Options
All
  • Public
  • Public/Protected
  • All
Menu

Class EMRContainers

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications. For more information about Amazon EMR on EKS concepts and tasks, see What is Amazon EMR on EKS.

Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is used in the following scenarios:

  • It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-containers start-job-run.

  • It is the prefix before IAM policy actions for Amazon EMR on EKS. For example, "Action": [ "emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon EMR on EKS.

  • It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-containers.us-east-2.amazonaws.com. For more information, see Amazon EMR on EKS Service Endpoints.

Hierarchy

Implements

Index

Constructors

constructor

Properties

Readonly config

The resolved configuration of EMRContainersClient class. This is resolved and normalized from the constructor configuration interface.

middlewareStack

Methods

cancelJobRun

createManagedEndpoint

createVirtualCluster

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns Promise<CreateVirtualClusterCommandOutput>

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    • args: CreateVirtualClusterCommandInput
    • Optional options: __HttpHandlerOptions

    Returns Promise<CreateVirtualClusterCommandOutput>

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

deleteManagedEndpoint

deleteVirtualCluster

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns Promise<DeleteVirtualClusterCommandOutput>

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    • args: DeleteVirtualClusterCommandInput
    • Optional options: __HttpHandlerOptions

    Returns Promise<DeleteVirtualClusterCommandOutput>

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

describeJobRun

describeManagedEndpoint

describeVirtualCluster

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns Promise<DescribeVirtualClusterCommandOutput>

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    • args: DescribeVirtualClusterCommandInput
    • Optional options: __HttpHandlerOptions

    Returns Promise<DescribeVirtualClusterCommandOutput>

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

destroy

  • destroy(): void
  • Destroy underlying resources, like sockets. It's usually not necessary to do this. However in Node.js, it's best to explicitly shut down the client's agent when it is no longer needed. Otherwise, sockets might stay open for quite a long time before the server terminates them.

    Returns void

listJobRuns

listManagedEndpoints

listTagsForResource

listVirtualClusters

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns Promise<ListVirtualClustersCommandOutput>

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    • args: ListVirtualClustersCommandInput
    • Optional options: __HttpHandlerOptions

    Returns Promise<ListVirtualClustersCommandOutput>

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

  • Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.

    Parameters

    Returns void

send

startJobRun

tagResource

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    Returns Promise<TagResourceCommandOutput>

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    Returns void

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    Returns void

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    • args: TagResourceCommandInput
    • Optional options: __HttpHandlerOptions

    Returns Promise<TagResourceCommandOutput>

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    Returns void

  • Assigns tags to resources. A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your AWS resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.

    Parameters

    Returns void

untagResource