Class: AWS.SageMaker
- Inherits:
-
AWS.Service
- Object
- AWS.Service
- AWS.SageMaker
- Identifier:
- sagemaker
- API Version:
- 2017-07-24
- Defined in:
- (unknown)
Overview
Constructs a service interface object. Each API operation is exposed as a function on service.
Service Description
Provides APIs for creating and managing SageMaker resources.
Other Resources:
Sending a Request Using SageMaker
var sagemaker = new AWS.SageMaker();
sagemaker.addAssociation(params, function (err, data) {
if (err) console.log(err, err.stack); // an error occurred
else console.log(data); // successful response
});
Locking the API Version
In order to ensure that the SageMaker object uses this specific API, you can
construct the object by passing the apiVersion
option to the constructor:
var sagemaker = new AWS.SageMaker({apiVersion: '2017-07-24'});
You can also set the API version globally in AWS.config.apiVersions
using
the sagemaker service identifier:
AWS.config.apiVersions = {
sagemaker: '2017-07-24',
// other service API versions
};
var sagemaker = new AWS.SageMaker();
Waiter Resource States
This service supports a list of resource states that can be polled using the waitFor() method. The resource states are:
notebookInstanceInService, notebookInstanceStopped, notebookInstanceDeleted, trainingJobCompletedOrStopped, endpointInService, endpointDeleted, transformJobCompletedOrStopped, processingJobCompletedOrStopped, imageCreated, imageUpdated, imageDeleted, imageVersionCreated, imageVersionDeleted
Constructor Summary collapse
-
new AWS.SageMaker(options = {}) ⇒ Object
constructor
Constructs a service object.
Property Summary collapse
-
endpoint ⇒ AWS.Endpoint
readwrite
An Endpoint object representing the endpoint URL for service requests.
Properties inherited from AWS.Service
Method Summary collapse
-
addAssociation(params = {}, callback) ⇒ AWS.Request
Creates an association between the source and the destination.
-
addTags(params = {}, callback) ⇒ AWS.Request
Adds or overwrites one or more tags for the specified SageMaker resource.
-
associateTrialComponent(params = {}, callback) ⇒ AWS.Request
Associates a trial component with a trial.
-
batchDescribeModelPackage(params = {}, callback) ⇒ AWS.Request
This action batch describes a list of versioned model packages
.
-
createAction(params = {}, callback) ⇒ AWS.Request
Creates an action.
-
createAlgorithm(params = {}, callback) ⇒ AWS.Request
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
.
-
createApp(params = {}, callback) ⇒ AWS.Request
Creates a running app for the specified UserProfile.
-
createAppImageConfig(params = {}, callback) ⇒ AWS.Request
Creates a configuration for running a SageMaker image as a KernelGateway app.
-
createArtifact(params = {}, callback) ⇒ AWS.Request
Creates an artifact.
-
createAutoMLJob(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise.
-
createAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise.
-
createCluster(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker HyperPod cluster.
-
createCodeRepository(params = {}, callback) ⇒ AWS.Request
Creates a Git repository as a resource in your SageMaker account.
-
createCompilationJob(params = {}, callback) ⇒ AWS.Request
Starts a model compilation job.
-
createContext(params = {}, callback) ⇒ AWS.Request
Creates a context.
-
createDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors data quality and drift.
-
createDeviceFleet(params = {}, callback) ⇒ AWS.Request
Creates a device fleet.
.
-
createDomain(params = {}, callback) ⇒ AWS.Request
Creates a
Domain
. -
createEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Creates an edge deployment plan, consisting of multiple stages.
-
createEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Creates a new stage in an existing edge deployment plan.
.
-
createEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Starts a SageMaker Edge Manager model packaging job.
-
createEndpoint(params = {}, callback) ⇒ AWS.Request
Creates an endpoint using the endpoint configuration specified in the request.
-
createEndpointConfig(params = {}, callback) ⇒ AWS.Request
Creates an endpoint configuration that SageMaker hosting services uses to deploy models.
-
createExperiment(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker experiment.
-
createFeatureGroup(params = {}, callback) ⇒ AWS.Request
Create a new
FeatureGroup
. -
createFlowDefinition(params = {}, callback) ⇒ AWS.Request
Creates a flow definition.
.
-
createHub(params = {}, callback) ⇒ AWS.Request
Create a hub.
.
-
createHubContentReference(params = {}, callback) ⇒ AWS.Request
Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.
.
-
createHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Defines the settings you will use for the human review workflow user interface.
-
createHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Starts a hyperparameter tuning job.
-
createImage(params = {}, callback) ⇒ AWS.Request
Creates a custom SageMaker image.
-
createImageVersion(params = {}, callback) ⇒ AWS.Request
Creates a version of the SageMaker image specified by
ImageName
. -
createInferenceComponent(params = {}, callback) ⇒ AWS.Request
Creates an inference component, which is a SageMaker hosting object that you can use to deploy a model to an endpoint.
-
createInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Creates an inference experiment using the configurations specified in the request.
-
createInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Starts a recommendation job.
-
createLabelingJob(params = {}, callback) ⇒ AWS.Request
Creates a job that uses workers to label the data objects in your input dataset.
-
createMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store.
-
createModel(params = {}, callback) ⇒ AWS.Request
Creates a model in SageMaker.
-
createModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates the definition for a model bias job.
.
-
createModelCard(params = {}, callback) ⇒ AWS.Request
Creates an Amazon SageMaker Model Card.
For information about how to use model cards, see Amazon SageMaker Model Card.
. -
createModelCardExportJob(params = {}, callback) ⇒ AWS.Request
Creates an Amazon SageMaker Model Card export job.
.
-
createModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates the definition for a model explainability job.
.
-
createModelPackage(params = {}, callback) ⇒ AWS.Request
Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group.
-
createModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Creates a model group.
-
createModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors model quality and drift.
-
createMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endpoint.
.
-
createNotebookInstance(params = {}, callback) ⇒ AWS.Request
Creates an SageMaker notebook instance.
-
createNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Creates a lifecycle configuration that you can associate with a notebook instance.
-
createOptimizationJob(params = {}, callback) ⇒ AWS.Request
Creates a job that optimizes a model for inference performance.
-
createPipeline(params = {}, callback) ⇒ AWS.Request
Creates a pipeline using a JSON pipeline definition.
.
-
createPresignedDomainUrl(params = {}, callback) ⇒ AWS.Request
Creates a URL for a specified UserProfile in a Domain.
-
createPresignedMlflowTrackingServerUrl(params = {}, callback) ⇒ AWS.Request
Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server.
-
createPresignedNotebookInstanceUrl(params = {}, callback) ⇒ AWS.Request
Returns a URL that you can use to connect to the Jupyter server from a notebook instance.
-
createProcessingJob(params = {}, callback) ⇒ AWS.Request
Creates a processing job.
.
-
createProject(params = {}, callback) ⇒ AWS.Request
Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.
.
-
createSpace(params = {}, callback) ⇒ AWS.Request
Creates a private space or a space used for real time collaboration in a domain.
.
-
createStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Creates a new Amazon SageMaker Studio Lifecycle Configuration.
.
-
createTrainingJob(params = {}, callback) ⇒ AWS.Request
Starts a model training job.
-
createTransformJob(params = {}, callback) ⇒ AWS.Request
Starts a transform job.
-
createTrial(params = {}, callback) ⇒ AWS.Request
Creates an SageMaker trial.
-
createTrialComponent(params = {}, callback) ⇒ AWS.Request
Creates a trial component, which is a stage of a machine learning trial.
-
createUserProfile(params = {}, callback) ⇒ AWS.Request
Creates a user profile.
-
createWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to create a workforce.
-
createWorkteam(params = {}, callback) ⇒ AWS.Request
Creates a new work team for labeling your data.
-
deleteAction(params = {}, callback) ⇒ AWS.Request
Deletes an action.
.
-
deleteAlgorithm(params = {}, callback) ⇒ AWS.Request
Removes the specified algorithm from your account.
.
-
deleteApp(params = {}, callback) ⇒ AWS.Request
Used to stop and delete an app.
.
-
deleteAppImageConfig(params = {}, callback) ⇒ AWS.Request
Deletes an AppImageConfig.
.
-
deleteArtifact(params = {}, callback) ⇒ AWS.Request
Deletes an artifact.
-
deleteAssociation(params = {}, callback) ⇒ AWS.Request
Deletes an association.
.
-
deleteCluster(params = {}, callback) ⇒ AWS.Request
Delete a SageMaker HyperPod cluster.
.
-
deleteCodeRepository(params = {}, callback) ⇒ AWS.Request
Deletes the specified Git repository from your account.
.
-
deleteCompilationJob(params = {}, callback) ⇒ AWS.Request
Deletes the specified compilation job.
-
deleteContext(params = {}, callback) ⇒ AWS.Request
Deletes an context.
.
-
deleteDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes a data quality monitoring job definition.
.
-
deleteDeviceFleet(params = {}, callback) ⇒ AWS.Request
Deletes a fleet.
.
-
deleteDomain(params = {}, callback) ⇒ AWS.Request
Used to delete a domain.
-
deleteEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.
.
-
deleteEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
.
-
deleteEndpoint(params = {}, callback) ⇒ AWS.Request
Deletes an endpoint.
-
deleteEndpointConfig(params = {}, callback) ⇒ AWS.Request
Deletes an endpoint configuration.
-
deleteExperiment(params = {}, callback) ⇒ AWS.Request
Deletes an SageMaker experiment.
-
deleteFeatureGroup(params = {}, callback) ⇒ AWS.Request
Delete the
FeatureGroup
and any data that was written to theOnlineStore
of theFeatureGroup
. -
deleteFlowDefinition(params = {}, callback) ⇒ AWS.Request
Deletes the specified flow definition.
.
-
deleteHub(params = {}, callback) ⇒ AWS.Request
Delete a hub.
.
-
deleteHubContent(params = {}, callback) ⇒ AWS.Request
Delete the contents of a hub.
.
-
deleteHubContentReference(params = {}, callback) ⇒ AWS.Request
Delete a hub content reference in order to remove a model from a private hub.
.
-
deleteHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Use this operation to delete a human task user interface (worker task template).
To see a list of human task user interfaces (work task templates) in your account, use ListHumanTaskUis.
-
deleteHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Deletes a hyperparameter tuning job.
-
deleteImage(params = {}, callback) ⇒ AWS.Request
Deletes a SageMaker image and all versions of the image.
-
deleteImageVersion(params = {}, callback) ⇒ AWS.Request
Deletes a version of a SageMaker image.
-
deleteInferenceComponent(params = {}, callback) ⇒ AWS.Request
Deletes an inference component.
.
-
deleteInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Deletes an inference experiment.
Note: This operation does not delete your endpoint, variants, or any underlying resources.- deleteMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Deletes an MLflow Tracking Server.
- deleteModel(params = {}, callback) ⇒ AWS.Request
Deletes a model.
- deleteModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker model bias job definition.
.
- deleteModelCard(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker Model Card.
.
- deleteModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes an Amazon SageMaker model explainability job definition.
.
- deleteModelPackage(params = {}, callback) ⇒ AWS.Request
Deletes a model package.
A model package is used to create SageMaker models or list on Amazon Web Services Marketplace.
- deleteModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Deletes the specified model group.
.
- deleteModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Deletes a model group resource policy.
.
- deleteModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Deletes the secified model quality monitoring job definition.
.
- deleteMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Deletes a monitoring schedule.
- deleteNotebookInstance(params = {}, callback) ⇒ AWS.Request
Deletes an SageMaker notebook instance.
- deleteNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Deletes a notebook instance lifecycle configuration.
.
- deleteOptimizationJob(params = {}, callback) ⇒ AWS.Request
Deletes an optimization job.
.
- deletePipeline(params = {}, callback) ⇒ AWS.Request
Deletes a pipeline if there are no running instances of the pipeline.
- deleteProject(params = {}, callback) ⇒ AWS.Request
Delete the specified project.
.
- deleteSpace(params = {}, callback) ⇒ AWS.Request
Used to delete a space.
.
- deleteStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Deletes the Amazon SageMaker Studio Lifecycle Configuration.
- deleteTags(params = {}, callback) ⇒ AWS.Request
Deletes the specified tags from an SageMaker resource.
To list a resource's tags, use the
ListTags
API.- deleteTrial(params = {}, callback) ⇒ AWS.Request
Deletes the specified trial.
- deleteTrialComponent(params = {}, callback) ⇒ AWS.Request
Deletes the specified trial component.
- deleteUserProfile(params = {}, callback) ⇒ AWS.Request
Deletes a user profile.
- deleteWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to delete a workforce.
If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.
If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce.
- deleteWorkteam(params = {}, callback) ⇒ AWS.Request
Deletes an existing work team.
- deregisterDevices(params = {}, callback) ⇒ AWS.Request
Deregisters the specified devices.
- describeAction(params = {}, callback) ⇒ AWS.Request
Describes an action.
.
- describeAlgorithm(params = {}, callback) ⇒ AWS.Request
Returns a description of the specified algorithm that is in your account.
.
- describeApp(params = {}, callback) ⇒ AWS.Request
Describes the app.
.
- describeAppImageConfig(params = {}, callback) ⇒ AWS.Request
Describes an AppImageConfig.
.
- describeArtifact(params = {}, callback) ⇒ AWS.Request
Describes an artifact.
.
- describeAutoMLJob(params = {}, callback) ⇒ AWS.Request
Returns information about an AutoML job created by calling CreateAutoMLJob.
Note: AutoML jobs created by calling CreateAutoMLJobV2 cannot be described byDescribeAutoMLJob
.- describeAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob.
.
- describeCluster(params = {}, callback) ⇒ AWS.Request
Retrieves information of a SageMaker HyperPod cluster.
.
- describeClusterNode(params = {}, callback) ⇒ AWS.Request
Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.
.
- describeCodeRepository(params = {}, callback) ⇒ AWS.Request
Gets details about the specified Git repository.
.
- describeCompilationJob(params = {}, callback) ⇒ AWS.Request
Returns information about a model compilation job.
To create a model compilation job, use CreateCompilationJob.
- describeContext(params = {}, callback) ⇒ AWS.Request
Describes a context.
.
- describeDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Gets the details of a data quality monitoring job definition.
.
- describeDevice(params = {}, callback) ⇒ AWS.Request
Describes the device.
.
- describeDeviceFleet(params = {}, callback) ⇒ AWS.Request
A description of the fleet the device belongs to.
.
- describeDomain(params = {}, callback) ⇒ AWS.Request
The description of the domain.
.
- describeEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Describes an edge deployment plan with deployment status per stage.
.
- describeEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
A description of edge packaging jobs.
.
- describeEndpoint(params = {}, callback) ⇒ AWS.Request
Returns the description of an endpoint.
.
- describeEndpointConfig(params = {}, callback) ⇒ AWS.Request
Returns the description of an endpoint configuration created using the
CreateEndpointConfig
API..
- describeExperiment(params = {}, callback) ⇒ AWS.Request
Provides a list of an experiment's properties.
.
- describeFeatureGroup(params = {}, callback) ⇒ AWS.Request
Use this operation to describe a
FeatureGroup
.- describeFeatureMetadata(params = {}, callback) ⇒ AWS.Request
Shows the metadata for a feature within a feature group.
.
- describeFlowDefinition(params = {}, callback) ⇒ AWS.Request
Returns information about the specified flow definition.
.
- describeHub(params = {}, callback) ⇒ AWS.Request
Describes a hub.
.
- describeHubContent(params = {}, callback) ⇒ AWS.Request
Describe the content of a hub.
.
- describeHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Returns information about the requested human task user interface (worker task template).
.
- describeHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Returns a description of a hyperparameter tuning job, depending on the fields selected.
- describeImage(params = {}, callback) ⇒ AWS.Request
Describes a SageMaker image.
.
- describeImageVersion(params = {}, callback) ⇒ AWS.Request
Describes a version of a SageMaker image.
.
- describeInferenceComponent(params = {}, callback) ⇒ AWS.Request
Returns information about an inference component.
.
- describeInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Returns details about an inference experiment.
.
- describeInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Provides the results of the Inference Recommender job.
- describeLabelingJob(params = {}, callback) ⇒ AWS.Request
Gets information about a labeling job.
.
- describeLineageGroup(params = {}, callback) ⇒ AWS.Request
Provides a list of properties for the requested lineage group.
- describeMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Returns information about an MLflow Tracking Server.
.
- describeModel(params = {}, callback) ⇒ AWS.Request
Describes a model that you created using the
CreateModel
API..
- describeModelBiasJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model bias job definition.
.
- describeModelCard(params = {}, callback) ⇒ AWS.Request
Describes the content, creation time, and security configuration of an Amazon SageMaker Model Card.
.
- describeModelCardExportJob(params = {}, callback) ⇒ AWS.Request
Describes an Amazon SageMaker Model Card export job.
.
- describeModelExplainabilityJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model explainability job definition.
.
- describeModelPackage(params = {}, callback) ⇒ AWS.Request
Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace.
If you provided a KMS Key ID when you created your model package, you will see the KMS Decrypt API call in your CloudTrail logs when you use this API.
To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
.- describeModelPackageGroup(params = {}, callback) ⇒ AWS.Request
Gets a description for the specified model group.
.
- describeModelQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Returns a description of a model quality job definition.
.
- describeMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Describes the schedule for a monitoring job.
.
- describeNotebookInstance(params = {}, callback) ⇒ AWS.Request
Returns information about a notebook instance.
.
- describeNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Returns a description of a notebook instance lifecycle configuration.
For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
.- describeOptimizationJob(params = {}, callback) ⇒ AWS.Request
Provides the properties of the specified optimization job.
.
- describePipeline(params = {}, callback) ⇒ AWS.Request
Describes the details of a pipeline.
.
- describePipelineDefinitionForExecution(params = {}, callback) ⇒ AWS.Request
Describes the details of an execution's pipeline definition.
.
- describePipelineExecution(params = {}, callback) ⇒ AWS.Request
Describes the details of a pipeline execution.
.
- describeProcessingJob(params = {}, callback) ⇒ AWS.Request
Returns a description of a processing job.
.
- describeProject(params = {}, callback) ⇒ AWS.Request
Describes the details of a project.
.
- describeSpace(params = {}, callback) ⇒ AWS.Request
Describes the space.
.
- describeStudioLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Describes the Amazon SageMaker Studio Lifecycle Configuration.
.
- describeSubscribedWorkteam(params = {}, callback) ⇒ AWS.Request
Gets information about a work team provided by a vendor.
- describeTrainingJob(params = {}, callback) ⇒ AWS.Request
Returns information about a training job.
- describeTransformJob(params = {}, callback) ⇒ AWS.Request
Returns information about a transform job.
.
- describeTrial(params = {}, callback) ⇒ AWS.Request
Provides a list of a trial's properties.
.
- describeTrialComponent(params = {}, callback) ⇒ AWS.Request
Provides a list of a trials component's properties.
.
- describeUserProfile(params = {}, callback) ⇒ AWS.Request
Describes a user profile.
- describeWorkforce(params = {}, callback) ⇒ AWS.Request
Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs).
- describeWorkteam(params = {}, callback) ⇒ AWS.Request
Gets information about a specific work team.
- disableSagemakerServicecatalogPortfolio(params = {}, callback) ⇒ AWS.Request
Disables using Service Catalog in SageMaker.
- disassociateTrialComponent(params = {}, callback) ⇒ AWS.Request
Disassociates a trial component from a trial.
- enableSagemakerServicecatalogPortfolio(params = {}, callback) ⇒ AWS.Request
Enables using Service Catalog in SageMaker.
- getDeviceFleetReport(params = {}, callback) ⇒ AWS.Request
Describes a fleet.
.
- getLineageGroupPolicy(params = {}, callback) ⇒ AWS.Request
The resource policy for the lineage group.
.
- getModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Gets a resource policy that manages access for a model group.
- getSagemakerServicecatalogPortfolioStatus(params = {}, callback) ⇒ AWS.Request
Gets the status of Service Catalog in SageMaker.
- getScalingConfigurationRecommendation(params = {}, callback) ⇒ AWS.Request
Starts an Amazon SageMaker Inference Recommender autoscaling recommendation job.
- getSearchSuggestions(params = {}, callback) ⇒ AWS.Request
An auto-complete API for the search functionality in the SageMaker console.
- importHubContent(params = {}, callback) ⇒ AWS.Request
Import hub content.
.
- listActions(params = {}, callback) ⇒ AWS.Request
Lists the actions in your account and their properties.
.
- listAlgorithms(params = {}, callback) ⇒ AWS.Request
Lists the machine learning algorithms that have been created.
.
- listAliases(params = {}, callback) ⇒ AWS.Request
Lists the aliases of a specified image or image version.
.
- listAppImageConfigs(params = {}, callback) ⇒ AWS.Request
Lists the AppImageConfigs in your account and their properties.
- listApps(params = {}, callback) ⇒ AWS.Request
Lists apps.
.
- listArtifacts(params = {}, callback) ⇒ AWS.Request
Lists the artifacts in your account and their properties.
.
- listAssociations(params = {}, callback) ⇒ AWS.Request
Lists the associations in your account and their properties.
.
- listAutoMLJobs(params = {}, callback) ⇒ AWS.Request
Request a list of jobs.
.
- listCandidatesForAutoMLJob(params = {}, callback) ⇒ AWS.Request
List the candidates created for the job.
.
- listClusterNodes(params = {}, callback) ⇒ AWS.Request
Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
.
- listClusters(params = {}, callback) ⇒ AWS.Request
Retrieves the list of SageMaker HyperPod clusters.
.
- listCodeRepositories(params = {}, callback) ⇒ AWS.Request
Gets a list of the Git repositories in your account.
.
- listCompilationJobs(params = {}, callback) ⇒ AWS.Request
Lists model compilation jobs that satisfy various filters.
To create a model compilation job, use CreateCompilationJob.
- listContexts(params = {}, callback) ⇒ AWS.Request
Lists the contexts in your account and their properties.
.
- listDataQualityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists the data quality job definitions in your account.
.
- listDeviceFleets(params = {}, callback) ⇒ AWS.Request
Returns a list of devices in the fleet.
.
- listDevices(params = {}, callback) ⇒ AWS.Request
A list of devices.
.
- listDomains(params = {}, callback) ⇒ AWS.Request
Lists the domains.
.
- listEdgeDeploymentPlans(params = {}, callback) ⇒ AWS.Request
Lists all edge deployment plans.
.
- listEdgePackagingJobs(params = {}, callback) ⇒ AWS.Request
Returns a list of edge packaging jobs.
.
- listEndpointConfigs(params = {}, callback) ⇒ AWS.Request
Lists endpoint configurations.
.
- listEndpoints(params = {}, callback) ⇒ AWS.Request
Lists endpoints.
.
- listExperiments(params = {}, callback) ⇒ AWS.Request
Lists all the experiments in your account.
- listFeatureGroups(params = {}, callback) ⇒ AWS.Request
List
FeatureGroup
s based on given filter and order..
- listFlowDefinitions(params = {}, callback) ⇒ AWS.Request
Returns information about the flow definitions in your account.
.
- listHubContents(params = {}, callback) ⇒ AWS.Request
List the contents of a hub.
.
- listHubContentVersions(params = {}, callback) ⇒ AWS.Request
List hub content versions.
.
- listHubs(params = {}, callback) ⇒ AWS.Request
List all existing hubs.
.
- listHumanTaskUis(params = {}, callback) ⇒ AWS.Request
Returns information about the human task user interfaces in your account.
.
- listHyperParameterTuningJobs(params = {}, callback) ⇒ AWS.Request
Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.
.
- listImages(params = {}, callback) ⇒ AWS.Request
Lists the images in your account and their properties.
- listImageVersions(params = {}, callback) ⇒ AWS.Request
Lists the versions of a specified image and their properties.
- listInferenceComponents(params = {}, callback) ⇒ AWS.Request
Lists the inference components in your account and their properties.
.
- listInferenceExperiments(params = {}, callback) ⇒ AWS.Request
Returns the list of all inference experiments.
.
- listInferenceRecommendationsJobs(params = {}, callback) ⇒ AWS.Request
Lists recommendation jobs that satisfy various filters.
.
- listInferenceRecommendationsJobSteps(params = {}, callback) ⇒ AWS.Request
Returns a list of the subtasks for an Inference Recommender job.
The supported subtasks are benchmarks, which evaluate the performance of your model on different instance types.
.- listLabelingJobs(params = {}, callback) ⇒ AWS.Request
Gets a list of labeling jobs.
.
- listLabelingJobsForWorkteam(params = {}, callback) ⇒ AWS.Request
Gets a list of labeling jobs assigned to a specified work team.
.
- listLineageGroups(params = {}, callback) ⇒ AWS.Request
A list of lineage groups shared with your Amazon Web Services account.
- listMlflowTrackingServers(params = {}, callback) ⇒ AWS.Request
Lists all MLflow Tracking Servers.
.
- listModelBiasJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists model bias jobs definitions that satisfy various filters.
.
- listModelCardExportJobs(params = {}, callback) ⇒ AWS.Request
List the export jobs for the Amazon SageMaker Model Card.
.
- listModelCards(params = {}, callback) ⇒ AWS.Request
List existing model cards.
.
- listModelCardVersions(params = {}, callback) ⇒ AWS.Request
List existing versions of an Amazon SageMaker Model Card.
.
- listModelExplainabilityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Lists model explainability job definitions that satisfy various filters.
.
- listModelMetadata(params = {}, callback) ⇒ AWS.Request
Lists the domain, framework, task, and model name of standard machine learning models found in common model zoos.
.
- listModelPackageGroups(params = {}, callback) ⇒ AWS.Request
Gets a list of the model groups in your Amazon Web Services account.
.
- listModelPackages(params = {}, callback) ⇒ AWS.Request
Lists the model packages that have been created.
.
- listModelQualityJobDefinitions(params = {}, callback) ⇒ AWS.Request
Gets a list of model quality monitoring job definitions in your account.
.
- listModels(params = {}, callback) ⇒ AWS.Request
Lists models created with the
CreateModel
API..
- listMonitoringAlertHistory(params = {}, callback) ⇒ AWS.Request
Gets a list of past alerts in a model monitoring schedule.
.
- listMonitoringAlerts(params = {}, callback) ⇒ AWS.Request
Gets the alerts for a single monitoring schedule.
.
- listMonitoringExecutions(params = {}, callback) ⇒ AWS.Request
Returns list of all monitoring job executions.
.
- listMonitoringSchedules(params = {}, callback) ⇒ AWS.Request
Returns list of all monitoring schedules.
.
- listNotebookInstanceLifecycleConfigs(params = {}, callback) ⇒ AWS.Request
Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.
.
- listNotebookInstances(params = {}, callback) ⇒ AWS.Request
Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services Region.
- listOptimizationJobs(params = {}, callback) ⇒ AWS.Request
Lists the optimization jobs in your account and their properties.
.
- listPipelineExecutions(params = {}, callback) ⇒ AWS.Request
Gets a list of the pipeline executions.
.
- listPipelineExecutionSteps(params = {}, callback) ⇒ AWS.Request
Gets a list of
PipeLineExecutionStep
objects..
- listPipelineParametersForExecution(params = {}, callback) ⇒ AWS.Request
Gets a list of parameters for a pipeline execution.
.
- listPipelines(params = {}, callback) ⇒ AWS.Request
Gets a list of pipelines.
.
- listProcessingJobs(params = {}, callback) ⇒ AWS.Request
Lists processing jobs that satisfy various filters.
.
- listProjects(params = {}, callback) ⇒ AWS.Request
Gets a list of the projects in an Amazon Web Services account.
.
- listResourceCatalogs(params = {}, callback) ⇒ AWS.Request
Lists Amazon SageMaker Catalogs based on given filters and orders.
- listSpaces(params = {}, callback) ⇒ AWS.Request
Lists spaces.
.
- listStageDevices(params = {}, callback) ⇒ AWS.Request
Lists devices allocated to the stage, containing detailed device information and deployment status.
.
- listStudioLifecycleConfigs(params = {}, callback) ⇒ AWS.Request
Lists the Amazon SageMaker Studio Lifecycle Configurations in your Amazon Web Services Account.
.
- listSubscribedWorkteams(params = {}, callback) ⇒ AWS.Request
Gets a list of the work teams that you are subscribed to in the Amazon Web Services Marketplace.
- listTags(params = {}, callback) ⇒ AWS.Request
Returns the tags for the specified SageMaker resource.
.
- listTrainingJobs(params = {}, callback) ⇒ AWS.Request
Lists training jobs.
Note: WhenStatusEquals
andMaxResults
are set at the same time, theMaxResults
number of training jobs are first retrieved ignoring theStatusEquals
parameter and then they are filtered by theStatusEquals
parameter, which is returned as a response.- listTrainingJobsForHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.
.
- listTransformJobs(params = {}, callback) ⇒ AWS.Request
Lists transform jobs.
.
- listTrialComponents(params = {}, callback) ⇒ AWS.Request
Lists the trial components in your account.
- listTrials(params = {}, callback) ⇒ AWS.Request
Lists the trials in your account.
- listUserProfiles(params = {}, callback) ⇒ AWS.Request
Lists user profiles.
.
- listWorkforces(params = {}, callback) ⇒ AWS.Request
Use this operation to list all private and vendor workforces in an Amazon Web Services Region.
- listWorkteams(params = {}, callback) ⇒ AWS.Request
Gets a list of private work teams that you have defined in a region.
- putModelPackageGroupPolicy(params = {}, callback) ⇒ AWS.Request
Adds a resouce policy to control access to a model group.
- queryLineage(params = {}, callback) ⇒ AWS.Request
Use this action to inspect your lineage and discover relationships between entities.
- registerDevices(params = {}, callback) ⇒ AWS.Request
Register devices.
.
- renderUiTemplate(params = {}, callback) ⇒ AWS.Request
Renders the UI template so that you can preview the worker's experience.
- retryPipelineExecution(params = {}, callback) ⇒ AWS.Request
Retry the execution of the pipeline.
.
- search(params = {}, callback) ⇒ AWS.Request
Finds SageMaker resources that match a search query.
- sendPipelineExecutionStepFailure(params = {}, callback) ⇒ AWS.Request
Notifies the pipeline that the execution of a callback step failed, along with a message describing why.
- sendPipelineExecutionStepSuccess(params = {}, callback) ⇒ AWS.Request
Notifies the pipeline that the execution of a callback step succeeded and provides a list of the step's output parameters.
- startEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Starts a stage in an edge deployment plan.
.
- startInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Starts an inference experiment.
.
- startMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Programmatically start an MLflow Tracking Server.
.
- startMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Starts a previously stopped monitoring schedule.
Note: By default, when you successfully create a new schedule, the status of a monitoring schedule isscheduled
.- startNotebookInstance(params = {}, callback) ⇒ AWS.Request
Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume.
- startPipelineExecution(params = {}, callback) ⇒ AWS.Request
Starts a pipeline execution.
.
- stopAutoMLJob(params = {}, callback) ⇒ AWS.Request
A method for forcing a running job to shut down.
.
- stopCompilationJob(params = {}, callback) ⇒ AWS.Request
Stops a model compilation job.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal.
- stopEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Stops a stage in an edge deployment plan.
.
- stopEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Request to stop an edge packaging job.
.
- stopHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.
All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3).
- stopInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Stops an inference experiment.
.
- stopInferenceRecommendationsJob(params = {}, callback) ⇒ AWS.Request
Stops an Inference Recommender job.
.
- stopLabelingJob(params = {}, callback) ⇒ AWS.Request
Stops a running labeling job.
- stopMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Programmatically stop an MLflow Tracking Server.
.
- stopMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Stops a previously started monitoring schedule.
.
- stopNotebookInstance(params = {}, callback) ⇒ AWS.Request
Terminates the ML compute instance.
- stopOptimizationJob(params = {}, callback) ⇒ AWS.Request
Ends a running inference optimization job.
.
- stopPipelineExecution(params = {}, callback) ⇒ AWS.Request
Stops a pipeline execution.
Callback Step
A pipeline execution won't stop while a callback step is running.
- stopProcessingJob(params = {}, callback) ⇒ AWS.Request
Stops a processing job.
.
- stopTrainingJob(params = {}, callback) ⇒ AWS.Request
Stops a training job.
- stopTransformJob(params = {}, callback) ⇒ AWS.Request
Stops a batch transform job.
When Amazon SageMaker receives a
StopTransformJob
request, the status of the job changes toStopping
.- updateAction(params = {}, callback) ⇒ AWS.Request
Updates an action.
.
- updateAppImageConfig(params = {}, callback) ⇒ AWS.Request
Updates the properties of an AppImageConfig.
.
- updateArtifact(params = {}, callback) ⇒ AWS.Request
Updates an artifact.
.
- updateCluster(params = {}, callback) ⇒ AWS.Request
Updates a SageMaker HyperPod cluster.
.
- updateClusterSoftware(params = {}, callback) ⇒ AWS.Request
Updates the platform software of a SageMaker HyperPod cluster for security patching.
- updateCodeRepository(params = {}, callback) ⇒ AWS.Request
Updates the specified Git repository with the specified values.
.
- updateContext(params = {}, callback) ⇒ AWS.Request
Updates a context.
.
- updateDeviceFleet(params = {}, callback) ⇒ AWS.Request
Updates a fleet of devices.
.
- updateDevices(params = {}, callback) ⇒ AWS.Request
Updates one or more devices in a fleet.
.
- updateDomain(params = {}, callback) ⇒ AWS.Request
Updates the default settings for new user profiles in the domain.
.
- updateEndpoint(params = {}, callback) ⇒ AWS.Request
Deploys the
EndpointConfig
specified in the request to a new fleet of instances.- updateEndpointWeightsAndCapacities(params = {}, callback) ⇒ AWS.Request
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint.
- updateExperiment(params = {}, callback) ⇒ AWS.Request
Adds, updates, or removes the description of an experiment.
- updateFeatureGroup(params = {}, callback) ⇒ AWS.Request
Updates the feature group by either adding features or updating the online store configuration.
- updateFeatureMetadata(params = {}, callback) ⇒ AWS.Request
Updates the description and parameters of the feature group.
.
- updateHub(params = {}, callback) ⇒ AWS.Request
Update a hub.
.
- updateImage(params = {}, callback) ⇒ AWS.Request
Updates the properties of a SageMaker image.
- updateImageVersion(params = {}, callback) ⇒ AWS.Request
Updates the properties of a SageMaker image version.
.
- updateInferenceComponent(params = {}, callback) ⇒ AWS.Request
Updates an inference component.
.
- updateInferenceComponentRuntimeConfig(params = {}, callback) ⇒ AWS.Request
Runtime settings for a model that is deployed with an inference component.
.
- updateInferenceExperiment(params = {}, callback) ⇒ AWS.Request
Updates an inference experiment that you created.
- updateMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request
Updates properties of an existing MLflow Tracking Server.
.
- updateModelCard(params = {}, callback) ⇒ AWS.Request
Update an Amazon SageMaker Model Card.
You cannot update both model card content and model card status in a single call.
- updateModelPackage(params = {}, callback) ⇒ AWS.Request
Updates a versioned model.
.
- updateMonitoringAlert(params = {}, callback) ⇒ AWS.Request
Update the parameters of a model monitor alert.
.
- updateMonitoringSchedule(params = {}, callback) ⇒ AWS.Request
Updates a previously created schedule.
.
- updateNotebookInstance(params = {}, callback) ⇒ AWS.Request
Updates a notebook instance.
- updateNotebookInstanceLifecycleConfig(params = {}, callback) ⇒ AWS.Request
Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.
.
- updatePipeline(params = {}, callback) ⇒ AWS.Request
Updates a pipeline.
.
- updatePipelineExecution(params = {}, callback) ⇒ AWS.Request
Updates a pipeline execution.
.
- updateProject(params = {}, callback) ⇒ AWS.Request
Updates a machine learning (ML) project that is created from a template that sets up an ML pipeline from training to deploying an approved model.
Note: You must not update a project that is in use.- updateSpace(params = {}, callback) ⇒ AWS.Request
Updates the settings of a space.
.
- updateTrainingJob(params = {}, callback) ⇒ AWS.Request
Update a model training job to request a new Debugger profiling configuration or to change warm pool retention length.
.
- updateTrial(params = {}, callback) ⇒ AWS.Request
Updates the display name of a trial.
.
- updateTrialComponent(params = {}, callback) ⇒ AWS.Request
Updates one or more properties of a trial component.
.
- updateUserProfile(params = {}, callback) ⇒ AWS.Request
Updates a user profile.
.
- updateWorkforce(params = {}, callback) ⇒ AWS.Request
Use this operation to update your workforce.
- updateWorkteam(params = {}, callback) ⇒ AWS.Request
Updates an existing work team with new member definitions or description.
.
- waitFor(state, params = {}, callback) ⇒ AWS.Request
Waits for a given SageMaker resource.
Methods inherited from AWS.Service
makeRequest, makeUnauthenticatedRequest, setupRequestListeners, defineService
Constructor Details
new AWS.SageMaker(options = {}) ⇒ Object
Constructs a service object. This object has one method for each API operation.
Property Details
Method Details
addAssociation(params = {}, callback) ⇒ AWS.Request
Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.
addTags(params = {}, callback) ⇒ AWS.Request
Adds or overwrites one or more tags for the specified SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.
Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see Amazon Web Services Tagging Strategies.
Note: Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in theTags
parameter of CreateHyperParameterTuningJobNote: Tags that you add to a SageMaker Domain or User Profile by calling this API are also added to any Apps that the Domain or User Profile launches after you call this API, but not to Apps that the Domain or User Profile launched before you called this API. To make sure that the tags associated with a Domain or User Profile are also added to all Apps that the Domain or User Profile launches, add the tags when you first create the Domain or User Profile by specifying them in theTags
parameter of CreateDomain or CreateUserProfile.associateTrialComponent(params = {}, callback) ⇒ AWS.Request
Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.
batchDescribeModelPackage(params = {}, callback) ⇒ AWS.Request
This action batch describes a list of versioned model packages
createAction(params = {}, callback) ⇒ AWS.Request
Creates an action. An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.
createAlgorithm(params = {}, callback) ⇒ AWS.Request
Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services Marketplace.
createApp(params = {}, callback) ⇒ AWS.Request
Creates a running app for the specified UserProfile. This operation is automatically invoked by Amazon SageMaker upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
createAppImageConfig(params = {}, callback) ⇒ AWS.Request
Creates a configuration for running a SageMaker image as a KernelGateway app. The configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the kernels in the image.
createArtifact(params = {}, callback) ⇒ AWS.Request
Creates an artifact. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.
createAutoMLJob(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.
An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.
For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide.
Note: We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility.CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous versionCreateAutoMLJob
, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate aCreateAutoMLJob
toCreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
createAutoMLJobV2(params = {}, callback) ⇒ AWS.Request
Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.
An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.
For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide.
AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.
Note: CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility.CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous versionCreateAutoMLJob
, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate aCreateAutoMLJob
toCreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.For the list of available problem types supported by
CreateAutoMLJobV2
, see AutoMLProblemTypeConfig.You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
createCluster(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.
createCodeRepository(params = {}, callback) ⇒ AWS.Request
Creates a Git repository as a resource in your SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.
The repository can be hosted either in Amazon Web Services CodeCommit or in any other Git repository.
createCompilationJob(params = {}, callback) ⇒ AWS.Request
Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.
If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.
In the request body, you provide the following:
-
A name for the compilation job
-
Information about the input model artifacts
-
The output location for the compiled model and the device (target) that the model runs on
-
The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.
You can also provide a
Tag
to track the model compilation job's resource use and costs. The response body contains theCompilationJobArn
for the compiled job.To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.
createContext(params = {}, callback) ⇒ AWS.Request
Creates a context. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.
createDataQualityJobDefinition(params = {}, callback) ⇒ AWS.Request
Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker Model Monitor.
createDomain(params = {}, callback) ⇒ AWS.Request
Creates a
Domain
. A domain consists of an associated Amazon Elastic File System volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.EFS storage
When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.
SageMaker uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see Protect Data at Rest Using Encryption.
VPC configuration
All traffic between the domain and the Amazon EFS volume is through the specified VPC and subnets. For other traffic, you can specify the
AppNetworkAccessType
parameter.AppNetworkAccessType
corresponds to the network access type that you choose when you onboard to the domain. The following options are available:-
PublicInternetOnly
- Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value. -
VpcOnly
- All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.When internet access is disabled, you won't be able to run a Amazon SageMaker Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections.
NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker Studio app successfully.
For more information, see Connect Amazon SageMaker Studio Notebooks to Resources in a VPC.
createEdgeDeploymentPlan(params = {}, callback) ⇒ AWS.Request
Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.
createEdgeDeploymentStage(params = {}, callback) ⇒ AWS.Request
Creates a new stage in an existing edge deployment plan.
createEdgePackagingJob(params = {}, callback) ⇒ AWS.Request
Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.
createEndpoint(params = {}, callback) ⇒ AWS.Request
Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.
Use this API to deploy models using SageMaker hosting services.
Note: You must not delete anEndpointConfig
that is in use by an endpoint that is live or while theUpdateEndpoint
orCreateEndpoint
operations are being performed on the endpoint. To update an endpoint, you must create a newEndpointConfig
.The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account.
When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.
Note: When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supportingEventually Consistent Reads
, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.When SageMaker receives the request, it sets the endpoint status to
Creating
. After it creates the endpoint, it sets the status toInService
. SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API.If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region in the Amazon Web Services Identity and Access Management User Guide.
Note: To add the IAM role policies for using this API operation, go to the IAM console, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the CreateEndpoint and CreateEndpointConfig API operations, add the following policies to the role.- Option 1: For a full SageMaker access, search and attach the
AmazonSageMakerFullAccess
policy. - Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role:
"Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]
"Resource": [
"arn:aws:sagemaker:region:account-id:endpoint/endpointName"
"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"
]
For more information, see SageMaker API Permissions: Actions, Permissions, and Resources Reference.
createEndpointConfig(params = {}, callback) ⇒ AWS.Request
Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the
CreateModel
API, to deploy and the resources that you want SageMaker to provision. Then you call the CreateEndpoint API.Note: Use this API if you want to use SageMaker hosting services to deploy models into production.In the request, you define a
ProductionVariant
, for each model that you want to deploy. EachProductionVariant
parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy.If you are hosting multiple models, you also assign a
VariantWeight
to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.Note: When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supportingEventually Consistent Reads
, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.createExperiment(params = {}, callback) ⇒ AWS.Request
Creates a SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model.
Note: In the Studio UI, trials are referred to as run groups and trial components are referred to as runs.The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.
When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.
You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.
To add a description to an experiment, specify the optional
Description
parameter. To add a description later, or to change the description, call the UpdateExperiment API.To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.
createFeatureGroup(params = {}, callback) ⇒ AWS.Request
Create a new
FeatureGroup
. AFeatureGroup
is a group ofFeatures
defined in theFeatureStore
to describe aRecord
.The
FeatureGroup
defines the schema and features contained in theFeatureGroup
. AFeatureGroup
definition is composed of a list ofFeatures
, aRecordIdentifierFeatureName
, anEventTimeFeatureName
and configurations for itsOnlineStore
andOfflineStore
. Check Amazon Web Services service quotas to see theFeatureGroup
s quota for your Amazon Web Services account.Note that it can take approximately 10-15 minutes to provision an
OnlineStore
FeatureGroup
with theInMemory
StorageType
.You must include at least one of
OnlineStoreConfig
andOfflineStoreConfig
to create aFeatureGroup
.createHubContentReference(params = {}, callback) ⇒ AWS.Request
Create a hub content reference in order to add a model in the JumpStart public hub to a private hub.
createHumanTaskUi(params = {}, callback) ⇒ AWS.Request
Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.
createHyperParameterTuningJob(params = {}, callback) ⇒ AWS.Request
Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.
A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see View Experiments, Trials, and Trial Components.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
createImage(params = {}, callback) ⇒ AWS.Request
Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image version represents a container image stored in Amazon ECR. For more information, see Bring your own SageMaker image.
- deleteMlflowTrackingServer(params = {}, callback) ⇒ AWS.Request