also extend the volume's file system to make use of the new storage capacity. For more information, see Extending a Windows File System after Resizing the Volume (p. 675).

Monitoring the Progress of Volume Modifications

An EBS volume being modified goes through a sequence of states. After you issue a `ModifyVolume` directive, whether from the console, CLI, API, or SDK, the volume enters first the `Modifying` state, then the `Optimizing` state, and finally the `Complete` state. At this point, the volume is ready to be further modified. Rarely, a transient AWS fault can result in the `Failed` state. If this occurs, retry the modification.

Size changes usually take a few seconds to complete and take effect after a volume is in the `Optimizing` state.

Performance (IOPS) changes can take from a few minutes to a few hours to complete and are dependent on the configuration change being made.

It may take up to 24 hours for a new configuration to take effect, and in some cases more, such as when the volume has not been fully initialized. Typically, a fully used 1-TiB volume takes about 6 hours to migrate to a new performance configuration.

While the volume is in the `optimizing` state, your volume performance is in between the source and target configuration specifications. Transitional volume performance will be no less than the source volume performance. If you are downgrading IOPS, transitional volume performance is no less than the target volume performance.

You can monitor the progress of a modification by inspecting the AWS Management Console, by querying the volume's state with the Amazon EC2 API/CLI, or by accessing metrics sent to Amazon CloudWatch Events. The following procedures demonstrate these approaches.
To monitor progress of a modification from the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Volumes, and select the volume to inspect. The volume's status is displayed in the State column. In the example below, the modification state is completed. This state information is also displayed in the State field of the details pane.

3. Open the information icon next to the State field to display complete before and after information about the most recent modification action, as illustrated below.
Create Volume

<table>
<thead>
<tr>
<th>Volume ID</th>
<th>Size</th>
<th>Volume Type</th>
<th>IOPS</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>vol-065fc28c</td>
<td>1000 GiB</td>
<td>gp2</td>
<td>3000</td>
<td>available - completed (100%)</td>
</tr>
</tbody>
</table>

Volumes: vol-065fc28c...

Description:
- **Volume ID**: vol-065fc28c...
- **Size**: 1000 GiB
- **Created**: January 25, 2017 at 4:26:36 PM UTC-8
- **State**: available - completed (100%)

Attachment information:
- **Volume type**: gp2
- **Product codes**: -
- **IOPS**: 3000

Tags:
Example To monitor progress of a modification from the command line

Use describe-volumes-modifications (p. 670) to view the progress of the modifications. In this example, volume vol-11111111111111111 from above and another volume, vol-22222222222222222, are called.

```
aws ec2 describe-volumes-modifications --region us-east-1 --volume-id vol-11111111111111111 vol-22222222222222222
```

The command returns one or more VolumesModification objects. The following is example output. The first object is nearly identical to the original modify-volume command output shown above. No additional modifications have been applied, however.

```
{
  "VolumesModifications": [
    {
      "TargetSize": 200,
      "TargetVolumeType": "io1",
      "ModificationState": "modifying",
      "VolumeId": "vol-11111111111111111",
      "TargetIops": 10000,
      "StartTime": "2017-01-19T22:21:02.959Z",
      "Progress": 0,
      "OriginalVolumeType": "gp2",
      "OriginalIops": 300,
      "OriginalSize": 100
    },
    {
      "TargetSize": 2000,
      "TargetVolumeType": "sc1",
      "ModificationState": "modifying",
      "VolumeId": "vol-22222222222222222",
      "Progress": 0,
      "OriginalVolumeType": "gp2",
      "OriginalIops": 300,
      "OriginalSize": 1000
    }
  ]
}
```

The next example queries for all volumes in a region with a modification state of either optimizing or completed, and then filters and formats the results to show only modifications that were initiated on or after February 1, 2017:

```
aws ec2 describe-volumes-modifications --filters Name=modification-state,Values="optimizing","completed" --region us-east-1 --query "VolumesModifications[? StartTime>='2017-02-01'].{ID:VolumeId,STATE:ModificationState}"
```

In this case the query returns information about two volumes:

```
[ 
  { 
    "STATE": "optimizing",
    "ID": "vol-06397e7a0eEXAMPLE"
  },
  { 
    "STATE": "completed",
    "ID": "vol-bEXAMPLE"
  }
]
```

674
To monitor progress of a modification with CloudWatch Events

With CloudWatch Events, you can create a notification rule for volume modification events to send a text message or execute a Lambda function.

2. Choose Events, Create rule.
3. For Build event pattern to match events by service, choose Custom event pattern.
4. For Build custom event pattern, replace the contents with the following code:

```json
{
    "source": ["aws.ec2"],
    "detail-type": ["EBS Volume Notification"],
    "detail": {
        "event": ["modifyVolume"]
    }
}
```

Choose Save.

The typical event output should look like the following:

```json
Body:
{
    "version": "0",
    "id": "1ea2ace2-7790-46ed-99ab-d07a8bd68685",
    "detail-type": "EBS Volume Notification",
    "source": "aws.ec2",
    "account": "065441870323",
    "time": "2017-01-12T21:09:07Z",
    "region": "us-east-1",
    "resources": [
        "arn:aws:ec2:us-east-1:065441870323:volume/vol-03a55cf56513fa1b6"
    ],
    "detail": {
        "result": "optimizing",
        "cause": "",
        "event": "modifyVolume",
        "request-id": "auto-58c08bad-d90b-11e6-a309-b51ed35473f8"
    }
}
```

You can use your rule to generate a notification message with Amazon SNS or to invoke a Lambda function in response to matching events.

Extending a Windows File System after Resizing the Volume

Use the Windows Disk Management utility to extend the disk size to the new size of the volume. You can begin resizing the file system as soon as the volume enters the Optimizing state.
Important
Before extending a file system that contains valuable data, it is a best practice to create a snapshot of the volume that contains it in case you need to roll back your changes. For information about EBS snapshots, see Creating an Amazon EBS Snapshot.

For information about extending a Linux file system, see Extending a Linux File System after Resizing the Volume in the Amazon EC2 User Guide for Linux Instances.

To extend a Windows file system

1. Log in to your Windows instance using Remote Desktop.
2. In the Run dialog, type diskmgmt.msc and press Enter. The Disk Management utility opens.

 ![Disk Management](image)

4. Open the context (right-click) menu for the expanded drive and choose Extend Volume.
5. In the Extend Volume wizard, choose **Next**. For **Select the amount of space in MB**, enter the number of megabytes by which to extend the volume. Normally, you set this to the maximum available space. The highlighted text under **Selected** is the amount of space that is added, not the final size the volume will have.

Complete the wizard.
Tip
If the increased available space on your volume remains invisible to the system, try re-initializing the volume as described in Initializing Amazon EBS Volumes.

Limitations When Modifying EBS Volumes

Be aware of the following limits and requirements when you modify an EBS volume:

- In some cases, you must detach the volume or stop the instance for modification to proceed. If you encounter an error message while attempting to modify an EBS volume, or if you are modifying an EBS volume attached to a previous-generation instance type, take one of the following steps:
 - For a non-root volume, detach the volume from the instance, apply the modifications, and then re-attach the volume. For more information, see Detaching an Amazon EBS Volume from an Instance and Attaching an Amazon EBS Volume to an Instance.
 - For a root (boot) volume, stop the instance, apply the modifications, and then restart the instance. For more information, see Appendix: Starting and Stopping an Instance to Modify an EBS Volume (p. 679).
- The previous generation Magnetic volume type is not supported by the volume modification methods described in this topic. However, you can take a snapshot of a Magnetic volume and restore it to a differently configured EBS volume.
- Decreasing the size of an EBS volume is not supported. However, you can create a smaller volume and then migrate your data to it using an application-level tool such as robocopy.
- After modifying a volume, wait at least six hours before applying further modifications to the same volume.
- While m3.medium instances fully support volume modification, some m3.large, m3.xlarge, and m3.2xlarge instances might not support all volume modification features. If you encounter an error, see Appendix: Starting and Stopping an Instance to Modify an EBS Volume (p. 679).

Volume Modification Support on Older Volumes

Before you can modify a volume that was attached to an instance before November 1, 2016, you must initialize volume modification support using one of the following actions:

- Detach and attach the volume
- Restart the instance

To determine whether you must initialize volume modification support using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. On the navigation pane, choose Instances.
3. Choose the Show/Hide Columns icon (the gear). Select the Launch Time and Block Devices attributes and then choose Close.
4. Sort the list of instances by the Launch Time column. For instances that were started before the cutoff date, check when the devices were attached. In the following example, you must initialize volume modification for the first instance because it was started before the cutoff date and its root volume was attached before the cutoff date. The other instances are ready because they were started after the cutoff, regardless of when the volumes were attached.
To determine whether you must initialize volume modification support using the CLI

To find an instance that was last started before the cutoff date with a volume that was attached before the cutoff date, use the following describe-instances command.

```bash
aws ec2 describe-instances --query "Reservations[*].Instances[*].[InstanceId,LaunchTime<='2016-11-01',BlockDeviceMappings[*][Ebs.AttachTime<='2016-11-01']}" --output text
```

The output for each instance shows its ID, whether it was started before the cutoff date (True or False), and whether its volumes were attached before the cutoff date (True or False). In the following example output, you must initialize volume modification for the first instance because it was started before the cutoff date and its root volume was attached before the cutoff date. The other instances are ready because they were started after the cutoff, regardless of when the volumes were attached.

<table>
<thead>
<tr>
<th>Instance ID</th>
<th>Launch Time</th>
<th>Block Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-e905622e</td>
<td>February 25, 2016 at 1:49:35 PM UTC-8</td>
<td>/dev/xvda=vol-e6b46410:attached:2</td>
</tr>
<tr>
<td>i-719f99a8</td>
<td>December 8, 2016 at 2:21:51 PM UTC-8</td>
<td>/dev/xvda=vol-bad60e7a:attached:2</td>
</tr>
<tr>
<td>i-006b02c1b78381e57</td>
<td>May 17, 2017 at 1:52:52 PM UTC-7</td>
<td>/dev/sda1=vol-0de9250441c73024c:attached:2</td>
</tr>
<tr>
<td>i-e3d172ed</td>
<td>May 17, 2017 at 2:48:54 PM UTC-7</td>
<td>/dev/sda1=vol-04c34d0b:attached:2</td>
</tr>
</tbody>
</table>

Appendix: Starting and Stopping an Instance to Modify an EBS Volume

If you are using a previous generation Amazon EC2 instance and you need to modify the root (boot) volume, you must stop the instance, apply the modifications, and then restart the instance. The procedure described here can be used to modify any EBS volume on any instance type.

When you stop and start an instance, be aware of the following:

- If your instance is running in a VPC and has a public IPv4 address, we release the address and give it a new public IPv4 address. The instance retains its private IPv4 addresses and any Elastic IP addresses.
- If your instance is running in EC2-Classic, we give it new public and private IPv4 addresses, and disassociate any Elastic IP address that’s associated with the instance. You must re-associate any Elastic IP address after you restart your instance.
- If your instance is in an Auto Scaling group, Amazon EC2 Auto Scaling marks the stopped instance as unhealthy, and may terminate it and launch a replacement instance. To prevent this, you can temporarily suspend the Auto Scaling processes for the group. For more information, see Suspending and Resuming Scaling Processes in the Amazon EC2 Auto Scaling User Guide.
To modify the root volume of an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances and select the instance with the volume to expand.
3. Verify that Shutdown Behavior is set to Stop and not Terminate.
 a. Select the instance.
 b. From the context (right-click) menu, choose Instance Settings, Change Shutdown Behavior.
 c. If Shutdown behavior is set to Terminate, choose Stop, Apply.
 If Shutdown behavior is already set to Stop, choose Cancel.
4. Stop the instance. For more information, see Stopping and Starting Your Instances (p. 289).
 Warning
 When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.
5. Modify your EBS volume as described in Modifying an EBS Volume from the Console (p. 670) or Modifying an EBS Volume from the Command Line (p. 670).
6. Restart the instance.
 a. In the navigation pane, choose Instances and then select the instance to restart.
 b. From the context (right-click) menu, choose Instance State, Start.
 c. In the Start Instances dialog box, choose Yes, Start. If the instance fails to start, and the volume being expanded is a root volume, verify that you attached the expanded volume using the same device name as the original volume, for example /dev/sda1.

After the instance has started, you can check the file system size to see if your instance recognizes the larger volume space.

If the size does not reflect your newly expanded volume, you must extend the file system of your device so that your instance can use the new space. For more information, see Extending a Windows File System after Resizing the Volume (p. 675).

You may have to bring the volume online in order to use it. For more information, see Making an Amazon EBS Volume Available for Use (p. 648). You do not need to reformat the volume.

Amazon EBS Snapshots

You can back up the data on your Amazon EBS volumes to Amazon S3 by taking point-in-time snapshots. Snapshots are incremental backups, which means that only the blocks on the device that have changed after your most recent snapshot are saved. This minimizes the time required to create the snapshot and saves on storage costs by not duplicating data. When you delete a snapshot, only the data unique to that snapshot is removed. Each snapshot contains all of the information needed to restore your data (from the moment when the snapshot was taken) to a new EBS volume.

When you create an EBS volume based on a snapshot, the new volume begins as an exact replica of the original volume that was used to create the snapshot. The replicated volume loads data lazily in the background so that you can begin using it immediately. If you access data that hasn’t been loaded yet, the volume immediately downloads the requested data from Amazon S3, and then continues loading the rest of the volume’s data in the background. For more information, see Creating an Amazon EBS Snapshot (p. 683).

Note
Using Systems Manager Run Command, you can take application-consistent snapshots of all Amazon Elastic Block Store (Amazon EBS) volumes attached to your Amazon EC2 Windows
The snapshot process uses the Windows Volume Shadow Copy Service (VSS) to take image-level backups of VSS-aware applications, including data from pending transactions between these applications and the disk. Furthermore, you don't need to shut down your instances or disconnect them when you need to back up all attached volumes. For more information, see Using Run Command to Take VSS-Enabled Snapshots of EBS Volumes in the AWS Systems Manager User Guide.

Contents

- How Incremental Snapshots Work (p. 681)
- Copying and Sharing Snapshots (p. 683)
- Encryption Support for Snapshots (p. 683)
- Creating an Amazon EBS Snapshot (p. 683)
- Deleting an Amazon EBS Snapshot (p. 685)
- Copying an Amazon EBS Snapshot (p. 687)
- Viewing Amazon EBS Snapshot Information (p. 689)
- Sharing an Amazon EBS Snapshot (p. 690)

How Incremental Snapshots Work

This section provides illustrations of how an EBS snapshot captures the state of a volume at a point in time, and also how successive snapshots of a changing volume create a history of those changes.

In the diagram below, Volume 1 is shown at three points in time. A snapshot is taken of each of these three volume states.

- In State 1, the volume has 10 GiB of data. Because Snap A is the first snapshot taken of the volume, the entire 10 GiB of data must be copied.
- In State 2, the volume still contains 10 GiB of data, but 4 GiB have changed. Snap B needs to copy and store only the 4 GiB that changed after Snap A was taken. The other 6 GiB of unchanged data, which are already copied and stored in Snap A, are referenced by Snap B rather than (again) copied. This is indicated by the dashed arrow.
- In State 3, 2 GiB of data have been added to the volume, for a total of 12 GiB. Snap C needs to copy the 2 GiB that were added after Snap B was taken. As shown by the dashed arrows, Snap C also references the 4 GiB of data stored in Snap B, and the 6 GiB of data stored in Snap A. The total storage required for the three snapshots is 16 GiB.

Relations among Multiple Snapshots of a Volume
For more information about how data is managed when you delete a snapshot, see Deleting an Amazon EBS Snapshot (p. 685).
Copying and Sharing Snapshots

You can share a snapshot across AWS accounts by modifying its access permissions. You can make copies of your own snapshots as well as snapshots that have been shared with you. For more information, see Sharing an Amazon EBS Snapshot (p. 690).

A snapshot is constrained to the region where it was created. After you create a snapshot of an EBS volume, you can use it to create new volumes in the same region. For more information, see Restoring an Amazon EBS Volume from a Snapshot (p. 646). You can also copy snapshots across regions, making it possible to use multiple regions for geographical expansion, data center migration, and disaster recovery. You can copy any accessible snapshot that has a completed status. For more information, see Copying an Amazon EBS Snapshot (p. 687).

Encryption Support for Snapshots

EBS snapshots broadly support EBS encryption.

- Snapshots of encrypted volumes are automatically encrypted.
- Volumes that are created from encrypted snapshots are automatically encrypted.
- When you copy an unencrypted snapshot that you own, you can encrypt it during the copy process.
- When you copy an encrypted snapshot that you own, you can reencrypt it with a different key during the copy process.

For more information, see Amazon EBS Encryption.

Creating an Amazon EBS Snapshot

A point-in-time snapshot of an EBS volume, can be used as a baseline for new volumes or for data backup. If you make periodic snapshots of a volume, the snapshots are incremental—only the blocks on the device that have changed after your last snapshot are saved in the new snapshot. Even though snapshots are saved incrementally, the snapshot deletion process is designed so that you need to retain only the most recent snapshot in order to restore the entire volume.

Snapshots occur asynchronously; the point-in-time snapshot is created immediately, but the status of the snapshot is pending until the snapshot is complete (when all of the modified blocks have been transferred to Amazon S3), which can take several hours for large initial snapshots or subsequent snapshots where many blocks have changed. While it is completing, an in-progress snapshot is not affected by ongoing reads and writes to the volume.

Important
Although you can take a snapshot of a volume while a previous snapshot of that volume is in the pending status, having multiple pending snapshots of a volume may result in reduced volume performance until the snapshots complete.

There is a limit of five pending snapshots for a single gp2, io1, or Magnetic volume, and one pending snapshot for a single st1 or sc1 volume. If you receive a ConcurrentSnapshotLimitExceeded error while trying to create multiple concurrent snapshots of the same volume, wait for one or more of the pending snapshots to complete before creating another snapshot of that volume.

Snapshots that are taken from encrypted volumes are automatically encrypted. Volumes that are created from encrypted snapshots are also automatically encrypted. The data in your encrypted volumes and any associated snapshots is protected both at rest and in motion. For more information, see Amazon EBS Encryption.

By default, only you can create volumes from snapshots that you own. However, you can share your unencrypted snapshots with specific AWS accounts, or you can share them with the entire
AWS community by making them public. For more information, see [Sharing an Amazon EBS Snapshot](p. 690).

You can share an encrypted snapshot only with specific AWS accounts. For others to use your shared, encrypted snapshot, you must also share the CMK key that was used to encrypt it. Users with access to your encrypted snapshot must create their own personal copy of it and then use that copy to restore the volume. Your copy of a shared, encrypted snapshot can also be re-encrypted with a different key. For more information, see [Sharing an Amazon EBS Snapshot](p. 690).

When a snapshot is created from a volume with an AWS Marketplace product code, the product code is propagated to the snapshot.

You can take a snapshot of an attached volume that is in use. However, snapshots only capture data that has been written to your Amazon EBS volume at the time the snapshot command is issued. This might exclude any data that has been cached by any applications or the operating system. If you can pause any file writes to the volume long enough to take a snapshot, your snapshot should be complete. However, if you can't pause all file writes to the volume, you should unmount the volume from within the instance, issue the snapshot command, and then remount the volume to ensure a consistent and complete snapshot. You can remount and use your volume while the snapshot status is **pending**.

To create a snapshot for an Amazon EBS volume that serves as a root device, you should stop the instance before taking the snapshot.

To unmount the volume in Windows, open Disk Management, right-click the volume to unmount, and select **Change Drive Letter and Path**. Select the mount point to remove, and then click **Remove**.

After you've created a snapshot, you can tag it to help you manage it later. For example, you can add tags describing the original volume from which the snapshot was created, or the device name that was used to attach the original volume to an instance. For more information, see [Tagging Your Amazon EC2 Resources](p. 759).

To create a snapshot using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose **Snapshots** in the navigation pane.
3. Choose **Create Snapshot**.
4. In the **Create Snapshot** dialog box, select the volume to create a snapshot for, and then choose **Create**.

To create a snapshot using the command line

You can use one of the following commands. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- **create-snapshot** (AWS CLI)
- **New-EC2Snapshot** (AWS Tools for Windows PowerShell)

Note

Using Systems Manager Run Command, you can take application-consistent snapshots of all Amazon Elastic Block Store (Amazon EBS) volumes attached to your Amazon EC2 Windows instances. The snapshot process uses the Windows **Volume Shadow Copy Service (VSS)** to take image-level backups of VSS-aware applications, including data from pending transactions between these applications and the disk. Furthermore, you don't need to shut down your instances or disconnect them when you need to back up all attached volumes. For more information, see [Using Run Command to Take VSS-Enabled Snapshots of EBS Volumes](in the AWS Systems Manager User Guide).
Deleting an Amazon EBS Snapshot

When you delete a snapshot, only the data referenced exclusively by that snapshot is removed. Deleting previous snapshots of a volume does not affect your ability to restore volumes from later snapshots of that volume.

Deleting a snapshot of a volume has no effect on the volume. Deleting a volume has no effect on the snapshots made from it.

If you make periodic snapshots of a volume, the snapshots are incremental, which means that only the blocks on the device that have changed after your last snapshot are saved in the new snapshot. Even though snapshots are saved incrementally, the snapshot deletion process is designed so that you need to retain only the most recent snapshot in order to restore the volume.

Deleting a snapshot might not reduce your organization's data storage costs. Other snapshots might reference that snapshot's data, and referenced data is always preserved. If you delete a snapshot containing data being used by a later snapshot, costs associated with the referenced data are allocated to the later snapshot. For more information about how snapshots store data, see How Incremental Snapshots Work (p. 681) and the example below.

In the following diagram, Volume 1 is shown at three points in time. A snapshot has captured each of the first two states, and in the third, a snapshot has been deleted.

- In State 1, the volume has 10 GiB of data. Because Snap A is the first snapshot taken of the volume, the entire 10 GiB of data must be copied.
- In State 2, the volume still contains 10 GiB of data, but 4 GiB have changed. Snap B needs to copy and store only the 4 GiB that changed after Snap A was taken. The other 6 GiB of unchanged data, which are already copied and stored in Snap A, are referenced by Snap B rather than (again) copied. This is indicated by the dashed arrow.
- In state 3, the volume has not changed since State 2, but Snapshot A has been deleted. The 6 GiB of data stored in Snapshot A that were referenced by Snapshot B have now been moved to Snapshot B, as shown by the heavy arrow. As a result, you are still charged for storing 10 GiB of data—6 GiB of unchanged data preserved from Snap A, and 4 GiB of changed data from Snap B.

Example 1: Deleting a Snapshot with Some of its Data Referenced by Another Snapshot
Note that you can’t delete a snapshot of the root device of an EBS volume used by a registered AMI. You must first deregister the AMI before you can delete the snapshot. For more information, see Deregistering Your Windows AMI (p. 76).

To delete a snapshot using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Snapshots in the navigation pane.
3. Select a snapshot and then choose Delete from the Actions list.
4. Choose Yes, Delete.

To delete a snapshot using the command line

You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
• **delete-snapshot** (AWS CLI)
• **Remove-EC2Snapshot** (AWS Tools for Windows PowerShell)

Note
Although you can delete a snapshot that is still in progress, the snapshot must complete before the deletion takes effect. This may take a long time. If you are also at your concurrent snapshot limit (five snapshots in progress), and you attempt to take an additional snapshot, you may get the `ConcurrentSnapshotLimitExceeded` error.

Copying an Amazon EBS Snapshot

With Amazon EBS, you can create point-in-time snapshots of volumes, which we store for you in Amazon S3. After you've created a snapshot and it has finished copying to Amazon S3 (when the snapshot status is completed), you can copy it from one AWS region to another, or within the same region. Amazon S3 server-side encryption (256-bit AES) protects a snapshot's data in-transit during a copy operation. The snapshot copy receives an ID that is different than the ID of the original snapshot.

For information about copying an Amazon RDS snapshot, see Copying a DB Snapshot in the *Amazon Relational Database Service User Guide*.

If you would like another account to be able to copy your snapshot, you must either modify the snapshot permissions to allow access to that account or make the snapshot public so that all AWS accounts may copy it. For more information, see Sharing an Amazon EBS Snapshot (p. 690).

For pricing information about copying snapshots across regions and accounts, see Amazon EBS Pricing. Note that snapshot copy operations within a single account and region do not copy any data and are cost-free as long as the following conditions apply:

- The encryption status of the snapshot copy does not change.
- For encrypted snapshots, both the source snapshot and the copy are encrypted with the default EBS CMK.

Use Cases

- Geographic expansion: Launch your applications in a new region.
- Migration: Move an application to a new region, to enable better availability and to minimize cost.
- Disaster recovery: Back up your data and logs across different geographical locations at regular intervals. In case of disaster, you can restore your applications using point-in-time backups stored in the secondary region. This minimizes data loss and recovery time.
- Encryption: Encrypt a previously unencrypted snapshot, change the key with which the snapshot is encrypted, or, for encrypted snapshots that have been shared with you, create a copy that you own in order to restore a volume from it.
- Data retention and auditing requirements: Copy your encrypted EBS snapshots from one AWS account to another to preserve data logs or other files for auditing or data retention. Using a different account helps prevent accidental snapshot deletions, and protects you if your main AWS account is compromised.

Prerequisites

- You can copy any accessible snapshots that have a completed status, including shared snapshots and snapshots that you’ve created.
- You can copy AWS Marketplace, VM Import/Export, and AWS Storage Gateway snapshots, but you must verify that the snapshot is supported in the destination region.
Limit

- Each account can have up to 5 concurrent snapshot copy requests to a single destination region.
- User-defined tags are not copied from the source snapshot to the new snapshot. After the copy operation is complete, you can apply user-defined tags to the new snapshot. For more information, see Tagging Your Amazon EC2 Resources (p. 759).
- Snapshots created by the CopySnapshot action have an arbitrary volume ID that should not be used for any purpose.

Incremental Copy

The first snapshot copy to another region is always a full copy. Each subsequent snapshot copy is incremental (which makes the copy process faster), meaning that only the blocks in the snapshot that have changed after your last snapshot copy to the same destination are transferred. Support for incremental snapshots is specific to a cross-region pair where a previous complete snapshot copy of the source volume is already available in the destination region, and it is limited to the default EBS CMK for encrypted snapshots. For example, if you copy an unencrypted snapshot from the US East (N. Virginia) region to the US West (Oregon) region, the first snapshot copy of the volume is a full copy and subsequent snapshot copies of the same volume transferred between the same regions are incremental.

Encrypted Snapshots

When you copy a snapshot, you can choose to encrypt the copy (if the original snapshot was not encrypted) or you can specify a CMK different from the original one, and the resulting copied snapshot uses the new CMK. However, changing the encryption status of a snapshot or using a non-default EBS CMK during a copy operation always results in a full (not incremental) copy, which may incur greater data transfer and storage charges.

To copy an encrypted snapshot from another account, you must have permissions to use the snapshot and you must have permissions to use the customer master key (CMK) that was used to encrypt the original snapshot. For more information, see Sharing an Amazon EBS Snapshot (p. 690).

When copying an encrypted snapshot that was shared with you, you should consider re-encrypting the snapshot during the copy process with a different key that you control. This protects you if the original key is compromised, or if the owner revokes the key for any reason, which could cause you to lose access to the volume you created.

Copy a Snapshot

Use the following procedure to copy a snapshot using the Amazon EC2 console.

To copy a snapshot using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Snapshots.
3. Select the snapshot to copy, and then choose Copy from the Actions list.
4. In the Copy Snapshot dialog box, update the following as necessary:
 - **Destination region:** Select the region where you want to write the copy of the snapshot.
 - **Description:** By default, the description includes information about the source snapshot so that you can identify a copy from the original. You can change this description as necessary.
 - **Encryption:** If the source snapshot is not encrypted, you can choose to encrypt the copy. You cannot decrypt an encrypted snapshot.
 - **Master Key:** The customer master key (CMK) that to be used to encrypt this snapshot. You can select from master keys in your account or type/paste the ARN of a key from a different account. You can create a new master encryption key in the IAM console.
5. Choose **Copy**.
6. In the **Copy Snapshot** confirmation dialog box, choose **Snapshots** to go to the **Snapshots** page in the region specified, or choose **Close**.

 To view the progress of the copy process, switch to the destination region, and then refresh the **Snapshots** page. Copies in progress are listed at the top of the page.

 To check for failure

 If you attempt to copy an encrypted snapshot without having permissions to use the encryption key, the operation fails silently. The error state is not displayed in the console until you refresh the page. You can also check the state of the snapshot from the command line. For example:

   ```
   aws ec2 describe-snapshots --snapshot-id snap-0123abcd
   ```

 If the copy failed because of insufficient key permissions, you see the following message:

 "StateMessage": "Given key ID is not accessible".

 When copying an encrypted snapshot, you must have **DescribeKey** permissions on the default CMK. Explicitly denying these permissions results in copy failure. For information about managing CMK keys, see **Controlling Access to Customer Master Keys**.

 To copy a snapshot using the command line

 You can use one of the following commands. For more information about these command line interfaces, see **Accessing Amazon EC2 (p. 3)**.

 - **copy-snapshot** (AWS CLI)
 - **Copy-EC2Snapshot** (AWS Tools for Windows PowerShell)

Viewing Amazon EBS Snapshot Information

You can view detailed information about your snapshots.

To view snapshot information using the console

1. Open the Amazon EC2 console at **https://console.aws.amazon.com/ec2/**.
2. Choose **Snapshots** in the navigation pane.
3. To reduce the list, choose an option from the **Filter** list. For example, to view only your snapshots, choose **Owned By Me**. You can filter your snapshots further by using the advanced search options. Choose the search bar to view the filters available.
4. To view more information about a snapshot, select it.

To view snapshot information using the command line

You can use one of the following commands. For more information about these command line interfaces, see **Accessing Amazon EC2 (p. 3)**.

- **describe-snapshots** (AWS CLI)
- **Get-EC2Snapshot** (AWS Tools for Windows PowerShell)
Sharing an Amazon EBS Snapshot

By modifying the permissions of the snapshot, you can share your unencrypted snapshots with your co-workers or others in the AWS community. Users that you have authorized can use your unencrypted shared snapshots as the basis for creating their own EBS volumes. If you choose, you can also make your unencrypted snapshots available publicly to all AWS users.

You can share an encrypted snapshot with specific AWS accounts, though you cannot make it public. For others to use the snapshot, you must also share the custom CMK key used to encrypt it. Cross-account permissions may be applied to a custom key either when it is created or at a later time. Users with access can copy your snapshot and create their own EBS volumes based on your snapshot while your original snapshot remains unaffected.

Important
When you share a snapshot (whether by sharing it with another AWS account or making it public to all), you are giving others access to all the data on the snapshot. Share snapshots only with people with whom you want to share all your snapshot data.

Several technical and policy restrictions apply to sharing snapshots:

- Snapshots are constrained to the region in which they were created. To share a snapshot with another region, copy the snapshot to that region. For more information about copying snapshots, see Copying an Amazon EBS Snapshot (p. 687).
- If your snapshot uses the longer resource ID format, you can only share it with another account that also supports longer IDs. For more information, see Resource IDs.
- AWS prevents you from sharing snapshots that were encrypted with your default CMK. Snapshots that you intend to share must instead be encrypted with a custom CMK. For information about creating keys, see Creating Keys.
- Users of your shared CMK who are accessing encrypted snapshots must be granted DescribeKey and ReEncrypt permissions. For information about managing and sharing CMK keys, see Controlling Access to Customer Master Keys.
- If you have access to a shared encrypted snapshot and you want to restore a volume from it, you must create a personal copy of the snapshot and then use that copy to restore the volume. We recommend that you re-encrypt the snapshot during the copy process with a different key that you control. This protects your access to the volume if the original key is compromised, or if the owner revokes the key for any reason.

To modify snapshot permissions using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Snapshots in the navigation pane.
3. Select a snapshot and then choose Modify Permissions from the Actions list.
4. Choose whether to make the snapshot public or to share it with specific AWS accounts:
 - a. To make the snapshot public, choose Public.

 This is not a valid option for encrypted snapshots or snapshots with AWS Marketplace product codes.
 - b. To expose the snapshot to only specific AWS accounts, choose Private, enter the ID of the AWS account (without hyphens) in the AWS Account Number field, and choose Add Permission. Repeat until you've added all the required AWS accounts.

Important
If your snapshot is encrypted, you must ensure that the following are true:
The snapshot is encrypted with a custom CMK, not your default CMK. If you attempt to change the permissions of a snapshot encrypted with your default CMK, the console displays an error message.

- You are sharing the custom CMK with the accounts that have access to your snapshot.

5. Choose **Save**. Now a user logged into the permitted account can locate the shared snapshot by choosing **Private Snapshots** in the filter menu.

To view and modify snapshot permissions using the command line

To view the `createVolumePermission` attribute of a snapshot, you can use one of the following commands. For more information about these command line interfaces, see [Accessing Amazon EC2](p. 3).

- **describe-snapshot-attribute** (AWS CLI)
- **Get-EC2SnapshotAttribute** (AWS Tools for Windows PowerShell)

To modify the `createVolumePermission` attribute of a snapshot, you can use one of the following commands.

- **modify-snapshot-attribute** (AWS CLI)
- **Edit-EC2SnapshotAttribute** (AWS Tools for Windows PowerShell)

Amazon EBS–Optimized Instances

An Amazon EBS–optimized instance uses an optimized configuration stack and provides additional, dedicated capacity for Amazon EBS I/O. This optimization provides the best performance for your EBS volumes by minimizing contention between Amazon EBS I/O and other traffic from your instance.

EBS–optimized instances deliver dedicated bandwidth to Amazon EBS, with options between 425 Mbps and 14,000 Mbps, depending on the instance type you use. When attached to an EBS–optimized instance, General Purpose SSD (gp2) volumes are designed to deliver within 10% of their baseline and burst performance 99% of the time in a given year, and Provisioned IOPS SSD (io1) volumes are designed to deliver within 10% of their provisioned performance 99.9% of the time in a given year. Both Throughput Optimized HDD (st1) and Cold HDD (sc1) guarantee performance consistency of 90% of burst throughput 99% of the time in a given year. Non-compliant periods are approximately uniformly distributed, targeting 99% of expected total throughput each hour. For more information, see [Amazon EBS Volume Types](p. 632).

Contents

- **Instance Types That Support EBS Optimization** (p. 691)
- **Enabling Amazon EBS Optimization at Launch** (p. 695)
- **Modifying Amazon EBS Optimization for a Running Instance** (p. 695)

Instance Types That Support EBS Optimization

The following table shows which instance types support EBS optimization, the dedicated bandwidth to Amazon EBS, the maximum number of IOPS the instance can support if you are using a 16 KiB I/O size, and the typical maximum aggregate throughput that can be achieved on that connection in MiB/s with a streaming read workload and 128 KiB I/O size. Choose an EBS–optimized instance that provides more dedicated Amazon EBS throughput than your application needs; otherwise, the connection between Amazon EBS and Amazon EC2 can become a performance bottleneck.
The current generation instance types are EBS–optimized by default. For those instances, there is no need to enable EBS optimization and no effect if you disable EBS optimization. For instances that are not EBS–optimized by default, you can enable EBS optimization when you launch the instances, or enable EBS optimization after the instances are running. Instances must have EBS optimization enabled to achieve the level of performance described in the table below.

When you enable EBS optimization for an instance that is not EBS-optimized by default, you pay an additional low, hourly fee for the dedicated capacity. For pricing information, see EBS-optimized Instances on the Amazon EC2 Pricing page for On-Demand instances.

The i2.8xlarge, c3.8xlarge, and r3.8xlarge instances do not have dedicated EBS bandwidth and therefore do not offer EBS optimization. On these instances, network traffic and Amazon EBS traffic share the same 10-gigabit network interface.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>EBS-optimized by default</th>
<th>Maximum bandwidth (Mbps)</th>
<th>Maximum throughput (MB/s, 128 KB I/O)</th>
<th>Maximum IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1.xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c3.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>c3.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c3.4xlarge</td>
<td></td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>c4.large</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>c4.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>c4.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c4.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>c4.8xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>c5.large*</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.xlarge*</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.2xlarge*</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.4xlarge</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.9xlarge</td>
<td>Yes</td>
<td>4,500</td>
<td>562.5</td>
<td>32,000</td>
</tr>
<tr>
<td>c5.18xlarge</td>
<td>Yes</td>
<td>9,000</td>
<td>1,125</td>
<td>64,000</td>
</tr>
<tr>
<td>d2.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>d2.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>d2.8xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>f1.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>f1.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>75,000</td>
</tr>
<tr>
<td>g2.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
</tbody>
</table>
EBS Optimization

<table>
<thead>
<tr>
<th>Instance type</th>
<th>EBS-optimized by default</th>
<th>Maximum bandwidth (Mbps)</th>
<th>Maximum throughput (MB/s, 128 KB I/O)</th>
<th>Maximum IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g3.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>g3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>g3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>h1.2xlarge</td>
<td>Yes</td>
<td>1,750</td>
<td>218.75</td>
<td>12,000</td>
</tr>
<tr>
<td>h1.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>h1.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>h1.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>i2.xlarge</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>i2.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>i2.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>i3.large</td>
<td>Yes</td>
<td>425</td>
<td>53.13</td>
<td>3,000</td>
</tr>
<tr>
<td>i3.xlarge</td>
<td>Yes</td>
<td>850</td>
<td>106.25</td>
<td>6,000</td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>16,000</td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>32,500</td>
</tr>
<tr>
<td>i3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>65,000</td>
</tr>
<tr>
<td>m1.large</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m1.xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m2.2xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m2.4xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m3.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m3.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m4.large</td>
<td>Yes</td>
<td>450</td>
<td>56.25</td>
<td>3,600</td>
</tr>
<tr>
<td>m4.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>m4.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m4.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>m4.16xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
<tr>
<td>m5.large*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.xlarge*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
</tbody>
</table>
EBS Optimization

<table>
<thead>
<tr>
<th>Instance type</th>
<th>EBS-optimized by default</th>
<th>Maximum bandwidth (Mbps)</th>
<th>Maximum throughput (MB/s, 128 KB I/O)</th>
<th>Maximum IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m5.2xlarge*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.4xlarge</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.12xlarge</td>
<td>Yes</td>
<td>5,000</td>
<td>625</td>
<td>32,500</td>
</tr>
<tr>
<td>m5.24xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
<tr>
<td>p2.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>p2.8xlarge</td>
<td>Yes</td>
<td>5,000</td>
<td>625</td>
<td>32,500</td>
</tr>
<tr>
<td>p2.16xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
<tr>
<td>p3.2xlarge</td>
<td>Yes</td>
<td>1,750</td>
<td>218</td>
<td>10,000</td>
</tr>
<tr>
<td>p3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>p3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>r3.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>r3.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>r3.4xlarge</td>
<td></td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>r4.large</td>
<td>Yes</td>
<td>425</td>
<td>53.13</td>
<td>3,000</td>
</tr>
<tr>
<td>r4.xlarge</td>
<td>Yes</td>
<td>850</td>
<td>106.25</td>
<td>6,000</td>
</tr>
<tr>
<td>r4.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>r4.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>18,750</td>
</tr>
<tr>
<td>r4.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>37,500</td>
</tr>
<tr>
<td>r4.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>75,000</td>
</tr>
<tr>
<td>x1.16xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>x1.32xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>x1e.xlarge</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>3,700</td>
</tr>
<tr>
<td>x1e.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>7,400</td>
</tr>
<tr>
<td>x1e.4xlarge</td>
<td>Yes</td>
<td>1,750</td>
<td>218.75</td>
<td>10,000</td>
</tr>
<tr>
<td>x1e.8xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
</tbody>
</table>

* These instance types can support maximum performance for 30 minutes at least once every 24 hours. For example, c5.large instances can deliver 281 MB/s for 30 minutes at least once every 24 hours. If you have a workload that requires sustained maximum performance for longer than 30 minutes, select an instance type according to baseline performance as shown in the table below.
The EBSIOBalance% and EBSByteBalance% metrics can help you determine if you have rightsized your instances. You can view these metrics in the CloudWatch console and set an alarm that will be triggered based on your thresholds. These metrics are expressed as a percentage. Instances with a consistently low balance percentage are candidates for upsizing. Instances where the balance percentage never drops below 100% are candidates for downsizing. For more information, see Monitoring Your Instances Using CloudWatch.

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Baseline bandwidth (Mbps)</th>
<th>Baseline throughput (MB/s, 128 KB I/O)</th>
<th>Baseline IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c5.large</td>
<td>525</td>
<td>66</td>
<td>4,000</td>
</tr>
<tr>
<td>c5.xlarge</td>
<td>800</td>
<td>100</td>
<td>6,000</td>
</tr>
<tr>
<td>c5.2xlarge</td>
<td>1,125</td>
<td>141</td>
<td>8,000</td>
</tr>
<tr>
<td>m5.large</td>
<td>480</td>
<td>60</td>
<td>3,600</td>
</tr>
<tr>
<td>m5.xlarge</td>
<td>800</td>
<td>100</td>
<td>6,000</td>
</tr>
<tr>
<td>m5.2xlarge</td>
<td>1,166</td>
<td>146</td>
<td>8,333</td>
</tr>
</tbody>
</table>

Enabling Amazon EBS Optimization at Launch

You can enable optimization for an instance by setting its Amazon EBS–optimized attribute.

To enable Amazon EBS optimization when launching an instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Launch Instance.
3. In Step 1: Choose an Amazon Machine Image (AMI), select an AMI.
4. In Step 2: Choose an Instance Type, select an instance type that is listed as supporting Amazon EBS optimization.
5. In Step 3: Configure Instance Details, complete the fields that you need and choose Launch as EBS-optimized instance. If the instance type that you selected in the previous step doesn't support Amazon EBS optimization, this option is not present. If the instance type that you selected is Amazon EBS–optimized by default, this option is selected and you can't deselect it.
6. Follow the directions to complete the wizard and launch your instance.

To enable EBS optimization when launching an instance using the command line

You can use one of the following options with the corresponding command. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `--ebs-optimized` with `run-instances` (AWS CLI)
- `-EbsOptimized` with `New-EC2Instance` (AWS Tools for Windows PowerShell)

Modifying Amazon EBS Optimization for a Running Instance

You can enable or disable optimization for a running instance by modifying its Amazon EBS–optimized instance attribute.
To enable EBS optimization for a running instance using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, click **Instances**, and select the instance.
3. Click **Actions**, select **Instance State**, and then click **Stop**.

 Warning
 When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.
4. In the confirmation dialog box, click **Yes, Stop**. It can take a few minutes for the instance to stop.
5. With the instance still selected, click **Actions**, select **Instance Settings**, and then click **Change Instance Type**.
6. In the **Change Instance Type** dialog box, do one of the following:

 - If the instance type of your instance is Amazon EBS-optimized by default, **EBS-optimized** is selected and you can't change it. You can choose **Cancel**, because Amazon EBS optimization is already enabled for the instance.
 - If the instance type of your instance supports Amazon EBS optimization, choose **EBS-optimized**, **Apply**.
 - If the instance type of your instance does not support Amazon EBS optimization, you can't choose **EBS-optimized**. You can select an instance type from **Instance Type** that supports Amazon EBS optimization, and then choose **EBS-optimized**, **Apply**.
7. Choose **Actions**, **Instance State**, **Start**.

To enable EBS optimization for a running instance using the command line

You can use one of the following options with the corresponding command. For more information about these command line interfaces, see **Accessing Amazon EC2** (p. 3).

- `--ebs-optimized` with `modify-instance-attribute` (AWS CLI)
- `-EbsOptimized` with `Edit-EC2InstanceAttribute` (AWS Tools for Windows PowerShell)

Amazon EBS Encryption

Amazon EBS encryption offers a simple encryption solution for your EBS volumes without the need to build, maintain, and secure your own key management infrastructure. When you create an encrypted EBS volume and attach it to a supported instance type, the following types of data are encrypted:

- Data at rest inside the volume
- All data moving between the volume and the instance
- All snapshots created from the volume
- All volumes created from those snapshots

Encryption operations occur on the servers that host EC2 instances, ensuring the security of both data-at-rest and data-in-transit between an instance and its attached EBS storage.

Encryption is supported by all EBS volume types (General Purpose SSD \([\text{gp2}]\), Provisioned IOPS SSD \([\text{io1}]\), Throughput Optimized HDD \([\text{st1}]\), Cold HDD \([\text{sc1}]\), and Magnetic \([\text{standard}]\)). You can expect the same IOPS performance on encrypted volumes as on unencrypted volumes, with a minimal effect on latency. You can access encrypted volumes the same way that you access unencrypted volumes. Encryption and decryption are handled transparently and they require no additional action from you or your applications.
Public snapshots of encrypted volumes are not supported, but you can share an encrypted snapshot with specific accounts. For more information about sharing encrypted snapshots, see Sharing an Amazon EBS Snapshot.

Amazon EBS encryption is only available on certain instance types. You can attach both encrypted and unencrypted volumes to a supported instance type. For more information, see Supported Instance Types (p. 697).

Contents
- Encryption Key Management (p. 697)
- Supported Instance Types (p. 697)
- Changing the Encryption State of Your Data (p. 698)
- Amazon EBS Encryption and CloudWatch Events (p. 700)

Encryption Key Management

Amazon EBS encryption uses AWS Key Management Service (AWS KMS) customer master keys (CMKs) when creating encrypted volumes and any snapshots created from them. A unique AWS-managed CMK is created for you automatically in each region where you store AWS assets. This key is used for Amazon EBS encryption unless you specify a customer-managed CMK that you created separately using AWS KMS.

Note
Creating your own CMK gives you more flexibility, including the ability to create, rotate, and disable keys to define access controls. For more information, see the AWS Key Management Service Developer Guide.

You cannot change the CMK that is associated with an existing snapshot or encrypted volume. However, you can associate a different CMK during a snapshot copy operation so that the resulting copied snapshot uses the new CMK.

EBS encrypts your volume with a data key using the industry-standard AES-256 algorithm. Your data key is stored on-disk with your encrypted data, but not before EBS encrypts it with your CMK—it never appears there in plaintext. The same data key is shared by snapshots of the volume and any subsequent volumes created from those snapshots.

For more information about key management and key access permissions, see How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS and Authentication and Access Control for AWS KMS in the AWS Key Management Service Developer Guide.

Supported Instance Types

Amazon EBS encryption is available on the instance types listed in the table below. These instance types leverage the Intel AES New Instructions (AES-NI) instruction set to provide faster and simpler data protection. You can attach both encrypted and unencrypted volumes to these instance types simultaneously.

<table>
<thead>
<tr>
<th>Instance family</th>
<th>Instance types that support Amazon EBS encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>General purpose</td>
<td>t2.nano</td>
</tr>
</tbody>
</table>
Instance family

<table>
<thead>
<tr>
<th>Instance types that support Amazon EBS encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute optimized</td>
</tr>
<tr>
<td>c4.large</td>
</tr>
<tr>
<td>Memory optimized</td>
</tr>
<tr>
<td>r4.large</td>
</tr>
<tr>
<td>Storage optimized</td>
</tr>
<tr>
<td>d2.xlarge</td>
</tr>
<tr>
<td>Accelerated computing</td>
</tr>
<tr>
<td>f1.2xlarge</td>
</tr>
</tbody>
</table>

For more information about these instance types, see Instance Type Details.

Changing the Encryption State of Your Data

There is no direct way to encrypt an existing unencrypted volume, or to remove encryption from an encrypted volume. However, you can migrate data between encrypted and unencrypted volumes. You can also apply a new encryption status while copying a snapshot:

- While copying an unencrypted snapshot of an unencrypted volume, you can encrypt the copy. Volumes restored from this encrypted copy are also encrypted.
- While copying an encrypted snapshot of an encrypted volume, you can associate the copy with a different CMK. Volumes restored from the encrypted copy are only accessible using the newly applied CMK.

You cannot remove encryption from an encrypted snapshot.

Migrate Data between Encrypted and Unencrypted Volumes

When you have access to both an encrypted and unencrypted volume, you can freely transfer data between them. EC2 carries out the encryption and decryption operations transparently.

To migrate data between encrypted and unencrypted volumes

1. Create your destination volume (encrypted or unencrypted, depending on your need) by following the procedures in Creating an Amazon EBS Volume (p. 644).
2. Attach the destination volume to the instance that hosts the data to migrate. For more information, see Attaching an Amazon EBS Volume to an Instance (p. 647).
3. Make the destination volume available by following the procedures in Making an Amazon EBS Volume Available for Use (p. 648). For Linux instances, you can create a mount point at `/mnt/destination` and mount the destination volume there.
4. Copy the data from your source directory to the destination volume. It may be most convenient to use a bulk-copy utility for this.

Linux
Use the \texttt{rsync} command as follows to copy the data from your source to the destination volume. In this example, the source data is located in \texttt{/mnt/source} and the destination volume is mounted at \texttt{/mnt/destination}.

\begin{verbatim}
[ec2-user ~]$ sudo rsync -avh --progress /mnt/source/ /mnt/destination/
\end{verbatim}

Windows

At a command prompt, use the \texttt{robocopy} command to copy the data from your source to the destination volume. In this example, the source data is located in \texttt{D:\} and the destination volume is mounted at \texttt{E:\}.

\begin{verbatim}
PS C:\> robocopy D:\ E:\ /e /copyall /eta
\end{verbatim}

Apply Encryption While Copying a Snapshot

Because you can apply encryption to a snapshot while copying it, another path to encrypting your data is the following procedure.

To encrypt a volume's data by means of snapshot copying

1. Create a snapshot of your unencrypted EBS volume. This snapshot is also unencrypted.
2. Copy the snapshot while applying encryption parameters. The resulting target snapshot is encrypted.
3. Restore the encrypted snapshot to a new volume, which is also encrypted.

For more information, see \textit{Copying an Amazon EBS Snapshot}.

Encrypt a Snapshot Under a New CMK

The ability to encrypt a snapshot during copying also allows you to apply a new CMK to an already-encrypted snapshot that you own. Volumes restored from the resulting copy are only accessible under the new CMK.

In a related scenario, you may choose to apply new encryption parameters to a copy of a snapshot that has been shared with you. Before you can restore a volume from a shared encrypted snapshot, you must create your own copy of it. By default, the copy is encrypted with a CMK shared by the snapshot's owner. However, we recommend that you create a copy of the shared snapshot under a different CMK that you control. This protects your access to the volume if the original CMK is compromised, or if the owner revokes the CMK for any reason.

The following procedure demonstrates how to create a copy of a shared snapshot under a customer-managed CMK that you own.

To copy a snapshot that you own under a new custom CMK using the console

1. Create a customer-managed CMK. For more information, see \texttt{AWS Key Management Service Developer Guide}.
2. Create an EBS volume encrypted under (for this example) your AWS-managed CMK.
3. Create a snapshot of your encrypted EBS volume. This snapshot is also encrypted under your AWS-managed CMK.
4. On the \texttt{Snapshots} page, choose \texttt{Actions, Copy}.
5. In the **Copy Snapshot** window, supply the complete ARN for your customer-managed CMK (in the form `arn:aws:kms:us-east-1:012345678910:key/abcd1234-a123-456a-a12b-a123b4cd56ef`) in the **Master Key** field, or choose it from the menu. Choose **Copy**.

The resulting copy of the snapshot—and all volumes restored from it—are encrypted under your customer-managed CMK.

The following procedure demonstrates how to make a copy of a shared encrypted snapshot under a new CMK that you own. For this to work, you also need access permissions to both the shared encrypted snapshot and to the CMK under which it was originally encrypted.

To copy a shared snapshot under a CMK that you own using the console

1. Select the shared encrypted snapshot on the **Snapshots** page and choose **Actions**, **Copy**.
2. In the **Copy Snapshot** window, supply the complete ARN for a CMK that you own (in the form `arn:aws:kms:us-east-1:012345678910:key/abcd1234-a123-456a-a12b-a123b4cd56ef`) in the **Master Key** field, or choose it from the menu. Choose **Copy**.

The resulting copy of the snapshot—and all volumes restored from it—are encrypted under the CMK that you supplied. Changes to the original shared snapshot, its encryption status, or the shared CMK have no effect on your copy.

For more information, see **Copying an Amazon EBS Snapshot**.

Amazon EBS Encryption and CloudWatch Events

Amazon EBS supports Amazon CloudWatch Events for certain encryption-related scenarios. For more information, see **Amazon CloudWatch Events for Amazon EBS**.

Amazon EBS and NVMe

With C5 and M5 instances, EBS volumes are exposed as NVMe block devices. The device names are `/dev/nvme0n1`, `/dev/nvme1n1`, and so on. The device names that you specify in a block device mapping are renamed using NVMe device names (`/dev/nvme[0-26]n1`).

Note

The EBS performance guarantees stated in **Amazon EBS Product Details** are valid regardless of the block-device interface.

Identifying the EBS Device

You can use the **Get-Disk** command to map Windows disk numbers to EBS volume IDs.

Windows Server 2016

To get the volume IDs, select `AdapterSerialNumber`. In this example, the ID of volume 0 is "vol-0651a78c608e09c6a".

```powershell
PS C:\Users\user> Get-Disk | Select Number,AdapterSerialNumber | Sort-Object Number

+----------+---------------------+
| Number   | AdapterSerialNumber |
+----------+---------------------+
| 0        | vol0651a78c608e09c6a|
| 1        | vol013f93c68194556d14|
| 2        | vol0dbd294c35c6174de|
```

Windows Server 2012 R2
To get the volume IDs, select `SerialNumber`. In this example, the ID of volume 0 is "vol-01257d42be427a58b".

```
PS C:\> Get-Disk | Select Number,SerialNumber | Sort-Object Number

<table>
<thead>
<tr>
<th>Number</th>
<th>SerialNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>vol01257d42be427a58b_00000001</td>
</tr>
<tr>
<td>1</td>
<td>vol0da96b723afa69568_00000001</td>
</tr>
<tr>
<td>2</td>
<td>vol0d577fdabd6001831_00000001</td>
</tr>
</tbody>
</table>
```

Working with NVMe EBS Volumes

If you resize your volume on a Windows system, you need to rescan the volume or reboot the instance for the change to be recognized.

I/O Operation Timeout

NVMe EBS volumes use the default NVMe driver provided by the operating system. Most operating systems specify a timeout for I/O operations submitted to NVMe devices.

On Windows systems, the default timeout is 30 seconds and the maximum is 255 seconds. You can modify the `TimeoutValue` disk class registry setting using the procedure described in [Registry Entries for SCSI Miniport Drivers](#).

Amazon EBS Volume Performance on Windows Instances

Several factors, including I/O characteristics and the configuration of your instances and volumes, can affect the performance of Amazon EBS. Customers who follow the guidance on our Amazon EBS and Amazon EC2 product detail pages typically achieve good performance out of the box. However, there are some cases where you may need to do some tuning in order achieve peak performance on the platform. This topic discusses general best practices as well as performance tuning that is specific to certain use cases. We recommend that you tune performance with information from your actual workload, in addition to benchmarking, to determine your optimal configuration. After you learn the basics of working with EBS volumes, it's a good idea to look at the I/O performance you require and at your options for increasing Amazon EBS performance to meet those requirements.

Contents

- Amazon EBS Performance Tips (p. 701)
- Amazon EC2 Instance Configuration (p. 703)
- I/O Characteristics and Monitoring (p. 707)
- Initializing Amazon EBS Volumes (p. 709)
- RAID Configuration on Windows (p. 712)

Amazon EBS Performance Tips

These tips represent best practices for getting optimal performance from your EBS volumes in a variety of user scenarios.

Use EBS-Optimized Instances

On instances without support for EBS-optimized throughput, network traffic can contend with traffic between your instance and your EBS volumes; on EBS-optimized instances, the two types of traffic are
kept separate. Some EBS-optimized instance configurations incur an extra cost (such as C3, R3, and M3), while others are always EBS-optimized at no extra cost (such as M4, C4, C5, and D2). For more information, see Amazon EC2 Instance Configuration (p. 703).

Understand How Performance is Calculated

When you measure the performance of your EBS volumes, it is important to understand the units of measure involved and how performance is calculated. For more information, see I/O Characteristics and Monitoring (p. 707).

Understand Your Workload

There is a relationship between the maximum performance of your EBS volumes, the size and number of I/O operations, and the time it takes for each action to complete. Each of these factors (performance, I/O, and latency) affects the others, and different applications are more sensitive to one factor or another.

Be Aware of the Performance Penalty When Initializing Volumes from Snapshots

There is a significant increase in latency when you first access each block of data on a new EBS volume that was restored from a snapshot. You can avoid this performance hit by accessing each block prior to putting the volume into production. This process is called *initialization* (formerly known as pre-warming). For more information, see Initializing Amazon EBS Volumes (p. 709).

Factors That Can Degrade HDD Performance

When you create a snapshot of a Throughput Optimized HDD (st1) or Cold HDD (sc1) volume, performance may drop as far as the volume's baseline value while the snapshot is in progress. This behavior is specific to these volume types. Other factors that can limit performance include driving more throughput than the instance can support, the performance penalty encountered while initializing volumes restored from a snapshot, and excessive amounts of small, random I/O on the volume. For more information about calculating throughput for HDD volumes, see Amazon EBS Volume Types.

Your performance can also be impacted if your application isn't sending enough I/O requests. This can be monitored by looking at your volume's queue length and I/O size. The queue length is the number of pending I/O requests from your application to your volume. For maximum consistency, HDD-backed volumes must maintain a queue length (rounded to the nearest whole number) of 4 or more when performing 1 MiB sequential I/O. For more information about ensuring consistent performance of your volumes, see I/O Characteristics and Monitoring (p. 707).

Increase Read-Ahead for High-Throughput, Read-Heavy Workloads on st1 and sc1

Some workloads are read-heavy and access the block device through the operating system page cache (for example, from a file system). In this case, to achieve the maximum throughput, we recommend that you configure the read-ahead setting to 1 MiB. This is a per-block-device setting that should only be applied to your HDD volumes. The following examples assume that you are on an Amazon Linux instance.

To examine the current value of read-ahead for your block devices, use the following command:

```
[ec2-user ~]$ sudo blockdev --report /dev/<device>
```

Block device information is returned in the following format:

```
RO  RA  SSZ  BSZ  StartSec     Size     Device
rw  256 512 4096  4096 85870444 /dev/<device>
```
The device shown reports a read-ahead value of 256 (the default). Multiply this number by the sector size (512 bytes) to obtain the size of the read-ahead buffer, which in this case is 128 KiB. To set the buffer value to 1 MiB, use the following command:

```
[ec2-user ~]$ sudo blockdev --setra 2048 /dev/<device>
```

Verify that the read-ahead setting now displays 2,048 by running the first command again.

Only use this setting when your workload consists of large, sequential I/Os. If it consists mostly of small, random I/Os, this setting will actually degrade your performance. In general, if your workload consists mostly of small or random I/Os, you should consider using a General Purpose SSD (gp2) volume rather than st1 or sc1.

Use RAID 0 to Maximize Utilization of Instance Resources

Some instance types can drive more I/O throughput than what you can provision for a single EBS volume. You can join multiple gp2, io1, st1, or sc1 volumes together in a RAID 0 configuration to use the available bandwidth for these instances. For more information, see RAID Configuration on Windows (p. 712).

Track Performance with Amazon CloudWatch

Amazon Web Services provides performance metrics for Amazon EBS that you can analyze and view with Amazon CloudWatch and status checks that you can use to monitor the health of your volumes. For more information, see Monitoring the Status of Your Volumes (p. 651).

Amazon EC2 Instance Configuration

When you plan and configure EBS volumes for your application, it is important to consider the configuration of the instances that you will attach the volumes to. In order to get the most performance out of your EBS volumes, you should attach them to an instance with enough bandwidth to support your volumes, such as an EBS-optimized instance or an instance with 10 Gigabit network connectivity. This is especially important when you stripe multiple volumes together in a RAID configuration.

Use EBS-Optimized or 10 Gigabit Network Instances

Any performance-sensitive workloads that require minimal variability and dedicated Amazon EC2 to Amazon EBS traffic, such as production databases or business applications, should use volumes that are attached to an EBS-optimized instance or an instance with 10 Gigabit network connectivity. EC2 instances that do not meet this criteria offer no guarantee of network resources. The only way to ensure sustained reliable network bandwidth between your EC2 instance and your EBS volumes is to launch the EC2 instance as EBS-optimized or choose an instance type with 10 Gigabit network connectivity. To see which instance types include 10 Gigabit network connectivity, see Instance Type Details. For information about configuring EBS-optimized instances, see Amazon EBS–Optimized Instances.

Choose an EC2 Instance with Enough Bandwidth

Launching an instance that is EBS-optimized provides you with a dedicated connection between your EC2 instance and your EBS volume. However, it is still possible to provision EBS volumes that exceed the available bandwidth for certain instance types, especially when multiple volumes are striped in a RAID configuration. The following table shows which instance types are available to be launched as EBS-optimized, the dedicated throughput to instance types are available to be launched as EBS-optimized, the dedicated bandwidth to Amazon EBS, the maximum amount of IOPS the instance can support if you are using a 16 KB I/O size, and the approximate I/O bandwidth available on that connection in MB/s. Be sure to choose an EBS-optimized instance that provides more dedicated EBS throughput than your application needs; otherwise, the Amazon EBS to Amazon EC2 connection will become a performance bottleneck.
Note
The table below and the following examples use 16 KB as an I/O size for explanatory purposes only; your application I/O size may vary (Amazon EBS measures each I/O operation per second that is 256 KiB or smaller as one IOPS). For more information about IOPS and the relationship between I/O size and volume throughput limits, see I/O Characteristics and Monitoring (p. 707).

<table>
<thead>
<tr>
<th>Instance type</th>
<th>EBS-optimized by default</th>
<th>Maximum bandwidth (Mbps)</th>
<th>Maximum throughput (MB/s, 128 KB I/O)</th>
<th>Maximum IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1.xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c3.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>c3.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c3.4xlarge</td>
<td></td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>c4.large</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>c4.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>c4.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>c4.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>c4.8xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>c5.1large</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.xlarge</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.2xlarge</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.4xlarge</td>
<td>Yes</td>
<td>2,250</td>
<td>281.25</td>
<td>16,000</td>
</tr>
<tr>
<td>c5.9xlarge</td>
<td>Yes</td>
<td>4,500</td>
<td>562.5</td>
<td>32,000</td>
</tr>
<tr>
<td>c5.18xlarge</td>
<td>Yes</td>
<td>9,000</td>
<td>1,125</td>
<td>64,000</td>
</tr>
<tr>
<td>d2.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>d2.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>d2.8xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>f1.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>f1.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>75,000</td>
</tr>
<tr>
<td>g2.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>g3.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>g3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>g3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>h1.2xlarge</td>
<td>Yes</td>
<td>1,750</td>
<td>218.75</td>
<td>12,000</td>
</tr>
<tr>
<td>Instance type</td>
<td>EBS-optimized by default</td>
<td>Maximum bandwidth (Mbps)</td>
<td>Maximum throughput (MB/s, 128 KB I/O)</td>
<td>Maximum IOPS (16 KB I/O)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>h1.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>h1.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>h1.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>i2.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>i2.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>i2.4xlarge</td>
<td></td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>i3.large</td>
<td>Yes</td>
<td>425</td>
<td>53.13</td>
<td>3,000</td>
</tr>
<tr>
<td>i3.xlarge</td>
<td>Yes</td>
<td>850</td>
<td>106.25</td>
<td>6,000</td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>16,000</td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>32,500</td>
</tr>
<tr>
<td>i3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>65,000</td>
</tr>
<tr>
<td>m1.large</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m1.xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m2.2xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m2.4xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m3.xlarge</td>
<td></td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>m3.2xlarge</td>
<td></td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m4.large</td>
<td>Yes</td>
<td>450</td>
<td>56.25</td>
<td>3,600</td>
</tr>
<tr>
<td>m4.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>m4.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>m4.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>Yes</td>
<td>4,000</td>
<td>500</td>
<td>32,000</td>
</tr>
<tr>
<td>m4.16xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
<tr>
<td>m5.large*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.xlarge*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.2xlarge*</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.4xlarge</td>
<td>Yes</td>
<td>2,120</td>
<td>265</td>
<td>16,000</td>
</tr>
<tr>
<td>m5.12xlarge</td>
<td>Yes</td>
<td>5,000</td>
<td>625</td>
<td>32,500</td>
</tr>
<tr>
<td>m5.24xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
</tbody>
</table>
EBS Performance

<table>
<thead>
<tr>
<th>Instance type</th>
<th>EBS-optimized by default</th>
<th>Maximum bandwidth (Mbps)</th>
<th>Maximum throughput (MB/s, 128 KB I/O)</th>
<th>Maximum IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2.16xlarge</td>
<td>Yes</td>
<td>10,000</td>
<td>1,250</td>
<td>65,000</td>
</tr>
<tr>
<td>p2.8xlarge</td>
<td>Yes</td>
<td>5,000</td>
<td>625</td>
<td>32,500</td>
</tr>
<tr>
<td>p2.xlarge</td>
<td>Yes</td>
<td>750</td>
<td>93.75</td>
<td>6,000</td>
</tr>
<tr>
<td>p3.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>p3.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>r3.xlarge</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>4,000</td>
</tr>
<tr>
<td>r3.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>8,000</td>
</tr>
<tr>
<td>r3.4xlarge</td>
<td>Yes</td>
<td>2,000</td>
<td>250</td>
<td>16,000</td>
</tr>
<tr>
<td>r4.large</td>
<td>Yes</td>
<td>425</td>
<td>53.13</td>
<td>3,000</td>
</tr>
<tr>
<td>r4.xlarge</td>
<td>Yes</td>
<td>850</td>
<td>106.25</td>
<td>6,000</td>
</tr>
<tr>
<td>r4.2xlarge</td>
<td>Yes</td>
<td>1,700</td>
<td>212.5</td>
<td>12,000</td>
</tr>
<tr>
<td>r4.4xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>18,750</td>
</tr>
<tr>
<td>r4.8xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>37,500</td>
</tr>
<tr>
<td>r4.16xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>75,000</td>
</tr>
<tr>
<td>x1.16xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>x1.32xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
<tr>
<td>x1e.xlarge</td>
<td>Yes</td>
<td>500</td>
<td>62.5</td>
<td>3,700</td>
</tr>
<tr>
<td>x1e.2xlarge</td>
<td>Yes</td>
<td>1,000</td>
<td>125</td>
<td>7,400</td>
</tr>
<tr>
<td>x1e.4xlarge</td>
<td>Yes</td>
<td>1,750</td>
<td>218.75</td>
<td>10,000</td>
</tr>
<tr>
<td>x1e.8xlarge</td>
<td>Yes</td>
<td>3,500</td>
<td>437.5</td>
<td>20,000</td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td>Yes</td>
<td>7,000</td>
<td>875</td>
<td>40,000</td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td>Yes</td>
<td>14,000</td>
<td>1,750</td>
<td>80,000</td>
</tr>
</tbody>
</table>

* These instance types can support maximum performance for 30 minutes at least once every 24 hours. For example, c5.large instances can deliver 281 MB/s for 30 minutes at least once every 24 hours. If you have a workload that requires sustained maximum performance for longer than 30 minutes, select an instance type according to baseline performance as shown in the table above.

The EBSIOBalance% and EBSByteBalance% metrics can help you determine if you have rightsized your instances. You can view these metrics in the CloudWatch console and set an alarm that will be triggered based on your thresholds. These metrics are expressed as a percentage. Instances with a consistently low balance percentage are candidates for upsizing. Instances where the balance percentage never drops below 100% are candidates for downsizing. For more information, see Monitoring Your Instances Using CloudWatch.
EBS Performance

<table>
<thead>
<tr>
<th>Instance type</th>
<th>Baseline bandwidth (Mbps)</th>
<th>Baseline throughput (MB/s, 128 KB I/O)</th>
<th>Baseline IOPS (16 KB I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c5.large</td>
<td>525</td>
<td>66</td>
<td>4,000</td>
</tr>
<tr>
<td>c5.xlarge</td>
<td>800</td>
<td>100</td>
<td>6,000</td>
</tr>
<tr>
<td>c5.2xlarge</td>
<td>1,125</td>
<td>141</td>
<td>8,000</td>
</tr>
<tr>
<td>m5.large</td>
<td>480</td>
<td>60</td>
<td>3,600</td>
</tr>
<tr>
<td>m5.xlarge</td>
<td>800</td>
<td>100</td>
<td>6,000</td>
</tr>
<tr>
<td>m5.2xlarge</td>
<td>1,166</td>
<td>146</td>
<td>8,333</td>
</tr>
</tbody>
</table>

Note that some instances with 10-gigabit network interfaces, such as i2.8xlarge, c3.8xlarge, and r3.8xlarge, do not offer EBS-optimization, and therefore do not have dedicated EBS bandwidth available and are not listed here. However, you can use all of that bandwidth for traffic to Amazon EBS if your application isn’t pushing other network traffic that contends with Amazon EBS. Some other 10-gigabit network instances, such as c4.8xlarge and d2.8xlarge offer dedicated Amazon EBS bandwidth in addition to a 10-gigabit interface which is used exclusively for network traffic.

The m1.large instance has a maximum 16 KB IOPS value of 4,000, but unless this instance type is launched as EBS-optimized, that value is an absolute best-case scenario and is not guaranteed; to consistently achieve 4,000 16 KB IOPS, you must launch this instance as EBS-optimized. However, if a 4,000 IOPS io1 volume is attached to an EBS-optimized m1.large instance, the Amazon EC2 to Amazon EBS connection bandwidth limit prevents this volume from providing the 320 MB/s maximum aggregate throughput available to it. In this case, we must use an EBS-optimized EC2 instance that supports at least 320 MB/s of throughput, such as the c4.8xlarge instance type.

Volumes of type General Purpose SSD (gp2) have a throughput limit between 128 MB/s and 160 MB/s per volume (depending on volume size), which pairs well with a 1,000 Mbps EBS-optimized connection. Instance types that offer more than 1,000 Mbps of throughput to Amazon EBS can use more than one gp2 volume to take advantage of the available throughput. Volumes of type Provisioned IOPS SSD (io1) have a throughput limit range of 256 KiB for each IOPS provisioned, up to a maximum of 320 MiB/s (at 1,280 IOPS). For more information, see Amazon EBS Volume Types (p. 632).

Instance types with 10 Gigabit network connectivity support up to 800 MB/s of throughput and 48,000 16K IOPS for unencrypted Amazon EBS volumes and up to 25,000 16K IOPS for encrypted Amazon EBS volumes. Because the maximum io1 value for EBS volumes is for io1 volumes and 10,000 for gp2 volumes, you can use several EBS volumes simultaneously to reach the level of I/O performance available to these instance types. For more information about which instance types include 10 Gigabit network connectivity, see Instance Type Details.

You should use EBS-optimized instances when available to get the full performance benefits of Amazon EBS gp2 and io1 volumes. For more information, see Amazon EBS–Optimized Instances (p. 691).

I/O Characteristics and Monitoring

On a given volume configuration, certain I/O characteristics drive the performance behavior for your EBS volumes. SSD-backed volumes—General Purpose SSD (gp2) and Provisioned IOPS SSD (io1)—deliver consistent performance whether an I/O operation is random or sequential. HDD-backed volumes—Throughput Optimized HDD (st1) and Cold HDD (sc1)—deliver optimal performance only when I/O operations are large and sequential. To understand how SSD and HDD volumes will perform in your application, it is important to know the connection between demand on the volume, the quantity of IOPS available to it, the time it takes for an I/O operation to complete, and the volume’s throughput limits.
IOPS

IOPS are a unit of measure representing input/output operations per second. The operations are measured in KiB, and the underlying drive technology determines the maximum amount of data that a volume type counts as a single I/O. I/O size is capped at 256 KiB for SSD volumes and 1,024 KiB for HDD volumes because SSD volumes handle small or random I/O much more efficiently than HDD volumes.

When small I/O operations are physically contiguous, Amazon EBS attempts to merge them into a single I/O up to the maximum size. For example, for SSD volumes, a single 1,024 KiB I/O operation counts as 4 operations (1,024÷256=4), while 8 contiguous I/O operations at 32 KiB each count as 1 operation (8×32=256). However, 8 random I/O operations at 32 KiB each count as 8 operations. Each I/O operation under 32 KiB counts as 1 operation.

Similarly, for HDD-backed volumes, both a single 1,024 KiB I/O operation and 8 sequential 128 KiB operations would count as one operation. However, 8 random 128 KiB I/O operations would count as 8 operations.

Consequently, when you create an SSD-backed volume supporting 3,000 IOPS (either by provisioning an io1 volume at 3,000 IOPS or by sizing a gp2 volume at 1000 GiB), and you attach it to an EBS-optimized instance that can provide sufficient bandwidth, you can transfer up to 3,000 I/Os of data per second, with throughput determined by I/O size.

Volume Queue Length and Latency

The volume queue length is the number of pending I/O requests for a device. Latency is the true end-to-end client time of an I/O operation, in other words, the time elapsed between sending an I/O to EBS and receiving an acknowledgement from EBS that the I/O read or write is complete. Queue length must be correctly calibrated with I/O size and latency to avoid creating bottlenecks either on the guest operating system or on the network link to EBS.

Optimal queue length varies for each workload, depending on your particular application's sensitivity to IOPS and latency. If your workload is not delivering enough I/O requests to fully use the performance available to your EBS volume, then your volume might not deliver the IOPS or throughput that you have provisioned.

Transaction-intensive applications are sensitive to increased I/O latency and are well-suited for SSD-backed io1 and gp2 volumes. You can maintain high IOPS while keeping latency down by maintaining a low queue length and a high number of IOPS available to the volume. Consistently driving more IOPS to a volume than it has available can cause increased I/O latency.

Throughput-intensive applications are less sensitive to increased I/O latency, and are well-suited for HDD-backed st1 and sc1 volumes. You can maintain high throughput to HDD-backed volumes by maintaining a high queue length when performing large, sequential I/O.

I/O size and volume throughput limits

For SSD-backed volumes, if your I/O size is very large, you may experience a smaller number of IOPS than you provisioned because you are hitting the throughput limit of the volume. For example, a gp2 volume under 1000 GiB with burst credits available has an IOPS limit of 3,000 and a volume throughput limit of 160 MiB/s. If you are using a 256 KiB I/O size, your volume reaches its throughput limit at 640 IOPS (640 x 256 KiB = 160 MiB). For smaller I/O sizes (such as 16 KiB), this same volume can sustain 3,000 IOPS because the throughput is well below 160 MiB/s. (These examples assume that your volume's I/O is not hitting the throughput limits of the instance.) For more information about the throughput limits for each EBS volume type, see Amazon EBS Volume Types (p. 632).

For smaller I/O operations, you may see a higher-than-provisioned IOPS value as measured from inside your instance. This happens when the instance operating system merges small I/O operations into a larger operation before passing them to Amazon EBS.
If your workload uses sequential I/Os on HDD-backed st1 and sc1 volumes, you may experience a higher than expected number of IOPS as measured from inside your instance. This happens when the instance operating system merges sequential I/Os and counts them in 1,024 KiB-sized units. If your workload uses small or random I/Os, you may experience a lower throughput than you expect. This is because we count each random, non-sequential I/O toward the total IOPS count, which can cause you to hit the volume's IOPS limit sooner than expected.

Whatever your EBS volume type, if you are not experiencing the IOPS or throughput you expect in your configuration, ensure that your EC2 instance bandwidth is not the limiting factor. You should always use a current-generation, EBS-optimized instance (or one that includes 10 Gb/s network connectivity) for optimal performance. For more information, see Amazon EC2 Instance Configuration (p. 703). Another possible cause for not experiencing the expected IOPS is that you are not driving enough I/O to the EBS volumes.

Monitor I/O Characteristics with CloudWatch

You can monitor these I/O characteristics with each volume's CloudWatch metrics (p. 651). Important metrics to consider include:

- BurstBalance
- VolumeReadBytes
- VolumeWriteBytes
- VolumeReadOps
- VolumeWriteOps
- VolumeQueueLength

BurstBalance displays the burst bucket balance for gp2, st1, and sc1 volumes as a percentage of the remaining balance. When your burst bucket is depleted, volume I/O credits (for gp2 volumes) or volume throughput credits (for st1 and sc1 volumes) is throttled to the baseline. Check the BurstBalance value to determine whether your volume is being throttled for this reason.

HDD-backed st1 and sc1 volumes are designed to perform best with workloads that take advantage of the 1,024 KiB maximum I/O size. To determine your volume's average I/O size, divide VolumeWriteBytes by VolumeWriteOps. The same calculation applies to read operations. If average I/O size is below 64 KiB, increasing the size of the I/O operations sent to an st1 or sc1 volume should improve performance.

Note
If average I/O size is at or near 44 KiB, you may be using an instance or kernel without support for indirect descriptors. Any Linux kernel 3.8 and above has this support, as well as any current-generation instance.

If your I/O latency is higher than you require, check VolumeQueueLength to make sure your application is not trying to drive more IOPS than you have provisioned. If your application requires a greater number of IOPS than your volume can provide, you should consider using a larger gp2 volume with a higher base performance level or an io1 volume with more provisioned IOPS to achieve faster latencies.

For more information about Amazon EBS I/O characteristics, see the Amazon EBS: Designing for Performance re:Invent presentation on this topic.

Initializing Amazon EBS Volumes

New EBS volumes receive their maximum performance the moment that they are available and do not require initialization (formerly known as pre-warming). However, storage blocks on volumes that were restored from snapshots must be initialized (pulled down from Amazon S3 and written to the volume) before you can access the block. This preliminary action takes time and can cause a significant increase.
in the latency of an I/O operation the first time each block is accessed. For most applications, amortizing this cost over the lifetime of the volume is acceptable. Performance is restored after the data is accessed once.

You can avoid this performance hit in a production environment by reading from all of the blocks on your volume before you use it; this process is called initialization. For a new volume created from a snapshot, you should read all the blocks that have data before using the volume.

Important

While initializing io1 volumes that were restored from snapshots, the performance of the volume may drop below 50 percent of its expected level, which causes the volume to display a warning state in the I/O Performance status check. This is expected, and you can ignore the warning state on io1 volumes while you are initializing them. For more information, see Monitoring Volumes with Status Checks (p. 655).

Initializing Amazon EBS Volumes on Windows

New EBS volumes receive their maximum performance the moment that they are available and do not require initialization (formerly known as pre-warming). For volumes that have been restored from snapshots, use `dd` or `fio` for Windows to read from all of the blocks on a volume. All existing data on the volume will be preserved.

Before using either tool, gather information about the disks on your system as follows:

1. Use the `wmic` command to list the available disks on your system:

   ```
   wmic diskdrive get size,deviceid
   ```

 The following is example output:

<table>
<thead>
<tr>
<th>DeviceID</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>.\PHYSICALDRIVE2</td>
<td>80517265920</td>
</tr>
<tr>
<td>.\PHYSICALDRIVE1</td>
<td>80517265920</td>
</tr>
<tr>
<td>.\PHYSICALDRIVE0</td>
<td>128849011200</td>
</tr>
<tr>
<td>.\PHYSICALDRIVE3</td>
<td>107372805120</td>
</tr>
</tbody>
</table>

2. Identify the disk to initialize using `dd` or `fio`. The C: drive is on \.\PHYSICALDRIVE0. You can use the `diskmgmt.msc` utility to compare drive letters to disk drive numbers if you are not sure which drive number to use.

Using dd

Complete the following procedures to install and use `dd` to initialize a volume.

Note

This step may take several minutes up to several hours, depending on your EC2 instance bandwidth, the IOPS provisioned for the volume, and the size of the volume.

Install dd for Windows

The `dd` for Windows program provides a similar experience to the `dd` program that is commonly available for Linux and Unix systems, and it allows you to initialize Amazon EBS volumes that have been restored from snapshots. At the time of this writing, the most recent beta version contains the `/dev/null` virtual device that is required to initialize volumes restored from snapshots. Full documentation for the program is available at http://www.chrysocome.net/dd.

1. Download the most recent binary version of `dd` for Windows from http://www.chrysocome.net/dd. You must use version 0.6 beta 3 or newer to initialize restored volumes.
2. (Optional) Create a folder for command line utilities that is easy to locate and remember, such as C:\bin. If you already have a designated folder for command line utilities, you can use that folder instead in the following step.

3. Unzip the binary package and copy the dd.exe file to your command line utilities folder (for example, C:\bin).

4. Add the command line utilities folder to your Path environment variable so you can execute the programs in that folder from anywhere.

 Important
 The following steps don't update the environment variables in your current command prompt windows. The command prompt windows that you open after you complete these steps will contain the updates. This is why it's necessary for you to open a new command prompt window to verify that your environment is set up properly.

 a. Choose Start, open the context (right-click) menu for Computer, and then choose Properties.
 b. Choose Advanced system settings, Environment Variables.
 c. For System Variables, select the variable Path and choose Edit.
 d. For Variable value, append a semicolon and the location of your command line utility folder (C:\bin) to the end of the existing value.
 e. Choose OK to close the Edit System Variable window.

Initialize a volume using dd for Windows

1. Execute the following command to read all blocks on the specified device (and send the output to the /dev/null virtual device). This command safely initializes your existing data.

 Important
 Incorrect use of dd can easily destroy a volume's data. Be sure to follow precisely the example command below. Only the if=\.\PHYSICALDRIVE parameter will vary depending on the name of the device you are reading.

   ```
   dd if=\.\PHYSICALDRIVE of=/dev/null bs=1M --progress --size
   ```

 Note
 You may see an error if dd attempts to read beyond the end of the volume. This can be safely ignored.

2. When the operation completes, you are ready to use your new volume. For more information, see Making an Amazon EBS Volume Available for Use (p. 648).

Using fio

Complete the following procedures to install and use fio to initialize a volume.

Install fio for Windows

The fio for Windows program provides a similar experience to the fio program that is commonly available for Linux and Unix systems, and it allows you to initialize Amazon EBS volumes that have been restored from snapshots. Full documentation for the program is available at https://bluestop.org/fio/.

1. Download the fio MSI installer.
2. Install fio.

Initialize a volume using fio for Windows

1. Run a command similar to the following to initialize a volume:
RAID Configuration on Windows

With Amazon EBS, you can use any of the standard RAID configurations that you can use with a traditional bare metal server, as long as that particular RAID configuration is supported by the operating system for your instance. This is because all RAID is accomplished at the software level. For greater I/O performance than you can achieve with a single volume, RAID 0 can stripe multiple volumes together; for on-instance redundancy, RAID 1 can mirror two volumes together.

Amazon EBS volume data is replicated across multiple servers in an Availability Zone to prevent the loss of data from the failure of any single component. This replication makes Amazon EBS volumes ten times more reliable than typical commodity disk drives. For more information, see Amazon EBS Availability and Durability in the Amazon EBS product detail pages.

Note
You should avoid booting from a RAID volume. Grub is typically installed on only one device in a RAID array, and if one of the mirrored devices fails, you may be unable to boot the operating system.

If you need to create a RAID array on a Linux instance, see RAID Configuration on Linux in the Amazon EC2 User Guide for Linux Instances.

Contents
- RAID Configuration Options (p. 712)
- Creating a RAID Array on Windows (p. 713)

RAID Configuration Options

The following table compares the common RAID 0 and RAID 1 options.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Use</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>When I/O performance is more important than fault tolerance; for example, as in a heavily used database (where data replication is already set up separately).</td>
<td>I/O is distributed across the volumes in a stripe. If you add a volume, you get the straight addition of throughput.</td>
<td>Performance of the stripe is limited to the worst performing volume in the set. Loss of a single volume results in a complete data loss for the array.</td>
</tr>
<tr>
<td>RAID 1</td>
<td>When fault tolerance is more important than I/O performance; for example, as in a critical application.</td>
<td>Safer from the standpoint of data durability.</td>
<td>Does not provide a write performance improvement; requires more Amazon EC2 to Amazon EBS bandwidth than non-RAID configurations because the data is written to multiple volumes simultaneously.</td>
</tr>
</tbody>
</table>
Important
RAID 5 and RAID 6 are not recommended for Amazon EBS because the parity write operations of these RAID modes consume some of the IOPS available to your volumes. Depending on the configuration of your RAID array, these RAID modes provide 20-30% fewer usable IOPS than a RAID 0 configuration. Increased cost is a factor with these RAID modes as well; when using identical volume sizes and speeds, a 2-volume RAID 0 array can outperform a 4-volume RAID 6 array that costs twice as much.

Creating a RAID 0 array allows you to achieve a higher level of performance for a file system than you can provision on a single Amazon EBS volume. A RAID 1 array offers a "mirror" of your data for extra redundancy. Before you perform this procedure, you need to decide how large your RAID array should be and how many IOPS you want to provision.

The resulting size of a RAID 0 array is the sum of the sizes of the volumes within it, and the bandwidth is the sum of the available bandwidth of the volumes within it. The resulting size and bandwidth of a RAID 1 array is equal to the size and bandwidth of the volumes in the array. For example, two 500 GiB Amazon EBS volumes with 4,000 provisioned IOPS each will create a 1,000 GiB RAID 0 array with an available bandwidth of 8,000 IOPS and 640 MB/s of throughput or a 500 GiB RAID 1 array with an available bandwidth of 4,000 IOPS and 320 MB/s of throughput.

This documentation provides basic RAID setup examples. For more information about RAID configuration, performance, and recovery, see the Linux RAID Wiki at https://raid.wiki.kernel.org/index.php/Linux_Raid.

Creating a RAID Array on Windows

Use the following procedure to create the RAID array. Note that you can get directions for Linux instances from Creating a RAID Array on Linux in the Amazon EC2 User Guide for Linux Instances.

To create a RAID array on Windows

1. Create the Amazon EBS volumes for your array. For more information, see Creating an Amazon EBS Volume (p. 644).

 Important
 Create volumes with identical size and IOPS performance values for your array. Make sure you do not create an array that exceeds the available bandwidth of your EC2 instance. For more information, see Amazon EC2 Instance Configuration (p. 703).

2. Attach the Amazon EBS volumes to the instance that you want to host the array. For more information, see Attaching an Amazon EBS Volume to an Instance (p. 647).

3. Connect to your Windows instance. For more information, see Connecting to Your Windows Instance (p. 283).

4. Open a command prompt and type the `diskpart` command.

 ![diskpart]

 Microsoft DiskPart version 6.1.7601
 Copyright (C) 1999-2008 Microsoft Corporation.
 On computer: WIN-BM6QPPL51CO

5. At the `DISKPART` prompt, list the available disks with the following command.

 ![list disk]

<table>
<thead>
<tr>
<th>Disk</th>
<th>Status</th>
<th>Size</th>
<th>Free</th>
<th>Dyn</th>
<th>Gpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk 0</td>
<td>Online</td>
<td>30 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk 1</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk 2</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identify the disks you want to use in your array and take note of their disk numbers.

6. Each disk you want to use in your array must be an online dynamic disk that does not contain any existing volumes. Use the following steps to convert basic disks to dynamic disks and to delete any existing volumes.

a. Select a disk you want to use in your array with the following command, substituting \(n \) with your disk number.

\[
\text{DISKPART}> \text{select disk } n
\]

\(n \) is now the selected disk.

b. If the selected disk is listed as Offline, bring it online by running the online disk command.

c. If the selected disk does not have an asterisk in the Dyn column in the previous list disk command output, you need to convert it to a dynamic disk.

\[
\text{DISKPART}> \text{convert dynamic}
\]

Note
If you receive an error that the disk is write protected, you can clear the read-only flag with the \text{ATTRIBUTE DISK CLEAR READONLY} command and then try the dynamic disk conversion again.

d. Use the detail disk command to check for existing volumes on the selected disk.

\[
\text{DISKPART}> \text{detail disk}
\]

<table>
<thead>
<tr>
<th>XENSRC FVDISK SCSI Disk Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk ID: 2D8BF659</td>
</tr>
<tr>
<td>Type : SCSI</td>
</tr>
<tr>
<td>Status : Online</td>
</tr>
<tr>
<td>Path : 0</td>
</tr>
<tr>
<td>Target : 1</td>
</tr>
<tr>
<td>LUN ID : 0</td>
</tr>
<tr>
<td>Location Path : PCIROOT(0)#PCI(0300)#SCSI(P00T01L00)</td>
</tr>
<tr>
<td>Current Read-only State : No</td>
</tr>
<tr>
<td>Read-only : No</td>
</tr>
<tr>
<td>Boot Disk : No</td>
</tr>
<tr>
<td>Pagefile Disk : No</td>
</tr>
<tr>
<td>Hibernation File Disk : No</td>
</tr>
<tr>
<td>Crashdump Disk : No</td>
</tr>
<tr>
<td>Clustered Disk : No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume ###</th>
<th>Ltr</th>
<th>Label</th>
<th>Fs</th>
<th>Type</th>
<th>Size</th>
<th>Status</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume 2</td>
<td>D</td>
<td>NEW VOLUME</td>
<td>FAT32</td>
<td>Simple</td>
<td>8189 MB</td>
<td>Healthy</td>
<td></td>
</tr>
</tbody>
</table>

Note any volume numbers on the disk. In this example, the volume number is 2. If there are no volumes, you can skip the next step.

e. (Only required if volumes were identified in the previous step) Select and delete any existing volumes on the disk that you identified in the previous step.

Warning
This destroys any existing data on the volume.
i. Select the volume, substituting \(n \) with your volume number.

```
DISKPART> select volume n
Volume n is the selected volume.
```

ii. Delete the volume.

```
DISKPART> delete volume
DiskPart successfully deleted the volume.
```

iii. Repeat these substeps for each volume you need to delete on the selected disk.

f. Repeat Step 6 (p. 714) for each disk you want to use in your array.

7. Verify that the disks you want to use are now dynamic.

```
DISKPART> list disk
```

<table>
<thead>
<tr>
<th>Disk</th>
<th>Status</th>
<th>Size</th>
<th>Free</th>
<th>Dyn</th>
<th>Gpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>30 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Online</td>
<td>8 GB</td>
<td>0 B</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Online</td>
<td>419 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Online</td>
<td>419 GB</td>
<td>0 B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Create your raid array. On Windows, a RAID 0 volume is referred to as a striped volume and a RAID 1 volume is referred to as a mirrored volume.

(Striped volumes only) To create a striped volume array on disks 1 and 2, use the following command (note the `stripe` option to stripe the array):

```
DISKPART> create volume stripe disk=1,2
DiskPart successfully created the volume.
```

(Mirrored volumes only) To create a mirrored volume array on disks 3 and 4, use the following command (note the `mirror` option to mirror the array):

```
DISKPART> create volume mirror disk=3,4
DiskPart successfully created the volume.
```


```
DISKPART> list volume
```

<table>
<thead>
<tr>
<th>Volume</th>
<th>Ltr</th>
<th>Label</th>
<th>Fs</th>
<th>Type</th>
<th>Size</th>
<th>Status</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td></td>
<td>NTFS</td>
<td>Partition</td>
<td>29 GB</td>
<td>Healthy</td>
<td>System</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td>RAW</td>
<td>Mirror</td>
<td>8190 MB</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>RAW</td>
<td>Stripe</td>
<td>15 GB</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Z</td>
<td>Temporary S</td>
<td>NTFS</td>
<td>Partition</td>
<td>419 GB</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Y</td>
<td>Temporary S</td>
<td>NTFS</td>
<td>Partition</td>
<td>419 GB</td>
<td>Healthy</td>
<td></td>
</tr>
</tbody>
</table>

Note that for this example the Type column lists a Mirror volume and a Stripe volume.
10. Select and format your volume so that you can begin using it.

a. Select the volume you want to format, substituting \(n \) with your volume number.

   ```
   DISKPART> select volume n
   Volume \( n \) is the selected volume.
   ```

b. Format the volume.

 Note

 To perform a full format, omit the `quick` option.

   ```
   DISKPART> format quick recommended label="My new volume"
   100 percent completed
   DiskPart successfully formatted the volume.
   ```

c. Assign an available drive letter to your volume.

   ```
   DISKPART> assign letter f
   DiskPart successfully assigned the drive letter or mount point.
   ```

 Your new volume is now ready to use.

Amazon CloudWatch Events for Amazon EBS

Amazon EBS emits notifications based on Amazon CloudWatch Events for a variety of snapshot and encryption status changes. With CloudWatch Events, you can establish rules that trigger programmatic actions in response to a change in snapshot or encryption key state. For example, when a snapshot is created, you can trigger an AWS Lambda function to share the completed snapshot with another account or copy it to another region for disaster-recovery purposes.

For more information, see Using Events in the *Amazon CloudWatch User Guide*.

Event Definitions and Examples

This section defines the supported Amazon EBS events and provides examples of event output for specific scenarios. Events in CloudWatch are represented as JSON objects. For more information about the format and content of event objects, see Events and Event Patterns in the *Amazon CloudWatch Events User Guide*.

Note

Additional information about EBS volumes that is not captured by CloudWatch is available through the `DescribeVolumes` API and the `describe-volumes` CLI command.

The fields that are unique to EBS events are contained in the "detail" section of the JSON objects shown below. The "event" field contains the event name. The "result" field contains the completed status of the action that triggered the event.

Create Snapshot (`createSnapshot`)

The `createSnapshot` event is sent to your AWS account when an action to create a snapshot completes. This event can have a result of either `succeeded` or `failed`.
Event Data

The listing below is an example of a JSON object emitted by EBS for a successful createSnapshot event. The source field contains the ARN of the source volume. The StartTime and EndTime fields indicate when creation of the snapshot started and completed.

```
{
  "version": "0",
  "id": "01234567-0123-0123-0123-012345678901",
  "detail-type": "EBS Snapshot Notification",
  "source": "aws.ec2",
  "account": "012345678901",
  "time": "yyyy-mm-ddThh:mm:ssZ",
  "region": "us-east-1",
  "resources": [
    "arn:aws:ec2::us-west-2:volume/vol-01234567",
    "arn:aws:ec2::us-west-2:snapshot/snap-01234567"
  ],
  "detail": {
    "event": "createSnapshot",
    "result": "succeeded",
    "cause": "",
    "request-id": "",
    "snapshot_id": "arn:aws:ec2::us-west-2:snapshot/snap-01234567",
    "source": "arn:aws:ec2::us-west-2:volume/vol-01234567",
    "StartTime": "yyyy-mm-ddThh:mm:ssZ",
    "EndTime": "yyyy-mm-ddThh:mm:ssZ"
  }
}
```

Copy Snapshot (copySnapshot)

The copySnapshot event is sent to your AWS account when an action to copy a snapshot completes. This event can have a result of either succeeded or failed.

Event Data

The listing below is an example of a JSON object emitted by EBS after a failed copySnapshot event. The cause for the failure was an invalid source snapshot ID. The value of snapshot_id is the ARN of the failed snapshot. The value of source is the ARN of the source snapshot. StartTime and EndTime represent when the copy-snapshot action started and ended.

```
{
  "version": "0",
  "id": "01234567-0123-0123-0123-012345678901",
  "detail-type": "EBS Snapshot Notification",
  "source": "aws.ec2",
  "account": "123456789012",
  "time": "yyyy-mm-ddThh:mm:ssZ",
  "region": "us-east-1",
  "resources": [
    "arn:aws:ec2::us-west-2:volume/vol-01234567",
    "arn:aws:ec2::us-west-2:snapshot/snap-01234567"
  ],
  "detail": {
    "event": "copySnapshot",
    "result": "failed",
    "cause": "Source snapshot ID is not valid",
    "request-id": "",
    "snapshot_id": "arn:aws:ec2::us-west-2:snapshot/snap-01234567",
    "source": "arn:aws:ec2::eu-west-1:snapshot/snap-76543210",
    "StartTime": "yyyy-mm-ddThh:mm:ssZ",
    "EndTime": "yyyy-mm-ddThh:mm:ssZ"
  }
}
```
Share Snapshot (shareSnapshot)

The shareSnapshot event is sent to your AWS account when another account shares a snapshot with it. The result is always succeeded.

Event Data

The listing below is an example of a JSON object emitted by EBS after a completed shareSnapshot event. The value of source is the AWS account number of the user that shared the snapshot with you. StartTime and EndTime represent when the share-snapshot action started and ended. The shareSnapshot event is emitted only when a private snapshot is shared with another user. Sharing a public snapshot does not trigger the event.

```json
{
  "version": "0",
  "id": "01234567-01234-0123-0123-012345678901",
  "detail-type": "EBS Snapshot Notification",
  "source": "aws.ec2",
  "account": "012345678901",
  "time": "yyyy-mm-ddThh:mm:ssZ",
  "region": "us-east-1",
  "resources": [
    "arn:aws:ec2::us-west-2:snapshot/snap-01234567"
  ],
  "detail": {
    "event": "shareSnapshot",
    "result": "succeeded",
    "cause": "",
    "request-id": "",
    "snapshot_id": "arn:aws:ec2::us-west-2:snapshot/snap-01234567",
    "source": "012345678901",
    "StartTime": "yyyy-mm-ddThh:mm:ssZ",
    "EndTime": "yyyy-mm-ddThh:mm:ssZ"
  }
}
```

Invalid Encryption Key on Volume Attach or Reattach (attachVolume, reattachVolume)

The attachVolume event is sent to your AWS account when it fails to attach or reattach a volume to an instance due to an invalid KMS key.

Note

You can use a KMS key to encrypt an EBS volume. If the key used to encrypt the volume becomes invalid, EBS will emit an event if that key is later used to create, attach, or reattach to a volume.

Event Data

The listing below is an example of a JSON object emitted by EBS after a failed attachVolume event. The cause for the failure was a KMS key pending deletion.

Note

AWS may attempt to reattach to a volume following routine server maintenance.

```json
{
  "version": "0",
  "id": "01234567-0123-0123-0123-01234567890b",
  "detail-type": "EBS Volume Notification",
  "source": "aws.ec2",
}
The listing below is an example of a JSON object emitted by EBS after a failed reattachVolume event. The cause for the failure was a KMS key pending deletion.

```
{
 "version": "0",
 "id": "01234567-0123-0123-0123-0123456789ab",
 "detail-type": "EBS Volume Notification",
 "source": "aws.ec2",
 "account": "012345678901",
 "time": "yyyy-mm-ddTh:mm:ssZ",
 "region": "us-east-1",
 "detail": {
 "event": "reattachVolume",
 "result": "failed",
 "cause": "arn:aws:kms:us-east-1:0123456789ab:key/01234567-0123-0123-0123456789ab is pending deletion.",
 "request-id": ""
 }
}
```

Invalid Encryption Key on Create Volume (createVolume)

The createVolume event is sent to your AWS account when it fails to create a volume due to an invalid KMS key.

You can use a KMS key to encrypt an EBS volume. If the key used to encrypt the volume becomes invalid, EBS will emit an event if that key is later used to create, attach, or reattach to a volume.

**Event Data**

The listing below is an example of a JSON object emitted by EBS after a failed createVolume event. The cause for the failure was a disabled KMS key.

```
{
 "version": "0",
 "id": "01234567-0123-0123-0123-0123456789ab",
 "detail-type": "EBS Volume Notification",
 "source": "aws.ec2",
 "account": "012345678901",
 "time": "yyyy-mm-ddTh:mm:ssZ",
 "region": "sa-east-1",
 "detail": {
 "event": "createVolume",
 "result": "failed",
 "cause": "arn:aws:kms:sa-east-1:0123456789ab:key/01234567-0123-0123-0123456789ab is pending deletion.",
 "request-id": ""
 }
}
```
The following is an example of a JSON object that is emitted by EBS after a failed createVolume event. The cause for the failure was a KMS key pending import.

```
{
 "version": "0",
 "id": "01234567-0123-0123-0123-0123456789ab",
 "detail-type": "EBS Volume Notification",
 "source": "aws.ec2",
 "account": "012345678901",
 "time": "yyyy-mm-ddThh:mm:ssZ",
 "region": "sa-east-1",
 "resources": [
],
 "detail": {
 "event": "createVolume",
 "result": "failed",
 "cause": "arn:aws:kms:sa-east-1:0123456789ab:key/01234567-0123-0123-0123456789ab is pending import.",
 "request-id": "01234567-0123-0123-0123-0123456789ab",
 }
}
```

Using Amazon Lambda To Handle CloudWatch Events

You can use Amazon EBS and CloudWatch Events to automate your data-backup workflow. This requires you to create an IAM policy, a AWS Lambda function to handle the event, and an Amazon CloudWatch Events rule that matches incoming events and routes them to the Lambda function.

The following procedure uses the createSnapshot event to automatically copy a completed snapshot to another region for disaster recovery.

**To copy a completed snapshot to another region**

1. Create an IAM policy, such as the one shown in the following example, to provide permissions to execute a CopySnapshot action and write to the CloudWatch Events log. Assign the policy to the IAM user that will handle the CloudWatch event.

```
{
 "Version": "2012-10-17",
 "Statement": [
 { "Effect": "Allow",
 "Action": ["logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents"],
 "Resource": "arn:aws:logs:*:*:*"
 },
```


2. Define a function in Lambda that will be available from the CloudWatch console. The sample Lambda function below, written in Node.js, is invoked by CloudWatch when a matching createSnapshot event is emitted by Amazon EBS (signifying that a snapshot was completed). When invoked, the function copies the snapshot from us-east-2 to us-east-1.

```javascript
// Sample Lambda function to copy an EBS snapshot to a different region
var AWS = require('aws-sdk');
var ec2 = new AWS.EC2();

// define variables
var destinationRegion = 'us-east-1';
var sourceRegion = 'us-east-2';
console.log('Loading function');

//main function
exports.handler = (event, context, callback) => {
 // Get the EBS snapshot ID from the CloudWatch event details
 var snapshotArn = event.detail.snapshot_id.split('/');
 const snapshotId = snapshotArn[1];
 const description = `Snapshot copy from ${snapshotId} in ${sourceRegion}.`;
 console.log('snapshotId:', snapshotId);

 // Load EC2 class and update the configuration to use destination region to initiate the snapshot.
 AWS.config.update({region: destinationRegion});
 var ec2 = new AWS.EC2();

 // Prepare variables for ec2.modifySnapshotAttribute call
 const copySnapshotParams = {
 Description: description,
 DestinationRegion: destinationRegion,
 SourceRegion: sourceRegion,
 SourceSnapshotId: snapshotId
 };

 // Execute the copy snapshot and log any errors
 ec2.copySnapshot(copySnapshotParams, (err, data) => {
 if (err) {
 const errorMessage = `Error copying snapshot ${snapshotId} to region ${destinationRegion}.`;
 console.log(errorMessage);
 console.log(err);
 callback(errorMessage);
 } else {
 const successMessage = `Successfully started copy of snapshot ${snapshotId} to region ${destinationRegion}.`;
 console.log(successMessage);
 console.log(data);
 callback(null, successMessage);
 }
 });
};
```
To ensure that your Lambda function is available from the CloudWatch console, create it in the region where the CloudWatch event will occur. For more information, see the AWS Lambda Developer Guide.

4. Choose **Events**, **Create rule**, **Select event source**, and **Amazon EBS Snapshots**.
5. For **Specific Event(s)**, choose **createSnapshot** and for **Specific Result(s)**, choose **succeeded**.
6. For **Rule target**, find and choose the sample function that you previously created.
7. Choose **Target**, **Add Target**.
8. For **Lambda function**, select the Lambda function that you previously created and choose **Configure details**.
9. On the **Configure rule details** page, type values for **Name** and **Description**. Select the **State** check box to activate the function (setting it to **Enabled**).
10. Choose **Create rule**.

Your rule should now appear on the **Rules** tab. In the example shown, the event that you configured should be emitted by EBS the next time you copy a snapshot.

### Amazon EC2 Instance Store

An **instance store** provides temporary block-level storage for your instance. This storage is located on disks that are physically attached to the host computer. Instance store is ideal for temporary storage of information that changes frequently, such as buffers, caches, scratch data, and other temporary content, or for data that is replicated across a fleet of instances, such as a load-balanced pool of web servers.

An instance store consists of one or more instance store volumes exposed as block devices. The size of an instance store as well as the number of devices available varies by instance type. While an instance store is dedicated to a particular instance, the disk subsystem is shared among instances on a host computer.

The virtual devices for instance store volumes are **ephemeral[0-23]**. Instance types that support one instance store volume have **ephemeral0**. Instance types that support two instance store volumes have **ephemeral0** and **ephemeral1**, and so on.

### Contents
- Instance Store Lifetime (p. 723)
Instance Store Lifetime

You can specify instance store volumes for an instance only when you launch it. You can't detach an
instance store volume from one instance and attach it to a different instance.

The data in an instance store persists only during the lifetime of its associated instance. If an instance
reboots (intentionally or unintentionally), data in the instance store persists. However, data in the
instance store is lost under the following circumstances:

- The underlying disk drive fails
- The instance stops
- The instance terminates

Therefore, do not rely on instance store for valuable, long-term data. Instead, use more durable data
storage, such as Amazon S3, Amazon EBS, or Amazon EFS.

When you stop or terminate an instance, every block of storage in the instance store is reset. Therefore,
your data cannot be accessed through the instance store of another instance.

If you create an AMI from an instance, the data on its instance store volumes isn't preserved and isn't
present on the instance store volumes of the instances that you launch from the AMI.

Instance Store Volumes

The instance type determines the size of the instance store available and the type of hardware used for
the instance store volumes. Instance store volumes are included as part of the instance’s usage cost.
You must specify the instance store volumes that you’d like to use when you launch the instance (except
for NVMe instance store volumes, which are available by default). Then format and mount the instance
store volumes before using them. You can’t make an instance store volume available after you launch the
instance. For more information, see Add Instance Store Volumes to Your EC2 Instance (p. 726).

Some instance types use NVMe or SATA-based solid state drives (SSD) to deliver high random I/O
performance. This is a good option when you need storage with very low latency, but you don’t need the
data to persist when the instance terminates or you can take advantage of fault-tolerant architectures.
For more information, see SSD Instance Store Volumes (p. 728).

The following table provides the quantity, size, type, and performance optimizations of instance store
volumes available on each supported instance type. For a complete list of instance types, including EBS-
only types, see Amazon EC2 Instance Types.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Instance Store Volumes</th>
<th>Type</th>
<th>Needs Initialization*</th>
<th>TRIM Support**</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1.medium</td>
<td>1 x 350 GB</td>
<td>HDD</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>c1.xlarge</td>
<td>4 x 420 GB (1,680 GB)</td>
<td>HDD</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>c3.large</td>
<td>2 x 16 GB (32 GB)</td>
<td>SSD</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>c3.xlarge</td>
<td>2 x 40 GB (80 GB)</td>
<td>SSD</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Instance Type</td>
<td>Instance Store Volumes</td>
<td>Type</td>
<td>Needs Initialization*</td>
<td>TRIM Support**</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>c3.2xlarge</td>
<td>2 x 80 GB (160 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>c3.4xlarge</td>
<td>2 x 160 GB (320 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>c3.8xlarge</td>
<td>2 x 320 GB (640 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>cc2.8xlarge</td>
<td>4 x 840 GB (3,360 GB)</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>cr1.8xlarge</td>
<td>2 x 120 GB (240 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>d2.xlarge</td>
<td>3 x 2,000 GB (6 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2.2xlarge</td>
<td>6 x 2,000 GB (12 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2.4xlarge</td>
<td>12 x 2,000 GB (24 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2.8xlarge</td>
<td>24 x 2,000 GB (48 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1.2xlarge</td>
<td>1 x 470 GB</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>f1.16xlarge</td>
<td>4 x 940 GB</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>g2.2xlarge</td>
<td>1 x 60 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>g2.8xlarge</td>
<td>2 x 120 GB (240 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>h1.2xlarge</td>
<td>1 x 2000 GB (2 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1.4xlarge</td>
<td>2 x 2000 GB (4 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1.8xlarge</td>
<td>4 x 2000 GB (8 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1.16xlarge</td>
<td>8 x 2000 GB (16 TB)</td>
<td>HDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hs1.8xlarge</td>
<td>24 x 2,000 GB (48 TB)</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i2.xlarge</td>
<td>1 x 800 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i2.2xlarge</td>
<td>2 x 800 GB (1,600 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i2.4xlarge</td>
<td>4 x 800 GB (3,200 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i2.8xlarge</td>
<td>8 x 800 GB (6,400 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Instance Type</td>
<td>Instance Store Volumes</td>
<td>Type</td>
<td>Needs Initialization*</td>
<td>TRIM Support**</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>i3.large</td>
<td>1 x 475 GB</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i3.xlarge</td>
<td>1 x 950 GB</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i3.2xlarge</td>
<td>1 x 1,900 GB</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i3.4xlarge</td>
<td>2 x 1,900 GB (3.8 TB)</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i3.8xlarge</td>
<td>4 x 1,900 GB (7.6 TB)</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>i3.16xlarge</td>
<td>8 x 1,900 GB (15.2 TB)</td>
<td>NVMe SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m1.small</td>
<td>1 x 160 GB</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m1.medium</td>
<td>1 x 410 GB</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m1.large</td>
<td>2 x 420 GB (840 GB)</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m1.xlarge</td>
<td>4 x 420 GB (1,680 GB)</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m2.xlarge</td>
<td>1 x 420 GB</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m2.2xlarge</td>
<td>1 x 850 GB</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m2.4xlarge</td>
<td>2 x 840 GB (1,680 GB)</td>
<td>HDD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m3.medium</td>
<td>1 x 4 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m3.large</td>
<td>1 x 32 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m3.xlarge</td>
<td>2 x 40 GB (80 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>m3.2xlarge</td>
<td>2 x 80 GB (160 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r3.large</td>
<td>1 x 32 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r3.xlarge</td>
<td>1 x 80 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r3.2xlarge</td>
<td>1 x 160 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r3.4xlarge</td>
<td>1 x 320 GB</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>r3.8xlarge</td>
<td>2 x 320 GB (640 GB)</td>
<td>SSD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>x1.16xlarge</td>
<td>1 x 1,920 GB</td>
<td>SSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1.32xlarge</td>
<td>2 x 1,920 GB (3,840 GB)</td>
<td>SSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1e.xlarge</td>
<td>1 x 120 GB</td>
<td>SSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1e.2xlarge</td>
<td>1 x 240 GB</td>
<td>SSD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Add Instance Store Volumes to Your EC2 Instance

You specify the EBS volumes and instance store volumes for your instance using a block device mapping. Each entry in a block device mapping includes a device name and the volume that it maps to. The default block device mapping is specified by the AMI you use. Alternatively, you can specify a block device mapping for the instance when you launch it. All of the NVMe instance store volumes supported by an instance type are automatically added on instance launch; you do not need to add them to the block device mapping for the AMI or the instance. For more information, see Block Device Mapping (p. 733).

A block device mapping always specifies the root volume for the instance. The root volume is mounted automatically.

You can use a block device mapping to specify additional EBS volumes when you launch your instance, or you can attach additional EBS volumes after your instance is running. For more information, see Amazon EBS Volumes (p. 630).

You can specify the instance store volumes for your instance only when you launch an instance. You can't attach instance store volumes to an instance after you've launched it.

The number and size of available instance store volumes for your instance varies by instance type. Some instance types do not support instance store volumes. For more information about the instance store volumes support by each instance type, see Instance Store Volumes (p. 723). If the instance type you choose for your instance supports instance store volumes, you must add them to the block device mapping for the instance when you launch it. After you launch the instance, you must ensure that the instance store volumes for your instance are formatted and mounted before you can use them. The root volume of an instance store-backed instance is mounted automatically.

Contents
- Adding Instance Store Volumes to an AMI (p. 726)
- Adding Instance Store Volumes to an Instance (p. 727)
- Making Instance Store Volumes Available on Your Instance (p. 728)

Adding Instance Store Volumes to an AMI

You can create an AMI with a block device mapping that includes instance store volumes. After you add instance store volumes to an AMI, any instance that you launch from the AMI includes these instance store volumes. When you launch an instance, you can omit volumes specified in the AMI block device mapping and add new volumes.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Instance Store Volumes</th>
<th>Type</th>
<th>Needs Initialization*</th>
<th>TRIM Support**</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1e.4xlarge</td>
<td>1 x 480 GB SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1e.8xlarge</td>
<td>1 x 960 GB SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1e.16xlarge</td>
<td>1 x 1,920 GB SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1e.32xlarge</td>
<td>2 x 1,920 GB (3,840 GB) SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Volumes attached to certain instances suffer a first-write penalty unless initialized.

** For more information, see Instance Store Volume TRIM Support (p. 729).
Important
For M3 instances, specify instance store volumes in the block device mapping of the instance, not the AMI. Amazon EC2 might ignore instance store volumes that are specified only in the block device mapping of the AMI.

To add instance store volumes to an Amazon EBS-backed AMI using the console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances and select the instance.
4. In the Create Image dialog box, type a meaningful name and description for your image.
5. For each instance store volume to add, choose Add New Volume, from Volume Type select an instance store volume, and from Device select a device name. (For more information, see Device Naming on Windows Instances (p. 732).) The number of available instance store volumes depends on the instance type. For instances with NVMe instance store volumes, the device mapping of these volumes depends on the order in which the operating system enumerates the volumes.
6. Choose Create Image.

To add instance store volumes to an AMI using the command line
You can use one of the following commands. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).
- create-image or register-image (AWS CLI)
- New-EC2Image and Register-EC2Image (AWS Tools for Windows PowerShell)

Adding Instance Store Volumes to an Instance
When you launch an instance, the default block device mapping is provided by the specified AMI. If you need additional instance store volumes, you must add them to the instance as you launch it. You can also omit devices specified in the AMI block device mapping.

Important
For M3 instances, you might receive instance store volumes even if you do not specify them in the block device mapping for the instance.

Important
For HS1 instances, no matter how many instance store volumes you specify in the block device mapping of an AMI, the block device mapping for an instance launched from the AMI automatically includes the maximum number of supported instance store volumes. You must explicitly remove the instance store volumes that you don't want from the block device mapping for the instance before you launch it.

To update the block device mapping for an instance using the console
1. Open the Amazon EC2 console.
2. From the dashboard, choose Launch Instance.
3. In Step 1: Choose an Amazon Machine Image (AMI), select the AMI to use and choose Select.
4. Follow the wizard to complete Step 1: Choose an Amazon Machine Image (AMI), Step 2: Choose an Instance Type, and Step 3: Configure Instance Details.
5. In Step 4: Add Storage, modify the existing entries as needed. For each instance store volume to add, choose Add New Volume, from Volume Type select an instance store volume, and from Device select a device name. The number of available instance store volumes depends on the instance type.
6. Complete the wizard and launch the instance.
To update the block device mapping for an instance using the command line

You can use one of the following options commands with the corresponding command. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `--block-device-mappings` with `run-instances` (AWS CLI)
- `-BlockDeviceMapping` with `New-EC2Instance` (AWS Tools for Windows PowerShell)

Making Instance Store Volumes Available on Your Instance

After you launch an instance, the instance store volumes are available to the instance, but you can’t access them until they are mounted. For Linux instances, the instance type determines which instance store volumes are mounted for you and which are available for you to mount yourself. For Windows instances, the EC2Config service mounts the instance store volumes for an instance. The block device driver for the instance assigns the actual volume name when mounting the volume, and the name assigned can be different than the name that Amazon EC2 recommends.

Many instance store volumes are pre-formatted with the ext3 file system. SSD-based instance store volumes that support TRIM instruction are not pre-formatted with any file system. However, you can format volumes with the file system of your choice after you launch your instance. For more information, see Instance Store Volume TRIM Support (p. 729). For Windows instances, the EC2Config service reformats the instance store volumes with the NTFS file system.

You can confirm that the instance store devices are available from within the instance itself using instance metadata. For more information, see Viewing the Instance Block Device Mapping for Instance Store Volumes (p. 741).

For Windows instances, you can also view the instance store volumes using Windows Disk Management. For more information, see Listing the Disks Using Windows Disk Management (p. 742).

SSD Instance Store Volumes

The following instances support instance store volumes that use solid state drives (SSD) to deliver high random I/O performance: C3, F1, G2, I2, I3, M3, R3, and X1. For more information about the instance store volumes support by each instance type, see Instance Store Volumes (p. 723).

Like other instance store volumes, you must map the SSD instance store volumes for your instance when you launch it. The data on an SSD instance volume persists only for the life of its associated instance. For more information, see Add Instance Store Volumes to Your EC2 Instance (p. 726).

NVMe SSD Volumes

I3 and F1 instances offer non-volatile memory express (NVMe) SSD instance store volumes. To access the NVMe volumes, you must use an operating system that supports NVMe. The following are the recommended operating systems:

- The current Amazon Linux AMI
- Ubuntu version 16.10 provided by AWS. If you are using a different version, we recommend that you turn off memory hot add.
- Red Hat Enterprise Linux version 7.4
- CentOS 7 version 1708_11

SUSE Linux Enterprise Server 12 is not recommended at this time due to pending kernel updates.
After you connect to your instance, you can verify that you see the NVMe volumes in Disk Manager. On Windows Server 2016 or Windows Server 2012 R2, on the taskbar, open the context (right-click) menu for the Windows logo and choose Disk Management. On Windows Server 2008 R2, choose Start, Administrative Tools, Computer Management, Disk Management.

If you are using a supported version of Windows Server but you do not see the NVMe devices, verify that the NVMe storage controllers are operational using Device Manager. Expand Storage controllers and look for Standard NVM Express Controller. If you are using a custom Windows Server 2008 R2 AMI and can't see the instance storage volume, consider installing the Microsoft hotfix for Native driver support in NVM Express in Windows 7 and Windows Server 2008 R2.

**Instance Store Volume TRIM Support**

The following instances support SSD volumes with TRIM: F1, I2, I3, and R3.

**Important**

Instances running Windows Server 2012 R2 support TRIM as of AWS PV Driver version 7.3.0. Instances running earlier versions of Windows Server do not support TRIM.

Instance store volumes that support TRIM are fully trimmed before they are allocated to your instance. These volumes are not formatted with a file system when an instance launches, so you must format them before they can be mounted and used. For faster access to these volumes, you should skip the TRIM operation when you format them.

With instance store volumes that support TRIM, you can use the TRIM command to notify the SSD controller when you no longer need data that you've written. This provides the controller with more free space, which can reduce write amplification and increase performance. On Linux, you can use the fstrim command to enable periodic TRIM. On Windows, you can use the fsutil behavior set DisableDeleteNotify 1 command. For more information, see the documentation for your operating system.

**Amazon Elastic File System (Amazon EFS)**

Amazon EFS provides scalable file storage for use with Amazon EC2. You can create an EFS file system and configure your instances to mount the file system. You can use an EFS file system as a common data source for workloads and applications running on multiple instances. For more information, see the Amazon Elastic File System product page.

**Important**

Amazon EFS is not supported on Windows instances.

**Amazon Simple Storage Service (Amazon S3)**

Amazon S3 is a repository for Internet data. Amazon S3 provides access to reliable, fast, and inexpensive data storage infrastructure. It is designed to make web-scale computing easy by enabling you to store and retrieve any amount of data, at any time, from within Amazon EC2 or anywhere on the web. Amazon S3 stores data objects redundantly on multiple devices across multiple facilities and allows concurrent read or write access to these data objects by many separate clients or application threads. You can use the redundant data stored in Amazon S3 to recover quickly and reliably from instance or application failures.

Amazon EC2 uses Amazon S3 for storing Amazon Machine Images (AMIs). You use AMIs for launching EC2 instances. In case of instance failure, you can use the stored AMI to immediately launch another instance, thereby allowing for fast recovery and business continuity.

Amazon EC2 also uses Amazon S3 to store snapshots (backup copies) of the data volumes. You can use snapshots for recovering data quickly and reliably in case of application or system failures. You can
also use snapshots as a baseline to create multiple new data volumes, expand the size of an existing
data volume, or move data volumes across multiple Availability Zones, thereby making your data usage
highly scalable. For more information about using data volumes and snapshots, see Amazon Elastic Block
Store (p. 628).

Objects are the fundamental entities stored in Amazon S3. Every object stored in Amazon S3 is
contained in a bucket. Buckets organize the Amazon S3 namespace at the highest level and identify the
account responsible for that storage. Amazon S3 buckets are similar to Internet domain names. Objects
stored in the buckets have a unique key value and are retrieved using a HTTP URL address. For example,
if an object with a key value /photos/mygarden.jpg is stored in the myawsbucket bucket, then it is

For more information about the features of Amazon S3, see the Amazon S3 product page.

Amazon S3 and Amazon EC2

Given the benefits of Amazon S3 for storage, you may decide to use this service to store files and data
sets for use with EC2 instances. There are several ways to move data to and from Amazon S3 to your
instances. In addition to the examples discussed below, there are a variety of tools that people have
written that you can use to access your data in Amazon S3 from your computer or your instance. Some of
the common ones are discussed in the AWS forums.

If you have permission, you can copy a file to or from Amazon S3 and your instance using one of the
following methods.

AWS Tools for Windows PowerShell

Windows instances have the benefit of a graphical browser that you can use to access the Amazon S3
console directly; however, for scripting purposes, Windows users can also use the AWS Tools for Windows
PowerShell to move objects to and from Amazon S3.

Use the following command to copy an Amazon S3 object to your Windows instance.

```
PS C:\> Copy-S3Object -BucketName my_bucket -Key path-to-file -LocalFile my_copied_file.ext
```

AWS Command Line Interface

The AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS services. The AWS
CLI enables users to authenticate themselves and download restricted items from Amazon S3 and also
to upload items. For more information, such as how to install and configure the tools, see the AWS
Command Line Interface detail page.

The `aws s3 cp` command is similar to the Unix `cp` command. You can copy files from Amazon S3 to your
instance, copy files from your instance to Amazon S3, and copy files from one Amazon S3 location to
another.

Use the following command to copy an object from Amazon S3 to your instance.

```
aws s3 cp s3://my_bucket/my_folder/my_file.ext my_copied_file.ext
```

Use the following command to copy an object from your instance back into Amazon S3.

```
aws s3 cp my_copied_file.ext s3://my_bucket/my_folder/my_file.ext
```

The `aws s3 sync` command can synchronize an entire Amazon S3 bucket to a local directory location. This
can be helpful for downloading a data set and keeping the local copy up-to-date with the remote set. If
you have the proper permissions on the Amazon S3 bucket, you can push your local directory back up to
the cloud when you are finished by reversing the source and destination locations in the command.
Use the following command to download an entire Amazon S3 bucket to a local directory on your instance.

```
aws s3 sync s3://remote_S3_bucket local_directory
```

Amazon S3 API

If you are a developer, you can use an API to access data in Amazon S3. For more information, see the Amazon Simple Storage Service Developer Guide. You can use this API and its examples to help develop your application and integrate it with other APIs and SDKs, such as the boto Python interface.

Instance Volume Limits

The maximum number of volumes that your instance can have depends on the operating system and instance type. When considering how many volumes to add to your instance, you should consider whether you need increased I/O bandwidth or increased storage capacity.

Contents

- Linux-Specific Volume Limits (p. 731)
- Windows-Specific Volume Limits (p. 731)
- Instance Type Limits (p. 732)
- Bandwidth versus Capacity (p. 732)

Linux-Specific Volume Limits

Attaching more than 40 volumes can cause boot failures. Note that this number includes the root volume, plus any attached instance store volumes and EBS volumes. If you experience boot problems on an instance with a large number of volumes, stop the instance, detach any volumes that are not essential to the boot process, and then reattach the volumes after the instance is running.

**Important**

Attaching more than 40 volumes to a Linux instance is supported on a best effort basis only and is not guaranteed.

Windows-Specific Volume Limits

The following table shows the volume limits for Windows instances based on the driver used. Note that these numbers include the root volume, plus any attached instance store volumes and EBS volumes.

**Important**

Attaching more than the following volumes to a Windows instance is supported on a best effort basis only and is not guaranteed.

<table>
<thead>
<tr>
<th>Driver</th>
<th>Volume Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS PV</td>
<td>26</td>
</tr>
<tr>
<td>Citrix PV</td>
<td>26</td>
</tr>
<tr>
<td>Red Hat PV</td>
<td>17</td>
</tr>
</tbody>
</table>

We do not recommend that you give a Windows instance more than 26 volumes with AWS PV or Citrix PV drivers, as it is likely to cause performance issues.
To determine which PV drivers your instance is using, or to upgrade your Windows instance from Red Hat to Citrix PV drivers, see Upgrading PV Drivers on Your Windows Instances (p. 336).

For more information about how device names related to volumes, see Mapping Disks to Volumes on Your Windows Instance (p. 742).

**Instance Type Limits**

C5 and M5 instances support a maximum of 28 attachments, and every instance has at least one network interface attachment. If you have no additional network interface attachments on a C5 or M5 instance, you could attach 27 EBS volumes. For more information, see Elastic Network Interfaces (p. 595).

**Bandwidth versus Capacity**

For consistent and predictable bandwidth use cases, use EBS-optimized or 10 Gigabit network connectivity instances and General Purpose SSD or Provisioned IOPS SSD volumes. Follow the guidance in Amazon EC2 Instance Configuration (p. 703) to match the IOPS you have provisioned for your volumes to the bandwidth available from your instances for maximum performance. For RAID configurations, many administrators find that arrays larger than 8 volumes have diminished performance returns due to increased I/O overhead. Test your individual application performance and tune it as required.

**Device Naming on Windows Instances**

When you attach a volume to your instance, you include a device name for the volume. This device name is used by Amazon EC2. The block device driver for the instance assigns the actual volume name when mounting the volume, and the name assigned can be different from the name that Amazon EC2 uses.

**Contents**
- Available Device Names (p. 732)
- Device Name Considerations (p. 733)

For information about device names on Linux instances, see Device Naming on Linux Instances in the Amazon EC2 User Guide for Linux Instances.

**Available Device Names**

The following table lists the available device names for Windows instances. The number of volumes that you can attach to your instance is determined by the operating system. For more information, see Instance Volume Limits (p. 731).

<table>
<thead>
<tr>
<th>Driver Type</th>
<th>Available for Root</th>
<th>Recommended for EBS Volumes</th>
<th>Instance Store Volumes</th>
<th>NVMe Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS PV, Citrix PV</td>
<td>xvd[b-z] /dev/sda1</td>
<td>xvd[f-z] †</td>
<td>xvd[a-e]</td>
<td>/dev/nvme[0-26]n1 *</td>
</tr>
<tr>
<td></td>
<td>xvd[b-c] [a-z] /dev/sda1</td>
<td></td>
<td>xvdc[a-x] (hs1.8xlarge)</td>
<td></td>
</tr>
</tbody>
</table>

732
### Device Name Considerations

Keep the following in mind when selecting a device name:

- Although you can attach your EBS volumes using the device names used to attach instance store volumes, we strongly recommend that you don’t because the behavior can be unpredictable.
- Amazon EC2 Windows AMIs come with an additional service installed, the **Ec2Config Service**. The Ec2Config service runs as a local system and performs various functions to prepare an instance when it first boots up. After the devices have been mapped with the drives, the Ec2Config service then initializes and mounts the drives. The root drive is initialized and mounted as C:\. The instance store volumes that come attached to the instance are initialized and mounted as Z:\, Y:\, and so on. By default, when an EBS volume is attached to a Windows instance, it can show up as any drive letter on the instance. You can change the settings of the Ec2Config service to set the drive letters of the EBS volumes per your specifications. For more information, see Configuring a Windows Instance Using the E2Config Service (p. 307) and Mapping Disks to Volumes on Your Windows Instance (p. 742).
- The number of NVMe instance store volumes for an instance depends on the size of the instance. The device names are /dev/nvme0n1, /dev/nvme1n1, and so on.

### Block Device Mapping

Each instance that you launch has an associated root device volume, either an Amazon EBS volume or an instance store volume. You can use block device mapping to specify additional EBS volumes or instance store volumes to attach to an instance when it's launched. You can also attach additional EBS volumes to a running instance; see Attaching an Amazon EBS Volume to an Instance (p. 647). However, the only way to attach instance store volumes to an instance is to use block device mapping to attach them as the instance is launched.

For more information about root device volumes, see Root Device Volume (p. 7).

### Contents

- Block Device Mapping Concepts (p. 734)

---

<table>
<thead>
<tr>
<th>Driver Type</th>
<th>Available for Root</th>
<th>Recommended for EBS Volumes</th>
<th>Instance Store Volumes</th>
<th>NVMe Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat PV</td>
<td>xvd[a-z] /dev/sda1</td>
<td>xvd[f-p]</td>
<td>xvd[a-e]</td>
<td>/dev/nvme[0-26]n1 *</td>
</tr>
<tr>
<td></td>
<td>xvd[b-c] [a-z]</td>
<td></td>
<td>xvd[a-x] (hs1.8xlarge)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/dev/sda1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/dev/sd[b-e]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† If you map an EBS volume with the name xvd\a, Windows does not recognize the volume.

* NVMe instance store volumes are automatically enumerated and assigned a Windows drive letter. There is no need to specify NVMe instance store volumes in your block device mapping.

For more information about instance store volumes, see Amazon EC2 Instance Store (p. 722).
Block Device Mapping Concepts

A block device is a storage device that moves data in sequences of bytes or bits (blocks). These devices support random access and generally use buffered I/O. Examples include hard disks, CD-ROM drives, and flash drives. A block device can be physically attached to a computer or accessed remotely as if it were physically attached to the computer. Amazon EC2 supports two types of block devices:

- Instance store volumes (virtual devices whose underlying hardware is physically attached to the host computer for the instance)
- EBS volumes (remote storage devices)

A block device mapping defines the block devices (instance store volumes and EBS volumes) to attach to an instance. You can specify a block device mapping as part of creating an AMI so that the mapping is used by all instances launched from the AMI. Alternatively, you can specify a block device mapping when you launch an instance, so this mapping overrides the one specified in the AMI from which you launched the instance. Note that all of the NVMe instance store volumes supported by an instance type are automatically added on instance launch; you do not need to add them to the block device mapping for the AMI or the instance.

Contents

- Block Device Mapping Entries (p. 734)
- Block Device Mapping Instance Store Caveats (p. 735)
- Example Block Device Mapping (p. 735)
- How Devices Are Made Available in the Operating System (p. 736)

Block Device Mapping Entries

When you create a block device mapping, you specify the following information for each block device that you need to attach to the instance:

- The device name used within Amazon EC2. The block device driver for the instance assigns the actual volume name when mounting the volume, and the name assigned can be different from the name that Amazon EC2 recommends. For more information, see Device Naming on Windows Instances (p. 732).
- [Instance store volumes] The virtual device: ephemeral[0–23]. Note that the number and size of available instance store volumes for your instance varies by instance type.
- [NVMe instance store volumes] These volumes are mapped automatically; you do not need to specify the NVMe instance type volumes supported by an instance type in a block device mapping.
- [EBS volumes] The ID of the snapshot to use to create the block device (snap-xxxxxxxx). This value is optional as long as you specify a volume size.
- [EBS volumes] The size of the volume, in GiB. The specified size must be greater than or equal to the size of the specified snapshot.
- [EBS volumes] Whether to delete the volume on instance termination (true or false). The default value is true for the root device volume and false for attached volumes. When you create an AMI, its block device mapping inherits this setting from the instance. When you launch an instance, it inherits this setting from the AMI.
- [EBS volumes] The volume type, which can be gp2 for General Purpose SSD, io1 for Provisioned IOPS SSD, st1 for Throughput Optimized HDD, sc1 for Cold HDD, or standard for Magnetic. The default value is gp2 in the Amazon EC2 console, and standard in the AWS SDKs and the AWS CLI.
• [EBS volumes] The number of input/output operations per second (IOPS) that the volume supports. (Not used with gp2, st1, sc1, or standard volumes.)

Block Device Mapping Instance Store Caveats

There are several caveats to consider when launching instances with AMIs that have instance store volumes in their block device mappings.

• Some instance types include more instance store volumes than others, and some instance types contain no instance store volumes at all. If your instance type supports one instance store volume, and your AMI has mappings for two instance store volumes, then the instance launches with one instance store volume.

• Instance store volumes can only be mapped at launch time. You cannot stop an instance without instance store volumes (such as the t2.micro), change the instance to a type that supports instance store volumes, and then restart the instance with instance store volumes. However, you can create an AMI from the instance and launch it on an instance type that supports instance store volumes, and map those instance store volumes to the instance.

• If you launch an instance with instance store volumes mapped, and then stop the instance and change it to an instance type with fewer instance store volumes and restart it, the instance store volume mappings from the initial launch still show up in the instance metadata. However, only the maximum number of supported instance store volumes for that instance type are available to the instance.

  Note
  When an instance is stopped, all data on the instance store volumes is lost.

• Depending on instance store capacity at launch time, M3 instances may ignore AMI instance store block device mappings at launch unless they are specified at launch. You should specify instance store block device mappings at launch time, even if the AMI you are launching has the instance store volumes mapped in the AMI, to ensure that the instance store volumes are available when the instance launches.

Example Block Device Mapping

This figure shows an example block device mapping for an EBS-backed instance. It maps /dev/sdb to ephemeral0 and maps two EBS volumes, one to /dev/sdh and the other to /dev/sdj. It also shows the EBS volume that is the root device volume, /dev/sda1.
Note that this example block device mapping is used in the example commands and APIs in this topic. You can find example commands and APIs that create block device mappings in Specifying a Block Device Mapping for an AMI (p. 737) and Updating the Block Device Mapping when Launching an Instance (p. 739).

How Devices Are Made Available in the Operating System

Device names like /dev/sdh and xvdh are used by Amazon EC2 to describe block devices. The block device mapping is used by Amazon EC2 to specify the block devices to attach to an EC2 instance. After a block device is attached to an instance, it must be mounted by the operating system before you can access the storage device. When a block device is detached from an instance, it is unmounted by the operating system and you can no longer access the storage device.

With a Windows instance, the device names specified in the block device mapping are mapped to their corresponding block devices when the instance first boots, and then the Ec2Config service initializes and mounts the drives. The root device volume is mounted as C:\. The instance store volumes are mounted as Z:\, Y:\, and so on. When an EBS volume is mounted, it can be mounted using any available drive letter. However, you can configure how the Ec2Config Service assigns drive letters to EBS volumes; for more information, see Configuring a Windows Instance Using the EC2Config Service (p. 307).

AMI Block Device Mapping

Each AMI has a block device mapping that specifies the block devices to attach to an instance when it is launched from the AMI. An AMI that Amazon provides includes a root device only. To add more block devices to an AMI, you must create your own AMI.

Contents

- Specifying a Block Device Mapping for an AMI (p. 737)
- Viewing the EBS Volumes in an AMI Block Device Mapping (p. 738)
Specifying a Block Device Mapping for an AMI

There are two ways to specify volumes in addition to the root volume when you create an AMI. If you've already attached volumes to a running instance before you create an AMI from the instance, the block device mapping for the AMI includes those same volumes. For EBS volumes, the existing data is saved to a new snapshot, and it's this new snapshot that's specified in the block device mapping. For instance store volumes, the data is not preserved.

For an EBS-backed AMI, you can add EBS volumes and instance store volumes using a block device mapping. For an instance store-backed AMI, you can add instance store volumes only by modifying the block device mapping entries in the image manifest file when registering the image.

**Note**  
For M3 instances, you must specify instance store volumes in the block device mapping for the instance when you launch it. When you launch an M3 instance, instance store volumes specified in the block device mapping for the AMI may be ignored if they are not specified as part of the instance block device mapping.

To add volumes to an AMI using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose **Instances**.
3. Select an instance and choose **Actions, Image, Create Image**.
4. In the **Create Image** dialog box, choose **Add New Volume**.
5. Select a volume type from the **Type** list and a device name from the **Device** list. For an EBS volume, you can optionally specify a snapshot, volume size, and volume type.
6. Choose **Create Image**.

To add volumes to an AMI using the command line

Use the `create-image` AWS CLI command to specify a block device mapping for an EBS-backed AMI. Use the `register-image` AWS CLI command to specify a block device mapping for an instance store-backed AMI.

Specify the block device mapping using the following parameter:

```
--block-device-mappings [mapping, ...]
```

To add an instance store volume, use the following mapping:

```
{
 "DeviceName": "xvdb",
 "VirtualName": "ephemeral0"
}
```

To add an empty 100 GiB Magnetic volume, use the following mapping:

```
{
 "DeviceName": "xvdg",
 "Ebs": {
 "VolumeSize": 100
 }
}
```

To add an EBS volume based on a snapshot, use the following mapping:

```
{
```

737
"DeviceName": "xvdh",
    "Ebs": {
      "SnapshotId": "snap-xxxxxxxxx"
    }
  }
}

To omit a mapping for a device, use the following mapping:

{  
  "DeviceName": "xvdj",
  "NoDevice": ""
}

Alternatively, you can use the \-BlockDeviceMapping parameter with the following commands (AWS Tools for Windows PowerShell):

- New-EC2Image
- Register-EC2Image

Viewing the EBS Volumes in an AMI Block Device Mapping

You can easily enumerate the EBS volumes in the block device mapping for an AMI.

To view the EBS volumes for an AMI using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose AMIs.
3. Choose EBS images from the Filter list to get a list of EBS-backed AMIs.
4. Select the desired AMI, and look at the Details tab. At a minimum, the following information is available for the root device:

- **Root Device Type** (ebs)
- **Root Device Name** (for example, /dev/sda1)
- **Block Devices** (for example, /dev/sda1=snap-1234567890abcdef0:8:true)

If the AMI was created with additional EBS volumes using a block device mapping, the Block Devices field displays the mapping for those additional volumes as well. (Recall that this screen doesn't display instance store volumes.)

To view the EBS volumes for an AMI using the command line

Use the describe-images (AWS CLI) command or Get-EC2Image (AWS Tools for Windows PowerShell) command to enumerate the EBS volumes in the block device mapping for an AMI.

Instance Block Device Mapping

By default, an instance that you launch includes any storage devices specified in the block device mapping of the AMI from which you launched the instance. You can specify changes to the block device mapping for an instance when you launch it, and these updates overwrite or merge with the block device mapping of the AMI.

**Limits**

- For the root volume, you can only modify the following: volume size, volume type, and the Delete on Termination flag.
• When you modify an EBS volume, you can't decrease its size. Therefore, you must specify a snapshot whose size is equal to or greater than the size of the snapshot specified in the block device mapping of the AMI.

Contents
• Updating the Block Device Mapping when Launching an Instance (p. 739)
• Updating the Block Device Mapping of a Running Instance (p. 740)
• Viewing the EBS Volumes in an Instance Block Device Mapping (p. 740)
• Viewing the Instance Block Device Mapping for Instance Store Volumes (p. 741)

Updating the Block Device Mapping when Launching an Instance

You can add EBS volumes and instance store volumes to an instance when you launch it. Note that updating the block device mapping for an instance doesn't make a permanent change to the block device mapping of the AMI from which it was launched.

To add volumes to an instance using the console

1. Open the Amazon EC2 console.
2. From the dashboard, choose Launch Instance.
3. On the Choose an Amazon Machine Image (AMI) page, select the AMI to use and choose Select.
4. Follow the wizard to complete the Choose an Instance Type and Configure Instance Details pages.
5. On the Add Storage page, you can modify the root volume, EBS volumes, and instance store volumes as follows:
   • To change the size of the root volume, locate the Root volume under the Type column, and change its Size field.
   • To suppress an EBS volume specified by the block device mapping of the AMI used to launch the instance, locate the volume and click its Delete icon.
   • To add an EBS volume, choose Add New Volume, choose EBS from the Type list, and fill in the fields (Device, Snapshot, and so on).
   • To suppress an instance store volume specified by the block device mapping of the AMI used to launch the instance, locate the volume, and choose its Delete icon.
   • To add an instance store volume, choose Add New Volume, select Instance Store from the Type list, and select a device name from Device.
6. Complete the remaining wizard pages, and choose Launch.

To add volumes to an instance using the command line

Use the run-instances AWS CLI command to specify a block device mapping for an instance.

Specify the block device mapping using the following parameter:

```
--block-device-mappings [mapping, ...]
```

For example, suppose that an EBS-backed AMI specifies the following block device mapping:

• xvdb=ephemeral0
• xvdh=snap-1234567890abcdef0
• xvdj=:100
To prevent `xvdj` from attaching to an instance launched from this AMI, use the following mapping:

```json
{
 "DeviceName": "xvdj",
 "NoDevice": ""
}
```

To increase the size of `xvdh` to 300 GiB, specify the following mapping. Notice that you don't need to specify the snapshot ID for `xvdh`, because specifying the device name is enough to identify the volume.

```json
{
 "DeviceName": "xvdh",
 "Ebs": {
 "VolumeSize": 300
 }
}
```

To attach an additional instance store volume, `xvdc`, specify the following mapping. If the instance type doesn't support multiple instance store volumes, this mapping has no effect.

```json
{
 "DeviceName": "xvdc",
 "VirtualName": "ephemeral0"
}
```

Alternatively, you can use the `-BlockDeviceMapping` parameter with the `New-EC2Instance` command (AWS Tools for Windows PowerShell).

### Updating the Block Device Mapping of a Running Instance

You can use the following `modify-instance-attribute` AWS CLI command to update the block device mapping of a running instance. Note that you do not need to stop the instance before changing this attribute.

```bash
aws ec2 modify-instance-attribute --instance-id i-1a2b3c4d --block-device-mappings file://mapping.json
```

For example, to preserve the root volume at instance termination, specify the following in `mapping.json`:

```json
[
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "DeleteOnTermination": false
 }
 }
]
```

Alternatively, you can use the `-BlockDeviceMapping` parameter with the `Edit-EC2InstanceAttribute` command (AWS Tools for Windows PowerShell).

### Viewing the EBS Volumes in an Instance Block Device Mapping

You can easily enumerate the EBS volumes mapped to an instance.
Note
For instances launched before the release of the 2009-10-31 API, AWS can’t display the block device mapping. You must detach and reattach the volumes so that AWS can display the block device mapping.

To view the EBS volumes for an instance using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose Instances.
3. In the search bar, type Root Device Type, and then choose EBS. This displays a list of EBS-backed instances.
4. Select the desired instance and look at the details displayed in the Description tab. At a minimum, the following information is available for the root device:
   - Root device type (ebs)
   - Root device (for example, /dev/sda1)
   - Block devices (for example, /dev/sda1, xvdh, and xvdj)

If the instance was launched with additional EBS volumes using a block device mapping, the Block devices field displays those additional volumes as well as the root device. (Recall that this dialog box doesn’t display instance store volumes.)

5. To display additional information about a block device, select its entry next to Block devices. This displays the following information for the block device:
   - EBS ID (vol-xxxxxxxx)
   - Root device type (ebs)
   - Attachment time (yyyy-mmThh:mm:ss.sssTZ)
   - Block device status (attaching, attached, detaching, detached)
   - Delete on termination (Yes, No)

To view the EBS volumes for an instance using the command line

Use the describe-instances (AWS CLI) command or Get-EC2Instance (AWS Tools for Windows PowerShell) command to enumerate the EBS volumes in the block device mapping for an instance.

Viewing the Instance Block Device Mapping for Instance Store Volumes

When you view the block device mapping for your instance, you can see only the EBS volumes, not the instance store volumes. You can use instance metadata to query the complete block device mapping. The base URI for all requests for instance metadata is http://169.254.169.254/latest/.

First, connect to your running instance. From the instance, use this query to get its block device mapping.

The response includes the names of the block devices for the instance. For example, the output for an instance store–backed `m1.small` instance looks like this.

```
ami
ephemeral0
root
swap
```

The `ami` device is the root device as seen by the instance. The instance store volumes are named `ephemeral[0-23]`. The `swap` device is for the page file. If you've also mapped EBS volumes, they appear as `ebs1`, `ebs2`, and so on.

To get details about an individual block device in the block device mapping, append its name to the previous query, as shown here.

```
```

For more information, see Instance Metadata and User Data (p. 362).

## Mapping Disks to Volumes on Your Windows Instance

Your Windows instance comes with an EBS volume that serves as the root volume. If your Windows instance uses AWS PV or Citrix PV drivers, you can optionally add up to 25 volumes, making a total of 26 volumes. For more information, see Instance Volume Limits (p. 731)

Depending on the instance type of your instance, you'll have from 0 to 24 possible instance store volumes available to the instance. To use any of the instance store volumes that are available to your instance, you must specify them when you create your AMI or launch your instance. You can also add EBS volumes when you create your AMI or launch your instance, or attach them while your instance is running. For information about making volumes available, see Making the Volume Available on Windows (p. 649).

When you add a volume to your instance, you specify the device name that Amazon EC2 uses. For more information, see Device Naming on Windows Instances (p. 732). AWS Windows Amazon Machine Images (AMIs) contain a set of drivers that are used by Amazon EC2 to map instance store and EBS volumes to Windows disks and drive letters. If you launch an instance from a Windows AMI that uses AWS PV or Citrix PV drivers, you can use the relationships described on this page to map your Windows disks to your instance store and EBS volumes. If your Windows AMI uses Red Hat PV drivers, you can update your instance to use the Citrix drivers. For more information, see Upgrading PV Drivers on Your Windows Instances (p. 336).

### Contents

- Listing the Disks Using Windows Disk Management (p. 742)
- Listing the Disks Using Windows PowerShell (p. 744)
- Disk Device to Device Name Mapping (p. 746)

### Listing the Disks Using Windows Disk Management

You can find the disks on your Windows instance using Windows Disk Management.
To find the disks on your Windows instance

1. Log in to your Windows instance using Remote Desktop. For more information, see, Connecting to Your Windows Instance (p. 283).

2. Start the Disk Management utility.


3. Review the disks. The root volume is an EBS volume mounted as C:\. If there are no other disks shown, then you didn't specify additional volumes when you created the AMI or launched the instance.

The following is an example that shows the disks that are available if you launch an m3.medium instance with an instance store volume (Disk 2) and an additional EBS volume (Disk 1).

4. Right-click the gray pane labeled Disk 1, and then select Properties. Note the value of Location and look it up in the tables in Disk Device to Device Name Mapping (p. 746). For example, the following disk has the location Bus Number 0, Target Id 9, LUN 0. According to the table for EBS volumes, the device name for this location is xvdj.
5. To map the device name of an EBS volume to its volume ID, open the Amazon EC2 console on your computer. In the navigation pane, select **Instances**, and then select your instance. Under **Block devices**, click the device name, and locate **EBS ID**. For this example, the volume ID is `vol-0a07f3e37b14708b9`.

Note that the Amazon EC2 console shows only the EBS volumes.

### Listing the Disks Using Windows PowerShell

The following PowerShell script lists each disk and its corresponding device name and volume.

```powershell
List the Windows disks
function Get-EC2InstanceMetadata
{
 param([string]$Path)
 (Invoke-WebRequest -Uri "http://169.254.169.254/latest/$Path").Content
}

function Convert-SCSITargetIdToDeviceName
{
 param([int]$SCSITargetId)
 If ($SCSITargetId -eq 0)
```
return "/dev/sda1"
}
$deviceName = "xvd"
If ($SCSITargetId -gt 25) {
    $deviceName += [char](0x60 + [int]($SCSITargetId / 26))
}
$deviceName += [char](0x61 + $SCSITargetId % 26)
return $deviceName
}

Try {
    $InstanceId = Get-EC2InstanceMetadata "meta-data/instance-id"
    $AZ = Get-EC2InstanceMetadata "meta-data/placement/availability-zone"
    $Region = $AZ.Remove($AZ.Length - 1)
    $BlockDeviceMappings = (Get-EC2Instance -Region $Region -Instance $InstanceId).Instances.BlockDeviceMappings
    $VirtualDeviceMap = @{}
    (Get-EC2InstanceMetadata "meta-data/block-device-mapping").Split("n") | ForEach-Object {
        $VirtualDevice = $_
        $BlockDeviceName = Get-EC2InstanceMetadata "meta-data/block-device-mapping/$VirtualDevice"
        $VirtualDeviceMap[$BlockDeviceName] = $VirtualDevice
    }
    Get-WmiObject -Class Win32_DiskDrive | ForEach-Object {
        $DiskDrive = $_
        $Volumes = Get-WmiObject -Query "ASSOCIATORS OF {Win32_DiskDrive.DeviceID='$($DiskDrive.DeviceID)'} WHERE AssocClass=Win32_DiskDriveToDiskPartition" | ForEach-Object {
            $DiskPartition = $_
            Get-WmiObject -Query "ASSOCIATORS OF {Win32_DiskPartition.DeviceID='$($DiskPartition.DeviceID)'} WHERE AssocClass=Win32_LogicalDiskToPartition"
        }
        If ($DiskDrive.PNPDeviceID -like "*PROD_PVDISK*") {
            $BlockDeviceName = Convert-SCSITargetIdToDeviceName($DiskDrive.SCSITargetId)
            $BlockDevice = $BlockDeviceMappings | Where-Object { $_.DeviceName -eq $BlockDeviceName }
            $VirtualDevice = If ($VirtualDeviceMap.ContainsKey($BlockDeviceName)) { $VirtualDeviceMap[$BlockDeviceName] } Else { $null }
        } ElseIf ($DiskDrive.PNPDeviceID -like "*PROD_AMAZON_EC2_NVME*") {
            $BlockDeviceName = Get-EC2InstanceMetadata "meta-data/block-device-mapping/ephemeral $(($DiskDrive.SCSIPort - 2))"
            $BlockDevice = $null
            $VirtualDevice = If ($VirtualDeviceMap.ContainsKey($BlockDeviceName)) { $VirtualDeviceMap[$BlockDeviceName] } Else { $null }
        } Else {
            $BlockDeviceName = $null
            $BlockDevice = $null
            $VirtualDevice = $null
        }
    }
    New-Object PSObject -Property @{
        Disk = $DiskDrive.Index;
        Partitions = $DiskDrive.Partitions;
        DriveLetter = If ($Volumes -eq $null) { "N/A" } Else { $Volumes.DeviceID };
        EbsVolumeId = If ($BlockDevice -eq $null) { "N/A" } Else { $BlockDevice.Ebs.VolumeId };
        Device = If ($BlockDevice -eq $null) { "N/A" } Else { $BlockDevice.DeviceName };
        VirtualDevice = If ($VirtualDevice -eq $null) { "N/A" } Else { $VirtualDevice };
        VolumeName = If ($Volumes -eq $null) { "N/A" } Else { $Volumes.VolumeName };
    }
```powershell
} | Sort-Object Disk | Format-Table -AutoSize -Property Disk, Partitions, DriveLetter, EbsVolumeId, Device, VirtualDevice, VolumeName

Note
This script requires a profile configured in the AWS Tools for PS, or an IAM role attached to the instance.

Before you run this script, be sure to run the following command to enable PowerShell script execution.

```
Set-ExecutionPolicy RemoteSigned
```

Copy the script and save it as a `.ps1` file on the Windows instance. If you run the script without setting your access keys, you'll see output similar to the following.

<table>
<thead>
<tr>
<th>Disk</th>
<th>Partitions</th>
<th>DriveLetter</th>
<th>EbsVolumeId</th>
<th>Device</th>
<th>VirtualDevice</th>
<th>VolumeName</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>xvdca</td>
<td>ephemeral0</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>xvdcb</td>
<td>ephemeral1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C:</td>
<td>vol-0064examplec838a /dev/sda1 root</td>
<td>Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>N/A</td>
<td>vol-0225example8a4a3 xvdf</td>
<td>ebs2</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

If you specified an IAM role with a policy that allows access to Amazon EC2 when you launched the instance, or if you set up your credentials on the Windows instance as described in **Using AWS Credentials** in the **AWS Tools for Windows PowerShell User Guide**, you'll get the volume ID for the EBS volumes in the `VolumeId` column instead of `NA`.

Disk Device to Device Name Mapping

The block device driver for the instance assigns the actual volume names when mounting volumes.

Mappings
- **Instance Store Volumes** (p. 746)
- **EBS Volumes** (p. 747)
- **NVMe EBS Volumes** (p. 748)

Instance Store Volumes

The following table describes how the Citrix PV and AWS PV drivers map non-NVMe instance store volumes to Windows volumes. The number of available instance store volumes is determined by the instance type. For more information, see **Instance Store Volumes** (p. 723).

<table>
<thead>
<tr>
<th>Location</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Number 0, Target ID 78, LUN 0</td>
<td>xvdca</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 79, LUN 0</td>
<td>xvdcb</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 80, LUN 0</td>
<td>xvdcc</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 81, LUN 0</td>
<td>xvdcd</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 82, LUN 0</td>
<td>xvdce</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 83, LUN 0</td>
<td>xvdcf</td>
</tr>
</tbody>
</table>
Disk Device to Device Name Mapping

<table>
<thead>
<tr>
<th>Location</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Number 0, Target ID 84, LUN 0</td>
<td>xvdcg</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 85, LUN 0</td>
<td>xvdch</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 86, LUN 0</td>
<td>xvdci</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 87, LUN 0</td>
<td>xvdcj</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 88, LUN 0</td>
<td>xvdck</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 89, LUN 0</td>
<td>xvdcl</td>
</tr>
</tbody>
</table>

EBS Volumes

The following table describes how the Citrix PV and AWS PV drivers map non-NVME EBS volumes to Windows volumes.

<table>
<thead>
<tr>
<th>Location</th>
<th>Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Number 0, Target ID 0, LUN 0</td>
<td>/dev/sda1</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 1, LUN 0</td>
<td>xvdb</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 2, LUN 0</td>
<td>xvdc</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 3, LUN 0</td>
<td>xvdd</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 4, LUN 0</td>
<td>xvde</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 5, LUN 0</td>
<td>xvdf</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 6, LUN 0</td>
<td>xvdg</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 7, LUN 0</td>
<td>xvdh</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 8, LUN 0</td>
<td>xvdi</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 9, LUN 0</td>
<td>xvdj</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 10, LUN 0</td>
<td>xvdj</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 11, LUN 0</td>
<td>xvdk</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 12, LUN 0</td>
<td>xvdl</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 13, LUN 0</td>
<td>xvdm</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 14, LUN 0</td>
<td>xvdn</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 15, LUN 0</td>
<td>xvdo</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 16, LUN 0</td>
<td>xvdp</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 17, LUN 0</td>
<td>xvdq</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 18, LUN 0</td>
<td>xvdr</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 19, LUN 0</td>
<td>xsvs</td>
</tr>
<tr>
<td>Bus Number 0, Target ID 19, LUN 0</td>
<td>xvdct</td>
</tr>
</tbody>
</table>
NVMe EBS Volumes

With C5 and M5 instances, EBS volumes are exposed as NVMe devices. You can use the `Get-Disk` command to map Windows disk numbers to EBS volume IDs. For more information, see Identifying the EBS Device (p. 700).

Using Public Data Sets

Amazon Web Services provides a repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. Amazon stores the data sets at no charge to the community and, as with all AWS services, you pay only for the compute and storage you use for your own applications.

Contents

- Public Data Set Concepts (p. 748)
- Finding Public Data Sets (p. 749)
- Creating a Public Data Set Volume from a Snapshot (p. 749)
- Attaching and Mounting the Public Data Set Volume (p. 750)

Public Data Set Concepts

Previously, large data sets such as the mapping of the Human Genome and the US Census data required hours or days to locate, download, customize, and analyze. Now, anyone can access these data sets from an EC2 instance and start computing on the data within minutes. You can also leverage the entire AWS ecosystem and easily collaborate with other AWS users. For example, you can produce or use prebuilt server images with tools and applications to analyze the data sets. By hosting this important and useful data with cost-efficient services such as Amazon EC2, AWS hopes to provide researchers across a variety of disciplines and industries with tools to enable more innovation, more quickly.

For more information, go to the Public Data Sets on AWS Page.

Available Public Data Sets

Public data sets are currently available in the following categories:

- **Biology**—Includes Human Genome Project, GenBank, and other content.
- **Chemistry**—Includes multiple versions of PubChem and other content.
- **Economics**—Includes census data, labor statistics, transportation statistics, and other content.
- **Encyclopedic**—Includes Wikipedia content from multiple sources and other content.
Finding Public Data Sets

Before you can use a public data set, you must locate the data set and determine which format the data set is hosted in. The data sets are available in two possible formats: Amazon EBS snapshots or Amazon S3 buckets.

To find a public data set and determine its format

1. Go to the Public Data Sets Page to see a listing of all available public data sets. You can also enter a search phrase on this page to query the available public data set listings.
2. Click the name of a data set to see its detail page.
3. On the data set detail page, look for a snapshot ID listing to identify an Amazon EBS formatted data set or an Amazon S3 URL.

Data sets that are in snapshot format are used to create new EBS volumes that you attach to an EC2 instance. For more information, see Creating a Public Data Set Volume from a Snapshot (p. 749).

For data sets that are in Amazon S3 format, you can use the AWS SDKs or the HTTP query API to access the information, or you can use the AWS CLI to copy or synchronize the data to and from your instance. For more information, see Amazon S3 and Amazon EC2 (p. 730).

You can also use Amazon EMR to analyze and work with public data sets. For more information, see What is Amazon EMR?

Creating a Public Data Set Volume from a Snapshot

To use a public data set that is in snapshot format, you create a new volume, specifying the snapshot ID of the public data set. You can create your new volume using the AWS Management Console as follows.

If you prefer, you can use the create-volume AWS CLI command instead.

To create a public data set volume from a snapshot

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that your data set snapshot is located in.
 If you need to create this volume in a different region, you can copy the snapshot to that region and then use it to create a volume in that region. For more information, see Copying an Amazon EBS Snapshot (p. 687).
3. In the navigation pane, choose ELASTIC BLOCK STORE, Volumes.
4. Choose Create Volume.
5. For Volume Type, choose a volume type. For more information, see Amazon EBS Volume Types (p. 632).
6. For Snapshot, start typing the ID or description of the snapshot that has the data set, and choose it from the list.
 If the snapshot that you are expecting to see does not appear, you might not have selected the region it is in. If the data set you identified in Finding Public Data Sets (p. 749) does not specify a region on its detail page, it is likely contained in the us-east-1 US East (N. Virginia) region.
7. For Size (GiB), type the size of the volume, or verify the that the default size of the snapshot is adequate.
 Note
 If you specify both a volume size and a snapshot, the size must be equal to or greater than the snapshot size. When you select a volume type and a snapshot, the minimum and maximum sizes for the volume are shown next to Size.
8. With a Provisioned IOPS SSD volume, for **IOPS**, type the maximum number of input/output operations per second (IOPS) that the volume should support.

9. For **Availability Zone**, choose the Availability Zone in which to create the volume. EBS volumes can only be attached to instances in the same Availability Zone.

10. (Optional) Choose **Create additional tags** to add tags to the volume. For each tag, provide a tag key and a tag value.

11. Choose **Create Volume**.

Attaching and Mounting the Public Data Set Volume

After you have created your new data set volume, you need to attach it to an EC2 instance to access the data (this instance must also be in the same Availability Zone as the new volume). For more information, see **Attaching an Amazon EBS Volume to an Instance** (p. 647).

After you have attached the volume to an instance, you need to mount the volume on the instance. For more information, see **Making an Amazon EBS Volume Available for Use** (p. 648).

If you restored a snapshot to a larger volume than the default for that snapshot, you must extend the file system on the volume to take advantage of the extra space. For more information, see **Modifying the Size, IOPS, or Type of an EBS Volume on Windows** (p. 666).
Resources and Tags

Amazon EC2 provides different resources that you can create and use. Some of these resources include images, instances, volumes, and snapshots. When you create a resource, we assign the resource a unique resource ID.

Some resources can be tagged with values that you define, to help you organize and identify them.

The following topics describe resources and tags, and how you can work with them.

Contents
• Resource Locations (p. 751)
• Resource IDs (p. 752)
• Listing and Filtering Your Resources (p. 756)
• Tagging Your Amazon EC2 Resources (p. 759)
• Amazon EC2 Service Limits (p. 768)
• Amazon EC2 Usage Reports (p. 770)

Resource Locations

Some resources can be used in all regions (global), and some resources are specific to the region or Availability Zone in which they reside.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS account</td>
<td>Global</td>
<td>You can use the same AWS account in all regions.</td>
</tr>
<tr>
<td>Key pairs</td>
<td>Global or Regional</td>
<td>The key pairs that you create using Amazon EC2 are tied to the region where you created them. You can create your own RSA key pair and upload it to the region in which you want to use it; therefore, you can make your key pair globally available by uploading it to each region. For more information, see Amazon EC2 Key Pairs and Windows Instances (p. 446).</td>
</tr>
<tr>
<td>Amazon EC2 resource identifiers</td>
<td>Regional</td>
<td>Each resource identifier, such as an AMI ID, instance ID, EBS volume ID, or EBS snapshot ID, is tied to its region and can be used only in the region where you created the resource.</td>
</tr>
<tr>
<td>User-supplied resource names</td>
<td>Regional</td>
<td>Each resource name, such as a security group name or key pair name, is tied to its region and can be used only in the region where you created the resource. Although you can create resources with the same name in multiple regions, they aren’t related to each other.</td>
</tr>
</tbody>
</table>
Resource IDs

When resources are created, we assign each resource a unique resource ID. You can use resource IDs to find your resources in the Amazon EC2 console. If you are using a command line tool or the Amazon EC2 API to work with Amazon EC2, resource IDs are required for certain commands. For example, if you are using the stop-instances AWS CLI command to stop an instance, you must specify the instance ID in the command.

Resource ID Length

A resource ID takes the form of a resource identifier (such as snap for a snapshot) followed by a hyphen and a unique combination of letters and numbers. Starting in January 2016, we're gradually introducing longer length IDs for some Amazon EC2 and Amazon EBS resource types. The length of the alphanumeric character combination was in an 8-character format; the new IDs are in a 17-character format, for example, i-1234567890abcdef0 for an instance ID.

Supported resource types will have an opt-in period, during which you can enable the longer ID format. After you've enabled longer IDs for a resource type, any new resources that you create are created with a longer ID unless you explicitly disable the longer ID format. A resource ID does not change after it's created; therefore, your existing resources with shorter IDs are not affected. Similarly, if you disable longer IDs for a resource type, any resources that you created with the longer IDs are not affected.

All supported resource types will have a deadline date, after which all new resources of this type default to the longer ID format, and you can no longer disable the longer ID format. You can enable or disable longer IDs per IAM user and IAM role. By default, an IAM user or role defaults to the same settings as the root user.
Depending on when you created your account, supported resource types may default to using longer IDs. However, you can opt out of using longer IDs until the deadline date for that resource type. For more information, see Longer EC2 and EBS Resource IDs in the Amazon EC2 FAQs.

Resources created with longer IDs are visible to all IAM users and IAM roles, regardless of individual settings and provided that they have permissions to view the relevant resource types.

Topics
- Working with Longer IDs (p. 753)
- Controlling Access to Longer ID Settings (p. 755)

Working with Longer IDs

You can view and modify the longer ID settings for yourself, or for a different IAM user, IAM role, or the root user of the account.

Topics
- Viewing and Modifying Your Longer ID Settings (p. 753)
- Viewing and Modifying Longer ID Settings for Users or Roles (p. 755)

Viewing and Modifying Your Longer ID Settings

You can use the Amazon EC2 console or the AWS CLI to view the resource types that support long IDs, and enable or disable the longer ID format for yourself. The procedures in this section apply to the IAM user or IAM role that's logged into the console or that makes the request; they do not apply to the entire AWS account.

To view and modify the longer ID settings using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation bar at the top of the screen, the current region is displayed. Select the region for which you want to view or change the longer ID settings. Settings are not shared between regions.
3. From the dashboard, under Account Attributes, choose Resource ID length management. The resource types that support longer IDs are listed. The date at which you're automatically switched over to using longer IDs for each resource type is displayed in the Deadline column.
4. To enable the longer ID format for a supported resource type, choose the check box for the Use Longer IDs column. To disable the longer ID format, clear the check box.

 Important
 If you're logged in as the root user, these settings apply to the entire account, unless an IAM user or role logs in and explicitly overrides these settings for themselves. Resources created with longer IDs are visible to all IAM users, regardless of individual settings and provided that they have permissions to view the relevant resource types.

To view and modify longer ID settings using the AWS CLI

To view the longer ID settings of all supported resources, use the describe-id-format AWS CLI command:

```bash
aws ec2 describe-id-format
{
   "Statuses": [
```
The results apply to the IAM user, IAM role, or root user that makes the request; they do not apply to the entire AWS account. The results above indicate that the instance, reservation, volume, and snapshot resource types can be enabled or disabled for longer IDs; the reservation resource is already enabled. The Deadline field indicates the date (in UTC) at which you will be automatically switched over to using longer IDs for that resource. If a deadline date is not yet available, this value is not returned.

To enable longer IDs for a specified resource, use the `modify-id-format` AWS CLI command:

```
aws ec2 modify-id-format --resource resource-type --use-long-ids
```

To disable longer IDs for a specified resource, use the `modify-id-format` AWS CLI command:

```
aws ec2 modify-id-format --resource resource-type --no-use-long-ids
```

If you’re using these actions as the root user, then these settings apply to the entire account, unless an IAM user or role explicitly overrides these settings for themselves. These commands are per-region only. To modify the settings for other regions, use the `--region` parameter in the command.

Note

In the 2015-10-01 version of the Amazon EC2 API, if you call `describe-id-format` or `modify-id-format` using IAM role credentials, the results apply to the entire AWS account, and not the specific IAM role. In the current version of the Amazon EC2 API, the results apply to the IAM role only.

Alternatively, you can use the following commands:

To describe the ID format

- `DescribeldFormat` (Amazon EC2 API)
- `Get-EC2IdFormat` (AWS Tools for Windows PowerShell)

To modify the ID format

- `ModifyIdFormat` (Amazon EC2 API)
Viewing and Modifying Longer ID Settings for Users or Roles

You can view supported resource types and enable the longer ID settings for a specific IAM user, IAM role, or the root user of your account by using the `describe-identity-id-format` and `modify-identity-id-format` AWS CLI commands. To use these commands, you must specify the ARN of an IAM user, IAM role, or root account user in the request. For example, the ARN of the role 'EC2Role' in account 123456789012 is `arn:aws:iam::123456789012:role/EC2Role`. For more information, see Principal in the IAM User Guide.

To view the longer ID settings of all supported resources for a specific IAM user or IAM role, use the following AWS CLI command:

```
aws ec2 describe-identity-id-format --principal-arn arn-of-iam-principal
```

To enable the longer ID settings for a resource type for a specific IAM user or IAM role, use the following AWS CLI command:

```
aws ec2 modify-identity-id-format --principal-arn arn-of-iam-principal --resource resource-type --use-long-ids
```

These commands apply to the ARN specified in the request, they do not apply to the IAM user, IAM role, or root user that made the request.

You can enable the longer ID settings for all IAM users, IAM roles, and the root user of your account by using the following AWS CLI command:

```
aws ec2 modify-identity-id-format --principal-arn all --resource resource-type --use-long-ids
```

Alternatively, you can use the following commands:

To describe the ID format

- `DescribeIdentityIdFormat` (Amazon EC2 API)
- `Get-EC2IdentityIdFormat` (AWS Tools for Windows PowerShell)

To modify the ID format

- `ModifyIdentityIdFormat` (Amazon EC2 API)
- `Edit-EC2IdentityIdFormat` (AWS Tools for Windows PowerShell)

Controlling Access to Longer ID Settings

By default, IAM users and roles do not have permission to use the `ec2:DescribeIdFormat`, `ec2:DescribeIdentityIdFormat`, `ec2:ModifyIdFormat`, and `ec2:ModifyIdentityIdFormat` actions unless they're explicitly granted permission through their associated IAM policies. For example, an IAM role may have permission to use all Amazon EC2 actions through an "Action": "ec2:*" element in the policy statement.

To prevent IAM users and roles from viewing or modifying the longer resource ID settings for themselves or other users and roles in your account, ensure that the IAM policy contains the following statement:
We do not support resource-level permissions for the `ec2:DescribeIdFormat`, `ec2:DescribeIdentityIdFormat`, `ec2:ModifyIdFormat`, and `ec2:ModifyIdentityIdFormat` actions.

Listing and Filtering Your Resources

You can get a list of some types of resource using the Amazon EC2 console. You can get a list of each type of resource using its corresponding command or API action. If you have many resources, you can filter the results to include only the resources that match certain criteria.

Contents
- Advanced Search (p. 756)
- Listing Resources Using the Console (p. 757)
- Filtering Resources Using the Console (p. 758)
- Listing and Filtering Using the CLI and API (p. 759)

Advanced Search

Advanced search allows you to search using a combination of filters to achieve precise results. You can filter by keywords, user-defined tag keys, and predefined resource attributes.

The specific search types available are:

- **Search by keyword**

 To search by keyword, type or paste what you’re looking for in the search box, and then choose Enter. For example, to search for a specific instance, you can type the instance ID.

- **Search by fields**

 You can also search by fields, tags, and attributes associated with a resource. For example, to find all instances in the stopped state:

 1. In the search box, start typing **Instance State**. As you type, you’ll see a list of suggested fields.
 2. Select **Instance State** from the list.
 3. Select **Stopped** from the list of suggested values.
 4. To further refine your list, select the search box for more search options.

- **Advanced search**
You can create advanced queries by adding multiple filters. For example, you can search by tags and see instances for the Flying Mountain project running in the Production stack, and then search by attributes to see all t2.micro instances, or all instances in us-west-2a, or both.

- **Inverse search**

 You can search for resources that do not match a specified value. For example, to list all instances that are not terminated, search by the **Instance State** field, and prefix the Terminated value with an exclamation mark (!).

- **Partial search**

 When searching by field, you can also enter a partial string to find all resources that contain the string in that field. For example, search by **Instance Type**, and then type `t2` to find all t2.micro, t2.small or t2.medium instances.

- **Regular expression**

 Regular expressions are useful when you need to match the values in a field with a specific pattern. For example, search by the Name tag, and then type `^s.*` to see all instances with a Name tag that starts with an 's'. Regular expression search is not case-sensitive.

After you have the precise results of your search, you can bookmark the URL for easy reference. In situations where you have thousands of instances, filters and bookmarks can save you a great deal of time; you don’t have to run searches repeatedly.

Combining search filters

In general, multiple filters with the same key field (for example, tag:Name, search, Instance State) are automatically joined with OR. This is intentional, as the vast majority of filters would not be logical if they were joined with AND. For example, you would get zero results for a search on Instance State=running AND Instance State=stopped. In many cases, you can granulate the results by using complementary search terms on different key fields, where the AND rule is automatically applied instead. If you search for tag: Name:=All values and tag:Instance State=running, you get search results that contain both those criteria. To fine-tune your results, simply remove one filter in the string until the results fit your requirements.

Listing Resources Using the Console

You can view the most common Amazon EC2 resource types using the console. To view additional resources, use the command line interface or the API actions.

To list EC2 resources using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose the option that corresponds to the resource, such as **AMIs** or **Instances**.
3. The page displays all the available resources.

Filtering Resources Using the Console

You can perform filtering and sorting of the most common resource types using the Amazon EC2 console. For example, you can use the search bar on the instances page to sort instances by tags, attributes, or keywords.

You can also use the search field on each page to find resources with specific attributes or values. You can use regular expressions to search on partial or multiple strings. For example, to find all instances that are using the MySG security group, enter MySG in the search field. The results will include any values that contain MySG as a part of the string, such as MySG2 and MySG3. To limit your results to MySG only, enter \bMySG\b in the search field. To list all the instances whose type is either m1.small or m1.large, enter m1.small|m1.large in the search field.

To list volumes in the us-east-1b Availability Zone with a status of available

1. In the navigation pane, choose Volumes.
2. Click on the search box, select Attachment Status from the menu, and then select Detached. (A detached volume is available to be attached to an instance in the same Availability Zone.)
3. Click on the search box again, select State, and then select Available.
4. Click on the search box again, select Availability Zone, and then select us-east-1b.
5. Any volumes that meet this criteria are displayed.
To list public 64-bit Windows AMIs backed by Amazon EBS

1. In the navigation pane, choose **AMIs**.
2. In the **Filter** pane, select **Public images**,** EBS images**, and then **Windows** from the **Filter** lists.
3. Type **x86_64** in the search field.
4. Any AMIs that meet this criteria are displayed.

Listing and Filtering Using the CLI and API

Each resource type has a corresponding CLI command or API request that you use to list resources of that type. For example, you can list Amazon Machine Images (AMIs) using `ec2-describe-images` or `DescribeImages`. The response contains information for all your resources.

The resulting lists of resources can be long, so you might want to filter the results to include only the resources that match certain criteria. You can specify multiple filter values, and you can also specify multiple filters. For example, you can list all the instances whose type is either `m1.small` or `m1.large`, and that have an attached EBS volume that is set to delete when the instance terminates. The instance must match all your filters to be included in the results.

You can also use wildcards with the filter values. An asterisk (*) matches zero or more characters, and a question mark (?) matches exactly one character. For example, you can use `*database*` as a filter value to get all EBS snapshots that include `database` in the description. If you were to specify `database` as the filter value, then only snapshots whose description equals `database` would be returned. Filter values are case sensitive. We support only exact string matching, or substring matching (with wildcards). If a resulting list of resources is long, using an exact string filter may return the response faster.

Your search can include the literal values of the wildcard characters; you just need to escape them with a backslash before the character. For example, a value of `*amazon\?\` searches for the literal string `*amazon?\`.

For a list of supported filters per Amazon EC2 resource, see the relevant documentation:

- For the AWS CLI, see the relevant `describe` command in the [AWS CLI Command Reference](https://docs.aws.amazon.com/cli/latest/userguide/awscli-reference-command-ec2.html).
- For Windows PowerShell, see the relevant `Get` command in the [AWS Tools for PowerShell Cmdlet Reference](https://docs.aws.amazon.com/powershell/latest/help/)
- For the Query API, see the relevant `Describe` API action in the [Amazon EC2 API Reference](https://docs.aws.amazon.com/AmazonEC2/latest/APIReference/)

Tagging Your Amazon EC2 Resources

To help you manage your instances, images, and other Amazon EC2 resources, you can optionally assign your own metadata to each resource in the form of **tags**. This topic describes tags and shows you how to create them.

Contents

- **Tag Basics** (p. 760)
- **Tagging Your Resources** (p. 761)
- **Tag Restrictions** (p. 763)
- **Tagging Your Resources for Billing** (p. 763)
- **Working with Tags Using the Console** (p. 763)
- **Working with Tags Using the CLI or API** (p. 766)
Tag Basics

Tags enable you to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. This is useful when you have many resources of the same type — you can quickly identify a specific resource based on the tags you've assigned to it. Each tag consists of a key and an optional value, both of which you define. For example, you could define a set of tags for your account's Amazon EC2 instances that helps you track each instance's owner and stack level. We recommend that you devise a set of tag keys that meets your needs for each resource type. Using a consistent set of tag keys makes it easier for you to manage your resources. You can search and filter the resources based on the tags you add.

The following diagram illustrates how tagging works. In this example, you've assigned two tags to each of your instances, one called Owner and another called Stack. Each of the tags also has an associated value.

Tags don't have any semantic meaning to Amazon EC2 and are interpreted strictly as a string of characters. Also, tags are not automatically assigned to your resources. You can edit tag keys and values, and you can remove tags from a resource at any time. You can set the value of a tag to an empty string, but you can't set the value of a tag to null. If you add a tag that has the same key as an existing tag on that resource, the new value overwrites the old value. If you delete a resource, any tags for the resource are also deleted.

You can work with tags using the AWS Management Console, the AWS CLI, and the Amazon EC2 API.

If you're using AWS Identity and Access Management (IAM), you can control which users in your AWS account have permission to create, edit, or delete tags. For more information, see Controlling Access to Amazon EC2 Resources (p. 466).
Tagging Your Resources

You can tag most Amazon EC2 resources that already exist in your account. The table (p. 761) below lists the resources that support tagging.

If you’re using the Amazon EC2 console, you can apply tags to resources by using the Tags tab on the relevant resource screen, or you can use the Tags screen. Some resource screens enable you to specify tags for a resource when you create the resource; for example, a tag with a key of Name and a value that you specify. In most cases, the console applies the tags immediately after the resource is created (rather than during resource creation). The console may organize resources according to the Name tag, but this tag doesn’t have any semantic meaning to the Amazon EC2 service.

If you’re using the Amazon EC2 API, the AWS CLI, or an AWS SDK, you can use the CreateTags EC2 API action to apply tags to existing resources. Additionally, some resource-creating actions enable you to specify tags when the resource is created. If tags cannot be applied during resource creation, we roll back the resource creation process. This ensures that resources are either created with tags or not created at all, and that no resources are left untagged at any time. By tagging resources at the time of creation, you can eliminate the need to run custom tagging scripts after resource creation.

The following table describes the Amazon EC2 resources that can be tagged, and the resources that can be tagged on creation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Supports tags</th>
<th>Supports tagging on creation (Amazon EC2 API, AWS CLI, AWS SDK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AMI</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bundle task</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Customer gateway</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dedicated Host</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DHCP option</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EBS snapshot</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EBS volume</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Egress-only internet gateway</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Elastic IP address</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Instance</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Instance store volume</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Internet gateway</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Key pair</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Launch template</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Launch template version</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NAT gateway</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
To tag your instances or volumes on creation, you can use the Amazon EC2 Launch Instances wizard in the Amazon EC2 console, the RunInstances Amazon EC2 API, or the CreateVolume Amazon EC2 API. You can tag your EBS volumes on creation using the Volumes screen in the Amazon EC2 console.

You can apply tag-based resource-level permissions to the CreateVolume and RunInstances Amazon EC2 API actions in your IAM policies to implement granular control over the users and groups that can tag resources on creation. Your resources are properly secured from creation—tags are applied immediately to your resources, therefore any tag-based resource-level permissions controlling the use of resources are immediately effective. Your resources can be tracked and reported on more accurately. You can enforce the use of tagging on new resources, and control which tag keys and values are set on your resources.

You can also apply resource-level permissions to the CreateTags and DeleteTags Amazon EC2 API actions in your IAM policies to control which tag keys and values are set on your existing resources. For more information, see Supported Resource-Level Permissions for Amazon EC2 API Actions (p. 477) and Example Policies for Working with the AWS CLI or an AWS SDK (p. 503).

For more information about tagging your resources for billing, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Supports tags</th>
<th>Supports tagging on creation (Amazon EC2 API, AWS CLI, AWS SDK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network ACL</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Network interface</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Placement group</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Reserved Instance</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Reserved Instance listing</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Route table</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Spot Instance request</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Security group–EC2-Classic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Security group–VPC</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Subnet</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Virtual private gateway</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VPC</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VPC endpoint</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VPC endpoint service</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VPC flow log</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VPC peering connection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VPN connection</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Tag Restrictions

The following basic restrictions apply to tags:

- Maximum number of tags per resource—50
- Maximum key length—127 Unicode characters in UTF-8
- Maximum value length—255 Unicode characters in UTF-8
- Tag keys and values are case-sensitive.
- Do not use the `aws:` prefix in your tag names or values because it is reserved for AWS use. You can't edit or delete tag names or values with this prefix. Tags with this prefix do not count against your tags per resource limit.
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, spaces, and numbers representable in UTF-8, plus the following special characters: + - = . _ : / @.

You can't terminate, stop, or delete a resource based solely on its tags; you must specify the resource identifier. For example, to delete snapshots that you tagged with a tag key called `DeleteMe`, you must use the `DeleteSnapshots` action with the resource identifiers of the snapshots, such as `snap-1234567890abcdef0`.

You can tag public or shared resources, but the tags you assign are available only to your AWS account and not to the other accounts sharing the resource.

You can't tag all resources. For more information, see Tagging Support for Amazon EC2 Resources (p. 761).

Tagging Your Resources for Billing

You can use tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to get your AWS account bill with tag key values included. For more information about setting up a cost allocation report with tags, see The Monthly Cost Allocation Report in AWS Billing and Cost Management User Guide. To see the cost of your combined resources, you can organize your billing information based on resources that have the same tag key values. For example, you can tag several resources with a specific application name, and then organize your billing information to see the total cost of that application across several services. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

Cost allocation tags can indicate which resources are contributing to costs, but deleting or deactivating resources doesn't always reduce costs. For example, snapshot data that is referenced by another snapshot is preserved, even if the snapshot that contains the original data is deleted. For more information, see Amazon Elastic Block Store Volumes and Snapshots in the AWS Billing and Cost Management User Guide.

Note
If you've just enabled reporting, data for the current month is available for viewing after 24 hours.

Working with Tags Using the Console

Using the Amazon EC2 console, you can see which tags are in use across all of your Amazon EC2 resources in the same region. You can view tags by resource and by resource type, and you can also view how many items of each resource type are associated with a specified tag. You can also use the Amazon EC2 console to apply or remove tags from one or more resources at a time.
For more information about using filters when listing your resources, see Listing and Filtering Your Resources (p. 756).

For ease of use and best results, use Tag Editor in the AWS Management Console, which provides a central, unified way to create and manage your tags. For more information, see Working with Tag Editor in Getting Started with the AWS Management Console.

Contents
- Displaying Tags (p. 764)
- Adding and Deleting Tags on an Individual Resource (p. 765)
- Adding and Deleting Tags to a Group of Resources (p. 765)
- Adding a Tag When You Launch an Instance (p. 766)
- Filtering a List of Resources by Tag (p. 766)

Displaying Tags

You can display tags in two different ways in the Amazon EC2 console. You can display the tags for an individual resource or for all resources.

Displaying Tags for Individual Resources

When you select a resource-specific page in the Amazon EC2 console, it displays a list of those resources. For example, if you select Instances from the navigation pane, the console displays a list of Amazon EC2 instances. When you select a resource from one of these lists (for example, an instance), if the resource supports tags, you can view and manage its tags. On most resource pages, you can view the tags in the Tags tab on the details pane.

You can add a column to the resource list that displays all values for tags with the same key. This column enables you to sort and filter the resource list by the tag. There are two ways to add a new column to the resource list to display your tags.

- On the Tags tab, select Show Column. A new column is added to the console.
- Choose the Show/Hide Columns gear-shaped icon, and in the Show/Hide Columns dialog box, select the tag key under Your Tag Keys.

Displaying Tags for All Resources

You can display tags across all resources by selecting Tags from the navigation pane in the Amazon EC2 console. The following image shows the Tags pane, which lists all tags in use by resource type.
Adding and Deleting Tags on an Individual Resource

You can manage tags for an individual resource directly from the resource's page.

To add a tag to an individual resource

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that meets your needs. This choice is important because some Amazon EC2 resources can be shared between regions, while others can’t. For more information, see Resource Locations (p. 751).
3. In the navigation pane, select a resource type (for example, **Instances**).
4. Select the resource from the resource list and choose **Tags, Add/Edit Tags**.
5. In the **Add/Edit Tags** dialog box, specify the key and value for each tag, and then choose **Save**.

To delete a tag from an individual resource

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that meets your needs. This choice is important because some Amazon EC2 resources can be shared between regions, while others can’t. For more information, see Resource Locations (p. 751).
3. In the navigation pane, choose a resource type (for example, **Instances**).
4. Select the resource from the resource list and choose **Tags**.
5. Choose **Add/Edit Tags**, select the **Delete** icon for the tag, and choose **Save**.

Adding and Deleting Tags to a Group of Resources

To add a tag to a group of resources

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that meets your needs. This choice is important because some Amazon EC2 resources can be shared between regions, while others can’t. For more information, see Resource Locations (p. 751).
3. In the navigation pane, choose **Tags**.
4. At the top of the content pane, choose **Manage Tags**.
5. For **Filter**, select the type of resource (for example, instances) to which to add tags.
6. In the resources list, select the check box next to each resource to which to add tags.
7. Under **Add Tag**, for **Key** and **Value**, type the tag key and values, and then choose **Add Tag**.

Note
If you add a new tag with the same tag key as an existing tag, the new tag overwrites the existing tag.

To remove a tag from a group of resources

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select the region that meets your needs. This choice is important because some Amazon EC2 resources can be shared between regions, while others can’t. For more information, see Resource Locations (p. 751).
3. In the navigation pane, choose **Tags, Manage Tags**.
4. To view the tags in use, select the **Show/Hide Columns** gear-shaped icon, and in the **Show/Hide Columns** dialog box, select the tag keys to view and choose **Close**.
5. For **Filter**, select the type of resource (for example, instances) from which to remove tags.
6. In the resource list, select the check box next to each resource from which to remove tags.
7. Under **Remove Tag**, for **Key**, type the tag's name and choose **Remove Tag**.

Adding a Tag When You Launch an Instance

To add a tag using the Launch Wizard

1. From the navigation bar, select the region for the instance. This choice is important because some Amazon EC2 resources can be shared between regions, while others can't. Select the region that meets your needs. For more information, see [Resource Locations](#) (p. 751).
2. Choose **Launch Instance**.
3. The **Choose an Amazon Machine Image (AMI)** page displays a list of basic configurations called Amazon Machine Images (AMIs). Select the AMI to use and choose **Select**. For more information about selecting an AMI, see [Finding a Windows AMI](#) (p. 52).
4. On the **Configure Instance Details** page, configure the instance settings as necessary, and then choose **Next: Add Storage**.
5. On the **Add Storage** page, you can specify additional storage volumes for your instance. Choose **Next: Add Tags** when done.
6. On the **Add Tags** page, specify tags for the instance, the volumes, or both. Choose **Add another tag** to add more than one tag to your instance. Choose **Next: Configure Security Group** when you are done.
7. On the **Configure Security Group** page, you can choose from an existing security group that you own, or let the wizard create a new security group for you. Choose **Review and Launch** when you are done.
8. Review your settings. When you're satisfied with your selections, choose **Launch**. Select an existing key pair or create a new one, select the acknowledgment check box, and then choose **Launch Instances**.

Filtering a List of Resources by Tag

You can filter your list of resources based on one or more tag keys and tag values.

To filter a list of resources by tag

1. Display a column for the tag as follows:
 a. Select a resource.
 b. In the details pane, choose **Tags**.
 c. Locate the tag in the list and choose **Show Column**.
2. Choose the filter icon in the top right corner of the column for the tag to display the filter list.
3. Select the tag values, and then choose **Apply Filter** to filter the results list.

Note

For more information about filters, see [Listing and Filtering Your Resources](#) (p. 756).

Working with Tags Using the CLI or API

Use the following to add, update, list, and delete the tags for your resources. The corresponding documentation provides examples.
Working with Tags Using the CLI or API

<table>
<thead>
<tr>
<th>Task</th>
<th>AWS CLI</th>
<th>AWS Tools for Windows PowerShell</th>
<th>API Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add or overwrite one or more tags.</td>
<td>create-tags</td>
<td>New-EC2Tag</td>
<td>CreateTags</td>
</tr>
<tr>
<td>Delete one or more tags.</td>
<td>delete-tags</td>
<td>Remove-EC2Tag</td>
<td>DeleteTags</td>
</tr>
<tr>
<td>Describe one or more tags.</td>
<td>describe-tags</td>
<td>Get-EC2Tag</td>
<td>DescribeTags</td>
</tr>
</tbody>
</table>

You can also filter a list of resources according to their tags. The following examples demonstrate how to filter your instances using tags with the `describe-instances` command.

Example 1: Describe instances with the specified tag key

The following command describes the instances with a Stack tag, regardless of the value of the tag.

```
aws ec2 describe-instances --filters Name=tag-key,Values=Stack
```

Example 2: Describe instances with the specified tag

The following command describes the instances with the tag Stack=production.

```
aws ec2 describe-instances --filters Name=tag:Stack,Values=production
```

Example 3: Describe instances with the specified tag value

The following command describes the instances with a tag with the value production, regardless of the tag key.

```
aws ec2 describe-instances --filters Name=tag-value,Values=production
```

Some resource-creating actions enable you to specify tags when you create the resource. The following actions support tagging on creation.

<table>
<thead>
<tr>
<th>Task</th>
<th>AWS CLI</th>
<th>AWS Tools for Windows PowerShell</th>
<th>API Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch one or more instances.</td>
<td>run-instances</td>
<td>New-EC2Instance</td>
<td>RunInstances</td>
</tr>
<tr>
<td>Create an EBS volume.</td>
<td>create-volume</td>
<td>New-EC2Volume</td>
<td>CreateVolume</td>
</tr>
</tbody>
</table>

The following examples demonstrate how to apply tags when you create resources.

Example 4: Launch an instance and apply tags to the instance and volume

The following command launches an instance and applies a tag with a key of `webserver` and value of `production` to the instance. The command also applies a tag with a key of `cost-center` and a value of `cc123` to any EBS volume that's created (in this case, the root volume).

```
aws ec2 run-instances --image-id ami-abc12345 --count 1 --instance-type t2.micro --key-name MyKeyPair --subnet-id subnet-6e7f829e --tagSpecifications 'ResourceType=instance,Tags=[{Key=webserver,Value=production}]'
'ResourceType=volumes,Tags=[{Key=cost-center,Value=cc123}]'
```
You can apply the same tag keys and values to both instances and volumes during launch. The following command launches an instance and applies a tag with a key of `cost-center` and a value of `cc123` to both the instance and any EBS volume that's created.

```bash
aws ec2 run-instances --image-id ami-abc12345 --count 1 --instance-type t2.micro --key-name MyKeyPair --subnet-id subnet-6e7f829e --tag-specifications 'ResourceType=instance,Tags=[{Key=cost-center,Value=cc123}]' 'ResourceType=volume,Tags=[{Key=cost-center,Value=cc123}]'
```

Example 5: Create a volume and apply a tag

The following command creates a volume and applies two tags: `purpose = production`, and `cost-center = cc123`.

```bash
aws ec2 create-volume --availability-zone us-east-1a --volume-type gp2 --size 80 --tag-specifications 'ResourceType=volume,Tags=[{Key=purpose,Value=production},{Key=cost-center,Value=cc123}]'
```

Amazon EC2 Service Limits

Amazon EC2 provides different resources that you can use. These resources include images, instances, volumes, and snapshots. When you create your AWS account, we set default limits on these resources on a per-region basis. For example, there is a limit on the number of instances that you can launch in a region. Therefore, when you launch an instance in the US West (Oregon) region, the request must not cause your usage to exceed your current instance limit in that region.

The Amazon EC2 console provides limit information for the resources managed by the Amazon EC2 and Amazon VPC consoles. You can request an increase for many of these limits. Use the limit information that we provide to manage your AWS infrastructure. Plan to request any limit increases in advance of the time that you'll need them.

For more information about the limits for other services, see [AWS Service Limits](https://aws.amazon.com/terms/service-quotas) in the Amazon Web Services General Reference.

Viewing Your Current Limits

Use the EC2 Service Limits page in the Amazon EC2 console to view the current limits for resources provided by Amazon EC2 and Amazon VPC, on a per-region basis.

To view your current limits

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select a region.
3. From the navigation pane, choose Limits.
4. Locate the resource in the list. The Current Limit column displays the current maximum for that resource for your account.

Requesting a Limit Increase

Use the Limits page in the Amazon EC2 console to request an increase in the limits for resources provided by Amazon EC2 or Amazon VPC, on a per-region basis.

To request a limit increase

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select a region.
3. From the navigation pane, choose Limits.
4. Locate the resource in the list. Choose Request limit increase.
5. Complete the required fields on the limit increase form. We'll respond to you using the contact method that you specified.
AWS provides a free reporting tool called Cost Explorer that enables you to analyze the cost and usage of your EC2 instances and the usage of your Reserved Instances.

Cost Explorer is a free tool that you can use to view charts of your usage and costs. You can view data up to the last 13 months, and forecast how much you are likely to spend for the next three months. You can use Cost Explorer to see patterns in how much you spend on AWS resources over time, identify areas that need further inquiry, and see trends that you can use to understand your costs. You also can specify time ranges for the data, and view time data by day or by month.

Here's an example of some of the questions that you can answer when using Cost Explorer:

- How much am I spending on instances of each instance type?
- How many instance hours are being used by a particular department?
- How is my instance usage distributed across Availability Zones?
- How is my instance usage distributed across AWS accounts?
- How well am I using my Reserved Instances?
- Are my Reserved Instances helping me save money?

To view an Amazon EC2 report in Cost Explorer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Reports** and select the report to view.

 The report opens in Cost Explorer. It provides a preconfigured view, based on fixed filter settings, that displays information about your usage and cost trends.

For more information about working with reports in Cost Explorer, including saving reports, see [Analyzing Your Costs with Cost Explorer](#).
AWS Systems Manager for Microsoft System Center VMM

Amazon Web Services (AWS) Systems Manager for Microsoft System Center Virtual Machine Manager (SCVMM) provides a simple, easy-to-use interface for managing AWS resources, such as EC2 instances, from Microsoft SCVMM. It is implemented as an add-in for the VMM console. For more information, see AWS Add-ins for Microsoft System Center.

Features

- Administrators can grant permissions to users so that they can manage EC2 instances from SCVMM.
- Users can launch, view, reboot, stop, start, and terminate instances, if they have the required permissions.
- Users can get the passwords for their Windows instances and connect to them using RDP.
- Users can get the public DNS names for their Linux instances and connect to them using SSH.
- Users can import their Hyper-V Windows virtual machines from SCVMM to Amazon EC2.

Limitations

- Users must have an account that they can use to log in to SCVMM.
- You can’t launch EC2 instances into EC2-Classic; you must launch them into a VPC.
- You can’t import Linux virtual machines from SCVMM to Amazon EC2.
- This is not a comprehensive tool for creating and managing AWS resources. The add-in enables SCVMM users to get started quickly with the basic tasks for managing their EC2 instances. Future releases might support managing additional AWS resources.
Requirements

- An AWS account
- Microsoft System Center VMM 2012 R2 or System Center VMM 2012 SP1 with the latest update roll-up

Getting Started

To get started, see the following documentation:

- Setting Up (p. 772)
- Managing EC2 Instances (p. 776)
- Troubleshooting (p. 782)

Setting Up AWS Systems Manager for Microsoft SCVMM

When you set up AWS Systems Manager, users in your organization can access your AWS resources. The process involves creating accounts, deploying the add-in, and providing your credentials.

Tasks

- Sign Up for AWS (p. 772)
- Set Up Access for Users (p. 773)
- Deploy the Add-In (p. 775)
- Provide Your AWS Credentials (p. 775)

Sign Up for AWS

When you sign up for Amazon Web Services, your AWS account is automatically signed up for all services in AWS. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the following procedure to create one.

To sign up for an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

 Note
 This might be unavailable in your browser if you previously signed into the AWS Management Console. In that case, choose Sign in to a different account, and then choose Create a new AWS account.

2. Follow the online instructions.

 Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.
Set Up Access for Users

The first time that you use AWS Systems Manager, you must provide AWS credentials. To enable multiple
users to access the same AWS account using unique credentials and permissions, create an IAM user for
each user. You can create one or more groups with policies that grant permissions to perform limited
tasks. Then you can create one or more IAM users, and add each user to the appropriate group.

To create an Administrators group
1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Groups and then choose Create New Group.
3. In the Group Name box, specify Administrators and then choose Next Step.
5. Choose Next Step and then choose Create Group.

To create a group with limited access to Amazon EC2
1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Groups and then choose Create New Group.
3. In the Group Name box, specify a meaningful name for the group and then choose Next Step.
4. On the Attach Policy page, do not select an AWS managed policy — choose Next Step, and then
 choose Create Group.
5. Choose the name of the group you’ve just created. On the Permissions tab, choose Inline Policies,
 and then click here.
6. Select the Custom Policy radio button and then choose Select.
7. Enter a name for the policy and a policy document that grants limited access to Amazon EC2, and
 then choose Apply Policy. For example, you can specify one of the following custom policies.

Grant users in this group permission to view information about EC2 instances only

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "ec2:Describe*",
        "iam:ListInstanceProfiles"
      ],
      "Resource": "*"
    }
  ]
}
```

**Grant users in this group permission to perform all operations on EC2 instances that are
supported by the add-in**

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "iam:ListInstanceProfiles", "iam:PassRole",
        "ec2:Describe*", "ec2:CreateKeyPair",
```
Grant users in this group permission to import a VM to Amazon EC2

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "s3:ListAllMyBuckets", "s3:CreateBucket",
            "s3:DeleteBucket", "s3:DeleteObject",
            "s3:GetBucketLocation", "s3:GetObject",
            "s3:ListBucket", "s3:PutObject",
            "ec2:DescribeTags", "ec2:CancelConversionTask",
            "ec2:DescribeConversionTasks", "ec2:DescribeInstanceAttribute",
            "ec2:CreateImage", "ec2:AttachVolume",
            "ec2:ImportInstance", "ec2:ImportVolume",
            "dynamodb:DescribeTable", "dynamodb:CreateTable",
            "dynamodb:Scan", "dynamodb:PutItem", "dynamodb:UpdateItem"
         ],
         "Resource": "*"
      }
   ]
}
```

To create an IAM user, get the user’s AWS credentials, and grant the user permissions

1. In the navigation pane, choose Users and then choose Add user.
2. Enter a user name.
3. Select the type of access this set of users will have. Select Programmatic access and AWS Management Console access if this user must also access the AWS Management Console.
4. For Console password type, choose one of the following:
 - Autogenerated password. Each user gets a randomly generated password that meets the current password policy in effect (if any). You can view or download the passwords when you get to the Final page.
 - Custom password. Each user is assigned the password that you type in the box.
5. Choose Next: Permissions.
6. On the Set permissions page, choose Add user to group. Select the appropriate group.
7. Choose Next: Review, then Create user.
8. To view the users’ access keys (access key IDs and secret access keys), choose Show next to each password and secret access key that you want to see. To save the access keys, choose Download .csv and then save the file to a safe location.
 Note
 You cannot retrieve the secret access key after you complete this step; if you misplace it you must create a new one.
9. Choose Close.
Deploy the Add-In

Add-ins for System Center VMM are distributed as .zip files. To deploy the add-in, use the following procedure.

To deploy the add-in

1. From your instance, go to AWS Systems Manager for Microsoft System Center Virtual Machine Manager and click SCVMM. Save the aws-systems-manager-1.5.zip file to your instance.
2. Open the VMM console.
3. In the navigation pane, click Settings and then click Console Add-Ins.
4. On the ribbon, click Import Console Add-in.
5. On the Select an Add-in page, click Browse and select the aws-systems-manager-1.5.zip file for the add-in that you downloaded.
6. Ignore any warnings that there are assemblies in the add-in that are not signed by a trusted authority. Select Continue installing this add-in anyway and then click Next.
7. On the Summary page, click Finish.
8. When the add-in is imported, the status of the job is Completed. You can close the Jobs window.

Provide Your AWS Credentials

When you use the AWS Systems Manager for the first time, you must provide your AWS credentials. Your access keys identify you to AWS. There are two types of access keys: access key IDs (for example, AKIAIOSFODNN7EXAMPLE) and secret access keys (for example, wJalrXUtniFEMI/K7MDENG/bPxRfYQYbguestKEY). You should have stored your access keys in a safe place when you received them.

To provide your AWS credentials

1. Open the VMM console.
2. In the navigation pane, click VMs and Services.
3. On the ribbon, click Amazon EC2.
4. On the Credentials tab, specify your AWS credentials, select a default region, and then click Save.
Managing EC2 Instances Using AWS Systems Manager for Microsoft SCVMM

After you log in to the AWS Systems Manager using your AWS credentials, you can manage your EC2 instances.

Tasks
- Creating an EC2 Instance (p. 776)
- Viewing Your Instances (p. 778)
- Connecting to Your Instance (p. 778)
- Rebooting Your Instance (p. 779)
- Stopping Your Instance (p. 779)
- Starting Your Instance (p. 779)
- Terminating Your Instance (p. 779)

Creating an EC2 Instance

The permissions that you've been granted by your administrator determine whether you can create instances.

Prerequisites
- A virtual private cloud (VPC) with a subnet in the Availability Zone where you'll launch the instance.
 For more information about creating a VPC, see the Amazon VPC Getting Started Guide.

To create an EC2 instance
1. Open SCVMM.
2. On the ribbon, click Create Amazon EC2 Instance.
3. Complete the Create Amazon EC2 Instance dialog box as follows:
 a. Select a region for your instance. By default, we select the region that you configured as your default region.
 b. Select a template (known as an AMI) for your instance. To use an AMI provided by Amazon, select Windows or Linux and then select an AMI from Image. To use an AMI that you created, select My images and then select the AMI from Image.
 c. Select an instance type for the instance. First, select one of the latest instance families from Family, and then select an instance type from Instance type. To include previous generation instance families in the list, select Show previous generations. For more information, see Amazon EC2 Instances and Previous Generation Instances.
 d. Create or select a key pair. To create a key pair, select Create a new key pair from Key pair name and enter a name for the key pair in the highlighted field (for example, my-key-pair).
 e. (Optional) Under Advanced settings, specify a display name for the instance.
 f. (Optional) Under Advanced settings, select a VPC from Network (VPC). Note that this list includes all VPCs for the region, including VPCs created using the Amazon VPC console and the default VPC (if it exists). If you have a default VPC in this region, we select it by default. If the
There is no VPC available for launch or import operations in this region, then you must create a VPC in this region using the Amazon VPC console.

g. (Optional) Under Advanced settings, select a subnet from Subnet. Note that this list includes all subnets for the selected VPC, including any default subnets. If this list is empty, you must add a subnet to the VPC using the Amazon VPC console, or select a different VPC. Otherwise, we select a subnet for you.

h. (Optional) Under Advanced settings, create a security group or select one or more security groups. If you select Create default security group, we create a security group that grants RDP and SSH access to everyone, which you can modify using the Amazon EC2 or Amazon VPC console. You can enter a name for this security group in the Group name box.

i. (Optional) Under Advanced settings, select an IAM role. If this list is empty, you can create a role using the IAM console.

4. Click Create. If you are creating a key pair, you are prompted to save the .pem file. Save this file in a secure place; you’ll need it to log in to your instance. You’ll receive confirmation that the instance has launched. Click Close.

After you've created your instance, it appears in the list of instances for the region in which you launched it. Initially, the status of the instance is pending. After the status changes to running, your instance is ready for use.

You can manage the lifecycle of your instance using AWS Systems Manager, as described on this page. To perform other tasks, such as the following, you must use the AWS Management Console:

- Attach an Amazon EBS volume to your instance (p. 647)
- Associate an Elastic IP address with your instance (p. 591)
- Enable termination protection (p. 294)
Viewing Your Instances

The permissions that your administrator grants you determine whether you can view instances and get detailed information about them.

To view your instances and get detailed information

1. Open AWS Systems Manager.
2. From the region list, select a region.
3. From the list of instances, select one or more instances.
4. In the lower pane, click the down arrow next to each instance to view detailed information about the instance.

Connecting to Your Instance

You can log in to an EC2 instance if you have the private key (.pem file) for the key pair that was specified when launching the instance. The tool that you'll use to connect to your instance depends on whether the instance is a Windows instance or a Linux instance.

To connect to a Windows EC2 instance

1. Open AWS Systems Manager.
2. From the list of instances, select the instance, right-click, and then click **Retrieve Windows Password**.
3. In the **Retrieve Default Windows Administrator Password** dialog box, click **Browse**. Select the private key file for the key pair and then click **Open**.
4. Click **Decrypt Password**. Save the password or copy it to the clipboard.
5. Select the instance, right-click, and then click **Connect via RDP**. When prompted for credentials, use the name of the administrator account and the password that you saved in the previous step.
6. Because the certificate is self-signed, you might get a warning that the security certificate is not from a trusted certifying authority. Click **Yes** to continue.

If the connection fails, see Troubleshooting Windows Instances in the Amazon EC2 User Guide for Windows Instances.

To connect to a Linux EC2 instance

1. Open AWS Systems Manager.
2. From the list of instances, select the instance.
3. In the lower pane, click the down arrow next to the instance ID to view detailed information about the instance.
4. Locate the public DNS name. You'll need this information to connect to your instance.
5. Connect to the instance using PuTTY. For step-by-step instructions, see Connect to Your Linux Instance from Windows Using PuTTY in the Amazon EC2 User Guide for Linux Instances.

Rebooting Your Instance

The permissions that you've been granted by your administrator determine whether you can reboot instances.

To reboot your instance

1. Open AWS Systems Manager.
2. From the list of instances, select the instance.
3. Right-click the instance, and then click **Reset (Reboot).**
4. When prompted for confirmation, click **Yes.**

Stopping Your Instance

The permissions that you've been granted by your administrator determine whether you can stop instances.

To stop your instance

1. Open AWS Systems Manager.
2. From the list of instances, select the instance.
3. Right-click the instance, and then click **Shut Down (Stop).**
4. When prompted for confirmation, click **Yes.**

Starting Your Instance

The permissions that you've been granted by your administrator determine whether you can start instances.

To start your instance

1. Open AWS Systems Manager.
2. From the list of instances, select the instance.
3. Right-click the instance, and then click **Power On (Start).**
4. When prompted for confirmation, click **Yes.**

If you get a quota error when you try to start an instance, you have reached your concurrent running instance limit. The default limit for your AWS account is 20. If you need additional running instances, complete the form at Request to Increase Amazon EC2 Instance Limit.

Terminating Your Instance

The permissions that you've been granted by your administrator determine whether you can terminate instances.

To terminate your instance

1. Open AWS Systems Manager.
Importing Your VM

2. From the list of instances, select the instance.
3. Right-click the instance, and then click **Delete (Terminate)**.
4. When prompted for confirmation, click **Yes**.

Importing Your Virtual Machine Using AWS Systems Manager for Microsoft SCVMM

You can launch an EC2 instance from a virtual machine that you import from SCVMM to Amazon EC2.

Important

You can't import Linux virtual machines from SCVMM to Amazon EC2.

Contents

- Prerequisites (p. 780)
- Importing Your Virtual Machine (p. 780)
- Checking the Import Task Status (p. 781)
- Backing Up Your Imported Instance (p. 782)

Prerequisites

- Ensure that your VM is ready. For more information, see Prepare Your VM in the VM Import/Export User Guide.
- In AWS Systems Manager, click Configuration, select the VM Import tab, and review the following settings:
 - **S3 bucket prefix**: We create a bucket for disk images to be uploaded before they are imported. The name of the bucket starts with the prefix listed here and includes the region (for example, `us-east-2`). To delete the disk images after they are imported, select **Clean up S3 bucket after import**.
 - **VM image export path**: A location for the disk images exported from the VM. To delete the disk images after they are imported, select **Clean up export path after import**.
 - **Alternate Hyper-V PowerShell module path**: The location of the Hyper-V PowerShell module, if it's not installed in the standard location. For more information, see Installing the Hyper-V Management Tools in the Microsoft TechNet Library.

Importing Your Virtual Machine

The permissions that you've been granted by your administrator determine whether you can import HyperV Windows virtual machines from SCVMM to AWS.

To import your virtual machine

1. Open SCVMM.
2. On the ribbon, click **VMs**. Select your virtual machine from the list.
3. On the ribbon, click **Import VM to Amazon EC2**.
4. Complete the **Import Virtual Machine** dialog box as follows:
 a. Select a region for the instance. By default, we select the region that you configured as your default region.
 b. Select an instance type for the instance. First, select one of the latest instance families from **Family**, and then select an instance type from **Instance type**. To include previous generation
instance families in the list, select **Show previous generations**. For more information, see Amazon EC2 Instances and Previous Generation Instances.

c. Select a VPC from **Network (VPC)**. Note that this list includes all VPCs for the region, including VPCs created using the Amazon VPC console and the default VPC (if it exists). If you have a default VPC in this region, we select it by default. If the text is “There is no VPC available for launch or import operations in this region”, then you must create a VPC in this region using the Amazon VPC console.

d. Select a subnet from **Subnet**. Note that this list includes all subnets for the selected VPC, including any default subnets. If this list is empty, you must add a subnet to the VPC using the Amazon VPC console, or select a different VPC. Otherwise, we select a subnet for you.

5. Click **Import**. If you haven't specified the required information in the **VM Import** tab, you'll receive an error asking you to provide the required information. Otherwise, you'll receive confirmation that the import task has started. Click **Close**.

Checking the Import Task Status

The import task can take several hours to complete. To view the current status, open AWS System Manager and click **Notifications**.

You'll receive the following notifications as the import task progresses:

- **Import VM: Created Import VM Task**
- **Import VM: Export VM Disk Image Done**
- **Import VM: Upload to S3**
- **Import VM: Image Conversion Starting**
- **Import VM: Image Conversion Done**
- **Import VM: Import Complete**

Note that you'll receive the Import VM: Upload to S3, Import VM: Image Conversion Starting, and Import VM: Image Conversion Done notifications for each disk image converted.
If the import task fails, you'll receive the notification `Import VM: Import Failed`. For more information about troubleshooting issues with import tasks, see `Errors Importing a VM (p. 783)`.

Backing Up Your Imported Instance

After the import operation completes, the instance runs until it is terminated. If your instance is terminated, you can't connect to or recover the instance. To ensure that you can start a new instance with the same software as an imported instance if needed, create an Amazon Machine Image (AMI) from the imported instance. For more information, see `Creating a Custom Windows AMI (p. 65)`.

Troubleshooting AWS Systems Manager for Microsoft SCVMM

The following are common errors and troubleshooting steps.

Contents
- Error: Add-in cannot be installed (p. 782)
- Installation Errors (p. 782)
- Checking the Log File (p. 783)
- Errors Importing a VM (p. 783)
- Uninstalling the Add-In (p. 783)

Error: Add-in cannot be installed

If you receive the following error, try installing KB2918659 on the computer running the VMM console. For more information, see `Description of System Center 2012 SP1 Update Rollup 5`. Note that you don't need to install all the updates listed in this article to address this issue, just KB2918659.

Add-in cannot be installed
The assembly "Amazon.Scvmm.Addin" referenced to by add-in component "AWS Systems Manager for Microsoft SCVMM" could not be found in the add-in package. This could be due to the following reasons:
1. The assembly was not included with the add-in package.
2. The AssemblyName attribute for the add-in does not match the name of the add-in assembly.
3. The assembly file is corrupt and cannot be loaded.

Installation Errors

If you receive one of the following errors during installation, it is likely due to an issue with SCVMM:

Could not update managed code add-in pipeline due to the following error:
Access to the path 'C:\Program Files\Microsoft System Center 2012\Virtual Machine Manager \Bin\AddInPipeline\PipelineSegments.store' is denied.

Could not update managed code add-in pipeline due to the following error:
The required folder 'C:\Program Files\Microsoft System Center 2012\Virtual Machine Manager \Bin\AddInPipeline\HostSideAdapters' does not exist.
Add-in cannot be installed
The assembly "Microsoft.SystemCenter.VirtualMachineManager.UIAddIns.dll" referenced by the add-in assembly "Amazon.Scvmm.AddIn" could not be found in the add-in package. Make sure that this assembly was included with the add-in package.

Try one of the following steps to work around this issue:

• Grant authenticated users permission to read and execute the C:\Program Files\Microsoft System Center 2012\Virtual Machine Manager\Bin\AddInPipeline folder. In Windows Explorer, right-click the folder, select Properties, and then select the Security tab.
• Close the SCVMM console and start it one time as an administrator. From the Start menu, locate SCVMM, right-click, and then select Run as administrator.

Checking the Log File
If you have a problem using the add-in, check the generated log file, %APPDATA%\Amazon\SCVMM\ec2addin.log, for useful information.

Errors Importing a VM
The log file, %APPDATA%\Amazon\SCVMM\ec2addin.log, contains detailed information about the status of an import task. The following are common errors that you might see in the log file when you import your VM from SCVMM to Amazon EC2.

Error: Unable to extract Hyper-V VirtualMachine object
Solution: Configure the path to the Hyper-V PowerShell module.

Error: You do not have permission to perform the operation
This error usually occurs when Hyper-V can't save the VM image into the configured path. To resolve this issue, do the following.

1. Create a directory on the Hyper-V server. For example: C:\vmimages.
2. Share the directory you just created in Hyper-V. Any user running SCVMM should be given access to the directory.
3. In the plugin, set the export path to \\hyperv\vmimages.
4. Perform the export.

The image will be exported to a local directory on the Hyper-V server. The SCVMM plugin will pull it from Hyper-V, and upload into Amazon S3.

Uninstalling the Add-In
If you need to uninstall the add-in, use the following procedure.

To uninstall the add-in

1. Open the VMM console.
2. Select the Settings workspace, and then click Console Add-Ins.
3. Select AWS Systems Manager for Microsoft SCVMM.
4. On the ribbon, click Remove.
5. When prompted for confirmation, click Yes.
If you reinstall the add-in after uninstalling it and receive the following error, delete the path as suggested by the error message.

```
Error (27301)
There was an error while installing the add-in. Please ensure that the following path does not exist and then try the installation again.
C:\Program Files\Microsoft System Center 2012\Virtual Machine Manager\Bin\AddInPipeline\AddIns\EC2WINDOWS...
```
Overview of AWS Management Pack for System Center 2012

The AWS Management Pack for System Center 2012 — Operations Manager uses a resource pool that contains one or more management servers to discover and monitor your AWS resources. You can add management servers to the pool as you increase the number of AWS resources that you use.
The following diagram shows the main components of AWS Management Pack.

<table>
<thead>
<tr>
<th>Item</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operations Manager infrastructure</td>
<td>One or more management servers and their dependencies, such as Microsoft SQL Server and a Microsoft Active Directory domain. These servers can either be deployed on-premises or in the AWS cloud; both scenarios are supported.</td>
</tr>
<tr>
<td>2</td>
<td>Resource pool</td>
<td>One or more management servers used for communicating with AWS using the AWS SDK for .NET. These servers must have Internet connectivity.</td>
</tr>
<tr>
<td>3</td>
<td>AWS credentials</td>
<td>An access key ID and a secret access key used by the management servers to make AWS API calls. You must specify these credentials while you configure the AWS Management Pack. We recommend that you create an IAM user with read-only privileges and use those credentials. For more information about creating an IAM user, see Adding a New User to Your AWS Account in the IAM User Guide.</td>
</tr>
<tr>
<td>4</td>
<td>EC2 instances</td>
<td>Virtual computers running in the AWS cloud. Some instances might have the Operations Manager Agent installed, others might not. When you install Operations Manager Agent you can see the operating system and application health apart from the instance health.</td>
</tr>
</tbody>
</table>
Overview of AWS Management Pack for System Center 2007 R2

The AWS Management Pack for System Center Operations Manager 2007 R2 uses a designated computer that connects to your System Center environment and has Internet access, called a *watcher node*, to call AWS APIs to remotely discover and collect information about your AWS resources.

The following diagram shows the main components of AWS Management Pack.

<table>
<thead>
<tr>
<th>Item</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operations Manager infrastructure</td>
<td>One or more management servers and their dependencies, such as Microsoft SQL Server and a Microsoft Active Directory domain. These servers can either be deployed on-premises or in the AWS cloud; both scenarios are supported.</td>
</tr>
<tr>
<td>2</td>
<td>Watcher node</td>
<td>A designated agent-managed computer used for communicating with AWS using the AWS SDK for .NET. It can either be deployed on-premises or in the AWS cloud, but it must be an agent-managed computer, and it must have Internet connectivity. You can use exactly one watcher node to monitor an AWS account. However, one watcher node can monitor multiple AWS accounts. For more information about setting up a watcher node, see Deploying Windows Agents in the Microsoft System Center documentation.</td>
</tr>
<tr>
<td>3</td>
<td>AWS credentials</td>
<td>An access key ID and a secret access key used by the watcher node to make AWS API calls. You must specify these credentials while you configure the AWS Management Pack. We recommend that you create an IAM user with read-only access privileges.</td>
</tr>
<tr>
<td>Item</td>
<td>Component</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>priv</td>
<td>privileges and use those credentials. For more information about creating an IAM user, see Adding a New User to Your AWS Account in the IAM User Guide.</td>
<td></td>
</tr>
<tr>
<td>EC2</td>
<td>EC2 instances</td>
<td>Virtual computers running in the AWS cloud. Some instances might have the Operations Manager Agent installed, others might not. When you install the Operations Manager Agent you can see the operating system and application health apart from the instance health.</td>
</tr>
</tbody>
</table>

Downloading the AWS Management Pack

To get started, download the AWS Management Pack. The AWS Management Pack is free. You might incur charges for Amazon CloudWatch, depending on how you configure monitoring or how many AWS resources you monitor.

System Center 2012

Before you download the AWS Management Pack, ensure that your systems meet the following system requirements and prerequisites.

System Requirements

- System Center Operations Manager 2012 R2 or System Center Operations Manager 2012 SP1
- Cumulative Update 1 or later. You must deploy the update to the management servers monitoring AWS resources, as well as agents running the watcher nodes and agents to be monitored by the AWS Management Pack. We recommend that you deploy the latest available Operations Manager updates on all computers monitoring AWS resources.
- Microsoft.Unix.Library MP version 7.3.2026.0 or later

Prerequisites

- Your data center must have at least one management server configured with Internet connectivity. The management servers must have the Microsoft .NET Framework version 4.5 or later and PowerShell 2.0 or later installed.
- The action account for the management server must have local administrator privileges on the management server.

To download the AWS Management Pack

1. On the AWS Add-Ins for Microsoft System Center website, click SCOM 2012.
2. Save AWS-SCOM-MP-2.5.zip to your computer and unzip it.

Continue with Deploying the AWS Management Pack (p. 789).

System Center 2007 R2

Before you download the AWS Management Pack, ensure that your systems meet the following system requirements and prerequisites.
System Requirements

- System Center Operations Manager 2007 R2
- Microsoft.Unix.Library MP version 6.1.7000.256 or later

Prerequisites

- Your data center must have an agent-managed computer with Internet connectivity that you designate as the watcher node. The watcher node must have the following Agent Proxy option enabled: **Allow this agent to act as a proxy and discover managed objects on other computers.** The watcher node must have the Microsoft .NET Framework version 3.5.1 or later and PowerShell 2.0 or later installed.
- The action account for the watcher node must have local administrator privileges on the watcher node.
- You must ensure that your watcher node has the agent installed, has Internet access, and can communicate with the management servers in your data center. For more information, see Deploying Windows Agents in the Microsoft System Center documentation.

To download the AWS Management Pack

1. On the AWS Add-Ins for Microsoft System Center website, click **SCOM 2007**.
2. Save **AWS-MP-Setup-2.5.msi** to your computer.

Continue with Deploying the AWS Management Pack (p. 789).

Deploying the AWS Management Pack

Before you can deploy the AWS Management Pack, you must download it. For more information, see Downloading the AWS Management Pack (p. 788).

Tasks

- **Step 1: Installing the AWS Management Pack** (p. 789)
- **Step 2: Configuring the Watcher Node** (p. 791)
- **Step 3: Create an AWS Run As Account** (p. 791)
- **Step 4: Run the Add Monitoring Wizard** (p. 794)
- **Step 5: Configure Ports and Endpoints** (p. 798)

Step 1: Installing the AWS Management Pack

After you download the AWS Management Pack, you must configure it to monitor one or more AWS accounts.

System Center 2012

To install the AWS Management Pack

1. In the Operations console, on the **Go** menu, click **Administration**, and then click **Management Packs**.
2. In the **Actions** pane, click **Import Management Packs**.
3. On the **Select Management Packs** page, click **Add**, and then click **Add from disk**.
4. In the **Select Management Packs to import** dialog box, select the Amazon.AmazonWebServices.mp file from the location where you downloaded it, and then click **Open**.
5. On the **Select Management Packs** page, under **Import list**, select the **Amazon Web Services** management pack, and then click **Install**.

 Note
 System Center Operations Manager doesn't import any management packs in the **Import** list that display an **Error** icon.
6. The **Import Management Packs** page shows the progress for the import process. If a problem occurs, select the management pack in the list to view the status details. Click **Close**.

System Center 2007 R2

To install the AWS Management Pack

The management pack is distributed as a Microsoft System Installer file, AWS-MP-Setup.msi. It contains the required DLLs for the watcher node, root management server, and Operations console, as well as the Amazon.AmazonWebServices.mp file.

1. Run AWS-MP-Setup.msi.

 Note
 If your root management server, Operations console, and watcher node are on different computers, you must run the installer on each computer.
2. On the **Welcome to the Amazon Web Services Management Pack Setup Wizard** screen, click **Next**.
3. On the **End-User License Agreement** screen, read the license agreement, and, if you accept the terms, select the **I accept the terms in the License Agreement** check box, and then click **Next**.
4. On the **Custom Setup** screen, select the features you want to install, and then click **Next**.

 Operations Console

 Installs Amazon.AmazonWebServices.UI.Pages.dll and registers it in the Global Assembly Cache (GAC), and then installs Amazon.AmazonWebServices.mp.

 Root Management Server

 Installs Amazon.AmazonWebServices.Modules.dll, Amazon.AmazonWebServices.SCOM.SDK.dll and the AWS SDK for .NET (AWSSDK.dll), and then registers them in the GAC.

 AWS Watcher Node

 Installs Amazon.AmazonWebServices.Modules.dll and Amazon.AmazonWebServices.SCOM.SDK.dll, and then installs the AWS SDK for .NET (AWSSDK.dll) and registers it in the GAC.
5. On the **Ready to install Amazon Web Services Management Pack** screen, click **Install**.
6. On the **Completed the Amazon Web Services Management Pack Setup Wizard** screen, click **Finish**.

 Note
 The required DLLs are copied and registered in the GAC, and the management pack file (*.mp) is copied to the Program Files (x86)/Amazon Web Services Management Pack folder on the computer running the Operations console. Next, you must import the management pack into System Center.
7. In the Operations console, on the **Go** menu, click **Administration**, and then click **Management Packs**.
8. In the Actions pane, click Import Management Packs.
9. On the Select Management Packs page, click Add, and then click Add from disk.
10. In the Select Management Packs to import dialog box, change the directory to C:\Program Files (x86)\Amazon Web Services Management Pack, select the Amazon.AmazonWebServices.mp file, and then click Open.
11. On the Select Management Packs page, under Import list, select the Amazon Web Services management pack, and then click Install.

 Note
 System Center Operations Manager doesn't import any management packs in the Import list that display an Error icon.
12. The Import Management Packs page shows the progress for the import process. If a problem occurs, select the management pack in the list to view the status details. Click Close.

Step 2: Configuring the Watcher Node

On System Center Operations Manager 2007 R2, the watcher node runs discoveries that go beyond the watcher node computer, so you must enable the proxy agent option on the watcher node. The proxy agent allows those discoveries to access the objects on other computers.

Note
If your system is configured with a large number of resources, we recommend that you configure one management server as a Watcher Node. Having a separate Watcher Node management server can improve performance.

If you're using System Center 2012 — Operations Manager, you can skip this step.

To enable the proxy agent on System Center Operations Manager 2007 R2

1. In the Operations console, on the Go menu, click Administration.
2. In the Administration workspace, under Device Management, click Agent Managed.
3. In the Agent Managed list, right-click the watcher node, and then click Properties.
4. In the Agent Properties dialog box, click the Security tab, select Allow this agent to act as proxy and discover managed objects on other computers, and then click OK.

Step 3: Create an AWS Run As Account

You must set up credentials that grant AWS Management Pack access to your AWS resources.

To create an AWS Run As account

1. We recommend that you create an IAM user with the minimum access rights required (for example, the ReadOnlyAccess AWS managed policy works in most cases). You'll need the access keys (access key ID and secret access key) for this user to complete this procedure. For more information, see Administering Access Keys for IAM Users in the IAM User Guide.
2. In the Operations console, on the Go menu, click Administration.
3. In the Administration workspace, expand the Run As Configuration node, and then select Accounts.
4. Right-click the Accounts pane, and then click Create Run As Account.
5. In the Create Run As Account Wizard, on the General Properties page, in the Run As account type list, select Basic Authentication.
6. Enter a display name (for example, "My IAM Account") and a description, and then click Next.
7. On the **Credentials** page, enter the access key ID in the **Account name** box and the secret access key in the **Password** box, and then click **Next**.

8. On the **Distribution Security** page, select **More secure - I want to manually select the computers to which the credentials will be distributed**, and then click **Create**.
9. Click Close.

10. In the list of accounts, select the account that you just created.

11. In the Actions pane, click Properties.

12. In the Properties dialog box, verify that the More Secure option is selected and that all management servers to be used to monitor your AWS resources are listed.
Step 4: Run the Add Monitoring Wizard

You can configure the AWS Management Pack to monitor a particular AWS account by using the Add Monitoring Wizard, which is available in the Authoring workspace of the Operations console. This wizard creates a management pack that contains the settings for the AWS account to monitor. You must run this wizard to monitor each AWS account. For example, if you want to monitor two AWS accounts, you must run the wizard twice.

System Center 2012

To run the Add Monitoring Wizard on System Center 2012 — Operations Manager

1. In the Operations console, on the Go menu, click Authoring.
2. In the Authoring workspace, expand the Management Pack Templates node, right-click Amazon Web Services, and then click Add Monitoring Wizard.
3. In the Add Monitoring Wizard, in the Select the monitoring type list, select Amazon Web Services, and then click Next.
4. On the General Properties page, in the Name box, enter a name (for example, "My AWS Resources"). In the Description box, enter a description.
5. In the Select destination management pack list, select an existing management pack (or click New to create one) where you want to save the settings. Click Next.

By default, when you create a management pack object, disable a rule or monitor, or create an override, Operations Manager saves the setting to the default management pack. As a best practice, you should create a separate management pack for each sealed management pack that you want to customize, instead of saving your customized settings to the default management pack.

6. The AWS Management Pack automatically creates a resource pool and adds the management servers to it. To control server membership, make the following changes:
a. Click **Administration** on the **Go** menu.

b. Click the **Resource Pools** node.

c. Right-click the **AWS Resource Pool** in the **Resource Pools** pane and select **Manual Membership**.

d. Right-click the **AWS Resource Pool** in the **Resource Pools** pane and select **Properties**.

e. On the **Pool Membership** page, remove the management servers that should not monitor AWS resources.

7. After the AWS Management Pack is configured, it shows up as a sub-folder of the **Amazon Web Services** folder in the **Monitoring** workspace of the Operations console.
System Center 2007 R2

To run the Add Monitoring Wizard on System Center Operations Manager 2007

1. In the Operations console, on the Go menu, click Authoring.
2. In the Authoring workspace, expand the Management Pack Templates node, right-click Amazon Web Services, and then click Add Monitoring Wizard.
3. In the Add Monitoring Wizard, in the Select the monitoring type list, select Amazon Web Services, and then click Next.
4. On the General Properties page, in the Name box, enter a name (for example, "My AWS Resources"). In the Description box, enter a description.
5. In the Select destination management pack drop-down list, select an existing management pack (or click New to create a new one) where you want to save the settings. Click Next.
By default, when you create a management pack object, disable a rule or monitor, or create an override, Operations Manager saves the setting to the default management pack. As a best practice, you should create a separate management pack for each sealed management pack that you want to customize, instead of saving your customized settings to the default management pack.

6. On the **Watcher Node Configuration** page, in the **Watcher Node** list, select an agent-managed computer to act as the watcher node.

7. In the **Select AWS Run As account** drop-down list, select the Run As account that you created earlier, and then click **Create**.

8. After the AWS Management Pack is configured, it first discovers the watcher node. To verify that the watcher node was discovered successfully, navigate to the **Monitoring** workspace in the Operations console. You should see a new **Amazon Web Services** folder and an **Amazon Watcher Nodes** subfolder under it. This subfolder displays the watcher nodes. The AWS Management Pack automatically checks and monitors the watcher node connectivity to AWS. When the watcher node is discovered, it shows up in this list. When the watcher node is ready, its state changes to **Healthy**.

Note

To establish connectivity with AWS, the AWS Management Pack requires that you deploy the AWS SDK for .NET, modules, and scripts to the watcher node. This can take about ten minutes. If the watcher node doesn't appear, or if you see the state as **Not Monitored**, verify your Internet connectivity and IAM permissions. For more information, see **Troubleshooting the AWS Management Pack** (p. 820).
After the watcher node is discovered, dependent discoveries are triggered, and the AWS resources are added to the Monitoring workspace of the Operations console.

The discovery of AWS resources should finish within twenty minutes. This process can take more time, based on your Operations Manager environment, your AWS environment, the load on the management server, and the load on the watcher node. For more information, see Troubleshooting the AWS Management Pack (p. 820).

Step 5: Configure Ports and Endpoints

The AWS Management Pack for Microsoft System Center must be able to communicate with AWS services to monitor the performance of those services and provide alerts in System Center. For monitoring to succeed, you must configure the firewall on the Management Pack servers to allow outbound HTTP calls on ports 80 and 443 to the AWS endpoints for the following services.

This enables monitoring for the following AWS services:

- Amazon Elastic Compute Cloud (EC2)
- Elastic Load Balancing
- Amazon EC2 Auto Scaling
- AWS Elastic Beanstalk
- Amazon CloudWatch
- AWS CloudFormation

The AWS Management Pack uses the public APIs in the AWS SDK for .NET to retrieve information from these services over ports 80 and 443. Log on to each server and enable outbound firewall rules for ports 80 and 443.

If your firewall application supports more detailed settings you can configure specific endpoints for each service. An endpoint is a URL that is the entry point for a web service. For example, ec2.us-west-2.amazonaws.com is an entry point for the Amazon EC2 service. To configure endpoints on your firewall, locate the specific endpoint URLs for the AWS services you are running and specify those endpoints in your firewall application.

Using the AWS Management Pack

You can use the AWS Management Pack to monitor the health of your AWS resources.
Contents

- Views (p. 799)
- Discoveries (p. 813)
- Monitors (p. 814)
- Rules (p. 815)
- Events (p. 815)
- Health Model (p. 816)
- Customizing the AWS Management Pack (p. 817)

Views

The AWS Management Pack provides the following views, which are displayed in the Monitoring workspace of the Operations console.

Views

- EC2 Instances (p. 799)
- Amazon EBS Volumes (p. 801)
- Elastic Load Balancers (p. 803)
- AWS Elastic Beanstalk Applications (p. 805)
- AWS CloudFormation Stacks (p. 807)
- Amazon Performance Views (p. 809)
- Amazon CloudWatch Metric Alarms (p. 810)
- AWS Alerts (p. 811)
- Watcher Nodes (System Center Operations Manager 2007 R2) (p. 812)

EC2 Instances

View the health state of the EC2 instances for a particular AWS account, from all Availability Zones and regions. The view also includes EC2 instances running in a virtual private cloud (VPC). The AWS Management Pack retrieves tags, so you can search and filter the list using those tags.
When you select an EC2 instance, you can perform instance health tasks:

- **Open Amazon Console**: Launches the AWS Management Console in a web browser.
- **Open RDP to Amazon EC2 Instance**: Opens an RDP connection to the selected Windows instance.
- **Reboot Amazon EC2 Instance**: Reboots the selected EC2 instance.
- **Start Amazon EC2 Instance**: Starts the selected EC2 instance.
- **Stop Amazon EC2 Instance**: Stops the selected EC2 instance.

EC2 Instances Diagram View

Shows the relationship of an instance with other components.
Amazon EBS Volumes

Shows the health state of all the Amazon EBS volumes for a particular AWS account from all Availability Zones and regions.
Amazon EBS Volumes Diagram View

Shows an Amazon EBS volume and any associated alarms. The following illustration shows an example:
Elastic Load Balancers

Shows the health state of all the load balancers for a particular AWS account from all regions.
Elastic Load Balancing Diagram View

Shows the Elastic Load Balancing relationship with other components. The following illustration shows an example:
AWS Elastic Beanstalk Applications

Shows the state of all discovered AWS Elastic Beanstalk applications.
AWS Elastic Beanstalk Applications Diagram View

Shows the AWS Elastic Beanstalk application, application environment, application configuration, and application resources objects.
AWS CloudFormation Stacks

Shows the health state of all the AWS CloudFormation stacks for a particular AWS account from all regions.
AWS CloudFormation Stacks Diagram View

Shows the AWS CloudFormation stack relationship with other components. An AWS CloudFormation stack might contain Amazon EC2 or Elastic Load Balancing resources. The following illustration shows an example:
Amazon Performance Views

Shows the Amazon CloudWatch metrics for Amazon EC2, Amazon EBS, and Elastic Load Balancing, custom metrics, and metrics created from CloudWatch alarms. In addition, there are separate performance views for each resource. The **Other Metrics** performance view contains custom metrics, and metrics created from CloudWatch alarms. For more information about these metrics, see the CloudWatch Metrics, Namespaces, and Dimensions Reference in the *Amazon CloudWatch Developer Guide*. The following illustration shows an example.
Amazon CloudWatch Metric Alarms

Shows Amazon CloudWatch alarms related to the discovered AWS resources.
AWS Alerts

Shows the alerts that the AWS management pack produces when the health of an object is in a critical state.
Watcher Nodes (System Center Operations Manager 2007 R2)

View the health state of the watcher nodes across all of the AWS accounts that are being monitored. A Healthy state means that the watcher node is configured correctly and can communicate with AWS.
Discoveries

Discoveries are the AWS resources that are monitored by the AWS Management Pack. The AWS Management Pack discovers the following objects:

- Amazon EC2 instances
- EBS volumes
- ELB load balancers
- AWS CloudFormation stacks
- Amazon CloudWatch alarms
- AWS Elastic Beanstalk applications
- Amazon EC2 Auto Scaling groups and Availability Zones

Amazon CloudWatch metrics are generated for the following resources:

- Amazon EC2 instance
- EBS volume
- Elastic Load Balancing
- Custom Amazon CloudWatch metrics
- Metrics from existing Amazon CloudWatch alarms

For Amazon CloudWatch metrics discovery, the following guidelines apply:

- AWS CloudFormation stacks do not have any default Amazon CloudWatch metrics.
- Stopped Amazon EC2 instances or unused Amazon EBS volumes do not generate data for their default Amazon CloudWatch metrics.
- After starting an Amazon EC2 instance, it can take up to 30 minutes for the Amazon CloudWatch metrics to appear in Operations Manager.
• Amazon CloudWatch retains the monitoring data for two weeks, even if your AWS resources have been terminated. This data appears in Operations Manager.

• An existing Amazon CloudWatch alarm for a resource that is not supported will create a metric and be associated with the Amazon CloudWatch alarm. These metric can be viewed in the Other Metrics performance view.

The AWS Management Pack also discovers the following relationships:

• AWS CloudFormation stack and its Elastic Load Balancing or Amazon EC2 resources
• Elastic Load Balancing load balancer and its EC2 instances
• Amazon EC2 instance and its EBS volumes
• Amazon EC2 instance and its operating system
• AWS Elastic Beanstalk application and its environment, configuration, and resources

The AWS Management Pack automatically discovers the relationship between an EC2 instance and the operating system running on it. To discover this relationship, the Operations Manager Agent must be installed and configured on the instance and the corresponding operating system management pack must be imported in Operations Manager.

Discoveries run on the management servers in the resource pool (System Center 2012) or the watcher node (System Center 2007 R2).

<table>
<thead>
<tr>
<th>Discovery</th>
<th>Interval (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Resources Discovery (SCOM 2012)</td>
<td>14400</td>
</tr>
<tr>
<td>Discovers EC2 instances, Amazon EBS volumes, load balancers, and CloudFront stacks.</td>
<td></td>
</tr>
<tr>
<td>AWS Elastic Beanstalk Discovery</td>
<td>14400</td>
</tr>
<tr>
<td>Discovers AWS Elastic Beanstalk and its relationship with environment, resources, and configuration.</td>
<td></td>
</tr>
<tr>
<td>CloudWatch Alarms Discovery</td>
<td>900</td>
</tr>
<tr>
<td>Discovers alarms generated using CloudWatch metrics.</td>
<td></td>
</tr>
<tr>
<td>Custom CloudWatch Metric Discovery</td>
<td>14400</td>
</tr>
<tr>
<td>Discovers custom CloudWatch metrics.</td>
<td></td>
</tr>
<tr>
<td>Watcher Node Discovery (SCOM 2007 R2)</td>
<td>14400</td>
</tr>
<tr>
<td>Targets the root management server and creates the watcher node objects.</td>
<td></td>
</tr>
</tbody>
</table>

Monitors

Monitors are used to measure the health of your AWS resources. Monitors run on the management servers in the resource pool (System Center 2012) or the watcher node (System Center 2007 R2).
Monitor

<table>
<thead>
<tr>
<th>Monitor</th>
<th>Interval (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS CloudFormation Stack Status</td>
<td>900</td>
</tr>
<tr>
<td>Amazon CloudWatch Metric Alarm</td>
<td>300</td>
</tr>
<tr>
<td>Amazon EBS Volume Status</td>
<td>900</td>
</tr>
<tr>
<td>Amazon EC2 Instance Status</td>
<td>900</td>
</tr>
<tr>
<td>Amazon EC2 Instance System Status</td>
<td>900</td>
</tr>
<tr>
<td>AWS Elastic Beanstalk Status</td>
<td>900</td>
</tr>
<tr>
<td>Watcher Node to Amazon Cloud Connectivity (SCOM 2007 R2)</td>
<td>900</td>
</tr>
</tbody>
</table>

Rules

Rules create alerts (based on Amazon CloudWatch metrics) and collect data for analysis and reporting.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Interval (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Resource Discovery Rule (SCOM 2007 R2)</td>
<td>14400</td>
</tr>
<tr>
<td>Targets the watcher node and uses the AWS API to discover objects for the following AWS resources: EC2 instances, EBS volumes, load balancers, and AWS CloudFormation stacks. (CloudWatch metrics or alarms are not discovered). After discovery is complete, view the objects in the Not Monitored state.</td>
<td></td>
</tr>
<tr>
<td>Amazon Elastic Block Store Volume Performance Metrics Data Collection Rule</td>
<td>900</td>
</tr>
<tr>
<td>Amazon EC2 Instance Performance Metrics Data Collection Rule</td>
<td>900</td>
</tr>
<tr>
<td>Elastic Load Balancing Balancing Performance Metrics Data Collection Rule</td>
<td>900</td>
</tr>
<tr>
<td>Custom CloudWatch Metric Data Collection Rule</td>
<td>900</td>
</tr>
</tbody>
</table>

Events

Events report on activities that involve the monitored resources. Events are written to the Operations Manager event log.

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101</td>
<td>Amazon EC2 Instance Discovery (General Discovery) finished</td>
</tr>
<tr>
<td>4102</td>
<td>Elastic Load Balancing Metrics Discovery,</td>
</tr>
<tr>
<td></td>
<td>Amazon EBS Volume Metrics Discovery,</td>
</tr>
<tr>
<td></td>
<td>Amazon EC2 Instance Metrics Discovery finished</td>
</tr>
<tr>
<td>4103</td>
<td>Amazon CloudWatch Metric Alarms Discovery finished</td>
</tr>
</tbody>
</table>
Health Model

The following illustration shows the health model defined by the AWS Management Pack.

![Health Model Diagram]

The health state for a CloudWatch alarm is rolled up to its corresponding CloudWatch metric. The health state for a CloudWatch metric for Amazon EC2 is rolled up to the EC2 instance. Similarly, the health state for the CloudWatch metrics for Amazon EBS is rolled up to the Amazon EBS volume. The health states for the Amazon EBS volumes used by an EC2 instance are rolled up to the EC2 instance.

When the relationship between an EC2 instance and its operating system has been discovered, the operating system health state is rolled up to the EC2 instance.

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4104</td>
<td>Amazon Windows Computer Discovery finished</td>
</tr>
<tr>
<td>4105</td>
<td>Collecting Amazon Metrics Alarm finished</td>
</tr>
<tr>
<td>4106</td>
<td>EC2 Instance Computer Relation Discovery finished</td>
</tr>
<tr>
<td>4107</td>
<td>Collecting AWS CloudFormation Stack State finished</td>
</tr>
<tr>
<td>4108</td>
<td>Collecting Watcher Node Availability State finished</td>
</tr>
<tr>
<td>4109</td>
<td>Amazon Metrics Collection Rule finished</td>
</tr>
<tr>
<td>4110</td>
<td>Task to change Amazon Instance State finished</td>
</tr>
<tr>
<td>4111</td>
<td>EC2 Instance Status Monitor State finished</td>
</tr>
<tr>
<td>4112</td>
<td>Amazon EBS Volume Status Monitor State finished</td>
</tr>
<tr>
<td>4113</td>
<td>Amazon EC2 Instance Scheduled Events Monitor State calculated</td>
</tr>
<tr>
<td>4114</td>
<td>Amazon EBS Scheduled Events Monitor State calculated</td>
</tr>
<tr>
<td>4115</td>
<td>Elastic Beanstalk Discovery finished</td>
</tr>
<tr>
<td>4116</td>
<td>Elastic Beanstalk Environment Status State calculated</td>
</tr>
<tr>
<td>4117</td>
<td>Elastic Beanstalk Environment Operational State calculated</td>
</tr>
<tr>
<td>4118</td>
<td>Elastic Beanstalk Environment Configuration State calculated</td>
</tr>
</tbody>
</table>
The health state of an AWS CloudFormation stack depends on the status of the AWS CloudFormation stack itself and the health states of its resources, namely the load balancers and EC2 instances.

The following table illustrates how the status of the AWS CloudFormation stack corresponds to its health state.

<table>
<thead>
<tr>
<th>Health State</th>
<th>AWS CloudFormation Stack Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>CREATE_FAILED DELETE_IN_PROGRESS DELETE_FAILED UPDATE_ROLLBACK_FAILED</td>
<td>Most likely usable</td>
</tr>
<tr>
<td>Warning</td>
<td>UPDATE_ROLLBACK_IN_PROGRESS UPDATE_ROLLBACK_COMPLETE_CLEANUP_IN_PROGRESS UPDATE_ROLLBACK_COMPLETE</td>
<td>Recovering after some problem</td>
</tr>
<tr>
<td>Healthy</td>
<td>CREATE_COMPLETE UPDATE_IN_PROGRESS UPDATE_COMPLETE_CLEANUP_IN_PROGRESS UPDATE_COMPLETE</td>
<td>Usable</td>
</tr>
</tbody>
</table>

The full health model for an AWS CloudFormation stack is as follows:

Customizing the AWS Management Pack

To change the frequency of discoveries, rules, and monitors, you can override the interval time (in seconds).
To change frequency

1. In the Operations Manager toolbar, click Go, and then click Authoring.
2. In the Authoring pane, expand Management Pack Objects and then click the object to change (for example, Object Discoveries, Rules, or Monitors).
3. In the toolbar, click Scope.
4. In the Scope Management Pack Objects dialog box, click View all targets.
5. To limit the scope to Amazon objects, type Amazon in the Look for field.
6. Select the object want to configure and click OK.
7. In the Operations Manager center pane, right-click the object to configure, click Overrides, and then click the type of override you want to configure.
8. Use the Override Properties dialog box to configure different values and settings for objects.

Tip
To disable a discovery, rule, or monitoring object right-click the object to disable in the Operations Manager center pane, click Overrides, and then click Disable the Rule. You might disable rules if, for example, you do not run AWS Elastic Beanstalk applications or use custom Amazon CloudWatch metrics.

For information about creating overrides, see Tuning Monitoring by Using Targeting and Overrides on the Microsoft TechNet website.

For information about creating custom rules and monitors, see Authoring for System Center 2012 - Operations Manager or System Center Operations Manager 2007 R2 Management Pack Authoring Guide on the Microsoft TechNet website.

Upgrading the AWS Management Pack

The procedure that you’ll use to update AWS Management Pack depends on the version of System Center.

System Center 2012

To upgrade the AWS Management Pack

2. In the Operations console, on the Go menu, click Administration, and then click Management Packs.
3. In the Tasks pane, click Import Management Packs.
4. On the Select Management Packs page, click Add, and then click Add from disk.
5. In the Select Management Packs to import dialog box, select the Amazon.AmazonWebServices.mpb file from the location where you downloaded it, and then click Open.
6. On the Select Management Packs page, under Import list, select the Amazon Web Services management pack, and then click Install.

If the Install button is disabled, upgrading to the current version is not supported and you must uninstall the AWS Management Pack before you can install the current version. For more information, see Uninstalling the AWS Management Pack (p. 819).
System Center 2007 R2

To upgrade the AWS Management Pack

1. On the Management Server, go to the AWS Add-Ins for Microsoft System Center website and click SCOM 2007. Save AWS-MP-Setup-2.5.msi, and then run it.
2. Click Next and follow the directions to upgrade the components that you installed previously.
3. If your root management server, Operations console, and watcher node are on different computers, you must download and run the setup program on each computer.
4. On the watcher node, open a Command Prompt window as an administrator and run the following commands.

```
C:\> net stop HealthService
The System Center Management service is stopping.
The System Center Management service was stopped successfully.
C:\> net start HealthService
The System Center Management service is starting.
The System Center Management service was started successfully.
```

5. In the Operations console, on the Go menu, click Administration, and then click Management Packs.
6. In the Actions pane, click Import Management Packs.
7. On the Select Management Packs page, click Add, and then click Add from disk.
8. In the Select Management Packs to import dialog box, change the directory to C:\Program Files (x86)\Amazon Web Services Management Pack, select the Amazon.AmazonWebServices.mp file, and then click Open.
9. On the Select Management Packs page, under Import list, select the Amazon Web Services management pack, and then click Install.

 If the Install button is disabled, upgrading to the current version is not supported and you must uninstall AWS Management Pack first. For more information, see Uninstalling the AWS Management Pack (p. 819).

Uninstalling the AWS Management Pack

If you need to uninstall the AWS Management Pack, use the following procedure.

System Center 2012

To uninstall the AWS Management Pack

1. In the Operations console, on the Go menu, click Administration, and then click Management Packs.
2. Right-click Amazon Web Services and select Delete.
3. In the Dependent Management Packs dialog box, note the dependent management packs, and then click Close.
4. Right-click the dependent management pack and select Delete.
5. Right-click Amazon Web Services and select Delete.
System Center 2007 R2

To uninstall the AWS Management Pack

1. Complete steps 1 through 5 described for System Center 2012 in the previous section.
2. From Control Panel, open Programs and Features. Select Amazon Web Services Management Pack and then click Uninstall.
3. If your root management server, Operations console, and watcher node are on different computers, you must repeat this process on each computer.

Troubleshooting the AWS Management Pack

The following are common errors, events, and troubleshooting steps.

Contents

- Errors 4101 and 4105 (p. 820)
- Error 4513 (p. 820)
- Event 623 (p. 821)
- Events 2023 and 2120 (p. 821)
- Event 6024 (p. 821)
- General Troubleshooting for System Center 2012 — Operations Manager (p. 821)
- General Troubleshooting for System Center 2007 R2 (p. 822)

Errors 4101 and 4105

If you receive one of the following errors, you must upgrade the AWS Management Pack. For more information, see Upgrading the AWS Management Pack (p. 818).

Error 4101
Exception calling "DescribeVolumes" with "1" argument(s): "AWS was not able to validate the provided access credentials"

Error 4105
Exception calling "DescribeApplications" with "0" argument(s): "The security token included in the request is invalid"

Error 4513
The callback method DeliverDataToModule failed with exception "Resolution of the dependency failed, type = "Amazon.SCOM.SDK.Interfaces.IMonitorSdk", name = "(none)". Exception occurred while: Calling constructor Amazon.SCOM.SDK.CloudWatch.AwsMonitorSdk(System.String awsAccessKey, System.String awsSecretKey). Exception is: InvalidOperationException - Collection was modified; enumeration operation
Event 623

If you find the following event in the Windows event log, follow the solution described in KB975057.

Event ID: 623
HealthService (process_id) The version store for instance instance ("name") has reached its maximum size of size MB. It is likely that a long-running transaction is preventing cleanup of the version store and causing it to build up in size. Updates will be rejected until the long-running transaction has been completely committed or rolled back.
Possible long-running transaction:
SessionId: id
Session-context: value
Session-context ThreadId: id
Cleanup: value

Events 2023 and 2120

If you find the following events in the Windows event log, see Event ID 2023 and 2120 for more information.

Event ID: 2023
The Health Service has removed some items from the send queue for management group "Servers" since it exceeded the maximum allowed size of size megabytes.

Event ID: 2120
The Health Service has deleted one or more items for management group "Servers" which could not be sent in 1440 minutes.

Event 6024

If you find the following event in the Windows event log, see Health Service Restarts for more information.

Event ID: 6024
LaunchRestartHealthService.js : Launching Restart Health Service. Health Service exceeded Process\Handle Count or Private Bytes threshold.

General Troubleshooting for System Center 2012 — Operations Manager

Try the following to resolve any issues.

- Verify that you have installed the latest Update Rollup for System Center 2012 — Operations Manager. The AWS Management Pack requires at least Update Rollup 1.
- Ensure that you have configured the AWS Management Pack after importing it by running the Add Monitoring Wizard. For more information, see Step 1: Installing the AWS Management Pack (p. 789).
- Verify that you have waited long enough for the AWS resources to be discovered (10–20 minutes).
- Verify that the management servers are configured properly.
• Management servers must have Internet connectivity.
• The action account for a management server must have local administrator privileges on the management server.
• The management server must have the .NET Framework 4.5 or later.
• Verify that the AWS Run As account is valid.
 • The values for the access key ID and secret access key are correct.
 • The access keys are active: In the AWS Management Console, click your name in the navigation bar and then click Security Credentials.
• The IAM user has at least read-only access permission. Note that read-only access allows the user actions that do not change the state of a resource, such as monitoring, but do not allow the user actions like launching or stopping an instance.
 • If an Amazon CloudWatch metric shows as Not Monitored, check whether at least one Amazon CloudWatch alarm has been defined for that Amazon CloudWatch metric.
 • For further troubleshooting, use the information in the event logs.
• Check the Operations Manager event log on the management server. For more information, see Events (p. 815) for a list of the events that the AWS Management Pack writes to the Operations Manager event log.

General Troubleshooting for System Center 2007 R2

Try the following to resolve any issues.

• Ensure that you have configured the AWS Management Pack after importing it by running the Add Monitoring Wizard. For more information, see Step 1: Installing the AWS Management Pack (p. 789).
• Verify that you have waited long enough for the AWS resources to be discovered (10–20 minutes).
• Verify that the watcher node is configured properly.
 • The proxy agent is enabled. For more information, see Step 2: Configuring the Watcher Node (p. 791).
 • The watcher node has Internet connectivity.
 • The action account for the watcher node has local administrator privileges.
 • The watcher node must have the .NET Framework 3.5.1 or later.
• Verify that the watcher node is healthy and resolve all alerts. For more information, see Views (p. 799).
• Verify that the AWS Run As account is valid.
 • The values for the access key ID and secret access key are correct.
 • The access keys are active: In the AWS Management Console, click your name in the navigation bar and then click Security Credentials.
• The IAM user has at least read-only access permission. Note that read-only access allows the user actions that do not change the state of a resource, such as monitoring, but do not allow the user actions like launching or stopping an instance.
 • If an Amazon CloudWatch metric shows as Not Monitored, check whether at least one Amazon CloudWatch alarm has been defined for that Amazon CloudWatch metric.
 • For further troubleshooting, use the information in the event logs.
• Check the Operations Manager event log on the management server as well as the watcher node. For more information, see Events (p. 815) for a list of the events that the AWS Management Pack writes to the Operations Manager event log.
Using EC2Rescue for Windows Server

EC2Rescue for Windows Server is an easy-to-use tool that you run on an Amazon EC2 Windows Server instance to diagnose and troubleshoot possible problems. It is valuable for collecting log files and troubleshooting issues and also proactively searching for possible areas of concern. It can even examine Amazon EBS root volumes from other instances and collect relevant logs for troubleshooting Windows Server instances using that volume.

EC2Rescue for Windows Server has two different modules: a data collector module that collects data from all different sources, and an analyzer module that parses the data collected against a series of predefined rules to identify issues and provide suggestions.

The EC2Rescue for Windows Server tool only runs on Amazon EC2 instances running Windows Server 2008 R2 and later. When the tool starts, it checks whether it is running on an Amazon EC2 instance.

Note
If you are using a Linux instance, see EC2Rescue for Linux.

Contents
- Using EC2Rescue for Windows Server GUI (p. 823)
- Using EC2Rescue for Windows Server with the Command Line (p. 826)
- Using EC2Rescue for Windows Server with Systems Manager Run Command (p. 831)

Using EC2Rescue for Windows Server GUI

EC2Rescue for Windows Server is able to perform the following analysis on an offline instance:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose and Rescue</td>
<td>The following service settings can be detected and modified:</td>
</tr>
<tr>
<td></td>
<td>• System Time</td>
</tr>
<tr>
<td></td>
<td>• <code>RealTimeIsUniversal</code> - Detects whether the <code>RealTimeIsUniversal</code> registry key is enabled. If disabled, Windows system time drifts when the timezone is set to a value other than UTC.</td>
</tr>
<tr>
<td></td>
<td>• Windows Firewall</td>
</tr>
<tr>
<td></td>
<td>• <code>Domain networks</code> - Detects whether this Windows Firewall profile is enabled or disabled.</td>
</tr>
<tr>
<td></td>
<td>• <code>Private networks</code> - Detects whether this Windows Firewall profile is enabled or disabled.</td>
</tr>
</tbody>
</table>
Option | Description
---|---
Guest or public networks | Detects whether this Windows Firewall profile is enabled or disabled.

Remote Desktop
- **Service Start** - Detects whether the Remote Desktop service is enabled.
- **Remote Desktop Connections** - Detects whether this is enabled.
- **TCP Port** - Detects which port the Remote Desktop service is listening on.

EC2Config
- **Installation** - Detects which EC2Config version is installed.
- **Service Start** - Detects whether the EC2Config service is enabled.
- **Ec2SetPassword** - Generates a new administrator password.
- **Ec2HandleUserData** - Allows you to execute a user data script on the next boot of the instance.

Network Interface
- **DHCP Service Startup** - Detects whether the DHCP service is enabled.
- **Ethernet detail** - Displays information about the network driver version, if detected.
- **DHCP on Ethernet** - Detects whether DHCP is enabled.

Restore
Perform one of the following actions:
- **Last Known Good Configuration** - Attempts to boot the instance into the last known bootable state.
- **Restore registry from backup** - Restores the registry from \Windows\System32\config\RegBack.

Capture Logs
Allows you to capture logs on the instance for analysis.

EC2Rescue for Windows Server is able to collect the following data from active and offline instances:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Log</td>
<td>Collects application, system, and EC2Config event logs.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Memory Dump</td>
<td>Collects any memory dump files that exist on the instance.</td>
</tr>
<tr>
<td>EC2Config File</td>
<td>Collects log files generated by the EC2Config service.</td>
</tr>
<tr>
<td>EC2Launch File</td>
<td>Collects log files generated by the EC2Launch scripts.</td>
</tr>
<tr>
<td>SSM Agent File</td>
<td>Collects log files generated by the SSM agent.</td>
</tr>
<tr>
<td>Sysprep Log</td>
<td>Collects log files generated by the Windows System Preparation tool.</td>
</tr>
<tr>
<td>Driver SetupAPI Log</td>
<td>Collects Windows SetupAPI logs (setupapi.dev.log and setupapi.setup.log).</td>
</tr>
<tr>
<td>Registry</td>
<td>Collects SYSTEM and SOFTWARE hives.</td>
</tr>
<tr>
<td>System Information</td>
<td>Collects MSInfo32.</td>
</tr>
<tr>
<td>Boot Configuration</td>
<td>Collects HKEY_LOCAL_MACHINE\BCD00000000 hive.</td>
</tr>
<tr>
<td>Windows Update Log</td>
<td>Collects information about the updates that are installed on the instance.</td>
</tr>
</tbody>
</table>

Note
Windows Update logs are not captured on Windows Server 2016 instances.

Video Walkthrough

Brandon shows you how to use the Diagnose and Rescue feature of EC2Rescue for Windows Server:

AWS Knowledge Center Videos: How do I use the Diagnose and Rescue feature of EC2Rescue?

Analyzing an Offline Instance

The **Offline Instance** option is useful for debugging boot issues with Windows instances.

To perform an action on an offline instance

1. From a working Windows Server instance, download the EC2Rescue for Windows Server tool and extract the files.
2. Stop the faulty instance, if it is not stopped already.
3. Detach the EBS root volume from the faulty instance and attach the volume to a working Windows instance that has EC2Rescue for Windows Server installed.
4. Run the EC2Rescue for Windows Server tool on the working instance and choose **Offline Instance**.
5. Select the disk of the newly mounted volume and choose **Next**.
6. Confirm the disk selection and choose **Yes**.
7. Choose the offline instance option to perform and choose **Next**.
The EC2Rescue for Windows Server tool scans the volume and collects troubleshooting information based on the selected log files.

Collecting Data from an Active Instance

You can collect logs and other data from an active instance.

To collect data from an active instance

1. Connect to your Windows instance.
2. Download the EC2Rescue for Windows Server tool to your Windows instance and extract the files.
3. Open the EC2Rescue for Windows Server application and accept the license agreement.
4. Choose Next, Current instance, Capture logs.
5. Select the data items to collect and choose Collect... Read the warning and choose Yes to continue.
6. Choose a file name and location for the ZIP file and choose Save.
7. After EC2Rescue for Windows Server completes, choose Open Containing Folder to view the ZIP file.

Using EC2Rescue for Windows Server with the Command Line

The EC2Rescue for Windows Server command line interface (CLI) allows you to run an EC2Rescue for Windows Server plugin (referred as an "action") programmatically.

The EC2Rescue for Windows Server tool has two execution modes:

- `/online`—This allows you to take action on the instance that EC2Rescue for Windows Server is installed on, such as collect log files.
- `/offline:<device_id>`—This allows you to take action on the offline root volume that is attached to a separate Amazon EC2 Windows instance, on which you have installed EC2Rescue for Windows Server.

Download the EC2Rescue for Windows Server tool to your Windows instance and extract the files. You can view the help file with the following command:

```
EC2RescueCmd.exe /help
```

EC2Rescue for Windows Server can perform the following actions on an Amazon EC2 Windows instance:

- Collect Action (p. 826)
- Rescue Action (p. 828)
- Restore Action (p. 830)

Collect Action

EC2Rescue for Windows Server is able to collect the following data from active and offline instances. You can collect all logs, an entire log group, or an individual log within a group.
<table>
<thead>
<tr>
<th>Log Group</th>
<th>Available Logs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Collects all available logs.</td>
<td></td>
</tr>
<tr>
<td>system-info</td>
<td>'MSInfo32 Output'</td>
<td>Collects MSInfo32.</td>
</tr>
<tr>
<td>eventlog</td>
<td>• 'Application'</td>
<td>Collects application, system, and EC2Config event logs.</td>
</tr>
<tr>
<td></td>
<td>• 'System'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'EC2ConfigService'</td>
<td></td>
</tr>
<tr>
<td>memory-dump</td>
<td>• 'Memory Dump File'</td>
<td>Collects any memory dump files that exist on the instance.</td>
</tr>
<tr>
<td></td>
<td>• 'Mini Dump Files'</td>
<td></td>
</tr>
<tr>
<td>ec2config</td>
<td>• 'Log Files'</td>
<td>Collects log files generated by the EC2Config service.</td>
</tr>
<tr>
<td></td>
<td>• 'Configuration Files'</td>
<td></td>
</tr>
<tr>
<td>ec2launch</td>
<td>• 'Logs'</td>
<td>Collects log files generated by the EC2Launch scripts.</td>
</tr>
<tr>
<td></td>
<td>• 'Config'</td>
<td></td>
</tr>
<tr>
<td>ssm-agent</td>
<td>'Log Files'</td>
<td>Collects log files generated by the SSM agent.</td>
</tr>
<tr>
<td>sysprep</td>
<td>'Log Files'</td>
<td>Collects log files generated by the Windows System Preparation tool.</td>
</tr>
<tr>
<td>driver-setup</td>
<td>• 'SetupAPI Log Files'</td>
<td>Collects Windows SetupAPI logs (setupapi.dev.log and setupapi.setup.log).</td>
</tr>
<tr>
<td></td>
<td>• 'DPInst Log File'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'AWS PV Setup Log File'</td>
<td></td>
</tr>
<tr>
<td>registry</td>
<td>• 'SYSTEM'</td>
<td>Collects SYSTEM and SOFTWARE hives.</td>
</tr>
<tr>
<td></td>
<td>• 'SOFTWARE'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 'BCD'</td>
<td></td>
</tr>
<tr>
<td>gpresult</td>
<td>'GPResult Output'</td>
<td>Collects a Group Policy report.</td>
</tr>
<tr>
<td>egpu</td>
<td>• 'Event Log'</td>
<td>Collects event logs related to elastic GPUs.</td>
</tr>
<tr>
<td></td>
<td>• 'System Files'</td>
<td></td>
</tr>
<tr>
<td>boot-config</td>
<td>'BCDEDIT Output'</td>
<td>Collects HKEY_LOCAL_MACHINE \BCD00000000 hive.</td>
</tr>
<tr>
<td>windows-update</td>
<td>'Log Files'</td>
<td>Collects information about the updates that are installed on the instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows Update logs are not captured on Windows Server 2016 instances.</td>
</tr>
</tbody>
</table>

The following are the available options:

- `/output:<outputFilePath>` - Required destination file path location to save collected log files in zip format.
• **/no-offline** - Optional attribute used in offline mode. Does not set the volume offline after completing the action.

• **/no-fix-signature** - Optional attribute used in offline mode. Does not fix a possible disk signature collision after completing the action.

Examples

The following are examples using the EC2Rescue for Windows Server CLI.

Online Mode Examples

Collect all available logs:

```
EC2RescueCmd /accepteula /online /collect:all /output:<outputFilePath>
```

Collect only a specific log group:

```
EC2RescueCmd /accepteula /online /collect:ec2config /output:<outputFilePath>
```

Collect individual logs within a log group:

```
EC2RescueCmd /accepteula /online /collect:'ec2config.Log Files,driver-setup.SetupAPI Log Files' /output:<outputFilePath>
```

Offline Mode Examples

Collect all available logs from an EBS volume. The volume is specified by the device_id value.

```
EC2RescueCmd /accepteula /offline:xvdf /collect:all /output:<outputFilePath>
```

Collect only a specific log group:

```
EC2RescueCmd /accepteula /offline:xvdf /collect:ec2config /output:<outputFilePath>
```

Rescue Action

EC2Rescue for Windows Server is able to attempt to detect and modify the following service settings to attempt to fix possible issues:

<table>
<thead>
<tr>
<th>Service Group</th>
<th>Available Actions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td></td>
<td>System Time</td>
</tr>
<tr>
<td>system-time</td>
<td><code>RealTimeIsUniversal</code></td>
<td></td>
</tr>
</tbody>
</table>

- **RealTimeIsUniversal**
 - Detects whether the `RealTimeIsUniversal` registry key is enabled. If disabled, Windows system time drifts when the timezone is set to a value other than UTC.
Rescue Action

<table>
<thead>
<tr>
<th>Service Group</th>
<th>Available Actions</th>
<th>Description</th>
</tr>
</thead>
</table>
| **firewall** | • 'Domain networks'
 • 'Private networks'
 • 'Guest or public networks' | Windows Firewall
 • **Domain networks** - Detects whether this Windows Firewall profile is enabled or disabled.
 • **Private networks** - Detects whether this Windows Firewall profile is enabled or disabled.
 • **Guest or public networks** - Detects whether this Windows Firewall profile is enabled or disabled. |
| **rdp** | • 'Service Start'
 • 'Remote Desktop Connections'
 • 'TCP Port' | Remote Desktop
 • **Service Start** - Detects whether the Remote Desktop service is enabled.
 • **Remote Desktop Connections** - Detects whether this is enabled.
 • **TCP Port** - Detects which port the Remote Desktop service is listening on. |
| **ec2config** | • 'Service Start'
 • 'Ec2SetPassword'
 • 'Ec2HandleUserData' | EC2Config
 • **Service Start** - Detects whether the EC2Config service is enabled.
 • **Ec2SetPassword** - Generates a new administrator password.
 • **Ec2HandleUserData** - Allows you to execute a user data script on the next boot of the instance. |
| **ec2launch** | 'Reset Administrator Password' | Generates a new Windows administrator password. |
| **network** | 'DHCP Service Startup' | Network Interface
 • **DHCP Service Startup** - Detects whether the DHCP service is enabled. |

The following are the available options:

- **/level:<level>** - Optional attribute for the check level that the action should trigger. Allowed values are: information, warning, error, all. By default, it is set to error.
- **/check-only** - Optional attribute that generates a report but makes no modifications to the offline volume.
• /no-offline - Optional attribute that prevents the volume from being set offline after completing the action.

• /no-fix-signature - Optional attribute that does not fix a possible disk signature collision after completing the action.

Rescue Examples

The following are examples using the EC2Rescue for Windows Server CLI. The volume is specified using the device_id value.

Attempt to fix all identified issues on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /rescue:all
```

Attempt to fix all issues within a service group on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /rescue:firewall
```

Attempt to fix a specific item within a service group on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /rescue:rdp.'Service Start'
```

Specify multiple issues to attempt to fix on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /rescue:'system-time.RealTimeIsUniversal,ec2config.Service Start'
```

Restore Action

EC2Rescue for Windows Server is able to detect and modify the following service settings to attempt to fix possible issues:

<table>
<thead>
<tr>
<th>Service Group</th>
<th>Available Actions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore Last Known Good Configuration</td>
<td>lkgc</td>
<td>Last Known Good Configuration - Attempts to boot the instance into the last known bootable state.</td>
</tr>
<tr>
<td>Restore Windows registry from latest backup</td>
<td>regback</td>
<td>Restore registry from backup - Restores the registry from Windows\System32\config\RegBack.</td>
</tr>
</tbody>
</table>

The following are the available options:

• /no-offline—Optional attribute that prevents the volume from being set offline after completing the action.

• /no-fix-signature—Optional attribute that does not fix a possible disk signature collision after completing the action.
Restore Examples

The following are examples using the EC2Rescue for Windows Server CLI. The volume is specified using the device_id value.

Restore last known good configuration on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /restore:lkgc
```

Restore the last Windows registry backup on a volume:

```
EC2RescueCmd /accepteula /offline:xvdf /restore:regback
```

Using EC2Rescue for Windows Server with Systems Manager Run Command

AWS Support provides you with a Systems Manager Run Command document to interface with your Systems Manager-enabled instance to run EC2Rescue for Windows Server. The Run Command document is called `AWSSupport-RunEC2RescueForWindowsTool`.

This Systems Manager Run Command document performs the following tasks:

- Downloads and verifies EC2Rescue for Windows Server.
- Imports a PowerShell module to ease your interaction with the tool.
- Runs EC2RescueCmd with the provided command and parameters.

The Systems Manager Run Command document accepts three parameters:

- **Command**—The EC2Rescue for Windows Server action. The current allowed values are:
 - **ResetAccess**—Resets the local Administrator password. The local Administrator password of the current instance will be reset and the randomly generated password will be securely stored in Parameter Store as `/EC2Rescue/Password/<INSTANCE_ID>`. If you select this action and provide no parameters, passwords are encrypted automatically with the default KMS key. Optionally, you can specify a KMS Key ID in Parameters to encrypt the password with your own key.
 - **CollectLogs**—Runs EC2Rescue for Windows Server with the `/collect:all` action. If you select this action, Parameters must include an Amazon S3 presigned URL to upload the logs to (or the URL that AWS Support provided for a support case). Use the following PowerShell command to generate an S3 pre-signed URL for a bucket you own in a specific region:

    ```powershell
    PS C:\> Get-S3PreSignedURL -BucketName bucket_name -Key "AWSSupport-EC2Rescue/EC2Rescue_logs_instance_id" -Verb PUT -Expires (Get-Date).AddMinutes(10) -Region region
    ```

 Note
 The S3 pre-signed URL expires after 10 minutes.

 For more information about Amazon S3 presigned URLs, see [Uploading Objects Using Pre-Signed URLs](#).
 - **FixAll**—Runs EC2Rescue for Windows Server with the `/rescue:all` action. If you select this action, Parameters must include the block device name to rescue.
 - **Custom**—Allows you to run EC2Rescue for Windows Server with custom parameters.
 - **Parameters**—The PowerShell parameters to pass for the specified command.
Note

In order for the **ResetAccess** action to work, your Amazon EC2 instance needs to have the following policy attached in order to write the encrypted password to Parameter Store. Please wait a few minutes before attempting to reset the password of an instance after you have attached this policy to the related IAM role:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["ssm:PutParameter"],
      "Resource": ["arn:aws:ssm:<region>:<account>:parameter/EC2Rescue/Passwords/<instanceid>"
    },
    {
      "Effect": "Allow",
      "Action": ["kms:Encrypt"],
      "Resource": ["*"
    }
  ]
}
```

The following procedure describes how to view the JSON for this document in the Amazon EC2 console.

To view the JSON for the Systems Manager Run Command document

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, expand **Systems Manager Shared Services** and choose **Documents**.
3. Choose **Owned by Me or Amazon** and use the **Name** filter to search for **AWSSupport-RunEC2RescueForWindowsTool**.
4. Select the **AWSSupport-RunEC2RescueForWindowsTool** document, choose **Contents**, and then view the JSON.

Examples

Here are some examples on how to use the Systems Manager Run Command document to execute EC2Rescue for Windows Server, using the AWS CLI. For more information about sending commands with the AWS CLI, see the [AWS CLI Command Reference](https://docs.aws.amazon.com/cli/latest/reference/ssm/send-command.html).

Attempt to Fix All Identified Issues Using Either the FixAll or Custom Parameter

Attempt to fix all identified issues on an online volume attached to an Amazon EC2 Windows instance:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue offline volume xvdf" --parameters "Command=FixAll, Parameters='xvdf'" --output text
```
You can achieve the same result using the `Custom` command as follows:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue offline volume xvdf" --parameters "Command=Custom, Parameters='/accepteula /offline:xvdf /rescue:all'" --output text
```

Collect Logs from the Current Amazon EC2 Windows Instance

Collect all logs from the current online Amazon EC2 Windows instance and upload them to Amazon S3 with a presigned URL:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue online log collection to S3" --parameters "Command=CollectLogs, Parameters='YOURS3PRESIGNEDURL'" --output text
```

Collect Logs from an Offline Amazon EC2 Windows Instance Volume

Collect all logs from an offline volume attached to an Amazon EC2 Windows instance and upload them to Amazon S3 with a presigned URL:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue offline log collection to S3" --parameters "Command=CollectLogs, Parameters="-Offline -BlockDeviceName xvdf -S3PreSignedUrl 'YOURS3PRESIGNEDURL'"" --output text
```

Reset the Local Administrator Password

The following examples show methods you can use to reset the local Administrator password. The output provides a link to Parameter Store, where you can find the randomly generated secure password you can then use to RDP to your Amazon EC2 Windows instance as the local Administrator.

Reset the local Administrator password of an online instance using the default KMS key alias/aws/ssm:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue online password reset" --parameters "Command=ResetAccess" --output text
```

Reset the local Administrator password of an online instance using a KMS key:

```
aws ssm send-command --instance-ids "i-0cb2b964d3e14fd9f" --document-name "AWSSupport-RunEC2RescueForWindowsTool" --comment "EC2Rescue online password reset" --parameters "Command=ResetAccess, Parameters=a133dc3c-a2g4-4fc6-a873-6c0720104bf0" --output text
```

Note

In this example, the KMS key is a133dc3c-a2g4-4fc6-a873-6c0720104bf0.
Troubleshooting Windows Instances

The following procedures and tips can help you troubleshoot problems with your Amazon EC2 Windows instances.

Contents
- Troubleshoot an Unreachable Instance (p. 834)
- Resetting a Lost or Expired Windows Administrator Password (p. 841)
- Common Issues (p. 847)
- High CPU usage shortly after Windows starts (p. 850)
- No console output (p. 850)
- Instance terminates immediately (p. 851)
- Remote Desktop can't connect to the remote computer (p. 851)
- RDP displays a black screen instead of the desktop (p. 853)
- Instance loses network connectivity or scheduled tasks don't run when expected (p. 854)
- Insufficient Instance Capacity (p. 854)
- Instance Limit Exceeded (p. 854)
- Windows Server 2012 R2 not available on the network (p. 855)
- Common Messages (p. 855)

If you need additional help, you can post a question to the Amazon EC2 forum. Be sure to post the ID of your instance and any error messages, including error messages available through console output.

To get additional information for troubleshooting problems with your instance, use Using EC2Rescue for Windows Server (p. 823). For information about troubleshooting issues with PV drivers, see Troubleshooting PV Drivers (p. 342).

Troubleshoot an Unreachable Instance

If you are unable to reach your instance via SSH or RDP, you can capture a screenshot of your instance and view it as an image. This provides visibility as to the status of the instance, and allows for quicker troubleshooting.

There is no data transfer cost for this screenshot. The image is generated in JPG format, no larger than 100kb.

- How to Take a Screenshot of an Unreachable Instance (p. 834)
- Common Screenshots (p. 835)

How to Take a Screenshot of an Unreachable Instance

To access the instance console
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the left navigation pane, choose Instances.
3. Select the instance to capture.
5. Choose Get Instance Screenshot.

Right-click on the image to download and save it.

To capture a screenshot using the command line

You can use one of the following commands. The returned output is base64-encoded. For more information about these command line interfaces, see Accessing Amazon EC2 (p. 3).

- `get-console-screenshot` (AWS CLI)
- `GetConsoleScreenshot` (Amazon EC2 Query API)

For API calls, the returned content is base64-encoded. For command line tools, the decoding is performed for you.

Common Screenshots

You can use the following information to help you troubleshoot an unreachable instance based on screenshots returned by the service.

- Log On Screen (Ctrl+Alt+Delete) (p. 835)
- Recovery Console Screen (p. 838)
- Windows Boot Manager Screen (p. 838)
- Sysprep Screen (p. 839)
- Getting Ready Screen (p. 840)
- Windows Update Screen (p. 840)
- Chkdsk (p. 840)

Log On Screen (Ctrl+Alt+Delete)

Console Screenshot Service returned the following.
If an instance becomes unreachable during log on, there could be a problem with your network configuration or Windows Remote Desktop Services. An instance can also be unresponsive if a process is using large amounts of CPU.

Network Configuration

Use the following information, to verify that your AWS, Microsoft Windows, and local (or on-premises) network configurations aren't blocking access to the instance.

AWS Network Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security group configuration</td>
<td>Verify that port 3389 is open for your security group. Verify you are connecting to the right public IP address. If the instance was not associated with an Elastic IP, the public IP changes after the instance stops/starts. For more information, see Remote Desktop can't connect to the remote computer (p. 851).</td>
</tr>
<tr>
<td>VPC configuration (Network ACLs)</td>
<td>Verify that the access control list (ACL) for your Amazon VPC is not blocking access. For information, see Network ACLs in the Amazon VPC User Guide.</td>
</tr>
<tr>
<td>VPN configuration</td>
<td>If you are connecting to your VPC using a virtual private network (VPN), verify VPN tunnel connectivity. For more information, see How do I troubleshoot VPN tunnel connectivity to an Amazon VPC?</td>
</tr>
</tbody>
</table>

Windows Network Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Firewall</td>
<td>Verify that Windows Firewall isn't blocking connections to your instance. Disable Windows Firewall as described in bullet 7 of the remote desktop troubleshooting section, Remote Desktop can't connect to the remote computer (p. 851).</td>
</tr>
<tr>
<td>Advanced TCP/IP configuration (Use of static IP)</td>
<td>The instance may be unresponsive because you configured a static IP address. For a VPC, Create a network interface (p. 604) and attach it to the instance (p. 606). For EC2 Classic, enable DHCP.</td>
</tr>
</tbody>
</table>

Local or On-Premises Network Configuration

Verify that a local network configuration isn’t blocking access. Try to connect to another instance in the same VPC as your unreachable instance. If you can’t access another instance, work with your local network administrator to determine whether a local policy is restricting access.

Remote Desktop Service Issue

If the instance can’t be reached during log on, there could a problem with Remote Desktop Services (RDS) on the instance.
Remote Desktop Services Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS is running</td>
<td>Verify that RDS is running on the instance. Connect to the instance using the Microsoft Management Console (MMC) Services snap-in (services.msc). In the list of services, verify that Remote Desktop Services is Running. If it isn't, start it and then set the startup type to Automatic. If you can't connect to the instance by using the Services snap-in, take a snapshot of the volume or create an AMI from it, attach the original volume to another instance in the same availability zone as a secondary volume, and modify the Start registry key. When you are finished, reattach the root volume to the original instance. For more information about detaching volumes, see [Detaching an Amazon EBS Volume from an Instance](p. 664).</td>
</tr>
<tr>
<td>RDS is enabled</td>
<td>Even if the service is started, it may be disabled. Detach the root volume from the instance, take a snapshot of the volume or create an AMI from it, attach the original volume to another instance in the same availability zone as a secondary volume, and enable the service by modifying the Terminal Server registry key as described in the following articles:</td>
</tr>
<tr>
<td></td>
<td>• Enable Remote desktop via the registry</td>
</tr>
<tr>
<td></td>
<td>• Windows Server Hacks: Remotely Enable Remote Desktop</td>
</tr>
<tr>
<td></td>
<td>When you are finished, reattach the root volume to the original instance. For more information about detaching volumes, see [Detaching an Amazon EBS Volume from an Instance](p. 664).</td>
</tr>
</tbody>
</table>

High CPU

Check the **CPUUtilization (Maximum)** metric on your instance by using Amazon CloudWatch. If **CPUUtilization (Maximum)** is a high number, wait for the CPU to go down and try connecting again. High CPU usage can be caused by:

- Windows Update
- Security Software Scan
- Custom Startup Script
- Task Scheduler

For more information about the **CPUUtilization (Maximum)** metric, see [Get Statistics for a Specific EC2 Instance](in the Amazon CloudWatch User Guide). For additional troubleshooting tips, see [High CPU usage shortly after Windows starts](p. 850).
The operating system may boot into the Recovery console and get stuck in this state if the `bootstatuspolicy` is not set to `ignoreallfailures`. Use the following procedure to change the `bootstatuspolicy` configuration to `ignoreallfailures`.

By default, the policy configuration for AWS-provided public Windows AMIs is set to `ignoreallfailures`.

1. Stop the unreachable instance.
2. Create a snapshot of the root volume. The root volume is attached to the instance as `/dev/sda1`.

 Detach the root volume from the unreachable instance, take a snapshot of the volume or create an AMI from it, and attach it to another instance in the same Availability Zone as a secondary volume. For more information, see [Detaching an Amazon EBS Volume from an Instance](p. 664).

 Warning

 If your temporary instance is based on the same AMI that the original instance is based on, you must complete additional steps or you won’t be able to boot the original instance after you restore its root volume because of a disk signature collision. Alternatively, select a different AMI for the temporary instance. For example, if the original instance uses an AMI for Windows Server 2008 R2, launch the temporary instance using an AMI for Windows Server 2012. If you must create a temporary instance based on the same AMI, see Step 6 in [Remote Desktop can't connect to the remote computer](p. 851) to avoid a disk signature collision.

3. Log in to the instance and execute the following command from a command prompt to change the `bootstatuspolicy` configuration to `ignoreallfailures`:

   ```
   bcdedit /store Drive Letter:\boot\bcd /set {default} bootstatuspolicy ignoreallfailures
   ```

4. Reattach the volume to the unreachable instance and start the instance again.
The operating system experienced a fatal corruption in the system file and/or the registry. When the instance is stuck in this state, you should recover the instance from a recent backup AMI or launch a replacement instance. If you need to access data on the instance, detach any root volumes from the unreachable instance, take a snapshot of those volume or create an AMI from them, and attach them to another instance in the same Availability Zone as a secondary volume. For more information, see Detaching an Amazon EBS Volume from an Instance (p. 664).

Sysprep Screen

Console Screenshot Service returned the following.

You may see this screen if you did not use the EC2Config Service to call sysprep.exe or if the operating system failed while running Sysprep. To solve this problem, Create a Standard Amazon Machine Image Using Sysprep (p. 98).
Getting Ready Screen

Console Screenshot Service returned the following.

Refresh the Instance Console Screenshot Service repeatedly to verify that the progress ring is spinning. If the ring is spinning, wait for the operating system to start up. You can also check the CPUUtilization (Maximum) metric on your instance by using Amazon CloudWatch to see if the operating system is active. If the progress ring is not spinning, the instance may be stuck at the boot process. Reboot the instance. If rebooting does not solve the problem, recover the instance from a recent backup AMI or launch a replacement instance. If you need to access data on the instance, detach the root volume from the unreachable instance, take a snapshot of the volume or create an AMI from it. Then attach it to another instance in the same Availability Zone as a secondary volume. For more information about CPUUtilization (Maximum), see Get Statistics for a Specific EC2 Instance in the Amazon CloudWatch User Guide.

Windows Update Screen

Console Screenshot Service returned the following.

The Windows Update process is updating the registry. Wait for the update to finish. Do not reboot or stop the instance as this may cause data corruption during the update.

Note

The Windows Update process can consume resources on the server during the update. If you experience this problem often, consider using faster instance types and faster EBS volumes.

Chkdsk

Console Screenshot Service returned the following.
Windows is running the chkdsk system tool on the drive to verify file system integrity and fix logical file system errors. Wait for process to complete.

Resetting a Lost or Expired Windows Administrator Password

If you've lost the Windows administrator password for your Amazon EC2 instance, or if the password has expired, and you are no longer able to access your Windows Amazon EC2 instance you can reset it.

There is an AWS Systems Manager Automation document that automatically applies the manual steps necessary to reset the local Administrator password. For more information, see [Reset the Local Administrator Password on Amazon EC2 Windows Instances](https://docs.aws.amazon.com/systems-manager/latest/userguide/using-automations-windows.html) in the [AWS Systems Manager User Guide](https://docs.aws.amazon.com/systems-manager/latest/userguide/).

The manual methods to reset the Administrator password use either EC2Config or EC2Launch.

- For Windows AMIs before Windows Server 2016, use the EC2Config service.
- For Windows Server 2016 AMIs, use the EC2Launch service.

These procedures also describe how to connect to an instance if you've lost the key pair that was used to create the instance. Amazon EC2 uses a public key to encrypt a piece of data, such as a password, and a private key to decrypt the data. The public and private keys are known as a **key pair**. With Windows instances, you use a key pair to obtain the administrator password and then log in using RDP.

Note

If you have disabled the local Administrator account on the instance and your instance is configured for SSM, you can also re-enable and reset your local Administrator password by using EC2Rescue and Run Command. For more information, see [Using EC2Rescue for Windows Server with Systems Manager Run Command](https://docs.aws.amazon.com/systems-manager/latest/userguide/using-systemsandcommands.html).

Contents

- Resetting the Windows Administrator Password Using EC2Config (p. 841)
- Resetting the Windows Administrator Password Using EC2Launch (p. 844)

Resetting the Windows Administrator Password Using EC2Config

If you have lost your Windows administrator password and are using a Windows AMI before Windows Server 2016, you can use the EC2Config service to generate a new password.

If you are using a Windows Server 2016 AMI, see Resetting the Windows Administrator Password Using EC2Launch (p. 844).
Note
If you have disabled the local Administrator account on the instance and your instance is configured for SSM, you can also re-enable and reset your local Administrator password by using EC2Rescue and Run Command. For more information, see Using EC2Rescue for Windows Server with Systems Manager Run Command.

Note
There is an SSM Automation document that automatically applies the manual steps necessary to reset the local Administrator password. For more information, see Reset the Local Administrator Password on Amazon EC2 Windows Instances in the AWS Systems Manager User Guide.

Before You Begin

Before you attempt to reset the administrator password, use the following procedure to verify that the EC2Config service is installed and running. You use the EC2Config service to reset the administrator password later in this section.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances and then choose the instance that needs a password reset. (This instance is referred to as the original instance in this procedure.)
4. Locate the EC2 Agent entry, for example, EC2 Agent: Ec2Config service v3.18.1118. If you see this entry, the EC2Config service is running.

If the system log output is empty, or if the EC2Config service is not running, troubleshoot the instance using the Instance Console Screenshot service. For more information, see Troubleshoot an Unreachable Instance (p. 834).

Resetting an Administrator Password

To reset an administrator password for an EC2 instance, modify a configuration file on the instance boot volume. However, you can't modify this file if the volume is attached to the instance as a root volume. You must detach the volume and attach it to a temporary instance. After you modify the configuration file on the temporary instance, you reattach it to your original instance as the root volume.

Warning
When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

To reset the administrator password

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Select the instance and choose Actions, Instance State, Stop. When prompted for confirmation, choose Yes, Stop. Wait until the instance state is stopped before going to the next step.
4. (Optional) If you have the private key for the key pair you specified when you launched this instance, continue with the next step. Otherwise, use the following steps to replace the instance with a new instance that you launch with a new key pair.
 a. Create a new key pair using the Amazon EC2 console. To give your new key pair the same name as the one for which you lost private key, you must delete the existing key pair.
 b. Select the instance to replace. Note the instance type, VPC, subnet, security group, and IAM role of the instance.
c. Choose Actions, Image, Create Image. Type a name and a description for the image and choose Create Image. Choose View pending image.
d. When the status of the new image is available, select the image and choose Launch.
e. Complete the wizard, selecting the same instance type, VPC, subnet, security group, and IAM role as the instance to replace. Choose Launch.
f. When prompted, choose the key pair you created for the new instance, select the acknowledgement check box, and choose Launch Instances.
g. If the original instance has an associated Elastic IP address, transfer it to the new instance. If the original instance has EBS volumes in addition to the root volume, transfer them to the new instance.
h. Terminate the stopped instance, as it is no longer needed. For the remainder of this procedure, all references to the original instance apply to this instance that you just created.

5. Create the temporary instance to which to attach the volume in order to modify the configuration file.
 a. Choose Launch Instance and then select an AMI.
 Important
 You must select an AMI for a different version of Windows to avoid disk signature collisions. For example, if the original instance runs Windows Server 2012 R2, launch the temporary instance using the base AMI for Windows Server 2008 R2.
 b. Leave the default instance type that the wizard selects for you and choose Next: Configure Instance Details.
 c. On the Configure Instance Details page, for Subnet, choose the same Availability Zone as the original instance, and then choose Review and Launch.
 Important
 The temporary instance must be in the same Availability Zone as the original instance. If the temporary instance is in a different Availability Zone, you won't be able to attach the original instance's root volume to it.
e. When prompted, create a new key pair, download it to a safe location on your computer, and then choose Launch Instances.

6. Detach the root volume from the original instance as follows:
 a. On the Description pane of the original instance, note the ID of the EBS volume listed as the Root device.
 b. In the navigation pane, choose Volumes.
 c. In the list of volumes, select the volume, and then choose Actions, Detach Volume. After the volume's status changes to available, continue with the next step.

7. Attach the volume to the temporary instance as a secondary volume as follows:
 a. Choose Actions, Attach Volume.
 b. In the Attach Volume dialog box, start typing the name or ID of your temporary instance for Instances, and then select the instance from the list.
 c. For Device, type xvdf (if it isn't already there), and then choose Attach.
 d. Connect to the temporary instance, open the Disk Management utility, and bring the drive online using these instructions: Making the Volume Available on Windows (p. 649).

8. On the secondary volume, modify the configuration file as follows:
 a. From the temporary instance, navigate to the secondary volume, and open \Program Files \Amazon\Ec2ConfigService\Settings\config.xml using a text editor, such as Notepad.
 b. At the top of the file, find the plugin with the name Ec2SetPassword, as shown here. Change the state from Disabled to Enabled and save the file.
9. Detach the secondary volume from the temporary instance as follows:
 a. Using the Disk Management utility, bring the volume offline.
 b. In the navigation pane, choose Volumes.
 c. Select the volume and choose Actions, Detach Volume. After the volume's status changes to available, continue with the next step.

10. Reattach the volume to the original instance as its root volume as follows:
 a. Select the volume, and choose Actions, Attach Volume.
 b. In the Attach Volume dialog box, start typing the name or ID of the original instance for Instances and then select the instance.
 c. For Device, type /dev/sda1.
 d. Choose Attach. Wait until the state of the volume is in-use before continuing to the next step.

11. In the navigation pane, choose Instances. Select the original instance and choose Actions, Instance State, Start. When prompted for confirmation, choose Yes, Start. Wait until the state of your instance is running before continuing to the next step.

12. Retrieve your new Windows administrator password using the private key for the new key pair and connect to the instance. For more information, see Connecting to Your Windows Instance (p. 283).

 Important
 The instance gets a new public IP address after you stop and start it. Be sure to connect to the instance using its current public DNS name. For more information, see Instance Lifecycle (p. 261).

13. (Optional) If you have no further use for the temporary instance, you can terminate it. Select the temporary instance, and then choose Actions, Instance State, Terminate.

Resetting the Windows Administrator Password Using EC2Launch

If you have lost your Windows administrator password and are using a Windows Server 2016 AMI, you can use the EC2Rescue tool which uses the EC2Launch service to generate a new password.
If you are using a Windows Server AMI earlier than Windows Server 2016, see Resetting the Windows Administrator Password Using EC2Config (p. 841).

Warning
When you stop an instance, the data on any instance store volumes is erased. Therefore, if you have any data on instance store volumes that you want to keep, be sure to back it up to persistent storage.

Note
If you have disabled the local Administrator account on the instance and your instance is configured for SSM, you can also re-enable and reset your local Administrator password by using EC2Rescue and Run Command. For more information, see Using EC2Rescue for Windows Server with Systems Manager Run Command.

Note
There is an SSM Automation document that automatically applies the manual steps necessary to reset the local Administrator password. For more information, see Reset the Local Administrator Password on Amazon EC2 Windows Instances in the AWS Systems Manager User Guide.

Resetting a Windows administrator password using EC2Rescue

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**.
3. Select the instance that needs a password reset and choose **Actions, Instance State, Stop**. Wait until the instance state is **stopped** state before continuing to the next step.
4. (Optional) If you have the private key that you specified when you launched this instance, continue with the next step. Otherwise, use the following steps to replace the instance with a new instance that you launch with a new key pair.
 a. Create a new key pair using the Amazon EC2 console. To give your new key pair the same name as the one for which you lost private key, you must delete the existing key pair.
 b. Select the instance to replace. Note the instance type, VPC, subnet, security group, and IAM role of the instance.
 c. Choose **Actions, Image, Create Image**. Type a name and a description for the image and choose **Create Image**. Choose **View pending image**.
 d. When the status of the new image is **available**, select the image and choose **Launch**.
 e. Complete the wizard, selecting the same instance type, VPC, subnet, security group, and IAM role as the instance to replace. Choose **Launch**.
 f. When prompted, choose the key pair you created for the new instance, select the acknowledgement check box, and choose **Launch Instances**.
 g. If the original instance has an associated Elastic IP address, transfer it to the new instance. If the original instance has EBS volumes in addition to the root volume, transfer them to the new instance.
 h. Terminate the stopped instance, as it is no longer needed. For the remainder of this procedure, all references to the original instance apply to this instance that you just created.
5. Create the temporary instance to use to download and run the EC2Rescue for Windows Server tool.
 a. Choose **Launch Instance** and then select an AMI.
 Important
 You must select an AMI for a different version of Windows in order to avoid disk signature collisions. For example, if the original instance runs Windows Server 2012 R2, launch the temporary instance using the base AMI for Windows Server 2008 R2.
 b. Leave the default instance type that the wizard selects for you and choose **Next: Configure Instance Details**.
 c. On the **Configure Instance Details** page, for **Subnet**, choose the same Availability Zone as the original instance, and then choose **Review and Launch**.
Important
The temporary instance must be in the same Availability Zone as the original instance.
If your temporary instance is in a different Availability Zone, you won't be able to
attach the original instance's root volume to it.

d. On the **Review Instance Launch** page, choose **Launch**.
e. When prompted, create a new key pair, download it to a safe location on your computer, and
then choose **Launch Instances**.

6. From the temporary instance, download the **EC2Rescue for Windows Server** tool and extract the
files.

7. Detach the root volume from the original instance as follows:
 a. On the **Description** pane of the original instance, note the ID of the EBS volume listed as the
 Root device.
 b. In the navigation pane, choose **Volumes**.
 c. In the list of volumes, select the volume, and then choose **Actions, Detach Volume**. After the
 volume's status changes to **available**, continue with the next step.

8. Attach the volume to the temporary instance as a secondary volume as follows:
 a. Choose **Actions, Attach Volume**.
 b. In the **Attach Volume** dialog box, start typing the name or ID of your temporary instance for
 Instances, and then select the instance from the list.
 c. For **Device**, type `xvdf` (if it isn't already there), and then choose **Attach**.

9. Connect to the temporary instance and use the EC2Rescue for Windows Server tool on the instance
to reset the administrator password as follows:
 a. On the EC2Rescue for Windows Server tool, choose **Offline instance**.
 b. Select the disk of the newly mounted volume and choose **Next**.
 c. Confirm the disk selection and choose **Yes**.
 d. Choose **Diagnose and Rescue**.
 e. On the **Summary** dialog box, review the information and choose **Next**.
 f. On the **Detected possible issues** dialog box, select **Reset Administrator Password** and choose
 Next.
 g. Choose **Rescue**, confirm the selection, and then choose **Next**.
 h. Choose **Finish**.

10. Detach the root volume from the temporary instance using the Amazon EC2 console as follows:
 a. On the **Description** pane of the original instance, note the ID of the EBS volume listed as the
 Root device.
 b. In the navigation pane, choose **Volumes**.
 c. Select the volume and choose **Actions, Detach Volume**. After the volume's status changes to
 available, continue with the next step.

11. Reattach the volume to the original instance as follows:
 a. Select the volume and choose **Actions, Attach Volume**.
 b. In the **Attach Volume** dialog box, start typing the name or ID of your original instance for
 Instances and then select the instance.
 c. For **Device**, type `/dev/sda1`.
 d. Choose **Attach**. Wait until the state of the volume is **in-use** before continuing to the next step.

12. In the navigation pane, choose **Instances**. Select the original instance and choose **Actions, Instance
 State, Start**. When prompted for confirmation, choose **Yes, Start**. Wait until the state of your
 instance is **running** before continuing to the next step.
13. Retrieve your new Windows administrator password using the private key for the new key pair and connect to the instance. For more information, see Connecting to Your Windows Instance (p. 283).

14. (Optional) If you have no further use for it, you can terminate the temporary instance. Select the temporary instance, and then choose Actions, Instance State, Terminate.

Common Issues

The following are troubleshooting tips to help you solve common issues with EC2 instance running Windows Server.

Issues

- EBS volumes don't initialize on Windows Server 2016 AMIs (p. 847)
- Boot an EC2 Windows Instance into Directory Services Restore Mode (DSRM) (p. 848)

EBS volumes don't initialize on Windows Server 2016 AMIs

Instances created from Windows Server 2012 R2 and earlier Amazon Machine Images (AMIs) use the EC2Config service for a variety of startup tasks, including initializing EBS volumes. To accommodate the change from .NET Framework to .NET Core, the EC2Config service has been deprecated on Windows Server 2016 AMIs and replaced by EC2Launch. EC2Launch is a bundle of Windows PowerShell scripts that perform many of the tasks performed by the EC2Config service. By default, EC2Launch does not initialize secondary volumes. You can configure EC2Launch to initialize disks automatically by either scheduling the script to run or by calling EC2Launch in user data.

To map drive letters to volumes

1. On the instance you want to configure, open the C:\ProgramData\Amazon\EC2-Windows\Launch\Config\DriveLetterMappingConfig.json file in a text editor.
2. Specify the volume settings using the following format:

   ```json
   {
     "driveLetterMapping": [
       {
         "volumeName": "Temporary Storage 0",
         "driveLetter": "H"
       }
     ]
   }
   ```
3. Save your changes.
4. In Windows PowerShell, use the following script to initialize the disks:

   ```powershell
   PS C:\> cd /ProgramData/Amazon/EC2-Windows/Launch/Scripts/
   PS C:\> ./InitializeDisks.ps1
   ```

 To initialize disks each time the instance boots, use the -Schedule flag:

   ```powershell
   PS C:\> cd /ProgramData/Amazon/EC2-Windows/Launch/Scripts/
   PS C:\> ./InitializeDisks.ps1 -Schedule
   ```
You can also initialize attached disks at the instance launch by adding the following path to the PowerShell script in Amazon EC2 user data.

```powershell
C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeDisks.ps1
</powershell>
```

For more information, see Configuring Instances with User Data (p. 365).

Boot an EC2 Windows Instance into Directory Services Restore Mode (DSRM)

If an instance running Microsoft Active Directory experiences a system failure or other critical issues you can troubleshoot the instance by booting into a special version of Safe Mode called *Directory Services Restore Mode* (DSRM). In DSRM you can repair or recover Active Directory.

Driver Support for DSRM

How you enable DSRM and boot into the instance depends on the drivers the instance is running. In the EC2 console you can view driver version details for an instance from the System Log. The following tables shows which drivers are supported for DSRM.

<table>
<thead>
<tr>
<th>Driver Versions</th>
<th>DSRM Supported?</th>
<th>Next Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrix PV 5.9</td>
<td>No</td>
<td>Restore the instance from a backup. You cannot enable DSRM.</td>
</tr>
<tr>
<td>AWS PV 7.2.0</td>
<td>No</td>
<td>Though DSRM is not supported for this driver, you can still detach the root volume from the instance, take a snapshot of the volume or create an AMI from it, and attach it to another instance in the same availability zone as a secondary volume. You can then enable DSRM (as described in this section).</td>
</tr>
<tr>
<td>AWS PV 7.2.2 and later</td>
<td>Yes</td>
<td>Detach the root volume, attach it to another instance, and enable DSRM (as described in this section).</td>
</tr>
<tr>
<td>Enhanced Networking</td>
<td>Yes</td>
<td>Detach the root volume, attach it to another instance, and enable DSRM (as described in this section).</td>
</tr>
</tbody>
</table>

For information about how to enable Enhanced Networking, see Enabling Enhanced Networking on Windows Instances in a VPC. For more information about upgrading AWS PV drivers, see Upgrading PV Drivers on Your Windows Instances (p. 336).

Configure an Instance to Boot into DSRM

EC2 Windows instances do not have network connectivity before the operating system is running. For this reason, you cannot press the F8 button on your keyboard to select a boot option. You must use one of the following procedures to boot an EC2 Windows Server instance into DSRM.

If you suspect that Active Directory has been corrupted and the instance is still running, you can configure the instance to boot into DSRM using either the System Configuration dialog box or the command prompt.
To boot an online instance into DSRM using the System Configuration dialog box

1. In the Run dialog box, type `msconfig` and press Enter.
2. Choose the Boot tab.
4. Choose Active Directory repair and then choose OK. The system prompts you to reboot the server.

To boot an online instance into DSRM using the command line

From a Command Prompt window, run the following command:

```
bcdedit /set safeboot dsrepair
```

If an instance is offline and unreachable, you must detach the root volume and attach it to another instance to enable DSRM mode.

To boot an offline instance into DSRM

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose Instances.
3. Locate the affected instance. Open the context (right-click) menu for the instance, choose Instance State, and then choose Stop.
4. Choose Launch Instance and create a temporary instance in the same Availability Zone as the affected instance. Choose an instance type that uses a different version of Windows. For example, if your instance is Windows Server 2008 R1, then choose a Windows Server 2008 R2 instance.

 Important
 If you do not create the instance in the same Availability Zone as the affected instance you will not be able to attach the root volume of the affected instance to the new instance.

5. In the navigation pane, choose Volumes.
6. Locate the root volume of the affected instance. Detach the volume and attach it to the temporary instance you created earlier. Attach it with the default device name (xvdf).
7. Use Remote Desktop to connect to the temporary instance, and then use the Disk Management utility to make the volume available for use.
8. Open a command prompt and run the following command. Replace `D` with the actual drive letter of the secondary volume you just attached:

```
bcdedit /store D:\Boot\BCD /set {default} safeboot dsrepair
```

9. In the Disk Management Utility, choose the drive you attached earlier, open the context (right-click) menu, and choose Offline.
10. In the EC2 console, detach the affected volume from the temporary instance and reattach it to your original instance with the device name `/dev/sda1`. You must specify this device name to designate the volume as a root volume.
11. Start the instance.
12. After the instance passes the health checks in the EC2 console, connect to the instance using Remote Desktop and verify that it boots into DSRM mode.
13. (Optional) Delete or stop the temporary instance you created in this procedure.
High CPU usage shortly after Windows starts

If Windows Update is set to **Check for updates but let me choose whether to download and install them** (the default instance setting) this check can consume anywhere from 50 - 99% of the CPU on the instance. If this CPU consumption causes problems for your applications, you can manually change Windows Update settings in **Control Panel** or you can use the following script in the Amazon EC2 user data field:

```
reg add "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WindowsUpdate\Auto Update" /v AUOptions /t REG_DWORD /d 3 /f net stop wuauserv net start wuauserv
```

When you execute this script specify a value for /d. The default value is 3. Possible values include the following:

- Never check for updates
- Check for updates but let me choose whether to download and install them
- Download updates but let me choose whether to install them
- Install updates automatically

To modify the user data for a Amazon EBS-backed instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. In the navigation pane, choose **Instances**, and select the instance.
3. Choose **Actions**, select **Instance State**, and then choose **Stop**.
4. In the confirmation dialog box, select **Yes, Stop**. It can take a few minutes for the instance to stop.
5. With the instance still selected, select **Actions**, select **Instance Settings**, and then choose **View/Change User Data**. Note that you can't change the user data if the instance is running, but you can view it.
6. In the **View/Change User Data** dialog box, update the user data, and then choose **Save**.

After you modify the user data for your instance, you can execute it. For more information, see **User Data Execution** (p. 359).

No console output

For Windows instances, the instance console displays the output from the EC2Config service running on the instance. The output logs the status of tasks performed during the Windows boot process. If Windows boots successfully, the last message logged is **Windows is Ready to use**. Note that you can also display event log messages in the console, but this feature is not enabled by default. For more information, see **Ec2 Service Properties** (p. 308).

To get the console output for your instance using the Amazon EC2 console, select the instance, click **Actions**, select **Instance Settings**, and then click **Get System Log**. To get the console output using the command line, use one of the following commands: **get-console-output** (AWS CLI) or **Get-EC2ConsoleOutput** (AWS Tools for Windows PowerShell).

If the console output is empty, it could indicate an issue with the EC2Config service, such as a misconfigured configuration file, or that Windows failed to boot properly. To fix the issue, download and install the latest version of EC2Config. For more information, see **Installing the Latest Version of EC2Config** (p. 317).
Instance terminates immediately

After you launch an instance, we recommend that you check its status to confirm that it goes from the pending status to the running status, and not the terminated status.

If the instance terminates immediately, you can use the Amazon EC2 console or command line to get information about the reason that the instance terminated.

To get the reason that an instance terminated using the console

1. Open the Amazon EC2 console.
2. In the navigation pane, choose Instances to display the instance details.
3. Select your instance.
4. In the Description tab, locate the reason next to the label State transition reason. If the instance is still running, there's typically no reason listed. If you've explicitly stopped or terminated the instance, the reason is User initiated shutdown.

To get the reason that an instance terminated using the command line

Use the describe-instances command (AWS CLI) with the ID of the instance. Look for the StateReason element in the output.

Remote Desktop can't connect to the remote computer

Try the following to resolve issues related to connecting to your instance:

- Verify that you're using the correct public DNS hostname. (In the Amazon EC2 console, select the instance and check Public DNS (IPv4) in the details pane.) If your instance is in a VPC and you do not see a public DNS name, you must enable DNS hostnames. For more information, see Using DNS with Your VPC in the Amazon VPC User Guide.
- Verify that your instance has a public IPv4 address. If not, you can associate an Elastic IP address with your instance. For more information, see Elastic IP Addresses (p. 586).
- To connect to your instance using an IPv6 address, check that your local computer has an IPv6 address and is configured to use IPv6. If you launched an instance from a Windows Server 2008 SP2 AMI or earlier, your instance is not automatically configured to recognize an IPv6 address assigned to the instance. For more information, see Configure IPv6 on Your Instances in the Amazon VPC User Guide.
- Verify that your security group has a rule that allows RDP access. For more information, see Create a Security Group (p. 16).
- If you copied the password but get the error Your credentials did not work, try typing them manually when prompted. It's possible that you missed a character or got an extra whitespace character when you copied the password.
- Verify that the instance has passed status checks. For more information, see Status Checks for Your Instances (p. 396) and Troubleshooting Instances with Failed Status Checks (Amazon EC2 User Guide for Linux Instances).
- Verify that the route table for the subnet has a route that sends all traffic destined outside the VPC to the Internet gateway for the VPC. For more information, see Creating a Custom Route Table (Internet Gateways) in the Amazon VPC User Guide.
- Verify that Windows Firewall, or other firewall software, is not blocking RDP traffic to the instance. We recommend that you disable Windows Firewall and control access to your instance using security group rules.
To disable Windows Firewall on a Windows instance that you can't connect to

1. Stop the affected instance and detach its root volume.
2. Launch a temporary instance in the same Availability Zone as the affected instance.
 Warning
 If your temporary instance is based on the same AMI that the original instance is based on, you must complete additional steps or you won't be able to boot the original instance after you restore its root volume because of a disk signature collision. Alternatively, select a different AMI for the temporary instance. For example, if the original instance uses the AWS Windows AMI for Windows Server 2008 R2, launch the temporary instance using the AWS Windows AMI for Windows Server 2012.
3. Attach the root volume from the affected instance to this temporary instance. Connect to the temporary instance, open the Disk Management utility, and bring the drive online.
4. Open Regedit and select HKEY_LOCAL_MACHINE. From the File menu, choose Load Hive. Select the drive, open the file Windows\System32\config\SYSTEM, and specify a key name when prompted (you can use any name).
5. Select the key you just loaded and navigate to ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy. For each key with a name of the form xxxxProfile, select the key and change EnableFirewall from 1 to 0. Select the key again, and from the File menu, choose Unload Hive.
6. (Optional) If your temporary instance is based on the same AMI that the original instance is based on, you must complete the following steps or you won't be able to boot the original instance after you restore its root volume because of a disk signature collision.
 Warning
 The following procedure describes how to edit the Windows Registry using Registry Editor. If you are not familiar with the Registry or how to safely make changes using Registry Editor, see Microsoft TechNet.
 a. Open a command prompt, type regedit.exe, and press Enter.
 b. In the Registry Editor, choose HKEY_LOCAL_MACHINE from the context menu (right-click), and then choose Find.
 c. Type Windows Boot Manager and then choose Find Next.
 d. Choose the key named 11000001. This key is a sibling of the key you found in the previous step.
 e. In the right pane, choose Element and then choose Modify from the context menu (right-click).
 f. Locate the four-byte disk signature at offset 0x38 in the data. Reverse the bytes to create the disk signature, and write it down. For example, the disk signature represented by the following data is E9EB3AA5:

 0030 00 00 00 00 01 00 00 00
 0038 A5 3A EB E9 00 00 00 00
 0040 00 00 00 00 00 00 00 00
 ...

 g. In a Command Prompt window, run the following command to start Microsoft DiskPart.

 diskpart

 h. Run the following DiskPart command to select the volume. (You can verify that the disk number is 1 using the Disk Management utility.)
RDP displays a black screen instead of the desktop

Try the following to resolve this issue:

- Check the console output for additional information. To get the console output for your instance using the Amazon EC2 console, select the instance, choose Actions, select Instance Settings, and then choose Get System Log.
- Verify that you are running the latest version of your RDP client.
- Try the default settings for the RDP client. For more information, see Remote Session Environment in the Microsoft TechNet Library.
- If you are using Remote Desktop Connection, try starting it with the /admin option as follows.

```
mstsc /v:instance /admin
```

- If the server is running a full-screen application, it might have stopped responding. Use Ctrl+Shift+Esc to start Windows Task Manager, and then close the application.
Instance loses network connectivity or scheduled tasks don't run when expected

If you restart your instance and it loses network connectivity, it's possible that the instance has the wrong time.

By default, Windows instances use Coordinated Universal Time (UTC). If you set the time for your instance to a different time zone and then restart it, the time becomes offset and the instance temporarily loses its IP address. The instance regains network connectivity eventually, but this can take several hours. The amount of time that it takes for the instance to regain network connectivity depends on the difference between UTC and the other time zone.

This same time issue can also result in scheduled tasks not running when you expect them to. In this case, the scheduled tasks do not run when expected because the instance has the incorrect time.

To use a time zone other than UTC persistently, you must set the `RealTimeIsUniversal` registry key. Without this key, an instance uses UTC after you restart it.

To resolve time issues that cause a loss of network connectivity

1. Ensure that you are running the recommended PV drivers. For more information, see Upgrading PV Drivers on Your Windows Instances (p. 336).
2. Verify that the following registry key exists and is set to 1:
   ```plaintext
   HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal
   ```

Insufficient Instance Capacity

If you get an InsufficientInstanceCapacity error when you try to launch an instance, AWS does not currently have enough available capacity to service your request.

Try the following:

- Wait a few minutes and then submit your request again; capacity can shift frequently.
- Submit a new request with a reduced number of instances. For example, if you're making a single request to launch 15 instances, try making 3 requests for 5 instances, or 15 requests for 1 instance instead.
- Submit a new request without specifying an Availability Zone.
- Submit a new request using a different instance type (which you can resize at a later stage). For more information, see Resizing Your Instance (p. 153).
- Try purchasing Reserved Instances. Reserved Instances are a long-term capacity reservation. For more information, see Amazon EC2 Reserved Instances.

Instance Limit Exceeded

If you get an InstanceLimitExceeded error when you try to launch an instance, you have reached your concurrent running instance limit. For new AWS accounts, the default limit is 20. If you need additional running instances, complete the form at Request to Increase Amazon EC2 Instance Limit.
Windows Server 2012 R2 not available on the network

For information about troubleshooting a Windows Server 2012 R2 instance that is not available on the network, see Windows Server 2012 R2 loses network and storage connectivity after an instance reboot (p. 342).

Common Messages

This section includes tips to help you troubleshoot issues based on common messages.

Topics

• "Password is not available" (p. 855)
• "Password not available yet" (p. 856)
• "Cannot retrieve Windows password" (p. 856)
• "Waiting for the metadata service" (p. 856)
• "Unable to activate Windows" (p. 859)
• "Windows is not genuine (0x80070005)" (p. 860)
• "No Terminal Server License Servers available to provide a license" (p. 860)

"Password is not available"

To connect to a Windows instance using Remote Desktop, you must specify an account and password. The accounts and passwords provided are based on the AMI that you used to launch the instance. You can either retrieve the auto-generated password for the Administrator account, or use the account and password that were in use in the original instance from which the AMI was created.

If your Windows instance isn't configured to generate a random password, you'll receive the following message when you retrieve the auto-generated password using the console:

Password is not available.
The instance was launched from a custom AMI, or the default password has changed. A password cannot be retrieved for this instance. If you have forgotten your password, you can reset it using the Amazon EC2 configuration service. For more information, see Passwords for a Windows Server instance.

Check the console output for the instance to see whether the AMI that you used to launch it was created with password generation disabled. If password generation is disabled, the console output contains the following:

Ec2SetPassword: Disabled

If password generation is disabled and you don't remember the password for the original instance, you can reset the password for this instance. For more information, see Resetting a Lost or Expired Windows Administrator Password (p. 841).
"Password not available yet"

To connect to a Windows instance using Remote Desktop, you must specify an account and password. The accounts and passwords provided are based on the AMI that you used to launch the instance. You can either retrieve the auto-generated password for the Administrator account, or use the account and password that were in use in the original instance from which the AMI was created.

Your password should be available within a few minutes. If the password isn't available, you'll receive the following message when you retrieve the auto-generated password using the console:

```
Password not available yet.
Please wait at least 4 minutes after launching an instance before trying to retrieve the auto-generated password.
```

If it's been longer than four minutes and you still can't get the password, it's possible that EC2Config is disabled. Verify by checking whether the console output is empty. For more information, see No console output (p. 850).

Also verify that the AWS Identity and Access Management (IAM) account being used to access the Management Portal has the `ec2:GetPasswordData` action allowed. For more information about IAM permissions, see What is IAM?

"Cannot retrieve Windows password"

To retrieve the auto-generated password for the Administrator account, you must use the private key for the key pair that you specified when you launched the instance. If you didn't specify a key pair when you launched the instance, you'll receive the following message.

```
Cannot retrieve Windows password
```

You can terminate this instance and launch a new instance using the same AMI, making sure to specify a key pair.

"Waiting for the metadata service"

A Windows instance must obtain information from its instance metadata before it can activate itself. By default, the `WaitForMetaDataAvailable` setting ensures that the EC2Config service waits for the instance metadata to be accessible before continuing with the boot process. For more information, see Instance Metadata and User Data (p. 362).

If the instance is failing the instance reachability test, try the following to resolve this issue.

- [EC2-VPC] Check the CIDR block for your VPC. A Windows instance cannot boot correctly if it's launched into a VPC that has an IP address range from 224.0.0.0 to 255.255.255.255 (Class D and Class E IP address ranges). These IP address ranges are reserved, and should not be assigned to host devices. We recommend that you create a VPC with a CIDR block from the private (non-publicly routable) IP address ranges as specified in RFC 1918.
- It's possible that the system has been configured with a static IP address. Try the following:
 - [EC2-VPC] Create a network interface (p. 604) and attach it to the instance (p. 606).
 - [EC2-Classic] Enable DHCP.
- To enable DHCP on a Windows instance that you can't connect to
 1. Stop the affected instance and detach its root volume.
 2. Launch a temporary instance in the same Availability Zone as the affected instance.
Warning
If your temporary instance is based on the same AMI that the original instance is based on, you must complete additional steps or you won’t be able to boot the original instance after you restore its root volume because of a disk signature collision. Alternatively, select a different AMI for the temporary instance. For example, if the original instance uses the AWS Windows AMI for Windows Server 2008 R2, launch the temporary instance using the AWS Windows AMI for Windows Server 2012.

3. Attach the root volume from the affected instance to this temporary instance. Connect to the temporary instance, open the Disk Management utility, and bring the drive online.

4. From the temporary instance, open Regedit and select HKEY_LOCAL_MACHINE. From the File menu, choose Load Hive. Select the drive, open the file Windows\System32\config\SYSTEM, and specify a key name when prompted (you can use any name).

5. Select the key that you just loaded and navigate to ControlSet001\Services\Tcpip\Parameters\Interfaces. Each network interface is listed by a GUID. Select the correct network interface. If DHCP is disabled and a static IP address assigned, EnableDHCP is set to 0. To enable DHCP, set EnableDHCP to 1, and delete the following keys if they exist: NameServer, SubnetMask, IPAddress, and DefaultGateway. Select the key again, and from the File menu, choose Unload Hive.

 Note
 If you have multiple network interfaces, you'll need to identify the correct interface to enable DHCP. To identify the correct network interface, review the following key values NameServer, SubnetMask, IPAddress, and DefaultGateway. These values display the static configuration of the previous instance.

6. (Optional) If DHCP is already enabled, it's possible that you don't have a route to the metadata service. Updating EC2Config can resolve this issue.

 a. Download and install the latest version of the EC2Config service. For more information about installing this service, see Installing the Latest Version of EC2Config (p. 317).
 b. Extract the files from the .zip file to the Temp directory on the drive you attached.
 c. Open Regedit and select HKEY_LOCAL_MACHINE. From the File menu, choose Load Hive. Select the drive, open the file Windows\System32\config\SOFTWARE, and specify a key name when prompted (you can use any name).
 d. Select the key that you just loaded and navigate to Microsoft\Windows\CurrentVersion. Select the RunOnce key. (If this key doesn’t exist, right-click CurrentVersion, point to New, select Key, and name the key RunOnce.) Right-click, point to New, and select String Value. Enter Ec2Install as the name and C:\Temp\Ec2Install.exe –q as the data.
 e. Select the key again, and from the File menu, choose Unload Hive.

7. (Optional) If your temporary instance is based on the same AMI that the original instance is based on, you must complete the following steps or you won’t be able to boot the original instance after you restore its root volume because of a disk signature collision.

 Warning
 The following procedure describes how to edit the Windows Registry using Registry Editor. If you are not familiar with the Registry or how to safely make changes using Registry Editor, see Microsoft TechNet.

 a. Open a command prompt, type regedit.exe, and press Enter.
 b. In the Registry Editor, choose HKEY_LOCAL_MACHINE from the context menu (right-click), and then choose Find.
 c. Type Windows Boot Manager and then choose Find Next.
 d. Choose the key named 11000001. This key is a sibling of the key you found in the previous step.
e. In the right pane, choose **Element** and then choose **Modify** from the context menu (right-click).

f. Locate the four-byte disk signature at offset 0x38 in the data. Reverse the bytes to create the disk signature, and write it down. For example, the disk signature represented by the following data is **E9EB3AA5**:

```
... 0030 00 00 00 00 01 00 00 00
 0038 A5 3A EB E9 00 00 00 00
 0040 00 00 00 00 00 00 00 00
...
```

g. In a Command Prompt window, run the following command to start Microsoft DiskPart.

```
diskpart
```

h. Run the following DiskPart command to select the volume. (You can verify that the disk number is 1 using the **Disk Management** utility.)

```
DISKPART> select disk 1
Disk 1 is now the selected disk.
```

i. Run the following DiskPart command to get the disk signature.

```
DISKPART> uniqueid disk
Disk ID: OC764FA8
```

j. If the disk signature shown in the previous step doesn't match the disk signature from BCD that you wrote down earlier, use the following DiskPart command to change the disk signature so that it matches:

```
DISKPART> uniqueid disk id=E9EB3AA5
```

8. Using the **Disk Management** utility, bring the drive offline.

Note

The drive is automatically offline if the temporary instance is running the same operating system as the affected instance, so you won't need to bring it offline manually.

9. Detach the volume from the temporary instance. You can terminate the temporary instance if you have no further use for it.

10. Restore the root volume of the affected instance by attaching the volume as /dev/sda1.

11. Start the affected instance.

If you are connected to the instance, open an Internet browser from the instance and enter the following URL for the metadata server:

```
```

If you can’t contact the metadata server, try the following to resolve the issue:

- Download and install the latest version of the EC2Config service. For more information about installing this service, see **Installing the Latest Version of EC2Config** (p. 317).
- Check whether the Windows instance is running RedHat PV drivers. If so, update to Citrix PV drivers. For more information, see **Upgrading PV Drivers on Your Windows Instances** (p. 336).
"Unable to activate Windows"

Windows instances use Windows KMS activation. You can receive this message: A problem occurred when Windows tried to activate. Error Code 0xC004F074, if your instance can't reach the KMS server. Windows must be activated every 180 days. EC2Config attempts to contact the KMS server before the activation period expires to ensure that Windows remains activated.

If you encounter a Windows activation issue, use the following procedure to resolve the issue.

1. Download and install the latest version of the EC2Config service. For more information about installing this service, see Installing the Latest Version of EC2Config (p. 317).
2. Log onto the instance and open the following file: C:\Program Files\Amazon\Ec2ConfigService\Settings\config.xml.
3. Locate the Ec2WindowsActivate plugin in the config.xml file. Change the state to Enabled and save your changes.
4. In the Windows Services snap-in, restart the EC2Config service or reboot the instance.

If this does not resolve the activation issue, follow these additional steps.

1. Set the KMS target: C:\> slmgr.vbs /skms 169.254.169.250:1688
2. Activate Windows: C:\> slmgr.vbs /ato

If you are still receiving an activation error, verify the following information.

- Verify that you have routes to the KMS servers. Open C:\Program Files\Amazon\Ec2ConfigService\Settings\ActivationSettings.xml and locate the TargetKMSServer elements. Run the following command and check whether the addresses for these KMS servers are listed.

```
route print
```

- Verify that the KMS client key is set. Run the following command and check the output.

```
C:\Windows\System32\slmgr.vbs /dlv
```

If the output contains Error: product key not found, the KMS client key isn't set. If the KMS client key isn't set, look up the client key as described in this Microsoft TechNet article: http://technet.microsoft.com/en-us/library/jj612867.aspx, and then run the following command to set the KMS client key.

```
C:\Windows\System32\slmgr.vbs /ipk client_key
```
• Verify that the system has the correct time and time zone. If you are using Windows Server 2008 or later and a time zone other than UTC, add the following registry key and set it to 1 to ensure that the time is correct: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal.
• If Windows Firewall is enabled, temporarily disable it using the following command.

 netsh advfirewall set allprofiles state off

"Windows is not genuine (0x80070005)"

Windows instances use Windows KMS activation. If an instance is unable to complete the activation process, it reports that the copy of Windows is not genuine.

Try the suggestions for "Unable to activate Windows" (p. 859).

"No Terminal Server License Servers available to provide a license"

By default, Windows Server is licensed for two simultaneous users through Remote Desktop. If you need to provide more than two users with simultaneous access to your Windows instance through Remote Desktop, you can purchase a Remote Desktop Services client access license (CAL) and install the Remote Desktop Session Host and Remote Desktop Licensing Server roles.

Check for the following issues:
• You've exceeded the maximum number of concurrent RDP sessions.
• You've installed the Windows Remote Desktop Services role.
• Licensing has expired. If the licensing has expired, you can't connect to your Windows instance as a user. You can try the following:
 • Connect to the instance from the command line using an /admin parameter, for example:

 mstsc /v:instance /admin

 For more information, see the following Microsoft article: Use command line parameters with Remote Desktop Connection.
• Stop the instance, detach its Amazon EBS volumes, and attach them to another instance in the same Availability Zone to recover your data.
Document History

The following table describes important additions to the Amazon EC2 documentation. We also update the documentation frequently to address the feedback that you send us.

<table>
<thead>
<tr>
<th>Feature</th>
<th>API Version</th>
<th>Description</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag Elastic IP addresses</td>
<td>2016-11-15</td>
<td>You can tag your Elastic IP addresses. For more information, see Tagging an Elastic IP Address (p. 591).</td>
<td>21 December 2017</td>
</tr>
<tr>
<td>Amazon Time Sync Service</td>
<td>2016-11-15</td>
<td>You can use the Amazon Time Sync Service to keep accurate time on your instance. For more information, see Setting the Time for a Windows Instance (p. 347).</td>
<td>29 November 2017</td>
</tr>
<tr>
<td>T2 Unlimited</td>
<td>2016-11-15</td>
<td>T2 Unlimited instances can burst above the baseline for as long as required. For more information, see T2 Unlimited (p. 113).</td>
<td>29 November 2017</td>
</tr>
<tr>
<td>Launch templates</td>
<td>2016-11-15</td>
<td>A launch template can contain all or some of the parameters to launch an instance, so that you don’t have to specify them every time you launch an instance. For more information, see Launching an Instance from a Launch Template (p. 271).</td>
<td>29 November 2017</td>
</tr>
<tr>
<td>Spread placement</td>
<td>2016-11-15</td>
<td>Spread placement groups are recommended for applications that have a small number of critical instances that should be kept separate from each other. For more information, see Spread Placement Groups (p. 613).</td>
<td>29 November 2017</td>
</tr>
<tr>
<td>H1 instances</td>
<td>2016-11-15</td>
<td>H1 instances are designed for high-performance big data workloads. For more information, see Storage Optimized Instances (p. 131).</td>
<td>28 November 2017</td>
</tr>
<tr>
<td>M5 instances</td>
<td>2016-11-15</td>
<td>M5 instances are the next generation of general purpose compute instances. They provide a balance of compute, memory, storage, and network resources.</td>
<td>28 November 2017</td>
</tr>
<tr>
<td>Spot Instance hibernation</td>
<td>2016-11-15</td>
<td>The Spot service can hibernate Spot Instances in the event of an interruption. For more information, see Hibernating Interrupted Spot Instances (p. 240).</td>
<td>28 November 2017</td>
</tr>
<tr>
<td>Spot Fleet target tracking</td>
<td>2016-11-15</td>
<td>You can set up target tracking scaling policies for your Spot Fleet. For more information, see Scale Spot Fleet Using a Target Tracking Policy (p. 231).</td>
<td>17 November 2017</td>
</tr>
<tr>
<td>Spot Fleet integrates with Elastic Load Balancing</td>
<td>2016-11-15</td>
<td>You can attach one or more load balancers to a Spot Fleet.</td>
<td>10 November 2017</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>X1e instances</td>
<td>2016-11-15</td>
<td>X1e instances are ideally suited for high-performance databases, in-memory databases, and other memory-intensive enterprise applications. For more information, see Memory Optimized Instances (p. 128).</td>
<td>28 November 2017</td>
</tr>
<tr>
<td>C5 instances</td>
<td>2016-11-15</td>
<td>C5 instances are designed for compute-heavy applications. For more information, see Compute Optimized Instances (p. 125).</td>
<td>6 November 2017</td>
</tr>
<tr>
<td>Merge and split Convertible Reserved Instances</td>
<td>2016-11-15</td>
<td>You can exchange (merge) two or more Convertible Reserved Instances for a new Convertible Reserved Instance. You can also use the modification process to split a Convertible Reserved Instance into smaller reservations. For more information, see Exchanging Convertible Reserved Instances (p. 187).</td>
<td>6 November 2017</td>
</tr>
<tr>
<td>P3 instances</td>
<td>2016-11-15</td>
<td>P3 instances are the next generation of compute-optimized GPU instances. For more information, see Windows Accelerated Computing Instances (p. 135).</td>
<td>25 October 2017</td>
</tr>
<tr>
<td>Modify VPC tenancy</td>
<td>2016-11-15</td>
<td>You can change the instance tenancy attribute of a VPC from dedicated to default. For more information, see Changing the Tenancy of a VPC (p. 261).</td>
<td>16 October 2017</td>
</tr>
<tr>
<td>Stop on interruption</td>
<td>2016-11-15</td>
<td>You can specify whether Amazon EC2 should stop or terminate Spot instances when they are interrupted. For more information, see Interruption Behavior (p. 239).</td>
<td>18 September 2017</td>
</tr>
<tr>
<td>Tag NAT gateways</td>
<td>2016-11-15</td>
<td>You can tag your NAT gateway. For more information, see Tagging Your Resources (p. 761).</td>
<td>7 September 2017</td>
</tr>
<tr>
<td>Security group rule descriptions</td>
<td>2016-11-15</td>
<td>You can add descriptions to your security group rules. For more information, see Security Group Rules (p. 453).</td>
<td>31 August 2017</td>
</tr>
<tr>
<td>Elastic GPUs</td>
<td>2016-11-15</td>
<td>Attach elastic GPUs to your instances to accelerate the graphics performance of your applications. For more information, see Amazon EC2 Elastic GPUs (p. 381).</td>
<td>29 August 2017</td>
</tr>
<tr>
<td>Recover Elastic IP addresses</td>
<td>2016-11-15</td>
<td>If you release an Elastic IP address for use in a VPC, you might be able to recover it. For more information, see Recovering an Elastic IP Address (p. 594).</td>
<td>11 August 2017</td>
</tr>
<tr>
<td>Tag Spot fleet instances</td>
<td>2016-11-15</td>
<td>You can configure your Spot fleet to automatically tag the instances that it launches.</td>
<td>24 July 2017</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>G3 instances</td>
<td>2016-11-15</td>
<td>G3 instances provide a cost-effective, high-performance platform for graphics applications using DirectX or OpenGL. G3 instances also provide NVIDIA GRID Virtual Workstation features, supporting 4 monitors with resolutions up to 4096x2160. For more information, see Windows Accelerated Computing Instances (p. 135).</td>
<td>13 July 2017</td>
</tr>
<tr>
<td>Tag resources during creation</td>
<td>2016-11-15</td>
<td>You can apply tags to instances and volumes during creation. For more information, see Tagging Your Resources (p. 761). In addition, you can use tag-based resource-level permissions to control the tags that are applied. For more information see, Resource-Level Permissions for Tagging (p. 501).</td>
<td>28 March 2017</td>
</tr>
<tr>
<td>I3 instances</td>
<td>2016-11-15</td>
<td>I3 instances represent the next generation of storage optimized instances. For more information, see Storage Optimized Instances (p. 131).</td>
<td>23 February 2017</td>
</tr>
<tr>
<td>Perform modifications on attached EBS volumes</td>
<td>2016-11-15</td>
<td>With most EBS volumes attached to most EC2 instances, you can modify volume size, type, and IOPS without detaching the volume or stopping the instance. For more information, see Modifying the Size, IOPS, or Type of an EBS Volume on Windows (p. 666).</td>
<td>13 February 2017</td>
</tr>
<tr>
<td>Attach an IAM role</td>
<td>2016-11-15</td>
<td>You can attach, detach, or replace an IAM role for an existing instance. For more information, see IAM Roles for Amazon EC2 (p. 534).</td>
<td>9 February 2017</td>
</tr>
<tr>
<td>Dedicated Spot instances</td>
<td>2016-11-15</td>
<td>You can run Spot instances on single-tenant hardware in a virtual private cloud (VPC). For more information, see Specifying a Tenancy for Your Spot Instances (p. 206).</td>
<td>19 January 2017</td>
</tr>
<tr>
<td>IPv6 support</td>
<td>2016-11-15</td>
<td>You can associate an IPv6 CIDR with your VPC and subnets, and assign IPv6 addresses to instances in your VPC. For more information, see Amazon EC2 Instance IP Addressing (p. 571).</td>
<td>1 December 2016</td>
</tr>
<tr>
<td>R4 instances</td>
<td>2016-09-15</td>
<td>R4 instances represent the next generation of memory optimized instances. R4 instances are well-suited for memory-intensive, latency-sensitive workloads such as business intelligence (BI), data mining and analysis, in-memory databases, distributed web scale in-memory caching, and applications performance real-time processing of unstructured big data. For more information, see Memory Optimized Instances (p. 128)</td>
<td>30 November 2016</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>New t2.xlarge and t2.2xlarge instance types</td>
<td>2016-09-15</td>
<td>T2 instances are designed to provide moderate base performance and the capability to burst to significantly higher performance as required by your workload. They are intended for applications that need responsiveness, high performance for limited periods of time, and a low cost. For more information, see T2 Instances (p. 108).</td>
<td>30 November 2016</td>
</tr>
<tr>
<td>P2 instances</td>
<td>2016-09-15</td>
<td>P2 instances use NVIDIA Tesla K80 GPUs and are designed for general purpose GPU computing using the CUDA or OpenCL programming models. For more information, see Windows Accelerated Computing Instances (p. 135).</td>
<td>29 September 2016</td>
</tr>
<tr>
<td>m4.16xlarge instances</td>
<td>2016-04-01</td>
<td>Expands the range of the general-purpose M4 family with the introduction of m4.16xlarge instances, with 64 vCPUs and 256 GiB of RAM.</td>
<td>6 September 2016</td>
</tr>
<tr>
<td>Automatic scaling for Spot fleet</td>
<td></td>
<td>You can now set up scaling policies for your Spot fleet. For more information, see Automatic Scaling for Spot Fleet (p. 230).</td>
<td>1 September 2016</td>
</tr>
<tr>
<td>Elastic Network Adapter (ENA)</td>
<td>2016-04-01</td>
<td>You can now use ENA for enhanced networking. For more information, see Enhanced Networking Types (p. 619).</td>
<td>28 June 2016</td>
</tr>
<tr>
<td>Enhanced support for viewing and modifying longer IDs</td>
<td>2016-04-01</td>
<td>You can now view and modify longer ID settings for other IAM users, IAM roles, or the root user. For more information, see Resource IDs (p. 752).</td>
<td>23 June 2016</td>
</tr>
<tr>
<td>Copy encrypted Amazon EBS snapshots between AWS accounts</td>
<td>2016-04-01</td>
<td>You can now copy encrypted EBS snapshots between AWS accounts. For more information, see Copying an Amazon EBS Snapshot (p. 687).</td>
<td>21 June 2016</td>
</tr>
<tr>
<td>Capture a screenshot of an instance console</td>
<td>2015-10-01</td>
<td>You can now obtain additional information when debugging instances that are unreachable. For more information, see Troubleshoot an Unreachable Instance (p. 834).</td>
<td>24 May 2016</td>
</tr>
<tr>
<td>X1 instances</td>
<td>2015-10-01</td>
<td>Memory-optimized instances designed for running in-memory databases, big data processing engines, and high performance computing (HPC) applications. For more information, see Memory Optimized Instances (p. 128).</td>
<td>18 May 2016</td>
</tr>
<tr>
<td>Two new EBS volume types</td>
<td>2015-10-01</td>
<td>You can now create Throughput Optimized HDD (st1) and Cold HDD (sc1) volumes. For more information, see Amazon EBS Volume Types (p. 632).</td>
<td>19 April 2016</td>
</tr>
<tr>
<td>Added new NetworkPacketsIn and NetworkPacketsOut metrics for Amazon EC2</td>
<td>2015-10-01</td>
<td>Added new NetworkPacketsIn and NetworkPacketsOut metrics for Amazon EC2. For more information, see Instance Metrics (p. 406).</td>
<td>23 March 2016</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>CloudWatch metrics for Spot fleet</td>
<td></td>
<td>You can now get CloudWatch metrics for your Spot fleet. For more information, see CloudWatch Metrics for Spot Fleet (p. 228).</td>
<td>21 March 2016</td>
</tr>
<tr>
<td>Scheduled Instances</td>
<td>2015-10-01</td>
<td>Scheduled Reserved Instances (Scheduled Instances) enable you to purchase capacity reservations that recur on a daily, weekly, or monthly basis, with a specified start time and duration. For more information, see Scheduled Reserved Instances (p. 191).</td>
<td>13 January 2016</td>
</tr>
<tr>
<td>Longer resource IDs</td>
<td>2015-10-01</td>
<td>We’re gradually introducing longer length IDs for some Amazon EC2 and Amazon EBS resource types. During the opt-in period, you can enable the longer ID format for supported resource types. For more information, see Resource IDs (p. 752).</td>
<td>13 January 2016</td>
</tr>
<tr>
<td>ClassicLink DNS support</td>
<td>2015-10-01</td>
<td>You can enable ClassicLink DNS support for your VPC so that DNS hostnames that are addressed between linked EC2-Classic instances and instances in the VPC resolve to private IP addresses and not public IP addresses. For more information, see Enabling ClassicLink DNS Support (p. 558).</td>
<td>11 January 2016</td>
</tr>
<tr>
<td>New t2.nano instance type</td>
<td>2015-10-01</td>
<td>T2 instances are designed to provide moderate base performance and the capability to burst to significantly higher performance as required by your workload. They are intended for applications that need responsiveness, high performance for limited periods of time, and a low cost. For more information, see T2 Instances (p. 108).</td>
<td>15 December 2015</td>
</tr>
<tr>
<td>Dedicated hosts</td>
<td>2015-10-01</td>
<td>An Amazon EC2 Dedicated host is a physical server with instance capacity dedicated for your use. For more information, see Dedicated Hosts (p. 246).</td>
<td>23 November 2015</td>
</tr>
<tr>
<td>Spot instance duration</td>
<td>2015-10-01</td>
<td>You can now specify a duration for your Spot instances. For more information, see Specifying a Duration for Your Spot Instances (p. 205).</td>
<td>6 October 2015</td>
</tr>
<tr>
<td>Spot fleet modify request</td>
<td>2015-10-01</td>
<td>You can now modify the target capacity of your Spot fleet request. For more information, see Modifying a Spot Fleet Request (p. 219).</td>
<td>29 September 2015</td>
</tr>
<tr>
<td>Spot fleet diversified allocation strategy</td>
<td>2015-04-15</td>
<td>You can now allocate Spot instances in multiple Spot pools using a single Spot fleet request. For more information, see Spot Fleet Allocation Strategy (p. 199).</td>
<td>15 September 2015</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Spot fleet instance weighting</td>
<td>2015-04-15</td>
<td>You can now define the capacity units that each instance type contributes to your application's performance, and adjust your bid price for each Spot pool accordingly. For more information, see Spot Fleet Instance Weighting (p. 200).</td>
<td>31 August 2015</td>
</tr>
<tr>
<td>New reboot alarm action and new IAM role for use with alarm actions</td>
<td></td>
<td>Added the reboot alarm action and new IAM role for use with alarm actions. For more information, see Create Alarms That Stop, Terminate, Reboot, or Recover an Instance (p. 422).</td>
<td>23 July 2015</td>
</tr>
<tr>
<td>New t2.large instance type</td>
<td></td>
<td>T2 instances are designed to provide moderate base performance and the capability to burst to significantly higher performance as required by your workload. They are intended for applications that need responsiveness, high performance for limited periods of time, and a low cost. For more information, see T2 Instances (p. 108).</td>
<td>16 June 2015</td>
</tr>
<tr>
<td>M4 instances</td>
<td></td>
<td>The next generation of general-purpose instances that provide a balance of compute, memory, and network resources. M4 instances are powered by a custom Intel 2.4 GHz Intel® Xeon® E5 2676v3 (Haswell) processor with AVX2.</td>
<td>11 June 2015</td>
</tr>
<tr>
<td>Spot fleets</td>
<td>2015-04-15</td>
<td>You can manage a collection, or fleet, of Spot instances instead of managing separate Spot instance requests. For more information, see How Spot Fleet Works (p. 199).</td>
<td>18 May 2015</td>
</tr>
<tr>
<td>Migrate Elastic IP addresses to EC2-Classic</td>
<td>2015-04-15</td>
<td>You can migrate an Elastic IP address that you've allocated for use in the EC2-Classic platform to the EC2-VPC platform. For more information, see Migrating an Elastic IP Address from EC2-Classic to EC2-VPC (p. 589).</td>
<td>15 May 2015</td>
</tr>
<tr>
<td>Importing VMs with multiple disks as AMIs</td>
<td>2015-03-01</td>
<td>The VM Import process now supports importing VMs with multiple disks as AMIs. For more information, see Importing a VM as an Image Using VM Import/Export in the VM Import/Export User Guide.</td>
<td>23 April 2015</td>
</tr>
<tr>
<td>New g2.8xlarge instance type</td>
<td></td>
<td>The new g2.8xlarge instance is backed by four high-performance NVIDIA GPUs, making it well suited for GPU compute workloads including large scale rendering, transcoding, machine learning, and other server-side workloads that require massive parallel processing power.</td>
<td>7 April 2015</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>D2 instances</td>
<td></td>
<td>Next generation Amazon EC2 dense-storage instances that are optimized for applications requiring sequential access to large amount of data on direct attached instance storage. D2 instances are designed to offer best price/performance in the dense-storage family. Powered by 2.4 GHz Intel® Xeon® E5 2676v3 (Haswell) processors, D2 instances improve on HS1 instances by providing additional compute power, more memory, and Enhanced Networking. In addition, D2 instances are available in four instance sizes with 6TB, 12TB, 24TB, and 48TB storage options. For more information, see Storage Optimized Instances (p. 131).</td>
<td>24 March 2015</td>
</tr>
<tr>
<td>Amazon EC2 Systems Manager (SSM)</td>
<td></td>
<td>SSM enables you to configure and manage your EC2 instances.</td>
<td>17 February 2015</td>
</tr>
<tr>
<td>AWS Systems Manager for Microsoft SCVMM 1.5</td>
<td></td>
<td>You can now use AWS Systems Manager for Microsoft SCVMM to launch an instance and to import a VM from SCVMM to Amazon EC2. For more information, see Creating an EC2 Instance (p. 776) and Importing Your Virtual Machine (p. 780).</td>
<td>21 January 2015</td>
</tr>
<tr>
<td>Automatic recovery for EC2 instances</td>
<td></td>
<td>You can create an Amazon CloudWatch alarm that monitors an Amazon EC2 instance and automatically recovers the instance if it becomes impaired due to an underlying hardware failure or a problem that requires AWS involvement to repair. A recovered instance is identical to the original instance, including the instance ID, IP addresses, and all instance metadata. For more information, see Recover Your Instance (p. 298).</td>
<td>12 January 2015</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C4 instances</td>
<td>Next-generation compute-optimized instances that provide very high CPU performance at an economical price. C4 instances are based on custom 2.9 GHz Intel® Xeon® E5-2666 v3 (Haswell) processors. With additional Turbo boost, the processor clock speed in C4 instances can reach as high as 3.5Ghz with 1 or 2 core turbo. Expanding on the capabilities of C3 compute-optimized instances, C4 instances offer customers the highest processor performance among EC2 instances. These instances are ideally suited for high-traffic web applications, ad serving, batch processing, video encoding, distributed analytics, high-energy physics, genome analysis, and computational fluid dynamics. For more information, see Compute Optimized Instances (p. 125).</td>
<td>11 January 2015</td>
<td></td>
</tr>
<tr>
<td>ClassicLink</td>
<td>ClassicLink enables you to link your EC2-Classic instance to a VPC in your account. You can associate VPC security groups with the EC2-Classic instance, enabling communication between your EC2-Classic instance and instances in your VPC using private IP addresses. For more information, see ClassicLink (p. 552).</td>
<td>7 January 2015</td>
<td></td>
</tr>
<tr>
<td>Spot instance termination notices</td>
<td>The best way to protect against Spot instance interruption is to architect your application to be fault tolerant. In addition, you can take advantage of Spot instance termination notices, which provide a two-minute warning before Amazon EC2 must terminate your Spot instance. For more information, see Spot Instance Interruption Notices (p. 242).</td>
<td>5 January 2015</td>
<td></td>
</tr>
<tr>
<td>AWS Systems Manager for Microsoft SCVMM</td>
<td>AWS Systems Manager for Microsoft SCVMM provides a simple, easy-to-use interface for managing AWS resources, such as EC2 instances, from Microsoft SCVMM. For more information, see AWS Systems Manager for Microsoft System Center VMM (p. 771).</td>
<td>29 October 2014</td>
<td></td>
</tr>
<tr>
<td>DescribeVolumes pagination support</td>
<td>The DescribeVolumes API call now supports the pagination of results with the MaxResults and NextToken parameters. For more information, see DescribeVolumes in the Amazon EC2 API Reference.</td>
<td>23 October 2014</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Added support for Amazon CloudWatch Logs</td>
<td></td>
<td>You can use Amazon CloudWatch Logs to monitor, store, and access your system, application, and custom log files from your instances or other sources. You can then retrieve the associated log data from CloudWatch Logs using the Amazon CloudWatch console, the CloudWatch Logs commands in the AWS CLI, or the CloudWatch Logs SDK. For more information, see Configuring a Windows Instance Using the EC2Config Service (p. 307). For more information about CloudWatch Logs, see Monitoring System, Application, and Custom Log Files in the Amazon CloudWatch User Guide.</td>
<td>10 July 2014</td>
</tr>
<tr>
<td>T2 instances</td>
<td>2014-06-15</td>
<td>T2 instances are designed to provide moderate base performance and the capability to burst to significantly higher performance as required by your workload. They are intended for applications that need responsiveness, high performance for limited periods of time, and a low cost. For more information, see T2 Instances (p. 108).</td>
<td>30 June 2014</td>
</tr>
<tr>
<td>New EC2 Service Limits page</td>
<td></td>
<td>Use the EC2 Service Limits page in the Amazon EC2 console to view the current limits for resources provided by Amazon EC2 and Amazon VPC, on a per-region basis.</td>
<td>19 June 2014</td>
</tr>
<tr>
<td>Amazon EBS General Purpose SSD Volumes</td>
<td>2014-05-01</td>
<td>General Purpose SSD volumes offer cost-effective storage that is ideal for a broad range of workloads. These volumes deliver single-digit millisecond latencies, the ability to burst to 3,000 IOPS for extended periods of time, and a base performance of 3 IOPS/GiB. General Purpose SSD volumes can range in size from 1 GiB to 1 TiB. For more information, see General Purpose SSD (gp2) Volumes (p. 635).</td>
<td>16 June 2014</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td></td>
<td>AMIs for Windows Server 2012 R2 use the new AWS PV drivers. For more information, see AWS PV Drivers (p. 333).</td>
<td>3 June 2014</td>
</tr>
<tr>
<td>AWS Management Pack</td>
<td></td>
<td>AWS Management Pack now supports for System Center Operations Manager 2012 R2. For more information, see AWS Management Pack for Microsoft System Center (p. 785).</td>
<td>22 May 2014</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Amazon EBS encryption</td>
<td>2014-05-01</td>
<td>Amazon EBS encryption offers seamless encryption of EBS data volumes and snapshots, eliminating the need to build and maintain a secure key management infrastructure. EBS encryption enables data at rest security by encrypting your data using Amazon-managed keys. The encryption occurs on the servers that host EC2 instances, providing encryption of data as it moves between EC2 instances and EBS storage. For more information, see Amazon EBS Encryption (p. 696).</td>
<td>21 May 2014</td>
</tr>
<tr>
<td>R3 instances</td>
<td>2014-02-01</td>
<td>Next generation memory-optimized instances with the best price point per GiB of RAM and high performance. These instances are ideally suited for relational and NoSQL databases, in-memory analytics solutions, scientific computing, and other memory-intensive applications that can benefit from the high memory per vCPU, high compute performance, and enhanced networking capabilities of R3 instances. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>9 April 2014</td>
</tr>
<tr>
<td>Amazon EC2 Usage Reports</td>
<td></td>
<td>Amazon EC2 Usage Reports is a set of reports that shows cost and usage data of your usage of EC2. For more information, see Amazon EC2 Usage Reports (p. 770).</td>
<td>28 January 2014</td>
</tr>
<tr>
<td>Additional M3 instances</td>
<td>2013-10-15</td>
<td>The M3 instance sizes m3.medium and m3.large are now supported. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>20 January 2014</td>
</tr>
<tr>
<td>I2 instances</td>
<td>2013-10-15</td>
<td>These instances provide very high IOPS. I2 instances also support enhanced networking that delivers improve inter-instance latencies, lower network jitter, and significantly higher packet per second (PPS) performance. For more information, see Storage Optimized Instances (p. 131).</td>
<td>19 December 2013</td>
</tr>
<tr>
<td>Updated M3 instances</td>
<td>2013-10-15</td>
<td>The M3 instance sizes, m3.xlarge and m3.2xlarge now support instance store with SSD volumes.</td>
<td>19 December 2013</td>
</tr>
<tr>
<td>Resource-level permissions for RunInstances</td>
<td>2013-10-15</td>
<td>You can now create policies in AWS Identity and Access Management to control resource-level permissions for the Amazon EC2 RunInstances API action. For more information and example policies, see Controlling Access to Amazon EC2 Resources (p. 466).</td>
<td>20 November 2013</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C3 instances</td>
<td>2013-10-15</td>
<td>Compute-optimized instances that provide very high CPU performance at an economical price. C3 instances also support enhanced networking that delivers improved inter-instance latencies, lower network jitter, and significantly higher packet per second (PPS) performance. These instances are ideally suited for high-traffic web applications, ad serving, batch processing, video encoding, distributed analytics, high-energy physics, genome analysis, and computational fluid dynamics. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>14 November 2013</td>
</tr>
<tr>
<td>Launching an instance from the AWS Marketplace</td>
<td></td>
<td>You can now launch an instance from the AWS Marketplace using the Amazon EC2 launch wizard. For more information, see Launching an AWS Marketplace Instance (p. 281).</td>
<td>11 November 2013</td>
</tr>
<tr>
<td>G2 instances</td>
<td>2013-10-01</td>
<td>These instances are ideally suited for video creation services, 3D visualizations, streaming graphics-intensive applications, and other server-side workloads requiring massive parallel processing power. For more information, see Windows Accelerated Computing Instances (p. 135).</td>
<td>4 November 2013</td>
</tr>
<tr>
<td>New launch wizard</td>
<td></td>
<td>There is a new and redesigned EC2 launch wizard. For more information, see Launching an Instance Using the Launch Instance Wizard (p. 265).</td>
<td>10 October 2013</td>
</tr>
<tr>
<td>Modifying Amazon EC2 Reserved Instances</td>
<td>2013-08-15</td>
<td>You can now modify Reserved Instances in a region.</td>
<td>11 September 2013</td>
</tr>
<tr>
<td>Assigning a public IP address</td>
<td>2013-07-15</td>
<td>You can now assign a public IP address when you launch an instance in a VPC. For more information, see Assigning a Public IPv4 Address During Instance Launch (p. 577).</td>
<td>20 August 2013</td>
</tr>
<tr>
<td>Granting resource-level permissions</td>
<td>2013-06-15</td>
<td>Amazon EC2 supports new Amazon Resource Names (ARNs) and condition keys. For more information, see IAM Policies for Amazon EC2 (p. 468).</td>
<td>8 July 2013</td>
</tr>
<tr>
<td>Incremental Snapshot Copies</td>
<td>2013-02-01</td>
<td>You can now perform incremental snapshot copies. For more information, see Copying an Amazon EBS Snapshot (p. 687).</td>
<td>11 June 2013</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AWS Management Pack</td>
<td></td>
<td>The AWS Management Pack links Amazon EC2 instances and the Windows or Linux operating systems running inside them. The AWS Management Pack is an extension to Microsoft System Center Operations Manager. For more information, see AWS Management Pack for Microsoft System Center (p. 785).</td>
<td>8 May 2013</td>
</tr>
<tr>
<td>New Tags page</td>
<td></td>
<td>There is a new Tags page in the Amazon EC2 console. For more information, see Tagging Your Amazon EC2 Resources (p. 759).</td>
<td>04 April 2013</td>
</tr>
<tr>
<td>Additional EBS-optimized instance types</td>
<td>2013-02-01</td>
<td>The following instance types can now be launched as EBS-optimized instances: c1.xlarge, m2.2xlarge, m3.xlarge, and m3.2xlarge. For more information, see Amazon EBS-Optimized Instances (p. 691).</td>
<td>19 March 2013</td>
</tr>
<tr>
<td>PV Drivers</td>
<td></td>
<td>To learn how to upgrade the paravirtualized (PV) drivers on your Windows AMI, see Upgrading PV Drivers On Your Windows Instances (p. 336).</td>
<td>March 2013</td>
</tr>
<tr>
<td>Copy an AMI from one region to another</td>
<td>2013-02-01</td>
<td>You can copy an AMI from one region to another, enabling you to launch consistent instances in more than one AWS region quickly and easily. For more information, see Copying an AMI (p. 70).</td>
<td>11 March 2013</td>
</tr>
<tr>
<td>Launch instances into a default VPC</td>
<td>2013-02-01</td>
<td>Your AWS account is capable of launching instances into either the EC2-Classic or EC2-VPC platform, or only into the EC2-VPC platform, on a region-by-region basis. If you can launch instances only into EC2-VPC, we create a default VPC for you. When you launch an instance, we launch it into your default VPC, unless you create a nondefault VPC and specify it when you launch the instance. For more information, see Supported Platforms (p. 551).</td>
<td>11 March 2013</td>
</tr>
<tr>
<td>High-memory cluster (cr1.8xlarge) instance type</td>
<td>2012-12-01</td>
<td>Have large amounts of memory coupled with high CPU and network performance. These instances are well suited for in-memory analytics, graph analysis, and scientific computing applications.</td>
<td>21 January 2013</td>
</tr>
<tr>
<td>High storage (hs1.8xlarge) instance type</td>
<td>2012-12-01</td>
<td>High storage instances provide very high storage density and high sequential read and write performance per instance. They are well-suited for data warehousing, Hadoop/MapReduce, and parallel file systems.</td>
<td>20 December 2012</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>EBS snapshot copy</td>
<td>2012-12-01</td>
<td>You can use snapshot copies to create backups of data, to create new Amazon EBS volumes, or to create Amazon Machine Images (AMIs). For more information, see Copying an Amazon EBS Snapshot (p. 687).</td>
<td>17 December 2012</td>
</tr>
<tr>
<td>Updated EBS metrics and status checks for Provisioned IOPS SSD volumes</td>
<td>2012-10-01</td>
<td>Updated the EBS metrics to include two new metrics for Provisioned IOPS SSD volumes. For more information, see Monitoring Volumes with CloudWatch (p. 651). Also added new status checks for Provisioned IOPS SSD volumes. For more information, see Monitoring Volumes with Status Checks (p. 655).</td>
<td>20 November 2012</td>
</tr>
<tr>
<td>Support for Windows Server 2012</td>
<td></td>
<td>Amazon EC2 now provides you with several pre-configured Windows Server 2012 AMIs. These AMIs are immediately available for use in every region and for every 64-bit instance type. The AMIs support the following languages:</td>
<td>19 November 2012</td>
</tr>
<tr>
<td>• English</td>
<td></td>
<td>• Chinese Simplified</td>
<td></td>
</tr>
<tr>
<td>• Chinese Traditional</td>
<td></td>
<td>• Chinese Traditional Hong Kong</td>
<td></td>
</tr>
<tr>
<td>• Japanese</td>
<td></td>
<td>• Korean</td>
<td></td>
</tr>
<tr>
<td>• Portuguese</td>
<td></td>
<td>• Portuguese Brazil</td>
<td></td>
</tr>
<tr>
<td>• Czech</td>
<td></td>
<td>• Dutch</td>
<td></td>
</tr>
<tr>
<td>• French</td>
<td></td>
<td>• German</td>
<td></td>
</tr>
<tr>
<td>• Hungarian</td>
<td></td>
<td>• Italian</td>
<td></td>
</tr>
<tr>
<td>• Polish</td>
<td></td>
<td>• Russian</td>
<td></td>
</tr>
<tr>
<td>• Spanish</td>
<td></td>
<td>• Swedish</td>
<td></td>
</tr>
<tr>
<td>• Turkish</td>
<td></td>
<td>• Turkish</td>
<td></td>
</tr>
<tr>
<td>M3 instances</td>
<td>2012-10-01</td>
<td>There are new M3 extra-large and M3 double-extra-large instance types. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>31 October 2012</td>
</tr>
<tr>
<td>Spot instance request status</td>
<td>2012-10-01</td>
<td>Spot instance request status makes it easy to determine the state of your Spot requests.</td>
<td>14 October 2012</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Amazon EC2 Reserved Instance Marketplace</td>
<td>2012-08-15</td>
<td>The Reserved Instance Marketplace matches sellers who have Amazon EC2 Reserved Instances that they no longer need with buyers who are looking to purchase additional capacity. Reserved Instances bought and sold through the Reserved Instance Marketplace work like any other Reserved Instances, except that they can have less than a full standard term remaining and can be sold at different prices.</td>
<td>11 September 2012</td>
</tr>
<tr>
<td>Provisioned IOPS SSD for Amazon EBS</td>
<td>2012-07-20</td>
<td>Provisioned IOPS SSD volumes deliver predictable, high performance for I/O intensive workloads, such as database applications, that rely on consistent and fast response times. For more information, see Amazon EBS Volume Types (p. 632).</td>
<td>31 July 2012</td>
</tr>
<tr>
<td>High I/O instances for Amazon EC2</td>
<td>2012-06-15</td>
<td>High I/O instances provides very high, low latency, disk I/O performance using SSD-based local instance storage.</td>
<td>18 July 2012</td>
</tr>
<tr>
<td>IAM roles on Amazon EC2 instances</td>
<td>2012-06-01</td>
<td>IAM roles for Amazon EC2 provide:</td>
<td>11 June 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AWS access keys for applications running on Amazon EC2 instances.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic rotation of the AWS access keys on the Amazon EC2 instance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Granular permissions for applications running on Amazon EC2 instances that make requests to your AWS services.</td>
<td></td>
</tr>
<tr>
<td>Spot instance features that make it easier to get started and handle the potential of interruption.</td>
<td></td>
<td>You can now manage your Spot instances as follows:</td>
<td>7 June 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Place bids for Spot instances using Auto Scaling launch configurations, and set up a schedule for placing bids for Spot instances. For more information, see Launching Spot Instances in Your Auto Scaling Group in the Amazon EC2 Auto Scaling User Guide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Get notifications when instances are launched or terminated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use AWS CloudFormation templates to launch Spot instances in a stack with AWS resources.</td>
<td></td>
</tr>
<tr>
<td>EC2 instance export and timestamps for status checks for Amazon EC2</td>
<td>2012-05-01</td>
<td>Added support for exporting Windows Server instances that you originally imported into EC2. Added support for timestamps on instance status and system status to indicate the date and time that a status check failed.</td>
<td>25 May 2012</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>EC2 instance export, and timestamps in instance and system status checks for Amazon VPC</td>
<td>2012-05-01</td>
<td>Added support for EC2 instance export to Citrix Xen, Microsoft Hyper-V, and VMware vSphere. Added support for timestamps in instance and system status checks.</td>
<td>25 May 2012</td>
</tr>
<tr>
<td>Cluster Compute Eight Extra Large instances</td>
<td>2012-04-01</td>
<td>Added support for cc2.8xlarge instances in a VPC.</td>
<td>26 April 2012</td>
</tr>
<tr>
<td>AWS Marketplace AMIs</td>
<td>2012-04-01</td>
<td>Added support for AWS Marketplace AMIs.</td>
<td>19 April 2012</td>
</tr>
<tr>
<td>Medium instances, support for 64-bit on all AMIs</td>
<td>2011-12-15</td>
<td>Added support for a new instance type and 64-bit information.</td>
<td>7 March 2012</td>
</tr>
<tr>
<td>Reserved Instance pricing tiers</td>
<td>2011-12-15</td>
<td>Added a new section discussing how to take advantage of the discount pricing that is built into the Reserved Instance pricing tiers.</td>
<td>5 March 2012</td>
</tr>
<tr>
<td>Elastic Network Interfaces (ENIs) for EC2 instances in Amazon Virtual Private Cloud</td>
<td>2011-12-01</td>
<td>Added new section about elastic network interfaces (ENIs) for EC2 instances in a VPC. For more information, see Elastic Network Interfaces (p. 595).</td>
<td>21 December 2011</td>
</tr>
<tr>
<td>New offering types for Amazon EC2 Reserved Instances</td>
<td>2011-11-01</td>
<td>You can choose from a variety of Reserved Instance offerings that address your projected use of the instance.</td>
<td>01 December 2011</td>
</tr>
<tr>
<td>Amazon EC2 instance status</td>
<td>2011-11-01</td>
<td>You can view additional details about the status of your instances, including scheduled events planned by AWS that might have an impact on your instances. These operational activities include instance reboots required to apply software updates or security patches, or instance retirements required where there are hardware issues. For more information, see Monitoring the Status of Your Instances (p. 395).</td>
<td>16 November 2011</td>
</tr>
<tr>
<td>Amazon EC2 Cluster Compute Instance Type</td>
<td></td>
<td>Added support for Cluster Compute Eight Extra Large (cc2.8xlarge) to Amazon EC2.</td>
<td>14 November 2011</td>
</tr>
<tr>
<td>Spot instances in Amazon VPC</td>
<td>2011-07-15</td>
<td>Added information about the support for Spot instances in Amazon VPC. With this update, users can launch Spot instances a virtual private cloud (VPC). By launching Spot instances in a VPC, users of Spot instances can enjoy the benefits of Amazon VPC.</td>
<td>11 October 2011</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Simplified VM import process for users of the CLI tools</td>
<td>2011-07-15</td>
<td>The VM Import process is simplified with the enhanced functionality of ImportInstance and ImportVolume, which now will perform the upload of the images into Amazon EC2 after creating the import task. In addition, with the introduction of ResumeImport, users can restart an incomplete upload at the point the task stopped.</td>
<td>15 September 2011</td>
</tr>
<tr>
<td>Support for importing in VHD file format</td>
<td></td>
<td>VM Import can now import virtual machine image files in VHD format. The VHD file format is compatible with the Citrix Xen and Microsoft Hyper-V virtualization platforms. With this release, VM Import now supports RAW, VHD and VMDK (VMware ESX-compatible) image formats. For more information, see the VM Import/Export User Guide.</td>
<td>24 August 2011</td>
</tr>
<tr>
<td>Support for Windows Server 2003 R2</td>
<td></td>
<td>VM Import now supports Windows Server 2003 (R2). With this release, VM Import supports all versions of Windows Server supported by Amazon EC2.</td>
<td>24 August 2011</td>
</tr>
<tr>
<td>Update to the Amazon EC2 VM Import Connector for VMware vCenter</td>
<td></td>
<td>Added information about the 1.1 version of the Amazon EC2 VM Import Connector for VMware vCenter virtual appliance (Connector). This update includes proxy support for Internet access, better error handling, improved task progress bar accuracy, and several bug fixes.</td>
<td>27 June 2011</td>
</tr>
<tr>
<td>Spot instances Availability Zone pricing changes</td>
<td>2011-05-15</td>
<td>Added information about the Spot instances Availability Zone pricing feature. In this release, we've added new Availability Zone pricing options as part of the information returned when you query for Spot instance requests and Spot price history. These additions make it easier to determine the price required to launch a Spot instance into a particular Availability Zone.</td>
<td>26 May 2011</td>
</tr>
<tr>
<td>AWS Identity and Access Management</td>
<td></td>
<td>Added information about AWS Identity and Access Management (IAM), which enables users to specify which Amazon EC2 actions a user can use with Amazon EC2 resources in general. For more information, see Controlling Access to Amazon EC2 Resources (p. 466).</td>
<td>26 April 2011</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dedicated instances</td>
<td></td>
<td>Launched within your Amazon Virtual Private Cloud (Amazon VPC), Dedicated Instances are instances that are physically isolated at the host hardware level. Dedicated Instances let you take advantage of Amazon VPC and the AWS cloud, with benefits including on-demand elastic provisioning and pay only for what you use, while isolating your Amazon EC2 compute instances at the hardware level. For more information, see Dedicated Instances (p. 256).</td>
<td>27 March 2011</td>
</tr>
<tr>
<td>Reserved Instances updates to the AWS Management Console</td>
<td></td>
<td>Updates to the AWS Management Console make it easier for users to view their Reserved Instances and purchase additional Reserved Instances, including Dedicated Reserved Instances.</td>
<td>27 March 2011</td>
</tr>
<tr>
<td>Support for Windows Server 2008 R2</td>
<td></td>
<td>Amazon EC2 now provides you with several pre-configured Windows Server 2008 R2 AMIs. These AMIs are immediately available for use in every region and in most 64-bit instance types, excluding t1.micro and HPC families. The AMIs will support multiple languages.</td>
<td>15 March 2011</td>
</tr>
<tr>
<td>Metadata information</td>
<td>2011-01-01</td>
<td>Added information about metadata to reflect changes in the 2011-01-01 release. For more information, see Instance Metadata and User Data (p. 362) and Instance Metadata Categories (p. 367).</td>
<td>11 March 2011</td>
</tr>
<tr>
<td>Amazon EC2 VM Import Connector for VMware vCenter</td>
<td></td>
<td>Added information about the Amazon EC2 VM Import Connector for VMware vCenter virtual appliance (Connector). The Connector is a plug-in for VMware vCenter that integrates with VMware vSphere Client and provides a graphical user interface that you can use to import your VMware virtual machines to Amazon EC2.</td>
<td>3 March 2011</td>
</tr>
<tr>
<td>Force volume detachment</td>
<td></td>
<td>You can now use the AWS Management Console to force the detachment of an Amazon EBS volume from an instance. For more information, see Detaching an Amazon EBS Volume from an Instance (p. 664).</td>
<td>23 February 2011</td>
</tr>
<tr>
<td>Instance termination protection</td>
<td></td>
<td>You can now use the AWS Management Console to prevent an instance from being terminated. For more information, see Enabling Termination Protection for an Instance (p. 294).</td>
<td>23 February 2011</td>
</tr>
<tr>
<td>VM Import</td>
<td>2010-11-15</td>
<td>Added information about VM Import, which allows you to import a virtual machine or volume into Amazon EC2. For more information, see the VM Import/Export User Guide.</td>
<td>15 December 2010</td>
</tr>
<tr>
<td>Feature</td>
<td>API Version</td>
<td>Description</td>
<td>Release Date</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Basic monitoring for instances</td>
<td>2010-08-31</td>
<td>Added information about basic monitoring for EC2 instances.</td>
<td>12 December 2010</td>
</tr>
<tr>
<td>Filters and Tags</td>
<td>2010-08-31</td>
<td>Added information about listing, filtering, and tagging resources. For more information, see Listing and Filtering Your Resources (p. 756) and Tagging Your Amazon EC2 Resources (p. 759).</td>
<td>19 September 2010</td>
</tr>
<tr>
<td>Idempotent Instance Launch</td>
<td>2010-08-31</td>
<td>Added information about ensuring idempotency when running instances.</td>
<td>19 September 2010</td>
</tr>
<tr>
<td>Micro instances</td>
<td>2010-06-15</td>
<td>Amazon EC2 offers the t1.micro instance type for certain types of applications. For more information, see T1 Micro Instances (p. 142).</td>
<td>8 September 2010</td>
</tr>
<tr>
<td>AWS Identity and Access Management for Amazon EC2</td>
<td>2010-06-15</td>
<td>Amazon EC2 now integrates with AWS Identity and Access Management (IAM). For more information, see Controlling Access to Amazon EC2 Resources (p. 466).</td>
<td>2 September 2010</td>
</tr>
<tr>
<td>Cluster instances</td>
<td>2010-06-15</td>
<td>Amazon EC2 offers cluster compute instances for high-performance computing (HPC) applications. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>12 July 2010</td>
</tr>
<tr>
<td>Amazon VPC IP Address Designation</td>
<td>2010-06-15</td>
<td>Amazon VPC users can now specify the IP address to assign an instance launched in a VPC.</td>
<td>12 July 2010</td>
</tr>
<tr>
<td>Amazon CloudWatch Monitoring for Amazon EBS Volumes</td>
<td>2010-06-15</td>
<td>Amazon CloudWatch monitoring is now automatically available for Amazon EBS volumes. For more information, see Monitoring Volumes with CloudWatch (p. 651).</td>
<td>14 June 2010</td>
</tr>
<tr>
<td>High-memory extra large instances</td>
<td>2009-11-30</td>
<td>Amazon EC2 now supports a High-Memory Extra Large (m2.xlarge) instance type. For more information about the hardware specifications for each Amazon EC2 instance type, see Amazon EC2 Instance Types.</td>
<td>22 February 2010</td>
</tr>
<tr>
<td>Reserved Instances with Windows</td>
<td>2010-06-15</td>
<td>Amazon EC2 now supports Reserved Instances with Windows.</td>
<td>22 February 2010</td>
</tr>
</tbody>
</table>
AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.