Class: AWS.SageMaker
- Inherits:
-
AWS.Service
- Object
- AWS.Service
- AWS.SageMaker
- Identifier:
- sagemaker
- API Version:
- 2017-07-24
- Defined in:
- (unknown)
Overview
Constructs a service interface object. Each API operation is exposed as a function on service.
Service Description
Provides APIs for creating and managing SageMaker resources.
Other Resources:
Sending a Request Using SageMaker
var sagemaker = new AWS.SageMaker();
sagemaker.addAssociation(params, function (err, data) {
if (err) console.log(err, err.stack); // an error occurred
else console.log(data); // successful response
});
Locking the API Version
In order to ensure that the SageMaker object uses this specific API, you can
construct the object by passing the apiVersion
option to the constructor:
var sagemaker = new AWS.SageMaker({apiVersion: '2017-07-24'});
You can also set the API version globally in AWS.config.apiVersions
using
the sagemaker service identifier:
AWS.config.apiVersions = {
sagemaker: '2017-07-24',
// other service API versions
};
var sagemaker = new AWS.SageMaker();
Version:
-
2017-07-24
Waiter Resource States
This service supports a list of resource states that can be polled using the waitFor() method. The resource states are:
notebookInstanceInService, notebookInstanceStopped, notebookInstanceDeleted, trainingJobCompletedOrStopped, endpointInService, endpointDeleted, transformJobCompletedOrStopped, processingJobCompletedOrStopped, imageCreated, imageUpdated, imageDeleted, imageVersionCreated, imageVersionDeleted
Constructor Summary collapse
-
new AWS.SageMaker(options = {}) ⇒ Object
constructor
Constructs a service object.
Property Summary collapse
-
endpoint ⇒ AWS.Endpoint
readwrite
An Endpoint object representing the endpoint URL for service requests.
Properties inherited from AWS.Service
Method Summary collapse
-
addAssociation(params = {}, callback) ⇒ AWS.Request
Creates an association between the source and the destination.
-
addTags(params = {}, callback) ⇒ AWS.Request
Adds or overwrites one or more tags for the specified SageMaker resource.
-
associateTrialComponent(params = {}, callback) ⇒ AWS.Request
Associates a trial component with a trial.
-
batchDescribeModelPackage(params = {}, callback) ⇒ AWS.Request
This action batch describes a list of versioned model packages
.
-
createAction(params = {}, callback) ⇒ AWS.Request
Creates an action.
-
createAlgorithm(params = {}, callback) ⇒ AWS.Request
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
.
-
createApp(params = {}, callback) ⇒ AWS.Request
Creates a running app for the specified UserProfile.
-
createAppImageConfig(params = {}, callback) ⇒ AWS.Request
Creates a configuration for running a SageMaker image as a KernelGateway app.
-
createArtifact(params = {}, callback) ⇒ AWS.Request
Creates an artifact.
-
createAutoMLJob(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
Note: We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility.- createAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
Note: CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility.- createCodeRepository(params = {}, callback) ⇒ AWS.Request
Creates a Git repository as a resource in your SageMaker account.
- createCompilationJob(params = {}, callback) ⇒ AWS.Request
Starts a model compilation job.
- createContext(params = {}, callback) ⇒ AWS.Request
Creates a context.
- createDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors data quality and drift.
- createDeviceFleet(params = {}, callback) ⇒ AWS.Request
Creates a device fleet.
.
- createDomain(params = {}, callback) ⇒ AWS.Request
Creates a
Domain
used by Amazon SageMaker Studio.- createEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Creates an edge deployment plan, consisting of multiple stages.
- createEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Creates a new stage in an existing edge deployment plan.
.
- createEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Starts a SageMaker Edge Manager model packaging job.
- createEndpoint(params = {}, callback) ⇒ AWS.Request
Creates an endpoint using the endpoint configuration specified in the request.
- createEndpointConfig(params = {}, callback) ⇒ AWS.Request
Creates an endpoint configuration that SageMaker hosting services uses to deploy models.
- createExperiment(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker experiment.
- createFeatureGroup(params = {}, callback) ⇒ AWS.Request
Create a new
FeatureGroup
.- createFlowDefinition(params = {}, callback) ⇒ AWS.Request
Creates a flow definition.
.
- createHub(params = {}, callback) ⇒ AWS.Request
Create a hub.
Note: Hub APIs are only callable through SageMaker Studio.- createHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Defines the settings you will use for the human review workflow user interface.
- createHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Starts a hyperparameter tuning job.
- createImage(params = {}, callback) ⇒ AWS.Request
Creates a custom SageMaker image.
- createImageVersion(params = {}, callback) ⇒ AWS.Request
Creates a version of the SageMaker image specified by
ImageName
.- createInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Creates an inference experiment using the configurations specified in the request.
- createInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Starts a recommendation job.
- createLabelingJob(params = {}, callback) ⇒ AWS.Request
Creates a job that uses workers to label the data objects in your input dataset.
- createModel(params = {}, callback) ⇒ AWS.Request
Creates a model in SageMaker.
- createModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates the definition for a model bias job.
.
- createModelCard(params = {}, callback) ⇒ AWS.Request
Creates an Amazon SageMaker Model Card.
For information about how to use model cards, see Amazon SageMaker Model Card.
.- createModelCardExportJob(params = {}, callback) ⇒ AWS.Request
Creates an Amazon SageMaker Model Card export job.
.
- createModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates the definition for a model explainability job.
.
- createModelPackage(params = {}, callback) ⇒ AWS.Request
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group.
- createModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Creates a model group.
- createModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors model quality and drift.
- createMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endpoint.
.
- createNotebookInstance(params = {}, callback) ⇒ AWS.Request
Creates an SageMaker notebook instance.
- createNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Creates a lifecycle configuration that you can associate with a notebook instance.
- createPipeline(params = {}, callback) ⇒ AWS.Request
Creates a pipeline using a JSON pipeline definition.
.
- createPresignedDomainUrl(params = {}, callback) ⇒ AWS.Request
Creates a URL for a specified UserProfile in a Domain.
- createPresignedNotebookInstanceUrl(params = {}, callback) ⇒ AWS.Request
Returns a URL that you can use to connect to the Jupyter server from a notebook instance.
- createProcessingJob(params = {}, callback) ⇒ AWS.Request
Creates a processing job.
.
- createProject(params = {}, callback) ⇒ AWS.Request
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
.
- createSpace(params = {}, callback) ⇒ AWS.Request
Creates a space used for real time collaboration in a Domain.
.
- createStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Creates a new Studio Lifecycle Configuration.
.
- createTrainingJob(params = {}, callback) ⇒ AWS.Request
Starts a model training job.
- createTransformJob(params = {}, callback) ⇒ AWS.Request
Starts a transform job.
- createTrial(params = {}, callback) ⇒ AWS.Request
Creates an SageMaker trial.
- createTrialComponent(params = {}, callback) ⇒ AWS.Request
Creates a trial component, which is a stage of a machine learning trial.
- createUserProfile(params = {}, callback) ⇒ AWS.Request
Creates a user profile.
- createWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to create a workforce.
- createWorkteam(params = {}, callback) ⇒ AWS.Request
Creates a new work team for labeling your data.
- deleteAction(params = {}, callback) ⇒ AWS.Request
Deletes an action.
.
- deleteAlgorithm(params = {}, callback) ⇒ AWS.Request
Removes the specified algorithm from your account.
.
- deleteApp(params = {}, callback) ⇒ AWS.Request
Used to stop and delete an app.
.
- deleteAppImageConfig(params = {}, callback) ⇒ AWS.Request
Deletes an AppImageConfig.
.
- deleteArtifact(params = {}, callback) ⇒ AWS.Request
Deletes an artifact.
- deleteAssociation(params = {}, callback) ⇒ AWS.Request
Deletes an association.
.
- deleteCodeRepository(params = {}, callback) ⇒ AWS.Request
Deletes the specified Git repository from your account.
.
- deleteContext(params = {}, callback) ⇒ AWS.Request
Deletes an context.
.
- deleteDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes a data quality monitoring job definition.
.
- deleteDeviceFleet(params = {}, callback) ⇒ AWS.Request
Deletes a fleet.
.
- deleteDomain(params = {}, callback) ⇒ AWS.Request
Used to delete a domain.
- deleteEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.
.
- deleteEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
.
- deleteEndpoint(params = {}, callback) ⇒ AWS.Request
Deletes an endpoint.
- deleteEndpointConfig(params = {}, callback) ⇒ AWS.Request
Deletes an endpoint configuration.
- deleteExperiment(params = {}, callback) ⇒ AWS.Request
Deletes an SageMaker experiment.
- deleteFeatureGroup(params = {}, callback) ⇒ AWS.Request
Delete the
FeatureGroup
and any data that was written to theOnlineStore
of theFeatureGroup
.- deleteFlowDefinition(params = {}, callback) ⇒ AWS.Request
Deletes the specified flow definition.
.
- deleteHub(params = {}, callback) ⇒ AWS.Request
Delete a hub.
Note: Hub APIs are only callable through SageMaker Studio.- deleteHubContent(params = {}, callback) ⇒ AWS.Request
Delete the contents of a hub.
Note: Hub APIs are only callable through SageMaker Studio.- deleteHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Use this operation to delete a human task user interface (worker task template).
To see a list of human task user interfaces (work task templates) in your account, use ListHumanTaskUis.
- deleteImage(params = {}, callback) ⇒ AWS.Request
Deletes a SageMaker image and all versions of the image.
- deleteImageVersion(params = {}, callback) ⇒ AWS.Request
Deletes a version of a SageMaker image.
- deleteInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Deletes an inference experiment.
Note: This operation does not delete your endpoint, variants, or any underlying resources.- deleteModel(params = {}, callback) ⇒ AWS.Request
Deletes a model.
- deleteModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker model bias job definition.
.
- deleteModelCard(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker Model Card.
.
- deleteModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker model explainability job definition.
.
- deleteModelPackage(params = {}, callback) ⇒ AWS.Request
Deletes a model package.
A model package is used to create SageMaker models or list on Amazon Web Services Marketplace.
- deleteModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Deletes the specified model group.
.
- deleteModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Deletes a model group resource policy.
.
- deleteModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes the secified model quality monitoring job definition.
.
- deleteMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Deletes a monitoring schedule.
- deleteNotebookInstance(params = {}, callback) ⇒ AWS.Request
Deletes an SageMaker notebook instance.
- deleteNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Deletes a notebook instance lifecycle configuration.
.
- deletePipeline(params = {}, callback) ⇒ AWS.Request
Deletes a pipeline if there are no running instances of the pipeline.
- deleteProject(params = {}, callback) ⇒ AWS.Request
Delete the specified project.
.
- deleteSpace(params = {}, callback) ⇒ AWS.Request
Used to delete a space.
.
- deleteStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Deletes the Studio Lifecycle Configuration.
- deleteTags(params = {}, callback) ⇒ AWS.Request
Deletes the specified tags from an SageMaker resource.
To list a resource's tags, use the
ListTags
API.- deleteTrial(params = {}, callback) ⇒ AWS.Request
Deletes the specified trial.
- deleteTrialComponent(params = {}, callback) ⇒ AWS.Request
Deletes the specified trial component.
- deleteUserProfile(params = {}, callback) ⇒ AWS.Request
Deletes a user profile.
- deleteWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to delete a workforce.
If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.
If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce.
- deleteWorkteam(params = {}, callback) ⇒ AWS.Request
Deletes an existing work team.
- deregisterDevices(params = {}, callback) ⇒ AWS.Request
Deregisters the specified devices.
- describeAction(params = {}, callback) ⇒ AWS.Request
Describes an action.
.
- describeAlgorithm(params = {}, callback) ⇒ AWS.Request
Returns a description of the specified algorithm that is in your account.
.
- describeApp(params = {}, callback) ⇒ AWS.Request
Describes the app.
.
- describeAppImageConfig(params = {}, callback) ⇒ AWS.Request
Describes an AppImageConfig.
.
- describeArtifact(params = {}, callback) ⇒ AWS.Request
Describes an artifact.
.
- describeAutoMLJob(params = {}, callback) ⇒ AWS.Request
Returns information about an AutoML job created by calling CreateAutoMLJob.
Note: AutoML jobs created by calling CreateAutoMLJobV2 cannot be described byDescribeAutoMLJob
.- describeAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.
.
- describeCodeRepository(params = {}, callback) ⇒ AWS.Request
Gets details about the specified Git repository.
.
- describeCompilationJob(params = {}, callback) ⇒ AWS.Request
Returns information about a model compilation job.
To create a model compilation job, use CreateCompilationJob.
- describeContext(params = {}, callback) ⇒ AWS.Request
Describes a context.
.
- describeDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Gets the details of a data quality monitoring job definition.
.
- describeDevice(params = {}, callback) ⇒ AWS.Request
Describes the device.
.
- describeDeviceFleet(params = {}, callback) ⇒ AWS.Request
A description of the fleet the device belongs to.
.
- describeDomain(params = {}, callback) ⇒ AWS.Request
The description of the domain.
.
- describeEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Describes an edge deployment plan with deployment status per stage.
.
- describeEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
A description of edge packaging jobs.
.
- describeEndpoint(params = {}, callback) ⇒ AWS.Request
Returns the description of an endpoint.
.
- describeEndpointConfig(params = {}, callback) ⇒ AWS.Request
Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API..
- describeExperiment(params = {}, callback) ⇒ AWS.Request
Provides a list of an experiment's properties.
.
- describeFeatureGroup(params = {}, callback) ⇒ AWS.Request
Use this operation to describe a
FeatureGroup
.- describeFeatureMetadata(params = {}, callback) ⇒ AWS.Request
Shows the metadata for a feature within a feature group.
.
- describeFlowDefinition(params = {}, callback) ⇒ AWS.Request
Returns information about the specified flow definition.
.
- describeHub(params = {}, callback) ⇒ AWS.Request
Describe a hub.
Note: Hub APIs are only callable through SageMaker Studio.- describeHubContent(params = {}, callback) ⇒ AWS.Request
Describe the content of a hub.
Note: Hub APIs are only callable through SageMaker Studio.- describeHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Returns information about the requested human task user interface (worker task template).
.
- describeHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Returns a description of a hyperparameter tuning job, depending on the fields selected.
- describeImage(params = {}, callback) ⇒ AWS.Request
Describes a SageMaker image.
.
- describeImageVersion(params = {}, callback) ⇒ AWS.Request
Describes a version of a SageMaker image.
.
- describeInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Returns details about an inference experiment.
.
- describeInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Provides the results of the Inference Recommender job.
- describeLabelingJob(params = {}, callback) ⇒ AWS.Request
Gets information about a labeling job.
.
- describeLineageGroup(params = {}, callback) ⇒ AWS.Request
Provides a list of properties for the requested lineage group.
- describeModel(params = {}, callback) ⇒ AWS.Request
Describes a model that you created using the
CreateModel
API..
- describeModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model bias job definition.
.
- describeModelCard(params = {}, callback) ⇒ AWS.Request
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
.
- describeModelCardExportJob(params = {}, callback) ⇒ AWS.Request
Describes an Amazon SageMaker Model Card export job.
.
- describeModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model explainability job definition.
.
- describeModelPackage(params = {}, callback) ⇒ AWS.Request
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
.- describeModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Gets a description for the specified model group.
.
- describeModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model quality job definition.
.
- describeMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Describes the schedule for a monitoring job.
.
- describeNotebookInstance(params = {}, callback) ⇒ AWS.Request
Returns information about a notebook instance.
.
- describeNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Returns a description of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
.- describePipeline(params = {}, callback) ⇒ AWS.Request
Describes the details of a pipeline.
.
- describePipelineDefinitionForExecution(params = {}, callback) ⇒ AWS.Request
Describes the details of an execution's pipeline definition.
.
- describePipelineExecution(params = {}, callback) ⇒ AWS.Request
Describes the details of a pipeline execution.
.
- describeProcessingJob(params = {}, callback) ⇒ AWS.Request
Returns a description of a processing job.
.
- describeProject(params = {}, callback) ⇒ AWS.Request
Describes the details of a project.
.
- describeSpace(params = {}, callback) ⇒ AWS.Request
Describes the space.
.
- describeStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Describes the Studio Lifecycle Configuration.
.
- describeSubscribedWorkteam(params = {}, callback) ⇒ AWS.Request
Gets information about a work team provided by a vendor.
- describeTrainingJob(params = {}, callback) ⇒ AWS.Request
Returns information about a training job.
- describeTransformJob(params = {}, callback) ⇒ AWS.Request
Returns information about a transform job.
.
- describeTrial(params = {}, callback) ⇒ AWS.Request
Provides a list of a trial's properties.
.
- describeTrialComponent(params = {}, callback) ⇒ AWS.Request
Provides a list of a trials component's properties.
.
- describeUserProfile(params = {}, callback) ⇒ AWS.Request
Describes a user profile.
- describeWorkforce(params = {}, callback) ⇒ AWS.Request
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs).
- describeWorkteam(params = {}, callback) ⇒ AWS.Request
Gets information about a specific work team.
- disableSagemakerServicecatalogPortfolio(params = {}, callback) ⇒ AWS.Request
Disables using Service Catalog in SageMaker.
- disassociateTrialComponent(params = {}, callback) ⇒ AWS.Request
Disassociates a trial component from a trial.
- enableSagemakerServicecatalogPortfolio(params = {}, callback) ⇒ AWS.Request
Enables using Service Catalog in SageMaker.
- getDeviceFleetReport(params = {}, callback) ⇒ AWS.Request
Describes a fleet.
.
- getLineageGroupPolicy(params = {}, callback) ⇒ AWS.Request
The resource policy for the lineage group.
.
- getModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Gets a resource policy that manages access for a model group.
- getSagemakerServicecatalogPortfolioStatus(params = {}, callback) ⇒ AWS.Request
Gets the status of Service Catalog in SageMaker.
- getScalingConfigurationRecommendation(params = {}, callback) ⇒ AWS.Request
Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job.
- getSearchSuggestions(params = {}, callback) ⇒ AWS.Request
An auto-complete API for the search functionality in the SageMaker console.
- importHubContent(params = {}, callback) ⇒ AWS.Request
Import hub content.
Note: Hub APIs are only callable through SageMaker Studio.- listActions(params = {}, callback) ⇒ AWS.Request
Lists the actions in your account and their properties.
.
- listAlgorithms(params = {}, callback) ⇒ AWS.Request
Lists the machine learning algorithms that have been created.
.
- listAliases(params = {}, callback) ⇒ AWS.Request
Lists the aliases of a specified image or image version.
.
- listAppImageConfigs(params = {}, callback) ⇒ AWS.Request
Lists the AppImageConfigs in your account and their properties.
- listApps(params = {}, callback) ⇒ AWS.Request
Lists apps.
.
- listArtifacts(params = {}, callback) ⇒ AWS.Request
Lists the artifacts in your account and their properties.
.
- listAssociations(params = {}, callback) ⇒ AWS.Request
Lists the associations in your account and their properties.
.
- listAutoMLJobs(params = {}, callback) ⇒ AWS.Request
Request a list of jobs.
.
- listCandidatesForAutoMLJob(params = {}, callback) ⇒ AWS.Request
List the candidates created for the job.
.
- listCodeRepositories(params = {}, callback) ⇒ AWS.Request
Gets a list of the Git repositories in your account.
.
- listCompilationJobs(params = {}, callback) ⇒ AWS.Request
Lists model compilation jobs that satisfy various filters.
To create a model compilation job, use CreateCompilationJob.
- listContexts(params = {}, callback) ⇒ AWS.Request
Lists the contexts in your account and their properties.
.
- listDataQualityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists the data quality job definitions in your account.
.
- listDeviceFleets(params = {}, callback) ⇒ AWS.Request
Returns a list of devices in the fleet.
.
- listDevices(params = {}, callback) ⇒ AWS.Request
A list of devices.
.
- listDomains(params = {}, callback) ⇒ AWS.Request
Lists the domains.
.
- listEdgeDeploymentPlans(params = {}, callback) ⇒ AWS.Request
Lists all edge deployment plans.
.
- listEdgePackagingJobs(params = {}, callback) ⇒ AWS.Request
Returns a list of edge packaging jobs.
.
- listEndpointConfigs(params = {}, callback) ⇒ AWS.Request
Lists endpoint configurations.
.
- listEndpoints(params = {}, callback) ⇒ AWS.Request
Lists endpoints.
.
- listExperiments(params = {}, callback) ⇒ AWS.Request
Lists all the experiments in your account.
- listFeatureGroups(params = {}, callback) ⇒ AWS.Request
List
FeatureGroup
s based on given filter and order..
- listFlowDefinitions(params = {}, callback) ⇒ AWS.Request
Returns information about the flow definitions in your account.
.
- listHubContents(params = {}, callback) ⇒ AWS.Request
List the contents of a hub.
Note: Hub APIs are only callable through SageMaker Studio.- listHubContentVersions(params = {}, callback) ⇒ AWS.Request
List hub content versions.
Note: Hub APIs are only callable through SageMaker Studio.- listHubs(params = {}, callback) ⇒ AWS.Request
List all existing hubs.
Note: Hub APIs are only callable through SageMaker Studio.- listHumanTaskUis(params = {}, callback) ⇒ AWS.Request
Returns information about the human task user interfaces in your account.
.
- listHyperParameterTuningJobs(params = {}, callback) ⇒ AWS.Request
Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
.
- listImages(params = {}, callback) ⇒ AWS.Request
Lists the images in your account and their properties.
- listImageVersions(params = {}, callback) ⇒ AWS.Request
Lists the versions of a specified image and their properties.
- listInferenceExperiments(params = {}, callback) ⇒ AWS.Request
Returns the list of all inference experiments.
.
- listInferenceRecommendationsJobs(params = {}, callback) ⇒ AWS.Request
Lists recommendation jobs that satisfy various filters.
.
- listInferenceRecommendationsJobSteps(params = {}, callback) ⇒ AWS.Request
Returns a list of the subtasks for an Inference Recommender job.
The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.
.- listLabelingJobs(params = {}, callback) ⇒ AWS.Request
Gets a list of labeling jobs.
.
- listLabelingJobsForWorkteam(params = {}, callback) ⇒ AWS.Request
Gets a list of labeling jobs assigned to a specified work team.
.
- listLineageGroups(params = {}, callback) ⇒ AWS.Request
A list of lineage groups shared with your Amazon Web Services account.
- listModelBiasJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists model bias jobs definitions that satisfy various filters.
.
- listModelCardExportJobs(params = {}, callback) ⇒ AWS.Request
List the export jobs for the Amazon SageMaker Model Card.
.
- listModelCards(params = {}, callback) ⇒ AWS.Request
List existing model cards.
.
- listModelCardVersions(params = {}, callback) ⇒ AWS.Request
List existing versions of an Amazon SageMaker Model Card.
.
- listModelExplainabilityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists model explainability job definitions that satisfy various filters.
.
- listModelMetadata(params = {}, callback) ⇒ AWS.Request
Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.
.
- listModelPackageGroups(params = {}, callback) ⇒ AWS.Request
Gets a list of the model groups in your Amazon Web Services account.
.
- listModelPackages(params = {}, callback) ⇒ AWS.Request
Lists the model packages that have been created.
.
- listModelQualityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Gets a list of model quality monitoring job definitions in your account.
.
- listModels(params = {}, callback) ⇒ AWS.Request
Lists models created with the
CreateModel
API..
- listMonitoringAlertHistory(params = {}, callback) ⇒ AWS.Request
Gets a list of past alerts in a model monitoring schedule.
.
- listMonitoringAlerts(params = {}, callback) ⇒ AWS.Request
Gets the alerts for a single monitoring schedule.
.
- listMonitoringExecutions(params = {}, callback) ⇒ AWS.Request
Returns list of all monitoring job executions.
.
- listMonitoringSchedules(params = {}, callback) ⇒ AWS.Request
Returns list of all monitoring schedules.
.
- listNotebookInstanceLifecycleConfigs(params = {}, callback) ⇒ AWS.Request
Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
.
- listNotebookInstances(params = {}, callback) ⇒ AWS.Request
Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services Region.
- listPipelineExecutions(params = {}, callback) ⇒ AWS.Request
Gets a list of the pipeline executions.
.
- listPipelineExecutionSteps(params = {}, callback) ⇒ AWS.Request
Gets a list of
PipeLineExecutionStep
objects..
- listPipelineParametersForExecution(params = {}, callback) ⇒ AWS.Request
Gets a list of parameters for a pipeline execution.
.
- listPipelines(params = {}, callback) ⇒ AWS.Request
Gets a list of pipelines.
.
- listProcessingJobs(params = {}, callback) ⇒ AWS.Request
Lists processing jobs that satisfy various filters.
.
- listProjects(params = {}, callback) ⇒ AWS.Request
Gets a list of the projects in an Amazon Web Services account.
.
- listResourceCatalogs(params = {}, callback) ⇒ AWS.Request
Lists Amazon SageMaker Catalogs based on given filters and orders.
- listSpaces(params = {}, callback) ⇒ AWS.Request
Lists spaces.
.
- listStageDevices(params = {}, callback) ⇒ AWS.Request
Lists devices allocated to the stage, containing detailed device information and deployment status.
.
- listStudioLifecycleConfigs(params = {}, callback) ⇒ AWS.Request
Lists the Studio Lifecycle Configurations in your Amazon Web Services Account.
.
- listSubscribedWorkteams(params = {}, callback) ⇒ AWS.Request
Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace.
- listTags(params = {}, callback) ⇒ AWS.Request
Returns the tags for the specified SageMaker resource.
.
- listTrainingJobs(params = {}, callback) ⇒ AWS.Request
Lists training jobs.
Note: WhenStatusEquals
andMaxResults
are set at the same time, theMaxResults
number of training jobs are first retrieved ignoring theStatusEquals
parameter and then they are filtered by theStatusEquals
parameter, which is returned as a response.- listTrainingJobsForHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
.
- listTransformJobs(params = {}, callback) ⇒ AWS.Request
Lists transform jobs.
.
- listTrialComponents(params = {}, callback) ⇒ AWS.Request
Lists the trial components in your account.
- listTrials(params = {}, callback) ⇒ AWS.Request
Lists the trials in your account.
- listUserProfiles(params = {}, callback) ⇒ AWS.Request
Lists user profiles.
.
- listWorkforces(params = {}, callback) ⇒ AWS.Request
Use this operation to list all private and vendor workforces in an Amazon Web Services Region.
- listWorkteams(params = {}, callback) ⇒ AWS.Request
Gets a list of private work teams that you have defined in a region.
- putModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Adds a resouce policy to control access to a model group.
- queryLineage(params = {}, callback) ⇒ AWS.Request
Use this action to inspect your lineage and discover relationships between entities.
- registerDevices(params = {}, callback) ⇒ AWS.Request
Register devices.
.
- renderUiTemplate(params = {}, callback) ⇒ AWS.Request
Renders the UI template so that you can preview the worker's experience.
- retryPipelineExecution(params = {}, callback) ⇒ AWS.Request
Retry the execution of the pipeline.
.
- search(params = {}, callback) ⇒ AWS.Request
Finds SageMaker resources that match a search query.
- sendPipelineExecutionStepFailure(params = {}, callback) ⇒ AWS.Request
Notifies the pipeline that the execution of a callback step failed, along with a message describing why.
- sendPipelineExecutionStepSuccess(params = {}, callback) ⇒ AWS.Request
Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters.
- startEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Starts a stage in an edge deployment plan.
.
- startInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Starts an inference experiment.
.
- startMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Starts a previously stopped monitoring schedule.
Note: By default, when you successfully create a new schedule, the status of a monitoring schedule isscheduled
.- startNotebookInstance(params = {}, callback) ⇒ AWS.Request
Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume.
- startPipelineExecution(params = {}, callback) ⇒ AWS.Request
Starts a pipeline execution.
.
- stopAutoMLJob(params = {}, callback) ⇒ AWS.Request
A method for forcing a running job to shut down.
.
- stopCompilationJob(params = {}, callback) ⇒ AWS.Request
Stops a model compilation job.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal.
- stopEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Stops a stage in an edge deployment plan.
.
- stopEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Request to stop an edge packaging job.
.
- stopHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.
All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3).
- stopInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Stops an inference experiment.
.
- stopInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Stops an Inference Recommender job.
.
- stopLabelingJob(params = {}, callback) ⇒ AWS.Request
Stops a running labeling job.
- stopMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Stops a previously started monitoring schedule.
.
- stopNotebookInstance(params = {}, callback) ⇒ AWS.Request
Terminates the ML compute instance.
- stopPipelineExecution(params = {}, callback) ⇒ AWS.Request
Stops a pipeline execution.
Callback Step
A pipeline execution won't stop while a callback step is running.
- stopProcessingJob(params = {}, callback) ⇒ AWS.Request
Stops a processing job.
.
- stopTrainingJob(params = {}, callback) ⇒ AWS.Request
Stops a training job.
- stopTransformJob(params = {}, callback) ⇒ AWS.Request
Stops a batch transform job.
When Amazon SageMaker receives a
StopTransformJob
request, the status of the job changes toStopping
.- updateAction(params = {}, callback) ⇒ AWS.Request
Updates an action.
.
- updateAppImageConfig(params = {}, callback) ⇒ AWS.Request
Updates the properties of an AppImageConfig.
.
- updateArtifact(params = {}, callback) ⇒ AWS.Request
Updates an artifact.
.
- updateCodeRepository(params = {}, callback) ⇒ AWS.Request
Updates the specified Git repository with the specified values.
.
- updateContext(params = {}, callback) ⇒ AWS.Request
Updates a context.
.
- updateDeviceFleet(params = {}, callback) ⇒ AWS.Request
Updates a fleet of devices.
.
- updateDevices(params = {}, callback) ⇒ AWS.Request
Updates one or more devices in a fleet.
.
- updateDomain(params = {}, callback) ⇒ AWS.Request
Updates the default settings for new user profiles in the domain.
.
- updateEndpoint(params = {}, callback) ⇒ AWS.Request
Deploys the new
EndpointConfig
specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previousEndpointConfig
(there is no availability loss).- updateEndpointWeightsAndCapacities(params = {}, callback) ⇒ AWS.Request
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint.
- updateExperiment(params = {}, callback) ⇒ AWS.Request
Adds, updates, or removes the description of an experiment.
- updateFeatureGroup(params = {}, callback) ⇒ AWS.Request
Updates the feature group by either adding features or updating the online store configuration.
- updateFeatureMetadata(params = {}, callback) ⇒ AWS.Request
Updates the description and parameters of the feature group.
.
- updateHub(params = {}, callback) ⇒ AWS.Request
Update a hub.
Note: Hub APIs are only callable through SageMaker Studio.- updateImage(params = {}, callback) ⇒ AWS.Request
Updates the properties of a SageMaker image.
- updateImageVersion(params = {}, callback) ⇒ AWS.Request
Updates the properties of a SageMaker image version.
.
- updateInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Updates an inference experiment that you created.
- updateModelCard(params = {}, callback) ⇒ AWS.Request
Update an Amazon SageMaker Model Card.
You cannot update both model card content and model card status in a single call.
- updateModelPackage(params = {}, callback) ⇒ AWS.Request
Updates a versioned model.
.
- updateMonitoringAlert(params = {}, callback) ⇒ AWS.Request
Update the parameters of a model monitor alert.
.
- updateMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Updates a previously created schedule.
.
- updateNotebookInstance(params = {}, callback) ⇒ AWS.Request
Updates a notebook instance.
- updateNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
.
- updatePipeline(params = {}, callback) ⇒ AWS.Request
Updates a pipeline.
.
- updatePipelineExecution(params = {}, callback) ⇒ AWS.Request
Updates a pipeline execution.
.
- updateProject(params = {}, callback) ⇒ AWS.Request
Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.
Note: You must not update a project that is in use.- updateSpace(params = {}, callback) ⇒ AWS.Request
Updates the settings of a space.
.
- updateTrainingJob(params = {}, callback) ⇒ AWS.Request
Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.
.
- updateTrial(params = {}, callback) ⇒ AWS.Request
Updates the display name of a trial.
.
- updateTrialComponent(params = {}, callback) ⇒ AWS.Request
Updates one or more properties of a trial component.
.
- updateUserProfile(params = {}, callback) ⇒ AWS.Request
Updates a user profile.
.
- updateWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to update your workforce.
- updateWorkteam(params = {}, callback) ⇒ AWS.Request
Updates an existing work team with new member definitions or description.
.
- waitFor(state, params = {}, callback) ⇒ AWS.Request
Waits for a given SageMaker resource.
Methods inherited from AWS.Service
makeRequest, makeUnauthenticatedRequest, setupRequestListeners, defineService
Constructor Details
new AWS.SageMaker(options = {}) ⇒ Object
Constructs a service object. This object has one method for each API operation.
Examples:
Constructing a SageMaker object
var sagemaker = new AWS.SageMaker({apiVersion: '2017-07-24'});
Options Hash (options):
-
params
(map)
—
An optional map of parameters to bind to every request sent by this service object. For more information on bound parameters, see "Working with Services" in the Getting Started Guide.
-
endpoint
(String|AWS.Endpoint)
—
The endpoint URI to send requests to. The default endpoint is built from the configured
region
. The endpoint should be a string like'https://{service}.{region}.amazonaws.com'
or an Endpoint object. -
accessKeyId
(String)
—
your AWS access key ID.
-
secretAccessKey
(String)
—
your AWS secret access key.
-
sessionToken
(AWS.Credentials)
—
the optional AWS session token to sign requests with.
-
credentials
(AWS.Credentials)
—
the AWS credentials to sign requests with. You can either specify this object, or specify the accessKeyId and secretAccessKey options directly.
-
credentialProvider
(AWS.CredentialProviderChain)
—
the provider chain used to resolve credentials if no static
credentials
property is set. -
region
(String)
—
the region to send service requests to. See AWS.SageMaker.region for more information.
-
maxRetries
(Integer)
—
the maximum amount of retries to attempt with a request. See AWS.SageMaker.maxRetries for more information.
-
maxRedirects
(Integer)
—
the maximum amount of redirects to follow with a request. See AWS.SageMaker.maxRedirects for more information.
-
sslEnabled
(Boolean)
—
whether to enable SSL for requests.
-
paramValidation
(Boolean|map)
—
whether input parameters should be validated against the operation description before sending the request. Defaults to true. Pass a map to enable any of the following specific validation features:
- min [Boolean] — Validates that a value meets the min
constraint. This is enabled by default when paramValidation is set
to
true
. - max [Boolean] — Validates that a value meets the max constraint.
- pattern [Boolean] — Validates that a string value matches a regular expression.
- enum [Boolean] — Validates that a string value matches one of the allowable enum values.
- min [Boolean] — Validates that a value meets the min
constraint. This is enabled by default when paramValidation is set
to
-
computeChecksums
(Boolean)
—
whether to compute checksums for payload bodies when the service accepts it (currently supported in S3 only)
-
convertResponseTypes
(Boolean)
—
whether types are converted when parsing response data. Currently only supported for JSON based services. Turning this off may improve performance on large response payloads. Defaults to
true
. -
correctClockSkew
(Boolean)
—
whether to apply a clock skew correction and retry requests that fail because of an skewed client clock. Defaults to
false
. -
s3ForcePathStyle
(Boolean)
—
whether to force path style URLs for S3 objects.
-
s3BucketEndpoint
(Boolean)
—
whether the provided endpoint addresses an individual bucket (false if it addresses the root API endpoint). Note that setting this configuration option requires an
endpoint
to be provided explicitly to the service constructor. -
s3DisableBodySigning
(Boolean)
—
whether S3 body signing should be disabled when using signature version
v4
. Body signing can only be disabled when using https. Defaults totrue
. -
s3UsEast1RegionalEndpoint
('legacy'|'regional')
—
when region is set to 'us-east-1', whether to send s3 request to global endpoints or 'us-east-1' regional endpoints. This config is only applicable to S3 client. Defaults to
legacy
-
s3UseArnRegion
(Boolean)
—
whether to override the request region with the region inferred from requested resource's ARN. Only available for S3 buckets Defaults to
true
-
retryDelayOptions
(map)
—
A set of options to configure the retry delay on retryable errors. Currently supported options are:
- base [Integer] — The base number of milliseconds to use in the exponential backoff for operation retries. Defaults to 100 ms for all services except DynamoDB, where it defaults to 50ms.
- customBackoff [function] — A custom function that accepts a
retry count and error and returns the amount of time to delay in
milliseconds. If the result is a non-zero negative value, no further
retry attempts will be made. The
base
option will be ignored if this option is supplied. The function is only called for retryable errors.
-
httpOptions
(map)
—
A set of options to pass to the low-level HTTP request. Currently supported options are:
- proxy [String] — the URL to proxy requests through
- agent [http.Agent, https.Agent] — the Agent object to perform
HTTP requests with. Used for connection pooling. Defaults to the global
agent (
http.globalAgent
) for non-SSL connections. Note that for SSL connections, a special Agent object is used in order to enable peer certificate verification. This feature is only available in the Node.js environment. - connectTimeout [Integer] — Sets the socket to timeout after
failing to establish a connection with the server after
connectTimeout
milliseconds. This timeout has no effect once a socket connection has been established. - timeout [Integer] — Sets the socket to timeout after timeout milliseconds of inactivity on the socket. Defaults to two minutes (120000).
- xhrAsync [Boolean] — Whether the SDK will send asynchronous HTTP requests. Used in the browser environment only. Set to false to send requests synchronously. Defaults to true (async on).
- xhrWithCredentials [Boolean] — Sets the "withCredentials" property of an XMLHttpRequest object. Used in the browser environment only. Defaults to false.
-
apiVersion
(String, Date)
—
a String in YYYY-MM-DD format (or a date) that represents the latest possible API version that can be used in all services (unless overridden by
apiVersions
). Specify 'latest' to use the latest possible version. -
apiVersions
(map<String, String|Date>)
—
a map of service identifiers (the lowercase service class name) with the API version to use when instantiating a service. Specify 'latest' for each individual that can use the latest available version.
-
logger
(#write, #log)
—
an object that responds to .write() (like a stream) or .log() (like the console object) in order to log information about requests
-
systemClockOffset
(Number)
—
an offset value in milliseconds to apply to all signing times. Use this to compensate for clock skew when your system may be out of sync with the service time. Note that this configuration option can only be applied to the global
AWS.config
object and cannot be overridden in service-specific configuration. Defaults to 0 milliseconds. -
signatureVersion
(String)
—
the signature version to sign requests with (overriding the API configuration). Possible values are: 'v2', 'v3', 'v4'.
-
signatureCache
(Boolean)
—
whether the signature to sign requests with (overriding the API configuration) is cached. Only applies to the signature version 'v4'. Defaults to
true
. -
dynamoDbCrc32
(Boolean)
—
whether to validate the CRC32 checksum of HTTP response bodies returned by DynamoDB. Default:
true
. -
useAccelerateEndpoint
(Boolean)
—
Whether to use the S3 Transfer Acceleration endpoint with the S3 service. Default:
false
. -
clientSideMonitoring
(Boolean)
—
whether to collect and publish this client's performance metrics of all its API requests.
-
endpointDiscoveryEnabled
(Boolean|undefined)
—
whether to call operations with endpoints given by service dynamically. Setting this
-
endpointCacheSize
(Number)
—
the size of the global cache storing endpoints from endpoint discovery operations. Once endpoint cache is created, updating this setting cannot change existing cache size. Defaults to 1000
-
hostPrefixEnabled
(Boolean)
—
whether to marshal request parameters to the prefix of hostname. Defaults to
true
. -
stsRegionalEndpoints
('legacy'|'regional')
—
whether to send sts request to global endpoints or regional endpoints. Defaults to 'legacy'.
-
useFipsEndpoint
(Boolean)
—
Enables FIPS compatible endpoints. Defaults to
false
. -
useDualstackEndpoint
(Boolean)
—
Enables IPv6 dualstack endpoint. Defaults to
false
.
Property Details
Method Details
addAssociation(params = {}, callback) ⇒ AWS.Request
Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.
Service Reference:
Examples:
Calling the addAssociation operation
var params = { DestinationArn: 'STRING_VALUE', /* required */ SourceArn: 'STRING_VALUE', /* required */ AssociationType: ContributedTo | AssociatedWith | DerivedFrom | Produced }; sagemaker.addAssociation(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
SourceArn
— (String
)The ARN of the source.
DestinationArn
— (String
)The Amazon Resource Name (ARN) of the destination.
AssociationType
— (String
)The type of association. The following are suggested uses for each type. Amazon SageMaker places no restrictions on their use.
-
ContributedTo - The source contributed to the destination or had a part in enabling the destination. For example, the training data contributed to the training job.
-
AssociatedWith - The source is connected to the destination. For example, an approval workflow is associated with a model deployment.
-
DerivedFrom - The destination is a modification of the source. For example, a digest output of a channel input for a processing job is derived from the original inputs.
-
Produced - The source generated the destination. For example, a training job produced a model artifact.
"ContributedTo"
"AssociatedWith"
"DerivedFrom"
"Produced"
-
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:SourceArn
— (String
)The ARN of the source.
DestinationArn
— (String
)The Amazon Resource Name (ARN) of the destination.
-
(AWS.Response)
—
Returns:
addTags(params = {}, callback) ⇒ AWS.Request
Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.
Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies.
Note: Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in theTags
parameter of CreateHyperParameterTuningJobNote: Tags that you add to a SageMaker Studio Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in theTags
parameter of CreateDomain or CreateUserProfile.Service Reference:
Examples:
Calling the addTags operation
var params = { ResourceArn: 'STRING_VALUE', /* required */ Tags: [ /* required */ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.addTags(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ResourceArn
— (String
)The Amazon Resource Name (ARN) of the resource that you want to tag.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:Tags
— (Array<map>
)A list of tags associated with the SageMaker resource.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
-
(AWS.Response)
—
Returns:
associateTrialComponent(params = {}, callback) ⇒ AWS.Request
Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
Service Reference:
Examples:
Calling the associateTrialComponent operation
var params = { TrialComponentName: 'STRING_VALUE', /* required */ TrialName: 'STRING_VALUE' /* required */ }; sagemaker.associateTrialComponent(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
TrialComponentName
— (String
)The name of the component to associated with the trial.
TrialName
— (String
)The name of the trial to associate with.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:TrialComponentArn
— (String
)The Amazon Resource Name (ARN) of the trial component.
TrialArn
— (String
)The Amazon Resource Name (ARN) of the trial.
-
(AWS.Response)
—
Returns:
batchDescribeModelPackage(params = {}, callback) ⇒ AWS.Request
This action batch describes a list of versioned model packages
Service Reference:
Examples:
Calling the batchDescribeModelPackage operation
var params = { ModelPackageArnList: [ /* required */ 'STRING_VALUE', /* more items */ ] }; sagemaker.batchDescribeModelPackage(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ModelPackageArnList
— (Array<String>
)The list of Amazon Resource Name (ARN) of the model package groups.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ModelPackageSummaries
— (map<map>
)The summaries for the model package versions
ModelPackageGroupName
— required — (String
)The group name for the model package
ModelPackageVersion
— (Integer
)The version number of a versioned model.
ModelPackageArn
— required — (String
)The Amazon Resource Name (ARN) of the model package.
ModelPackageDescription
— (String
)The description of the model package.
CreationTime
— required — (Date
)The creation time of the mortgage package summary.
InferenceSpecification
— required — (map
)Defines how to perform inference generation after a training job is run.
Containers
— required — (Array<map>
)The Amazon ECR registry path of the Docker image that contains the inference code.
ContainerHostname
— (String
)The DNS host name for the Docker container.
Image
— required — (String
)The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.ImageDigest
— (String
)An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl
— (String
)The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note: The model artifacts must be in an S3 bucket that is in the same region as the model package.ProductId
— (String
)The Amazon Web Services Marketplace product ID of the model package.
Environment
— (map<String>
)The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.ModelInput
— (map
)A structure with Model Input details.
DataInputConfig
— required — (String
)The input configuration object for the model.
Framework
— (String
)The machine learning framework of the model package container image.
FrameworkVersion
— (String
)The framework version of the Model Package Container Image.
NearestModelName
— (String
)The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling
ListModelMetadata
.
SupportedTransformInstanceTypes
— (Array<String>
)A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
SupportedRealtimeInferenceInstanceTypes
— (Array<String>
)A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
SupportedContentTypes
— required — (Array<String>
)The supported MIME types for the input data.
SupportedResponseMIMETypes
— required — (Array<String>
)The supported MIME types for the output data.
ModelPackageStatus
— required — (String
)The status of the mortgage package.
Possible values include:"Pending"
"InProgress"
"Completed"
"Failed"
"Deleting"
ModelApprovalStatus
— (String
)The approval status of the model.
Possible values include:"Approved"
"Rejected"
"PendingManualApproval"
BatchDescribeModelPackageErrorMap
— (map<map>
)A map of the resource and BatchDescribeModelPackageError objects reporting the error associated with describing the model package.
ErrorCode
— required — (String
)ErrorResponse
— required — (String
)
-
(AWS.Response)
—
Returns:
createAction(params = {}, callback) ⇒ AWS.Request
Creates an action. An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.
Service Reference:
Examples:
Calling the createAction operation
var params = { ActionName: 'STRING_VALUE', /* required */ ActionType: 'STRING_VALUE', /* required */ Source: { /* required */ SourceUri: 'STRING_VALUE', /* required */ SourceId: 'STRING_VALUE', SourceType: 'STRING_VALUE' }, Description: 'STRING_VALUE', MetadataProperties: { CommitId: 'STRING_VALUE', GeneratedBy: 'STRING_VALUE', ProjectId: 'STRING_VALUE', Repository: 'STRING_VALUE' }, Properties: { '<StringParameterValue>': 'STRING_VALUE', /* '<StringParameterValue>': ... */ }, Status: Unknown | InProgress | Completed | Failed | Stopping | Stopped, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createAction(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ActionName
— (String
)The name of the action. Must be unique to your account in an Amazon Web Services Region.
Source
— (map
)The source type, ID, and URI.
SourceUri
— required — (String
)The URI of the source.
SourceType
— (String
)The type of the source.
SourceId
— (String
)The ID of the source.
ActionType
— (String
)The action type.
Description
— (String
)The description of the action.
Status
— (String
)The status of the action.
Possible values include:"Unknown"
"InProgress"
"Completed"
"Failed"
"Stopping"
"Stopped"
Properties
— (map<String>
)A list of properties to add to the action.
MetadataProperties
— (map
)Metadata properties of the tracking entity, trial, or trial component.
CommitId
— (String
)The commit ID.
Repository
— (String
)The repository.
GeneratedBy
— (String
)The entity this entity was generated by.
ProjectId
— (String
)The project ID.
Tags
— (Array<map>
)A list of tags to apply to the action.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ActionArn
— (String
)The Amazon Resource Name (ARN) of the action.
-
(AWS.Response)
—
Returns:
createAlgorithm(params = {}, callback) ⇒ AWS.Request
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
Service Reference:
Examples:
Calling the createAlgorithm operation
var params = { AlgorithmName: 'STRING_VALUE', /* required */ TrainingSpecification: { /* required */ SupportedTrainingInstanceTypes: [ /* required */ ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, /* more items */ ], TrainingChannels: [ /* required */ { Name: 'STRING_VALUE', /* required */ SupportedContentTypes: [ /* required */ 'STRING_VALUE', /* more items */ ], SupportedInputModes: [ /* required */ Pipe | File | FastFile, /* more items */ ], Description: 'STRING_VALUE', IsRequired: true || false, SupportedCompressionTypes: [ None | Gzip, /* more items */ ] }, /* more items */ ], TrainingImage: 'STRING_VALUE', /* required */ MetricDefinitions: [ { Name: 'STRING_VALUE', /* required */ Regex: 'STRING_VALUE' /* required */ }, /* more items */ ], SupportedHyperParameters: [ { Name: 'STRING_VALUE', /* required */ Type: Integer | Continuous | Categorical | FreeText, /* required */ DefaultValue: 'STRING_VALUE', Description: 'STRING_VALUE', IsRequired: true || false, IsTunable: true || false, Range: { CategoricalParameterRangeSpecification: { Values: [ /* required */ 'STRING_VALUE', /* more items */ ] }, ContinuousParameterRangeSpecification: { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE' /* required */ }, IntegerParameterRangeSpecification: { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE' /* required */ } } }, /* more items */ ], SupportedTuningJobObjectiveMetrics: [ { MetricName: 'STRING_VALUE', /* required */ Type: Maximize | Minimize /* required */ }, /* more items */ ], SupportsDistributedTraining: true || false, TrainingImageDigest: 'STRING_VALUE' }, AlgorithmDescription: 'STRING_VALUE', CertifyForMarketplace: true || false, InferenceSpecification: { Containers: [ /* required */ { Image: 'STRING_VALUE', /* required */ ContainerHostname: 'STRING_VALUE', Environment: { '<EnvironmentKey>': 'STRING_VALUE', /* '<EnvironmentKey>': ... */ }, Framework: 'STRING_VALUE', FrameworkVersion: 'STRING_VALUE', ImageDigest: 'STRING_VALUE', ModelDataUrl: 'STRING_VALUE', ModelInput: { DataInputConfig: 'STRING_VALUE' /* required */ }, NearestModelName: 'STRING_VALUE', ProductId: 'STRING_VALUE' }, /* more items */ ], SupportedContentTypes: [ /* required */ 'STRING_VALUE', /* more items */ ], SupportedResponseMIMETypes: [ /* required */ 'STRING_VALUE', /* more items */ ], SupportedRealtimeInferenceInstanceTypes: [ ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.12xlarge | ml.m5d.24xlarge | ml.c4.large | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5d.large | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge | ml.c5d.9xlarge | ml.c5d.18xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.12xlarge | ml.r5.24xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.12xlarge | ml.r5d.24xlarge | ml.inf1.xlarge | ml.inf1.2xlarge | ml.inf1.6xlarge | ml.inf1.24xlarge | ml.c6i.large | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.4xlarge | ml.c6i.8xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.12xlarge | ml.g5.16xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.p4d.24xlarge | ml.c7g.large | ml.c7g.xlarge | ml.c7g.2xlarge | ml.c7g.4xlarge | ml.c7g.8xlarge | ml.c7g.12xlarge | ml.c7g.16xlarge | ml.m6g.large | ml.m6g.xlarge | ml.m6g.2xlarge | ml.m6g.4xlarge | ml.m6g.8xlarge | ml.m6g.12xlarge | ml.m6g.16xlarge | ml.m6gd.large | ml.m6gd.xlarge | ml.m6gd.2xlarge | ml.m6gd.4xlarge | ml.m6gd.8xlarge | ml.m6gd.12xlarge | ml.m6gd.16xlarge | ml.c6g.large | ml.c6g.xlarge | ml.c6g.2xlarge | ml.c6g.4xlarge | ml.c6g.8xlarge | ml.c6g.12xlarge | ml.c6g.16xlarge | ml.c6gd.large | ml.c6gd.xlarge | ml.c6gd.2xlarge | ml.c6gd.4xlarge | ml.c6gd.8xlarge | ml.c6gd.12xlarge | ml.c6gd.16xlarge | ml.c6gn.large | ml.c6gn.xlarge | ml.c6gn.2xlarge | ml.c6gn.4xlarge | ml.c6gn.8xlarge | ml.c6gn.12xlarge | ml.c6gn.16xlarge | ml.r6g.large | ml.r6g.xlarge | ml.r6g.2xlarge | ml.r6g.4xlarge | ml.r6g.8xlarge | ml.r6g.12xlarge | ml.r6g.16xlarge | ml.r6gd.large | ml.r6gd.xlarge | ml.r6gd.2xlarge | ml.r6gd.4xlarge | ml.r6gd.8xlarge | ml.r6gd.12xlarge | ml.r6gd.16xlarge | ml.p4de.24xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.inf2.xlarge | ml.inf2.8xlarge | ml.inf2.24xlarge | ml.inf2.48xlarge | ml.p5.48xlarge, /* more items */ ], SupportedTransformInstanceTypes: [ ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge, /* more items */ ] }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ], ValidationSpecification: { ValidationProfiles: [ /* required */ { ProfileName: 'STRING_VALUE', /* required */ TrainingJobDefinition: { /* required */ InputDataConfig: [ /* required */ { ChannelName: 'STRING_VALUE', /* required */ DataSource: { /* required */ FileSystemDataSource: { DirectoryPath: 'STRING_VALUE', /* required */ FileSystemAccessMode: rw | ro, /* required */ FileSystemId: 'STRING_VALUE', /* required */ FileSystemType: EFS | FSxLustre /* required */ }, S3DataSource: { S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE', /* required */ AttributeNames: [ 'STRING_VALUE', /* more items */ ], InstanceGroupNames: [ 'STRING_VALUE', /* more items */ ], S3DataDistributionType: FullyReplicated | ShardedByS3Key } }, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', InputMode: Pipe | File | FastFile, RecordWrapperType: None | RecordIO, ShuffleConfig: { Seed: 'NUMBER_VALUE' /* required */ } }, /* more items */ ], OutputDataConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ CompressionType: GZIP | NONE, KmsKeyId: 'STRING_VALUE' }, ResourceConfig: { /* required */ VolumeSizeInGB: 'NUMBER_VALUE', /* required */ InstanceCount: 'NUMBER_VALUE', InstanceGroups: [ { InstanceCount: 'NUMBER_VALUE', /* required */ InstanceGroupName: 'STRING_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge /* required */ }, /* more items */ ], InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, KeepAlivePeriodInSeconds: 'NUMBER_VALUE', VolumeKmsKeyId: 'STRING_VALUE' }, StoppingCondition: { /* required */ MaxRuntimeInSeconds: 'NUMBER_VALUE', MaxWaitTimeInSeconds: 'NUMBER_VALUE' }, TrainingInputMode: Pipe | File | FastFile, /* required */ HyperParameters: { '<HyperParameterKey>': 'STRING_VALUE', /* '<HyperParameterKey>': ... */ } }, TransformJobDefinition: { TransformInput: { /* required */ DataSource: { /* required */ S3DataSource: { /* required */ S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE' /* required */ } }, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', SplitType: None | Line | RecordIO | TFRecord }, TransformOutput: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ Accept: 'STRING_VALUE', AssembleWith: None | Line, KmsKeyId: 'STRING_VALUE' }, TransformResources: { /* required */ InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge, /* required */ VolumeKmsKeyId: 'STRING_VALUE' }, BatchStrategy: MultiRecord | SingleRecord, Environment: { '<TransformEnvironmentKey>': 'STRING_VALUE', /* '<TransformEnvironmentKey>': ... */ }, MaxConcurrentTransforms: 'NUMBER_VALUE', MaxPayloadInMB: 'NUMBER_VALUE' } }, /* more items */ ], ValidationRole: 'STRING_VALUE' /* required */ } }; sagemaker.createAlgorithm(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
AlgorithmName
— (String
)The name of the algorithm.
AlgorithmDescription
— (String
)A description of the algorithm.
TrainingSpecification
— (map
)Specifies details about training jobs run by this algorithm, including the following:
-
The Amazon ECR path of the container and the version digest of the algorithm.
-
The hyperparameters that the algorithm supports.
-
The instance types that the algorithm supports for training.
-
Whether the algorithm supports distributed training.
-
The metrics that the algorithm emits to Amazon CloudWatch.
-
Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.
-
The input channels that the algorithm supports for training data. For example, an algorithm might support
train
,validation
, andtest
channels.
TrainingImage
— required — (String
)The Amazon ECR registry path of the Docker image that contains the training algorithm.
TrainingImageDigest
— (String
)An MD5 hash of the training algorithm that identifies the Docker image used for training.
SupportedHyperParameters
— (Array<map>
)A list of the
HyperParameterSpecification
objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>Name
— required — (String
)The name of this hyperparameter. The name must be unique.
Description
— (String
)A brief description of the hyperparameter.
Type
— required — (String
)The type of this hyperparameter. The valid types are
Possible values include:Integer
,Continuous
,Categorical
, andFreeText
."Integer"
"Continuous"
"Categorical"
"FreeText"
Range
— (map
)The allowed range for this hyperparameter.
IntegerParameterRangeSpecification
— (map
)A
IntegerParameterRangeSpecification
object that defines the possible values for an integer hyperparameter.MinValue
— required — (String
)The minimum integer value allowed.
MaxValue
— required — (String
)The maximum integer value allowed.
ContinuousParameterRangeSpecification
— (map
)A
ContinuousParameterRangeSpecification
object that defines the possible values for a continuous hyperparameter.MinValue
— required — (String
)The minimum floating-point value allowed.
MaxValue
— required — (String
)The maximum floating-point value allowed.
CategoricalParameterRangeSpecification
— (map
)A
CategoricalParameterRangeSpecification
object that defines the possible values for a categorical hyperparameter.Values
— required — (Array<String>
)The allowed categories for the hyperparameter.
IsTunable
— (Boolean
)Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
IsRequired
— (Boolean
)Indicates whether this hyperparameter is required.
DefaultValue
— (String
)The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.
SupportedTrainingInstanceTypes
— required — (Array<String>
)A list of the instance types that this algorithm can use for training.
SupportsDistributedTraining
— (Boolean
)Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.
MetricDefinitions
— (Array<map>
)A list of
MetricDefinition
objects, which are used for parsing metrics generated by the algorithm.Name
— required — (String
)The name of the metric.
Regex
— required — (String
)A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.
TrainingChannels
— required — (Array<map>
)A list of
ChannelSpecification
objects, which specify the input sources to be used by the algorithm.Name
— required — (String
)The name of the channel.
Description
— (String
)A brief description of the channel.
IsRequired
— (Boolean
)Indicates whether the channel is required by the algorithm.
SupportedContentTypes
— required — (Array<String>
)The supported MIME types for the data.
SupportedCompressionTypes
— (Array<String>
)The allowed compression types, if data compression is used.
SupportedInputModes
— required — (Array<String>
)The allowed input mode, either FILE or PIPE.
In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.
In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
SupportedTuningJobObjectiveMetrics
— (Array<map>
)A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.
Type
— required — (String
)Whether to minimize or maximize the objective metric.
Possible values include:"Maximize"
"Minimize"
MetricName
— required — (String
)The name of the metric to use for the objective metric.
-
InferenceSpecification
— (map
)Specifies details about inference jobs that the algorithm runs, including the following:
-
The Amazon ECR paths of containers that contain the inference code and model artifacts.
-
The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.
-
The input and output content formats that the algorithm supports for inference.
Containers
— required — (Array<map>
)The Amazon ECR registry path of the Docker image that contains the inference code.
ContainerHostname
— (String
)The DNS host name for the Docker container.
Image
— required — (String
)The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.ImageDigest
— (String
)An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl
— (String
)The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note: The model artifacts must be in an S3 bucket that is in the same region as the model package.ProductId
— (String
)The Amazon Web Services Marketplace product ID of the model package.
Environment
— (map<String>
)The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.ModelInput
— (map
)A structure with Model Input details.
DataInputConfig
— required — (String
)The input configuration object for the model.
Framework
— (String
)The machine learning framework of the model package container image.
FrameworkVersion
— (String
)The framework version of the Model Package Container Image.
NearestModelName
— (String
)The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling
ListModelMetadata
.
SupportedTransformInstanceTypes
— (Array<String>
)A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
SupportedRealtimeInferenceInstanceTypes
— (Array<String>
)A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
SupportedContentTypes
— required — (Array<String>
)The supported MIME types for the input data.
SupportedResponseMIMETypes
— required — (Array<String>
)The supported MIME types for the output data.
-
ValidationSpecification
— (map
)Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm's inference code.
ValidationRole
— required — (String
)The IAM roles that SageMaker uses to run the training jobs.
ValidationProfiles
— required — (Array<map>
)An array of
AlgorithmValidationProfile
objects, each of which specifies a training job and batch transform job that SageMaker runs to validate your algorithm.ProfileName
— required — (String
)The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
TrainingJobDefinition
— required — (map
)The
TrainingJobDefinition
object that describes the training job that SageMaker runs to validate your algorithm.TrainingInputMode
— required — (String
)The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports
Pipe
mode, Amazon SageMaker streams data directly from Amazon S3 to the container.File mode
If an algorithm supports
File
mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports
FastFile
mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.FastFile
mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided."Pipe"
"File"
"FastFile"
HyperParameters
— (map<String>
)The hyperparameters used for the training job.
InputDataConfig
— required — (Array<map>
)An array of
Channel
objects, each of which specifies an input source.ChannelName
— required — (String
)The name of the channel.
DataSource
— required — (map
)The location of the channel data.
S3DataSource
— (map
)The S3 location of the data source that is associated with a channel.
S3DataType
— required — (String
)If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.If you choose
Possible values include:AugmentedManifestFile
, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
can only be used if the Channel's input mode isPipe
."ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
S3Uri
— required — (String
)Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:-
A key name prefix might look like this:
s3://bucketname/exampleprefix
-
A manifest might look like this:
s3://bucketname/example.manifest
A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of
S3Uri
. Note that the prefix must be a valid non-emptyS3Uri
that precludes users from specifying a manifest whose individualS3Uri
is sourced from different S3 buckets.The following code example shows a valid manifest format:
[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
This JSON is equivalent to the following
S3Uri
list:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set of
S3Uri
in this manifest is the input data for the channel for this data source. The object that eachS3Uri
points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
-
S3DataDistributionType
— (String
)If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated
.If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify
ShardedByS3Key
. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose
Possible values include:ShardedByS3Key
. If the algorithm requires copying training data to the ML storage volume (whenTrainingInputMode
is set toFile
), this copies 1/n of the number of objects."FullyReplicated"
"ShardedByS3Key"
AttributeNames
— (Array<String>
)A list of one or more attribute names to use that are found in a specified augmented manifest file.
InstanceGroupNames
— (Array<String>
)A list of names of instance groups that get data from the S3 data source.
FileSystemDataSource
— (map
)The file system that is associated with a channel.
FileSystemId
— required — (String
)The file system id.
FileSystemAccessMode
— required — (String
)The access mode of the mount of the directory associated with the channel. A directory can be mounted either in
Possible values include:ro
(read-only) orrw
(read-write) mode."rw"
"ro"
FileSystemType
— required — (String
)The file system type.
Possible values include:"EFS"
"FSxLustre"
DirectoryPath
— required — (String
)The full path to the directory to associate with the channel.
ContentType
— (String
)The MIME type of the data.
CompressionType
— (String
)If training data is compressed, the compression type. The default value is
Possible values include:None
.CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None."None"
"Gzip"
RecordWrapperType
— (String
)Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
Possible values include:"None"
"RecordIO"
InputMode
— (String
)(Optional) The input mode to use for the data channel in a training job. If you don't set a value for
InputMode
, SageMaker uses the value set forTrainingInputMode
. Use this parameter to override theTrainingInputMode
setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, useFile
input mode. To stream data directly from Amazon S3 to the container, choosePipe
input mode.To use a model for incremental training, choose
Possible values include:File
input model."Pipe"
"File"
"FastFile"
ShuffleConfig
— (map
)A configuration for a shuffle option for input data in a channel. If you use
S3Prefix
forS3DataType
, this shuffles the results of the S3 key prefix matches. If you useManifestFile
, the order of the S3 object references in theManifestFile
is shuffled. If you useAugmentedManifestFile
, the order of the JSON lines in theAugmentedManifestFile
is shuffled. The shuffling order is determined using theSeed
value.For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType
ofShardedByS3Key
, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.Seed
— required — (Integer
)Determines the shuffling order in
ShuffleConfig
value.
OutputDataConfig
— required — (map
)the path to the S3 bucket where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob
,CreateTransformJob
, orCreateHyperParameterTuningJob
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
S3OutputPath
— required — (String
)Identifies the S3 path where you want SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.CompressionType
— (String
)The model output compression type. Select
Possible values include:None
to output an uncompressed model, recommended for large model outputs. Defaults to gzip."GZIP"
"NONE"
ResourceConfig
— required — (map
)The resources, including the ML compute instances and ML storage volumes, to use for model training.
InstanceType
— (String
)The ML compute instance type.
Note: SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022. Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances (Possible values include:ml.p4de.24xlarge
) to reduce model training time. Theml.p4de.24xlarge
instances are available in the following Amazon Web Services Regions.- US East (N. Virginia) (us-east-1)
- US West (Oregon) (us-west-2)
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— (Integer
)The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB
— required — (Integer
)The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose
File
as theTrainingInputMode
in the algorithm specification.When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include
ml.p4d
,ml.g4dn
, andml.g5
.When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through
VolumeSizeInGB
in theResourceConfig
API. For example, ML instance families that use EBS volumes includeml.c5
andml.p2
.To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId
— (String
)The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request aVolumeKmsKeyId
when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.The
VolumeKmsKeyId
can be in any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
InstanceGroups
— (Array<map>
)The configuration of a heterogeneous cluster in JSON format.
InstanceType
— required — (String
)Specifies the instance type of the instance group.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— required — (Integer
)Specifies the number of instances of the instance group.
InstanceGroupName
— required — (String
)Specifies the name of the instance group.
KeepAlivePeriodInSeconds
— (Integer
)The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
StoppingCondition
— required — (map
)Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
MaxRuntimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.The maximum time that a
TrainingJob
can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.MaxWaitTimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than
MaxRuntimeInSeconds
. If the job does not complete during this time, SageMaker ends the job.When
RetryStrategy
is specified in the job request,MaxWaitTimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt.
TransformJobDefinition
— (map
)The
TransformJobDefinition
object that describes the transform job that SageMaker runs to validate your algorithm.MaxConcurrentTransforms
— (Integer
)The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB
— (Integer
)The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy
— (String
)A string that determines the number of records included in a single mini-batch.
SingleRecord
means only one record is used per mini-batch.MultiRecord
means a mini-batch is set to contain as many records that can fit within theMaxPayloadInMB
limit."MultiRecord"
"SingleRecord"
Environment
— (map<String>
)The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
TransformInput
— required — (map
)A description of the input source and the way the transform job consumes it.
DataSource
— required — (map
)Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource
— required — (map
)The S3 location of the data source that is associated with a channel.
S3DataType
— required — (String
)If you choose
S3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.The following values are compatible:
ManifestFile
,S3Prefix
The following value is not compatible:
Possible values include:AugmentedManifestFile
"ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
S3Uri
— required — (String
)Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:-
A key name prefix might look like this:
s3://bucketname/exampleprefix
. -
A manifest might look like this:
s3://bucketname/example.manifest
The manifest is an S3 object which is a JSON file with the following format:
[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
The preceding JSON matches the following
S3Uris
:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set of
S3Uris
in this manifest constitutes the input data for the channel for this datasource. The object that eachS3Uris
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.
-
ContentType
— (String
)The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType
— (String
)If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is
Possible values include:None
."None"
"Gzip"
SplitType
— (String
)The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Note: Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value ofPossible values include:BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
. For more information aboutRecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation."None"
"Line"
"RecordIO"
"TFRecord"
-
TransformOutput
— required — (map
)Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath
— required — (String
)The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example,
s3://bucket-name/key-name-prefix
.For every S3 object used as input for the transform job, batch transform stores the transformed data with an .
out
suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored ats3://bucket-name/input-name-prefix/dataset01/data.csv
, batch transform stores the transformed data ats3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out
. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .out
file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.Accept
— (String
)The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith
— (String
)Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify
Possible values include:None
. To add a newline character at the end of every transformed record, specifyLine
."None"
"Line"
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.
-
TransformResources
— required — (map
)Identifies the ML compute instances for the transform job.
InstanceType
— required — (String
)The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or
Possible values include:ml.m5.large
instance types."ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
InstanceCount
— required — (Integer
)The number of ML compute instances to use in the transform job. The default value is
1
, and the maximum is100
. For distributed transform jobs, specify a value greater than1
.VolumeKmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job.
Note: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request aVolumeKmsKeyId
when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.The
VolumeKmsKeyId
can be any of the following formats:-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
-
CertifyForMarketplace
— (Boolean
)Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:AlgorithmArn
— (String
)The Amazon Resource Name (ARN) of the new algorithm.
-
(AWS.Response)
—
Returns:
createApp(params = {}, callback) ⇒ AWS.Request
Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
Service Reference:
Examples:
Calling the createApp operation
var params = { AppName: 'STRING_VALUE', /* required */ AppType: JupyterServer | KernelGateway | TensorBoard | RStudioServerPro | RSessionGateway, /* required */ DomainId: 'STRING_VALUE', /* required */ ResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, SpaceName: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ], UserProfileName: 'STRING_VALUE' }; sagemaker.createApp(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
DomainId
— (String
)The domain ID.
UserProfileName
— (String
)The user profile name. If this value is not set, then
SpaceName
must be set.AppType
— (String
)The type of app.
Possible values include:"JupyterServer"
"KernelGateway"
"TensorBoard"
"RStudioServerPro"
"RSessionGateway"
AppName
— (String
)The name of the app.
Tags
— (Array<map>
)Each tag consists of a key and an optional value. Tag keys must be unique per resource.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
ResourceSpec
— (map
)The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
Note: The value ofInstanceType
passed as part of theResourceSpec
in theCreateApp
call overrides the value passed as part of theResourceSpec
configured for the user profile or the domain. IfInstanceType
is not specified in any of those threeResourceSpec
values for aKernelGateway
app, theCreateApp
call fails with a request validation error.SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
SpaceName
— (String
)The name of the space. If this value is not set, then
UserProfileName
must be set.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:AppArn
— (String
)The Amazon Resource Name (ARN) of the app.
-
(AWS.Response)
—
Returns:
createAppImageConfig(params = {}, callback) ⇒ AWS.Request
Creates a configuration for running a SageMaker image as a KernelGateway app. The configuration specifies the Amazon Elastic File System (EFS) storage volume on the image, and a list of the kernels in the image.
Service Reference:
Examples:
Calling the createAppImageConfig operation
var params = { AppImageConfigName: 'STRING_VALUE', /* required */ KernelGatewayImageConfig: { KernelSpecs: [ /* required */ { Name: 'STRING_VALUE', /* required */ DisplayName: 'STRING_VALUE' }, /* more items */ ], FileSystemConfig: { DefaultGid: 'NUMBER_VALUE', DefaultUid: 'NUMBER_VALUE', MountPath: 'STRING_VALUE' } }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createAppImageConfig(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
AppImageConfigName
— (String
)The name of the AppImageConfig. Must be unique to your account.
Tags
— (Array<map>
)A list of tags to apply to the AppImageConfig.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
KernelGatewayImageConfig
— (map
)The KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.
KernelSpecs
— required — (Array<map>
)The specification of the Jupyter kernels in the image.
Name
— required — (String
)The name of the Jupyter kernel in the image. This value is case sensitive.
DisplayName
— (String
)The display name of the kernel.
FileSystemConfig
— (map
)The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.
MountPath
— (String
)The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user.
DefaultUid
— (Integer
)The default POSIX user ID (UID). If not specified, defaults to
1000
.DefaultGid
— (Integer
)The default POSIX group ID (GID). If not specified, defaults to
100
.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:AppImageConfigArn
— (String
)The Amazon Resource Name (ARN) of the AppImageConfig.
-
(AWS.Response)
—
Returns:
createArtifact(params = {}, callback) ⇒ AWS.Request
Creates an artifact. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.
Service Reference:
Examples:
Calling the createArtifact operation
var params = { ArtifactType: 'STRING_VALUE', /* required */ Source: { /* required */ SourceUri: 'STRING_VALUE', /* required */ SourceTypes: [ { SourceIdType: MD5Hash | S3ETag | S3Version | Custom, /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }, ArtifactName: 'STRING_VALUE', MetadataProperties: { CommitId: 'STRING_VALUE', GeneratedBy: 'STRING_VALUE', ProjectId: 'STRING_VALUE', Repository: 'STRING_VALUE' }, Properties: { '<StringParameterValue>': 'STRING_VALUE', /* '<StringParameterValue>': ... */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createArtifact(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ArtifactName
— (String
)The name of the artifact. Must be unique to your account in an Amazon Web Services Region.
Source
— (map
)The ID, ID type, and URI of the source.
SourceUri
— required — (String
)The URI of the source.
SourceTypes
— (Array<map>
)A list of source types.
SourceIdType
— required — (String
)The type of ID.
Possible values include:"MD5Hash"
"S3ETag"
"S3Version"
"Custom"
Value
— required — (String
)The ID.
ArtifactType
— (String
)The artifact type.
Properties
— (map<String>
)A list of properties to add to the artifact.
MetadataProperties
— (map
)Metadata properties of the tracking entity, trial, or trial component.
CommitId
— (String
)The commit ID.
Repository
— (String
)The repository.
GeneratedBy
— (String
)The entity this entity was generated by.
ProjectId
— (String
)The project ID.
Tags
— (Array<map>
)A list of tags to apply to the artifact.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ArtifactArn
— (String
)The Amazon Resource Name (ARN) of the artifact.
-
(AWS.Response)
—
Returns:
createAutoMLJob(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
Note: We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility.CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous versionCreateAutoMLJob
, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate aCreateAutoMLJob
toCreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
Service Reference:
Examples:
Calling the createAutoMLJob operation
var params = { AutoMLJobName: 'STRING_VALUE', /* required */ InputDataConfig: [ /* required */ { DataSource: { /* required */ S3DataSource: { /* required */ S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE' /* required */ } }, TargetAttributeName: 'STRING_VALUE', /* required */ ChannelType: training | validation, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', SampleWeightAttributeName: 'STRING_VALUE' }, /* more items */ ], OutputDataConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ AutoMLJobConfig: { CandidateGenerationConfig: { AlgorithmsConfig: [ { AutoMLAlgorithms: [ /* required */ xgboost | linear-learner | mlp | lightgbm | catboost | randomforest | extra-trees | nn-torch | fastai, /* more items */ ] }, /* more items */ ], FeatureSpecificationS3Uri: 'STRING_VALUE' }, CompletionCriteria: { MaxAutoMLJobRuntimeInSeconds: 'NUMBER_VALUE', MaxCandidates: 'NUMBER_VALUE', MaxRuntimePerTrainingJobInSeconds: 'NUMBER_VALUE' }, DataSplitConfig: { ValidationFraction: 'NUMBER_VALUE' }, Mode: AUTO | ENSEMBLING | HYPERPARAMETER_TUNING, SecurityConfig: { EnableInterContainerTrafficEncryption: true || false, VolumeKmsKeyId: 'STRING_VALUE', VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } } }, AutoMLJobObjective: { MetricName: Accuracy | MSE | F1 | F1macro | AUC | RMSE | MAE | R2 | BalancedAccuracy | Precision | PrecisionMacro | Recall | RecallMacro | MAPE | MASE | WAPE | AverageWeightedQuantileLoss /* required */ }, GenerateCandidateDefinitionsOnly: true || false, ModelDeployConfig: { AutoGenerateEndpointName: true || false, EndpointName: 'STRING_VALUE' }, ProblemType: BinaryClassification | MulticlassClassification | Regression, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createAutoMLJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
AutoMLJobName
— (String
)Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
InputDataConfig
— (Array<map>
)An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to
InputDataConfig
supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.DataSource
— required — (map
)The data source for an AutoML channel.
S3DataSource
— required — (map
)The Amazon S3 location of the input data.
S3DataType
— required — (String
)The data type.
-
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.The
S3Prefix
should have the following format:s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
-
If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.A
ManifestFile
should have the format shown below:[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",
... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]
-
If you choose
AugmentedManifestFile
,S3Uri
identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
is available for V2 API jobs only (for example, for jobs created by callingCreateAutoMLJobV2
).Here is a minimal, single-record example of an
AugmentedManifestFile
:{"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
"label-metadata": {"class-name": "cat"
}For more information on
AugmentedManifestFile
, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
"ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
-
S3Uri
— required — (String
)The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
CompressionType
— (String
)You can use
Possible values include:Gzip
orNone
. The default value isNone
."None"
"Gzip"
TargetAttributeName
— required — (String
)The name of the target variable in supervised learning, usually represented by 'y'.
ContentType
— (String
)The content type of the data from the input source. You can use
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.ChannelType
— (String
)The channel type (optional) is an
Possible values include:enum
string. The default value istraining
. Channels for training and validation must share the sameContentType
andTargetAttributeName
. For information on specifying training and validation channel types, see How to specify training and validation datasets."training"
"validation"
SampleWeightAttributeName
— (String
)If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.
Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.
Support for sample weights is available in Ensembling mode only.
OutputDataConfig
— (map
)Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
KmsKeyId
— (String
)The Key Management Service (KMS) encryption key ID.
S3OutputPath
— required — (String
)The Amazon S3 output path. Must be 128 characters or less.
ProblemType
— (String
)Defines the type of supervised learning problem available for the candidates. For more information, see Amazon SageMaker Autopilot problem types.
Possible values include:"BinaryClassification"
"MulticlassClassification"
"Regression"
AutoMLJobObjective
— (map
)Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
MetricName
— required — (String
)The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.
For the list of all available metrics supported by Autopilot, see Autopilot metrics.
If you do not specify a metric explicitly, the default behavior is to automatically use:
-
For tabular problem types:
-
Regression:
MSE
. -
Binary classification:
F1
. -
Multiclass classification:
Accuracy
.
-
-
For image or text classification problem types:
Accuracy
-
For time-series forecasting problem types:
AverageWeightedQuantileLoss
"Accuracy"
"MSE"
"F1"
"F1macro"
"AUC"
"RMSE"
"MAE"
"R2"
"BalancedAccuracy"
"Precision"
"PrecisionMacro"
"Recall"
"RecallMacro"
"MAPE"
"MASE"
"WAPE"
"AverageWeightedQuantileLoss"
-
AutoMLJobConfig
— (map
)A collection of settings used to configure an AutoML job.
CompletionCriteria
— (map
)How long an AutoML job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates
— (Integer
)The maximum number of times a training job is allowed to run.
For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
MaxRuntimePerTrainingJobInSeconds
— (Integer
)The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.
For job V2s (jobs created by calling
CreateAutoMLJobV2
), this field controls the runtime of the job candidate.MaxAutoMLJobRuntimeInSeconds
— (Integer
)The maximum runtime, in seconds, an AutoML job has to complete.
If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.
SecurityConfig
— (map
)The security configuration for traffic encryption or Amazon VPC settings.
VolumeKmsKeyId
— (String
)The key used to encrypt stored data.
EnableInterContainerTrafficEncryption
— (Boolean
)Whether to use traffic encryption between the container layers.
VpcConfig
— (map
)The VPC configuration.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
DataSplitConfig
— (map
)The configuration for splitting the input training dataset.
Type: AutoMLDataSplitConfig
ValidationFraction
— (Float
)The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.
CandidateGenerationConfig
— (map
)The configuration for generating a candidate for an AutoML job (optional).
FeatureSpecificationS3Uri
— (String
)A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input
FeatureAttributeNames
(optional) in JSON format as shown below:{ "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
Note: These column keys may not include the target column.In ensembling mode, Autopilot only supports the following data types:
numeric
,categorical
,text
, anddatetime
. In HPO mode, Autopilot can supportnumeric
,categorical
,text
,datetime
, andsequence
.If only
FeatureDataTypes
is provided, the column keys (col1
,col2
,..) should be a subset of the column names in the input data.If both
FeatureDataTypes
andFeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided inFeatureAttributeNames
.The key name
FeatureAttributeNames
is fixed. The values listed in["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.AlgorithmsConfig
— (Array<map>
)Stores the configuration information for the selection of algorithms used to train the model candidates.
The list of available algorithms to choose from depends on the training mode set in
AutoMLJobConfig.Mode
.-
AlgorithmsConfig
should not be set inAUTO
training mode. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,AutoMLCandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
AutoMLAlgorithms
— required — (Array<String>
)The selection of algorithms run on a dataset to train the model candidates of an Autopilot job.
Note: Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING
orHYPERPARAMETER_TUNING
). Choose a minimum of 1 algorithm.-
In
ENSEMBLING
mode:-
"catboost"
-
"extra-trees"
-
"fastai"
-
"lightgbm"
-
"linear-learner"
-
"nn-torch"
-
"randomforest"
-
"xgboost"
-
-
In
HYPERPARAMETER_TUNING
mode:-
"linear-learner"
-
"mlp"
-
"xgboost"
-
-
-
Mode
— (String
)The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting
AUTO
. InAUTO
mode, Autopilot choosesENSEMBLING
for datasets smaller than 100 MB, andHYPERPARAMETER_TUNING
for larger ones.The
ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported byENSEMBLING
mode.The
Possible values include:HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported byHYPERPARAMETER_TUNING
mode."AUTO"
"ENSEMBLING"
"HYPERPARAMETER_TUNING"
RoleArn
— (String
)The ARN of the role that is used to access the data.
GenerateCandidateDefinitionsOnly
— (Boolean
)Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
ModelDeployConfig
— (map
)Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
AutoGenerateEndpointName
— (Boolean
)Set to
True
to automatically generate an endpoint name for a one-click Autopilot model deployment; set toFalse
otherwise. The default value isFalse
.Note: If you setAutoGenerateEndpointName
toTrue
, do not specify theEndpointName
; otherwise a 400 error is thrown.EndpointName
— (String
)Specifies the endpoint name to use for a one-click Autopilot model deployment if the endpoint name is not generated automatically.
Note: Specify theEndpointName
if and only if you setAutoGenerateEndpointName
toFalse
; otherwise a 400 error is thrown.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:AutoMLJobArn
— (String
)The unique ARN assigned to the AutoML job when it is created.
-
(AWS.Response)
—
Returns:
createAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
Note: CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility.CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous versionCreateAutoMLJob
, as well as time-series forecasting, and non-tabular problem types such as image or text classification. Find guidelines about how to migrate aCreateAutoMLJob
toCreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.For the list of available problem types supported by
CreateAutoMLJobV2
, see AutoMLProblemTypeConfig.You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
Service Reference:
Examples:
Calling the createAutoMLJobV2 operation
var params = { AutoMLJobInputDataConfig: [ /* required */ { ChannelType: training | validation, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', DataSource: { S3DataSource: { /* required */ S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE' /* required */ } } }, /* more items */ ], AutoMLJobName: 'STRING_VALUE', /* required */ AutoMLProblemTypeConfig: { /* required */ ImageClassificationJobConfig: { CompletionCriteria: { MaxAutoMLJobRuntimeInSeconds: 'NUMBER_VALUE', MaxCandidates: 'NUMBER_VALUE', MaxRuntimePerTrainingJobInSeconds: 'NUMBER_VALUE' } }, TabularJobConfig: { TargetAttributeName: 'STRING_VALUE', /* required */ CandidateGenerationConfig: { AlgorithmsConfig: [ { AutoMLAlgorithms: [ /* required */ xgboost | linear-learner | mlp | lightgbm | catboost | randomforest | extra-trees | nn-torch | fastai, /* more items */ ] }, /* more items */ ] }, CompletionCriteria: { MaxAutoMLJobRuntimeInSeconds: 'NUMBER_VALUE', MaxCandidates: 'NUMBER_VALUE', MaxRuntimePerTrainingJobInSeconds: 'NUMBER_VALUE' }, FeatureSpecificationS3Uri: 'STRING_VALUE', GenerateCandidateDefinitionsOnly: true || false, Mode: AUTO | ENSEMBLING | HYPERPARAMETER_TUNING, ProblemType: BinaryClassification | MulticlassClassification | Regression, SampleWeightAttributeName: 'STRING_VALUE' }, TextClassificationJobConfig: { ContentColumn: 'STRING_VALUE', /* required */ TargetLabelColumn: 'STRING_VALUE', /* required */ CompletionCriteria: { MaxAutoMLJobRuntimeInSeconds: 'NUMBER_VALUE', MaxCandidates: 'NUMBER_VALUE', MaxRuntimePerTrainingJobInSeconds: 'NUMBER_VALUE' } }, TimeSeriesForecastingJobConfig: { ForecastFrequency: 'STRING_VALUE', /* required */ ForecastHorizon: 'NUMBER_VALUE', /* required */ TimeSeriesConfig: { /* required */ ItemIdentifierAttributeName: 'STRING_VALUE', /* required */ TargetAttributeName: 'STRING_VALUE', /* required */ TimestampAttributeName: 'STRING_VALUE', /* required */ GroupingAttributeNames: [ 'STRING_VALUE', /* more items */ ] }, CompletionCriteria: { MaxAutoMLJobRuntimeInSeconds: 'NUMBER_VALUE', MaxCandidates: 'NUMBER_VALUE', MaxRuntimePerTrainingJobInSeconds: 'NUMBER_VALUE' }, FeatureSpecificationS3Uri: 'STRING_VALUE', ForecastQuantiles: [ 'STRING_VALUE', /* more items */ ], HolidayConfig: [ { CountryCode: 'STRING_VALUE' }, /* more items */ ], Transformations: { Aggregation: { '<TransformationAttributeName>': sum | avg | first | min | max, /* '<TransformationAttributeName>': ... */ }, Filling: { '<TransformationAttributeName>': { '<FillingType>': 'STRING_VALUE', /* '<FillingType>': ... */ }, /* '<TransformationAttributeName>': ... */ } } } }, OutputDataConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ AutoMLJobObjective: { MetricName: Accuracy | MSE | F1 | F1macro | AUC | RMSE | MAE | R2 | BalancedAccuracy | Precision | PrecisionMacro | Recall | RecallMacro | MAPE | MASE | WAPE | AverageWeightedQuantileLoss /* required */ }, DataSplitConfig: { ValidationFraction: 'NUMBER_VALUE' }, ModelDeployConfig: { AutoGenerateEndpointName: true || false, EndpointName: 'STRING_VALUE' }, SecurityConfig: { EnableInterContainerTrafficEncryption: true || false, VolumeKmsKeyId: 'STRING_VALUE', VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createAutoMLJobV2(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
AutoMLJobName
— (String
)Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
AutoMLJobInputDataConfig
— (Array<map>
)An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
.
ChannelType
— (String
)The type of channel. Defines whether the data are used for training or validation. The default value is
training
. Channels fortraining
andvalidation
must share the sameContentType
Note: The type of channel defaults toPossible values include:training
for the time-series forecasting problem type."training"
"validation"
ContentType
— (String
)The content type of the data from the input source. The following are the allowed content types for different problems:
-
For tabular problem types:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For image classification:
image/png
,image/jpeg
, orimage/*
. The default value isimage/*
. -
For text classification:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For time-series forecasting:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.
-
CompressionType
— (String
)The allowed compression types depend on the input format and problem type. We allow the compression type
Possible values include:Gzip
forS3Prefix
inputs on tabular data only. For all other inputs, the compression type should beNone
. If no compression type is provided, we default toNone
."None"
"Gzip"
DataSource
— (map
)The data source for an AutoML channel (Required).
S3DataSource
— required — (map
)The Amazon S3 location of the input data.
S3DataType
— required — (String
)The data type.
-
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.The
S3Prefix
should have the following format:s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
-
If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.A
ManifestFile
should have the format shown below:[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",
... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]
-
If you choose
AugmentedManifestFile
,S3Uri
identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
is available for V2 API jobs only (for example, for jobs created by callingCreateAutoMLJobV2
).Here is a minimal, single-record example of an
AugmentedManifestFile
:{"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
"label-metadata": {"class-name": "cat"
}For more information on
AugmentedManifestFile
, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
"ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
-
S3Uri
— required — (String
)The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
-
OutputDataConfig
— (map
)Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
KmsKeyId
— (String
)The Key Management Service (KMS) encryption key ID.
S3OutputPath
— required — (String
)The Amazon S3 output path. Must be 128 characters or less.
AutoMLProblemTypeConfig
— (map
)Defines the configuration settings of one of the supported problem types.
ImageClassificationJobConfig
— (map
)Settings used to configure an AutoML job V2 for the image classification problem type.
CompletionCriteria
— (map
)How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates
— (Integer
)The maximum number of times a training job is allowed to run.
For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
MaxRuntimePerTrainingJobInSeconds
— (Integer
)The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.
For job V2s (jobs created by calling
CreateAutoMLJobV2
), this field controls the runtime of the job candidate.MaxAutoMLJobRuntimeInSeconds
— (Integer
)The maximum runtime, in seconds, an AutoML job has to complete.
If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.
TextClassificationJobConfig
— (map
)Settings used to configure an AutoML job V2 for the text classification problem type.
CompletionCriteria
— (map
)How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates
— (Integer
)The maximum number of times a training job is allowed to run.
For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
MaxRuntimePerTrainingJobInSeconds
— (Integer
)The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.
For job V2s (jobs created by calling
CreateAutoMLJobV2
), this field controls the runtime of the job candidate.MaxAutoMLJobRuntimeInSeconds
— (Integer
)The maximum runtime, in seconds, an AutoML job has to complete.
If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.
ContentColumn
— required — (String
)The name of the column used to provide the sentences to be classified. It should not be the same as the target column.
TargetLabelColumn
— required — (String
)The name of the column used to provide the class labels. It should not be same as the content column.
TabularJobConfig
— (map
)Settings used to configure an AutoML job V2 for a tabular problem type (regression, classification).
CandidateGenerationConfig
— (map
)The configuration information of how model candidates are generated.
AlgorithmsConfig
— (Array<map>
)Stores the configuration information for the selection of algorithms used to train model candidates on tabular data.
The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set inAUTO
training mode. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
AutoMLAlgorithms
— required — (Array<String>
)The selection of algorithms run on a dataset to train the model candidates of an Autopilot job.
Note: Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING
orHYPERPARAMETER_TUNING
). Choose a minimum of 1 algorithm.-
In
ENSEMBLING
mode:-
"catboost"
-
"extra-trees"
-
"fastai"
-
"lightgbm"
-
"linear-learner"
-
"nn-torch"
-
"randomforest"
-
"xgboost"
-
-
In
HYPERPARAMETER_TUNING
mode:-
"linear-learner"
-
"mlp"
-
"xgboost"
-
-
-
CompletionCriteria
— (map
)How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates
— (Integer
)The maximum number of times a training job is allowed to run.
For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
MaxRuntimePerTrainingJobInSeconds
— (Integer
)The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.
For job V2s (jobs created by calling
CreateAutoMLJobV2
), this field controls the runtime of the job candidate.MaxAutoMLJobRuntimeInSeconds
— (Integer
)The maximum runtime, in seconds, an AutoML job has to complete.
If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.
FeatureSpecificationS3Uri
— (String
)A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job V2. You can input
FeatureAttributeNames
(optional) in JSON format as shown below:{ "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
Note: These column keys may not include the target column.In ensembling mode, Autopilot only supports the following data types:
numeric
,categorical
,text
, anddatetime
. In HPO mode, Autopilot can supportnumeric
,categorical
,text
,datetime
, andsequence
.If only
FeatureDataTypes
is provided, the column keys (col1
,col2
,..) should be a subset of the column names in the input data.If both
FeatureDataTypes
andFeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided inFeatureAttributeNames
.The key name
FeatureAttributeNames
is fixed. The values listed in["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.Mode
— (String
)The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting
AUTO
. InAUTO
mode, Autopilot choosesENSEMBLING
for datasets smaller than 100 MB, andHYPERPARAMETER_TUNING
for larger ones.The
ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported byENSEMBLING
mode.The
Possible values include:HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported byHYPERPARAMETER_TUNING
mode."AUTO"
"ENSEMBLING"
"HYPERPARAMETER_TUNING"
GenerateCandidateDefinitionsOnly
— (Boolean
)Generates possible candidates without training the models. A model candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
ProblemType
— (String
)The type of supervised learning problem available for the model candidates of the AutoML job V2. For more information, see Amazon SageMaker Autopilot problem types.
Note: You must either specify the type of supervised learning problem inPossible values include:ProblemType
and provide the AutoMLJobObjective metric, or none at all."BinaryClassification"
"MulticlassClassification"
"Regression"
TargetAttributeName
— required — (String
)The name of the target variable in supervised learning, usually represented by 'y'.
SampleWeightAttributeName
— (String
)If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.
Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.
Support for sample weights is available in Ensembling mode only.
TimeSeriesForecastingJobConfig
— (map
)Settings used to configure an AutoML job V2 for a time-series forecasting problem type.
FeatureSpecificationS3Uri
— (String
)A URL to the Amazon S3 data source containing additional selected features that complement the target, itemID, timestamp, and grouped columns set in
TimeSeriesConfig
. When not provided, the AutoML job V2 includes all the columns from the original dataset that are not already declared inTimeSeriesConfig
. If provided, the AutoML job V2 only considers these additional columns as a complement to the ones declared inTimeSeriesConfig
.You can input
FeatureAttributeNames
(optional) in JSON format as shown below:{ "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
Autopilot supports the following data types:
numeric
,categorical
,text
, anddatetime
.Note: These column keys must not include any column set inTimeSeriesConfig
.CompletionCriteria
— (map
)How long a job is allowed to run, or how many candidates a job is allowed to generate.
MaxCandidates
— (Integer
)The maximum number of times a training job is allowed to run.
For text and image classification, as well as time-series forecasting problem types, the supported value is 1. For tabular problem types, the maximum value is 750.
MaxRuntimePerTrainingJobInSeconds
— (Integer
)The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action.
For job V2s (jobs created by calling
CreateAutoMLJobV2
), this field controls the runtime of the job candidate.MaxAutoMLJobRuntimeInSeconds
— (Integer
)The maximum runtime, in seconds, an AutoML job has to complete.
If an AutoML job exceeds the maximum runtime, the job is stopped automatically and its processing is ended gracefully. The AutoML job identifies the best model whose training was completed and marks it as the best-performing model. Any unfinished steps of the job, such as automatic one-click Autopilot model deployment, are not completed.
ForecastFrequency
— required — (String
)The frequency of predictions in a forecast.
Valid intervals are an integer followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute). For example,
1D
indicates every day and15min
indicates every 15 minutes. The value of a frequency must not overlap with the next larger frequency. For example, you must use a frequency of1H
instead of60min
.The valid values for each frequency are the following:
-
Minute - 1-59
-
Hour - 1-23
-
Day - 1-6
-
Week - 1-4
-
Month - 1-11
-
Year - 1
-
ForecastHorizon
— required — (Integer
)The number of time-steps that the model predicts. The forecast horizon is also called the prediction length. The maximum forecast horizon is the lesser of 500 time-steps or 1/4 of the time-steps in the dataset.
ForecastQuantiles
— (Array<String>
)The quantiles used to train the model for forecasts at a specified quantile. You can specify quantiles from
0.01
(p1) to0.99
(p99), by increments of 0.01 or higher. Up to five forecast quantiles can be specified. WhenForecastQuantiles
is not provided, the AutoML job uses the quantiles p10, p50, and p90 as default.Transformations
— (map
)The transformations modifying specific attributes of the time-series, such as filling strategies for missing values.
Filling
— (map<map<String>>
)A key value pair defining the filling method for a column, where the key is the column name and the value is an object which defines the filling logic. You can specify multiple filling methods for a single column.
The supported filling methods and their corresponding options are:
-
frontfill
:none
(Supported only for target column) -
middlefill
:zero
,value
,median
,mean
,min
,max
-
backfill
:zero
,value
,median
,mean
,min
,max
-
futurefill
:zero
,value
,median
,mean
,min
,max
To set a filling method to a specific value, set the fill parameter to the chosen filling method value (for example
"backfill" : "value"
), and define the filling value in an additional parameter prefixed with "_value". For example, to setbackfill
to a value of2
, you must include two parameters:"backfill": "value"
and"backfill_value":"2"
.-
Aggregation
— (map<String>
)A key value pair defining the aggregation method for a column, where the key is the column name and the value is the aggregation method.
The supported aggregation methods are
sum
(default),avg
,first
,min
,max
.Note: Aggregation is only supported for the target column.
TimeSeriesConfig
— required — (map
)The collection of components that defines the time-series.
TargetAttributeName
— required — (String
)The name of the column representing the target variable that you want to predict for each item in your dataset. The data type of the target variable must be numerical.
TimestampAttributeName
— required — (String
)The name of the column indicating a point in time at which the target value of a given item is recorded.
ItemIdentifierAttributeName
— required — (String
)The name of the column that represents the set of item identifiers for which you want to predict the target value.
GroupingAttributeNames
— (Array<String>
)A set of columns names that can be grouped with the item identifier column to create a composite key for which a target value is predicted.
HolidayConfig
— (Array<map>
)The collection of holiday featurization attributes used to incorporate national holiday information into your forecasting model.
CountryCode
— (String
)The country code for the holiday calendar.
For the list of public holiday calendars supported by AutoML job V2, see Country Codes. Use the country code corresponding to the country of your choice.
RoleArn
— (String
)The ARN of the role that is used to access the data.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
SecurityConfig
— (map
)The security configuration for traffic encryption or Amazon VPC settings.
VolumeKmsKeyId
— (String
)The key used to encrypt stored data.
EnableInterContainerTrafficEncryption
— (Boolean
)Whether to use traffic encryption between the container layers.
VpcConfig
— (map
)The VPC configuration.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
AutoMLJobObjective
— (map
)Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
Note: For tabular problem types, you must either provide both theAutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all.MetricName
— required — (String
)The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.
For the list of all available metrics supported by Autopilot, see Autopilot metrics.
If you do not specify a metric explicitly, the default behavior is to automatically use:
-
For tabular problem types:
-
Regression:
MSE
. -
Binary classification:
F1
. -
Multiclass classification:
Accuracy
.
-
-
For image or text classification problem types:
Accuracy
-
For time-series forecasting problem types:
AverageWeightedQuantileLoss
"Accuracy"
"MSE"
"F1"
"F1macro"
"AUC"
"RMSE"
"MAE"
"R2"
"BalancedAccuracy"
"Precision"
"PrecisionMacro"
"Recall"
"RecallMacro"
"MAPE"
"MASE"
"WAPE"
"AverageWeightedQuantileLoss"
-
ModelDeployConfig
— (map
)Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
AutoGenerateEndpointName
— (Boolean
)Set to
True
to automatically generate an endpoint name for a one-click Autopilot model deployment; set toFalse
otherwise. The default value isFalse
.Note: If you setAutoGenerateEndpointName
toTrue
, do not specify theEndpointName
; otherwise a 400 error is thrown.EndpointName
— (String
)Specifies the endpoint name to use for a one-click Autopilot model deployment if the endpoint name is not generated automatically.
Note: Specify theEndpointName
if and only if you setAutoGenerateEndpointName
toFalse
; otherwise a 400 error is thrown.
DataSplitConfig
— (map
)This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.Note: This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.ValidationFraction
— (Float
)The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:AutoMLJobArn
— (String
)The unique ARN assigned to the AutoMLJob when it is created.
-
(AWS.Response)
—
Returns:
createCodeRepository(params = {}, callback) ⇒ AWS.Request
Creates a Git repository as a resource in your SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.
The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.
Service Reference:
Examples:
Calling the createCodeRepository operation
var params = { CodeRepositoryName: 'STRING_VALUE', /* required */ GitConfig: { /* required */ RepositoryUrl: 'STRING_VALUE', /* required */ Branch: 'STRING_VALUE', SecretArn: 'STRING_VALUE' }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createCodeRepository(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
CodeRepositoryName
— (String
)The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
GitConfig
— (map
)Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
RepositoryUrl
— required — (String
)The URL where the Git repository is located.
Branch
— (String
)The default branch for the Git repository.
SecretArn
— (String
)The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of
AWSCURRENT
and must be in the following format:{"username": UserName, "password": Password}
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:CodeRepositoryArn
— (String
)The Amazon Resource Name (ARN) of the new repository.
-
(AWS.Response)
—
Returns:
createCompilationJob(params = {}, callback) ⇒ AWS.Request
Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.
If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.
In the request body, you provide the following:
-
A name for the compilation job
-
Information about the input model artifacts
-
The output location for the compiled model and the device (target) that the model runs on
-
The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.
You can also provide a
Tag
to track the model compilation job's resource use and costs. The response body contains theCompilationJobArn
for the compiled job.To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
Service Reference:
Examples:
Calling the createCompilationJob operation
var params = { CompilationJobName: 'STRING_VALUE', /* required */ OutputConfig: { /* required */ S3OutputLocation: 'STRING_VALUE', /* required */ CompilerOptions: 'STRING_VALUE', KmsKeyId: 'STRING_VALUE', TargetDevice: lambda | ml_m4 | ml_m5 | ml_c4 | ml_c5 | ml_p2 | ml_p3 | ml_g4dn | ml_inf1 | ml_inf2 | ml_trn1 | ml_eia2 | jetson_tx1 | jetson_tx2 | jetson_nano | jetson_xavier | rasp3b | imx8qm | deeplens | rk3399 | rk3288 | aisage | sbe_c | qcs605 | qcs603 | sitara_am57x | amba_cv2 | amba_cv22 | amba_cv25 | x86_win32 | x86_win64 | coreml | jacinto_tda4vm | imx8mplus, TargetPlatform: { Arch: X86_64 | X86 | ARM64 | ARM_EABI | ARM_EABIHF, /* required */ Os: ANDROID | LINUX, /* required */ Accelerator: INTEL_GRAPHICS | MALI | NVIDIA | NNA } }, RoleArn: 'STRING_VALUE', /* required */ StoppingCondition: { /* required */ MaxRuntimeInSeconds: 'NUMBER_VALUE', MaxWaitTimeInSeconds: 'NUMBER_VALUE' }, InputConfig: { Framework: TENSORFLOW | KERAS | MXNET | ONNX | PYTORCH | XGBOOST | TFLITE | DARKNET | SKLEARN, /* required */ S3Uri: 'STRING_VALUE', /* required */ DataInputConfig: 'STRING_VALUE', FrameworkVersion: 'STRING_VALUE' }, ModelPackageVersionArn: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ], VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }; sagemaker.createCompilationJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
CompilationJobName
— (String
)A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
RoleArn
— (String
)The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
During model compilation, Amazon SageMaker needs your permission to:
-
Read input data from an S3 bucket
-
Write model artifacts to an S3 bucket
-
Write logs to Amazon CloudWatch Logs
-
Publish metrics to Amazon CloudWatch
You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the
iam:PassRole
permission. For more information, see Amazon SageMaker Roles.-
ModelPackageVersionArn
— (String
)The Amazon Resource Name (ARN) of a versioned model package. Provide either a
ModelPackageVersionArn
or anInputConfig
object in the request syntax. The presence of both objects in theCreateCompilationJob
request will return an exception.InputConfig
— (map
)Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
S3Uri
— required — (String
)The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
DataInputConfig
— (String
)Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are
Framework
specific.-
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"input":[1,1024,1024,3]}
-
If using the CLI,
{\"input\":[1,1024,1024,3]}
-
-
Examples for two inputs:
-
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
-
If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
-
-
-
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"input_1":[1,3,224,224]}
-
If using the CLI,
{\"input_1\":[1,3,224,224]}
-
-
Examples for two inputs:
-
If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
-
If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
-
-
-
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"data":[1,3,1024,1024]}
-
If using the CLI,
{\"data\":[1,3,1024,1024]}
-
-
Examples for two inputs:
-
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
-
If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
-
-
-
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.-
Examples for one input in dictionary format:
-
If using the console,
{"input0":[1,3,224,224]}
-
If using the CLI,
{\"input0\":[1,3,224,224]}
-
-
Example for one input in list format:
[[1,3,224,224]]
-
Examples for two inputs in dictionary format:
-
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
-
If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
-
-
Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
-
-
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters forCoreML
TargetDevice
(ML Model format):-
shape
: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:-
Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
-
Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
-
-
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
-
type
: Input type. Allowed values:Image
andTensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbias
andscale
. -
bias
: If the input type is an Image, you need to provide the bias vector. -
scale
: If the input type is an Image, you need to provide a scale factor.
CoreML
ClassifierConfig
parameters can be specified using OutputConfigCompilerOptions
. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:-
Tensor type input:
-
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
-
-
Tensor type input without input name (PyTorch):
-
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
-
-
Image type input:
-
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
-
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
-
-
Image type input without input name (PyTorch):
-
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
-
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
-
Depending on the model format,
DataInputConfig
requires the following parameters forml_eia2
OutputConfig:TargetDevice.-
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes forDataInputConfig
. Specify thesignature_def_key
inOutputConfig:CompilerOptions
if the model does not use TensorFlow's default signature def key. For example:-
"DataInputConfig": {"inputs": [1, 224, 224, 3]}
-
"CompilerOptions": {"signature_def_key": "serving_custom"}
-
-
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names foroutput_names
inOutputConfig:CompilerOptions
. For example:-
"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
-
"CompilerOptions": {"output_names": ["output_tensor:0"]}
-
-
Framework
— required — (String
)Identifies the framework in which the model was trained. For example: TENSORFLOW.
Possible values include:"TENSORFLOW"
"KERAS"
"MXNET"
"ONNX"
"PYTORCH"
"XGBOOST"
"TFLITE"
"DARKNET"
"SKLEARN"
FrameworkVersion
— (String
)Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.
For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.
OutputConfig
— (map
)Provides information about the output location for the compiled model and the target device the model runs on.
S3OutputLocation
— required — (String
)Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.TargetDevice
— (String
)Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of
TargetPlatform
.Note: CurrentlyPossible values include:ml_trn1
is available only in US East (N. Virginia) Region, andml_inf2
is available only in US East (Ohio) Region."lambda"
"ml_m4"
"ml_m5"
"ml_c4"
"ml_c5"
"ml_p2"
"ml_p3"
"ml_g4dn"
"ml_inf1"
"ml_inf2"
"ml_trn1"
"ml_eia2"
"jetson_tx1"
"jetson_tx2"
"jetson_nano"
"jetson_xavier"
"rasp3b"
"imx8qm"
"deeplens"
"rk3399"
"rk3288"
"aisage"
"sbe_c"
"qcs605"
"qcs603"
"sitara_am57x"
"amba_cv2"
"amba_cv22"
"amba_cv25"
"x86_win32"
"x86_win64"
"coreml"
"jacinto_tda4vm"
"imx8mplus"
TargetPlatform
— (map
)Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of
TargetDevice
.The following examples show how to configure the
TargetPlatform
andCompilerOptions
JSON strings for popular target platforms:-
Raspberry Pi 3 Model B+
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
"CompilerOptions": {'mattr': ['+neon']}
-
Jetson TX2
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
-
EC2 m5.2xlarge instance OS
"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'mcpu': 'skylake-avx512'}
-
RK3399
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
-
ARMv7 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
"CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
-
ARMv8 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
"CompilerOptions": {'ANDROID_PLATFORM': 29}
Os
— required — (String
)Specifies a target platform OS.
-
LINUX
: Linux-based operating systems. -
ANDROID
: Android operating systems. Android API level can be specified using theANDROID_PLATFORM
compiler option. For example,"CompilerOptions": {'ANDROID_PLATFORM': 28}
"ANDROID"
"LINUX"
-
Arch
— required — (String
)Specifies a target platform architecture.
-
X86_64
: 64-bit version of the x86 instruction set. -
X86
: 32-bit version of the x86 instruction set. -
ARM64
: ARMv8 64-bit CPU. -
ARM_EABIHF
: ARMv7 32-bit, Hard Float. -
ARM_EABI
: ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
"X86_64"
"X86"
"ARM64"
"ARM_EABI"
"ARM_EABIHF"
-
Accelerator
— (String
)Specifies a target platform accelerator (optional).
-
NVIDIA
: Nvidia graphics processing unit. It also requiresgpu-code
,trt-ver
,cuda-ver
compiler options -
MALI
: ARM Mali graphics processor -
INTEL_GRAPHICS
: Integrated Intel graphics
"INTEL_GRAPHICS"
"MALI"
"NVIDIA"
"NNA"
-
-
CompilerOptions
— (String
)Specifies additional parameters for compiler options in JSON format. The compiler options are
TargetPlatform
specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specifyCompilerOptions.
-
DTYPE
: Specifies the data type for the input. When compiling forml_*
(except forml_inf
) instances using PyTorch framework, provide the data type (dtype) of the model's input."float32"
is used if"DTYPE"
is not specified. Options for data type are:-
float32: Use either
"float"
or"float32"
. -
int64: Use either
"int64"
or"long"
.
For example,
{"dtype" : "float32"}
. -
-
CPU
: Compilation for CPU supports the following compiler options.-
mcpu
: CPU micro-architecture. For example,{'mcpu': 'skylake-avx512'}
-
mattr
: CPU flags. For example,{'mattr': ['+neon', '+vfpv4']}
-
-
ARM
: Details of ARM CPU compilations.-
NEON
: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.For example, add
{'mattr': ['+neon']}
to the compiler options if compiling for ARM 32-bit platform with the NEON support.
-
-
NVIDIA
: Compilation for NVIDIA GPU supports the following compiler options.-
gpu_code
: Specifies the targeted architecture. -
trt-ver
: Specifies the TensorRT versions in x.y.z. format. -
cuda-ver
: Specifies the CUDA version in x.y format.
For example,
{'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
-
-
ANDROID
: Compilation for the Android OS supports the following compiler options:-
ANDROID_PLATFORM
: Specifies the Android API levels. Available levels range from 21 to 29. For example,{'ANDROID_PLATFORM': 28}
. -
mattr
: Add{'mattr': ['+neon']}
to compiler options if compiling for ARM 32-bit platform with NEON support.
-
-
INFERENTIA
: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example,"CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\""
.For information about supported compiler options, see Neuron Compiler CLI Reference Guide.
-
CoreML
: Compilation for the CoreML OutputConfigTargetDevice
supports the following compiler options:-
class_labels
: Specifies the classification labels file name inside input tar.gz file. For example,{"class_labels": "imagenet_labels_1000.txt"}
. Labels inside the txt file should be separated by newlines.
-
-
EIA
: Compilation for the Elastic Inference Accelerator supports the following compiler options:-
precision_mode
: Specifies the precision of compiled artifacts. Supported values are"FP16"
and"FP32"
. Default is"FP32"
. -
signature_def_key
: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key. -
output_names
: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either:signature_def_key
oroutput_names
.
For example:
{"precision_mode": "FP32", "output_names": ["output:0"]}
-
-
KmsKeyId
— (String
)The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KmsKeyId can be any of the following formats:
-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
-
VpcConfig
— (map
)A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs. IDs have the form of
sg-xxxxxxxx
. Specify the security groups for the VPC that is specified in theSubnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC that you want to connect the compilation job to for accessing the model in Amazon S3.
StoppingCondition
— (map
)Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
MaxRuntimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.The maximum time that a
TrainingJob
can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.MaxWaitTimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than
MaxRuntimeInSeconds
. If the job does not complete during this time, SageMaker ends the job.When
RetryStrategy
is specified in the job request,MaxWaitTimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:CompilationJobArn
— (String
)If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:
-
CompilationJobArn
: The Amazon Resource Name (ARN) of the compiled job.
-
-
(AWS.Response)
—
Returns:
createContext(params = {}, callback) ⇒ AWS.Request
Creates a context. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.
Service Reference:
Examples:
Calling the createContext operation
var params = { ContextName: 'STRING_VALUE', /* required */ ContextType: 'STRING_VALUE', /* required */ Source: { /* required */ SourceUri: 'STRING_VALUE', /* required */ SourceId: 'STRING_VALUE', SourceType: 'STRING_VALUE' }, Description: 'STRING_VALUE', Properties: { '<StringParameterValue>': 'STRING_VALUE', /* '<StringParameterValue>': ... */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createContext(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ContextName
— (String
)The name of the context. Must be unique to your account in an Amazon Web Services Region.
Source
— (map
)The source type, ID, and URI.
SourceUri
— required — (String
)The URI of the source.
SourceType
— (String
)The type of the source.
SourceId
— (String
)The ID of the source.
ContextType
— (String
)The context type.
Description
— (String
)The description of the context.
Properties
— (map<String>
)A list of properties to add to the context.
Tags
— (Array<map>
)A list of tags to apply to the context.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ContextArn
— (String
)The Amazon Resource Name (ARN) of the context.
-
(AWS.Response)
—
Returns:
createDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker Model Monitor.
Service Reference:
Examples:
Calling the createDataQualityJobDefinition operation
var params = { DataQualityAppSpecification: { /* required */ ImageUri: 'STRING_VALUE', /* required */ ContainerArguments: [ 'STRING_VALUE', /* more items */ ], ContainerEntrypoint: [ 'STRING_VALUE', /* more items */ ], Environment: { '<ProcessingEnvironmentKey>': 'STRING_VALUE', /* '<ProcessingEnvironmentKey>': ... */ }, PostAnalyticsProcessorSourceUri: 'STRING_VALUE', RecordPreprocessorSourceUri: 'STRING_VALUE' }, DataQualityJobInput: { /* required */ BatchTransformInput: { DataCapturedDestinationS3Uri: 'STRING_VALUE', /* required */ DatasetFormat: { /* required */ Csv: { Header: true || false }, Json: { Line: true || false }, Parquet: { } }, LocalPath: 'STRING_VALUE', /* required */ EndTimeOffset: 'STRING_VALUE', ExcludeFeaturesAttribute: 'STRING_VALUE', FeaturesAttribute: 'STRING_VALUE', InferenceAttribute: 'STRING_VALUE', ProbabilityAttribute: 'STRING_VALUE', ProbabilityThresholdAttribute: 'NUMBER_VALUE', S3DataDistributionType: FullyReplicated | ShardedByS3Key, S3InputMode: Pipe | File, StartTimeOffset: 'STRING_VALUE' }, EndpointInput: { EndpointName: 'STRING_VALUE', /* required */ LocalPath: 'STRING_VALUE', /* required */ EndTimeOffset: 'STRING_VALUE', ExcludeFeaturesAttribute: 'STRING_VALUE', FeaturesAttribute: 'STRING_VALUE', InferenceAttribute: 'STRING_VALUE', ProbabilityAttribute: 'STRING_VALUE', ProbabilityThresholdAttribute: 'NUMBER_VALUE', S3DataDistributionType: FullyReplicated | ShardedByS3Key, S3InputMode: Pipe | File, StartTimeOffset: 'STRING_VALUE' } }, DataQualityJobOutputConfig: { /* required */ MonitoringOutputs: [ /* required */ { S3Output: { /* required */ LocalPath: 'STRING_VALUE', /* required */ S3Uri: 'STRING_VALUE', /* required */ S3UploadMode: Continuous | EndOfJob } }, /* more items */ ], KmsKeyId: 'STRING_VALUE' }, JobDefinitionName: 'STRING_VALUE', /* required */ JobResources: { /* required */ ClusterConfig: { /* required */ InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge, /* required */ VolumeSizeInGB: 'NUMBER_VALUE', /* required */ VolumeKmsKeyId: 'STRING_VALUE' } }, RoleArn: 'STRING_VALUE', /* required */ DataQualityBaselineConfig: { BaseliningJobName: 'STRING_VALUE', ConstraintsResource: { S3Uri: 'STRING_VALUE' }, StatisticsResource: { S3Uri: 'STRING_VALUE' } }, NetworkConfig: { EnableInterContainerTrafficEncryption: true || false, EnableNetworkIsolation: true || false, VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, StoppingCondition: { MaxRuntimeInSeconds: 'NUMBER_VALUE' /* required */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createDataQualityJobDefinition(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
JobDefinitionName
— (String
)The name for the monitoring job definition.
DataQualityBaselineConfig
— (map
)Configures the constraints and baselines for the monitoring job.
BaseliningJobName
— (String
)The name of the job that performs baselining for the data quality monitoring job.
ConstraintsResource
— (map
)The constraints resource for a monitoring job.
S3Uri
— (String
)The Amazon S3 URI for the constraints resource.
StatisticsResource
— (map
)The statistics resource for a monitoring job.
S3Uri
— (String
)The Amazon S3 URI for the statistics resource.
DataQualityAppSpecification
— (map
)Specifies the container that runs the monitoring job.
ImageUri
— required — (String
)The container image that the data quality monitoring job runs.
ContainerEntrypoint
— (Array<String>
)The entrypoint for a container used to run a monitoring job.
ContainerArguments
— (Array<String>
)The arguments to send to the container that the monitoring job runs.
RecordPreprocessorSourceUri
— (String
)An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flattened JSON so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
PostAnalyticsProcessorSourceUri
— (String
)An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.
Environment
— (map<String>
)Sets the environment variables in the container that the monitoring job runs.
DataQualityJobInput
— (map
)A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.
EndpointInput
— (map
)Input object for the endpoint
EndpointName
— required — (String
)An endpoint in customer's account which has enabled
DataCaptureConfig
enabled.LocalPath
— required — (String
)Path to the filesystem where the endpoint data is available to the container.
S3InputMode
— (String
)Whether the
Possible values include:Pipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
."Pipe"
"File"
S3DataDistributionType
— (String
)Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key. Defaults to
Possible values include:FullyReplicated
"FullyReplicated"
"ShardedByS3Key"
FeaturesAttribute
— (String
)The attributes of the input data that are the input features.
InferenceAttribute
— (String
)The attribute of the input data that represents the ground truth label.
ProbabilityAttribute
— (String
)In a classification problem, the attribute that represents the class probability.
ProbabilityThresholdAttribute
— (Float
)The threshold for the class probability to be evaluated as a positive result.
StartTimeOffset
— (String
)If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
EndTimeOffset
— (String
)If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
ExcludeFeaturesAttribute
— (String
)The attributes of the input data to exclude from the analysis.
BatchTransformInput
— (map
)Input object for the batch transform job.
DataCapturedDestinationS3Uri
— required — (String
)The Amazon S3 location being used to capture the data.
DatasetFormat
— required — (map
)The dataset format for your batch transform job.
Csv
— (map
)The CSV dataset used in the monitoring job.
Header
— (Boolean
)Indicates if the CSV data has a header.
Json
— (map
)The JSON dataset used in the monitoring job
Line
— (Boolean
)Indicates if the file should be read as a JSON object per line.
Parquet
— (map
)The Parquet dataset used in the monitoring job
LocalPath
— required — (String
)Path to the filesystem where the batch transform data is available to the container.
S3InputMode
— (String
)Whether the
Possible values include:Pipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
."Pipe"
"File"
S3DataDistributionType
— (String
)Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to
Possible values include:FullyReplicated
"FullyReplicated"
"ShardedByS3Key"
FeaturesAttribute
— (String
)The attributes of the input data that are the input features.
InferenceAttribute
— (String
)The attribute of the input data that represents the ground truth label.
ProbabilityAttribute
— (String
)In a classification problem, the attribute that represents the class probability.
ProbabilityThresholdAttribute
— (Float
)The threshold for the class probability to be evaluated as a positive result.
StartTimeOffset
— (String
)If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
EndTimeOffset
— (String
)If specified, monitoring jobs subtract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
ExcludeFeaturesAttribute
— (String
)The attributes of the input data to exclude from the analysis.
DataQualityJobOutputConfig
— (map
)The output configuration for monitoring jobs.
MonitoringOutputs
— required — (Array<map>
)Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
S3Output
— required — (map
)The Amazon S3 storage location where the results of a monitoring job are saved.
S3Uri
— required — (String
)A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
LocalPath
— required — (String
)The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
S3UploadMode
— (String
)Whether to upload the results of the monitoring job continuously or after the job completes.
Possible values include:"Continuous"
"EndOfJob"
KmsKeyId
— (String
)The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
JobResources
— (map
)Identifies the resources to deploy for a monitoring job.
ClusterConfig
— required — (map
)The configuration for the cluster resources used to run the processing job.
InstanceCount
— required — (Integer
)The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType
— required — (String
)The ML compute instance type for the processing job.
Possible values include:"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
VolumeSizeInGB
— required — (Integer
)The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
VolumeKmsKeyId
— (String
)The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
NetworkConfig
— (map
)Specifies networking configuration for the monitoring job.
EnableInterContainerTrafficEncryption
— (Boolean
)Whether to encrypt all communications between the instances used for the monitoring jobs. Choose
True
to encrypt communications. Encryption provides greater security for distributed jobs, but the processing might take longer.EnableNetworkIsolation
— (Boolean
)Whether to allow inbound and outbound network calls to and from the containers used for the monitoring job.
VpcConfig
— (map
)Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
RoleArn
— (String
)The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
StoppingCondition
— (map
)A time limit for how long the monitoring job is allowed to run before stopping.
MaxRuntimeInSeconds
— required — (Integer
)The maximum runtime allowed in seconds.
Note: TheMaxRuntimeInSeconds
cannot exceed the frequency of the job. For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. For model bias and model quality hourly schedules, this can be up to 1800 seconds.
Tags
— (Array<map>
)(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:JobDefinitionArn
— (String
)The Amazon Resource Name (ARN) of the job definition.
-
(AWS.Response)
—
Returns:
createDeviceFleet(params = {}, callback) ⇒ AWS.Request
Creates a device fleet.
Service Reference:
Examples:
Calling the createDeviceFleet operation
var params = { DeviceFleetName: 'STRING_VALUE', /* required */ OutputConfig: { /* required */ S3OutputLocation: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE', PresetDeploymentConfig: 'STRING_VALUE', PresetDeploymentType: GreengrassV2Component }, Description: 'STRING_VALUE', EnableIotRoleAlias: true || false, RoleArn: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createDeviceFleet(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
DeviceFleetName
— (String
)The name of the fleet that the device belongs to.
RoleArn
— (String
)The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
Description
— (String
)A description of the fleet.
OutputConfig
— (map
)The output configuration for storing sample data collected by the fleet.
S3OutputLocation
— required — (String
)The Amazon Simple Storage (S3) bucker URI.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
PresetDeploymentType
— (String
)The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.
Possible values include:"GreengrassV2Component"
PresetDeploymentConfig
— (String
)The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:
-
ComponentName
(optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job. -
ComponentDescription
(optional) - Description of the component. -
ComponentVersion
(optional) - The version of the component.Note: Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a major.minor.patch number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification. -
PlatformOS
(optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux. -
PlatformArchitecture
(optional) - The processor architecture for the platform.Supported architectures Windows include: Windows32_x86, Windows64_x64.
Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
-
Tags
— (Array<map>
)Creates tags for the specified fleet.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
EnableIotRoleAlias
— (Boolean
)Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: "SageMakerEdge-
{DeviceFleetName}
".For example, if your device fleet is called "demo-fleet", the name of the role alias will be "SageMakerEdge-demo-fleet".
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs.
-
(AWS.Response)
—
Returns:
createDomain(params = {}, callback) ⇒ AWS.Request
Creates a
Domain
used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.EFS storage
When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.
SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.
VPC configuration
All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the
AppNetworkAccessType
parameter.AppNetworkAccessType
corresponds to the network access type that you choose when you onboard to Studio. The following options are available:-
PublicInternetOnly
- Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. -
VpcOnly
- All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections.
NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a SageMaker Studio app successfully.
For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.
Service Reference:
Examples:
Calling the createDomain operation
var params = { AuthMode: SSO | IAM, /* required */ DefaultUserSettings: { /* required */ CanvasAppSettings: { IdentityProviderOAuthSettings: [ { DataSourceName: SalesforceGenie | Snowflake, SecretArn: 'STRING_VALUE', Status: ENABLED | DISABLED }, /* more items */ ], ModelRegisterSettings: { CrossAccountModelRegisterRoleArn: 'STRING_VALUE', Status: ENABLED | DISABLED }, TimeSeriesForecastingSettings: { AmazonForecastRoleArn: 'STRING_VALUE', Status: ENABLED | DISABLED }, WorkspaceSettings: { S3ArtifactPath: 'STRING_VALUE', S3KmsKeyId: 'STRING_VALUE' } }, ExecutionRole: 'STRING_VALUE', JupyterServerAppSettings: { CodeRepositories: [ { RepositoryUrl: 'STRING_VALUE' /* required */ }, /* more items */ ], DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, LifecycleConfigArns: [ 'STRING_VALUE', /* more items */ ] }, KernelGatewayAppSettings: { CustomImages: [ { AppImageConfigName: 'STRING_VALUE', /* required */ ImageName: 'STRING_VALUE', /* required */ ImageVersionNumber: 'NUMBER_VALUE' }, /* more items */ ], DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, LifecycleConfigArns: [ 'STRING_VALUE', /* more items */ ] }, RSessionAppSettings: { CustomImages: [ { AppImageConfigName: 'STRING_VALUE', /* required */ ImageName: 'STRING_VALUE', /* required */ ImageVersionNumber: 'NUMBER_VALUE' }, /* more items */ ], DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' } }, RStudioServerProAppSettings: { AccessStatus: ENABLED | DISABLED, UserGroup: R_STUDIO_ADMIN | R_STUDIO_USER }, SecurityGroups: [ 'STRING_VALUE', /* more items */ ], SharingSettings: { NotebookOutputOption: Allowed | Disabled, S3KmsKeyId: 'STRING_VALUE', S3OutputPath: 'STRING_VALUE' }, TensorBoardAppSettings: { DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' } } }, DomainName: 'STRING_VALUE', /* required */ SubnetIds: [ /* required */ 'STRING_VALUE', /* more items */ ], VpcId: 'STRING_VALUE', /* required */ AppNetworkAccessType: PublicInternetOnly | VpcOnly, AppSecurityGroupManagement: Service | Customer, DefaultSpaceSettings: { ExecutionRole: 'STRING_VALUE', JupyterServerAppSettings: { CodeRepositories: [ { RepositoryUrl: 'STRING_VALUE' /* required */ }, /* more items */ ], DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, LifecycleConfigArns: [ 'STRING_VALUE', /* more items */ ] }, KernelGatewayAppSettings: { CustomImages: [ { AppImageConfigName: 'STRING_VALUE', /* required */ ImageName: 'STRING_VALUE', /* required */ ImageVersionNumber: 'NUMBER_VALUE' }, /* more items */ ], DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, LifecycleConfigArns: [ 'STRING_VALUE', /* more items */ ] }, SecurityGroups: [ 'STRING_VALUE', /* more items */ ] }, DomainSettings: { ExecutionRoleIdentityConfig: USER_PROFILE_NAME | DISABLED, RStudioServerProDomainSettings: { DomainExecutionRoleArn: 'STRING_VALUE', /* required */ DefaultResourceSpec: { InstanceType: system | ml.t3.micro | ml.t3.small | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.8xlarge | ml.m5.12xlarge | ml.m5.16xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.12xlarge | ml.c5.18xlarge | ml.c5.24xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.geospatial.interactive | ml.p4d.24xlarge | ml.p4de.24xlarge, LifecycleConfigArn: 'STRING_VALUE', SageMakerImageArn: 'STRING_VALUE', SageMakerImageVersionArn: 'STRING_VALUE' }, RStudioConnectUrl: 'STRING_VALUE', RStudioPackageManagerUrl: 'STRING_VALUE' }, SecurityGroupIds: [ 'STRING_VALUE', /* more items */ ] }, HomeEfsFileSystemKmsKeyId: 'STRING_VALUE', KmsKeyId: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createDomain(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
DomainName
— (String
)A name for the domain.
AuthMode
— (String
)The mode of authentication that members use to access the domain.
Possible values include:"SSO"
"IAM"
DefaultUserSettings
— (map
)The default settings to use to create a user profile when
UserSettings
isn't specified in the call to theCreateUserProfile
API.SecurityGroups
is aggregated when specified in both calls. For all other settings inUserSettings
, the values specified inCreateUserProfile
take precedence over those specified inCreateDomain
.ExecutionRole
— (String
)The execution role for the user.
SecurityGroups
— (Array<String>
)The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Optional when the
CreateDomain.AppNetworkAccessType
parameter is set toPublicInternetOnly
.Required when the
CreateDomain.AppNetworkAccessType
parameter is set toVpcOnly
, unless specified as part of theDefaultUserSettings
for the domain.Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
SharingSettings
— (map
)Specifies options for sharing SageMaker Studio notebooks.
NotebookOutputOption
— (String
)Whether to include the notebook cell output when sharing the notebook. The default is
Possible values include:Disabled
."Allowed"
"Disabled"
S3OutputPath
— (String
)When
NotebookOutputOption
isAllowed
, the Amazon S3 bucket used to store the shared notebook snapshots.S3KmsKeyId
— (String
)When
NotebookOutputOption
isAllowed
, the Amazon Web Services Key Management Service (KMS) encryption key ID used to encrypt the notebook cell output in the Amazon S3 bucket.
JupyterServerAppSettings
— (map
)The Jupyter server's app settings.
DefaultResourceSpec
— (map
)The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the
LifecycleConfigArns
parameter, then this parameter is also required.SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns
— (Array<String>
)The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the
DefaultResourceSpec
parameter is also required.Note: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.CodeRepositories
— (Array<map>
)A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl
— required — (String
)The URL of the Git repository.
KernelGatewayAppSettings
— (map
)The kernel gateway app settings.
DefaultResourceSpec
— (map
)The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note: The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages
— (Array<map>
)A list of custom SageMaker images that are configured to run as a KernelGateway app.
ImageName
— required — (String
)The name of the CustomImage. Must be unique to your account.
ImageVersionNumber
— (Integer
)The version number of the CustomImage.
AppImageConfigName
— required — (String
)The name of the AppImageConfig.
LifecycleConfigArns
— (Array<String>
)The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.
TensorBoardAppSettings
— (map
)The TensorBoard app settings.
DefaultResourceSpec
— (map
)The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
RStudioServerProAppSettings
— (map
)A collection of settings that configure user interaction with the
RStudioServerPro
app.AccessStatus
— (String
)Indicates whether the current user has access to the
Possible values include:RStudioServerPro
app."ENABLED"
"DISABLED"
UserGroup
— (String
)The level of permissions that the user has within the
Possible values include:RStudioServerPro
app. This value defaults toUser
. TheAdmin
value allows the user access to the RStudio Administrative Dashboard."R_STUDIO_ADMIN"
"R_STUDIO_USER"
RSessionAppSettings
— (map
)A collection of settings that configure the
RSessionGateway
app.DefaultResourceSpec
— (map
)Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages
— (Array<map>
)A list of custom SageMaker images that are configured to run as a RSession app.
ImageName
— required — (String
)The name of the CustomImage. Must be unique to your account.
ImageVersionNumber
— (Integer
)The version number of the CustomImage.
AppImageConfigName
— required — (String
)The name of the AppImageConfig.
CanvasAppSettings
— (map
)The Canvas app settings.
TimeSeriesForecastingSettings
— (map
)Time series forecast settings for the Canvas application.
Status
— (String
)Describes whether time series forecasting is enabled or disabled in the Canvas application.
Possible values include:"ENABLED"
"DISABLED"
AmazonForecastRoleArn
— (String
)The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the
UserProfile
that launches the Canvas application. If an execution role is not specified in theUserProfile
, Canvas uses the execution role specified in the Domain that owns theUserProfile
. To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached andforecast.amazonaws.com
added in the trust relationship as a service principal.
ModelRegisterSettings
— (map
)The model registry settings for the SageMaker Canvas application.
Status
— (String
)Describes whether the integration to the model registry is enabled or disabled in the Canvas application.
Possible values include:"ENABLED"
"DISABLED"
CrossAccountModelRegisterRoleArn
— (String
)The Amazon Resource Name (ARN) of the SageMaker model registry account. Required only to register model versions created by a different SageMaker Canvas Amazon Web Services account than the Amazon Web Services account in which SageMaker model registry is set up.
WorkspaceSettings
— (map
)The workspace settings for the SageMaker Canvas application.
S3ArtifactPath
— (String
)The Amazon S3 bucket used to store artifacts generated by Canvas. Updating the Amazon S3 location impacts existing configuration settings, and Canvas users no longer have access to their artifacts. Canvas users must log out and log back in to apply the new location.
S3KmsKeyId
— (String
)The Amazon Web Services Key Management Service (KMS) encryption key ID that is used to encrypt artifacts generated by Canvas in the Amazon S3 bucket.
IdentityProviderOAuthSettings
— (Array<map>
)The settings for connecting to an external data source with OAuth.
DataSourceName
— (String
)The name of the data source that you're connecting to. Canvas currently supports OAuth for Snowflake and Salesforce Data Cloud.
Possible values include:"SalesforceGenie"
"Snowflake"
Status
— (String
)Describes whether OAuth for a data source is enabled or disabled in the Canvas application.
Possible values include:"ENABLED"
"DISABLED"
SecretArn
— (String
)The ARN of an Amazon Web Services Secrets Manager secret that stores the credentials from your identity provider, such as the client ID and secret, authorization URL, and token URL.
SubnetIds
— (Array<String>
)The VPC subnets that Studio uses for communication.
VpcId
— (String
)The ID of the Amazon Virtual Private Cloud (VPC) that Studio uses for communication.
Tags
— (Array<map>
)Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the
Search
API.Tags that you specify for the Domain are also added to all Apps that the Domain launches.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
AppNetworkAccessType
— (String
)Specifies the VPC used for non-EFS traffic. The default value is
PublicInternetOnly
.-
PublicInternetOnly
- Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access -
VpcOnly
- All Studio traffic is through the specified VPC and subnets
"PublicInternetOnly"
"VpcOnly"
-
HomeEfsFileSystemKmsKeyId
— (String
)Use
KmsKeyId
.KmsKeyId
— (String
)SageMaker uses Amazon Web Services KMS to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
AppSecurityGroupManagement
— (String
)The entity that creates and manages the required security groups for inter-app communication in
Possible values include:VPCOnly
mode. Required whenCreateDomain.AppNetworkAccessType
isVPCOnly
andDomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn
is provided. If setting up the domain for use with RStudio, this value must be set toService
."Service"
"Customer"
DomainSettings
— (map
)A collection of
Domain
settings.SecurityGroupIds
— (Array<String>
)The security groups for the Amazon Virtual Private Cloud that the
Domain
uses for communication between Domain-level apps and user apps.RStudioServerProDomainSettings
— (map
)A collection of settings that configure the
RStudioServerPro
Domain-level app.DomainExecutionRoleArn
— required — (String
)The ARN of the execution role for the
RStudioServerPro
Domain-level app.RStudioConnectUrl
— (String
)A URL pointing to an RStudio Connect server.
RStudioPackageManagerUrl
— (String
)A URL pointing to an RStudio Package Manager server.
DefaultResourceSpec
— (map
)Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
ExecutionRoleIdentityConfig
— (String
)The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
Possible values include:"USER_PROFILE_NAME"
"DISABLED"
DefaultSpaceSettings
— (map
)The default settings used to create a space.
ExecutionRole
— (String
)The ARN of the execution role for the space.
SecurityGroups
— (Array<String>
)The security group IDs for the Amazon Virtual Private Cloud that the space uses for communication.
JupyterServerAppSettings
— (map
)The JupyterServer app settings.
DefaultResourceSpec
— (map
)The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the
LifecycleConfigArns
parameter, then this parameter is also required.SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
LifecycleConfigArns
— (Array<String>
)The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the
DefaultResourceSpec
parameter is also required.Note: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.CodeRepositories
— (Array<map>
)A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
RepositoryUrl
— required — (String
)The URL of the Git repository.
KernelGatewayAppSettings
— (map
)The KernelGateway app settings.
DefaultResourceSpec
— (map
)The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
Note: The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation and the instance type parameter value is not passed.SageMakerImageArn
— (String
)The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn
— (String
)The ARN of the image version created on the instance.
InstanceType
— (String
)The instance type that the image version runs on.
Note: JupyterServer apps only support thePossible values include:system
value. For KernelGateway apps, thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types."system"
"ml.t3.micro"
"ml.t3.small"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.8xlarge"
"ml.m5.12xlarge"
"ml.m5.16xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.12xlarge"
"ml.c5.18xlarge"
"ml.c5.24xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.geospatial.interactive"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
LifecycleConfigArn
— (String
)The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
CustomImages
— (Array<map>
)A list of custom SageMaker images that are configured to run as a KernelGateway app.
ImageName
— required — (String
)The name of the CustomImage. Must be unique to your account.
ImageVersionNumber
— (Integer
)The version number of the CustomImage.
AppImageConfigName
— required — (String
)The name of the AppImageConfig.
LifecycleConfigArns
— (Array<String>
)The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
Note: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:DomainArn
— (String
)The Amazon Resource Name (ARN) of the created domain.
Url
— (String
)The URL to the created domain.
-
(AWS.Response)
—
Returns:
createEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.
Service Reference:
Examples:
Calling the createEdgeDeploymentPlan operation
var params = { DeviceFleetName: 'STRING_VALUE', /* required */ EdgeDeploymentPlanName: 'STRING_VALUE', /* required */ ModelConfigs: [ /* required */ { EdgePackagingJobName: 'STRING_VALUE', /* required */ ModelHandle: 'STRING_VALUE' /* required */ }, /* more items */ ], Stages: [ { DeviceSelectionConfig: { /* required */ DeviceSubsetType: PERCENTAGE | SELECTION | NAMECONTAINS, /* required */ DeviceNameContains: 'STRING_VALUE', DeviceNames: [ 'STRING_VALUE', /* more items */ ], Percentage: 'NUMBER_VALUE' }, StageName: 'STRING_VALUE', /* required */ DeploymentConfig: { FailureHandlingPolicy: ROLLBACK_ON_FAILURE | DO_NOTHING /* required */ } }, /* more items */ ], Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createEdgeDeploymentPlan(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
EdgeDeploymentPlanName
— (String
)The name of the edge deployment plan.
ModelConfigs
— (Array<map>
)List of models associated with the edge deployment plan.
ModelHandle
— required — (String
)The name the device application uses to reference this model.
EdgePackagingJobName
— required — (String
)The edge packaging job associated with this deployment.
DeviceFleetName
— (String
)The device fleet used for this edge deployment plan.
Stages
— (Array<map>
)List of stages of the edge deployment plan. The number of stages is limited to 10 per deployment.
StageName
— required — (String
)The name of the stage.
DeviceSelectionConfig
— required — (map
)Configuration of the devices in the stage.
DeviceSubsetType
— required — (String
)Type of device subsets to deploy to the current stage.
Possible values include:"PERCENTAGE"
"SELECTION"
"NAMECONTAINS"
Percentage
— (Integer
)Percentage of devices in the fleet to deploy to the current stage.
DeviceNames
— (Array<String>
)List of devices chosen to deploy.
DeviceNameContains
— (String
)A filter to select devices with names containing this name.
DeploymentConfig
— (map
)Configuration of the deployment details.
FailureHandlingPolicy
— required — (String
)Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.
Possible values include:"ROLLBACK_ON_FAILURE"
"DO_NOTHING"
Tags
— (Array<map>
)List of tags with which to tag the edge deployment plan.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:EdgeDeploymentPlanArn
— (String
)The ARN of the edge deployment plan.
-
(AWS.Response)
—
Returns:
createEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Creates a new stage in an existing edge deployment plan.
Service Reference:
Examples:
Calling the createEdgeDeploymentStage operation
var params = { EdgeDeploymentPlanName: 'STRING_VALUE', /* required */ Stages: [ /* required */ { DeviceSelectionConfig: { /* required */ DeviceSubsetType: PERCENTAGE | SELECTION | NAMECONTAINS, /* required */ DeviceNameContains: 'STRING_VALUE', DeviceNames: [ 'STRING_VALUE', /* more items */ ], Percentage: 'NUMBER_VALUE' }, StageName: 'STRING_VALUE', /* required */ DeploymentConfig: { FailureHandlingPolicy: ROLLBACK_ON_FAILURE | DO_NOTHING /* required */ } }, /* more items */ ] }; sagemaker.createEdgeDeploymentStage(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
EdgeDeploymentPlanName
— (String
)The name of the edge deployment plan.
Stages
— (Array<map>
)List of stages to be added to the edge deployment plan.
StageName
— required — (String
)The name of the stage.
DeviceSelectionConfig
— required — (map
)Configuration of the devices in the stage.
DeviceSubsetType
— required — (String
)Type of device subsets to deploy to the current stage.
Possible values include:"PERCENTAGE"
"SELECTION"
"NAMECONTAINS"
Percentage
— (Integer
)Percentage of devices in the fleet to deploy to the current stage.
DeviceNames
— (Array<String>
)List of devices chosen to deploy.
DeviceNameContains
— (String
)A filter to select devices with names containing this name.
DeploymentConfig
— (map
)Configuration of the deployment details.
FailureHandlingPolicy
— required — (String
)Toggle that determines whether to rollback to previous configuration if the current deployment fails. By default this is turned on. You may turn this off if you want to investigate the errors yourself.
Possible values include:"ROLLBACK_ON_FAILURE"
"DO_NOTHING"
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs.
-
(AWS.Response)
—
Returns:
createEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.
Service Reference:
Examples:
Calling the createEdgePackagingJob operation
var params = { CompilationJobName: 'STRING_VALUE', /* required */ EdgePackagingJobName: 'STRING_VALUE', /* required */ ModelName: 'STRING_VALUE', /* required */ ModelVersion: 'STRING_VALUE', /* required */ OutputConfig: { /* required */ S3OutputLocation: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE', PresetDeploymentConfig: 'STRING_VALUE', PresetDeploymentType: GreengrassV2Component }, RoleArn: 'STRING_VALUE', /* required */ ResourceKey: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createEdgePackagingJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
EdgePackagingJobName
— (String
)The name of the edge packaging job.
CompilationJobName
— (String
)The name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.
ModelName
— (String
)The name of the model.
ModelVersion
— (String
)The version of the model.
RoleArn
— (String
)The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.
OutputConfig
— (map
)Provides information about the output location for the packaged model.
S3OutputLocation
— required — (String
)The Amazon Simple Storage (S3) bucker URI.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
PresetDeploymentType
— (String
)The deployment type SageMaker Edge Manager will create. Currently only supports Amazon Web Services IoT Greengrass Version 2 components.
Possible values include:"GreengrassV2Component"
PresetDeploymentConfig
— (String
)The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:
-
ComponentName
(optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job. -
ComponentDescription
(optional) - Description of the component. -
ComponentVersion
(optional) - The version of the component.Note: Amazon Web Services IoT Greengrass uses semantic versions for components. Semantic versions follow a major.minor.patch number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification. -
PlatformOS
(optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux. -
PlatformArchitecture
(optional) - The processor architecture for the platform.Supported architectures Windows include: Windows32_x86, Windows64_x64.
Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
-
ResourceKey
— (String
)The Amazon Web Services KMS key to use when encrypting the EBS volume the edge packaging job runs on.
Tags
— (Array<map>
)Creates tags for the packaging job.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs.
-
(AWS.Response)
—
Returns:
createEndpoint(params = {}, callback) ⇒ AWS.Request
Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.
Use this API to deploy models using SageMaker hosting services.
Note: You must not delete anEndpointConfig
that is in use by an endpoint that is live or while theUpdateEndpoint
orCreateEndpoint
operations are being performed on the endpoint. To update an endpoint, you must create a newEndpointConfig
.The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account.
When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.
Note: When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supportingEventually Consistent Reads
, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.When SageMaker receives the request, it sets the endpoint status to
Creating
. After it creates the endpoint, it sets the status toInService
. SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API.If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.
Note: To add the IAM role policies for using this API operation, go to the IAM console, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the CreateEndpoint and CreateEndpointConfig API operations, add the following policies to the role.- Option 1: For a full SageMaker access, search and attach the
AmazonSageMakerFullAccess
policy. - Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role:
"Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]
"Resource": [
"arn:aws:sagemaker:region:account-id:endpoint/endpointName"
"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"
]
For more information, see SageMaker API Permissions: Actions, Permissions, and Resources Reference.
Service Reference:
Examples:
Calling the createEndpoint operation
var params = { EndpointConfigName: 'STRING_VALUE', /* required */ EndpointName: 'STRING_VALUE', /* required */ DeploymentConfig: { AutoRollbackConfiguration: { Alarms: [ { AlarmName: 'STRING_VALUE' }, /* more items */ ] }, BlueGreenUpdatePolicy: { TrafficRoutingConfiguration: { /* required */ Type: ALL_AT_ONCE | CANARY | LINEAR, /* required */ WaitIntervalInSeconds: 'NUMBER_VALUE', /* required */ CanarySize: { Type: INSTANCE_COUNT | CAPACITY_PERCENT, /* required */ Value: 'NUMBER_VALUE' /* required */ }, LinearStepSize: { Type: INSTANCE_COUNT | CAPACITY_PERCENT, /* required */ Value: 'NUMBER_VALUE' /* required */ } }, MaximumExecutionTimeoutInSeconds: 'NUMBER_VALUE', TerminationWaitInSeconds: 'NUMBER_VALUE' }, RollingUpdatePolicy: { MaximumBatchSize: { /* required */ Type: INSTANCE_COUNT | CAPACITY_PERCENT, /* required */ Value: 'NUMBER_VALUE' /* required */ }, WaitIntervalInSeconds: 'NUMBER_VALUE', /* required */ MaximumExecutionTimeoutInSeconds: 'NUMBER_VALUE', RollbackMaximumBatchSize: { Type: INSTANCE_COUNT | CAPACITY_PERCENT, /* required */ Value: 'NUMBER_VALUE' /* required */ } } }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createEndpoint(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
EndpointName
— (String
)The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in
CreateEndpoint
, but the case is preserved and must be matched in InvokeEndpoint.EndpointConfigName
— (String
)The name of an endpoint configuration. For more information, see CreateEndpointConfig.
DeploymentConfig
— (map
)The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.
BlueGreenUpdatePolicy
— (map
)Update policy for a blue/green deployment. If this update policy is specified, SageMaker creates a new fleet during the deployment while maintaining the old fleet. SageMaker flips traffic to the new fleet according to the specified traffic routing configuration. Only one update policy should be used in the deployment configuration. If no update policy is specified, SageMaker uses a blue/green deployment strategy with all at once traffic shifting by default.
TrafficRoutingConfiguration
— required — (map
)Defines the traffic routing strategy to shift traffic from the old fleet to the new fleet during an endpoint deployment.
Type
— required — (String
)Traffic routing strategy type.
-
ALL_AT_ONCE
: Endpoint traffic shifts to the new fleet in a single step. -
CANARY
: Endpoint traffic shifts to the new fleet in two steps. The first step is the canary, which is a small portion of the traffic. The second step is the remainder of the traffic. -
LINEAR
: Endpoint traffic shifts to the new fleet in n steps of a configurable size.
"ALL_AT_ONCE"
"CANARY"
"LINEAR"
-
WaitIntervalInSeconds
— required — (Integer
)The waiting time (in seconds) between incremental steps to turn on traffic on the new endpoint fleet.
CanarySize
— (map
)Batch size for the first step to turn on traffic on the new endpoint fleet.
Value
must be less than or equal to 50% of the variant's total instance count.Type
— required — (String
)Specifies the endpoint capacity type.
-
INSTANCE_COUNT
: The endpoint activates based on the number of instances. -
CAPACITY_PERCENT
: The endpoint activates based on the specified percentage of capacity.
"INSTANCE_COUNT"
"CAPACITY_PERCENT"
-
Value
— required — (Integer
)Defines the capacity size, either as a number of instances or a capacity percentage.
LinearStepSize
— (map
)Batch size for each step to turn on traffic on the new endpoint fleet.
Value
must be 10-50% of the variant's total instance count.Type
— required — (String
)Specifies the endpoint capacity type.
-
INSTANCE_COUNT
: The endpoint activates based on the number of instances. -
CAPACITY_PERCENT
: The endpoint activates based on the specified percentage of capacity.
"INSTANCE_COUNT"
"CAPACITY_PERCENT"
-
Value
— required — (Integer
)Defines the capacity size, either as a number of instances or a capacity percentage.
TerminationWaitInSeconds
— (Integer
)Additional waiting time in seconds after the completion of an endpoint deployment before terminating the old endpoint fleet. Default is 0.
MaximumExecutionTimeoutInSeconds
— (Integer
)Maximum execution timeout for the deployment. Note that the timeout value should be larger than the total waiting time specified in
TerminationWaitInSeconds
andWaitIntervalInSeconds
.
AutoRollbackConfiguration
— (map
)Automatic rollback configuration for handling endpoint deployment failures and recovery.
Alarms
— (Array<map>
)List of CloudWatch alarms in your account that are configured to monitor metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker rolls back the deployment.
AlarmName
— (String
)The name of a CloudWatch alarm in your account.
RollingUpdatePolicy
— (map
)Specifies a rolling deployment strategy for updating a SageMaker endpoint.
MaximumBatchSize
— required — (map
)Batch size for each rolling step to provision capacity and turn on traffic on the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value must be between 5% to 50% of the variant's total instance count.
Type
— required — (String
)Specifies the endpoint capacity type.
-
INSTANCE_COUNT
: The endpoint activates based on the number of instances. -
CAPACITY_PERCENT
: The endpoint activates based on the specified percentage of capacity.
"INSTANCE_COUNT"
"CAPACITY_PERCENT"
-
Value
— required — (Integer
)Defines the capacity size, either as a number of instances or a capacity percentage.
WaitIntervalInSeconds
— required — (Integer
)The length of the baking period, during which SageMaker monitors alarms for each batch on the new fleet.
MaximumExecutionTimeoutInSeconds
— (Integer
)The time limit for the total deployment. Exceeding this limit causes a timeout.
RollbackMaximumBatchSize
— (map
)Batch size for rollback to the old endpoint fleet. Each rolling step to provision capacity and turn on traffic on the old endpoint fleet, and terminate capacity on the new endpoint fleet. If this field is absent, the default value will be set to 100% of total capacity which means to bring up the whole capacity of the old fleet at once during rollback.
Type
— required — (String
)Specifies the endpoint capacity type.
-
INSTANCE_COUNT
: The endpoint activates based on the number of instances. -
CAPACITY_PERCENT
: The endpoint activates based on the specified percentage of capacity.
"INSTANCE_COUNT"
"CAPACITY_PERCENT"
-
Value
— required — (Integer
)Defines the capacity size, either as a number of instances or a capacity percentage.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:EndpointArn
— (String
)The Amazon Resource Name (ARN) of the endpoint.
-
(AWS.Response)
—
Returns:
createEndpointConfig(params = {}, callback) ⇒ AWS.Request
Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the
CreateModel
API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.Note: Use this API if you want to use SageMaker hosting services to deploy models into production.In the request, you define a
ProductionVariant
, for each model that you want to deploy. EachProductionVariant
parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.If you are hosting multiple models, you also assign a
VariantWeight
to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.Note: When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supportingEventually Consistent Reads
, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.Service Reference:
Examples:
Calling the createEndpointConfig operation
var params = { EndpointConfigName: 'STRING_VALUE', /* required */ ProductionVariants: [ /* required */ { ModelName: 'STRING_VALUE', /* required */ VariantName: 'STRING_VALUE', /* required */ AcceleratorType: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge | ml.eia2.medium | ml.eia2.large | ml.eia2.xlarge, ContainerStartupHealthCheckTimeoutInSeconds: 'NUMBER_VALUE', CoreDumpConfig: { DestinationS3Uri: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE' }, EnableSSMAccess: true || false, InitialInstanceCount: 'NUMBER_VALUE', InitialVariantWeight: 'NUMBER_VALUE', InstanceType: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.12xlarge | ml.m5d.24xlarge | ml.c4.large | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5d.large | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge | ml.c5d.9xlarge | ml.c5d.18xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.12xlarge | ml.r5.24xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.12xlarge | ml.r5d.24xlarge | ml.inf1.xlarge | ml.inf1.2xlarge | ml.inf1.6xlarge | ml.inf1.24xlarge | ml.c6i.large | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.4xlarge | ml.c6i.8xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.12xlarge | ml.g5.16xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.p4d.24xlarge | ml.c7g.large | ml.c7g.xlarge | ml.c7g.2xlarge | ml.c7g.4xlarge | ml.c7g.8xlarge | ml.c7g.12xlarge | ml.c7g.16xlarge | ml.m6g.large | ml.m6g.xlarge | ml.m6g.2xlarge | ml.m6g.4xlarge | ml.m6g.8xlarge | ml.m6g.12xlarge | ml.m6g.16xlarge | ml.m6gd.large | ml.m6gd.xlarge | ml.m6gd.2xlarge | ml.m6gd.4xlarge | ml.m6gd.8xlarge | ml.m6gd.12xlarge | ml.m6gd.16xlarge | ml.c6g.large | ml.c6g.xlarge | ml.c6g.2xlarge | ml.c6g.4xlarge | ml.c6g.8xlarge | ml.c6g.12xlarge | ml.c6g.16xlarge | ml.c6gd.large | ml.c6gd.xlarge | ml.c6gd.2xlarge | ml.c6gd.4xlarge | ml.c6gd.8xlarge | ml.c6gd.12xlarge | ml.c6gd.16xlarge | ml.c6gn.large | ml.c6gn.xlarge | ml.c6gn.2xlarge | ml.c6gn.4xlarge | ml.c6gn.8xlarge | ml.c6gn.12xlarge | ml.c6gn.16xlarge | ml.r6g.large | ml.r6g.xlarge | ml.r6g.2xlarge | ml.r6g.4xlarge | ml.r6g.8xlarge | ml.r6g.12xlarge | ml.r6g.16xlarge | ml.r6gd.large | ml.r6gd.xlarge | ml.r6gd.2xlarge | ml.r6gd.4xlarge | ml.r6gd.8xlarge | ml.r6gd.12xlarge | ml.r6gd.16xlarge | ml.p4de.24xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.inf2.xlarge | ml.inf2.8xlarge | ml.inf2.24xlarge | ml.inf2.48xlarge | ml.p5.48xlarge, ModelDataDownloadTimeoutInSeconds: 'NUMBER_VALUE', ServerlessConfig: { MaxConcurrency: 'NUMBER_VALUE', /* required */ MemorySizeInMB: 'NUMBER_VALUE', /* required */ ProvisionedConcurrency: 'NUMBER_VALUE' }, VolumeSizeInGB: 'NUMBER_VALUE' }, /* more items */ ], AsyncInferenceConfig: { OutputConfig: { /* required */ KmsKeyId: 'STRING_VALUE', NotificationConfig: { ErrorTopic: 'STRING_VALUE', IncludeInferenceResponseIn: [ SUCCESS_NOTIFICATION_TOPIC | ERROR_NOTIFICATION_TOPIC, /* more items */ ], SuccessTopic: 'STRING_VALUE' }, S3FailurePath: 'STRING_VALUE', S3OutputPath: 'STRING_VALUE' }, ClientConfig: { MaxConcurrentInvocationsPerInstance: 'NUMBER_VALUE' } }, DataCaptureConfig: { CaptureOptions: [ /* required */ { CaptureMode: Input | Output /* required */ }, /* more items */ ], DestinationS3Uri: 'STRING_VALUE', /* required */ InitialSamplingPercentage: 'NUMBER_VALUE', /* required */ CaptureContentTypeHeader: { CsvContentTypes: [ 'STRING_VALUE', /* more items */ ], JsonContentTypes: [ 'STRING_VALUE', /* more items */ ] }, EnableCapture: true || false, KmsKeyId: 'STRING_VALUE' }, ExplainerConfig: { ClarifyExplainerConfig: { ShapConfig: { /* required */ ShapBaselineConfig: { /* required */ MimeType: 'STRING_VALUE', ShapBaseline: 'STRING_VALUE', ShapBaselineUri: 'STRING_VALUE' }, NumberOfSamples: 'NUMBER_VALUE', Seed: 'NUMBER_VALUE', TextConfig: { Granularity: token | sentence | paragraph, /* required */ Language: af | sq | ar | hy | eu | bn | bg | ca | zh | hr | cs | da | nl | en | et | fi | fr | de | el | gu | he | hi | hu | is | id | ga | it | kn | ky | lv | lt | lb | mk | ml | mr | ne | nb | fa | pl | pt | ro | ru | sa | sr | tn | si | sk | sl | es | sv | tl | ta | tt | te | tr | uk | ur | yo | lij | xx /* required */ }, UseLogit: true || false }, EnableExplanations: 'STRING_VALUE', InferenceConfig: { ContentTemplate: 'STRING_VALUE', FeatureHeaders: [ 'STRING_VALUE', /* more items */ ], FeatureTypes: [ numerical | categorical | text, /* more items */ ], FeaturesAttribute: 'STRING_VALUE', LabelAttribute: 'STRING_VALUE', LabelHeaders: [ 'STRING_VALUE', /* more items */ ], LabelIndex: 'NUMBER_VALUE', MaxPayloadInMB: 'NUMBER_VALUE', MaxRecordCount: 'NUMBER_VALUE', ProbabilityAttribute: 'STRING_VALUE', ProbabilityIndex: 'NUMBER_VALUE' } } }, KmsKeyId: 'STRING_VALUE', ShadowProductionVariants: [ { ModelName: 'STRING_VALUE', /* required */ VariantName: 'STRING_VALUE', /* required */ AcceleratorType: ml.eia1.medium | ml.eia1.large | ml.eia1.xlarge | ml.eia2.medium | ml.eia2.large | ml.eia2.xlarge, ContainerStartupHealthCheckTimeoutInSeconds: 'NUMBER_VALUE', CoreDumpConfig: { DestinationS3Uri: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE' }, EnableSSMAccess: true || false, InitialInstanceCount: 'NUMBER_VALUE', InitialVariantWeight: 'NUMBER_VALUE', InstanceType: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.12xlarge | ml.m5d.24xlarge | ml.c4.large | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5d.large | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge | ml.c5d.9xlarge | ml.c5d.18xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.12xlarge | ml.r5.24xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.12xlarge | ml.r5d.24xlarge | ml.inf1.xlarge | ml.inf1.2xlarge | ml.inf1.6xlarge | ml.inf1.24xlarge | ml.c6i.large | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.4xlarge | ml.c6i.8xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.12xlarge | ml.g5.16xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.p4d.24xlarge | ml.c7g.large | ml.c7g.xlarge | ml.c7g.2xlarge | ml.c7g.4xlarge | ml.c7g.8xlarge | ml.c7g.12xlarge | ml.c7g.16xlarge | ml.m6g.large | ml.m6g.xlarge | ml.m6g.2xlarge | ml.m6g.4xlarge | ml.m6g.8xlarge | ml.m6g.12xlarge | ml.m6g.16xlarge | ml.m6gd.large | ml.m6gd.xlarge | ml.m6gd.2xlarge | ml.m6gd.4xlarge | ml.m6gd.8xlarge | ml.m6gd.12xlarge | ml.m6gd.16xlarge | ml.c6g.large | ml.c6g.xlarge | ml.c6g.2xlarge | ml.c6g.4xlarge | ml.c6g.8xlarge | ml.c6g.12xlarge | ml.c6g.16xlarge | ml.c6gd.large | ml.c6gd.xlarge | ml.c6gd.2xlarge | ml.c6gd.4xlarge | ml.c6gd.8xlarge | ml.c6gd.12xlarge | ml.c6gd.16xlarge | ml.c6gn.large | ml.c6gn.xlarge | ml.c6gn.2xlarge | ml.c6gn.4xlarge | ml.c6gn.8xlarge | ml.c6gn.12xlarge | ml.c6gn.16xlarge | ml.r6g.large | ml.r6g.xlarge | ml.r6g.2xlarge | ml.r6g.4xlarge | ml.r6g.8xlarge | ml.r6g.12xlarge | ml.r6g.16xlarge | ml.r6gd.large | ml.r6gd.xlarge | ml.r6gd.2xlarge | ml.r6gd.4xlarge | ml.r6gd.8xlarge | ml.r6gd.12xlarge | ml.r6gd.16xlarge | ml.p4de.24xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.inf2.xlarge | ml.inf2.8xlarge | ml.inf2.24xlarge | ml.inf2.48xlarge | ml.p5.48xlarge, ModelDataDownloadTimeoutInSeconds: 'NUMBER_VALUE', ServerlessConfig: { MaxConcurrency: 'NUMBER_VALUE', /* required */ MemorySizeInMB: 'NUMBER_VALUE', /* required */ ProvisionedConcurrency: 'NUMBER_VALUE' }, VolumeSizeInGB: 'NUMBER_VALUE' }, /* more items */ ], Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createEndpointConfig(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
EndpointConfigName
— (String
)The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
ProductionVariants
— (Array<map>
)An array of
ProductionVariant
objects, one for each model that you want to host at this endpoint.VariantName
— required — (String
)The name of the production variant.
ModelName
— required — (String
)The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount
— (Integer
)Number of instances to launch initially.
InstanceType
— (String
)The ML compute instance type.
Possible values include:"ml.t2.medium"
"ml.t2.large"
"ml.t2.xlarge"
"ml.t2.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.12xlarge"
"ml.m5d.24xlarge"
"ml.c4.large"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5d.large"
"ml.c5d.xlarge"
"ml.c5d.2xlarge"
"ml.c5d.4xlarge"
"ml.c5d.9xlarge"
"ml.c5d.18xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.12xlarge"
"ml.r5.24xlarge"
"ml.r5d.large"
"ml.r5d.xlarge"
"ml.r5d.2xlarge"
"ml.r5d.4xlarge"
"ml.r5d.12xlarge"
"ml.r5d.24xlarge"
"ml.inf1.xlarge"
"ml.inf1.2xlarge"
"ml.inf1.6xlarge"
"ml.inf1.24xlarge"
"ml.c6i.large"
"ml.c6i.xlarge"
"ml.c6i.2xlarge"
"ml.c6i.4xlarge"
"ml.c6i.8xlarge"
"ml.c6i.12xlarge"
"ml.c6i.16xlarge"
"ml.c6i.24xlarge"
"ml.c6i.32xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.12xlarge"
"ml.g5.16xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.p4d.24xlarge"
"ml.c7g.large"
"ml.c7g.xlarge"
"ml.c7g.2xlarge"
"ml.c7g.4xlarge"
"ml.c7g.8xlarge"
"ml.c7g.12xlarge"
"ml.c7g.16xlarge"
"ml.m6g.large"
"ml.m6g.xlarge"
"ml.m6g.2xlarge"
"ml.m6g.4xlarge"
"ml.m6g.8xlarge"
"ml.m6g.12xlarge"
"ml.m6g.16xlarge"
"ml.m6gd.large"
"ml.m6gd.xlarge"
"ml.m6gd.2xlarge"
"ml.m6gd.4xlarge"
"ml.m6gd.8xlarge"
"ml.m6gd.12xlarge"
"ml.m6gd.16xlarge"
"ml.c6g.large"
"ml.c6g.xlarge"
"ml.c6g.2xlarge"
"ml.c6g.4xlarge"
"ml.c6g.8xlarge"
"ml.c6g.12xlarge"
"ml.c6g.16xlarge"
"ml.c6gd.large"
"ml.c6gd.xlarge"
"ml.c6gd.2xlarge"
"ml.c6gd.4xlarge"
"ml.c6gd.8xlarge"
"ml.c6gd.12xlarge"
"ml.c6gd.16xlarge"
"ml.c6gn.large"
"ml.c6gn.xlarge"
"ml.c6gn.2xlarge"
"ml.c6gn.4xlarge"
"ml.c6gn.8xlarge"
"ml.c6gn.12xlarge"
"ml.c6gn.16xlarge"
"ml.r6g.large"
"ml.r6g.xlarge"
"ml.r6g.2xlarge"
"ml.r6g.4xlarge"
"ml.r6g.8xlarge"
"ml.r6g.12xlarge"
"ml.r6g.16xlarge"
"ml.r6gd.large"
"ml.r6gd.xlarge"
"ml.r6gd.2xlarge"
"ml.r6gd.4xlarge"
"ml.r6gd.8xlarge"
"ml.r6gd.12xlarge"
"ml.r6gd.16xlarge"
"ml.p4de.24xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.inf2.xlarge"
"ml.inf2.8xlarge"
"ml.inf2.24xlarge"
"ml.inf2.48xlarge"
"ml.p5.48xlarge"
InitialVariantWeight
— (Float
)Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the
VariantWeight
to the sum of allVariantWeight
values across all ProductionVariants. If unspecified, it defaults to 1.0.AcceleratorType
— (String
)The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
Possible values include:"ml.eia1.medium"
"ml.eia1.large"
"ml.eia1.xlarge"
"ml.eia2.medium"
"ml.eia2.large"
"ml.eia2.xlarge"
CoreDumpConfig
— (map
)Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri
— required — (String
)The Amazon S3 bucket to send the core dump to.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
andUpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
ServerlessConfig
— (map
)The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB
— required — (Integer
)The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency
— required — (Integer
)The maximum number of concurrent invocations your serverless endpoint can process.
ProvisionedConcurrency
— (Integer
)The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to
MaxConcurrency
.Note: This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.
VolumeSizeInGB
— (Integer
)The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds
— (Integer
)The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds
— (Integer
)The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
EnableSSMAccess
— (Boolean
)You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling
UpdateEndpoint
.
DataCaptureConfig
— (map
)Configuration to control how SageMaker captures inference data.
EnableCapture
— (Boolean
)Whether data capture should be enabled or disabled (defaults to enabled).
InitialSamplingPercentage
— required — (Integer
)The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
DestinationS3Uri
— required — (String
)The Amazon S3 location used to capture the data.
KmsKeyId
— (String
)The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.
The KmsKeyId can be any of the following formats:
-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
-
CaptureOptions
— required — (Array<map>
)Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
CaptureMode
— required — (String
)Specify the boundary of data to capture.
Possible values include:"Input"
"Output"
CaptureContentTypeHeader
— (map
)Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
CsvContentTypes
— (Array<String>
)The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
JsonContentTypes
— (Array<String>
)The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
KmsKeyId
— (String
)The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
The KmsKeyId can be any of the following formats:
-
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
-
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
-
Alias name:
alias/ExampleAlias
-
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
,UpdateEndpoint
requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMSNote: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request aKmsKeyId
when using an instance type with local storage. If any of the models that you specify in theProductionVariants
parameter use nitro-based instances with local storage, do not specify a value for theKmsKeyId
parameter. If you specify a value forKmsKeyId
when using any nitro-based instances with local storage, the call toCreateEndpointConfig
fails. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.-
AsyncInferenceConfig
— (map
)Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
ClientConfig
— (map
)Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
MaxConcurrentInvocationsPerInstance
— (Integer
)The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker chooses an optimal value.
OutputConfig
— required — (map
)Specifies the configuration for asynchronous inference invocation outputs.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
S3OutputPath
— (String
)The Amazon S3 location to upload inference responses to.
NotificationConfig
— (map
)Specifies the configuration for notifications of inference results for asynchronous inference.
SuccessTopic
— (String
)Amazon SNS topic to post a notification to when inference completes successfully. If no topic is provided, no notification is sent on success.
ErrorTopic
— (String
)Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
IncludeInferenceResponseIn
— (Array<String>
)The Amazon SNS topics where you want the inference response to be included.
Note: The inference response is included only if the response size is less than or equal to 128 KB.
S3FailurePath
— (String
)The Amazon S3 location to upload failure inference responses to.
ExplainerConfig
— (map
)A member of
CreateEndpointConfig
that enables explainers.ClarifyExplainerConfig
— (map
)A member of
ExplainerConfig
that contains configuration parameters for the SageMaker Clarify explainer.EnableExplanations
— (String
)A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See
EnableExplanations
for additional information.InferenceConfig
— (map
)The inference configuration parameter for the model container.
FeaturesAttribute
— (String
)Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if
FeaturesAttribute
is the JMESPath expression'myfeatures'
, it extracts a list of features[1,2,3]
from request data'{"myfeatures":[1,2,3]}'
.ContentTemplate
— (String
)A template string used to format a JSON record into an acceptable model container input. For example, a
ContentTemplate
string'{"myfeatures":$features}'
will format a list of features[1,2,3]
into the record string'{"myfeatures":[1,2,3]}'
. Required only when the model container input is in JSON Lines format.MaxRecordCount
— (Integer
)The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset. A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If
MaxRecordCount
is1
, the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container's capacity at runtime.MaxPayloadInMB
— (Integer
)The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to
6
MB.ProbabilityIndex
— (Integer
)A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list.
Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability:
'1,0.6'
, setProbabilityIndex
to1
to select the probability value0.6
.Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability:
'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"'
, setProbabilityIndex
to1
to select the probability values[0.1,0.6,0.3]
.LabelIndex
— (Integer
)A zero-based index used to extract a label header or list of label headers from model container output in CSV format.
Example for a multiclass model: If the model container output consists of label headers followed by probabilities:
'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"'
, setLabelIndex
to0
to select the label headers['cat','dog','fish']
.ProbabilityAttribute
— (String
)A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.
Example: If the model container output of a single request is
'{"predicted_label":1,"probability":0.6}'
, then setProbabilityAttribute
to'probability'
.LabelAttribute
— (String
)A JMESPath expression used to locate the list of label headers in the model container output.
Example: If the model container output of a batch request is
'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}'
, then setLabelAttribute
to'labels'
to extract the list of label headers["cat","dog","fish"]
LabelHeaders
— (Array<String>
)For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the
InvokeEndpoint
API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.FeatureHeaders
— (Array<String>
)The names of the features. If provided, these are included in the endpoint response payload to help readability of the
InvokeEndpoint
output. See the Response section under Invoke the endpoint in the Developer Guide for more information.FeatureTypes
— (Array<String>
)A list of data types of the features (optional). Applicable only to NLP explainability. If provided,
FeatureTypes
must have at least one'text'
string (for example,['text']
). IfFeatureTypes
is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.
ShapConfig
— required — (map
)The configuration for SHAP analysis.
ShapBaselineConfig
— required — (map
)The configuration for the SHAP baseline of the Kernal SHAP algorithm.
MimeType
— (String
)The MIME type of the baseline data. Choose from
'text/csv'
or'application/jsonlines'
. Defaults to'text/csv'
.ShapBaseline
— (String
)The inline SHAP baseline data in string format.
ShapBaseline
can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by theGranularity
of theTextConfig
parameter. The size limit forShapBasline
is 4 KB. Use theShapBaselineUri
parameter if you want to provide more than 4 KB of baseline data.ShapBaselineUri
— (String
)The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the
ShapBaselineUri
should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud.
NumberOfSamples
— (Integer
)The number of samples to be used for analysis by the Kernal SHAP algorithm.
Note: The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.UseLogit
— (Boolean
)A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
Seed
— (Integer
)The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
TextConfig
— (map
)A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
Language
— required — (String
)Specifies the language of the text features in ISO 639-1 or ISO 639-3 code of a supported language.
Note: For a mix of multiple languages, use codePossible values include:'xx'
."af"
"sq"
"ar"
"hy"
"eu"
"bn"
"bg"
"ca"
"zh"
"hr"
"cs"
"da"
"nl"
"en"
"et"
"fi"
"fr"
"de"
"el"
"gu"
"he"
"hi"
"hu"
"is"
"id"
"ga"
"it"
"kn"
"ky"
"lv"
"lt"
"lb"
"mk"
"ml"
"mr"
"ne"
"nb"
"fa"
"pl"
"pt"
"ro"
"ru"
"sa"
"sr"
"tn"
"si"
"sk"
"sl"
"es"
"sv"
"tl"
"ta"
"tt"
"te"
"tr"
"uk"
"ur"
"yo"
"lij"
"xx"
Granularity
— required — (String
)The unit of granularity for the analysis of text features. For example, if the unit is
Possible values include:'token'
, then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature."token"
"sentence"
"paragraph"
ShadowProductionVariants
— (Array<map>
)An array of
ProductionVariant
objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified onProductionVariants
. If you use this field, you can only specify one variant forProductionVariants
and one variant forShadowProductionVariants
.VariantName
— required — (String
)The name of the production variant.
ModelName
— required — (String
)The name of the model that you want to host. This is the name that you specified when creating the model.
InitialInstanceCount
— (Integer
)Number of instances to launch initially.
InstanceType
— (String
)The ML compute instance type.
Possible values include:"ml.t2.medium"
"ml.t2.large"
"ml.t2.xlarge"
"ml.t2.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.12xlarge"
"ml.m5d.24xlarge"
"ml.c4.large"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5d.large"
"ml.c5d.xlarge"
"ml.c5d.2xlarge"
"ml.c5d.4xlarge"
"ml.c5d.9xlarge"
"ml.c5d.18xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.12xlarge"
"ml.r5.24xlarge"
"ml.r5d.large"
"ml.r5d.xlarge"
"ml.r5d.2xlarge"
"ml.r5d.4xlarge"
"ml.r5d.12xlarge"
"ml.r5d.24xlarge"
"ml.inf1.xlarge"
"ml.inf1.2xlarge"
"ml.inf1.6xlarge"
"ml.inf1.24xlarge"
"ml.c6i.large"
"ml.c6i.xlarge"
"ml.c6i.2xlarge"
"ml.c6i.4xlarge"
"ml.c6i.8xlarge"
"ml.c6i.12xlarge"
"ml.c6i.16xlarge"
"ml.c6i.24xlarge"
"ml.c6i.32xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.12xlarge"
"ml.g5.16xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.p4d.24xlarge"
"ml.c7g.large"
"ml.c7g.xlarge"
"ml.c7g.2xlarge"
"ml.c7g.4xlarge"
"ml.c7g.8xlarge"
"ml.c7g.12xlarge"
"ml.c7g.16xlarge"
"ml.m6g.large"
"ml.m6g.xlarge"
"ml.m6g.2xlarge"
"ml.m6g.4xlarge"
"ml.m6g.8xlarge"
"ml.m6g.12xlarge"
"ml.m6g.16xlarge"
"ml.m6gd.large"
"ml.m6gd.xlarge"
"ml.m6gd.2xlarge"
"ml.m6gd.4xlarge"
"ml.m6gd.8xlarge"
"ml.m6gd.12xlarge"
"ml.m6gd.16xlarge"
"ml.c6g.large"
"ml.c6g.xlarge"
"ml.c6g.2xlarge"
"ml.c6g.4xlarge"
"ml.c6g.8xlarge"
"ml.c6g.12xlarge"
"ml.c6g.16xlarge"
"ml.c6gd.large"
"ml.c6gd.xlarge"
"ml.c6gd.2xlarge"
"ml.c6gd.4xlarge"
"ml.c6gd.8xlarge"
"ml.c6gd.12xlarge"
"ml.c6gd.16xlarge"
"ml.c6gn.large"
"ml.c6gn.xlarge"
"ml.c6gn.2xlarge"
"ml.c6gn.4xlarge"
"ml.c6gn.8xlarge"
"ml.c6gn.12xlarge"
"ml.c6gn.16xlarge"
"ml.r6g.large"
"ml.r6g.xlarge"
"ml.r6g.2xlarge"
"ml.r6g.4xlarge"
"ml.r6g.8xlarge"
"ml.r6g.12xlarge"
"ml.r6g.16xlarge"
"ml.r6gd.large"
"ml.r6gd.xlarge"
"ml.r6gd.2xlarge"
"ml.r6gd.4xlarge"
"ml.r6gd.8xlarge"
"ml.r6gd.12xlarge"
"ml.r6gd.16xlarge"
"ml.p4de.24xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.inf2.xlarge"
"ml.inf2.8xlarge"
"ml.inf2.24xlarge"
"ml.inf2.48xlarge"
"ml.p5.48xlarge"
InitialVariantWeight
— (Float
)Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the
VariantWeight
to the sum of allVariantWeight
values across all ProductionVariants. If unspecified, it defaults to 1.0.AcceleratorType
— (String
)The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker.
Possible values include:"ml.eia1.medium"
"ml.eia1.large"
"ml.eia1.xlarge"
"ml.eia2.medium"
"ml.eia2.large"
"ml.eia2.xlarge"
CoreDumpConfig
— (map
)Specifies configuration for a core dump from the model container when the process crashes.
DestinationS3Uri
— required — (String
)The Amazon S3 bucket to send the core dump to.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
andUpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
ServerlessConfig
— (map
)The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
MemorySizeInMB
— required — (Integer
)The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency
— required — (Integer
)The maximum number of concurrent invocations your serverless endpoint can process.
ProvisionedConcurrency
— (Integer
)The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to
MaxConcurrency
.Note: This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.
VolumeSizeInGB
— (Integer
)The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.
ModelDataDownloadTimeoutInSeconds
— (Integer
)The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
ContainerStartupHealthCheckTimeoutInSeconds
— (Integer
)The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
EnableSSMAccess
— (Boolean
)You can use this parameter to turn on native Amazon Web Services Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling
UpdateEndpoint
.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:EndpointConfigArn
— (String
)The Amazon Resource Name (ARN) of the endpoint configuration.
-
(AWS.Response)
—
Returns:
createExperiment(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model.
Note: In the Studio UI, trials are referred to as run groups and trial components are referred to as runs.The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.
When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.
You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.
To add a description to an experiment, specify the optional
Description
parameter. To add a description later, or to change the description, call the UpdateExperiment API.To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
Service Reference:
Examples:
Calling the createExperiment operation
var params = { ExperimentName: 'STRING_VALUE', /* required */ Description: 'STRING_VALUE', DisplayName: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createExperiment(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ExperimentName
— (String
)The name of the experiment. The name must be unique in your Amazon Web Services account and is not case-sensitive.
DisplayName
— (String
)The name of the experiment as displayed. The name doesn't need to be unique. If you don't specify
DisplayName
, the value inExperimentName
is displayed.Description
— (String
)The description of the experiment.
Tags
— (Array<map>
)A list of tags to associate with the experiment. You can use Search API to search on the tags.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ExperimentArn
— (String
)The Amazon Resource Name (ARN) of the experiment.
-
(AWS.Response)
—
Returns:
createFeatureGroup(params = {}, callback) ⇒ AWS.Request
Create a new
FeatureGroup
. AFeatureGroup
is a group ofFeatures
defined in theFeatureStore
to describe aRecord
.The
FeatureGroup
defines the schema and features contained in the FeatureGroup. AFeatureGroup
definition is composed of a list ofFeatures
, aRecordIdentifierFeatureName
, anEventTimeFeatureName
and configurations for itsOnlineStore
andOfflineStore
. Check Amazon Web Services service quotas to see theFeatureGroup
s quota for your Amazon Web Services account.You must include at least one of
OnlineStoreConfig
andOfflineStoreConfig
to create aFeatureGroup
.Service Reference:
Examples:
Calling the createFeatureGroup operation
var params = { EventTimeFeatureName: 'STRING_VALUE', /* required */ FeatureDefinitions: [ /* required */ { CollectionConfig: { VectorConfig: { Dimension: 'NUMBER_VALUE' /* required */ } }, CollectionType: List | Set | Vector, FeatureName: 'STRING_VALUE', FeatureType: Integral | Fractional | String }, /* more items */ ], FeatureGroupName: 'STRING_VALUE', /* required */ RecordIdentifierFeatureName: 'STRING_VALUE', /* required */ Description: 'STRING_VALUE', OfflineStoreConfig: { S3StorageConfig: { /* required */ S3Uri: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE', ResolvedOutputS3Uri: 'STRING_VALUE' }, DataCatalogConfig: { Catalog: 'STRING_VALUE', /* required */ Database: 'STRING_VALUE', /* required */ TableName: 'STRING_VALUE' /* required */ }, DisableGlueTableCreation: true || false, TableFormat: Glue | Iceberg }, OnlineStoreConfig: { EnableOnlineStore: true || false, SecurityConfig: { KmsKeyId: 'STRING_VALUE' }, StorageType: Standard | InMemory, TtlDuration: { Unit: Seconds | Minutes | Hours | Days | Weeks, Value: 'NUMBER_VALUE' } }, RoleArn: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createFeatureGroup(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
FeatureGroupName
— (String
)The name of the
FeatureGroup
. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. The name:-
Must start and end with an alphanumeric character.
-
Can only contain alphanumeric character and hyphens. Spaces are not allowed.
-
RecordIdentifierFeatureName
— (String
)The name of the
Feature
whose value uniquely identifies aRecord
defined in theFeatureStore
. Only the latest record per identifier value will be stored in theOnlineStore
.RecordIdentifierFeatureName
must be one of feature definitions' names.You use the
RecordIdentifierFeatureName
to access data in aFeatureStore
.This name:
-
Must start and end with an alphanumeric character.
-
Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.
-
EventTimeFeatureName
— (String
)The name of the feature that stores the
EventTime
of aRecord
in aFeatureGroup
.An
EventTime
is a point in time when a new event occurs that corresponds to the creation or update of aRecord
in aFeatureGroup
. AllRecords
in theFeatureGroup
must have a correspondingEventTime
.An
EventTime
can be aString
orFractional
.-
Fractional
:EventTime
feature values must be a Unix timestamp in seconds. -
String
:EventTime
feature values must be an ISO-8601 string in the format. The following formats are supportedyyyy-MM-dd'T'HH:mm:ssZ
andyyyy-MM-dd'T'HH:mm:ss.SSSZ
whereyyyy
,MM
, anddd
represent the year, month, and day respectively andHH
,mm
,ss
, and if applicable,SSS
represent the hour, month, second and milliseconds respsectively.'T'
andZ
are constants.
-
FeatureDefinitions
— (Array<map>
)A list of
Feature
names and types.Name
andType
is compulsory perFeature
.Valid feature
FeatureType
s areIntegral
,Fractional
andString
.FeatureName
s cannot be any of the following:is_deleted
,write_time
,api_invocation_time
You can create up to 2,500
FeatureDefinition
s perFeatureGroup
.FeatureName
— (String
)The name of a feature. The type must be a string.
FeatureName
cannot be any of the following:is_deleted
,write_time
,api_invocation_time
.FeatureType
— (String
)The value type of a feature. Valid values are Integral, Fractional, or String.
Possible values include:"Integral"
"Fractional"
"String"
CollectionType
— (String
)A grouping of elements where each element within the collection must have the same feature type (
String
,Integral
, orFractional
).-
List
: An ordered collection of elements. -
Set
: An unordered collection of unique elements. -
Vector
: A specialized list that represents a fixed-size array of elements. The vector dimension is determined by you. Must have elements with fractional feature types.
"List"
"Set"
"Vector"
-
CollectionConfig
— (map
)Configuration for your collection.
VectorConfig
— (map
)Configuration for your vector collection type.
-
Dimension
: The number of elements in your vector.
Dimension
— required — (Integer
)The number of elements in your vector.
-
OnlineStoreConfig
— (map
)You can turn the
OnlineStore
on or off by specifyingTrue
for theEnableOnlineStore
flag inOnlineStoreConfig
.You can also include an Amazon Web Services KMS key ID (
KMSKeyId
) for at-rest encryption of theOnlineStore
.The default value is
False
.SecurityConfig
— (map
)Use to specify KMS Key ID (
KMSKeyId
) for at-rest encryption of yourOnlineStore
.KmsKeyId
— (String
)The Amazon Web Services Key Management Service (KMS) key ARN that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.
The caller (either user or IAM role) of
CreateFeatureGroup
must have below permissions to theOnlineStore
KmsKeyId
:-
"kms:Encrypt"
-
"kms:Decrypt"
-
"kms:DescribeKey"
-
"kms:CreateGrant"
-
"kms:RetireGrant"
-
"kms:ReEncryptFrom"
-
"kms:ReEncryptTo"
-
"kms:GenerateDataKey"
-
"kms:ListAliases"
-
"kms:ListGrants"
-
"kms:RevokeGrant"
The caller (either user or IAM role) to all DataPlane operations (
PutRecord
,GetRecord
,DeleteRecord
) must have the following permissions to theKmsKeyId
:-
"kms:Decrypt"
-
EnableOnlineStore
— (Boolean
)Turn
OnlineStore
off by specifyingFalse
for theEnableOnlineStore
flag. TurnOnlineStore
on by specifyingTrue
for theEnableOnlineStore
flag.The default value is
False
.TtlDuration
— (map
)Time to live duration, where the record is hard deleted after the expiration time is reached;
ExpiresAt
=EventTime
+TtlDuration
. For information on HardDelete, see the DeleteRecord API in the Amazon SageMaker API Reference guide.Unit
— (String
)TtlDuration
time unit."Seconds"
"Minutes"
"Hours"
"Days"
"Weeks"
Value
— (Integer
)TtlDuration
time value.
StorageType
— (String
)Option for different tiers of low latency storage for real-time data retrieval.
-
Standard
: A managed low latency data store for feature groups. -
InMemory
: A managed data store for feature groups that supports very low latency retrieval.
"Standard"
"InMemory"
-
OfflineStoreConfig
— (map
)Use this to configure an
OfflineFeatureStore
. This parameter allows you to specify:-
The Amazon Simple Storage Service (Amazon S3) location of an
OfflineStore
. -
A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog.
-
An KMS encryption key to encrypt the Amazon S3 location used for
OfflineStore
. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent. -
Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.
To learn more about this parameter, see OfflineStoreConfig.
S3StorageConfig
— required — (map
)The Amazon Simple Storage (Amazon S3) location of
OfflineStore
.S3Uri
— required — (String
)The S3 URI, or location in Amazon S3, of
OfflineStore
.S3 URIs have a format similar to the following:
s3://example-bucket/prefix/
.KmsKeyId
— (String
)The Amazon Web Services Key Management Service (KMS) key ARN of the key used to encrypt any objects written into the
OfflineStore
S3 location.The IAM
roleARN
that is passed as a parameter toCreateFeatureGroup
must have below permissions to theKmsKeyId
:-
"kms:GenerateDataKey"
-
ResolvedOutputS3Uri
— (String
)The S3 path where offline records are written.
DisableGlueTableCreation
— (Boolean
)Set to
True
to disable the automatic creation of an Amazon Web Services Glue table when configuring anOfflineStore
. If set toFalse
, Feature Store will name theOfflineStore
Glue table following Athena's naming recommendations.The default value is
False
.DataCatalogConfig
— (map
)The meta data of the Glue table that is autogenerated when an
OfflineStore
is created.TableName
— required — (String
)The name of the Glue table.
Catalog
— required — (String
)The name of the Glue table catalog.
Database
— required — (String
)The name of the Glue table database.
TableFormat
— (String
)Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg.
Possible values include:"Glue"
"Iceberg"
-
RoleArn
— (String
)The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the
OfflineStore
if anOfflineStoreConfig
is provided.Description
— (String
)A free-form description of a
FeatureGroup
.Tags
— (Array<map>
)Tags used to identify
Features
in eachFeatureGroup
.Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:FeatureGroupArn
— (String
)The Amazon Resource Name (ARN) of the
FeatureGroup
. This is a unique identifier for the feature group.
-
(AWS.Response)
—
Returns:
createFlowDefinition(params = {}, callback) ⇒ AWS.Request
Creates a flow definition.
Service Reference:
Examples:
Calling the createFlowDefinition operation
var params = { FlowDefinitionName: 'STRING_VALUE', /* required */ HumanLoopConfig: { /* required */ HumanTaskUiArn: 'STRING_VALUE', /* required */ TaskCount: 'NUMBER_VALUE', /* required */ TaskDescription: 'STRING_VALUE', /* required */ TaskTitle: 'STRING_VALUE', /* required */ WorkteamArn: 'STRING_VALUE', /* required */ PublicWorkforceTaskPrice: { AmountInUsd: { Cents: 'NUMBER_VALUE', Dollars: 'NUMBER_VALUE', TenthFractionsOfACent: 'NUMBER_VALUE' } }, TaskAvailabilityLifetimeInSeconds: 'NUMBER_VALUE', TaskKeywords: [ 'STRING_VALUE', /* more items */ ], TaskTimeLimitInSeconds: 'NUMBER_VALUE' }, OutputConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ HumanLoopActivationConfig: { HumanLoopActivationConditionsConfig: { /* required */ HumanLoopActivationConditions: any /* This value will be JSON encoded on your behalf with JSON.stringify() */ /* required */ } }, HumanLoopRequestSource: { AwsManagedHumanLoopRequestSource: AWS/Rekognition/DetectModerationLabels/Image/V3 | AWS/Textract/AnalyzeDocument/Forms/V1 /* required */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createFlowDefinition(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
FlowDefinitionName
— (String
)The name of your flow definition.
HumanLoopRequestSource
— (map
)Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
AwsManagedHumanLoopRequestSource
— required — (String
)Specifies whether Amazon Rekognition or Amazon Textract are used as the integration source. The default field settings and JSON parsing rules are different based on the integration source. Valid values:
Possible values include:"AWS/Rekognition/DetectModerationLabels/Image/V3"
"AWS/Textract/AnalyzeDocument/Forms/V1"
HumanLoopActivationConfig
— (map
)An object containing information about the events that trigger a human workflow.
HumanLoopActivationConditionsConfig
— required — (map
)Container structure for defining under what conditions SageMaker creates a human loop.
HumanLoopActivationConditions
— required — (String
)JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team. The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI in the Amazon SageMaker Developer Guide.
HumanLoopConfig
— (map
)An object containing information about the tasks the human reviewers will perform.
WorkteamArn
— required — (String
)Amazon Resource Name (ARN) of a team of workers. To learn more about the types of workforces and work teams you can create and use with Amazon A2I, see Create and Manage Workforces.
HumanTaskUiArn
— required — (String
)The Amazon Resource Name (ARN) of the human task user interface.
You can use standard HTML and Crowd HTML Elements to create a custom worker task template. You use this template to create a human task UI.
To learn how to create a custom HTML template, see Create Custom Worker Task Template.
To learn how to create a human task UI, which is a worker task template that can be used in a flow definition, see Create and Delete a Worker Task Templates.
TaskTitle
— required — (String
)A title for the human worker task.
TaskDescription
— required — (String
)A description for the human worker task.
TaskCount
— required — (Integer
)The number of distinct workers who will perform the same task on each object. For example, if
TaskCount
is set to3
for an image classification labeling job, three workers will classify each input image. IncreasingTaskCount
can improve label accuracy.TaskAvailabilityLifetimeInSeconds
— (Integer
)The length of time that a task remains available for review by human workers.
TaskTimeLimitInSeconds
— (Integer
)The amount of time that a worker has to complete a task. The default value is 3,600 seconds (1 hour).
TaskKeywords
— (Array<String>
)Keywords used to describe the task so that workers can discover the task.
PublicWorkforceTaskPrice
— (map
)Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed.
Use one of the following prices for bounding box tasks. Prices are in US dollars and should be based on the complexity of the task; the longer it takes in your initial testing, the more you should offer.
-
0.036
-
0.048
-
0.060
-
0.072
-
0.120
-
0.240
-
0.360
-
0.480
-
0.600
-
0.720
-
0.840
-
0.960
-
1.080
-
1.200
Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.
-
0.012
-
0.024
-
0.036
-
0.048
-
0.060
-
0.072
-
0.120
-
0.240
-
0.360
-
0.480
-
0.600
-
0.720
-
0.840
-
0.960
-
1.080
-
1.200
Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.
-
0.840
-
0.960
-
1.080
-
1.200
Use one of the following prices for Textract AnalyzeDocument Important Form Key Amazon Augmented AI review tasks. Prices are in US dollars.
-
2.400
-
2.280
-
2.160
-
2.040
-
1.920
-
1.800
-
1.680
-
1.560
-
1.440
-
1.320
-
1.200
-
1.080
-
0.960
-
0.840
-
0.720
-
0.600
-
0.480
-
0.360
-
0.240
-
0.120
-
0.072
-
0.060
-
0.048
-
0.036
-
0.024
-
0.012
Use one of the following prices for Rekognition DetectModerationLabels Amazon Augmented AI review tasks. Prices are in US dollars.
-
1.200
-
1.080
-
0.960
-
0.840
-
0.720
-
0.600
-
0.480
-
0.360
-
0.240
-
0.120
-
0.072
-
0.060
-
0.048
-
0.036
-
0.024
-
0.012
Use one of the following prices for Amazon Augmented AI custom human review tasks. Prices are in US dollars.
-
1.200
-
1.080
-
0.960
-
0.840
-
0.720
-
0.600
-
0.480
-
0.360
-
0.240
-
0.120
-
0.072
-
0.060
-
0.048
-
0.036
-
0.024
-
0.012
AmountInUsd
— (map
)Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
Dollars
— (Integer
)The whole number of dollars in the amount.
Cents
— (Integer
)The fractional portion, in cents, of the amount.
TenthFractionsOfACent
— (Integer
)Fractions of a cent, in tenths.
-
OutputConfig
— (map
)An object containing information about where the human review results will be uploaded.
S3OutputPath
— required — (String
)The Amazon S3 path where the object containing human output will be made available.
To learn more about the format of Amazon A2I output data, see Amazon A2I Output Data.
KmsKeyId
— (String
)The Amazon Key Management Service (KMS) key ID for server-side encryption.
RoleArn
— (String
)The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example,
arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298
.Tags
— (Array<map>
)An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:FlowDefinitionArn
— (String
)The Amazon Resource Name (ARN) of the flow definition you create.
-
(AWS.Response)
—
Returns:
createHub(params = {}, callback) ⇒ AWS.Request
Create a hub.
Note: Hub APIs are only callable through SageMaker Studio.Service Reference:
Examples:
Calling the createHub operation
var params = { HubDescription: 'STRING_VALUE', /* required */ HubName: 'STRING_VALUE', /* required */ HubDisplayName: 'STRING_VALUE', HubSearchKeywords: [ 'STRING_VALUE', /* more items */ ], S3StorageConfig: { S3OutputPath: 'STRING_VALUE' }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createHub(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
HubName
— (String
)The name of the hub to create.
HubDescription
— (String
)A description of the hub.
HubDisplayName
— (String
)The display name of the hub.
HubSearchKeywords
— (Array<String>
)The searchable keywords for the hub.
S3StorageConfig
— (map
)The Amazon S3 storage configuration for the hub.
S3OutputPath
— (String
)The Amazon S3 bucket prefix for hosting hub content.
Tags
— (Array<map>
)Any tags to associate with the hub.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:HubArn
— (String
)The Amazon Resource Name (ARN) of the hub.
-
(AWS.Response)
—
Returns:
createHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
Service Reference:
Examples:
Calling the createHumanTaskUi operation
var params = { HumanTaskUiName: 'STRING_VALUE', /* required */ UiTemplate: { /* required */ Content: 'STRING_VALUE' /* required */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createHumanTaskUi(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
HumanTaskUiName
— (String
)The name of the user interface you are creating.
UiTemplate
— (map
)The Liquid template for the worker user interface.
Content
— required — (String
)The content of the Liquid template for the worker user interface.
Tags
— (Array<map>
)An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:HumanTaskUiArn
— (String
)The Amazon Resource Name (ARN) of the human review workflow user interface you create.
-
(AWS.Response)
—
Returns:
createHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see View Experiments, Trials, and Trial Components.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
Service Reference:
Examples:
Calling the createHyperParameterTuningJob operation
var params = { HyperParameterTuningJobConfig: { /* required */ ResourceLimits: { /* required */ MaxParallelTrainingJobs: 'NUMBER_VALUE', /* required */ MaxNumberOfTrainingJobs: 'NUMBER_VALUE', MaxRuntimeInSeconds: 'NUMBER_VALUE' }, Strategy: Bayesian | Random | Hyperband | Grid, /* required */ HyperParameterTuningJobObjective: { MetricName: 'STRING_VALUE', /* required */ Type: Maximize | Minimize /* required */ }, ParameterRanges: { AutoParameters: [ { Name: 'STRING_VALUE', /* required */ ValueHint: 'STRING_VALUE' /* required */ }, /* more items */ ], CategoricalParameterRanges: [ { Name: 'STRING_VALUE', /* required */ Values: [ /* required */ 'STRING_VALUE', /* more items */ ] }, /* more items */ ], ContinuousParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ], IntegerParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ] }, RandomSeed: 'NUMBER_VALUE', StrategyConfig: { HyperbandStrategyConfig: { MaxResource: 'NUMBER_VALUE', MinResource: 'NUMBER_VALUE' } }, TrainingJobEarlyStoppingType: Off | Auto, TuningJobCompletionCriteria: { BestObjectiveNotImproving: { MaxNumberOfTrainingJobsNotImproving: 'NUMBER_VALUE' }, ConvergenceDetected: { CompleteOnConvergence: Disabled | Enabled }, TargetObjectiveMetricValue: 'NUMBER_VALUE' } }, HyperParameterTuningJobName: 'STRING_VALUE', /* required */ Autotune: { Mode: Enabled /* required */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ], TrainingJobDefinition: { AlgorithmSpecification: { /* required */ TrainingInputMode: Pipe | File | FastFile, /* required */ AlgorithmName: 'STRING_VALUE', MetricDefinitions: [ { Name: 'STRING_VALUE', /* required */ Regex: 'STRING_VALUE' /* required */ }, /* more items */ ], TrainingImage: 'STRING_VALUE' }, OutputDataConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ CompressionType: GZIP | NONE, KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ StoppingCondition: { /* required */ MaxRuntimeInSeconds: 'NUMBER_VALUE', MaxWaitTimeInSeconds: 'NUMBER_VALUE' }, CheckpointConfig: { S3Uri: 'STRING_VALUE', /* required */ LocalPath: 'STRING_VALUE' }, DefinitionName: 'STRING_VALUE', EnableInterContainerTrafficEncryption: true || false, EnableManagedSpotTraining: true || false, EnableNetworkIsolation: true || false, Environment: { '<HyperParameterTrainingJobEnvironmentKey>': 'STRING_VALUE', /* '<HyperParameterTrainingJobEnvironmentKey>': ... */ }, HyperParameterRanges: { AutoParameters: [ { Name: 'STRING_VALUE', /* required */ ValueHint: 'STRING_VALUE' /* required */ }, /* more items */ ], CategoricalParameterRanges: [ { Name: 'STRING_VALUE', /* required */ Values: [ /* required */ 'STRING_VALUE', /* more items */ ] }, /* more items */ ], ContinuousParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ], IntegerParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ] }, HyperParameterTuningResourceConfig: { AllocationStrategy: Prioritized, InstanceConfigs: [ { InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, /* required */ VolumeSizeInGB: 'NUMBER_VALUE' /* required */ }, /* more items */ ], InstanceCount: 'NUMBER_VALUE', InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, VolumeKmsKeyId: 'STRING_VALUE', VolumeSizeInGB: 'NUMBER_VALUE' }, InputDataConfig: [ { ChannelName: 'STRING_VALUE', /* required */ DataSource: { /* required */ FileSystemDataSource: { DirectoryPath: 'STRING_VALUE', /* required */ FileSystemAccessMode: rw | ro, /* required */ FileSystemId: 'STRING_VALUE', /* required */ FileSystemType: EFS | FSxLustre /* required */ }, S3DataSource: { S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE', /* required */ AttributeNames: [ 'STRING_VALUE', /* more items */ ], InstanceGroupNames: [ 'STRING_VALUE', /* more items */ ], S3DataDistributionType: FullyReplicated | ShardedByS3Key } }, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', InputMode: Pipe | File | FastFile, RecordWrapperType: None | RecordIO, ShuffleConfig: { Seed: 'NUMBER_VALUE' /* required */ } }, /* more items */ ], ResourceConfig: { VolumeSizeInGB: 'NUMBER_VALUE', /* required */ InstanceCount: 'NUMBER_VALUE', InstanceGroups: [ { InstanceCount: 'NUMBER_VALUE', /* required */ InstanceGroupName: 'STRING_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge /* required */ }, /* more items */ ], InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, KeepAlivePeriodInSeconds: 'NUMBER_VALUE', VolumeKmsKeyId: 'STRING_VALUE' }, RetryStrategy: { MaximumRetryAttempts: 'NUMBER_VALUE' /* required */ }, StaticHyperParameters: { '<HyperParameterKey>': 'STRING_VALUE', /* '<HyperParameterKey>': ... */ }, TuningObjective: { MetricName: 'STRING_VALUE', /* required */ Type: Maximize | Minimize /* required */ }, VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, TrainingJobDefinitions: [ { AlgorithmSpecification: { /* required */ TrainingInputMode: Pipe | File | FastFile, /* required */ AlgorithmName: 'STRING_VALUE', MetricDefinitions: [ { Name: 'STRING_VALUE', /* required */ Regex: 'STRING_VALUE' /* required */ }, /* more items */ ], TrainingImage: 'STRING_VALUE' }, OutputDataConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ CompressionType: GZIP | NONE, KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ StoppingCondition: { /* required */ MaxRuntimeInSeconds: 'NUMBER_VALUE', MaxWaitTimeInSeconds: 'NUMBER_VALUE' }, CheckpointConfig: { S3Uri: 'STRING_VALUE', /* required */ LocalPath: 'STRING_VALUE' }, DefinitionName: 'STRING_VALUE', EnableInterContainerTrafficEncryption: true || false, EnableManagedSpotTraining: true || false, EnableNetworkIsolation: true || false, Environment: { '<HyperParameterTrainingJobEnvironmentKey>': 'STRING_VALUE', /* '<HyperParameterTrainingJobEnvironmentKey>': ... */ }, HyperParameterRanges: { AutoParameters: [ { Name: 'STRING_VALUE', /* required */ ValueHint: 'STRING_VALUE' /* required */ }, /* more items */ ], CategoricalParameterRanges: [ { Name: 'STRING_VALUE', /* required */ Values: [ /* required */ 'STRING_VALUE', /* more items */ ] }, /* more items */ ], ContinuousParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ], IntegerParameterRanges: [ { MaxValue: 'STRING_VALUE', /* required */ MinValue: 'STRING_VALUE', /* required */ Name: 'STRING_VALUE', /* required */ ScalingType: Auto | Linear | Logarithmic | ReverseLogarithmic }, /* more items */ ] }, HyperParameterTuningResourceConfig: { AllocationStrategy: Prioritized, InstanceConfigs: [ { InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, /* required */ VolumeSizeInGB: 'NUMBER_VALUE' /* required */ }, /* more items */ ], InstanceCount: 'NUMBER_VALUE', InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, VolumeKmsKeyId: 'STRING_VALUE', VolumeSizeInGB: 'NUMBER_VALUE' }, InputDataConfig: [ { ChannelName: 'STRING_VALUE', /* required */ DataSource: { /* required */ FileSystemDataSource: { DirectoryPath: 'STRING_VALUE', /* required */ FileSystemAccessMode: rw | ro, /* required */ FileSystemId: 'STRING_VALUE', /* required */ FileSystemType: EFS | FSxLustre /* required */ }, S3DataSource: { S3DataType: ManifestFile | S3Prefix | AugmentedManifestFile, /* required */ S3Uri: 'STRING_VALUE', /* required */ AttributeNames: [ 'STRING_VALUE', /* more items */ ], InstanceGroupNames: [ 'STRING_VALUE', /* more items */ ], S3DataDistributionType: FullyReplicated | ShardedByS3Key } }, CompressionType: None | Gzip, ContentType: 'STRING_VALUE', InputMode: Pipe | File | FastFile, RecordWrapperType: None | RecordIO, ShuffleConfig: { Seed: 'NUMBER_VALUE' /* required */ } }, /* more items */ ], ResourceConfig: { VolumeSizeInGB: 'NUMBER_VALUE', /* required */ InstanceCount: 'NUMBER_VALUE', InstanceGroups: [ { InstanceCount: 'NUMBER_VALUE', /* required */ InstanceGroupName: 'STRING_VALUE', /* required */ InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge /* required */ }, /* more items */ ], InstanceType: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.p5.48xlarge, KeepAlivePeriodInSeconds: 'NUMBER_VALUE', VolumeKmsKeyId: 'STRING_VALUE' }, RetryStrategy: { MaximumRetryAttempts: 'NUMBER_VALUE' /* required */ }, StaticHyperParameters: { '<HyperParameterKey>': 'STRING_VALUE', /* '<HyperParameterKey>': ... */ }, TuningObjective: { MetricName: 'STRING_VALUE', /* required */ Type: Maximize | Minimize /* required */ }, VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, /* more items */ ], WarmStartConfig: { ParentHyperParameterTuningJobs: [ /* required */ { HyperParameterTuningJobName: 'STRING_VALUE' }, /* more items */ ], WarmStartType: IdenticalDataAndAlgorithm | TransferLearning /* required */ } }; sagemaker.createHyperParameterTuningJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
HyperParameterTuningJobName
— (String
)The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.
HyperParameterTuningJobConfig
— (map
)The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.
Strategy
— required — (String
)Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
Possible values include:"Bayesian"
"Random"
"Hyperband"
"Grid"
StrategyConfig
— (map
)The configuration for the
Hyperband
optimization strategy. This parameter should be provided only ifHyperband
is selected as the strategy forHyperParameterTuningJobConfig
.HyperbandStrategyConfig
— (map
)The configuration for the object that specifies the
Hyperband
strategy. This parameter is only supported for theHyperband
selection forStrategy
within theHyperParameterTuningJobConfig
API.MinResource
— (Integer
)The minimum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. If the value for
MinResource
has not been reached, the training job is not stopped byHyperband
.MaxResource
— (Integer
)The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the
MaxResource
value, it is stopped. If a value forMaxResource
is not provided, andHyperband
is selected as the hyperparameter tuning strategy,HyperbandTrainingJ
attempts to inferMaxResource
from the following keys (if present) in StaticsHyperParameters:-
epochs
-
numepochs
-
n-epochs
-
n_epochs
-
num_epochs
If
HyperbandStrategyConfig
is unable to infer a value forMaxResource
, it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributive training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.-
HyperParameterTuningJobObjective
— (map
)The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
Type
— required — (String
)Whether to minimize or maximize the objective metric.
Possible values include:"Maximize"
"Minimize"
MetricName
— required — (String
)The name of the metric to use for the objective metric.
ResourceLimits
— required — (map
)The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
MaxNumberOfTrainingJobs
— (Integer
)The maximum number of training jobs that a hyperparameter tuning job can launch.
MaxParallelTrainingJobs
— required — (Integer
)The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.
MaxRuntimeInSeconds
— (Integer
)The maximum time in seconds that a hyperparameter tuning job can run.
ParameterRanges
— (map
)The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
IntegerParameterRanges
— (Array<map>
)The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the hyperparameter to search.
MinValue
— required — (String
)The minimum value of the hyperparameter to search.
MaxValue
— required — (String
)The maximum value of the hyperparameter to search.
ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
ContinuousParameterRanges
— (Array<map>
)The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the continuous hyperparameter to tune.
MinValue
— required — (String
)The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
MaxValue
for tuning.MaxValue
— required — (String
)The maximum value for the hyperparameter. The tuning job uses floating-point values between
MinValue
value and this value for tuning.ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
- ReverseLogarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.
Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
CategoricalParameterRanges
— (Array<map>
)The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the categorical hyperparameter to tune.
Values
— required — (Array<String>
)A list of the categories for the hyperparameter.
AutoParameters
— (Array<map>
)A list containing hyperparameter names and example values to be used by Autotune to determine optimal ranges for your tuning job.
Name
— required — (String
)The name of the hyperparameter to optimize using Autotune.
ValueHint
— required — (String
)An example value of the hyperparameter to optimize using Autotune.
TrainingJobEarlyStoppingType
— (String
)Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the
Hyperband
strategy has its own advanced internal early stopping mechanism,TrainingJobEarlyStoppingType
must beOFF
to useHyperband
. This parameter can take on one of the following values (the default value isOFF
):- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
"Off"
"Auto"
TuningJobCompletionCriteria
— (map
)The tuning job's completion criteria.
TargetObjectiveMetricValue
— (Float
)The value of the objective metric.
BestObjectiveNotImproving
— (map
)A flag to stop your hyperparameter tuning job if model performance fails to improve as evaluated against an objective function.
MaxNumberOfTrainingJobsNotImproving
— (Integer
)The number of training jobs that have failed to improve model performance by 1% or greater over prior training jobs as evaluated against an objective function.
ConvergenceDetected
— (map
)A flag to top your hyperparameter tuning job if automatic model tuning (AMT) has detected that your model has converged as evaluated against your objective function.
CompleteOnConvergence
— (String
)A flag to stop a tuning job once AMT has detected that the job has converged.
Possible values include:"Disabled"
"Enabled"
RandomSeed
— (Integer
)A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
TrainingJobDefinition
— (map
)The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.
DefinitionName
— (String
)The job definition name.
TuningObjective
— (map
)Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the
Type
parameter.Type
— required — (String
)Whether to minimize or maximize the objective metric.
Possible values include:"Maximize"
"Minimize"
MetricName
— required — (String
)The name of the metric to use for the objective metric.
HyperParameterRanges
— (map
)Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.
Note: The maximum number of items specified forArray Members
refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.IntegerParameterRanges
— (Array<map>
)The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the hyperparameter to search.
MinValue
— required — (String
)The minimum value of the hyperparameter to search.
MaxValue
— required — (String
)The maximum value of the hyperparameter to search.
ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
ContinuousParameterRanges
— (Array<map>
)The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the continuous hyperparameter to tune.
MinValue
— required — (String
)The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
MaxValue
for tuning.MaxValue
— required — (String
)The maximum value for the hyperparameter. The tuning job uses floating-point values between
MinValue
value and this value for tuning.ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
- ReverseLogarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.
Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
CategoricalParameterRanges
— (Array<map>
)The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the categorical hyperparameter to tune.
Values
— required — (Array<String>
)A list of the categories for the hyperparameter.
AutoParameters
— (Array<map>
)A list containing hyperparameter names and example values to be used by Autotune to determine optimal ranges for your tuning job.
Name
— required — (String
)The name of the hyperparameter to optimize using Autotune.
ValueHint
— required — (String
)An example value of the hyperparameter to optimize using Autotune.
StaticHyperParameters
— (map<String>
)Specifies the values of hyperparameters that do not change for the tuning job.
AlgorithmSpecification
— required — (map
)The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
TrainingImage
— (String
)The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.TrainingInputMode
— required — (String
)The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports
Pipe
mode, Amazon SageMaker streams data directly from Amazon S3 to the container.File mode
If an algorithm supports
File
mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports
FastFile
mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.FastFile
mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided."Pipe"
"File"
"FastFile"
AlgorithmName
— (String
)The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for
TrainingImage
.MetricDefinitions
— (Array<map>
)An array of MetricDefinition objects that specify the metrics that the algorithm emits.
Name
— required — (String
)The name of the metric.
Regex
— required — (String
)A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.
RoleArn
— required — (String
)The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
InputDataConfig
— (Array<map>
)An array of Channel objects that specify the input for the training jobs that the tuning job launches.
ChannelName
— required — (String
)The name of the channel.
DataSource
— required — (map
)The location of the channel data.
S3DataSource
— (map
)The S3 location of the data source that is associated with a channel.
S3DataType
— required — (String
)If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.If you choose
Possible values include:AugmentedManifestFile
, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
can only be used if the Channel's input mode isPipe
."ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
S3Uri
— required — (String
)Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:-
A key name prefix might look like this:
s3://bucketname/exampleprefix
-
A manifest might look like this:
s3://bucketname/example.manifest
A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of
S3Uri
. Note that the prefix must be a valid non-emptyS3Uri
that precludes users from specifying a manifest whose individualS3Uri
is sourced from different S3 buckets.The following code example shows a valid manifest format:
[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
This JSON is equivalent to the following
S3Uri
list:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set of
S3Uri
in this manifest is the input data for the channel for this data source. The object that eachS3Uri
points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
-
S3DataDistributionType
— (String
)If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated
.If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify
ShardedByS3Key
. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose
Possible values include:ShardedByS3Key
. If the algorithm requires copying training data to the ML storage volume (whenTrainingInputMode
is set toFile
), this copies 1/n of the number of objects."FullyReplicated"
"ShardedByS3Key"
AttributeNames
— (Array<String>
)A list of one or more attribute names to use that are found in a specified augmented manifest file.
InstanceGroupNames
— (Array<String>
)A list of names of instance groups that get data from the S3 data source.
FileSystemDataSource
— (map
)The file system that is associated with a channel.
FileSystemId
— required — (String
)The file system id.
FileSystemAccessMode
— required — (String
)The access mode of the mount of the directory associated with the channel. A directory can be mounted either in
Possible values include:ro
(read-only) orrw
(read-write) mode."rw"
"ro"
FileSystemType
— required — (String
)The file system type.
Possible values include:"EFS"
"FSxLustre"
DirectoryPath
— required — (String
)The full path to the directory to associate with the channel.
ContentType
— (String
)The MIME type of the data.
CompressionType
— (String
)If training data is compressed, the compression type. The default value is
Possible values include:None
.CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None."None"
"Gzip"
RecordWrapperType
— (String
)Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
Possible values include:"None"
"RecordIO"
InputMode
— (String
)(Optional) The input mode to use for the data channel in a training job. If you don't set a value for
InputMode
, SageMaker uses the value set forTrainingInputMode
. Use this parameter to override theTrainingInputMode
setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, useFile
input mode. To stream data directly from Amazon S3 to the container, choosePipe
input mode.To use a model for incremental training, choose
Possible values include:File
input model."Pipe"
"File"
"FastFile"
ShuffleConfig
— (map
)A configuration for a shuffle option for input data in a channel. If you use
S3Prefix
forS3DataType
, this shuffles the results of the S3 key prefix matches. If you useManifestFile
, the order of the S3 object references in theManifestFile
is shuffled. If you useAugmentedManifestFile
, the order of the JSON lines in theAugmentedManifestFile
is shuffled. The shuffling order is determined using theSeed
value.For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType
ofShardedByS3Key
, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.Seed
— required — (Integer
)Determines the shuffling order in
ShuffleConfig
value.
VpcConfig
— (map
)The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
OutputDataConfig
— required — (map
)Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob
,CreateTransformJob
, orCreateHyperParameterTuningJob
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
S3OutputPath
— required — (String
)Identifies the S3 path where you want SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.CompressionType
— (String
)The model output compression type. Select
Possible values include:None
to output an uncompressed model, recommended for large model outputs. Defaults to gzip."GZIP"
"NONE"
ResourceConfig
— (map
)The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.
Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose
File
as theTrainingInputMode
in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.Note: If you want to use hyperparameter optimization with instance type flexibility, useHyperParameterTuningResourceConfig
instead.InstanceType
— (String
)The ML compute instance type.
Note: SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022. Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances (Possible values include:ml.p4de.24xlarge
) to reduce model training time. Theml.p4de.24xlarge
instances are available in the following Amazon Web Services Regions.- US East (N. Virginia) (us-east-1)
- US West (Oregon) (us-west-2)
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— (Integer
)The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB
— required — (Integer
)The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose
File
as theTrainingInputMode
in the algorithm specification.When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include
ml.p4d
,ml.g4dn
, andml.g5
.When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through
VolumeSizeInGB
in theResourceConfig
API. For example, ML instance families that use EBS volumes includeml.c5
andml.p2
.To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId
— (String
)The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request aVolumeKmsKeyId
when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.The
VolumeKmsKeyId
can be in any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
InstanceGroups
— (Array<map>
)The configuration of a heterogeneous cluster in JSON format.
InstanceType
— required — (String
)Specifies the instance type of the instance group.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— required — (Integer
)Specifies the number of instances of the instance group.
InstanceGroupName
— required — (String
)Specifies the name of the instance group.
KeepAlivePeriodInSeconds
— (Integer
)The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
StoppingCondition
— required — (map
)Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
MaxRuntimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.The maximum time that a
TrainingJob
can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.MaxWaitTimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than
MaxRuntimeInSeconds
. If the job does not complete during this time, SageMaker ends the job.When
RetryStrategy
is specified in the job request,MaxWaitTimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt.
EnableNetworkIsolation
— (Boolean
)Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
EnableInterContainerTrafficEncryption
— (Boolean
)To encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.EnableManagedSpotTraining
— (Boolean
)A Boolean indicating whether managed spot training is enabled (
True
) or not (False
).CheckpointConfig
— (map
)Contains information about the output location for managed spot training checkpoint data.
S3Uri
— required — (String
)Identifies the S3 path where you want SageMaker to store checkpoints. For example,
s3://bucket-name/key-name-prefix
.LocalPath
— (String
)(Optional) The local directory where checkpoints are written. The default directory is
/opt/ml/checkpoints/
.
RetryStrategy
— (map
)The number of times to retry the job when the job fails due to an
InternalServerError
.MaximumRetryAttempts
— required — (Integer
)The number of times to retry the job. When the job is retried, it's
SecondaryStatus
is changed toSTARTING
.
HyperParameterTuningResourceConfig
— (map
)The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose
File
forTrainingInputMode
in theAlgorithmSpecification
parameter to additionally store training data in the storage volume (optional).InstanceType
— (String
)The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— (Integer
)The number of compute instances of type
InstanceType
to use. For distributed training, select a value greater than 1.VolumeSizeInGB
— (Integer
)The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for
InstanceConfigs
is also specified.Some instance types have a fixed total local storage size. If you select one of these instances for training,
VolumeSizeInGB
cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.Note: SageMaker supports only the General Purpose SSD (gp2) storage volume type.VolumeKmsKeyId
— (String
)A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.
KMS Key ID:
"1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key:
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a
VolumeKmsKeyId
. For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.AllocationStrategy
— (String
)The strategy that determines the order of preference for resources specified in
Possible values include:InstanceConfigs
used in hyperparameter optimization."Prioritized"
InstanceConfigs
— (Array<map>
)A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The
AllocationStrategy
controls the order in which multiple configurations provided inInstanceConfigs
are used.Note: If you only want to use a single instance configuration inside theHyperParameterTuningResourceConfig
API, do not provide a value forInstanceConfigs
. Instead, useInstanceType
,VolumeSizeInGB
andInstanceCount
. If you useInstanceConfigs
, do not provide values forInstanceType
,VolumeSizeInGB
orInstanceCount
.InstanceType
— required — (String
)The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— required — (Integer
)The number of instances of the type specified by
InstanceType
. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.VolumeSizeInGB
— required — (Integer
)The volume size in GB of the data to be processed for hyperparameter optimization (optional).
Environment
— (map<String>
)An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.
Note: The maximum number of items specified forMap Entries
refers to the maximum number of environment variables for eachTrainingJobDefinition
and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.
TrainingJobDefinitions
— (Array<map>
)A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.
DefinitionName
— (String
)The job definition name.
TuningObjective
— (map
)Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the
Type
parameter.Type
— required — (String
)Whether to minimize or maximize the objective metric.
Possible values include:"Maximize"
"Minimize"
MetricName
— required — (String
)The name of the metric to use for the objective metric.
HyperParameterRanges
— (map
)Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.
Note: The maximum number of items specified forArray Members
refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can't exceed the maximum number specified.IntegerParameterRanges
— (Array<map>
)The array of IntegerParameterRange objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the hyperparameter to search.
MinValue
— required — (String
)The minimum value of the hyperparameter to search.
MaxValue
— required — (String
)The maximum value of the hyperparameter to search.
ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
ContinuousParameterRanges
— (Array<map>
)The array of ContinuousParameterRange objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the continuous hyperparameter to tune.
MinValue
— required — (String
)The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and
MaxValue
for tuning.MaxValue
— required — (String
)The maximum value for the hyperparameter. The tuning job uses floating-point values between
MinValue
value and this value for tuning.ScalingType
— (String
)The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
- Auto
-
SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.
- Linear
-
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
- Logarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.
Logarithmic scaling works only for ranges that have only values greater than 0.
- ReverseLogarithmic
-
Hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.
Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.
"Auto"
"Linear"
"Logarithmic"
"ReverseLogarithmic"
CategoricalParameterRanges
— (Array<map>
)The array of CategoricalParameterRange objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.
Name
— required — (String
)The name of the categorical hyperparameter to tune.
Values
— required — (Array<String>
)A list of the categories for the hyperparameter.
AutoParameters
— (Array<map>
)A list containing hyperparameter names and example values to be used by Autotune to determine optimal ranges for your tuning job.
Name
— required — (String
)The name of the hyperparameter to optimize using Autotune.
ValueHint
— required — (String
)An example value of the hyperparameter to optimize using Autotune.
StaticHyperParameters
— (map<String>
)Specifies the values of hyperparameters that do not change for the tuning job.
AlgorithmSpecification
— required — (map
)The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
TrainingImage
— (String
)The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.TrainingInputMode
— required — (String
)The training input mode that the algorithm supports. For more information about input modes, see Algorithms.
Pipe mode
If an algorithm supports
Pipe
mode, Amazon SageMaker streams data directly from Amazon S3 to the container.File mode
If an algorithm supports
File
mode, SageMaker downloads the training data from S3 to the provisioned ML storage volume, and mounts the directory to the Docker volume for the training container.You must provision the ML storage volume with sufficient capacity to accommodate the data downloaded from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container uses the ML storage volume to also store intermediate information, if any.
For distributed algorithms, training data is distributed uniformly. Your training duration is predictable if the input data objects sizes are approximately the same. SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed when one host in a training cluster is overloaded, thus becoming a bottleneck in training.
FastFile mode
If an algorithm supports
FastFile
mode, SageMaker streams data directly from S3 to the container with no code changes, and provides file system access to the data. Users can author their training script to interact with these files as if they were stored on disk.FastFile
mode works best when the data is read sequentially. Augmented manifest files aren't supported. The startup time is lower when there are fewer files in the S3 bucket provided."Pipe"
"File"
"FastFile"
AlgorithmName
— (String
)The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for
TrainingImage
.MetricDefinitions
— (Array<map>
)An array of MetricDefinition objects that specify the metrics that the algorithm emits.
Name
— required — (String
)The name of the metric.
Regex
— required — (String
)A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining metrics and environment variables.
RoleArn
— required — (String
)The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
InputDataConfig
— (Array<map>
)An array of Channel objects that specify the input for the training jobs that the tuning job launches.
ChannelName
— required — (String
)The name of the channel.
DataSource
— required — (map
)The location of the channel data.
S3DataSource
— (map
)The S3 location of the data source that is associated with a channel.
S3DataType
— required — (String
)If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.If you choose
Possible values include:AugmentedManifestFile
, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
can only be used if the Channel's input mode isPipe
."ManifestFile"
"S3Prefix"
"AugmentedManifestFile"
S3Uri
— required — (String
)Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:-
A key name prefix might look like this:
s3://bucketname/exampleprefix
-
A manifest might look like this:
s3://bucketname/example.manifest
A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of
S3Uri
. Note that the prefix must be a valid non-emptyS3Uri
that precludes users from specifying a manifest whose individualS3Uri
is sourced from different S3 buckets.The following code example shows a valid manifest format:
[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
This JSON is equivalent to the following
S3Uri
list:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set of
S3Uri
in this manifest is the input data for the channel for this data source. The object that eachS3Uri
points to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
-
S3DataDistributionType
— (String
)If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated
.If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify
ShardedByS3Key
. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose
Possible values include:ShardedByS3Key
. If the algorithm requires copying training data to the ML storage volume (whenTrainingInputMode
is set toFile
), this copies 1/n of the number of objects."FullyReplicated"
"ShardedByS3Key"
AttributeNames
— (Array<String>
)A list of one or more attribute names to use that are found in a specified augmented manifest file.
InstanceGroupNames
— (Array<String>
)A list of names of instance groups that get data from the S3 data source.
FileSystemDataSource
— (map
)The file system that is associated with a channel.
FileSystemId
— required — (String
)The file system id.
FileSystemAccessMode
— required — (String
)The access mode of the mount of the directory associated with the channel. A directory can be mounted either in
Possible values include:ro
(read-only) orrw
(read-write) mode."rw"
"ro"
FileSystemType
— required — (String
)The file system type.
Possible values include:"EFS"
"FSxLustre"
DirectoryPath
— required — (String
)The full path to the directory to associate with the channel.
ContentType
— (String
)The MIME type of the data.
CompressionType
— (String
)If training data is compressed, the compression type. The default value is
Possible values include:None
.CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None."None"
"Gzip"
RecordWrapperType
— (String
)Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see Create a Dataset Using RecordIO.
In File mode, leave this field unset or set it to None.
Possible values include:"None"
"RecordIO"
InputMode
— (String
)(Optional) The input mode to use for the data channel in a training job. If you don't set a value for
InputMode
, SageMaker uses the value set forTrainingInputMode
. Use this parameter to override theTrainingInputMode
setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, useFile
input mode. To stream data directly from Amazon S3 to the container, choosePipe
input mode.To use a model for incremental training, choose
Possible values include:File
input model."Pipe"
"File"
"FastFile"
ShuffleConfig
— (map
)A configuration for a shuffle option for input data in a channel. If you use
S3Prefix
forS3DataType
, this shuffles the results of the S3 key prefix matches. If you useManifestFile
, the order of the S3 object references in theManifestFile
is shuffled. If you useAugmentedManifestFile
, the order of the JSON lines in theAugmentedManifestFile
is shuffled. The shuffling order is determined using theSeed
value.For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType
ofShardedByS3Key
, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.Seed
— required — (Integer
)Determines the shuffling order in
ShuffleConfig
value.
VpcConfig
— (map
)The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
OutputDataConfig
— required — (map
)Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob
,CreateTransformJob
, orCreateHyperParameterTuningJob
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
S3OutputPath
— required — (String
)Identifies the S3 path where you want SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.CompressionType
— (String
)The model output compression type. Select
Possible values include:None
to output an uncompressed model, recommended for large model outputs. Defaults to gzip."GZIP"
"NONE"
ResourceConfig
— (map
)The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.
Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose
File
as theTrainingInputMode
in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.Note: If you want to use hyperparameter optimization with instance type flexibility, useHyperParameterTuningResourceConfig
instead.InstanceType
— (String
)The ML compute instance type.
Note: SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de instances is in preview release starting December 9th, 2022. Amazon EC2 P4de instances (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory, which accelerate the speed of training ML models that need to be trained on large datasets of high-resolution data. In this preview release, Amazon SageMaker supports ML training jobs on P4de instances (Possible values include:ml.p4de.24xlarge
) to reduce model training time. Theml.p4de.24xlarge
instances are available in the following Amazon Web Services Regions.- US East (N. Virginia) (us-east-1)
- US West (Oregon) (us-west-2)
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— (Integer
)The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB
— required — (Integer
)The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose
File
as theTrainingInputMode
in the algorithm specification.When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include
ml.p4d
,ml.g4dn
, andml.g5
.When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through
VolumeSizeInGB
in theResourceConfig
API. For example, ML instance families that use EBS volumes includeml.c5
andml.p2
.To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types.
To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
VolumeKmsKeyId
— (String
)The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request aVolumeKmsKeyId
when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.The
VolumeKmsKeyId
can be in any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
InstanceGroups
— (Array<map>
)The configuration of a heterogeneous cluster in JSON format.
InstanceType
— required — (String
)Specifies the instance type of the instance group.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— required — (Integer
)Specifies the number of instances of the instance group.
InstanceGroupName
— required — (String
)Specifies the name of the instance group.
KeepAlivePeriodInSeconds
— (Integer
)The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
StoppingCondition
— required — (map
)Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
MaxRuntimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.The maximum time that a
TrainingJob
can run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.MaxWaitTimeInSeconds
— (Integer
)The maximum length of time, in seconds, that a managed Spot training job has to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the job can run. It must be equal to or greater than
MaxRuntimeInSeconds
. If the job does not complete during this time, SageMaker ends the job.When
RetryStrategy
is specified in the job request,MaxWaitTimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt.
EnableNetworkIsolation
— (Boolean
)Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
EnableInterContainerTrafficEncryption
— (Boolean
)To encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.EnableManagedSpotTraining
— (Boolean
)A Boolean indicating whether managed spot training is enabled (
True
) or not (False
).CheckpointConfig
— (map
)Contains information about the output location for managed spot training checkpoint data.
S3Uri
— required — (String
)Identifies the S3 path where you want SageMaker to store checkpoints. For example,
s3://bucket-name/key-name-prefix
.LocalPath
— (String
)(Optional) The local directory where checkpoints are written. The default directory is
/opt/ml/checkpoints/
.
RetryStrategy
— (map
)The number of times to retry the job when the job fails due to an
InternalServerError
.MaximumRetryAttempts
— required — (Integer
)The number of times to retry the job. When the job is retried, it's
SecondaryStatus
is changed toSTARTING
.
HyperParameterTuningResourceConfig
— (map
)The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose
File
forTrainingInputMode
in theAlgorithmSpecification
parameter to additionally store training data in the storage volume (optional).InstanceType
— (String
)The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— (Integer
)The number of compute instances of type
InstanceType
to use. For distributed training, select a value greater than 1.VolumeSizeInGB
— (Integer
)The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for
InstanceConfigs
is also specified.Some instance types have a fixed total local storage size. If you select one of these instances for training,
VolumeSizeInGB
cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.Note: SageMaker supports only the General Purpose SSD (gp2) storage volume type.VolumeKmsKeyId
— (String
)A key used by Amazon Web Services Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.
KMS Key ID:
"1234abcd-12ab-34cd-56ef-1234567890ab"
Amazon Resource Name (ARN) of a KMS key:
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a
VolumeKmsKeyId
. For a list of instance types that use local storage, see instance store volumes. For more information about Amazon Web Services Key Management Service, see KMS encryption for more information.AllocationStrategy
— (String
)The strategy that determines the order of preference for resources specified in
Possible values include:InstanceConfigs
used in hyperparameter optimization."Prioritized"
InstanceConfigs
— (Array<map>
)A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The
AllocationStrategy
controls the order in which multiple configurations provided inInstanceConfigs
are used.Note: If you only want to use a single instance configuration inside theHyperParameterTuningResourceConfig
API, do not provide a value forInstanceConfigs
. Instead, useInstanceType
,VolumeSizeInGB
andInstanceCount
. If you useInstanceConfigs
, do not provide values forInstanceType
,VolumeSizeInGB
orInstanceCount
.InstanceType
— required — (String
)The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.
Possible values include:"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.p4d.24xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5n.xlarge"
"ml.c5n.2xlarge"
"ml.c5n.4xlarge"
"ml.c5n.9xlarge"
"ml.c5n.18xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.trn1n.32xlarge"
"ml.p5.48xlarge"
InstanceCount
— required — (Integer
)The number of instances of the type specified by
InstanceType
. Choose an instance count larger than 1 for distributed training algorithms. See Step 2: Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK for more information.VolumeSizeInGB
— required — (Integer
)The volume size in GB of the data to be processed for hyperparameter optimization (optional).
Environment
— (map<String>
)An environment variable that you can pass into the SageMaker CreateTrainingJob API. You can use an existing environment variable from the training container or use your own. See Define metrics and variables for more information.
Note: The maximum number of items specified forMap Entries
refers to the maximum number of environment variables for eachTrainingJobDefinition
and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can't exceed the maximum number specified.
WarmStartConfig
— (map
)Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.
All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify
IDENTICAL_DATA_AND_ALGORITHM
as theWarmStartType
value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.Note: All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.ParentHyperParameterTuningJobs
— required — (Array<map>
)An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a Starting Point.
Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.
HyperParameterTuningJobName
— (String
)The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.
WarmStartType
— required — (String
)Specifies one of the following:
- IDENTICAL_DATA_AND_ALGORITHM
-
The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.
- TRANSFER_LEARNING
-
The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.
"IdenticalDataAndAlgorithm"
"TransferLearning"
Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Autotune
— (map
)Configures SageMaker Automatic model tuning (AMT) to automatically find optimal parameters for the following fields:
-
ParameterRanges: The names and ranges of parameters that a hyperparameter tuning job can optimize.
-
ResourceLimits: The maximum resources that can be used for a training job. These resources include the maximum number of training jobs, the maximum runtime of a tuning job, and the maximum number of training jobs to run at the same time.
-
TrainingJobEarlyStoppingType: A flag that specifies whether or not to use early stopping for training jobs launched by a hyperparameter tuning job.
-
RetryStrategy: The number of times to retry a training job.
-
Strategy: Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training jobs that it launches.
-
ConvergenceDetected: A flag to indicate that Automatic model tuning (AMT) has detected model convergence.
Mode
— required — (String
)Set
Possible values include:Mode
toEnabled
if you want to use Autotune."Enabled"
-
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:HyperParameterTuningJobArn
— (String
)The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a hyperparameter tuning job when you create it.
-
(AWS.Response)
—
Returns:
createImage(params = {}, callback) ⇒ AWS.Request
Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see Bring your own SageMaker image.
Service Reference:
Examples:
Calling the createImage operation
var params = { ImageName: 'STRING_VALUE', /* required */ RoleArn: 'STRING_VALUE', /* required */ Description: 'STRING_VALUE', DisplayName: 'STRING_VALUE', Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createImage(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
Description
— (String
)The description of the image.
DisplayName
— (String
)The display name of the image. If not provided,
ImageName
is displayed.ImageName
— (String
)The name of the image. Must be unique to your account.
RoleArn
— (String
)The ARN of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
Tags
— (Array<map>
)A list of tags to apply to the image.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ImageArn
— (String
)The ARN of the image.
-
(AWS.Response)
—
Returns:
createImageVersion(params = {}, callback) ⇒ AWS.Request
Creates a version of the SageMaker image specified by
ImageName
. The version represents the Amazon Elastic Container Registry (ECR) container image specified byBaseImage
.Service Reference:
Examples:
Calling the createImageVersion operation
var params = { BaseImage: 'STRING_VALUE', /* required */ ClientToken: 'STRING_VALUE', /* required */ ImageName: 'STRING_VALUE', /* required */ Aliases: [ 'STRING_VALUE', /* more items */ ], Horovod: true || false, JobType: TRAINING | INFERENCE | NOTEBOOK_KERNEL, MLFramework: 'STRING_VALUE', Processor: CPU | GPU, ProgrammingLang: 'STRING_VALUE', ReleaseNotes: 'STRING_VALUE', VendorGuidance: NOT_PROVIDED | STABLE | TO_BE_ARCHIVED | ARCHIVED }; sagemaker.createImageVersion(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
BaseImage
— (String
)The registry path of the container image to use as the starting point for this version. The path is an Amazon Elastic Container Registry (ECR) URI in the following format:
<acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or [@digest]>
ClientToken
— (String
)A unique ID. If not specified, the Amazon Web Services CLI and Amazon Web Services SDKs, such as the SDK for Python (Boto3), add a unique value to the call.
If a token is not provided, the SDK will use a version 4 UUID.ImageName
— (String
)The
ImageName
of theImage
to create a version of.Aliases
— (Array<String>
)A list of aliases created with the image version.
VendorGuidance
— (String
)The stability of the image version, specified by the maintainer.
-
NOT_PROVIDED
: The maintainers did not provide a status for image version stability. -
STABLE
: The image version is stable. -
TO_BE_ARCHIVED
: The image version is set to be archived. Custom image versions that are set to be archived are automatically archived after three months. -
ARCHIVED
: The image version is archived. Archived image versions are not searchable and are no longer actively supported.
"NOT_PROVIDED"
"STABLE"
"TO_BE_ARCHIVED"
"ARCHIVED"
-
JobType
— (String
)Indicates SageMaker job type compatibility.
-
TRAINING
: The image version is compatible with SageMaker training jobs. -
INFERENCE
: The image version is compatible with SageMaker inference jobs. -
NOTEBOOK_KERNEL
: The image version is compatible with SageMaker notebook kernels.
"TRAINING"
"INFERENCE"
"NOTEBOOK_KERNEL"
-
MLFramework
— (String
)The machine learning framework vended in the image version.
ProgrammingLang
— (String
)The supported programming language and its version.
Processor
— (String
)Indicates CPU or GPU compatibility.
-
CPU
: The image version is compatible with CPU. -
GPU
: The image version is compatible with GPU.
"CPU"
"GPU"
-
Horovod
— (Boolean
)Indicates Horovod compatibility.
ReleaseNotes
— (String
)The maintainer description of the image version.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ImageVersionArn
— (String
)The ARN of the image version.
-
(AWS.Response)
—
Returns:
createInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Creates an inference experiment using the configurations specified in the request.
Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.
Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.
While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
Service Reference:
Examples:
Calling the createInferenceExperiment operation
var params = { EndpointName: 'STRING_VALUE', /* required */ ModelVariants: [ /* required */ { InfrastructureConfig: { /* required */ InfrastructureType: RealTimeInference, /* required */ RealTimeInferenceConfig: { /* required */ InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.8xlarge | ml.m5d.12xlarge | ml.m5d.16xlarge | ml.m5d.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge | ml.c5d.9xlarge | ml.c5d.18xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.inf1.xlarge | ml.inf1.2xlarge | ml.inf1.6xlarge | ml.inf1.24xlarge | ml.p4d.24xlarge | ml.p4de.24xlarge /* required */ } }, ModelName: 'STRING_VALUE', /* required */ VariantName: 'STRING_VALUE' /* required */ }, /* more items */ ], Name: 'STRING_VALUE', /* required */ RoleArn: 'STRING_VALUE', /* required */ ShadowModeConfig: { /* required */ ShadowModelVariants: [ /* required */ { SamplingPercentage: 'NUMBER_VALUE', /* required */ ShadowModelVariantName: 'STRING_VALUE' /* required */ }, /* more items */ ], SourceModelVariantName: 'STRING_VALUE' /* required */ }, Type: ShadowMode, /* required */ DataStorageConfig: { Destination: 'STRING_VALUE', /* required */ ContentType: { CsvContentTypes: [ 'STRING_VALUE', /* more items */ ], JsonContentTypes: [ 'STRING_VALUE', /* more items */ ] }, KmsKey: 'STRING_VALUE' }, Description: 'STRING_VALUE', KmsKey: 'STRING_VALUE', Schedule: { EndTime: new Date || 'Wed Dec 31 1969 16:00:00 GMT-0800 (PST)' || 123456789, StartTime: new Date || 'Wed Dec 31 1969 16:00:00 GMT-0800 (PST)' || 123456789 }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createInferenceExperiment(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
Name
— (String
)The name for the inference experiment.
Type
— (String
)The type of the inference experiment that you want to run. The following types of experiments are possible:
-
ShadowMode
: You can use this type to validate a shadow variant. For more information, see Shadow tests.
"ShadowMode"
-
Schedule
— (map
)The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days.
StartTime
— (Date
)The timestamp at which the inference experiment started or will start.
EndTime
— (Date
)The timestamp at which the inference experiment ended or will end.
Description
— (String
)A description for the inference experiment.
RoleArn
— (String
)The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
EndpointName
— (String
)The name of the Amazon SageMaker endpoint on which you want to run the inference experiment.
ModelVariants
— (Array<map>
)An array of
ModelVariantConfig
objects. There is one for each variant in the inference experiment. EachModelVariantConfig
object in the array describes the infrastructure configuration for the corresponding variant.ModelName
— required — (String
)The name of the Amazon SageMaker Model entity.
VariantName
— required — (String
)The name of the variant.
InfrastructureConfig
— required — (map
)The configuration for the infrastructure that the model will be deployed to.
InfrastructureType
— required — (String
)The inference option to which to deploy your model. Possible values are the following:
-
RealTime
: Deploy to real-time inference.
"RealTimeInference"
-
RealTimeInferenceConfig
— required — (map
)The infrastructure configuration for deploying the model to real-time inference.
InstanceType
— required — (String
)The instance type the model is deployed to.
Possible values include:"ml.t2.medium"
"ml.t2.large"
"ml.t2.xlarge"
"ml.t2.2xlarge"
"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.8xlarge"
"ml.m5d.12xlarge"
"ml.m5d.16xlarge"
"ml.m5d.24xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5d.xlarge"
"ml.c5d.2xlarge"
"ml.c5d.4xlarge"
"ml.c5d.9xlarge"
"ml.c5d.18xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.p3dn.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.16xlarge"
"ml.g5.12xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.inf1.xlarge"
"ml.inf1.2xlarge"
"ml.inf1.6xlarge"
"ml.inf1.24xlarge"
"ml.p4d.24xlarge"
"ml.p4de.24xlarge"
InstanceCount
— required — (Integer
)The number of instances of the type specified by
InstanceType
.
DataStorageConfig
— (map
)The Amazon S3 location and configuration for storing inference request and response data.
This is an optional parameter that you can use for data capture. For more information, see Capture data.
Destination
— required — (String
)The Amazon S3 bucket where the inference request and response data is stored.
KmsKey
— (String
)The Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
ContentType
— (map
)Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
CsvContentTypes
— (Array<String>
)The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
JsonContentTypes
— (Array<String>
)The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
ShadowModeConfig
— (map
)The configuration of
ShadowMode
inference experiment type. Use this field to specify a production variant which takes all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant also specify the percentage of requests that Amazon SageMaker replicates.SourceModelVariantName
— required — (String
)The name of the production variant, which takes all the inference requests.
ShadowModelVariants
— required — (Array<map>
)List of shadow variant configurations.
ShadowModelVariantName
— required — (String
)The name of the shadow variant.
SamplingPercentage
— required — (Integer
)The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.
KmsKey
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The
KmsKey
can be any of the following formats:-
KMS key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
Amazon Resource Name (ARN) of a KMS key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
KMS key Alias
"alias/ExampleAlias"
-
Amazon Resource Name (ARN) of a KMS key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must include permissions to call
kms:Encrypt
. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side encryption with KMS managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
andUpdateEndpoint
requests. For more information, see Using Key Policies in Amazon Web Services KMS in the Amazon Web Services Key Management Service Developer Guide.-
Tags
— (Array<map>
)Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:InferenceExperimentArn
— (String
)The ARN for your inference experiment.
-
(AWS.Response)
—
Returns:
createInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Starts a recommendation job. You can create either an instance recommendation or load test job.
Service Reference:
Examples:
Calling the createInferenceRecommendationsJob operation
var params = { InputConfig: { /* required */ ContainerConfig: { DataInputConfig: 'STRING_VALUE', Domain: 'STRING_VALUE', Framework: 'STRING_VALUE', FrameworkVersion: 'STRING_VALUE', NearestModelName: 'STRING_VALUE', PayloadConfig: { SamplePayloadUrl: 'STRING_VALUE', SupportedContentTypes: [ 'STRING_VALUE', /* more items */ ] }, SupportedEndpointType: RealTime | Serverless, SupportedInstanceTypes: [ 'STRING_VALUE', /* more items */ ], SupportedResponseMIMETypes: [ 'STRING_VALUE', /* more items */ ], Task: 'STRING_VALUE' }, EndpointConfigurations: [ { EnvironmentParameterRanges: { CategoricalParameterRanges: [ { Name: 'STRING_VALUE', /* required */ Value: [ /* required */ 'STRING_VALUE', /* more items */ ] }, /* more items */ ] }, InferenceSpecificationName: 'STRING_VALUE', InstanceType: ml.t2.medium | ml.t2.large | ml.t2.xlarge | ml.t2.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.m5d.large | ml.m5d.xlarge | ml.m5d.2xlarge | ml.m5d.4xlarge | ml.m5d.12xlarge | ml.m5d.24xlarge | ml.c4.large | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.large | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5d.large | ml.c5d.xlarge | ml.c5d.2xlarge | ml.c5d.4xlarge | ml.c5d.9xlarge | ml.c5d.18xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.12xlarge | ml.r5.24xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.12xlarge | ml.r5d.24xlarge | ml.inf1.xlarge | ml.inf1.2xlarge | ml.inf1.6xlarge | ml.inf1.24xlarge | ml.c6i.large | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.4xlarge | ml.c6i.8xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.12xlarge | ml.g5.16xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.p4d.24xlarge | ml.c7g.large | ml.c7g.xlarge | ml.c7g.2xlarge | ml.c7g.4xlarge | ml.c7g.8xlarge | ml.c7g.12xlarge | ml.c7g.16xlarge | ml.m6g.large | ml.m6g.xlarge | ml.m6g.2xlarge | ml.m6g.4xlarge | ml.m6g.8xlarge | ml.m6g.12xlarge | ml.m6g.16xlarge | ml.m6gd.large | ml.m6gd.xlarge | ml.m6gd.2xlarge | ml.m6gd.4xlarge | ml.m6gd.8xlarge | ml.m6gd.12xlarge | ml.m6gd.16xlarge | ml.c6g.large | ml.c6g.xlarge | ml.c6g.2xlarge | ml.c6g.4xlarge | ml.c6g.8xlarge | ml.c6g.12xlarge | ml.c6g.16xlarge | ml.c6gd.large | ml.c6gd.xlarge | ml.c6gd.2xlarge | ml.c6gd.4xlarge | ml.c6gd.8xlarge | ml.c6gd.12xlarge | ml.c6gd.16xlarge | ml.c6gn.large | ml.c6gn.xlarge | ml.c6gn.2xlarge | ml.c6gn.4xlarge | ml.c6gn.8xlarge | ml.c6gn.12xlarge | ml.c6gn.16xlarge | ml.r6g.large | ml.r6g.xlarge | ml.r6g.2xlarge | ml.r6g.4xlarge | ml.r6g.8xlarge | ml.r6g.12xlarge | ml.r6g.16xlarge | ml.r6gd.large | ml.r6gd.xlarge | ml.r6gd.2xlarge | ml.r6gd.4xlarge | ml.r6gd.8xlarge | ml.r6gd.12xlarge | ml.r6gd.16xlarge | ml.p4de.24xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.inf2.xlarge | ml.inf2.8xlarge | ml.inf2.24xlarge | ml.inf2.48xlarge | ml.p5.48xlarge, ServerlessConfig: { MaxConcurrency: 'NUMBER_VALUE', /* required */ MemorySizeInMB: 'NUMBER_VALUE', /* required */ ProvisionedConcurrency: 'NUMBER_VALUE' } }, /* more items */ ], Endpoints: [ { EndpointName: 'STRING_VALUE' /* required */ }, /* more items */ ], JobDurationInSeconds: 'NUMBER_VALUE', ModelName: 'STRING_VALUE', ModelPackageVersionArn: 'STRING_VALUE', ResourceLimit: { MaxNumberOfTests: 'NUMBER_VALUE', MaxParallelOfTests: 'NUMBER_VALUE' }, TrafficPattern: { Phases: [ { DurationInSeconds: 'NUMBER_VALUE', InitialNumberOfUsers: 'NUMBER_VALUE', SpawnRate: 'NUMBER_VALUE' }, /* more items */ ], Stairs: { DurationInSeconds: 'NUMBER_VALUE', NumberOfSteps: 'NUMBER_VALUE', UsersPerStep: 'NUMBER_VALUE' }, TrafficType: PHASES | STAIRS }, VolumeKmsKeyId: 'STRING_VALUE', VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, JobName: 'STRING_VALUE', /* required */ JobType: Default | Advanced, /* required */ RoleArn: 'STRING_VALUE', /* required */ JobDescription: 'STRING_VALUE', OutputConfig: { CompiledOutputConfig: { S3OutputUri: 'STRING_VALUE' }, KmsKeyId: 'STRING_VALUE' }, StoppingConditions: { FlatInvocations: Continue | Stop, MaxInvocations: 'NUMBER_VALUE', ModelLatencyThresholds: [ { Percentile: 'STRING_VALUE', ValueInMilliseconds: 'NUMBER_VALUE' }, /* more items */ ] }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createInferenceRecommendationsJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
JobName
— (String
)A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. The job name is passed down to the resources created by the recommendation job. The names of resources (such as the model, endpoint configuration, endpoint, and compilation) that are prefixed with the job name are truncated at 40 characters.
JobType
— (String
)Defines the type of recommendation job. Specify
Possible values include:Default
to initiate an instance recommendation andAdvanced
to initiate a load test. If left unspecified, Amazon SageMaker Inference Recommender will run an instance recommendation (DEFAULT
) job."Default"
"Advanced"
RoleArn
— (String
)The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf.
InputConfig
— (map
)Provides information about the versioned model package Amazon Resource Name (ARN), the traffic pattern, and endpoint configurations.
ModelPackageVersionArn
— (String
)The Amazon Resource Name (ARN) of a versioned model package.
JobDurationInSeconds
— (Integer
)Specifies the maximum duration of the job, in seconds. The maximum value is 18,000 seconds.
TrafficPattern
— (map
)Specifies the traffic pattern of the job.
TrafficType
— (String
)Defines the traffic patterns. Choose either
Possible values include:PHASES
orSTAIRS
."PHASES"
"STAIRS"
Phases
— (Array<map>
)Defines the phases traffic specification.
InitialNumberOfUsers
— (Integer
)Specifies how many concurrent users to start with. The value should be between 1 and 3.
SpawnRate
— (Integer
)Specified how many new users to spawn in a minute.
DurationInSeconds
— (Integer
)Specifies how long a traffic phase should be. For custom load tests, the value should be between 120 and 3600. This value should not exceed
JobDurationInSeconds
.
Stairs
— (map
)Defines the stairs traffic pattern.
DurationInSeconds
— (Integer
)Defines how long each traffic step should be.
NumberOfSteps
— (Integer
)Specifies how many steps to perform during traffic.
UsersPerStep
— (Integer
)Specifies how many new users to spawn in each step.
ResourceLimit
— (map
)Defines the resource limit of the job.
MaxNumberOfTests
— (Integer
)Defines the maximum number of load tests.
MaxParallelOfTests
— (Integer
)Defines the maximum number of parallel load tests.
EndpointConfigurations
— (Array<map>
)Specifies the endpoint configuration to use for a job.
InstanceType
— (String
)The instance types to use for the load test.
Possible values include:"ml.t2.medium"
"ml.t2.large"
"ml.t2.xlarge"
"ml.t2.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.m5d.large"
"ml.m5d.xlarge"
"ml.m5d.2xlarge"
"ml.m5d.4xlarge"
"ml.m5d.12xlarge"
"ml.m5d.24xlarge"
"ml.c4.large"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.large"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.c5d.large"
"ml.c5d.xlarge"
"ml.c5d.2xlarge"
"ml.c5d.4xlarge"
"ml.c5d.9xlarge"
"ml.c5d.18xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.12xlarge"
"ml.r5.24xlarge"
"ml.r5d.large"
"ml.r5d.xlarge"
"ml.r5d.2xlarge"
"ml.r5d.4xlarge"
"ml.r5d.12xlarge"
"ml.r5d.24xlarge"
"ml.inf1.xlarge"
"ml.inf1.2xlarge"
"ml.inf1.6xlarge"
"ml.inf1.24xlarge"
"ml.c6i.large"
"ml.c6i.xlarge"
"ml.c6i.2xlarge"
"ml.c6i.4xlarge"
"ml.c6i.8xlarge"
"ml.c6i.12xlarge"
"ml.c6i.16xlarge"
"ml.c6i.24xlarge"
"ml.c6i.32xlarge"
"ml.g5.xlarge"
"ml.g5.2xlarge"
"ml.g5.4xlarge"
"ml.g5.8xlarge"
"ml.g5.12xlarge"
"ml.g5.16xlarge"
"ml.g5.24xlarge"
"ml.g5.48xlarge"
"ml.p4d.24xlarge"
"ml.c7g.large"
"ml.c7g.xlarge"
"ml.c7g.2xlarge"
"ml.c7g.4xlarge"
"ml.c7g.8xlarge"
"ml.c7g.12xlarge"
"ml.c7g.16xlarge"
"ml.m6g.large"
"ml.m6g.xlarge"
"ml.m6g.2xlarge"
"ml.m6g.4xlarge"
"ml.m6g.8xlarge"
"ml.m6g.12xlarge"
"ml.m6g.16xlarge"
"ml.m6gd.large"
"ml.m6gd.xlarge"
"ml.m6gd.2xlarge"
"ml.m6gd.4xlarge"
"ml.m6gd.8xlarge"
"ml.m6gd.12xlarge"
"ml.m6gd.16xlarge"
"ml.c6g.large"
"ml.c6g.xlarge"
"ml.c6g.2xlarge"
"ml.c6g.4xlarge"
"ml.c6g.8xlarge"
"ml.c6g.12xlarge"
"ml.c6g.16xlarge"
"ml.c6gd.large"
"ml.c6gd.xlarge"
"ml.c6gd.2xlarge"
"ml.c6gd.4xlarge"
"ml.c6gd.8xlarge"
"ml.c6gd.12xlarge"
"ml.c6gd.16xlarge"
"ml.c6gn.large"
"ml.c6gn.xlarge"
"ml.c6gn.2xlarge"
"ml.c6gn.4xlarge"
"ml.c6gn.8xlarge"
"ml.c6gn.12xlarge"
"ml.c6gn.16xlarge"
"ml.r6g.large"
"ml.r6g.xlarge"
"ml.r6g.2xlarge"
"ml.r6g.4xlarge"
"ml.r6g.8xlarge"
"ml.r6g.12xlarge"
"ml.r6g.16xlarge"
"ml.r6gd.large"
"ml.r6gd.xlarge"
"ml.r6gd.2xlarge"
"ml.r6gd.4xlarge"
"ml.r6gd.8xlarge"
"ml.r6gd.12xlarge"
"ml.r6gd.16xlarge"
"ml.p4de.24xlarge"
"ml.trn1.2xlarge"
"ml.trn1.32xlarge"
"ml.inf2.xlarge"
"ml.inf2.8xlarge"
"ml.inf2.24xlarge"
"ml.inf2.48xlarge"
"ml.p5.48xlarge"
InferenceSpecificationName
— (String
)The inference specification name in the model package version.
EnvironmentParameterRanges
— (map
)The parameter you want to benchmark against.
CategoricalParameterRanges
— (Array<map>
)Specified a list of parameters for each category.
Name
— required — (String
)The Name of the environment variable.
Value
— required — (Array<String>
)The list of values you can pass.
ServerlessConfig
— (map
)Specifies the serverless configuration for an endpoint variant.
MemorySizeInMB
— required — (Integer
)The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
MaxConcurrency
— required — (Integer
)The maximum number of concurrent invocations your serverless endpoint can process.
ProvisionedConcurrency
— (Integer
)The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to
MaxConcurrency
.Note: This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.
VolumeKmsKeyId
— (String
)The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. This key will be passed to SageMaker Hosting for endpoint creation.
The SageMaker execution role must have
kms:CreateGrant
permission in order to encrypt data on the storage volume of the endpoints created for inference recommendation. The inference recommendation job will fail asynchronously during endpoint configuration creation if the role passed does not havekms:CreateGrant
permission.The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"
For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.
-
ContainerConfig
— (map
)Specifies mandatory fields for running an Inference Recommender job. The fields specified in
ContainerConfig
override the corresponding fields in the model package.Domain
— (String
)The machine learning domain of the model and its components.
Valid Values:
COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
Task
— (String
)The machine learning task that the model accomplishes.
Valid Values:
IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
Framework
— (String
)The machine learning framework of the container image.
Valid Values:
TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
FrameworkVersion
— (String
)The framework version of the container image.
PayloadConfig
— (map
)Specifies the
SamplePayloadUrl
and all other sample payload-related fields.SamplePayloadUrl
— (String
)The Amazon Simple Storage Service (Amazon S3) path where the sample payload is stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
SupportedContentTypes
— (Array<String>
)The supported MIME types for the input data.
NearestModelName
— (String
)The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
Valid Values:
efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet
SupportedInstanceTypes
— (Array<String>
)A list of the instance types that are used to generate inferences in real-time.
DataInputConfig
— (String
)Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
SupportedEndpointType
— (String
)The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
Possible values include:"RealTime"
"Serverless"
SupportedResponseMIMETypes
— (Array<String>
)The supported MIME types for the output data.
Endpoints
— (Array<map>
)Existing customer endpoints on which to run an Inference Recommender job.
EndpointName
— required — (String
)The name of a customer's endpoint.
VpcConfig
— (map
)Inference Recommender provisions SageMaker endpoints with access to VPC in the inference recommendation job.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs. IDs have the form of
sg-xxxxxxxx
. Specify the security groups for the VPC that is specified in theSubnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your model.
ModelName
— (String
)The name of the created model.
JobDescription
— (String
)Description of the recommendation job.
StoppingConditions
— (map
)A set of conditions for stopping a recommendation job. If any of the conditions are met, the job is automatically stopped.
MaxInvocations
— (Integer
)The maximum number of requests per minute expected for the endpoint.
ModelLatencyThresholds
— (Array<map>
)The interval of time taken by a model to respond as viewed from SageMaker. The interval includes the local communication time taken to send the request and to fetch the response from the container of a model and the time taken to complete the inference in the container.
Percentile
— (String
)The model latency percentile threshold. Acceptable values are
P95
andP99
. For custom load tests, specify the value asP95
.ValueInMilliseconds
— (Integer
)The model latency percentile value in milliseconds.
FlatInvocations
— (String
)Stops a load test when the number of invocations (TPS) peaks and flattens, which means that the instance has reached capacity. The default value is
Possible values include:Stop
. If you want the load test to continue after invocations have flattened, set the value toContinue
."Continue"
"Stop"
OutputConfig
— (map
)Provides information about the output artifacts and the KMS key to use for Amazon S3 server-side encryption.
KmsKeyId
— (String
)The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output artifacts with Amazon S3 server-side encryption. The SageMaker execution role must have
kms:GenerateDataKey
permission.The
KmsKeyId
can be any of the following formats:-
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:<region>:<account>:key/<key-id-12ab-34cd-56ef-1234567890ab>"
-
// KMS Key Alias
"alias/ExampleAlias"
-
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:<region>:<account>:alias/<ExampleAlias>"
For more information about key identifiers, see Key identifiers (KeyID) in the Amazon Web Services Key Management Service (Amazon Web Services KMS) documentation.
-
CompiledOutputConfig
— (map
)Provides information about the output configuration for the compiled model.
S3OutputUri
— (String
)Identifies the Amazon S3 bucket where you want SageMaker to store the compiled model artifacts.
Tags
— (Array<map>
)The metadata that you apply to Amazon Web Services resources to help you categorize and organize them. Each tag consists of a key and a value, both of which you define. For more information, see Tagging Amazon Web Services Resources in the Amazon Web Services General Reference.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:JobArn
— (String
)The Amazon Resource Name (ARN) of the recommendation job.
-
(AWS.Response)
—
Returns:
createLabelingJob(params = {}, callback) ⇒ AWS.Request
Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.
You can select your workforce from one of three providers:
-
A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.
-
One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas.
-
The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.
You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.
The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.
The output can be used as the manifest file for another labeling job or as training data for your machine learning models.
You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in
ManifestS3Uri
have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active (InProgress
) streaming labeling job in real time. To learn how to create a static labeling job, see Create a Labeling Job (API) in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see Create a Streaming Labeling Job.Service Reference:
Examples:
Calling the createLabelingJob operation
var params = { HumanTaskConfig: { /* required */ AnnotationConsolidationConfig: { /* required */ AnnotationConsolidationLambdaArn: 'STRING_VALUE' /* required */ }, NumberOfHumanWorkersPerDataObject: 'NUMBER_VALUE', /* required */ PreHumanTaskLambdaArn: 'STRING_VALUE', /* required */ TaskDescription: 'STRING_VALUE', /* required */ TaskTimeLimitInSeconds: 'NUMBER_VALUE', /* required */ TaskTitle: 'STRING_VALUE', /* required */ UiConfig: { /* required */ HumanTaskUiArn: 'STRING_VALUE', UiTemplateS3Uri: 'STRING_VALUE' }, WorkteamArn: 'STRING_VALUE', /* required */ MaxConcurrentTaskCount: 'NUMBER_VALUE', PublicWorkforceTaskPrice: { AmountInUsd: { Cents: 'NUMBER_VALUE', Dollars: 'NUMBER_VALUE', TenthFractionsOfACent: 'NUMBER_VALUE' } }, TaskAvailabilityLifetimeInSeconds: 'NUMBER_VALUE', TaskKeywords: [ 'STRING_VALUE', /* more items */ ] }, InputConfig: { /* required */ DataSource: { /* required */ S3DataSource: { ManifestS3Uri: 'STRING_VALUE' /* required */ }, SnsDataSource: { SnsTopicArn: 'STRING_VALUE' /* required */ } }, DataAttributes: { ContentClassifiers: [ FreeOfPersonallyIdentifiableInformation | FreeOfAdultContent, /* more items */ ] } }, LabelAttributeName: 'STRING_VALUE', /* required */ LabelingJobName: 'STRING_VALUE', /* required */ OutputConfig: { /* required */ S3OutputPath: 'STRING_VALUE', /* required */ KmsKeyId: 'STRING_VALUE', SnsTopicArn: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ LabelCategoryConfigS3Uri: 'STRING_VALUE', LabelingJobAlgorithmsConfig: { LabelingJobAlgorithmSpecificationArn: 'STRING_VALUE', /* required */ InitialActiveLearningModelArn: 'STRING_VALUE', LabelingJobResourceConfig: { VolumeKmsKeyId: 'STRING_VALUE', VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } } }, StoppingConditions: { MaxHumanLabeledObjectCount: 'NUMBER_VALUE', MaxPercentageOfInputDatasetLabeled: 'NUMBER_VALUE' }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createLabelingJob(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
LabelingJobName
— (String
)The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region.
LabelingJobName
is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.LabelAttributeName
— (String
)The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The
LabelAttributeName
must meet the following requirements.-
The name can't end with "-metadata".
-
If you are using one of the following built-in task types, the attribute name must end with "-ref". If the task type you are using is not listed below, the attribute name must not end with "-ref".
-
Image semantic segmentation (
SemanticSegmentation)
, and adjustment (AdjustmentSemanticSegmentation
) and verification (VerificationSemanticSegmentation
) labeling jobs for this task type. -
Video frame object detection (
VideoObjectDetection
), and adjustment and verification (AdjustmentVideoObjectDetection
) labeling jobs for this task type. -
Video frame object tracking (
VideoObjectTracking
), and adjustment and verification (AdjustmentVideoObjectTracking
) labeling jobs for this task type. -
3D point cloud semantic segmentation (
3DPointCloudSemanticSegmentation
), and adjustment and verification (Adjustment3DPointCloudSemanticSegmentation
) labeling jobs for this task type. -
3D point cloud object tracking (
3DPointCloudObjectTracking
), and adjustment and verification (Adjustment3DPointCloudObjectTracking
) labeling jobs for this task type.
-
If you are creating an adjustment or verification labeling job, you must use a different
LabelAttributeName
than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.-
InputConfig
— (map
)Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.
You must specify at least one of the following:
S3DataSource
orSnsDataSource
.-
Use
SnsDataSource
to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled. -
Use
S3DataSource
to specify an input manifest file for both streaming and one-time labeling jobs. Adding anS3DataSource
is optional if you useSnsDataSource
to create a streaming labeling job.
If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use
ContentClassifiers
to specify that your data is free of personally identifiable information and adult content.DataSource
— required — (map
)The location of the input data.
S3DataSource
— (map
)The Amazon S3 location of the input data objects.
ManifestS3Uri
— required — (String
)The Amazon S3 location of the manifest file that describes the input data objects.
The input manifest file referenced in
ManifestS3Uri
must contain one of the following keys:source-ref
orsource
. The value of the keys are interpreted as follows:-
source-ref
: The source of the object is the Amazon S3 object specified in the value. Use this value when the object is a binary object, such as an image. -
source
: The source of the object is the value. Use this value when the object is a text value.
If you are a new user of Ground Truth, it is recommended you review Use an Input Manifest File in the Amazon SageMaker Developer Guide to learn how to create an input manifest file.
-
SnsDataSource
— (map
)An Amazon SNS data source used for streaming labeling jobs. To learn more, see Send Data to a Streaming Labeling Job.
SnsTopicArn
— required — (String
)The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the input topic you will use to send new data objects to a streaming labeling job.
DataAttributes
— (map
)Attributes of the data specified by the customer.
ContentClassifiers
— (Array<String>
)Declares that your content is free of personally identifiable information or adult content. SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.
-
OutputConfig
— (map
)The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.
S3OutputPath
— required — (String
)The Amazon S3 location to write output data.
KmsKeyId
— (String
)The Amazon Web Services Key Management Service ID of the key used to encrypt the output data, if any.
If you provide your own KMS key ID, you must add the required permissions to your KMS key described in Encrypt Output Data and Storage Volume with Amazon Web Services KMS.
If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon Web Services KMS key for Amazon S3 for your role's account to encrypt your output data.
If you use a bucket policy with an
s3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.SnsTopicArn
— (String
)An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a
SnsTopicArn
if you want to do real time chaining to another streaming job and receive an Amazon SNS notifications each time a data object is submitted by a worker.If you provide an
SnsTopicArn
inOutputConfig
, when workers complete labeling tasks, Ground Truth will send labeling task output data to the SNS output topic you specify here.To learn more, see Receive Output Data from a Streaming Labeling Job.
RoleArn
— (String
)The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
LabelCategoryConfigS3Uri
— (String
)The S3 URI of the file, referred to as a label category configuration file, that defines the categories used to label the data objects.
For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs.
For named entity recognition jobs, in addition to
"labels"
, you must provide worker instructions in the label category configuration file using the"instructions"
parameter:"instructions": {"shortInstruction":"<h1>Add header</h1><p>Add Instructions</p>", "fullInstruction":"<p>Add additional instructions.</p>"}
. For details and an example, see Create a Named Entity Recognition Labeling Job (API) .For all other built-in task types and custom tasks, your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing
label_1
,label_2
,...
,label_n
with your label categories.{
"document-version": "2018-11-28",
"labels": [{"label": "label_1"},{"label": "label_2"},...{"label": "label_n"}]
}
Note the following about the label category configuration file:
-
For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.
-
Each label category must be unique, you cannot specify duplicate label categories.
-
If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include
auditLabelAttributeName
in the label category configuration. Use this parameter to enter theLabelAttributeName
of the labeling job you want to adjust or verify annotations of.
-
StoppingConditions
— (map
)A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.
MaxHumanLabeledObjectCount
— (Integer
)The maximum number of objects that can be labeled by human workers.
MaxPercentageOfInputDatasetLabeled
— (Integer
)The maximum number of input data objects that should be labeled.
LabelingJobAlgorithmsConfig
— (map
)Configures the information required to perform automated data labeling.
LabelingJobAlgorithmSpecificationArn
— required — (String
)Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:
-
Image classification
arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
-
Text classification
arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
-
Object detection
arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
-
Semantic Segmentation
arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
-
InitialActiveLearningModelArn
— (String
)At the end of an auto-label job Ground Truth sends the Amazon Resource Name (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here.
LabelingJobResourceConfig
— (map
)Provides configuration information for a labeling job.
VolumeKmsKeyId
— (String
)The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling.
You can only specify a
VolumeKmsKeyId
when you create a labeling job with automated data labeling enabled using the API operationCreateLabelingJob
. You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption.The
VolumeKmsKeyId
can be any of the following formats:-
KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
-
Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
-
VpcConfig
— (map
)Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud.
SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
HumanTaskConfig
— (map
)Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).
WorkteamArn
— required — (String
)The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
UiConfig
— required — (map
)Information about the user interface that workers use to complete the labeling task.
UiTemplateS3Uri
— (String
)The Amazon S3 bucket location of the UI template, or worker task template. This is the template used to render the worker UI and tools for labeling job tasks. For more information about the contents of a UI template, see Creating Your Custom Labeling Task Template.
HumanTaskUiArn
— (String
)The ARN of the worker task template used to render the worker UI and tools for labeling job tasks.
Use this parameter when you are creating a labeling job for named entity recognition, 3D point cloud and video frame labeling jobs. Use your labeling job task type to select one of the following ARNs and use it with this parameter when you create a labeling job. Replace
aws-region
with the Amazon Web Services Region you are creating your labeling job in. For example, replaceaws-region
withus-west-1
if you create a labeling job in US West (N. California).Named Entity Recognition
Use the following
HumanTaskUiArn
for named entity recognition labeling jobs:arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition
3D Point Cloud HumanTaskUiArns
Use this
HumanTaskUiArn
for 3D point cloud object detection and 3D point cloud object detection adjustment labeling jobs.-
arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection
Use this
HumanTaskUiArn
for 3D point cloud object tracking and 3D point cloud object tracking adjustment labeling jobs.-
arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking
Use this
HumanTaskUiArn
for 3D point cloud semantic segmentation and 3D point cloud semantic segmentation adjustment labeling jobs.-
arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
Video Frame HumanTaskUiArns
Use this
HumanTaskUiArn
for video frame object detection and video frame object detection adjustment labeling jobs.-
arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection
Use this
HumanTaskUiArn
for video frame object tracking and video frame object tracking adjustment labeling jobs.-
arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
-
PreHumanTaskLambdaArn
— required — (String
)The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.
For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for
PreHumanTaskLambdaArn
. For custom labeling workflows, see Pre-annotation Lambda.Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
3D Point Cloud Modalities
Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more.
3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
Use the following ARNs for Label Verification and Adjustment Jobs
Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .
Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud.
-
arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
-
TaskKeywords
— (Array<String>
)Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
TaskTitle
— required — (String
)A title for the task for your human workers.
TaskDescription
— required — (String
)A description of the task for your human workers.
NumberOfHumanWorkersPerDataObject
— required — (Integer
)The number of human workers that will label an object.
TaskTimeLimitInSeconds
— required — (Integer
)The amount of time that a worker has to complete a task.
If you create a custom labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
If you create a labeling job using a built-in task type the maximum for this parameter depends on the task type you use:
-
For image and text labeling jobs, the maximum is 8 hours (28,800 seconds).
-
For 3D point cloud and video frame labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
-
TaskAvailabilityLifetimeInSeconds
— (Integer
)The length of time that a task remains available for labeling by human workers. The default and maximum values for this parameter depend on the type of workforce you use.
-
If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours (43,200 seconds). The default is 6 hours (21,600 seconds).
-
If you choose a private or vendor workforce, the default value is 30 days (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
-
MaxConcurrentTaskCount
— (Integer
)Defines the maximum number of data objects that can be labeled by human workers at the same time. Also referred to as batch size. Each object may have more than one worker at one time. The default value is 1000 objects. To increase the maximum value to 5000 objects, contact Amazon Web Services Support.
AnnotationConsolidationConfig
— required — (map
)Configures how labels are consolidated across human workers.
AnnotationConsolidationLambdaArn
— required — (String
)The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data.
This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for
AnnotationConsolidationLambdaArn
. For custom labeling workflows, see Post-annotation Lambda.Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
Use the following ARNs for Label Verification and Adjustment Jobs
Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels .
Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool.
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
-
PublicWorkforceTaskPrice
— (map
)The price that you pay for each task performed by an Amazon Mechanical Turk worker.
AmountInUsd
— (map
)Defines the amount of money paid to an Amazon Mechanical Turk worker in United States dollars.
Dollars
— (Integer
)The whole number of dollars in the amount.
Cents
— (Integer
)The fractional portion, in cents, of the amount.
TenthFractionsOfACent
— (Integer
)Fractions of a cent, in tenths.
Tags
— (Array<map>
)An array of key/value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:LabelingJobArn
— (String
)The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.
-
(AWS.Response)
—
Returns:
createModel(params = {}, callback) ⇒ AWS.Request
Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.
Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.
To host your model, you create an endpoint configuration with the
CreateEndpointConfig
API, and then create an endpoint with theCreateEndpoint
API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment.For an example that calls this method when deploying a model to SageMaker hosting services, see Create a Model (Amazon Web Services SDK for Python (Boto 3)).
To run a batch transform using your model, you start a job with the
CreateTransformJob
API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
Service Reference:
Examples:
Calling the createModel operation
var params = { ExecutionRoleArn: 'STRING_VALUE', /* required */ ModelName: 'STRING_VALUE', /* required */ Containers: [ { ContainerHostname: 'STRING_VALUE', Environment: { '<EnvironmentKey>': 'STRING_VALUE', /* '<EnvironmentKey>': ... */ }, Image: 'STRING_VALUE', ImageConfig: { RepositoryAccessMode: Platform | Vpc, /* required */ RepositoryAuthConfig: { RepositoryCredentialsProviderArn: 'STRING_VALUE' /* required */ } }, InferenceSpecificationName: 'STRING_VALUE', Mode: SingleModel | MultiModel, ModelDataSource: { S3DataSource: { /* required */ CompressionType: None | Gzip, /* required */ S3DataType: S3Prefix | S3Object, /* required */ S3Uri: 'STRING_VALUE' /* required */ } }, ModelDataUrl: 'STRING_VALUE', ModelPackageName: 'STRING_VALUE', MultiModelConfig: { ModelCacheSetting: Enabled | Disabled } }, /* more items */ ], EnableNetworkIsolation: true || false, InferenceExecutionConfig: { Mode: Serial | Direct /* required */ }, PrimaryContainer: { ContainerHostname: 'STRING_VALUE', Environment: { '<EnvironmentKey>': 'STRING_VALUE', /* '<EnvironmentKey>': ... */ }, Image: 'STRING_VALUE', ImageConfig: { RepositoryAccessMode: Platform | Vpc, /* required */ RepositoryAuthConfig: { RepositoryCredentialsProviderArn: 'STRING_VALUE' /* required */ } }, InferenceSpecificationName: 'STRING_VALUE', Mode: SingleModel | MultiModel, ModelDataSource: { S3DataSource: { /* required */ CompressionType: None | Gzip, /* required */ S3DataType: S3Prefix | S3Object, /* required */ S3Uri: 'STRING_VALUE' /* required */ } }, ModelDataUrl: 'STRING_VALUE', ModelPackageName: 'STRING_VALUE', MultiModelConfig: { ModelCacheSetting: Enabled | Disabled } }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ], VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }; sagemaker.createModel(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
ModelName
— (String
)The name of the new model.
PrimaryContainer
— (map
)The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.
ContainerHostname
— (String
)This parameter is ignored for models that contain only a
PrimaryContainer
.When a
ContainerDefinition
is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for aContainerDefinition
that is part of an inference pipeline, a unique name is automatically assigned based on the position of theContainerDefinition
in the pipeline. If you specify a value for theContainerHostName
for anyContainerDefinition
that is part of an inference pipeline, you must specify a value for theContainerHostName
parameter of everyContainerDefinition
in that pipeline.Image
— (String
)The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.Note: The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.ImageConfig
— (map
)Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers.
Note: The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.RepositoryAccessMode
— required — (String
)Set this to one of the following values:
-
Platform
- The model image is hosted in Amazon ECR. -
Vpc
- The model image is hosted in a private Docker registry in your VPC.
"Platform"
"Vpc"
-
RepositoryAuthConfig
— (map
)(Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified
Vpc
as the value for theRepositoryAccessMode
field, and the private Docker registry where the model image is hosted requires authentication.RepositoryCredentialsProviderArn
— required — (String
)The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide.
Mode
— (String
)Whether the container hosts a single model or multiple models.
Possible values include:"SingleModel"
"MultiModel"
ModelDataUrl
— (String
)The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.
Note: The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.
If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in
ModelDataUrl
.Environment
— (map<String>
)The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.ModelPackageName
— (String
)The name or Amazon Resource Name (ARN) of the model package to use to create the model.
InferenceSpecificationName
— (String
)The inference specification name in the model package version.
MultiModelConfig
— (map
)Specifies additional configuration for multi-model endpoints.
ModelCacheSetting
— (String
)Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to
Possible values include:Disabled
."Enabled"
"Disabled"
ModelDataSource
— (map
)Specifies the location of ML model data to deploy.
Note: Currently you cannot useModelDataSource
in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.S3DataSource
— required — (map
)Specifies the S3 location of ML model data to deploy.
S3Uri
— required — (String
)Specifies the S3 path of ML model data to deploy.
S3DataType
— required — (String
)Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
Possible values include:S3Object
,S3Uri
identifies an object that is the ML model data to deploy."S3Prefix"
"S3Object"
CompressionType
— required — (String
)Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
-
If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object. -
If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object. -
Do not use any of the following as file names or directory names:
-
An empty or blank string
-
A string which contains null bytes
-
A string longer than 255 bytes
-
A single dot (
.
) -
A double dot (
..
)
-
-
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory). -
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
"None"
"Gzip"
-
Containers
— (Array<map>
)Specifies the containers in the inference pipeline.
ContainerHostname
— (String
)This parameter is ignored for models that contain only a
PrimaryContainer
.When a
ContainerDefinition
is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a value for this parameter for aContainerDefinition
that is part of an inference pipeline, a unique name is automatically assigned based on the position of theContainerDefinition
in the pipeline. If you specify a value for theContainerHostName
for anyContainerDefinition
that is part of an inference pipeline, you must specify a value for theContainerHostName
parameter of everyContainerDefinition
in that pipeline.Image
— (String
)The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.Note: The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.ImageConfig
— (map
)Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers.
Note: The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.RepositoryAccessMode
— required — (String
)Set this to one of the following values:
-
Platform
- The model image is hosted in Amazon ECR. -
Vpc
- The model image is hosted in a private Docker registry in your VPC.
"Platform"
"Vpc"
-
RepositoryAuthConfig
— (map
)(Optional) Specifies an authentication configuration for the private docker registry where your model image is hosted. Specify a value for this property only if you specified
Vpc
as the value for theRepositoryAccessMode
field, and the private Docker registry where the model image is hosted requires authentication.RepositoryCredentialsProviderArn
— required — (String
)The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that provides credentials to authenticate to the private Docker registry where your model image is hosted. For information about how to create an Amazon Web Services Lambda function, see Create a Lambda function with the console in the Amazon Web Services Lambda Developer Guide.
Mode
— (String
)Whether the container hosts a single model or multiple models.
Possible values include:"SingleModel"
"MultiModel"
ModelDataUrl
— (String
)The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters.
Note: The model artifacts must be in an S3 bucket that is in the same region as the model or endpoint you are creating.If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.
If you use a built-in algorithm to create a model, SageMaker requires that you provide a S3 path to the model artifacts in
ModelDataUrl
.Environment
— (map<String>
)The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.ModelPackageName
— (String
)The name or Amazon Resource Name (ARN) of the model package to use to create the model.
InferenceSpecificationName
— (String
)The inference specification name in the model package version.
MultiModelConfig
— (map
)Specifies additional configuration for multi-model endpoints.
ModelCacheSetting
— (String
)Whether to cache models for a multi-model endpoint. By default, multi-model endpoints cache models so that a model does not have to be loaded into memory each time it is invoked. Some use cases do not benefit from model caching. For example, if an endpoint hosts a large number of models that are each invoked infrequently, the endpoint might perform better if you disable model caching. To disable model caching, set the value of this parameter to
Possible values include:Disabled
."Enabled"
"Disabled"
ModelDataSource
— (map
)Specifies the location of ML model data to deploy.
Note: Currently you cannot useModelDataSource
in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.S3DataSource
— required — (map
)Specifies the S3 location of ML model data to deploy.
S3Uri
— required — (String
)Specifies the S3 path of ML model data to deploy.
S3DataType
— required — (String
)Specifies the type of ML model data to deploy.
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix as part of the ML model data to deploy. A valid key name prefix identified byS3Uri
always ends with a forward slash (/).If you choose
Possible values include:S3Object
,S3Uri
identifies an object that is the ML model data to deploy."S3Prefix"
"S3Object"
CompressionType
— required — (String
)Specifies how the ML model data is prepared.
If you choose
Gzip
and chooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that is a gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the object during model deployment.If you choose
None
and choooseS3Object
as the value ofS3DataType
,S3Uri
identifies an object that represents an uncompressed ML model to deploy.If you choose None and choose
S3Prefix
as the value ofS3DataType
,S3Uri
identifies a key name prefix, under which all objects represents the uncompressed ML model to deploy.If you choose None, then SageMaker will follow rules below when creating model data files under /opt/ml/model directory for use by your inference code:
-
If you choose
S3Object
as the value ofS3DataType
, then SageMaker will split the key of the S3 object referenced byS3Uri
by slash (/), and use the last part as the filename of the file holding the content of the S3 object. -
If you choose
S3Prefix
as the value ofS3DataType
, then for each S3 object under the key name pefix referenced byS3Uri
, SageMaker will trim its key by the prefix, and use the remainder as the path (relative to/opt/ml/model
) of the file holding the content of the S3 object. SageMaker will split the remainder by slash (/), using intermediate parts as directory names and the last part as filename of the file holding the content of the S3 object. -
Do not use any of the following as file names or directory names:
-
An empty or blank string
-
A string which contains null bytes
-
A string longer than 255 bytes
-
A single dot (
.
) -
A double dot (
..
)
-
-
Ambiguous file names will result in model deployment failure. For example, if your uncompressed ML model consists of two S3 objects
s3://mybucket/model/weights
ands3://mybucket/model/weights/part1
and you specifys3://mybucket/model/
as the value ofS3Uri
andS3Prefix
as the value ofS3DataType
, then it will result in name clash between/opt/ml/model/weights
(a regular file) and/opt/ml/model/weights/
(a directory). -
Do not organize the model artifacts in S3 console using folders. When you create a folder in S3 console, S3 creates a 0-byte object with a key set to the folder name you provide. They key of the 0-byte object ends with a slash (/) which violates SageMaker restrictions on model artifact file names, leading to model deployment failure.
"None"
"Gzip"
-
InferenceExecutionConfig
— (map
)Specifies details of how containers in a multi-container endpoint are called.
Mode
— required — (String
)How containers in a multi-container are run. The following values are valid.
-
SERIAL
- Containers run as a serial pipeline. -
DIRECT
- Only the individual container that you specify is run.
"Serial"
"Direct"
-
ExecutionRoleArn
— (String
)The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles.
Note: To be able to pass this role to SageMaker, the caller of this API must have theiam:PassRole
permission.Tags
— (Array<map>
)An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
Key
— required — (String
)The tag key. Tag keys must be unique per resource.
Value
— required — (String
)The tag value.
VpcConfig
— (map
)A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC.
VpcConfig
is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.SecurityGroupIds
— required — (Array<String>
)The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.Subnets
— required — (Array<String>
)The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones.
EnableNetworkIsolation
— (Boolean
)Isolates the model container. No inbound or outbound network calls can be made to or from the model container.
Callback (callback):
-
function(err, data) { ... }
Called when a response from the service is returned. If a callback is not supplied, you must call AWS.Request.send() on the returned request object to initiate the request.
Context (this):
-
(AWS.Response)
—
the response object containing error, data properties, and the original request object.
Parameters:
-
err
(Error)
—
the error object returned from the request. Set to
null
if the request is successful. -
data
(Object)
—
the de-serialized data returned from the request. Set to
null
if a request error occurs. Thedata
object has the following properties:ModelArn
— (String
)The ARN of the model created in SageMaker.
-
(AWS.Response)
—
Returns:
createModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates the definition for a model bias job.
Service Reference:
Examples:
Calling the createModelBiasJobDefinition operation
var params = { JobDefinitionName: 'STRING_VALUE', /* required */ JobResources: { /* required */ ClusterConfig: { /* required */ InstanceCount: 'NUMBER_VALUE', /* required */ InstanceType: ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge, /* required */ VolumeSizeInGB: 'NUMBER_VALUE', /* required */ VolumeKmsKeyId: 'STRING_VALUE' } }, ModelBiasAppSpecification: { /* required */ ConfigUri: 'STRING_VALUE', /* required */ ImageUri: 'STRING_VALUE', /* required */ Environment: { '<ProcessingEnvironmentKey>': 'STRING_VALUE', /* '<ProcessingEnvironmentKey>': ... */ } }, ModelBiasJobInput: { /* required */ GroundTruthS3Input: { /* required */ S3Uri: 'STRING_VALUE' }, BatchTransformInput: { DataCapturedDestinationS3Uri: 'STRING_VALUE', /* required */ DatasetFormat: { /* required */ Csv: { Header: true || false }, Json: { Line: true || false }, Parquet: { } }, LocalPath: 'STRING_VALUE', /* required */ EndTimeOffset: 'STRING_VALUE', ExcludeFeaturesAttribute: 'STRING_VALUE', FeaturesAttribute: 'STRING_VALUE', InferenceAttribute: 'STRING_VALUE', ProbabilityAttribute: 'STRING_VALUE', ProbabilityThresholdAttribute: 'NUMBER_VALUE', S3DataDistributionType: FullyReplicated | ShardedByS3Key, S3InputMode: Pipe | File, StartTimeOffset: 'STRING_VALUE' }, EndpointInput: { EndpointName: 'STRING_VALUE', /* required */ LocalPath: 'STRING_VALUE', /* required */ EndTimeOffset: 'STRING_VALUE', ExcludeFeaturesAttribute: 'STRING_VALUE', FeaturesAttribute: 'STRING_VALUE', InferenceAttribute: 'STRING_VALUE', ProbabilityAttribute: 'STRING_VALUE', ProbabilityThresholdAttribute: 'NUMBER_VALUE', S3DataDistributionType: FullyReplicated | ShardedByS3Key, S3InputMode: Pipe | File, StartTimeOffset: 'STRING_VALUE' } }, ModelBiasJobOutputConfig: { /* required */ MonitoringOutputs: [ /* required */ { S3Output: { /* required */ LocalPath: 'STRING_VALUE', /* required */ S3Uri: 'STRING_VALUE', /* required */ S3UploadMode: Continuous | EndOfJob } }, /* more items */ ], KmsKeyId: 'STRING_VALUE' }, RoleArn: 'STRING_VALUE', /* required */ ModelBiasBaselineConfig: { BaseliningJobName: 'STRING_VALUE', ConstraintsResource: { S3Uri: 'STRING_VALUE' } }, NetworkConfig: { EnableInterContainerTrafficEncryption: true || false, EnableNetworkIsolation: true || false, VpcConfig: { SecurityGroupIds: [ /* required */ 'STRING_VALUE', /* more items */ ], Subnets: [ /* required */ 'STRING_VALUE', /* more items */ ] } }, StoppingCondition: { MaxRuntimeInSeconds: 'NUMBER_VALUE' /* required */ }, Tags: [ { Key: 'STRING_VALUE', /* required */ Value: 'STRING_VALUE' /* required */ }, /* more items */ ] }; sagemaker.createModelBiasJobDefinition(params, function(err, data) { if (err) console.log(err, err.stack); // an error occurred else console.log(data); // successful response });
Parameters:
-
params
(Object)
(defaults to: {})
—
JobDefinitionName
— (String
)The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
ModelBiasBaselineConfig
— (map
)The baseline configuration for a model bias job.
BaseliningJobName
— (String
)The name of the baseline model bias job.
ConstraintsResource
— (map
)The constraints resource for a monitoring job.
S3Uri
— (String
)The Amazon S3 URI for the constraints resource.
ModelBiasAppSpecification
— (map
)Configures the model bias job to run a specified Docker container image.
ImageUri
— required — (String
)The container image to be run by the model bias job.
ConfigUri
— required — (String
)JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see Configure bias parameters.
Environment
— (map<String>
)Sets the environment variables in the Docker container.
ModelBiasJobInput
— (map
)Inputs for the model bias job.
EndpointInput
— (map
)Input object for the endpoint
EndpointName
— required — (String
)An endpoint in customer's account which has enabled
DataCaptureConfig
enabled.LocalPath
— required — (String
)Path to the filesystem where the endpoint data is available to the container.
S3InputMode
— (String
)Whether the
Possible values include:Pipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
."Pipe"
"File"
S3DataDistributionType
— (String
)Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key. Defaults to
Possible values include:FullyReplicated
"FullyReplicated"
"ShardedByS3Key"
FeaturesAttribute
— (String
)The attributes of the input data that are the input features.
InferenceAttribute
— (String
)The attribute of the input data that represents the ground truth label.
ProbabilityAttribute
— (String
)In a classification problem, the attribute that represents the class probability.
ProbabilityThresholdAttribute
— (Float
)The threshold for the class probability to be evaluated as a positive result.
StartTimeOffset
— (String
)If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
EndTimeOffset
— (String
)If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
ExcludeFeaturesAttribute
— (String
)The attributes of the input data to exclude from the analysis.
BatchTransformInput
— (map
)Input object for the batch transform job.
DataCapturedDestinationS3Uri
— required — (String
)The Amazon S3 location being used to capture the data.
DatasetFormat
— required — (map
)The dataset format for your batch transform job.
Csv
— (map
)The CSV dataset used in the monitoring job.
Header
— (Boolean
)Indicates if the CSV data has a header.
Json
— (map
)The JSON dataset used in the monitoring job
Line
— (Boolean
)Indicates if the file should be read as a JSON object per line.
Parquet
— (map
)The Parquet dataset used in the monitoring job
LocalPath
— required — (String
)Path to the filesystem where the batch transform data is available to the container.
S3InputMode
— (String
)Whether the
Possible values include:Pipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
."Pipe"
"File"
S3DataDistributionType
— (String
)Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults to
Possible values include:FullyReplicated
"FullyReplicated"
"ShardedByS3Key"
FeaturesAttribute
— (String
)The attributes of the input data that are the input features.
InferenceAttribute
— (String
)The attribute of the input data that represents the ground truth label.
ProbabilityAttribute
— (String
)In a classification problem, the attribute that represents the class probability.
ProbabilityThresholdAttribute
— (Float
)The threshold for the class probability to be evaluated as a positive result.
StartTimeOffset
— (String
)If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
EndTimeOffset
— (String
)If specified, monitoring jobs subtract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs.
ExcludeFeaturesAttribute
— (String
)The attributes of the input data to exclude from the analysis.
GroundTruthS3Input
— required — (map
)Location of ground truth labels to use in model bias job.
S3Uri
— (String
)The address of the Amazon S3 location of the ground truth labels.
ModelBiasJobOutputConfig
— (map
)The output configuration for monitoring jobs.
MonitoringOutputs
— required — (Array<map>
)Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
S3Output
— required — (map
)The Amazon S3 storage location where the results of a monitoring job are saved.
S3Uri
— required — (String
)A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
LocalPath
— required — (String
)The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
S3UploadMode
— (String
)Whether to upload the results of the monitoring job continuously or after the job completes.
Possible values include:"Continuous"
"EndOfJob"
KmsKeyId
— (String
)The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
JobResources
— (map
)Identifies the resources to deploy for a monitoring job.
ClusterConfig
— required — (map
)The configuration for the cluster resources used to run the processing job.
InstanceCount
— required — (Integer
)The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType
— required — (String
)The ML compute instance type for the processing job.
Possible values include:"ml.t3.medium"
"ml.t3.large"
"ml.t3.xlarge"
"ml.t3.2xlarge"
"ml.m4.xlarge"
"ml.m4.2xlarge"
"ml.m4.4xlarge"
"ml.m4.10xlarge"
"ml.m4.16xlarge"
"ml.c4.xlarge"
"ml.c4.2xlarge"
"ml.c4.4xlarge"
"ml.c4.8xlarge"
"ml.p2.xlarge"
"ml.p2.8xlarge"
"ml.p2.16xlarge"
"ml.p3.2xlarge"
"ml.p3.8xlarge"
"ml.p3.16xlarge"
"ml.c5.xlarge"
"ml.c5.2xlarge"
"ml.c5.4xlarge"
"ml.c5.9xlarge"
"ml.c5.18xlarge"
"ml.m5.large"
"ml.m5.xlarge"
"ml.m5.2xlarge"
"ml.m5.4xlarge"
"ml.m5.12xlarge"
"ml.m5.24xlarge"
"ml.r5.large"
"ml.r5.xlarge"
"ml.r5.2xlarge"
"ml.r5.4xlarge"
"ml.r5.8xlarge"
"ml.r5.12xlarge"
"ml.r5.16xlarge"
"ml.r5.24xlarge"
"ml.g4dn.xlarge"
"ml.g4dn.2xlarge"
"ml.g4dn.4xlarge"
"ml.g4dn.8xlarge"
"ml.g4dn.12xlarge"
"ml.g4dn.16xlarge"
VolumeSizeInGB
— required — (Integer
)The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
VolumeKmsKeyId
— (String
)The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
NetworkConfig
— (map
)Networking options
- createAutoMLJobV2(params = {}, callback) ⇒ AWS.Request