Amazon Elastic Container Service: API Reference
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
<table>
<thead>
<tr>
<th>Function</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExecuteCommand</td>
<td>113</td>
</tr>
<tr>
<td>DescribeTasks</td>
<td>100</td>
</tr>
<tr>
<td>DescribeServices</td>
<td>85</td>
</tr>
<tr>
<td>DescribeTaskDefinition</td>
<td>92</td>
</tr>
<tr>
<td>DescribeTaskSets</td>
<td>107</td>
</tr>
<tr>
<td>DiscoverPollEndpoint</td>
<td>111</td>
</tr>
<tr>
<td>ExecuteCommand</td>
<td>113</td>
</tr>
<tr>
<td>ListAccountSettings</td>
<td>117</td>
</tr>
<tr>
<td>Errors</td>
<td>81, 112, 119, 122, 129</td>
</tr>
<tr>
<td>Response Elements</td>
<td>81, 92, 119, 122, 129</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>82, 92, 119, 122, 129</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>117, 118, 119</td>
</tr>
<tr>
<td>Example</td>
<td>82, 92, 118, 122, 129</td>
</tr>
<tr>
<td>See Also</td>
<td>84, 92, 119, 122, 129</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>StartTask</td>
<td>198</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>198</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>198</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>199</td>
</tr>
<tr>
<td>Response Elements</td>
<td>201</td>
</tr>
<tr>
<td>Errors</td>
<td>204</td>
</tr>
<tr>
<td>Examples</td>
<td>204</td>
</tr>
<tr>
<td>See Also</td>
<td>206</td>
</tr>
<tr>
<td>StopTask</td>
<td>207</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>207</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>207</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>208</td>
</tr>
<tr>
<td>Response Elements</td>
<td>210</td>
</tr>
<tr>
<td>Errors</td>
<td>210</td>
</tr>
<tr>
<td>Examples</td>
<td>211</td>
</tr>
<tr>
<td>See Also</td>
<td>212</td>
</tr>
<tr>
<td>SubmitAttachmentStateChanges</td>
<td>213</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>213</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>213</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>213</td>
</tr>
<tr>
<td>Response Elements</td>
<td>213</td>
</tr>
<tr>
<td>Errors</td>
<td>214</td>
</tr>
<tr>
<td>See Also</td>
<td>214</td>
</tr>
<tr>
<td>SubmitContainerStateChange</td>
<td>215</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>215</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>215</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>216</td>
</tr>
<tr>
<td>Response Elements</td>
<td>216</td>
</tr>
<tr>
<td>Errors</td>
<td>216</td>
</tr>
<tr>
<td>See Also</td>
<td>217</td>
</tr>
<tr>
<td>SubmitTaskStateChange</td>
<td>218</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>218</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>218</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>218</td>
</tr>
<tr>
<td>Response Elements</td>
<td>220</td>
</tr>
<tr>
<td>Errors</td>
<td>220</td>
</tr>
<tr>
<td>See Also</td>
<td>221</td>
</tr>
<tr>
<td>TagResource</td>
<td>222</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>222</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>222</td>
</tr>
<tr>
<td>Response Elements</td>
<td>223</td>
</tr>
<tr>
<td>Errors</td>
<td>223</td>
</tr>
<tr>
<td>Examples</td>
<td>223</td>
</tr>
<tr>
<td>See Also</td>
<td>224</td>
</tr>
<tr>
<td>UntagResource</td>
<td>225</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>225</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>225</td>
</tr>
<tr>
<td>Response Elements</td>
<td>225</td>
</tr>
<tr>
<td>Errors</td>
<td>225</td>
</tr>
<tr>
<td>Examples</td>
<td>226</td>
</tr>
<tr>
<td>See Also</td>
<td>227</td>
</tr>
<tr>
<td>UpdateCapacityProvider</td>
<td>228</td>
</tr>
<tr>
<td>Request Syntax</td>
<td>228</td>
</tr>
<tr>
<td>Request Parameters</td>
<td>228</td>
</tr>
<tr>
<td>Response Syntax</td>
<td>228</td>
</tr>
<tr>
<td>Errors</td>
<td>228</td>
</tr>
<tr>
<td>Examples</td>
<td>228</td>
</tr>
<tr>
<td>See Also</td>
<td>229</td>
</tr>
</tbody>
</table>

Amazon Elastic Container Service API Reference
InferenceAcceleratorOverride ... 343
InferenceAccelerator .. 342
HostVolumeProperties ... 341
HealthCheck ... 337
FSxWindowsFileServerVolumeConfiguration ... 336
FSxWindowsFileServerAuthorizationConfig ... 335
FirelensConfiguration .. 334
ExecuteCommandConfiguration .. 330
EphemeralStorage .. 329
EFSVolumeConfiguration ... 326
EFSAuthorizationConfig ... 325
DockerVolumeConfiguration ... 323
DeploymentController ... 321
DeploymentConfiguration .. 319
EnvironmentFile ... 328
EFSVolumeConfiguration ... 326
See Also .. 342
Contents .. 341
See Also .. 340
See Also .. 339
See Also .. 338
See Also .. 337
See Also .. 336
See Also .. 335
See Also .. 334
See Also .. 333
See Also .. 332
See Also .. 331
See Also .. 330
See Also .. 329
See Also .. 328
See Also .. 327
See Also .. 326
See Also .. 325
See Also .. 324
See Also .. 323
See Also .. 322
See Also .. 321
See Also .. 320
See Also .. 319
See Also .. 318
See Also .. 317
See Also .. 316
See Also .. 315
See Also .. 314
See Also .. 313
See Also .. 312
See Also .. 311
See Also .. 310
See Also .. 309
See Also .. 308
See Also .. 307
See Also .. 306
See Also .. 305
See Also .. 304
See Also .. 303
See Also .. 302
See Also .. 301
See Also .. 300
See Also .. 299
See Also .. 298
See Also .. 297
See Also .. 296
See Also .. 295
See Also .. 294
See Also .. 293
See Also .. 292
See Also .. 291
See Also .. 290
See Also .. 289
See Also .. 288
See Also .. 287
See Also .. 286
See Also .. 285
See Also .. 284
See Also .. 283
See Also .. 282
See Also .. 281
See Also .. 280
See Also .. 279
See Also .. 278
See Also .. 277
See Also .. 276
See Also .. 275
See Also .. 274
See Also .. 273
See Also .. 272
See Also .. 271
See Also .. 270
See Also .. 269
See Also .. 268
See Also .. 267
See Also .. 266
See Also .. 265
See Also .. 264
See Also .. 263
See Also .. 262
See Also .. 261
See Also .. 260
See Also .. 259
See Also .. 258
See Also .. 257
See Also .. 256
See Also .. 255
See Also .. 254
See Also .. 253
See Also .. 252
See Also .. 251
See Also .. 250
See Also .. 249
See Also .. 248
See Also .. 247
See Also .. 246
See Also .. 245
See Also .. 244
See Also .. 243
See Also .. 242
See Also .. 241
See Also .. 240
See Also .. 239
See Also .. 238
See Also .. 237
See Also .. 236
See Also .. 235
See Also .. 234
See Also .. 233
See Also .. 232
See Also .. 231
See Also .. 230
See Also .. 229
See Also .. 228
See Also .. 227
See Also .. 226
See Also .. 225
See Also .. 224
See Also .. 223
See Also .. 222
See Also .. 221
See Also .. 220
See Also .. 219
See Also .. 218
See Also .. 217
See Also .. 216
See Also .. 215
See Also .. 214
See Also .. 213
See Also .. 212
See Also .. 211
See Also .. 210
See Also .. 209
See Also .. 208
See Also .. 207
See Also .. 206
See Also .. 205
See Also .. 204
See Also .. 203
See Also .. 202
See Also .. 201
See Also .. 200
See Also .. 199
See Also .. 198
See Also .. 197
See Also .. 196
See Also .. 195
See Also .. 194
See Also .. 193
See Also .. 192
See Also .. 191
See Also .. 190
See Also .. 189
See Also .. 188
See Also .. 187
See Also .. 186
See Also .. 185
See Also .. 184
See Also .. 183
See Also .. 182
See Also .. 181
See Also .. 180
See Also .. 179
See Also .. 178
See Also .. 177
See Also .. 176
See Also .. 175
See Also .. 174
See Also .. 173
See Also .. 172
See Also .. 171
See Also .. 170
See Also .. 169
See Also .. 168
See Also .. 167
See Also .. 166
See Also .. 165
See Also .. 164
See Also .. 163
See Also .. 162
See Also .. 161
See Also .. 160
See Also .. 159
See Also .. 158
See Also .. 157
See Also .. 156
See Also .. 155
See Also .. 154
See Also .. 153
See Also .. 152
See Also .. 151
See Also .. 150
See Also .. 149
See Also .. 148
See Also .. 147
See Also .. 146
See Also .. 145
See Also .. 144
See Also .. 143
See Also .. 142
See Also .. 141
See Also .. 140
See Also .. 139
See Also .. 138
See Also .. 137
See Also .. 136
See Also .. 135
See Also .. 134
See Also .. 133
See Also .. 132
See Also .. 131
See Also .. 130
See Also .. 129
See Also .. 128
See Also .. 127
See Also .. 126
See Also .. 125
See Also .. 124
See Also .. 123
See Also .. 122
See Also .. 121
See Also .. 120
See Also .. 119
See Also .. 118
See Also ..
See Also ..
Welcome

Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service. It makes it easy to run, stop, and manage Docker containers on a cluster. You can host your cluster on a serverless infrastructure that's managed by Amazon ECS by launching your services or tasks on AWS Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) instances that you manage.

Amazon ECS makes it easy to launch and stop container-based applications with simple API calls. This makes it easy to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features.

You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. With Amazon ECS, you don't need to operate your own cluster management and configuration management systems. You also don't need to worry about scaling your management infrastructure.

This document was last published on April 20, 2022.
Actions

The following actions are supported:

- CreateCapacityProvider (p. 4)
- CreateCluster (p. 7)
- CreateService (p. 13)
- CreateTaskSet (p. 29)
- DeleteAccountSetting (p. 36)
- DeleteAttributes (p. 38)
- DeleteCapacityProvider (p. 41)
- DeleteCluster (p. 44)
- DeleteService (p. 48)
- DeleteTaskSet (p. 55)
- DeregisterContainerInstance (p. 59)
- DeregisterTaskDefinition (p. 65)
- DescribeCapacityProviders (p. 72)
- DescribeClusters (p. 75)
- DescribeContainerInstances (p. 79)
- DescribeServices (p. 85)
- DescribeTaskDefinition (p. 92)
- DescribeTasks (p. 100)
- DescribeTaskSets (p. 107)
- DiscoverPollEndpoint (p. 111)
- ExecuteCommand (p. 113)
- ListAccountSettings (p. 117)
- ListAttributes (p. 120)
- ListClusters (p. 124)
- ListContainerInstances (p. 127)
- ListServices (p. 131)
- ListTagsForResource (p. 135)
- ListTaskDefinitionFamilies (p. 138)
- ListTaskDefinitions (p. 143)
- ListTasks (p. 147)
- PutAccountSetting (p. 152)
- PutAccountSettingDefault (p. 155)
- PutAttributes (p. 157)
- PutClusterCapacityProviders (p. 161)
- RegisterContainerInstance (p. 165)
- RegisterTaskDefinition (p. 170)
- RunTask (p. 186)
- StartTask (p. 198)
- StopTask (p. 207)
- SubmitAttachmentStateChanges (p. 213)
• SubmitContainerStateChange (p. 215)
• SubmitTaskStateChange (p. 218)
• TagResource (p. 222)
• UntagResource (p. 225)
• UpdateCapacityProvider (p. 228)
• UpdateCluster (p. 231)
• UpdateClusterSettings (p. 234)
• UpdateContainerAgent (p. 237)
• UpdateContainerInstancesState (p. 242)
• UpdateService (p. 250)
• UpdateServicePrimaryTaskSet (p. 262)
• UpdateTaskSet (p. 266)
CreateCapacityProvider

Creates a new capacity provider. Capacity providers are associated with an Amazon ECS cluster and are used in capacity provider strategies to facilitate cluster auto scaling.

Only capacity providers that use an Auto Scaling group can be created. Amazon ECS tasks on AWS Fargate use the FARGATE and FARGATE.SPOT capacity providers. These providers are available to all accounts in the AWS Regions that AWS Fargate supports.

Request Syntax

```
{
    "autoScalingGroupProvider": {
        "autoScalingGroupArn": "string",
        "managedScaling": {
            "instanceWarmupPeriod": number,
            "maximumScalingStepSize": number,
            "minimumScalingStepSize": number,
            "status": "string",
            "targetCapacity": number
        },
        "managedTerminationProtection": "string"
    },
    "name": "string",
    "tags": [
        {
            "key": "string",
            "value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

autoScalingGroupProvider (p. 4)

The details of the Auto Scaling group for the capacity provider.

Type: AutoScalingGroupProvider (p. 276) object

Required: Yes

name (p. 4)

The name of the capacity provider. Up to 255 characters are allowed. They include letters (both upper and lowercase letters), numbers, underscores (_), and hyphens (-). The name can't be prefixed with "aws", "ecs", or "fargate".

Type: String

Required: Yes

tags (p. 4)

The metadata that you apply to the capacity provider to categorize and organize them more conveniently. Each tag consists of a key and an optional value. You define both of them.
The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```json
{
    "capacityProvider": {
        "autoScalingGroupProvider": {
            "autoScalingGroupArn": "string",
            "managedScaling": {
                "instanceWarmupPeriod": number,
                "maximumScalingStepSize": number,
                "minimumScalingStepSize": number,
                "status": "string",
                "targetCapacity": number
            },
            "managedTerminationProtection": "string"
        },
        "capacityProviderArn": "string",
        "name": "string",
        "status": "string",
        "tags": [
            {
                "key": "string",
                "value": "string"
            }
        ],
        "updateStatus": "string",
        "updateStatusReason": "string"
    }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProvider (p. 5)

The full description of the new capacity provider.
Type: `CapacityProvider` (p. 279) object

Errors

For information about the errors that are common to all actions, see `Common Errors` (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

LimitExceededException

The limit for the resource was exceeded.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as `PENDING` or `STAGING`, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateCluster

Creates a new Amazon ECS cluster. By default, your account receives a `default` cluster when you launch your first container instance. However, you can create your own cluster with a unique name with the `CreateCluster` action.

Note

When you call the `CreateCluster` API operation, Amazon ECS attempts to create the Amazon ECS service-linked role for your account. This is so that it can manage required resources in other AWS services on your behalf. However, if the IAM user that makes the call doesn't have permissions to create the service-linked role, it isn't created. For more information, see Using Service-Linked Roles for Amazon ECS in the *Amazon Elastic Container Service Developer Guide*.

Request Syntax

```json
{
    "capacityProviders": [ "string" ],
    "clusterName": "string",
    "configuration": {
        "executeCommandConfiguration": {
            "kmsKeyId": "string",
            "logConfiguration": {
                "cloudWatchEncryptionEnabled": boolean,
                "cloudWatchLogGroupName": "string",
                "s3BucketName": "string",
                "s3EncryptionEnabled": boolean,
                "s3KeyPrefix": "string"
            },
            "logging": "string"
        }
    },
    "defaultCapacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ],
    "settings": [
        {
            "name": "string",
            "value": "string"
        }
    ],
    "tags": [
        {
            "key": "string",
            "value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see [Common Parameters](p. 421).

The request accepts the following data in JSON format.
capacityProviders (p. 7)

The short name of one or more capacity providers to associate with the cluster. A capacity provider must be associated with a cluster before it can be included as part of the default capacity provider strategy of the cluster or used in a capacity provider strategy when calling the CreateService (p. 13) or RunTask (p. 186) actions.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must be created but not associated with another cluster. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use an AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutClusterCapacityProviders (p. 161) API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of strings
Required: No

clusterName (p. 7)

The name of your cluster. If you don't specify a name for your cluster, you create a cluster that's named default. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.

Type: String
Required: No

configuration (p. 7)

The execute command configuration for the cluster.

Type: ClusterConfiguration (p. 287) object
Required: No

defaultCapacityProviderStrategy (p. 7)

The capacity provider strategy to set as the default for the cluster. After a default capacity provider strategy is set for a cluster, when you call the RunTask (p. 186) or CreateService (p. 13) APIs with no capacity provider strategy or launch type specified, the default capacity provider strategy for the cluster is used.

If a default capacity provider strategy isn't defined for a cluster when it was created, it can be defined later with the PutClusterCapacityProviders (p. 161) API operation.

Type: Array of CapacityProviderStrategyItem (p. 281) objects
Required: No

settings (p. 7)

The setting to use when creating a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster. If this value is specified, it overrides the containerInsights value set with PutAccountSetting (p. 152) or PutAccountSettingDefault (p. 155).

Type: Array of ClusterSetting (p. 288) objects
Required: No
tags (p. 7)

The metadata that you apply to the cluster to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : @.
- Tag keys and values are case-sensitive.
- Do not use `aws:` or `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

Response Syntax

```
{
  "cluster": {
    "activeServicesCount": number,
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attachmentsStatus": "string",
    "capacityProviders": [ "string" ],
    "clusterArn": "string",
    "clusterName": "string",
    "defaultCapacityProviderStrategy": [ 
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "pendingTasksCount": number,
    "registeredContainerInstancesCount": number,
    "runningTasksCount": number,
    "settings": [
      {
        "name": "string",
      }
    ]
  }
}
```

API Version 2014-11-13
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

cluster (p. 9)

The full description of your new cluster.

Type: `Cluster (p. 283)` object

Errors

For information about the errors that are common to all actions, see `Common Errors (p. 423)`.

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource., Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (`AUTHPARAMS`) must be replaced with an AWS Signature Version 4 signature. For more information, see `Signature Version 4 Signing Process` in the `AWS General Reference`.
You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request creates a cluster called *My-cluster*.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 29
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateCluster
X-Amz-Date: 20150429T163840Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "clusterName": "My-cluster"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 16:38:41 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 209
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "cluster": {
    "activeServicesCount": 0,
    "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
    "clusterName": "My-cluster",
    "pendingTasksCount": 0,
    "registeredContainerInstancesCount": 0,
    "runningTasksCount": 0,
    "status": "ACTIVE"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
See Also

- AWS SDK for Python
- AWS SDK for Ruby V3
CreateService

Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the `desiredCount`, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action.

In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service Load Balancing in the Amazon Elastic Container Service Developer Guide.

Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer.

There are two service scheduler strategies available:

- **REPLICA** - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide.

- **DAEMON** - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service Scheduler Concepts in the Amazon Elastic Container Service Developer Guide.

You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an UpdateService (p. 250) operation. The default value for a replica service for `minimumHealthyPercent` is 100%. The default value for a daemon service for `minimumHealthyPercent` is 0%.

If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the RUNNING state, tasks for services that don't use a load balancer are considered healthy. If they're in the RUNNING state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy. The default value for minimum healthy percent is 100%.

If a service uses the ECS deployment controller, the **maximum percent** parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%.
If a service uses either the `CODE_DEPLOY` or `EXTERNAL` deployment controller types and tasks that use the EC2 launch type, the **minimum healthy percent** and **maximum percent** values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the **RUNNING** state. This is while the container instances are in the **DRAINING** state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service.

When creating a service that uses the `EXTERNAL` deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the `CreateTaskSet (p. 29)` operation. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

When the service scheduler launches new tasks, it determines task placement in your cluster using the following logic:

- Determine which of the container instances in your cluster can support the task definition of your service. For example, they have the required CPU, memory, ports, and container instance attributes.
- By default, the service scheduler attempts to balance tasks across Availability Zones in this manner. This is the case even if you can choose a different placement strategy with the `placementStrategy` parameter.
- Sort the valid container instances, giving priority to instances that have the fewest number of running tasks for this service in their respective Availability Zone. For example, if zone A has one running service task and zones B and C each have zero, valid container instances in either zone B or C are considered optimal for placement.
- Place the new service task on a valid container instance in an optimal Availability Zone based on the previous steps, favoring container instances with the fewest number of running tasks for this service.

Request Syntax

```json
{
    "capacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ],
    "clientToken": "string",
    "cluster": "string",
    "deploymentConfiguration": {
        "deploymentCircuitBreaker": {
            "enable": boolean,
            "rollback": boolean
        },
        "maximumPercent": number,
        "minimumHealthyPercent": number
    },
    "deploymentController": {
        "type": "string"
    },
    "desiredCount": number,
    "enableECSManagedTags": boolean,
    "enableExecuteCommand": boolean,
    "healthCheckGracePeriodSeconds": number,
    "launchType": "string",
    "loadBalancers": [
        {
            "containerName": "string",
            "containerPort": number,
```
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 14)

The capacity provider strategy to use for the service.

If a capacityProviderStrategy is specified, the launchType parameter must be omitted. If no capacityProviderStrategy or launchType is specified, the defaultCapacityProviderStrategy for the cluster is used.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Type: Array of CapacityProviderStrategyItem (p. 281) objects
Amazon Elastic Container Service API Reference

Request Parameters

<table>
<thead>
<tr>
<th>Required</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>clientToken (p. 14)</td>
<td>An identifier that you provide to ensure the idempotency of the request. It must be unique and is case sensitive. Up to 32 ASCII characters are allowed.</td>
</tr>
<tr>
<td></td>
<td>Type: String</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>cluster (p. 14)</td>
<td>The short name or full Amazon Resource Name (ARN) of the cluster that you run your service on. If you do not specify a cluster, the default cluster is assumed.</td>
</tr>
<tr>
<td></td>
<td>Type: String</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>deploymentConfiguration (p. 14)</td>
<td>Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.</td>
</tr>
<tr>
<td></td>
<td>Type: DeploymentConfiguration (p. 319) object</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>deploymentController (p. 14)</td>
<td>The deployment controller to use for the service. If no deployment controller is specified, the default value of ECS is used.</td>
</tr>
<tr>
<td></td>
<td>Type: DeploymentController (p. 321) object</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>desiredCount (p. 14)</td>
<td>The number of instantiations of the specified task definition to place and keep running on your cluster.</td>
</tr>
<tr>
<td></td>
<td>Type: Integer</td>
<td>This is required if schedulingStrategy is REPLICA or isn't specified. If schedulingStrategy is DAEMON then this isn't required.</td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>enableECSManagedTags (p. 14)</td>
<td>Specifies whether to turn on Amazon ECS managed tags for the tasks within the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.</td>
</tr>
<tr>
<td></td>
<td>Type: Boolean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>enableExecuteCommand (p. 14)</td>
<td>Determines whether the execute command functionality is enabled for the service. If true, this enables execute command functionality on all containers in the service tasks.</td>
</tr>
<tr>
<td></td>
<td>Type: Boolean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required: No</td>
<td></td>
</tr>
</tbody>
</table>
healthCheckGracePeriodSeconds (p. 14)

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started. This is only used when your service is configured to use a load balancer. If your service has a load balancer defined and you don't specify a health check grace period value, the default value of 0 is used.

If you do not use an Elastic Load Balancing, we recommend that you use the startPeriod in the task definition health check parameters. For more information, see Health check.

If your service's tasks take a while to start and respond to Elastic Load Balancing health checks, you can specify a health check grace period of up to 2,147,483,647 seconds (about 69 years). During that time, the Amazon ECS service scheduler ignores health check status. This grace period can prevent the service scheduler from marking tasks as unhealthy and stopping them before they have time to come up.

Type: Integer
Required: No

launchType (p. 14)

The infrastructure that you run your service on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

The FARGATE launch type runs your tasks on AWS Fargate On-Demand infrastructure.

Note
Fargate Spot infrastructure is available for use but a capacity provider strategy must be used. For more information, see AWS Fargate capacity providers in the Amazon ECS User Guide for AWS Fargate.

The EC2 launch type runs your tasks on Amazon EC2 instances registered to your cluster.

The EXTERNAL launch type runs your tasks on your on-premises server or virtual machine (VM) capacity registered to your cluster.

A service can use either a launch type or a capacity provider strategy. If a launchType is specified, the capacityProviderStrategy parameter must be omitted.

Type: String
Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers (p. 14)

A load balancer object representing the load balancers to use with your service. For more information, see Service Load Balancing in the Amazon Elastic Container Service Developer Guide.

If the service uses the rolling update (ECS) deployment controller and using either an Application Load Balancer or Network Load Balancer, you must specify one or more target group ARNs to attach to the service. The service-linked role is required for services that use multiple target groups. For more information, see Using service-linked roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide.

If the service uses the CODE_DEPLOY deployment controller, the service is required to use either an Application Load Balancer or Network Load Balancer. When creating an AWS CodeDeploy deployment group, you specify two target groups (referred to as a targetGroupPair). During a deployment, AWS CodeDeploy determines which task set in your service has the status PRIMARY, and it associates one target group with it. Then, it also associates the other target group with the replacement task set. The load balancer can also have up to two listeners: a required listener for
production traffic and an optional listener that you can use to perform validation tests with Lambda functions before routing production traffic to it.

If you use the `CODE_DEPLOY` deployment controller, these values can be changed when updating the service.

For Application Load Balancers and Network Load Balancers, this object must contain the load balancer target group ARN, the container name, and the container port to access from the load balancer. The container name must be as it appears in a container definition. The load balancer name parameter must be omitted. When a task from this service is placed on a container instance, the container instance and port combination is registered as a target in the target group that’s specified here.

For Classic Load Balancers, this object must contain the load balancer name, the container name, and the container port to access from the load balancer. The container name must be as it appears in a container definition. The target group ARN parameter must be omitted. When a task from this service is placed on a container instance, the container instance is registered with the load balancer that’s specified here.

Services with tasks that use the `awsvpc` network mode (for example, those with the Fargate launch type) only support Application Load Balancers and Network Load Balancers. Classic Load Balancers aren’t supported. Also, when you create any target groups for these services, you must choose `ip` as the target type, not `instance`. This is because tasks that use the `awsvpc` network mode are associated with an elastic network interface, not an Amazon EC2 instance.

Type: Array of LoadBalancer (p. 350) objects

Required: No

networkConfiguration (p. 14)

The network configuration for the service. This parameter is required for task definitions that use the `awsvpc` network mode to receive their own elastic network interface, and it isn’t supported for other network modes. For more information, see Task networking in the Amazon Elastic Container Service Developer Guide.

Type: NetworkConfiguration (p. 360) object

Required: No

placementConstraints (p. 14)

An array of placement constraint objects to use for tasks in your service. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

Type: Array of PlacementConstraint (p. 362) objects

Required: No

placementStrategy (p. 14)

The placement strategy objects to use for tasks in your service. You can specify a maximum of 5 strategy rules for each service.

Type: Array of PlacementStrategy (p. 363) objects

Required: No

platformVersion (p. 14)

The platform version that your tasks in the service are running on. A platform version is specified only for tasks using the Fargate launch type. If one isn't specified, the `LATEST` platform version is used. For more information, see AWS Fargate platform versions in the Amazon Elastic Container Service Developer Guide.
Type: String
Required: No

propagateTags (p. 14)

Specifies whether to propagate the tags from the task definition to the task. If no value is specified, the tags aren't propagated. Tags can only be propagated to the task during task creation. To add tags to a task after task creation, use the TagResource (p. 222) API action.

Type: String
Valid Values: TASK_DEFINITION | SERVICE | NONE
Required: No

role (p. 14)

The name or full Amazon Resource Name (ARN) of the IAM role that allows Amazon ECS to make calls to your load balancer on your behalf. This parameter is only permitted if you are using a load balancer with your service and your task definition doesn't use the awsvpc network mode. If you specify the role parameter, you must also specify a load balancer object with the loadBalancers parameter.

Important
If your account has already created the Amazon ECS service-linked role, that role is used for your service unless you specify a role here. The service-linked role is required if your task definition uses the awsvpc network mode or if the service is configured to use service discovery, an external deployment controller, multiple target groups, or Elastic Inference accelerators in which case you don't specify a role here. For more information, see Using service-linked roles for Amazon ECS in the Amazon Elastic Container Service Developer Guide.

If your specified role has a path other than /, then you must either specify the full role ARN (this is recommended) or prefix the role name with the path. For example, if a role with the name bar has a path of /foo/ then you would specify /foo/bar as the role name. For more information, see Friendly names and paths in the IAM User Guide.

Type: String
Required: No

schedulingStrategy (p. 14)

The scheduling strategy to use for the service. For more information, see Services.

There are two service scheduler strategies available:

- **REPLICA**—The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. This scheduler strategy is required if the service uses the CODE_DEPLOY or EXTERNAL deployment controller types.

- **DAEMON**—The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks and will stop tasks that don’t meet the placement constraints. When you’re using this strategy, you don’t need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies.

Note
Tasks using the Fargate launch type or the CODE_DEPLOY or EXTERNAL deployment controller types don’t support the DAEMON scheduling strategy.
Type: String

Valid Values: REPLICA | DAEMON

Required: No

serviceName (p. 14)

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. Service names must be unique within a cluster, but you can have similarly named services in multiple clusters within a Region or across multiple Regions.

Type: String

Required: Yes

serviceRegistries (p. 14)

The details of the service discovery registry to associate with this service. For more information, see [Service discovery](#).

Note

Each service may be associated with one service registry. Multiple service registries for each service isn't supported.

Type: Array of [ServiceRegistry](#) objects

Required: No

tags (p. 14)

The metadata that you apply to the service to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define. When a service is deleted, the tags are deleted as well.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:` , `AWS:` , or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of [Tag](#) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 14)

The family and revision (family:revision) or full ARN of the task definition to run in your service. If a revision isn't specified, the latest ACTIVE revision is used.

A task definition must be specified if the service uses either the ECS or CODE_DEPLOY deployment controllers.
Response Syntax

```json
{
    "service": {
        "capacityProviderStrategy": [
            {
                "base": number,
                "capacityProvider": "string",
                "weight": number
            }
        ],
        "clusterArn": "string",
        "createdAt": number,
        "createdBy": "string",
        "deploymentConfiguration": {
            "deploymentCircuitBreaker": {
                "enable": boolean,
                "rollback": boolean
            },
            "maximumPercent": number,
            "minimumHealthyPercent": number
        },
        "deploymentController": {
            "type": "string"
        },
        "deployments": [
            {
                "capacityProviderStrategy": [
                    {
                        "base": number,
                        "capacityProvider": "string",
                        "weight": number
                    }
                ],
                "createdAt": number,
                "desiredCount": number,
                "failedTasks": number,
                "id": "string",
                "launchType": "string",
                "networkConfiguration": {
                    "awsvpcConfiguration": {
                        "assignPublicIp": "string",
                        "securityGroups": [ "string" ],
                        "subnets": [ "string" ]
                    }
                },
                "pendingCount": number,
                "platformFamily": "string",
                "platformVersion": "string",
                "rolloutState": "string",
                "rolloutStateReason": "string",
                "runningCount": number,
                "status": "string",
                "taskDefinition": "string",
                "updatedAt": number
            }
        ],
        "desiredCount": number,
        "enableECSManagedTags": boolean,
        "enableFargate": boolean
    }
}
```
"enableExecuteCommand": boolean,
"events": [
 {
 "createdAt": number,
 "id": "string",
 "message": "string"
 }
],
"healthCheckGracePeriodSeconds": number,
"launchType": "string",
"loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
"networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
},
"pendingCount": number,
"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],
"placementStrategy": [
 {
 "field": "string",
 "type": "string"
 }
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskDefinition": "string",
"taskSets": [
 {
 "capacityProviderStrategy": [
Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

service (p. 21)

The full description of your service following the create call.

A service will return either a capacityProviderStrategy or launchType parameter, but not both, depending where one was specified when it was created.

If a service is using the ECS deployment controller, the deploymentController and taskSets parameters will not be returned.

If the service uses the CODE_DEPLOY deployment controller, the deploymentController, taskSets and deployments parameters will be returned, however the deployments parameter will be an empty list.

Type: Service (p. 376) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

PlatformTaskDefinitionIncompatibilityException

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

PlatformUnknownException

The specified platform version doesn't exist.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the *AWS General Reference*.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example 1

This example API request creates a service in your default Region called *ecs-simple-service*. The service uses the *ecs-demo* task definition and it maintains 10 instantiations of that task.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 87
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
X-Amz-Date: 20150429T170125Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
    "serviceName": "ecs-simple-service",
    "taskDefinition": "ecs-demo",
    "desiredCount": 10
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:01:27 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 636
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
    "service": {
        "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
```
"deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
},
"deployments": [
 {
 "createdAt": 1430326887.362,
 "desiredCount": 10,
 "id": "ecs-svc/9223370606527888445",
 "pendingCount": 0,
 "runningCount": 0,
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-demo:1",
 "updatedAt": 1430326887.362
 }
],
"desiredCount": 10,
"events": [],
"loadBalancers": [],
"pendingCount": 0,
"runningCount": 0,
"serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/ecs-simple-service",
"serviceName": "ecs-simple-service",
"status": "ACTIVE",
"taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-demo:1"
}

Example 2

This example API request creates a service with multiple load balancer target groups.

Sample Request

POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.CreateService
Content-Type: application/x-amz-json-1.1
User-Agent: aws-cli/1.16.190 Python/3.6.1 Darwin/16.7.0 botocore/1.12.180
X-Amz-Date: 20190723T001203Z
Authorization: AUTHPARAMS
Content-Length: 453

{
 "serviceName":"ecs-multiplealb-service",
 "taskDefinition":"ecs-multiplealb-demo",
 "loadBalancers": [
 {
 "targetGroupArn":"arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg1/18ce32cc074018ed",
 "containerName":"simple-app",
 "containerPort":80
 },
 {
 "targetGroupArn":"arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg2/737bead1d516e2a",
 "containerName":"simple-app",
 "containerPort":8080
 }
],
 "desiredCount":10
}
Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
Content-Type: application/x-amz-json-1.1
Content-Length: 1440
Date: Tue, 23 Jul 2019 00:12:03 GMT
Connection: keep-alive
{
 "service": {
 "serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/default/ecs-multiplealb-service",
 "serviceName": "ecs-multiplealb-service",
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "loadBalancers": [
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg1/18ce32cc074018ed",
 "containerName": "simple-app",
 "containerPort": 80
 },
 {
 "targetGroupArn": "arn:aws:elasticloadbalancing:us-east-1:012345678910:targetgroup/tg2/737bead11d516e2a",
 "containerName": "simple-app",
 "containerPort": 8080
 }
],
 "serviceRegistries": [],
 "status": "ACTIVE",
 "desiredCount": 10,
 "runningCount": 0,
 "pendingCount": 0,
 "launchType": "EC2",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-multiplealb-demo",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "id": "ecs-svc/9223370473014051517",
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/ecs-multiplealb-demo",
 "desiredCount": 10,
 "pendingCount": 0,
 "runningCount": 0,
 "createdAt": 1563840724.29,
 "updatedAt": 1563840724.29,
 "launchType": "EC2"
 }
],
 "roleArn": "arn:aws:iam::012345678910:role/aws-service-role/ecs.amazonaws.com/AWSServiceRoleForECS",
 "events": [],
 "createdAt": 1563840724.29,
 "placementConstraints": [],
 "placementStrategy": [],
 "healthCheckGracePeriodSeconds": 0,
 "schedulingStrategy": "REPLICA",
 "enableECSManagedTags": false,
 "propagateTags": "NONE"
 }
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
CreateTaskSet

Create a task set in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
  "capacityProviderStrategy": [
    {
      "base": number,
      "capacityProvider": "string",
      "weight": number
    }
  ],
  "clientToken": "string",
  "cluster": "string",
  "externalId": "string",
  "launchType": "string",
  "loadBalancers": [
    {
      "containerName": "string",
      "containerPort": number,
      "loadBalancerName": "string",
      "targetGroupArn": "string"
    }
  ],
  "networkConfiguration": {
    "awsVpcConfiguration": {
      "assignPublicIp": "string",
      "securityGroups": [ "string" ],
      "subnets": [ "string" ]
    }
  },
  "platformVersion": "string",
  "scale": {
    "unit": "string",
    "value": number
  },
  "service": "string",
  "serviceRegistries": [
    {
      "containerName": "string",
      "containerPort": number,
      "port": number,
      "registryArn": "string"
    }
  ],
  "tags": [
    {
      "key": "string",
      "value": "string"
    }
  ],
  "taskDefinition": "string"
}
```
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 29)

The capacity provider strategy to use for the task set.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 161) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If a capacityProviderStrategy is specified, the launchType parameter must be omitted. If no capacityProviderStrategy or launchType is specified, the defaultCapacityProviderStrategy for the cluster is used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutClusterCapacityProviders (p. 161) API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of CapacityProviderStrategyItem (p. 281) objects

Required: No

clientToken (p. 29)

The identifier that you provide to ensure the idempotency of the request. It's case sensitive and must be unique. It can be up to 32 ASCII characters are allowed.

Type: String

Required: No

cluster (p. 29)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service to create the task set in.

Type: String

Required: Yes

externalId (p. 29)

An optional non-unique tag that identifies this task set in external systems. If the task set is associated with a service discovery registry, the tasks in this task set will have the ECS_TASK_SET_EXTERNAL_ID AWS Cloud Map attribute set to the provided value.

Type: String
 Required: No

launchType (p. 29)

The launch type that new tasks in the task set uses. For more information, see Amazon ECS Launch Types in the Amazon Elastic Container Service Developer Guide.

If a `launchType` is specified, the `capacityProviderStrategy` parameter must be omitted.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers (p. 29)

A load balancer object representing the load balancer to use with the task set. The supported load balancer types are either an Application Load Balancer or a Network Load Balancer.

Type: Array of `LoadBalancer (p. 350)` objects

Required: No

networkConfiguration (p. 29)

An object representing the network configuration for a task set.

Type: `NetworkConfiguration (p. 360)` object

Required: No

platformVersion (p. 29)

The platform version that the tasks in the task set uses. A platform version is specified only for tasks using the Fargate launch type. If one isn't specified, the `LATEST` platform version is used.

Type: String

Required: No

scale (p. 29)

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Type: `Scale (p. 374)` object

Required: No

service (p. 29)

The short name or full Amazon Resource Name (ARN) of the service to create the task set in.

Type: String

Required: Yes

serviceRegistries (p. 29)

The details of the service discovery registries to assign to this task set. For more information, see Service Discovery.

Type: Array of `ServiceRegistry (p. 383)` objects

Required: No
tags (p. 29)

The metadata that you apply to the task set to help you categorize and organize them. Each tag consists of a key and an optional value. You define both. When a service is deleted, the tags are deleted.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 29)

The task definition for the tasks in the task set to use.

Type: String

Required: Yes

Response Syntax

```
{
  "taskSet": {
    "capacityProviderStrategy": [
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "clusterArn": "string",
    "computedDesiredCount": number,
    "createdAt": number,
    "externalId": "string",
    "id": "string",
    "launchType": "string",
    "loadBalancers": [
      {
        "containerName": "string",
        "containerPort": number,
        "loadBalancerName": "string",
        "targetGroupArn": "string"
      }
    ]
  }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

taskSet (p. 32)

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an EXTERNAL deployment. A task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Type: TaskSet (p. 406) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.
HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

PlatformTaskDefinitionIncompatibilityException

The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400

PlatformUnknownException

The specified platform version doesn't exist.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 13).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131).

Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
DeleteAccountSetting

Disables an account setting for a specified IAM user, IAM role, or the root user for an account.

Request Syntax

```json
{
   "name": "string",
   "principalArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

name (p. 36)

The resource name to disable the account setting for. If serviceLongArnFormat is specified, the ARN for your Amazon ECS services is affected. If taskLongArnFormat is specified, the ARN and resource ID for your Amazon ECS tasks is affected. If containerInstanceLongArnFormat is specified, the ARN and resource ID for your Amazon ECS container instances is affected. If awsvpcTrunking is specified, the ENI limit for your Amazon ECS container instances is affected.

Type: String

Valid Values: serviceLongArnFormat | taskLongArnFormat | containerInstanceLongArnFormat | awsvpcTrunking | containerInsights

Required: Yes

principalArn (p. 36)

The Amazon Resource Name (ARN) of the principal. It can be an IAM user, IAM role, or the root user. If you specify the root user, it disables the account setting for all IAM users, IAM roles, and the root user of the account unless an IAM user or role explicitly overrides these settings. If this field is omitted, the setting is changed only for the authenticated user.

Type: String

Required: No

Response Syntax

```json
{
   "setting": {
      "name": "string",
      "principalArn": "string",
      "value": "string"
   }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

setting (p. 36)

The account setting for the specified principal ARN.

Type: Setting (p. 386) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteAttributes

Deletes one or more custom attributes from an Amazon ECS resource.

Request Syntax

```
{
   "attributes": [
   {
       "name": "string",
       "targetId": "string",
       "targetType": "string",
       "value": "string"
   }
   ],
   "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

attributes (p. 38)

The attributes to delete from your resource. You can specify up to 10 attributes for each request. For custom attributes, specify the attribute name and target ID, but don't specify the value. If you specify the target ID using the short form, you must also specify the target type.

Type: Array of Attribute (p. 275) objects

Required: Yes

cluster (p. 38)

The short name or full Amazon Resource Name (ARN) of the cluster that contains the resource to delete attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

Response Syntax

```
{
   "attributes": [
   {
       "name": "string",
       "targetId": "string",
       "targetType": "string",
       "value": "string"
   }
   ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

attributes (p. 38)

A list of attribute objects that were successfully deleted from your resource.

Type: Array of Attribute (p. 275) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

TargetNotFoundException

The specified target wasn't found. You can view your available container instances with ListContainerInstances (p. 127). Amazon ECS container instances are cluster-specific and Region-specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example deletes an attribute with the name stack from a container instance.

Sample Request

POST / HTTP/1.1
Host: madison.us-west-2.amazonaws.com
Accept-Encoding: identity
Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Thu, 22 Dec 2016 19:38:51 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 158
Connection: keep-alive
x-amzn-RequestId: 445193ca-c87e-11e6-86db-1bd3d928caf

{
  "attributes": [
    {
      "name": "stack",
      "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-
      df30-47b4-8f1e-6e68ebd01f34",
      "value": "production"
    }
  ]
}
```
DeleteCapacityProvider

Deletes the specified capacity provider.

Note
The FARGATE and FARGATE_SPOT capacity providers are reserved and can't be deleted. You can disassociate them from a cluster using either the PutClusterCapacityProviders (p. 161) API or by deleting the cluster.

Prior to a capacity provider being deleted, the capacity provider must be removed from the capacity provider strategy from all services. The UpdateService (p. 250) API can be used to remove a capacity provider from a service's capacity provider strategy. When updating a service, the forceNewDeployment option can be used to ensure that any tasks using the Amazon EC2 instance capacity provided by the capacity provider are transitioned to use the capacity from the remaining capacity providers. Only capacity providers that aren't associated with a cluster can be deleted. To remove a capacity provider from a cluster, you can either use PutClusterCapacityProviders (p. 161) or delete the cluster.

Request Syntax

```json
{
    "capacityProvider": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

capacityProvider (p. 41)

The short name or full Amazon Resource Name (ARN) of the capacity provider to delete.

Type: String

Required: Yes

Response Syntax

```json
{
    "capacityProvider": {
        "autoScalingGroupProvider": {
            "autoScalingGroupArn": "string",
            "managedScaling": {
                "instanceWarmupPeriod": number,
                "maximumScalingStepSize": number,
                "minimumScalingStepSize": number,
                "status": "string",
                "targetCapacity": number
            },
            "managedTerminationProtection": "string"
        },
        "capacityProviderArn": "string",
        "name": "string",
```

API Version 2014-11-13
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

capacityProvider (p. 41)

 The details of the capacity provider.

 Type: CapacityProvider (p. 279) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

 These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

 HTTP Status Code: 400

InvalidParameterException

 The specified parameter isn't valid. Review the available parameters for the API request.

 HTTP Status Code: 400

ServerException

 These errors are usually caused by a server issue.

 HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
See Also

- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteCluster

Deletes the specified cluster. The cluster transitions to the INACTIVE state. Clusters with an INACTIVE status might remain discoverable in your account for a period of time. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE clusters persisting.

You must deregister all container instances from this cluster before you may delete it. You can list the container instances in a cluster with ListContainerInstances (p. 127) and deregister them with DeregisterContainerInstance (p. 59).

Request Syntax

```
{
    "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 44)

The short name or full Amazon Resource Name (ARN) of the cluster to delete.

Type: String

Required: Yes

Response Syntax

```
{
    "cluster": {
      "activeServicesCount": number,
      "attachments": [
        {
          "details": [
            {
              "name": "string",
              "value": "string"
            }
          ],
          "id": "string",
          "status": "string",
          "type": "string"
        }
      ],
      "attachmentsStatus": "string",
      "capacityProviders": [ "string" ],
      "clusterArn": "string",
      "clusterName": "string",
      "defaultCapacityProviderStrategy": [
        {
          "base": number,
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

cluster (p. 44)

The full description of the deleted cluster.

Type: [Cluster (p. 283)] object

Errors

For information about the errors that are common to all actions, see [Common Errors (p. 423)].

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterContainsContainerInstancesException

You can't delete a cluster that has registered container instances. First, deregister the container instances before you can delete the cluster. For more information, see [DeregisterContainerInstance (p. 59)].

HTTP Status Code: 400
ClusterContainsServicesException

You can't delete a cluster that contains services. First, update the service to reduce its desired task count to 0, and then delete the service. For more information, see UpdateService (p. 250) and DeleteService (p. 48).

HTTP Status Code: 400

ClusterContainsTasksException

You can't delete a cluster that has active tasks.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request deletes the cluster called My-cluster.

Sample Request

<table>
<thead>
<tr>
<th>POST / HTTP/1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host: ecs.us-east-1.amazonaws.com</td>
</tr>
</tbody>
</table>

API Version 2014-11-13
46
Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:09:54 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 211
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "cluster": {
 "activeServicesCount": 0,
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
 "clusterName": "My-cluster",
 "pendingTasksCount": 0,
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "status": "INACTIVE"
 }
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeleteService

Deletes a specified service within a cluster. You can delete a service if you have no running tasks in it and the desired task count is zero. If the service is actively maintaining tasks, you can't delete it, and you must update the service to a desired task count of zero. For more information, see UpdateService (p. 250).

Note
When you delete a service, if there are still running tasks that require cleanup, the service status moves from ACTIVE to DRAINING, and the service is no longer visible in the console or in the ListServices (p. 131) API operation. After all tasks have transitioned to either STOPPING or STOPPED status, the service status moves from DRAINING to INACTIVE. Services in the DRAINING or INACTIVE status can still be viewed with the DescribeServices (p. 85) API operation. However, in the future, INACTIVE services may be cleaned up and purged from Amazon ECS record keeping, and DescribeServices (p. 85) calls on those services return a ServiceNotFoundException error.

Important
If you attempt to create a new service with the same name as an existing service in either ACTIVE or DRAINING status, you receive an error.

Request Syntax

```
{
   "cluster": "string",
   "force": boolean,
   "service": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 48)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service to delete. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

force (p. 48)

If true, allows you to delete a service even if it wasn't scaled down to zero tasks. It's only necessary to use this if the service uses the REPLICA scheduling strategy.

Type: Boolean

Required: No

service (p. 48)

The name of the service to delete.
Type: String
Required: Yes

Response Syntax

```json
{
  "service": {
    "capacityProviderStrategy": [
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "clusterArn": "string",
    "createdAt": number,
    "createdBy": "string",
    "deploymentConfiguration": {
      "deploymentCircuitBreaker": {
        "enable": boolean,
        "rollback": boolean
      },
      "maximumPercent": number,
      "minimumHealthyPercent": number
    },
    "deploymentController": {
      "type": "string"
    },
    "deployments": [
      {
        "capacityProviderStrategy": [
          {
            "base": number,
            "capacityProvider": "string",
            "weight": number
          }
        ],
        "createdAt": number,
        "desiredCount": number,
        "failedTasks": number,
        "id": "string",
        "launchType": "string",
        "networkConfiguration": {
          "awsvpcConfiguration": {
            "assignPublicIp": "string",
            "securityGroups": [ "string" ],
            "subnets": [ "string" ]
          }
        },
        "pendingCount": number,
        "platformFamily": "string",
        "platformVersion": "string",
        "rolloutState": "string",
        "rolloutStateReason": "string",
        "runningCount": number,
        "status": "string",
        "taskDefinition": "string",
        "updatedAt": number
      }
    ],
    "desiredCount": number,
    "enableECSManagedTags": boolean
  }
}
```
"enableExecuteCommand": boolean, "events": [
 {
 "createdAt": number, "id": "string", "message": "string"
 }
], "healthCheckGracePeriodSeconds": number, "launchType": "string", "loadBalancers": [
 {
 "containerName": "string", "containerPort": number, "loadBalancerName": "string", "targetGroupArn": "string"
 }
], "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string", "securityGroups": ["string"], "subnets": ["string"]
 }
}, "pendingCount": number, "placementConstraints": [
 {
 "expression": "string", "type": "string"
 }
], "placementStrategy": [
 {
 "field": "string", "type": "string"
 }
], "platformFamily": "string", "platformVersion": "string", "propagateTags": "string", "roleArn": "string", "runningCount": number, "schedulingStrategy": "string", "serviceArn": "string", "serviceName": "string", "serviceRegistries": [
 {
 "containerName": "string", "containerPort": number, "port": number, "registryArn": "string"
 }
], "status": "string", "tags": [
 {
 "key": "string", "value": "string"
 }
], "taskDefinition": "string", "taskSets": [
 {
 "capacityProviderStrategy": ["string"],
Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

service (p. 49)

The full description of the deleted service.

Type: Service (p. 376) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (**AUTHPARAMS**) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example API request deletes the `test` service from the `default` cluster.
Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 19
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeleteService
X-Amz-Date: 20150429T172539Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "service": "test"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:25:40 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 13590
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "service": {
    "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
    "deploymentConfiguration": { 
      "maximumPercent": 200, 
      "minimumHealthyPercent": 100
    }, 
    "deployments": [
      {
        "createdAt": 1430320735.285,
        "desiredCount": 0,
        "id": "ecs-svc/9223370606534040511",
        "pendingCount": 0,
        "runningCount": 0,
        "status": "PRIMARY",
        "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/sleep360:27",
        "updatedAt": 1430320735.285
      }
    ],
    "desiredCount": 0,
    "events": [],
    "loadBalancers": [],
    "pendingCount": 0,
    "runningCount": 0,
    "serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/test",
    "serviceName": "test",
    "status": "DRAINING",
    "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/sleep360:27"
  }
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
DeleteTaskSet

Deletes a specified task set within a service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
   "cluster": "string",
   "force": boolean,
   "service": "string",
   "taskSet": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 55)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set found in to delete.

Type: String

Required: Yes

force (p. 55)

If true, you can delete a task set even if it hasn't been scaled down to zero.

Type: Boolean

Required: No

service (p. 55)

The short name or full Amazon Resource Name (ARN) of the service that hosts the task set to delete.

Type: String

Required: Yes

taskSet (p. 55)

The task set ID or full Amazon Resource Name (ARN) of the task set to delete.

Type: String

Required: Yes

Response Syntax

```
{
   "taskSet": {
```

API Version 2014-11-13

55
"capacityProviderStrategy": [

 "base": number,
 "capacityProvider": "string",
 "weight": number

],
"clusterArn": "string",
"computedDesiredCount": number,
"createdAt": number,
"externalId": "string",
"id": "string",
"launchType": "string",
"loadBalancers": [

 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"

],
"networkConfiguration": {
 "awsVpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "runningCount": number,
 "scale": {
 "unit": "string",
 "value": number
 },
 "serviceArn": "string",
 "serviceRegistries": [

 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"

],
 "stabilityStatus": "string",
 "stabilityStatusAt": number,
 "startedBy": "string",
 "status": "string",
 "tags": [

 "key": "string",
 "value": "string"

],
 "taskDefinition": "string",
 "taskSetArn": "string",
 "updatedAt": number
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

taskSet (p. 55)
Details about the task set.
Type: TaskSet (p. 406) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 13).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 107). Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeregisterContainerInstance

Deregisters an Amazon ECS container instance from the specified cluster. This instance is no longer available to run tasks.

If you intend to use the container instance for some other purpose after deregistration, we recommend that you stop all of the tasks running on the container instance before deregistration. That prevents any orphaned tasks from consuming resources.

Deregistering a container instance removes the instance from a cluster, but it doesn't terminate the EC2 instance. If you are finished using the instance, be sure to terminate it in the Amazon EC2 console to stop billing.

Note
If you terminate a running container instance, Amazon ECS automatically deregisters the instance from your cluster (stopped container instances or instances with disconnected agents aren't automatically deregistered when terminated).

Request Syntax

```json
{
  "cluster": "string",
  "containerInstance": "string",
  "force": boolean
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 59)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instance to deregister. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

containerInstance (p. 59)

The container instance ID or full ARN of the container instance to deregister. The ARN contains the arn:aws:ecs namespace, followed by the Region of the container instance, the AWS account ID of the container instance owner, the container-instance namespace, and then the container instance ID. For example, arn:aws:ecs:region:aws_account_id:container-instance/container_instance_ID.

Type: String

Required: Yes

force (p. 59)

Forces the container instance to be deregistered. If you have tasks running on the container instance when you deregister it with the force option, these tasks remain running until you terminate the instance or the tasks stop through some other means, but they're orphaned (no longer monitored or
accounted for by Amazon ECS). If an orphaned task on your container instance is part of an Amazon ECS service, then the service scheduler starts another copy of that task, on a different container instance if possible.

Any containers in orphaned service tasks that are registered with a Classic Load Balancer or an Application Load Balancer target group are deregistered. They begin connection draining according to the settings on the load balancer or target group.

Type: Boolean

Required: No

Response Syntax

```json
{
    "containerInstance": {
        "agentConnected": boolean,
        "agentUpdateStatus": "string",
        "attachments": [
            {
                "details": [
                    {
                        "name": "string",
                        "value": "string"
                    }
                ],
                "id": "string",
                "status": "string",
                "type": "string"
            }
        ],
        "attributes": [
            {
                "name": "string",
                "targetId": "string",
                "targetType": "string",
                "value": "string"
            }
        ],
        "capacityProviderName": "string",
        "containerInstanceArn": "string",
        "ec2InstanceId": "string",
        "healthStatus": {
            "details": [
                {
                    "lastStatusChange": number,
                    "lastUpdated": number,
                    "status": "string",
                    "type": "string"
                }
            ],
            "overallStatus": "string"
        },
        "pendingTasksCount": number,
        "registeredAt": number,
        "registeredResources": [
            {
                "doubleValue": number,
                "integerValue": number,
                "longValue": number,
                "name": "string",
                "stringSetValue": [ "string" ]
            }
        ]
    }
}
```

API Version 2014-11-13
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstance (p. 60)

The container instance that was deregistered.

Type: ContainerInstance (p. 306) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn’t have permissions to use the action or resource, or it might be specifying an identifier that isn’t valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn’t found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400
InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request deregisters a container instance with the ID f4292606-fbed-4b53-833b-92cad7c687c2 in the default cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 61
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeregisterContainerInstance
X-Amz-Date: 20151001T191224Z
User-Agent: aws-cli/1.8.7 Python/2.7.9 Darwin/14.5.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "containerInstance": "c9c9a6f2-8766-464b-8805-9c57b9368fb0"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Thu, 01 Oct 2015 19:12:25 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1613
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "containerInstance": {
    "agentConnected": true,
    "attributes": [
      
    ]
  }
}
```
"name": "com.amazonaws.ecs.capability.privileged-container",
},
{name": "com.amazonaws.ecs.capability.docker-remote-api.1.17",
},
{name": "com.amazonaws.ecs.capability.docker-remote-api.1.18",
},
{name": "com.amazonaws.ecs.capability.docker-remote-api.1.19",
},
{name": "com.amazonaws.ecs.capability.logging-driver.json-file",
},
{name": "com.amazonaws.ecs.capability.logging-driver.syslog",
}
],
"containerInstanceArn": "arn:aws:ecs:us-west-2:012345678910:container-instance/c9c9a6f2-8766-464b-8805-9c57b936f8bd",
"ec2InstanceId": "i-0c3826c9",
"pendingTasksCount": 0,
"registeredResources": []
{ "doubleValue": 0, "integerValue": 1024, "longValue": 0, "name": "CPU", "type": "INTEGER" },
{ "doubleValue": 0, "integerValue": 995, "longValue": 0, "name": "MEMORY", "type": "INTEGER" },
{ "doubleValue": 0, "integerValue": 0, "longValue": 0, "name": "PORTS", "stringSetValue": ["22", "2376", "2375", "51678"], "type": "STRINGSET" },
{ "doubleValue": 0, "integerValue": 0, "longValue": 0, "name": "PORTS_UDP", "stringSetValue": [], "type": "STRINGSET" }
],
"remainingResources": [
{ "doubleValue": 0, "integerValue": 1024, "longValue": 0, "name": "CPU", "type": "INTEGER" },
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DeregisterTaskDefinition

Deregisters the specified task definition by family and revision. Upon deregistration, the task definition is marked as INACTIVE. Existing tasks and services that reference an INACTIVE task definition continue to run without disruption. Existing services that reference an INACTIVE task definition can still scale up or down by modifying the service's desired count.

You can't use an INACTIVE task definition to run new tasks or create new services, and you can't update an existing service to reference an INACTIVE task definition. However, there may be up to a 10-minute window following deregistration where these restrictions have not yet taken effect.

Note

At this time, INACTIVE task definitions remain discoverable in your account indefinitely. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE task definitions persisting beyond the lifecycle of any associated tasks and services.

Request Syntax

```
{
    "taskDefinition": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

taskDefinition (p. 65)

The family and revision (family:revision) or full Amazon Resource Name (ARN) of the task definition to deregister. You must specify a revision.

Type: String

Required: Yes

Response Syntax

```
{
    "taskDefinition": {
        "compatibilities": [ "string" ],
        "containerDefinitions": [ {
            "command": [ "string" ],
            "cpu": number,
            "dependsOn": [ {
                "condition": "string",
                "containerName": "string"
            } ],
            "disableNetworking": boolean,
            "dnsSearchDomains": [ "string" ]
        }
    }
}
```
"dnsServers": ["string"],
"dockerLabels": {
 "string": "string"
},
"dockerSecurityOptions": ["string"],
"entryPoint": ["string"],
"environment": [
 {
 "name": "string",
 "value": "string"
 }
],
"environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
"essential": boolean,
"extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
],
"firelensConfiguration": {
 "options": {
 "string": "string"
 },
 "type": "string"
},
"healthCheck": {
 "command": ["string"],
 "interval": number,
 "retries": number,
 "startPeriod": number,
 "timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": ["string"],
"linuxParameters": {
 "capabilities": {
 "add": ["string"],
 "drop": ["string"]
 },
 "devices": [
 {
 "containerPath": "string",
 "hostPath": "string",
 "permissions": ["string"]
 }
],
 "initProcessEnabled": boolean,
 "maxSwap": number,
 "sharedMemorySize": number,
 "swappiness": number,
 "tmpfs": [
 {
 "containerPath": "string",
 "mountOptions": ["string"],
 "size": number
 }
]
}
"logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "valueFrom": "string"
 }
],
 "memory": number,
 "memoryReservation": number,
 "mountPoints": [
 {
 "containerPath": "string",
 "readOnly": boolean,
 "sourceVolume": "string"
 }
],
 "name": "string",
 "portMappings": [
 {
 "containerPort": number,
 "hostPort": number,
 "protocol": "string"
 }
],
 "privileged": boolean,
 "pseudoTerminal": boolean,
 "readOnlyRootFilesystem": boolean,
 "repositoryCredentials": {
 "credentialsParameter": "string"
 },
 "resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
],
 "secrets": [
 {
 "name": "string",
 "valueFrom": "string"
 }
],
 "startTimeout": number,
 "stopTimeout": number,
 "systemControls": [
 {
 "namespace": "string",
 "value": "string"
 }
],
 "ulimits": [
 {
 "hardLimit": number,
 "name": "string",
 "softLimit": number
 }
],
 "user": "string",
 "volumesFrom": [
 {
 "readOnly": boolean,
 "sourceVolume": "string"
 }
]
}

"sourceContainer": "string"
],
"workingDirectory": "string"
],
"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": {
 "sizeInGiB": number
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [
 {
 "expression": "string",
 "type": "string"
 }
],
"proxyConfiguration": {
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
],
 "type": "string"
},
"registeredAt": number,
"registeredBy": "string",
"requiresAttributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
"requiresCompatibilities": ["string"],
"revision": number,
"runtimePlatform": {
 "cpuArchitecture": "string",
 "operatingSystemFamily": "string"
},
"status": "string",
"taskDefinitionArn": "string",
"taskRoleArn": "string",
"volumes": [
 {
 "dockerVolumeConfiguration": {
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "string": "string"
 }
 },
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "volume": "string"
 }
],
"labels": {
 "string" : "string"
},
"scope": "string"
},
"efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",
 "transitEncryptionPort": number
},
"fsxWindowsFileServerVolumeConfiguration": {
 "authorizationConfig": {
 "credentialsParameter": "string",
 "domain": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string"
},
"host": {
 "sourcePath": "string"
},
"name": "string"
}
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

taskDefinition (p. 65)

The full description of the deregistered task.

Type: TaskDefinition (p. 397) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

The following example request deregisters the first revision of the cpu-wave task definition family (cpu-wave:1). In the resulting output, the task definition status becomes INACTIVE.

Sample Request

POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 35
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DeregisterTaskDefinition
X-Amz-Date: 20150429T184806Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "taskDefinition": "cpu-wave:1"
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Fri, 12 Jun 2015 23:07:39 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 491
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "taskDefinition": {
 "containerDefinitions": [

],
 "cpu": 50,
 "entryPoint": [
 "bash",
 "-c"
]
 }
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeCapacityProviders

Describes one or more of your capacity providers.

Request Syntax

```
{
  "capacityProviders": [ "string" ],
  "include": [ "string" ],
  "maxResults": number,
  "nextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

capacityProviders (p. 72)

The short name or full Amazon Resource Name (ARN) of one or more capacity providers. Up to 100 capacity providers can be described in an action.

Type: Array of strings

Required: No

include (p. 72)

Specifies whether or not you want to see the resource tags for the capacity provider. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren’t included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

maxResults (p. 72)

The maximum number of account setting results returned by DescribeCapacityProviders in paginated output. When this parameter is used, DescribeCapacityProviders only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another DescribeCapacityProviders request with the returned nextToken value. This value can be between 1 and 10. If this parameter is not used, then DescribeCapacityProviders returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

nextToken (p. 72)

The nextToken value returned from a previous paginated DescribeCapacityProviders request where maxResults was used and the results exceeded the value of that parameter. Pagination continues from the end of the previous results that returned the nextToken value.
Note
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

Response Syntax

```
{
   "capacityProviders": [
   {
      "autoScalingGroupProvider": {,
         "autoScalingGroupArn": "string",
         "managedScaling": {
            "instanceWarmupPeriod": number,
            "maximumScalingStepSize": number,
            "minimumScalingStepSize": number,
            "status": "string",
            "targetCapacity": number
         },
         "managedTerminationProtection": "string"
      },
      "capacityProviderArn": "string",
      "name": "string",
      "status": "string",
      "tags": [
         {
            "key": "string",
            "value": "string"
         }
      ],
      "updateStatus": "string",
      "updateStatusReason": "string"
   }
   ],
   "failures": [
      {
         "arn": "string",
         "detail": "string",
         "reason": "string"
      }
   ],
   "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

- **capacityProviders (p. 73)**
 The list of capacity providers.
 Type: Array of CapacityProvider (p. 279) objects

- **failures (p. 73)**
 Any failures associated with the call.
Type: Array of Failure (p. 333) objects

defaultToken (p. 73)

The nextToken value to include in a future DescribeCapacityProviders request. When the results of a DescribeCapacityProviders request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeClusters

Describes one or more of your clusters.

Request Syntax

```json
{
   "clusters": [ "string" ],
   "include": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

clusters (p. 75)

A list of up to 100 cluster names or full cluster Amazon Resource Name (ARN) entries. If you do not specify a cluster, the default cluster is assumed.

Type: Array of strings

Required: No

include (p. 75)

Determines whether to include additional information about the clusters in the response. If this field is omitted, this information isn't included.

- If ATTACHMENTS is specified, the attachments for the container instances or tasks within the cluster are included.
- If SETTINGS is specified, the settings for the cluster are included.
- If CONFIGURATIONS is specified, the configuration for the cluster is included.
- If STATISTICS is specified, the task and service count is included, separated by launch type.
- If TAGS is specified, the metadata tags associated with the cluster are included.

Type: Array of strings

Valid Values: ATTACHMENTS | CONFIGURATIONS | SETTINGS | STATISTICS | TAGS

Required: No

Response Syntax

```json
{
   "clusters": [
      {
         "activeServicesCount": number,
         "attachments": [ ]
      }
   ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

clusters (p. 75)

The list of clusters.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides descriptive information about the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 25
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeClusters
X-Amz-Date: 20150429T185014Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
```
"clusters": [
 "default"
]

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 18:50:14 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 220
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "clusters": [
 {
 "activeServicesCount": 1,
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "clusterName": "default",
 "pendingTasksCount": 0,
 "registeredContainerInstancesCount": 0,
 "runningTasksCount": 0,
 "status": "ACTIVE"
 }
],
 "failures": []
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeContainerInstances

Describes one or more container instances. Returns metadata about each container instance requested.

Request Syntax

```json
{
    "cluster": "string",
    "containerInstances": [ "string" ],
    "include": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 79)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instances to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the container instance or container instances you are describing were launched in any cluster other than the default cluster.

Type: String

Required: No

containerInstances (p. 79)

A list of up to 100 container instance IDs or full Amazon Resource Name (ARN) entries.

Type: Array of strings

Required: Yes

include (p. 79)

Specifies whether you want to see the resource tags for the container instance. If TAGS is specified, the tags are included in the response. If CONTAINER_INSTANCE_HEALTH is specified, the container instance health is included in the response. If this field is omitted, tags and container instance health status aren’t included in the response.

Type: Array of strings

Valid Values: TAGS | CONTAINER_INSTANCE_HEALTH

Required: No

Response Syntax

```json
{
    "containerInstances": [ 
    
    ]
}
```
"agentConnected": boolean,
"agentUpdateStatus": "string",
"attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
"attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
"capacityProviderName": "string",
"containerInstanceArn": "string",
"ec2InstanceId": "string",
"healthStatus": {
 "details": [
 {
 "lastStatusChange": number,
 "lastUpdated": number,
 "status": "string",
 "type": "string"
 }
],
 "overallStatus": "string"
},
"pendingTasksCount": number,
"registeredAt": number,
"registeredResources": [
 {
 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"
 }
],
"remainingResources": [
 {
 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"
 }
],
"runningTasksCount": number,
"status": "string",
"statusReason": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
]
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstances (p. 79)

The list of container instances.

Type: Array of ContainerInstance (p. 306) objects

failures (p. 79)

Any failures associated with the call.

Type: Array of Failure (p. 333) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides descriptive information about a container instance with an ID of f9cc75bb-0c94-46b9-bf6d-49d320bc1551 in the default cluster.

Sample Request

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 64
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeContainerInstances
X-Amz-Date: 20160520T171518Z
User-Agent: aws-cli/1.10.30 Python/2.7.11 Darwin/15.4.0 botocore/1.4.17
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "containerInstances": [
 "f9cc75bb-0c94-46b9-bf6d-49d320bc1551"
]
}

Sample Response

{
 "containerInstances": [
 {
 "agentConnected": true,
 "attributes": [
 {
 "name": "com.amazonaws.ecs.capability.privileged-container"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
 }
]
]
}
{
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
},
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
},
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
},
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
},
 "name": "com.amazonaws.ecs.capability.ecr-auth"
},
"ec2InstanceId": "i-042f39dc",
"pendingTasksCount": 0,
"registeredResources": [
 {
 "doubleValue": 0,
 "integerValue": 1024,
 "longValue": 0,
 "name": "CPU",
 "type": "INTEGER"
 },
 {
 "doubleValue": 0,
 "integerValue": 995,
 "longValue": 0,
 "name": "MEMORY",
 "type": "INTEGER"
 },
 {
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET"
 },
 {
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS_UDP",
 "stringSetValue": [],
 "type": "STRINGSET"
 }
],
"remainingResources": [
 {
 "doubleValue": 0,
 "integerValue": 1024,
 "longValue": 0,
 "name": "CPU",
 "stringSetValue": []
 }
]
"type": "INTEGER"
},
{
 "doubleValue": 0,
 "integerValue": 995,
 "longValue": 0,
 "name": "MEMORY",
 "type": "INTEGER"
},
{
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS",
 "stringSetValue": [
 "22",
 "2376",
 "2375",
 "51678"
],
 "type": "STRINGSET"
},
{
 "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS_UDP",
 "stringSetValue": [],
 "type": "STRINGSET"
}]
],
"runningTasksCount": 0,
"status": "ACTIVE",
"version": 850,
"versionInfo": {
 "agentHash": "0931217",
 "agentVersion": "1.9.0",
 "dockerVersion": "DockerVersion: 1.9.1"
}
]
,"failures": []
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeServices

Describes the specified services running in your cluster.

Request Syntax

```json
{
    "cluster": "string",
    "include": [ "string" ],
    "services": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 85)

The short name or full Amazon Resource Name (ARN) the cluster that hosts the service to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the service or services you are describing were launched in any cluster other than the default cluster.

- Type: String
- Required: No

include (p. 85)

Determines whether you want to see the resource tags for the service. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

- Type: Array of strings
- Valid Values: TAGS
- Required: No

services (p. 85)

A list of services to describe. You may specify up to 10 services to describe in a single operation.

- Type: Array of strings
- Required: Yes

Response Syntax

```json```
```json
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
]
}
```
"services": [ 
{
  "capacityProviderStrategy": [
   
  ],
  "clusterArn": "string",
  "createdAt": number,
  "createdBy": "string",
  "deploymentConfiguration": {
    "deploymentCircuitBreaker": {
      "enable": boolean,
      "rollback": boolean
    },
    "maximumPercent": number,
    "minimumHealthyPercent": number
  },
  "deploymentController": {
    "type": "string"
  },
  "deployments": [
    
  ],
  "desiredCount": number,
  "enableECSManagedTags": boolean,
  "enableExecuteCommand": boolean,
  "events": [
    
  ],
  "healthCheckGracePeriodSeconds": number,
"launchType": "string",
"loadBalancers": [
  {
    "containerName": "string",
    "containerPort": number,
    "loadBalancerName": "string",
    "targetGroupArn": "string"
  }
],
"networkConfiguration": {
  "awsVpcConfiguration": {
    "assignPublicIp": "string",
    "securityGroups": [ "string" ],
    "subnets": [ "string" ]
  }
},
"pendingCount": number,
"placementConstraints": [
  {
    "expression": "string",
    "type": "string"
  }
],
"placementStrategy": [
  {
    "field": "string",
    "type": "string"
  }
],
"platformFamily": "string",
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
  {
    "containerName": "string",
    "containerPort": number,
    "port": number,
    "registryArn": "string"
  }
],
"status": "string",
"tags": [
  {
    "key": "string",
    "value": "string"
  }
],
"taskDefinition": "string",
"taskSets": [
  {
    "capacityProviderStrategy": [
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "clusterArn": "string",
    "computedDesiredCount": number,
    "createdAt": number,
    "externalId": "string"
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 85)

Any failures associated with the call.

Type: Array of Failure (p. 333) objects
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides a full description of the bunker_buster service in the telemetry cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 55
```
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeServices
X-Amz-Date: 20150528T163859Z
User-Agent: aws-cli/1.7.30 Python/2.7.9 Darwin/14.3.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "services": [
    "bunker-buster"
  ],
  "cluster": "telemetry"
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:02:59 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 2449
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "failures": [],
  "services": [
    {
      "deploymentConfiguration": {
        "maximumPercent": 200,
        "minimumHealthyPercent": 100
      },
      "deployments": [
        {
          "createdAt": 1432829320.611,
          "desiredCount": 4,
          "id": "ecs-svc/9223370604025455196",
          "pendingCount": 0,
          "runningCount": 4,
          "status": "PRIMARY",
          "updatedAt": 1432829320.611
        }
      ],
      "desiredCount": 4,
      "events": [],
      "loadBalancers": [],
      "pendingCount": 0,
      "runningCount": 4,
      "serviceName": "bunker-buster",
      "status": "ACTIVE",
      "taskDefinition": "arn:aws:ecs:us-west-2:012345678910:task-definition/hpcc-t2-medium:1"
    }
  ],
  "desiredCount": 4,
  "events": [],
  "loadBalancers": [],
  "pendingCount": 0,
  "runningCount": 4,
  "serviceName": "bunker-buster",
  "status": "ACTIVE",
  "taskDefinition": "arn:aws:ecs:us-west-2:012345678910:task-definition/hpcc-t2-medium:1"
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTaskDefinition

Describes a task definition. You can specify a `family` and `revision` to find information about a specific task definition, or you can simply specify the family to find the latest `ACTIVE` revision in that family.

**Note**
You can only describe `INACTIVE` task definitions while an active task or service references them.

**Request Syntax**

```
{
 "include": ["string"],
 "taskDefinition": "string"
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see [Common Parameters](#).

The request accepts the following data in JSON format.

**include (p. 92)**

Determines whether to see the resource tags for the task definition. If `TAGS` is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

- Type: Array of strings
- Valid Values: `TAGS`
- Required: No

**taskDefinition (p. 92)**

The `family` for the latest `ACTIVE` revision, `family` and `revision` (family:revision) for a specific revision in the family, or full Amazon Resource Name (ARN) of the task definition to describe.

- Type: String
- Required: Yes

**Response Syntax**

```
{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "taskDefinition": {
 "compatibilities": ["string"],
 "containerDefinitions": [
 {
 "command": ["string"],
 "cpu": number,
```

API Version 2014-11-13
92
"dependsOn": [
  {
    "condition": "string",
    "containerName": "string"
  }
],
"disableNetworking": boolean,
"dnsSearchDomains": [ "string" ],
"dnsServers": [ "string" ],
"dockerLabels": {
  "string": "string"
},
"dockerSecurityOptions": [ "string" ],
"entryPoint": [ "string" ],
"environment": [ {
  "name": "string",
  "value": "string"
},
],
"environmentFiles": [ {
  "type": "string",
  "value": "string"
} ],
"essential": boolean,
"extraHosts": [ {
  "hostname": "string",
  "ipAddress": "string"
} ],
"firelensConfiguration": { "options": { "string": "string" },
  "type": "string"
},
"healthCheck": { "command": [ "string" ],
  "interval": number,
  "retries": number,
  "startPeriod": number,
  "timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": [ "string" ],
"linuxParameters": { "capabilities": { "add": [ "string" ],
  "drop": [ "string" ]
  },
  "devices": [ {
    "containerPath": "string",
    "hostPath": "string",
    "permissions": [ "string" ]
  } ],
  "initProcessEnabled": boolean,
  "maxSwap": number,
  "sharedMemorySize": number,
  "swappiness": number,
"tmpfs": [  
  {  
    "containerPath": "string",  
    "mountOptions": [ "string" ],  
    "size": number  
  }  
],  
"logConfiguration": {  
  "logDriver": "string",  
  "options": {  
    "string": "string"  
  },  
  "secretOptions": [  
    {  
      "name": "string",  
      "valueFrom": "string"  
    }  
  ]  
},  
"memory": number,  
"memoryReservation": number,  
"mountPoints": [  
  {  
    "containerPath": "string",  
    "readOnly": boolean,  
    "sourceVolume": "string"  
  }  
],  
"name": "string",  
"portMappings": [  
  {  
    "containerPort": number,  
    "hostPort": number,  
    "protocol": "string"  
  }  
],  
"privileged": boolean,  
"pseudoTerminal": boolean,  
"readonlyRootFilesystem": boolean,  
"repositoryCredentials": {  
  "credentialsParameter": "string"  
},  
"resourceRequirements": [  
  {  
    "type": "string",  
    "value": "string"  
  }  
],  
"secrets": [  
  {  
    "name": "string",  
    "valueFrom": "string"  
  }  
],  
"startTimeout": number,  
"stopTimeout": number,  
"systemControls": [  
  {  
    "namespace": "string",  
    "value": "string"  
  }  
],  
"ulimits": [  
  {  
    "hardLimit": number,
"name": "string",
"softLimit": number
}
]
"user": "string",
"volumesFrom": [ 
{ 
"readOnly": boolean,
"sourceContainer": "string"
}
]
"workingDirectory": "string"
]
"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": { 
"sizeInGiB": number
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [ 
{ 
"deviceName": "string",
"deviceType": "string"
}
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [ 
{ 
"expression": "string",
"type": "string"
}
],
"proxyConfiguration": { 
"containerName": "string",
"properties": [ 
{ 
"name": "string",
"value": "string"
}
],
"type": "string"
},
"registeredAt": number,
"registeredBy": "string",
"requiresAttributes": [ 
{ 
"name": "string",
"targetId": "string",
"targetType": "string",
"value": "string"
}
],
"requiresCompatibilities": [ "string" ],
"revision": number,
"runtimePlatform": { 
"cpuArchitecture": "string",
"operatingSystemFamily": "string"
},
"status": "string",
"taskDefinitionArn": "string",
"taskRoleArn": "string"
"volumes": [  
  {  
    "dockerVolumeConfiguration": {  
      "autoprovision": boolean,  
      "driver": "string",  
      "driverOpts": {  
        "string": "string"  
      },  
      "labels": {  
        "string": "string"  
      },  
      "scope": "string"  
    },  
    "efsVolumeConfiguration": {  
      "authorizationConfig": {  
        "accessPointId": "string",  
        "iam": "string"  
      },  
      "fileSystemId": "string",  
      "rootDirectory": "string",  
      "transitEncryption": "string",  
      "transitEncryptionPort": number  
    },  
    "fsxWindowsFileServerVolumeConfiguration": {  
      "authorizationConfig": {  
        "credentialsParameter": "string",  
        "domain": "string"  
      },  
      "fileSystemId": "string",  
      "rootDirectory": "string"  
    },  
    "host": {  
      "sourcePath": "string"  
    },  
    "name": "string"  
  }  
]  
}  

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

tags (p. 92)

The metadata that's applied to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - . _ : / @.
- Tag keys and values are case-sensitive.
• Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

**taskDefinition (p. 92)**

The full task definition description.

Type: TaskDefinition (p. 397) object

---

## Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

### ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

### InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

### ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

---

## Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don’t have to sign requests yourself.

### Example

This example request provides descriptive information about the 10th revision of a task definition in the hello_world family.

### Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 36
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeTaskDefinition
```
X-Amz-Date: 20150429T190902Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "taskDefinition": "hello_world:10"
}

## Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:09:03 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 574
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "taskDefinition": {
    "containerDefinitions": [
      {
        "cpu": 10,
        "environment": [],
        "essential": true,
        "image": "wordpress",
        "links": [
          "mysql"
        ],
        "memory": 500,
        "mountPoints": [],
        "name": "wordpress",
        "portMappings": [
          {
            "containerPort": 80,
            "hostPort": 80
          }
        ],
        "volumesFrom": []
      },
      {
        "cpu": 10,
        "environment": [
          {
            "name": "MYSQL_ROOT_PASSWORD",
            "value": "password"
          }
        ],
        "essential": true,
        "image": "mysql",
        "memory": 500,
        "mountPoints": [],
        "name": "mysql",
        "portMappings": [],
        "volumesFrom": []
      }
    ],
    "family": "hello_world",
    "revision": 10,
    "taskDefinitionArn": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10",
    "volumes": []
  }
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTasks

Describes a specified task or tasks.

**Request Syntax**

```
{
 "cluster": "string",
 "include": ["string"],
 "tasks": ["string"]
}
```

**Request Parameters**

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

- **cluster (p. 100)**
  
  The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task or tasks to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the task or tasks you are describing were launched in any cluster other than the default cluster.

  Type: String

  Required: No

- **include (p. 100)**
  
  Specifies whether you want to see the resource tags for the task. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

  Type: Array of strings

  Valid Values: TAGS

  Required: No

- **tasks (p. 100)**
  
  A list of up to 100 task IDs or full ARN entries.

  Type: Array of strings

  Required: Yes

**Response Syntax**

```
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
]
}
```

}
"tasks": [
{
"attachments": [
{
"details": [
{
"name": "string",
"value": "string"
}
],
"id": "string",
"status": "string",
"type": "string"
}
],
"attributes": [
{
"name": "string",
"targetId": "string",
"targetType": "string",
"value": "string"
}
],
"availabilityZone": "string",
"capacityProviderName": "string",
"clusterArn": "string",
"connectivity": "string",
"connectivityAt": number,
"containerInstanceArn": "string",
"containers": [
{
"containerArn": "string",
"cpu": "string",
"exitCode": number,
"gpuIds": [ "string" ],
"healthStatus": "string",
"image": "string",
"imageDigest": "string",
"lastStatus": "string",
"managedAgents": [
{
"lastStartedAt": number,
"lastStatus": "string",
"name": "string",
"reason": "string"
}
],
"memory": "string",
"memoryReservation": "string",
"name": "string",
"networkBindings": [
{
"bindIP": "string",
"containerPort": number,
"hostPort": number,
"protocol": "string"
}
],
"networkInterfaces": [
{
"attachmentId": "string",
"ipv6Address": "string",
"privateIpv4Address": "string"
}
]
],
"reason": "string",
"runtimeId": "string",
"taskArn": "string"
}
],
"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
  "sizeInGiB": number,
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
  {
    "deviceName": "string",
    "deviceType": "string"
  }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
  "containerOverrides": [
    {
      "command": [ "string" ],
      "cpu": number,
      "environment": [
        {
          "name": "string",
          "value": "string"
        }
      ],
      "environmentFiles": [
        {
          "type": "string",
          "value": "string"
        }
      ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [
        {
          "type": "string",
          "value": "string"
        }
      ]
    }
  ],
  "cpu": "string",
  "ephemeralStorage": {
    "sizeInGiB": number,
  },
  "executionRoleArn": "string",
  "inferenceAcceleratorOverrides": [
    {
      "deviceName": "string",
      "deviceType": "string"
    }
  ],
  "memory": "string",
  "taskRoleArn": "string"
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 100)

Any failures associated with the call.

Type: Array of Failure (p. 333) objects

tasks (p. 100)

The list of tasks.

Type: Array of Task (p. 390) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124).

Amazon ECS clusters are Region specific.

HTTP Status Code: 400
InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request provides descriptive information about a task with an ID of 1dc5c17a-422b-4dc4-b493-371970c6c4d6 in the default cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 51
X-Amz-Target: AmazonEC2ContainerServiceV20141113.DescribeTasks
X-Amz-Date: 20161121T214915Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
 "tasks": [
 "1dc5c17a-422b-4dc4-b493-371970c6c4d6"
]
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 21:49:16 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1238
Connection: keep-alive

x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "failures": [],
}
```

API Version 2014-11-13
104
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
See Also

- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DescribeTaskSets

Describes the task sets in the specified cluster and service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
 "cluster": "string",
 "include": ["string"],
 "service": "string",
 "taskSets": ["string"]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 107)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task sets exist in.

Type: String

Required: Yes

include (p. 107)

 Specifies whether to see the resource tags for the task set. If TAGS is specified, the tags are included in the response. If this field is omitted, tags aren't included in the response.

Type: Array of strings

Valid Values: TAGS

Required: No

service (p. 107)

The short name or full Amazon Resource Name (ARN) of the service that the task sets exist in.

Type: String

Required: Yes

taskSets (p. 107)

The ID or full Amazon Resource Name (ARN) of task sets to describe.

Type: Array of strings

Required: No
Response Syntax

```json
{
 "failures": [
 {
 "arn": "string",
 "detail": "string",
 "reason": "string"
 }
],
 "taskSets": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "computedDesiredCount": number,
 "createdAt": number,
 "externalId": "string",
 "id": "string",
 "launchType": "string",
 "loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "runningCount": number,
 "scale": {
 "unit": "string",
 "value": number
 },
 "serviceArn": "string",
 "serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
 "stabilityStatus": "string",
 "stabilityStatusAt": number,
 "startedBy": "string",
 "status": "string",
 "tags": [
 {
 "key": "string",
```
"value": "string"
],
"taskDefinition": "string",
"taskSetArn": "string",
"updatedAt": number
}
]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 108)
Any failures associated with the call.

Type: Array of Failure (p. 333) objects

taskSets (p. 108)
The list of task sets described.

Type: Array of TaskSet (p. 406) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException
You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException
These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException
The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124).
Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException
These errors are usually caused by a server issue.
HTTP Status Code: 500

**ServiceNotActiveException**

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 13).

HTTP Status Code: 400

**ServiceNotFoundException**

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

**UnsupportedFeatureException**

The specified task isn't supported in this Region.

HTTP Status Code: 400

**See Also**

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
DiscoverPollEndpoint

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Returns an endpoint for the Amazon ECS agent to poll for updates.

Request Syntax

```
{
 "cluster": "string",
 "containerInstance": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

**cluster (p. 111)**

The short name or full Amazon Resource Name (ARN) of the cluster that the container instance belongs to.

Type: String

Required: No

**containerInstance (p. 111)**

The container instance ID or full ARN of the container instance. The ARN contains the arn:aws:ecs namespace, followed by the Region of the container instance, the AWS account ID of the container instance owner, the container-instance namespace, and then the container instance ID. For example, arn:aws:ecs:region:aws_account_id:container-instance/container_instance_ID.

Type: String

Required: No

Response Syntax

```
{
 "endpoint": "string",
 "telemetryEndpoint": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
endpoint (p. 111)

The endpoint for the Amazon ECS agent to poll.

Type: String
telemetryEndpoint (p. 111)

The telemetry endpoint for the Amazon ECS agent.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ExecuteCommand

Runs a command remotely on a container within a task.

Request Syntax

```
{
 "cluster": "string",
 "command": "string",
 "container": "string",
 "interactive": boolean,
 "task": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 113)

The Amazon Resource Name (ARN) or short name of the cluster the task is running in. If you do not specify a cluster, the default cluster is assumed.

Type: String
Required: No

command (p. 113)

The command to run on the container.

Type: String
Required: Yes

container (p. 113)

The name of the container to execute the command on. A container name only needs to be specified for tasks containing multiple containers.

Type: String
Required: No

interactive (p. 113)

Use this flag to run your command in interactive mode.

Type: Boolean
Required: Yes

task (p. 113)

The Amazon Resource Name (ARN) or ID of the task the container is part of.

Type: String
Required: Yes
Response Syntax

```json
{
 "clusterArn": "string",
 "containerArn": "string",
 "containerName": "string",
 "interactive": boolean,
 "session": {
 "sessionId": "string",
 "streamUrl": "string",
 "tokenValue": "string"
 },
 "taskArn": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**clusterArn (p. 114)**

The Amazon Resource Name (ARN) of the cluster.

Type: String

**containerArn (p. 114)**

The Amazon Resource Name (ARN) of the container.

Type: String

**containerName (p. 114)**

The name of the container.

Type: String

**interactive (p. 114)**

Determines whether the execute command session is running in interactive mode. Amazon ECS only supports initiating interactive sessions, so you must specify `true` for this value.

Type: Boolean

**session (p. 114)**

The details of the SSM session that was created for this instance of execute-command.

Type: `Session (p. 385)` object

**taskArn (p. 114)**

The Amazon Resource Name (ARN) of the task.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).
AccessDeniedException

You don’t have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn’t have permissions to use the action or resource, or it might be specifying an identifier that isn’t valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn’t found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn’t valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

TargetNotConnectedException

The execute command cannot run. This error can be caused by any of the following configuration issues:
- Incorrect IAM permissions
- The SSM agent is not installed or is not running
- There is an interface Amazon VPC endpoint for Amazon ECS, but there is not one for Systems Manager Session Manager

For information about how to troubleshoot the issues, see Troubleshooting issues with ECS Exec in the Amazon Elastic Container Service Developer Guide.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
See Also

- AWS SDK for Ruby V3
ListAccountSettings

Lists the account settings for a specified principal.

Request Syntax

```json
{
 "effectiveSettings": boolean,
 "maxResults": number,
 "name": "string",
 "nextToken": "string",
 "principalArn": "string",
 "value": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

effectiveSettings (p. 117)

Determines whether to return the effective settings. If true, the account settings for the root user or the default setting for the principalArn are returned. If false, the account settings for the principalArn are returned if they're set. Otherwise, no account settings are returned.

Type: Boolean

Required: No

maxResults (p. 117)

The maximum number of account setting results returned by ListAccountSettings in paginated output. When this parameter is used, ListAccountSettings only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListAccountSettings request with the returned nextToken value. This value can be between 1 and 10. If this parameter isn't used, then ListAccountSettings returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

name (p. 117)

The name of the account setting you want to list the settings for.

Type: String

Valid Values: serviceLongArnFormat | taskLongArnFormat | containerInstanceLongArnFormat | awsvpcTrunking | containerInsights

Required: No

nextToken (p. 117)

The nextToken value returned from a ListAccountSettings request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.
**Note**
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String
Required: No

**principalArn** *(p. 117)*

The ARN of the principal, which can be an IAM user, IAM role, or the root user. If this field is omitted, the account settings are listed only for the authenticated user.

**Note**
Federated users assume the account setting of the root user and can't have explicit account settings set for them.

Type: String
Required: No

**value** *(p. 117)*

The value of the account settings to filter results with. You must also specify an account setting name to use this parameter.

Type: String
Required: No

**Response Syntax**

```
{
 "nextToken": "string",
 "settings": [

 {
 "name": "string",
 "principalArn": "string",
 "value": "string"
 }

]
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**nextToken** *(p. 118)*

The `nextToken` value to include in a future `ListAccountSettings` request. When the results of a `ListAccountSettings` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is `null` when there are no more results to return.

Type: String

**settings** *(p. 118)*

The account settings for the resource.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListAttributes

Lists the attributes for Amazon ECS resources within a specified target type and cluster. When you specify a target type and cluster, ListAttributes returns a list of attribute objects, one for each attribute on each resource. You can filter the list of results to a single attribute name to only return results that have that name. You can also filter the results by attribute name and value. You can do this, for example, to see which container instances in a cluster are running a Linux AMI (ecs.os-type=linux).

Request Syntax

```json
{
 "attributeName": "string",
 "attributeValue": "string",
 "cluster": "string",
 "maxResults": number,
 "nextToken": "string",
 "targetType": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

attributeName (p. 120)

The name of the attribute to filter the results with.

Type: String

Required: No

attributeValue (p. 120)

The value of the attribute to filter results with. You must also specify an attribute name to use this parameter.

Type: String

Required: No

cluster (p. 120)

The short name or full Amazon Resource Name (ARN) of the cluster to list attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

maxResults (p. 120)

The maximum number of cluster results that ListAttributes returned in paginated output. When this parameter is used, ListAttributes only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListAttributes request with the returned nextToken value. This value can be
between 1 and 100. If this parameter isn’t used, then ListAttributes returns up to 100 results and a nextToken value if applicable.

**Type:** Integer  
**Required:** No

**nextToken (p. 120)**

The nextToken value returned from a ListAttributes request indicating that more results are available to fulfill the request and further calls are needed. If maxResults was provided, it’s possible the number of results to be fewer than maxResults.

**Note**  
This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

**Type:** String  
**Required:** No

**targetType (p. 120)**

The type of the target to list attributes with.

**Type:** String  
**Valid Values:** container-instance  
**Required:** Yes

**Response Syntax**

```json
{
 "attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
 "nextToken": "string"
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.  
The following data is returned in JSON format by the service.

**attributes (p. 121)**

A list of attribute objects that meet the criteria of the request.

**Type:** Array of Attribute (p. 275) objects

**nextToken (p. 121)**

The nextToken value to include in a future ListAttributes request. When the results of a ListAttributes request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example lists the attributes for container instances that have the stack=production attribute in the default cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: madison.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 122
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListAttributes
X-Amz-Date: 20161222T181559Z
User-Agent: aws-cli/1.11.30 Python/2.7.12 Darwin/16.3.0 botocore/1.4.87
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
"cluster": "default",
"attributeName": "stack",
"attributeValue": "production",
"targetType": "container-instance"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListClusters

Returns a list of existing clusters.

Request Syntax

```
{
 "maxResults": number,
 "nextToken": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

`maxResults (p. 124)`

The maximum number of cluster results that `ListClusters` returned in paginated output. When this parameter is used, `ListClusters` only returns `maxResults` results in a single page along with a `nextToken` response element. The remaining results of the initial request can be seen by sending another `ListClusters` request with the returned `nextToken` value. This value can be between 1 and 100. If this parameter isn't used, then `ListClusters` returns up to 100 results and a `nextToken` value if applicable.

Type: Integer

Required: No

`nextToken (p. 124)`

The `nextToken` value returned from a `ListClusters` request indicating that more results are available to fulfill the request and further calls are needed. If `maxResults` was provided, it's possible the number of results to be fewer than `maxResults`.

Note

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

Response Syntax

```
{
 "clusterArns": ["string"],
 "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

**clusterArns (p. 124)**

The list of full Amazon Resource Name (ARN) entries for each cluster that's associated with your account.

Type: Array of strings

**nextToken (p. 124)**

The `nextToken` value to include in a future `ListClusters` request. When the results of a `ListClusters` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is `null` when there are no more results to return.

Type: String

**Errors**

For information about the errors that are common to all actions, see [Common Errors (p. 423)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

**InvalidParameterException**

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

**ServerException**

These errors are usually caused by a server issue.

HTTP Status Code: 500

**Examples**

In the following example or examples, the Authorization header contents (`AUTHPARAMS`) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](#) in the [AWS General Reference](#).

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](#) or one of the [AWS SDKs](#) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example request lists the clusters for your account.

**Sample Request**

```plaintext
POST / HTTP/1.1
```
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListClusters
X-Amz-Date: 20150429T170621Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 17:06:21 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 126
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{}
"clusterArns": [
  "arn:aws:ecs:us-east-1:012345678910:cluster/My-cluster",
  "arn:aws:ecs:us-east-1:012345678910:cluster/default"
]

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListContainerInstances

Returns a list of container instances in a specified cluster. You can filter the results of a ListContainerInstances operation with cluster query language statements inside the filter parameter. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
 "cluster": "string",
 "filter": "string",
 "maxResults": number,
 "nextToken": "string",
 "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

`cluster (p. 127)`

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instances to list. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

`filter (p. 127)`

You can filter the results of a ListContainerInstances operation with cluster query language statements. For more information, see Cluster Query Language in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

`maxResults (p. 127)`

The maximum number of container instance results that ListContainerInstances returned in paginated output. When this parameter is used, ListContainerInstances only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListContainerInstances request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListContainerInstances returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No
nextToken (p. 127)

The nextToken value returned from a ListContainerInstances request indicating that more results are available to fulfill the request and further calls are needed. If maxResults was provided, it's possible the number of results to be fewer than maxResults.

**Note**

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

status (p. 127)

Filters the container instances by status. For example, if you specify the DRAINING status, the results include only container instances that have been set to DRAINING using UpdateContainerInstancesState (p. 242). If you don't specify this parameter, the default is to include container instances set to all states other than INACTIVE.

Type: String

Valid Values: ACTIVE | DRAINING | REGISTERING | DEREGISTERING | REGISTRATION FAILED

Required: No

**Response Syntax**

```json
{
 "containerInstanceArns": ["string"],
 "nextToken": "string"
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

`containerInstanceArns` (p. 128)

The list of container instances with full ARN entries for each container instance associated with the specified cluster.

Type: Array of strings

nextToken (p. 128)

The nextToken value to include in a future ListContainerInstances request. When the results of a ListContainerInstances request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

**Errors**

For information about the errors that are common to all actions, see Common Errors (p. 423).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists the container instances in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListContainerInstances
X-Amz-Date: 20150429T175306Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListServices

Returns a list of services. You can filter the results by cluster, launch type, and scheduling strategy.

Request Syntax

```json
{
 "cluster": "string",
 "launchType": "string",
 "maxResults": number,
 "nextToken": "string",
 "schedulingStrategy": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 131)

The short name or full Amazon Resource Name (ARN) of the cluster to use when filtering the ListServices results. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

launchType (p. 131)

The launch type to use when filtering the ListServices results.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

maxResults (p. 131)

The maximum number of service results that ListServices returned in paginated output. When this parameter is used, ListServices only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListServices request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListServices returns up to 10 results and a nextToken value if applicable.

Type: Integer

Required: No

nextToken (p. 131)

The nextToken value returned from a ListServices request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it is possible the number of results to be fewer than maxResults.
Note

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

**schedulingStrategy (p. 131)**

The scheduling strategy to use when filtering the ListServices results.

Type: String

Valid Values: REPLICA | DAEMON

Required: No

**Response Syntax**

```json
{
 "nextToken": "string",
 "serviceArns": ["string"]
}
```

**Response Elements**

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

**nextToken (p. 132)**

The `nextToken` value to include in a future ListServices request. When the results of a ListServices request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

**serviceArns (p. 132)**

The list of full ARN entries for each service that's associated with the specified cluster.

Type: Array of strings

**Errors**

For information about the errors that are common to all actions, see [Common Errors (p. 423)](#).

**ClientException**

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists the services in the default cluster.

Sample Request

```http
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListServices
X-Amz-Date: 20150429T191342Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{}
```

Sample Response

```http
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:13:42 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 138
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "serviceArns": [
```
"arn:aws:ecs:us-east-1:012345678910:service/hello_world",
"arn:aws:ecs:us-east-1:012345678910:service/ecs-simple-service"
]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTagsForResource

List the tags for an Amazon ECS resource.

Request Syntax

```json
{
 "resourceArn": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

resourceArn (p. 135)

The Amazon Resource Name (ARN) that identifies the resource to list the tags for. Currently, the supported resources are Amazon ECS tasks, services, task definitions, clusters, and container instances.

Type: String

Required: Yes

Response Syntax

```json
{
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

tags (p. 135)

The tags for the resource.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example lists the tags for the dev cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: madison.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTagsForResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T195430Z
Authorization: AUTHPARAMS
Content-Length: 72

{
 "resourceArn":"arn:aws:ecs:us-west-2:012345678910:cluster/dev"
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTaskDefinitionFamilies

Returns a list of task definition families that are registered to your account. This list includes task definition families that no longer have any ACTIVE task definition revisions.

You can filter out task definition families that don't contain any ACTIVE task definition revisions by setting the status parameter to ACTIVE. You can also filter the results with the familyPrefix parameter.

Request Syntax

```
{
 "familyPrefix": "string",
 "maxResults": number,
 "nextToken": "string",
 "status": "String"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

familyPrefix (p. 138)

The familyPrefix is a string that's used to filter the results of ListTaskDefinitionFamilies. If you specify a familyPrefix, only task definition family names that begin with the familyPrefix string are returned.

Type: String

Required: No

maxResults (p. 138)

The maximum number of task definition family results that ListTaskDefinitionFamilies returned in paginated output. When this parameter is used, ListTaskDefinitions only returns maxResults results in a single page along with a nextToken response element. The remaining results of the initial request can be seen by sending another ListTaskDefinitionFamilies request with the returned nextToken value. This value can be between 1 and 100. If this parameter isn't used, then ListTaskDefinitionFamilies returns up to 100 results and a nextToken value if applicable.

Type: Integer

Required: No

nextToken (p. 138)

The nextToken value returned from a ListTaskDefinitionFamilies request indicating that more results are available to fulfill the request and further calls will be needed. If maxResults was provided, it is possible the number of results to be fewer than maxResults.

Note

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.
Type: String
Required: No

status (p. 138)

The task definition family status to filter the ListTaskDefinitionFamilies results with. By default, both ACTIVE and INACTIVE task definition families are listed. If this parameter is set to ACTIVE, only task definition families that have an ACTIVE task definition revision are returned. If this parameter is set to INACTIVE, only task definition families that do not have any ACTIVE task definition revisions are returned. If you paginate the resulting output, be sure to keep the status value constant in each subsequent request.

Type: String

Valid Values: ACTIVE | INACTIVE | ALL

Required: No

Response Syntax

```json
{
 "families": ["string"],
 "nextToken": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

families (p. 139)

The list of task definition family names that match the ListTaskDefinitionFamilies request.

Type: Array of strings

nextToken (p. 139)

The nextToken value to include in a future ListTaskDefinitionFamilies request. When the results of a ListTaskDefinitionFamilies request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400
**Examples**

In the following example or examples, the Authorization header contents (**AUTHPARAMS**) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](#) in the [AWS General Reference](#).

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](#) or one of the [AWS SDKs](#) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

**Example**

This example request lists all of the task definition families in your account in the current Region.

**Sample Request**

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitionFamilies
X-Amz-Date: 20150429T191650Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{}
```

**Sample Response**

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:16:51 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 270
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{
 "families": [
 "console-sample-app",
 "ecs-demo",
 "ecs-private",
 "hello_world",
 "hpcc",
 "hpcc-t2-medium",
 "image-dedupe",
]
}``
Example

This example request lists all of the task definition families in your account in the current Region that begin with hpcc.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 24
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitionFamilies
X-Amz-Date: 20150429T191825Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
  "familyPrefix": "hpcc"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:18:25 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 38
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
  "families": [
    "hpcc",
    "hpcc-t2-medium"
  ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
See Also

- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTaskDefinitions

Returns a list of task definitions that are registered to your account. You can filter the results by family name with the `familyPrefix` parameter or by status with the `status` parameter.

Request Syntax

```json
{
  "familyPrefix": "string",
  "maxResults": number,
  "nextToken": "string",
  "sort": "string",
  "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

`familyPrefix (p. 143)`

The full family name to filter the `ListTaskDefinitions` results with. Specifying a `familyPrefix` limits the listed task definitions to task definition revisions that belong to that family.

Type: String

Required: No

`maxResults (p. 143)`

The maximum number of task definition results that `ListTaskDefinitions` returned in paginated output. When this parameter is used, `ListTaskDefinitions` only returns `maxResults` results in a single page along with a `nextToken` response element. The remaining results of the initial request can be seen by sending another `ListTaskDefinitions` request with the returned `nextToken` value. This value can be between 1 and 100. If this parameter isn't used, then `ListTaskDefinitions` returns up to 100 results and a `nextToken` value if applicable.

Type: Integer

Required: No

`nextToken (p. 143)`

The `nextToken` value returned from a `ListTaskDefinitions` request indicating that more results are available to fulfill the request and further calls will be needed. If `maxResults` was provided, it is possible the number of results to be fewer than `maxResults`.

Note

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No
sort (p. 143)

The order to sort the results in. Valid values are ASC and DESC. By default, (ASC) task definitions are listed lexicographically by family name and in ascending numerical order by revision so that the newest task definitions in a family are listed last. Setting this parameter to DESC reverses the sort order on family name and revision. This is so that the newest task definitions in a family are listed first.

Type: String
Valid Values: ASC | DESC
Required: No

status (p. 143)

The task definition status to filter the ListTaskDefinitions results with. By default, only ACTIVE task definitions are listed. By setting this parameter to INACTIVE, you can view task definitions that are INACTIVE as long as an active task or service still references them. If you paginate the resulting output, be sure to keep the status value constant in each subsequent request.

Type: String
Valid Values: ACTIVE | INACTIVE
Required: No

Response Syntax

```
{
    "nextToken": "string",
    "taskDefinitionArns": [ "string" ]
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken (p. 144)

The nextToken value to include in a future ListTaskDefinitions request. When the results of a ListTaskDefinitions request exceed maxResults, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

taskDefinitionArns (p. 144)

The list of task definition Amazon Resource Name (ARN) entries for the ListTaskDefinitions request.

Type: Array of strings

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).
ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request lists all of the task definitions in the hello_world family.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 31
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTaskDefinitions
X-Amz-Date: 20150429T192041Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
  "familyPrefix": "hello_world"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:20:41 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 695
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
ListTasks

Returns a list of tasks. You can filter the results by cluster, task definition family, container instance, launch type, what IAM principal started the task, or by the desired status of the task.

Recently stopped tasks might appear in the returned results. Currently, stopped tasks appear in the returned results for at least one hour.

Request Syntax

```
{
    "cluster": "string",
    "containerInstance": "string",
    "desiredStatus": "string",
    "family": "string",
    "launchType": "string",
    "maxResults": number,
    "nextToken": "string",
    "serviceName": "string",
    "startedBy": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 147)

The short name or full Amazon Resource Name (ARN) of the cluster to use when filtering the ListTasks results. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

containerInstance (p. 147)

The container instance ID or full ARN of the container instance to use when filtering the ListTasks results. Specifying a containerInstance limits the results to tasks that belong to that container instance.

Type: String

Required: No

desiredStatus (p. 147)

The task desired status to use when filtering the ListTasks results. Specifying a desiredStatus of STOPPED limits the results to tasks that Amazon ECS has set the desired status to STOPPED. This can be useful for debugging tasks that aren't starting properly or have died or finished. The default status filter is RUNNING, which shows tasks that Amazon ECS has set the desired status to RUNNING.

Note

Although you can filter results based on a desired status of PENDING, this doesn't return any results. Amazon ECS never sets the desired status of a task to that value (only a task's lastStatus may have a value of PENDING).
Request Parameters

Type: String

Valid Values: RUNNING | PENDING | STOPPED

Required: No

family (p. 147)

The name of the task definition family to use when filtering the `ListTasks` results. Specifying a family limits the results to tasks that belong to that family.

Type: String

Required: No

launchType (p. 147)

The launch type to use when filtering the `ListTasks` results.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

maxResults (p. 147)

The maximum number of task results that `ListTasks` returned in paginated output. When this parameter is used, `ListTasks` only returns `maxResults` results in a single page along with a `nextToken` response element. The remaining results of the initial request can be seen by sending another `ListTasks` request with the returned `nextToken` value. This value can be between 1 and 100. If this parameter isn't used, then `ListTasks` returns up to 100 results and a `nextToken` value if applicable.

Type: Integer

Required: No

nextToken (p. 147)

The `nextToken` value returned from a `ListTasks` request indicating that more results are available to fulfill the request and further calls will be needed. If `maxResults` was provided, it's possible the number of results to be fewer than `maxResults`.

Note

This token should be treated as an opaque identifier that is only used to retrieve the next items in a list and not for other programmatic purposes.

Type: String

Required: No

serviceName (p. 147)

The name of the service to use when filtering the `ListTasks` results. Specifying a `serviceName` limits the results to tasks that belong to that service.

Type: String

Required: No

startedBy (p. 147)

The `startedBy` value to filter the task results with. Specifying a `startedBy` value limits the results to tasks that were started with that value.

Type: String
Response Syntax

{ "nextToken": "string", "taskArns": ["string"]}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

nextToken (p. 149)

The `nextToken` value to include in a future `ListTasks` request. When the results of a `ListTasks` request exceed `maxResults`, this value can be used to retrieve the next page of results. This value is null when there are no more results to return.

Type: String

taskArns (p. 149)

The list of task ARN entries for the `ListTasks` request.

Type: Array of strings

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with `ListClusters` (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500
ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don’t have to sign requests yourself.

Example

This example request lists all of the tasks in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 2
X-Amz-Target: AmazonEC2ContainerServiceV20141113.ListTasks
X-Amz-Date: 20150429T192615Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:26:16 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 330
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
{
  "taskArns": [
    "arn:aws:ecs:us-east-1:012345678910:task/0b69d5c0-d655-4695-98cd-5d2d526d9d5a",
    "arn:aws:ecs:us-east-1:012345678910:task/51a01bdf-d00e-487e-ab14-7645330b6207",
    "arn:aws:ecs:us-east-1:012345678910:task/b0b28bb8-2be3-4810-b52b-88df129d893c",
    "arn:aws:ecs:us-east-1:012345678910:task/c09f0188-7f87-4b0f-bfca-16296622b6fe"
  ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAccountSetting

Modifies an account setting. Account settings are set on a per-Region basis.

If you change the account setting for the root user, the default settings for all of the IAM users and roles that no individual account setting was specified are reset for. For more information, see Account Settings in the Amazon Elastic Container Service Developer Guide.

When serviceLongArnFormat, taskLongArnFormat, or containerInstanceLongArnFormat are specified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified IAM user, IAM role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the IAM user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

When awsvpcTrunking is specified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is enabled, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide.

When containerInsights is specified, the default setting indicating whether CloudWatch Container Insights is enabled for your clusters is changed. If containerInsights is enabled, any new clusters that are created will have Container Insights enabled unless you disable it during cluster creation. For more information, see CloudWatch Container Insights in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
    "name": "String",
    "principalArn": "string",
    "value": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

name (p. 152)

The Amazon ECS resource name for which to modify the account setting. If serviceLongArnFormat is specified, the ARN for your Amazon ECS services is affected. If taskLongArnFormat is specified, the ARN and resource ID for your Amazon ECS tasks is affected. If containerInstanceLongArnFormat is specified, the ARN and resource ID for your Amazon ECS container instances is affected. If awsvpcTrunking is specified, the elastic network interface (ENI) limit for your Amazon ECS container instances is affected. If containerInsights is specified, the default setting for CloudWatch Container Insights for your clusters is affected.

Type: String

Valid Values: serviceLongArnFormat | taskLongArnFormat | containerInstanceLongArnFormat | awsvpcTrunking | containerInsights
principalArn (p. 152)

The ARN of the principal, which can be an IAM user, IAM role, or the root user. If you specify the root user, it modifies the account setting for all IAM users, IAM roles, and the root user of the account unless an IAM user or role explicitly overrides these settings. If this field is omitted, the setting is changed only for the authenticated user.

Note
Federated users assume the account setting of the root user and can't have explicit account settings set for them.

Type: String
Required: No

value (p. 152)

The account setting value for the specified principal ARN. Accepted values are enabled and disabled.

Type: String
Required: Yes

Response Syntax

```json
{
  "setting": {
    "name": "string",
    "principalArn": "string",
    "value": "string"
  }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

setting (p. 153)

The current account setting for a resource.

Type: Setting (p. 386) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.
HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAccountSettingDefault

Modifies an account setting for all IAM users on an account for whom no individual account setting has been specified. Account settings are set on a per-Region basis.

Request Syntax

```json
{
   "name": "string",
   "value": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

name (p. 155)

The resource name for which to modify the account setting. If `serviceLongArnFormat` is specified, the ARN for your Amazon ECS services is affected. If `taskLongArnFormat` is specified, the ARN and resource ID for your Amazon ECS tasks is affected. If `containerInstanceLongArnFormat` is specified, the ARN and resource ID for your Amazon ECS container instances is affected. If `awsVpcTrunking` is specified, the ENI limit for your Amazon ECS container instances is affected. If `containerInsights` is specified, the default setting for CloudWatch Container Insights for your clusters is affected.

Type: String

Valid Values: `serviceLongArnFormat` | `taskLongArnFormat` | `containerInstanceLongArnFormat` | `awsVpcTrunking` | `containerInsights`

Required: Yes

value (p. 155)

The account setting value for the specified principal ARN. Accepted values are `enabled` and `disabled`.

Type: String

Required: Yes

Response Syntax

```json
{
   "setting": {
      "name": "string",
      "principalArn": "string",
      "value": "string"
   }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response. The following data is returned in JSON format by the service.

setting (p. 155)

The current setting for a resource.

Type: Setting (p. 386) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
PutAttributes

Create or update an attribute on an Amazon ECS resource. If the attribute doesn't exist, it's created. If the attribute exists, its value is replaced with the specified value. To delete an attribute, use DeleteAttributes (p. 38). For more information, see Attributes in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
    "attributes": [
        {
            "name": "string",
            "targetId": "string",
            "targetType": "string",
            "value": "string"
        },
        {
            "name": "string",
            "targetId": "string",
            "targetType": "string",
            "value": "string"
        }
    ],
    "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

attributes (p. 157)

The attributes to apply to your resource. You can specify up to 10 custom attributes for each resource. You can specify up to 10 attributes in a single call.

Type: Array of Attribute (p. 275) objects

Required: Yes

cluster (p. 157)

The short name or full Amazon Resource Name (ARN) of the cluster that contains the resource to apply attributes. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

Response Syntax

```
{
    "attributes": [
        {
            "name": "string",
            "targetId": "string",
            "targetType": "string",
            "value": "string"
        }
    ]
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

attributes (p. 157)

The attributes applied to your resource.

Type: Array of Attribute (p. 275) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AttributeLimitExceededException

You can apply up to 10 custom attributes for each resource. You can view the attributes of a resource with ListAttributes (p. 120). You can remove existing attributes on a resource with DeleteAttributes (p. 38).

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

TargetNotFoundException

The specified target wasn't found. You can view your available container instances with ListContainerInstances (p. 127). Amazon ECS container instances are cluster-specific and Region-specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

API Version 2014-11-13

158
Example

This example applies an attribute with the name `stack` and the value `production` to a container instance.

Sample Request

```plaintext
POST / HTTP/1.1
Host: madison.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 192
X-Amz-Target: AmazonEC2ContainerServiceV20141113.PutAttributes
X-Amz-Date: 20161222T180005Z
User-Agent: aws-cli/1.11.30 Python/2.7.12 Darwin/16.3.0 botocore/1.4.87
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
   "cluster": "default-gamma",
   "attributes": [
      {
         "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-df30-47b4-8f1e-6e68eb01f34",
         "name": "stack",
         "value": "production"
      }
   ]
}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Thu, 22 Dec 2016 18:00:06 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 158
Connection: keep-alive
x-amzn-RequestId: 7835c1be-c870-11e6-a3b0-295902c79de2

{
   "attributes": [
      {
         "name": "stack",
         "targetId": "arn:aws:ecs:us-west-2:130757420319:container-instance/1c3be8ed-
df30-47b4-8f1e-6e68eb01f34",
         "value": "production"
      }
   ]
}
```

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
PutClusterCapacityProviders

Modifies the available capacity providers and the default capacity provider strategy for a cluster.

You must specify both the available capacity providers and a default capacity provider strategy for the cluster. If the specified cluster has existing capacity providers associated with it, you must specify all existing capacity providers in addition to any new ones you want to add. Any existing capacity providers that are associated with a cluster that are omitted from a PutClusterCapacityProviders (p. 161) API call will be disassociated with the cluster. You can only disassociate an existing capacity provider from a cluster if it's not being used by any existing tasks.

When creating a service or running a task on a cluster, if no capacity provider or launch type is specified, then the cluster's default capacity provider strategy is used. We recommend that you define a default capacity provider strategy for your cluster. However, you must specify an empty array ([]) to bypass defining a default strategy.

Request Syntax

```
{
    "capacityProviders": [ "string" ],
    "cluster": "string",
    "defaultCapacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

capacityProviders (p. 161)

The name of one or more capacity providers to associate with the cluster.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

Type: Array of strings

Required: Yes

cluster (p. 161)

The short name or full Amazon Resource Name (ARN) of the cluster to modify the capacity provider settings for. If you don't specify a cluster, the default cluster is assumed.
Type: String

Required: Yes

defaultCapacityProviderStrategy (p. 161)

The capacity provider strategy to use by default for the cluster.

When creating a service or running a task on a cluster, if no capacity provider or launch type is specified then the default capacity provider strategy for the cluster is used.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 161) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

Type: Array of CapacityProviderStrategyItem (p. 281) objects

Required: Yes

Response Syntax

```json
{
    "cluster": {
        "activeServicesCount": number,
        "attachments": [
            {
                "details": [
                    {
                        "name": "string",
                        "value": "string"
                    }
                ],
                "id": "string",
                "status": "string",
                "type": "string"
            }
        ],
        "attachmentsStatus": "string",
        "capacityProviders": [ "string" ],
        "clusterArn": "string",
        "clusterName": "string",
        "defaultCapacityProviderStrategy": [
            {
                "base": number,
                "capacityProvider": "string",
                "weight": number
            }
        ],
        "pendingTasksCount": number,
        "registeredContainerInstancesCount": number,
        "runningTasksCount": number
    }
}
```

API Version 2014-11-13
"settings": [
 {
 "name": "string",
 "value": "string"
 }
],
"statistics": [
 {
 "name": "string",
 "value": "string"
 }
],
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
]

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

cluster (p. 162)

Details about the cluster.

Type: Cluster (p. 283) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidArgumentException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceInUseException

The specified resource is in-use and can't be removed.
HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as PENDING or STAGING, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RegisterContainerInstance

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Registers an EC2 instance into the specified cluster. This instance becomes available to place containers on.

Request Syntax

```json
{
  "attributes": [
    {
      "name": "string",
      "targetId": "string",
      "targetType": "string",
      "value": "string"
    }
  ],
  "cluster": "string",
  "containerInstanceArn": "string",
  "instanceIdentityDocument": "string",
  "instanceIdentityDocumentSignature": "string",
  "platformDevices": [
    {
      "id": "string",
      "type": "string"
    }
  ],
  "tags": [
    {
      "key": "string",
      "value": "string"
    }
  ],
  "totalResources": [
    {
      "doubleValue": number,
      "integerValue": number,
      "longValue": number,
      "name": "string",
      "stringSetValue": [ "string" ],
      "type": "string"
    }
  ],
  "versionInfo": {
    "agentHash": "string",
    "agentVersion": "string",
    "dockerVersion": "string"
  }
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.
attributes (p. 165)

The container instance attributes that this container instance supports.

Type: Array of Attribute (p. 275) objects

Required: No

cluster (p. 165)

The short name or full Amazon Resource Name (ARN) of the cluster to register your container instance with. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

containerInstanceArn (p. 165)

The ARN of the container instance (if it was previously registered).

Type: String

Required: No

instanceIdentityDocument (p. 165)

The instance identity document for the EC2 instance to register. This document can be found by running the following command from the instance:

```
```

Type: String

Required: No

instanceIdentityDocumentSignature (p. 165)

The instance identity document signature for the EC2 instance to register. This signature can be found by running the following command from the instance:

```
```

Type: String

Required: No

platformDevices (p. 165)

The devices that are available on the container instance. The only supported device type is a GPU.

Type: Array of PlatformDevice (p. 364) objects

Required: No

tags (p. 165)

The metadata that you apply to the container instance to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
• Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = _ : / @.
• Tag keys and values are case-sensitive.
• Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects
Array Members: Minimum number of 0 items. Maximum number of 50 items.
Required: No

totalResources (p. 165)
The resources available on the instance.
Type: Array of Resource (p. 370) objects
Required: No

versionInfo (p. 165)
The version information for the Amazon ECS container agent and Docker daemon that runs on the container instance.
Type: VersionInfo (p. 413) object
Required: No

Response Syntax

```json
{
    "containerInstance": {
        "agentConnected": boolean,
        "agentUpdateStatus": "string",
        "attachments": [
            {
                "details": [
                    {
                        "name": "string",
                        "value": "string"
                    }
                ],
                "id": "string",
                "status": "string",
                "type": "string"
            }
        ],
        "attributes": [
            {
                "name": "string",
                "targetId": "string",
                "targetType": "string",
                "value": "string"
            }
        ],
        "capacityProviderName": "string"
    }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstance (p. 167)

The container instance that was registered.

Type: ContainerInstance (p. 306) object
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RegisterTaskDefinition

Registers a new task definition from the supplied family and containerDefinitions. Optionally, you can add data volumes to your containers with the volumes parameter. For more information about task definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide.

You can specify an IAM role for your task with the taskRoleArn parameter. When you specify an IAM role for a task, its containers can then use the latest versions of the AWS CLI or SDKs to make API requests to the AWS services that are specified in the IAM policy that's associated with the role. For more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

You can specify a Docker networking mode for the containers in your task definition with the networkMode parameter. The available network modes correspond to those described in Network settings in the Docker run reference. If you specify the awsvpc network mode, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration (p. 360) when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
  "containerDefinitions": [
    {
      "command": ["string"],
      "cpu": number,
      "dependsOn": [
        {
          "condition": "string",
          "containerName": "string"
        }
      ],
      "disableNetworking": boolean,
      "dnsSearchDomains": ["string"],
      "dnsServers": ["string"],
      "dockerLabels": {
        "string": "string"
      },
      "dockerSecurityOptions": ["string"],
      "entryPoint": ["string"],
      "environment": [
        {
          "name": "string",
          "value": "string"
        }
      ],
      "environmentFiles": [
        {
          "type": "string",
          "value": "string"
        }
      ],
      "essential": boolean,
      "extraHosts": [
        {
          "hostname": "string",
          "ipAddress": "string"
        }
      ],
      "firelensConfiguration": {
        "options": {
```
"string" : "string"
},
"type": "string"
},
"healthCheck": {
"command": ["string"],
"interval": number,
"retries": number,
"startPeriod": number,
"timeout": number
},
"hostname": "string",
"image": "string",
"interactive": boolean,
"links": ["string"],
"linuxParameters": {
"capabilities": {
"add": ["string"],
"drop": ["string"]
},
"devices": [
{
"containerPath": "string",
"hostPath": "string",
"permissions": ["string"]
}
],
"initProcessEnabled": boolean,
"maxSwap": number,
"sharedMemorySize": number,
"swappiness": number,
"tmpfs": [
{
"containerPath": "string",
"mountOptions": ["string"],
"size": number
}
],
"logConfiguration": {
"logDriver": "string",
"options": {
"string": "string"
},
"secretOptions": [
{
"name": "string",
"valueFrom": "string"
}
],
"memory": number,
"memoryReservation": number,
"mountPoints": [
{
"containerPath": "string",
"readOnly": boolean,
"sourceVolume": "string"
}
],
"name": "string",
"portMappings": [
{
"containerPort": number,
"hostPort": number,
"protocol": "string"


```
},
  "privileged": boolean,
  "pseudo_terminal": boolean,
  "readonly_root_filesystem": boolean,
  "repository_credentials": {
    "credentialsParameter": "string"
  },
  "resource_requirements": [
    {
      "type": "string",
      "value": "string"
    }
  ],
  "secrets": [
    {
      "name": "string",
      "valueFrom": "string"
    }
  ],
  "start_timeout": number,
  "stop_timeout": number,
  "system_controls": [
    {
      "namespace": "string",
      "value": "string"
    }
  ],
  "ulimits": [
    {
      "hard_limit": number,
      "name": "string",
      "soft_limit": number
    }
  ],
  "user": "string",
  "volumes_from": [
    {
      "readonly": boolean,
      "source_container": "string"
    }
  ],
  "working_directory": "string"
},
  "cpu": "string",
  "ephemeral_storage": {
    "size_in_giB": number
  },
  "execution_role_arn": "string",
  "family": "string",
  "inference_accelerators": [
    {
      "device_name": "string",
      "device_type": "string"
    }
  ],
  "ipc_mode": "string",
  "memory": "string",
  "network_mode": "string",
  "pid_mode": "string",
  "placement_constraints": [
    {
      "expression": "string",
      "type": "string"
    }
  ]
```

API Version 2014-11-13

172

],
 "proxyConfiguration": {
 "containerName": "string",
 "properties": [
 {
 "name": "string",
 "value": "string"
 }
],
 "type": "string"
 },
 "requiresCompatibilities": ["string"],
 "runtimePlatform": {
 "cpuArchitecture": "string",
 "operatingSystemFamily": "string"
 },
 "tags": [
 {
 "key": "string",
 "value": "string"
 }
],
 "taskRoleArn": "string",
 "volumes": [
 {
 "dockerVolumeConfiguration": {
 "autoprovision": boolean,
 "driver": "string",
 "driverOpts": {
 "string": "string"
 },
 "labels": {
 "string": "string"
 },
 "scope": "string"
 },
 "efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",
 "transitEncryptionPort": number
 },
 "fsxWindowsFileserverVolumeConfiguration": {
 "authorizationConfig": {
 "credentialsParameter": "string",
 "domain": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string"
 },
 "host": {
 "sourcePath": "string"
 },
 "name": "string"
 }
]
}
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

containerDefinitions (p. 170)

A list of container definitions in JSON format that describe the different containers that make up your task.

Type: Array of ContainerDefinition (p. 292) objects

Required: Yes

cpu (p. 170)

The number of CPU units used by the task. It can be expressed as an integer using CPU units (for example, 1024) or as a string using vCPUs (for example, 1 vCPU or 1 vcpu) in a task definition. String values are converted to an integer indicating the CPU units when the task definition is registered.

Note
Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.

If you're using the EC2 launch type, this field is optional. Supported values are between 128 CPU units (0.125 vCPUs) and 10240 CPU units (10 vCPUs).

If you're using the Fargate launch type, this field is required and you must use one of the following values, which determines your range of supported values for the memory parameter:

• 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
• 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
• 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
• 2048 (2 vCPU) - Available memory values: Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
• 4096 (4 vCPU) - Available memory values: Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)

Type: String

Required: No

ephemeralStorage (p. 170)

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on AWS Fargate. For more information, see Fargate task storage in the Amazon ECS User Guide for AWS Fargate.

Note
This parameter is only supported for tasks hosted on Fargate using the following platform versions:
• Linux platform version 1.4.0 or later.
• Windows platform version 1.0.0 or later.
Type: EphemeralStorage (p. 329) **object**

ExecutionRoleArn (p. 170)

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make AWS API calls on your behalf. The task execution IAM role is required depending on the requirements of your task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

Family (p. 170)

You must specify a family for a task definition. You can use it to track multiple versions of the same task definition. The family is used as a name for your task definition. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed.

Type: String

Required: Yes

InferenceAccelerators (p. 170)

The Elastic Inference accelerators to use for the containers in the task.

Type: Array of InferenceAccelerator (p. 342) **objects**

Required: No

IpcMode (p. 170)

The IPC resource namespace to use for the containers in the task. The valid values are host, task, or none. If host is specified, then all containers within the tasks that specified the host IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If task is specified, all containers within the specified task share the same IPC resources. If none is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance. For more information, see IPC settings in the Docker run reference.

If the host IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose. For more information, see Docker security.

If you are setting namespaced kernel parameters using systemControls for the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.

- For tasks that use the host IPC mode, IPC namespace related systemControls are not supported.
- For tasks that use the task IPC mode, IPC namespace related systemControls will apply to all containers within a task.

Note

This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: String

Valid Values: host | task | none

Required: No
memory (p. 170)

The amount of memory (in MiB) used by the task. It can be expressed as an integer using MiB (for example, 1024) or as a string using GB (for example, 1GB or 1 GB) in a task definition. String values are converted to an integer indicating the MiB when the task definition is registered.

Note

Task-level CPU and memory parameters are ignored for Windows containers. We recommend specifying container-level resources for Windows containers.

If using the EC2 launch type, this field is optional.

If using the Fargate launch type, this field is required and you must use one of the following values. This determines your range of supported values for the cpu parameter.

If you use Windows containers on Fargate, the CPU units cannot be less than 1 vCPU.

- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)

Type: String

Required: No

networkMode (p. 170)

The Docker networking mode to use for the containers in the task. The valid values are none, bridge, awsvpc, and host. If no network mode is specified, the default is bridge.

For Amazon ECS tasks on Fargate, the awsvpc network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <default> or awsvpc can be used. If the network mode is set to none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The host and awsvpc network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the bridge mode.

With the host and awsvpc network modes, exposed container ports are mapped directly to the corresponding host port (for the host network mode) or the attached elastic network interface port (for the awsvpc network mode), so you cannot take advantage of dynamic host port mappings.

Important

When using the host network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.

If the network mode is awsvpc, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration (p. 360) value when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.

If the network mode is host, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.

For more information, see Network settings in the Docker run reference.
Type: String

Valid Values: bridge | host | awsvpc | none

Required: No

pidMode (p. 170)

The process namespace to use for the containers in the task. The valid values are **host** or **task**. If **host** is specified, then all containers within the tasks that specified the **host** PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance. If **task** is specified, all containers within the specified task share the same process namespace. If no value is specified, the default is a private namespace. For more information, see PID settings in the Docker run reference.

If the **host** PID mode is used, be aware that there is a heightened risk of undesired process namespace expose. For more information, see Docker security.

Note

This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: String

Valid Values: host | task

Required: No

placementConstraints (p. 170)

An array of placement constraint objects to use for the task. You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

Type: Array of TaskDefinitionPlacementConstraint (p. 403) objects

Required: No

proxyConfiguration (p. 170)

The configuration details for the App Mesh proxy.

For tasks hosted on Amazon EC2 instances, the container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the ecs-init package to use a proxy configuration. If your container instances are launched from the Amazon ECS-optimized AMI version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized AMI versions in the Amazon Elastic Container Service Developer Guide.

Type: ProxyConfiguration (p. 367) object

Required: No

requiresCompatibilities (p. 170)

The task launch type that Amazon ECS validates the task definition against. A client exception is returned if the task definition doesn't validate against the compatibilities specified. If no value is specified, the parameter is omitted from the response.

Type: Array of strings

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No
runtimePlatform (p. 170)

The operating system that your tasks definitions run on. A platform family is specified only for tasks using the Fargate launch type.

When you specify a task definition in a service, this value must match the runtimePlatform value of the service.

Type: RuntimePlatform (p. 373) object

Required: No

tags (p. 170)

The metadata that you apply to the task definition to help you categorize and organize them. Each tag consists of a key and an optional value. You define both of them.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskRoleArn (p. 170)

The short name or full Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

volumes (p. 170)

A list of volume definitions in JSON format that containers in your task might use.

Type: Array of Volume (p. 414) objects

Required: No

Response Syntax

```json
{
  "tags": [
  ]
}
```
"key": "string",
"value": "string"
}
,"taskDefinition": {
 "compatibilities": ["string"],
 "containerDefinitions": [
 {
 "command": ["string"],
 "cpu": number,
 "dependsOn": [
 {
 "condition": "string",
 "containerName": "string"
 }
],
 "disableNetworking": boolean,
 "dnsSearchDomains": ["string"],
 "dnsServers": ["string"],
 "dockerLabels": {
 "string": "string"
 },
 "dockerSecurityOptions": ["string"],
 "entryPoint": ["string"],
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "essential": boolean,
 "extraHosts": [
 {
 "hostname": "string",
 "ipAddress": "string"
 }
],
 "firelensConfiguration": {
 "options": {
 "string": "string"
 },
 "type": "string"
 },
 "healthCheck": {
 "command": ["string"],
 "interval": number,
 "retries": number,
 "startPeriod": number,
 "timeout": number
 },
 "hostname": "string",
 "image": "string",
 "interactive": boolean,
 "links": ["string"],
 "linuxParameters": {
 "capabilities": {
 "add": ["string"],
 "drop": ["string"]
 },
 "devices": ["string"]
 }
 }
]
}
{
 "containerPath": "string",
 "hostPath": "string",
 "permissions": ["string"]
}

"initProcessEnabled": boolean,
"maxSwap": number,
"sharedMemorySize": number,
"swappiness": number,
"tmpfs": [
 { "containerPath": "string",
 "mountOptions": ["string"],
 "size": number
 }
],
"logConfiguration": {
 "logDriver": "string",
 "options": {
 "string": "string"
 },
 "secretOptions": [
 {
 "name": "string",
 "valueFrom": "string"
 }
],
 "memory": number,
 "memoryReservation": number,
 "mountPoints": [
 { "containerPath": "string",
 "readOnly": boolean,
 "sourceVolume": "string"
 }
],
 "name": "string",
 "portMappings": [
 { "containerPort": number,
 "hostPort": number,
 "protocol": "string"
 }
],
 "privileged": boolean,
 "pseudoTerminal": boolean,
 "readonlyRootFilesystem": boolean,
 "repositoryCredentials": {
 "credentialsParameter": "string"
 },
 "resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
],
 "secrets": [
 {
 "name": "string",
 "valueFrom": "string"
 }
],
 "startTimeout": number,
}
"stopTimeout": number,
"systemControls": [
{ "namespace": "string",
 "value": "string"
}
],
"ulimits": [
{ "hardLimit": number,
 "name": "string",
 "softLimit": number
}
],
"user": "string",
"volumesFrom": [
{ "readOnly": boolean,
 "sourceContainer": "string"
}
],
"workingDirectory": "string"
],
"cpu": "string",
"deregisteredAt": number,
"ephemeralStorage": {
 "sizeInGiB": number
},
"executionRoleArn": "string",
"family": "string",
"inferenceAccelerators": [
{ "deviceName": "string",
 "deviceType": "string"
}
],
"ipcMode": "string",
"memory": "string",
"networkMode": "string",
"pidMode": "string",
"placementConstraints": [
{ "expression": "string",
 "type": "string"
}
],
"proxyConfiguration": {
 "containerName": "string",
 "properties": [
 { "name": "string",
 "value": "string"
 }
],
 "type": "string"
},
"registeredAt": number,
"registeredBy": "string",
"requiresAttributes": [
{ "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

tags (p. 178)

The list of tags associated with the task definition.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.
Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request registers a task definition in the hello_world family with the host networking mode.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 486
X-Amz-Target: AmazonEC2ContainerServiceV20141113.RegisterTaskDefinition
X-Amz-Date: 20150429T193109Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS
{
```

API Version 2014-11-13

183
"networkMode": "host",
"containerDefinitions": [
 {
 "name": "wordpress",
 "links": [
 "mysql"
],
 "image": "wordpress",
 "essential": true,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 500,
 "cpu": 10
 },
 {
 "name": "mysql",
 "image": "mysql",
 "cpu": 10,
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "password"
 }
],
 "memory": 500,
 "essential": true
 }
],
"family": "hello_world"
}
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
RunTask

Starts a new task using the specified task definition.

You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.

Alternatively, you can use StartTask (p. 198) to use your own scheduler or place tasks manually on specific container instances.

The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command.

To manage eventual consistency, you can do the following:

• Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time.

• Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.

Request Syntax

```json
{
    "capacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ],
    "cluster": "string",
    "count": number,
    "enableECSManagedTags": boolean,
    "enableExecuteCommand": boolean,
    "group": "string",
    "launchType": "string",
    "networkConfiguration": {
        "awsvpcConfiguration": {
            "assignPublicIp": "string",
            "securityGroups": [ "string" ],
            "subnets": [ "string" ]
        }
    },
    "overrides": {
        "containerOverrides": [
            {
                "command": [ "string" ],
                "cpu": number,
                "environment": [
                    {
                        "name": "string",
                        "value": "string"
                    }
                ]
            }
        ]
    }
}
```
The request accepts the following data in JSON format.

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.
capacityProviderStrategy (p. 186)

The capacity provider strategy to use for the task.

If a `capacityProviderStrategy` is specified, the `launchType` parameter must be omitted. If no `capacityProviderStrategy` or `launchType` is specified, the default `CapacityProviderStrategy` for the cluster is used.

When you use cluster auto scaling, you must specify `capacityProviderStrategy` and not `launchType`.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Type: Array of `CapacityProviderStrategyItem (p. 281)` objects

Required: No

cluster (p. 186)

The short name or full Amazon Resource Name (ARN) of the cluster to run your task on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

count (p. 186)

The number of instantiations of the specified task to place on your cluster. You can specify up to 10 tasks for each call.

Type: Integer

Required: No

enableECSManagedTags (p. 186)

Specifies whether to use Amazon ECS managed tags for the task. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean

Required: No

enableExecuteCommand (p. 186)

Determines whether to use the execute command functionality for the containers in this task. If `true`, this enables execute command functionality on all containers in the task.

If `true`, then the task definition must have a task role, or you must provide one as an override.

Type: Boolean

Required: No

group (p. 186)

The name of the task group to associate with the task. The default value is the family name of the task definition (for example, `family:my-family-name`).

Type: String

Required: No

launchType (p. 186)

The infrastructure to run your standalone task on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.
The **FARGATE** launch type runs your tasks on AWS Fargate On-Demand infrastructure.

Note
Fargate Spot infrastructure is available for use but a capacity provider strategy must be used. For more information, see [AWS Fargate capacity providers](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/guidelines-fargate.html) in the *Amazon ECS User Guide for AWS Fargate*.

The **EC2** launch type runs your tasks on Amazon EC2 instances registered to your cluster.

The **EXTERNAL** launch type runs your tasks on your on-premises server or virtual machine (VM) capacity registered to your cluster.

A task can use either a launch type or a capacity provider strategy. If a `launchType` is specified, the `capacityProviderStrategy` parameter must be omitted.

When you use cluster auto scaling, you must specify `capacityProviderStrategy` and not `launchType`.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

networkConfiguration (p. 186)

The network configuration for the task. This parameter is required for task definitions that use the `awsvpc` network mode to receive their own elastic network interface, and it isn't supported for other network modes. For more information, see [Task networking](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html) in the *Amazon Elastic Container Service Developer Guide*.

Type: NetworkConfiguration (p. 360) object

Required: No

overrides (p. 186)

A list of container overrides in JSON format that specify the name of a container in the specified task definition and the overrides it should receive. You can override the default command for a container (that's specified in the task definition or Docker image) with a `command` override. You can also override existing environment variables (that are specified in the task definition or Docker image) on a container or add new environment variables to it with an `environment` override.

A total of 8192 characters are allowed for overrides. This limit includes the JSON formatting characters of the override structure.

Type: TaskOverride (p. 404) object

Required: No

placementConstraints (p. 186)

An array of placement constraint objects to use for the task. You can specify up to 10 constraints for each task (including constraints in the task definition and those specified at runtime).

Type: Array of PlacementConstraint (p. 362) objects

Required: No

placementStrategy (p. 186)

The placement strategy objects to use for the task. You can specify a maximum of 5 strategy rules for each task.
Type: Array of PlacementStrategy (p. 363) objects

Required: No

platformVersion (p. 186)

The platform version the task uses. A platform version is only specified for tasks hosted on Fargate. If one isn't specified, the LATEST platform version is used. For more information, see AWS Fargate platform versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

propagateTags (p. 186)

Specifies whether to propagate the tags from the task definition to the task. If no value is specified, the tags aren't propagated. Tags can only be propagated to the task during task creation. To add tags to a task after task creation, use the TagResource (p. 222) API action.

Note

An error will be received if you specify the SERVICE option when running a task.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No

referenceId (p. 186)

The reference ID to use for the task. The reference ID can have a maximum length of 1024 characters.

Type: String

Required: No

startedBy (p. 186)

An optional tag specified when a task is started. For example, if you automatically trigger a task to run a batch process job, you could apply a unique identifier for that job to your task with the startedBy parameter. You can then identify which tasks belong to that job by filtering the results of a ListTasks (p. 147) call with the startedBy value. Up to 36 letters (uppercase and lowercase), numbers, hyphens (-), and underscores (_) are allowed.

If a task is started by an Amazon ECS service, then the startedBy parameter contains the deployment ID of the service that starts it.

Type: String

Required: No

tags (p. 186)

The metadata that you apply to the task to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
• Tag keys and values are case-sensitive.
• Do not use $aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 186)

The `family` and `revision` (family:revision) or full ARN of the task definition to run. If a revision isn’t specified, the latest ACTIVE revision is used.

When you create an IAM policy for run-task, you can set the resource to be the latest task definition revision, or a specific revision.

The full ARN value must match the value that you specified as the Resource of the IAM principal's permissions policy.

When you specify the policy resource as the latest task definition version (by setting the Resource in the policy to arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName), then set this value to arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName.

When you specify the policy resource as a specific task definition version (by setting the Resource in the policy to arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:1 or arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:*), then set this value to arn:aws:ecs:us-east-1:111122223333:task-definition/TaskFamilyName:1.

For more information, see Policy Resources for Amazon ECS in the Amazon Elastic Container Service developer Guide.

Type: String

Required: Yes

Response Syntax

```json
{
  "failures": [
    {
      "arn": "string",
      "detail": "string",
      "reason": "string"
    }
  ],
  "tasks": [
    {
      "attachments": [
        {
          "details": [
            {
              "name": "string",
              "value": "string"
            }
          ]
        }
      ]
    }
  ]
}
```

API Version 2014-11-13

191
"value": "string"
],
"id": "string",
"status": "string",
"type": "string"
},
"attributes": [
{
"name": "string",
"targetId": "string",
"targetType": "string",
"value": "string"
}
],
"availabilityZone": "string",
"capacityProviderName": "string",
"clusterArn": "string",
"connectivity": "string",
"connectivityAt": number,
"containerInstanceArn": "string",
"containers": [
{
"containerArn": "string",
"cpu": "string",
"exitCode": number,
"gpuIds": []
},
"healthStatus": "string",
"image": "string",
"imageDigest": "string",
"lastStatus": "string",
"managedAgents": [
{
"lastStartedAt": number,
"lastStatus": "string",
"name": "string",
"reason": "string"
}
],
"memory": "string",
"memoryReservation": "string",
"name": "string",
"networkBindings": [
{
"bindIP": "string",
"containerPort": number,
"hostPort": number,
"protocol": "string"
}
],
"networkInterfaces": [
{
"attachmentId": "string",
"ipv6Address": "string",
"privateIpv4Address": "string"
}
],
"reason": "string",
"runtimeId": "string",
"taskId": "string"
}
],
"cpu": "string",
"createdAt": number,
"desiredStatus": "string"
"enableExecuteCommand": boolean,
"ephemeralStorage": {
 "sizeInGiB": number
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
 "containerOverrides": [
 {
 "command": ["string"],
 "cpu": number,
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "memory": number,
 "memoryReservation": number,
 "name": "string",
 "resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
]
 }
],
 "cpu": "string",
 "ephemeralStorage": {
 "sizeInGiB": number
 },
 "executionRoleArn": "string",
 "inferenceAcceleratorOverrides": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],
 "memory": "string",
 "taskRoleArn": "string"
},
"platformFamily": "string",
"platformVersion": "string",
"pullStartedAt": number,
"pullStoppedAt": number,
"startedAt": number,
"startedBy": "string",
"stopCode": "string",
"stoppedAt": number,
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 191)
Any failures associated with the call.
Type: Array of Failure (p. 333) objects

tasks (p. 191)
A full description of the tasks that were run. The tasks that were successfully placed on your cluster are described here.
Type: Array of Task (p. 390) objects

Errors
For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException
You don't have authorization to perform the requested action.
HTTP Status Code: 400

BlockedException
Your AWS account was blocked. For more information, contact AWS Support.
HTTP Status Code: 400

ClientException
These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.
HTTP Status Code: 400

ClusterNotFoundException
The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.
HTTP Status Code: 400
InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
PlatformTaskDefinitionIncompatibilityException
The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400
PlatformUnknownException
The specified platform version doesn't exist.

HTTP Status Code: 400
ServerException
These errors are usually caused by a server issue.

HTTP Status Code: 500
UnsupportedFeatureException
The specified task isn't supported in this Region.

Examples
In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example
This example request runs the latest ACTIVE revision of the hello_world task definition family in the default cluster.

Sample Request

```json
{
    "count": 1,
    "taskDefinition": "hello_world"
}
```

API Version 2014-11-13
195
Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 21:57:40 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1025
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "failures": [],
 "tasks": [
 {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "containerInstanceArn": "arn:aws:ecs:us-east-1:012345678910:container-instance/4c543eeed-f83f-47da-b1d8-3d23f1da4c64",
 "containers": [
 {
 "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e76594d4-27e1-4c74-98b5-46a435eb769",
 "lastStatus": "PENDING",
 "name": "wordpress",
 "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/fdf2c302-468c-4e55-b884-5331d816e7fb"
 },
 {
 "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/b19106ea-4fa8-4f1d-9767-96922c82b070",
 "lastStatus": "PENDING",
 "name": "mysql",
 "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/fdf2c302-468c-4e55-b884-5331d816e7fb"
 }
],
 "createdAt": 1479765460.842,
 "desiredStatus": "RUNNING",
 "lastStatus": "PENDING",
 "overrides": {
 "containerOverrides": [
 {
 "name": "wordpress"
 },
 {
 "name": "mysql"
 }
],
 "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/fdf2c302-468c-4e55-b884-5331d816e7fb",
 "taskDefinitionArn": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:6",
 "version": 1
 }
 }
]
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
StartTask

Starts a new task from the specified task definition on the specified container instance or instances.

Alternatively, you can use RunTask (p. 186) to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
  "cluster": "string",
  "containerInstances": [ "string" ],
  "enableECSManagedTags": boolean,
  "enableExecuteCommand": boolean,
  "group": "string",
  "networkConfiguration": {
    "awsVpcConfiguration": {
      "assignPublicIp": "string",
      "securityGroups": [ "string" ],
      "subnets": [ "string" ]
    }
  },
  "overrides": {
    "containerOverrides": [ {
      "command": [ "string" ],
      "cpu": number,
      "environment": [ {
        "name": "string",
        "value": "string"
      } ],
      "environmentFiles": [ {
        "type": "string",
        "value": "string"
      } ],
      "memory": number,
      "memoryReservation": number,
      "name": "string",
      "resourceRequirements": [ {
        "type": "string",
        "value": "string"
      } ]
    } ],
    "cpu": "string",
    "ephemeralStorage": { "sizeInGiB": number },
    "executionRoleArn": "string",
    "inferenceAcceleratorOverrides": [ {
      "deviceName": "string",
      "deviceType": "string"
    } ],
    "memory": "string"
}
```
Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 198)

The short name or full Amazon Resource Name (ARN) of the cluster where to start your task. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

containerInstances (p. 198)

The container instance IDs or full ARN entries for the container instances where you would like to place your task. You can specify up to 10 container instances.

Type: Array of strings

Required: Yes

enableECSManagedTags (p. 198)

Specifies whether to use Amazon ECS managed tags for the task. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean

Required: No

enableExecuteCommand (p. 198)

Whether or not the execute command functionality is enabled for the task. If true, this enables execute command functionality on all containers in the task.

Type: Boolean

Required: No

group (p. 198)

The name of the task group to associate with the task. The default value is the family name of the task definition (for example, family:my-family-name).

Type: String
Request Parameters

Required: No

networkConfiguration (p. 198)

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the `aws-vpc` networking mode.

Type: `NetworkConfiguration (p. 360)` object

Required: No

overrides (p. 198)

A list of container overrides in JSON format that specify the name of a container in the specified task definition and the overrides it receives. You can override the default command for a container (that's specified in the task definition or Docker image) with a command override. You can also override existing environment variables (that are specified in the task definition or Docker image) on a container or add new environment variables to it with an environment override.

Note

A total of 8192 characters are allowed for overrides. This limit includes the JSON formatting characters of the override structure.

Type: `TaskOverride (p. 404)` object

Required: No

propagateTags (p. 198)

Specifies whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Type: String

Valid Values: `TASK_DEFINITION` | `SERVICE` | `NONE`

Required: No

referenceId (p. 198)

The reference ID to use for the task.

Type: String

Required: No

startedBy (p. 198)

An optional tag specified when a task is started. For example, if you automatically trigger a task to run a batch process job, you could apply a unique identifier for that job to your task with the `startedBy` parameter. You can then identify which tasks belong to that job by filtering the results of a `ListTasks (p. 147)` call with the `startedBy` value. Up to 36 letters (uppercase and lowercase), numbers, hyphens (-), and underscores (_) are allowed.

If a task is started by an Amazon ECS service, the `startedBy` parameter contains the deployment ID of the service that starts it.

Type: String

Required: No

tags (p. 198)

The metadata that you apply to the task to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition (p. 198)

The `family` and `revision (family:revision)` or full ARN of the task definition to start. If a revision isn't specified, the latest ACTIVE revision is used.

Type: String

Required: Yes

Response Syntax

```json
{
    "failures": [
        {
            "arn": "string",
            "detail": "string",
            "reason": "string"
        }
    ],
    "tasks": [
        {
            "attachments": [
                {
                    "details": [
                        {
                            "name": "string",
                            "value": "string"
                        }
                    ],
                    "id": "string",
                    "status": "string",
                    "type": "string"
                }
            ],
            "attributes": [
                {
                    "name": "string",
                    "targetId": "string",
                    "targetType": "string"
                }
            ]
        }
    ]
}
```
"value": "string"
}
,"availabilityZone": "string",
"capacityProviderName": "string",
"clusterArn": "string",
"connectivity": "string",
"connectivityAt": number,
"containerInstanceArn": "string",
"containers": [
{
"containerArn": "string",
"cpu": "string",
"exitCode": number,
"gpuids": ["string"],
"healthStatus": "string",
"image": "string",
"imageDigest": "string",
"lastStatus": "string",
"managedAgents": [
{
"lastStartedAt": number,
"lastStatus": "string",
"name": "string",
"reason": "string"
}
],
"memory": "string",
"memoryReservation": "string",
"name": "string",
"networkBindings": [
{
"bindIP": "string",
"containerPort": number,
"hostPort": number,
"protocol": "string"
}
],
"networkInterfaces": [
{
"attachmentId": "string",
"ipv6Address": "string",
"privateIpv4Address": "string"
}
],
"reason": "string",
"runtimeId": "string",
"taskArn": "string"
}
,"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
"sizeInGiB": number
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
{
"deviceName": "string",
"deviceType": "string"
}
]
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
 "containerOverrides": [
 {
 "command": ["string"],
 "cpu": number,
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "memory": number,
 "memoryReservation": number,
 "name": "string",
 "resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
]
 }
],
 "cpu": "string",
 "ephemeralStorage": {
 "sizeInGiB": number
 },
 "executionRoleArn": "string",
 "inferenceAcceleratorOverrides": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],
 "memory": "string",
 "taskRoleArn": "string"
},
"platformFamily": "string",
"platformVersion": "string",
"pullStartedAt": number,
"pullStoppedAt": number,
"startedAt": number,
"startedBy": "string",
"stopCode": "string",
"stoppedAt": number,
"stoppedReason": "string",
"stoppingAt": number,
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskArn": "string",
"taskDefinitionArn": "string",
"version": number
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

failures (p. 201)

Any failures associated with the call.

Type: Array of Failure (p. 333) objects

tasks (p. 201)

A full description of the tasks that were started. Each task that was successfully placed on your container instances is described.

Type: Array of Task (p. 390) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools
automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request starts the latest ACTIVE revision of the hello_world task definition family in the default cluster on the container instance with the ID 4c543eed-f83f-47da-b1d8-3d23f1da4c64.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 97
X-Amz-Target: AmazonEC2ContainerServiceV20141113.StartTask
X-Amz-Date: 20161121T220032Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{"containerInstances": [
  "4c543eed-f83f-47da-b1d8-3d23f1da4c64"
],
"taskDefinition": "hello_world"}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 22:00:32 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1025
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{"failures": [],
"tasks": [
  {
  "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
  "containerInstanceArn": "arn:aws:ecs:us-east-1:012345678910:container-instance/4c543eed-f83f-47da-b1d8-3d23f1da4c64",
  "containers": [
    {
      "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e76594d4-27e1-4c74-98b5-46a6435eb769",
      "lastStatus": "PENDING",
      "name": "wordpress",
      "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/fdf2c302-468c-4e55-b884-5331d816ef7b"
    },
    {
      "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/b19106ea-4fa8-4fid-9767-9692c82b070",
      "lastStatus": "PENDING",
      "name": "mysql",
      "taskArn": "arn:aws:ecs:us-east-1:012345678910:task/fdf2c302-468c-4e55-b884-5331d816ef7b"
    }
  ]
}]
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
StopTask

Stops a running task. Any tags associated with the task will be deleted.

When StopTask (p. 207) is called on a task, the equivalent of `docker stop` is issued to the containers running in the task. This results in a `SIGTERM` value and a default 30-second timeout, after which the `SIGKILL` value is sent and the containers are forcibly stopped. If the container handles the `SIGTERM` value gracefully and exits within 30 seconds from receiving it, no `SIGKILL` value is sent.

Note
The default 30-second timeout can be configured on the Amazon ECS container agent with the `ECS_CONTAINER_STOP_TIMEOUT` variable. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
    "cluster": "string",
    "reason": "string",
    "task": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 207)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task to stop. If you do not specify a cluster, the default cluster is assumed.

- **Type:** String
- **Required:** No

reason (p. 207)

An optional message specified when a task is stopped. For example, if you're using a custom scheduler, you can use this parameter to specify the reason for stopping the task here, and the message appears in subsequent DescribeTasks (p. 100) API operations on this task. Up to 255 characters are allowed in this message.

- **Type:** String
- **Required:** No

task (p. 207)

The task ID or full Amazon Resource Name (ARN) of the task to stop.

- **Type:** String
- **Required:** Yes
Response Syntax

```json
{
  "task": {
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attributes": [
      {
        "name": "string",
        "targetId": "string",
        "targetType": "string",
        "value": "string"
      }
    ],
    "availabilityZone": "string",
    "capacityProviderName": "string",
    "clusterArn": "string",
    "connectivity": "string",
    "connectivityAt": number,
    "containerInstanceArn": "string",
    "containers": [
      {
        "containerArn": "string",
        "cpu": "string",
        "exitCode": number,
        "gpuIds": [ "string" ],
        "healthStatus": "string",
        "image": "string",
        "imageDigest": "string",
        "lastStatus": "string",
        "managedAgents": [
          {
            "lastStartedAt": number,
            "lastStatus": "string",
            "name": "string",
            "reason": "string"
          }
        ],
        "memory": "string",
        "memoryReservation": "string",
        "name": "string",
        "networkBindings": [
          {
            "bindIP": "string",
            "containerPort": number,
            "hostPort": number,
            "protocol": "string"
          }
        ],
        "networkInterfaces": [
          {
            "attachmentId": "string",
            "ipv6Address": "string"
          }
        ]
      }
    ]
  }
}
```
"privateI Pv4Address": "string"
],
"reason": "string",
"runtimeId": "string",
"taskArn": "string"
}
],
"cpu": "string",
"createdAt": number,
"desiredStatus": "string",
"enableExecuteCommand": boolean,
"ephemeralStorage": {
 "sizeInGiB": number,
},
"executionStoppedAt": number,
"group": "string",
"healthStatus": "string",
"inferenceAccelerators": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
],
"lastStatus": "string",
"launchType": "string",
"memory": "string",
"overrides": {
 "containerOverrides": [
 {
 "command": ["string"],
 "cpu": number,
 "environment": [
 {
 "name": "string",
 "value": "string"
 }
],
 "environmentFiles": [
 {
 "type": "string",
 "value": "string"
 }
],
 "memory": number,
 "memoryReservation": number,
 "name": "string",
 "resourceRequirements": [
 {
 "type": "string",
 "value": "string"
 }
]
 }
],
 "cpu": "string",
 "ephemeralStorage": {
 "sizeInGiB": number,
 },
 "executionRoleArn": "string",
 "inferenceAcceleratorOverrides": [
 {
 "deviceName": "string",
 "deviceType": "string"
 }
]
},
}
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

task (p. 208)

The task that was stopped.

Type: Task (p. 390) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource., Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400
ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don’t have to sign requests yourself.

Example

This example request stops a task with the ID `a126249b-b7e4-4b06-9d8f-1b56e75a99b5` in the default cluster.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 88
X-Amz-Target: AmazonEC2ContainerServiceV20141113.StopTask
X-Amz-Date: 20161121T220318Z
User-Agent: aws-cli/1.11.13 Python/2.7.12 Darwin/16.1.0 botocore/1.4.66
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
    "task": "1dc5c17a-422b-4dc4-b493-371970c6c4d6"
}
```

Sample Response

```
HTTP/1.1 200 OK
Server: Server
Date: Mon, 21 Nov 2016 22:03:18 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1260
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
    "task": {
        "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
        "containerArn": "arn:aws:ecs:us-east-1:012345678910:container-instance/5991d8da-1d59-49d2-a31f-4330f9e33140",
        "containers": [
            {
                "containerArn": "arn:aws:ecs:us-east-1:012345678910:container/4df26bb4-f057-467b-a079-96167296e64",
                "lastStatus": "RUNNING",
                "name": "simple-app",
```
"networkBindings": [
{
"bindIP": "0.0.0.0",
"containerPort": 80,
"hostPort": 32774,
"protocol": "tcp"
}
],
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/1dc5c17a-422b-4dc4-b493-371970c6c4d6"
},
{
"containerArn": "arn:aws:ecs:us-east-1:012345678910:container/e09064f7-7361-4c87-8ab9-8d073bbdbcb9",
"lastStatus": "RUNNING",
"name": "busybox",
"networkBindings": [],
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/1dc5c17a-422b-4dc4-b493-371970c6c4d6"
}
],
"createdAt": 1476822811.295,
"desiredStatus": "STOPPED",
"lastStatus": "RUNNING",
"overrides": {
"containerOverrrides": [
{
"name": "simple-app"
},
{
"name": "busybox"
}
],
"startedAt": 1476822833.998,
"startedBy": "ecs-svc/9223370560032507596",
"stoppedReason": "Task stopped by user",
"taskArn": "arn:aws:ecs:us-east-1:012345678910:task/1dc5c17a-422b-4dc4-b493-371970c6c4d6",
"version": 0
}]

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitAttachmentStateChanges

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that an attachment changed states.

Request Syntax

```json
{
    "attachments": [
        {
            "attachmentArn": "string",
            "status": "string"
        }
    ],
    "cluster": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

attachments (p. 213)

Any attachments associated with the state change request.

Type: Array of AttachmentStateChange (p. 274) objects

Required: Yes

cluster (p. 213)

The short name or full ARN of the cluster that hosts the container instance the attachment belongs to.

Type: String

Required: No

Response Syntax

```json
{
    "acknowledgment": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
acknowledgment (p. 213)

Acknowledgement of the state change.
Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitContainerStateChange

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that a container changed states.

Request Syntax

```
{
  "cluster": "string",
  "containerName": "string",
  "exitCode": number,
  "networkBindings": [
  {
   "bindIP": "string",
   "containerPort": number,
   "hostPort": number,
   "protocol": "string"
  }
  ],
  "reason": "string",
  "runtimeId": "string",
  "status": "string",
  "task": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 215)

The short name or full ARN of the cluster that hosts the container.

Type: String

Required: No

containerName (p. 215)

The name of the container.

Type: String

Required: No

exitCode (p. 215)

The exit code that's returned for the state change request.

Type: Integer

Required: No

networkBindings (p. 215)

The network bindings of the container.
Type: Array of NetworkBinding (p. 359) objects

reason (p. 215)

The reason for the state change request.
Type: String
Required: No

runtimeId (p. 215)

The ID of the Docker container.
Type: String
Required: No

status (p. 215)

The status of the state change request.
Type: String
Required: No

task (p. 215)

The task ID or full Amazon Resource Name (ARN) of the task that hosts the container.
Type: String
Required: No

Response Syntax

{ "acknowledgment": "string" }

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

acknowledgment (p. 216)

Acknowledgement of the state change.
Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.
HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
SubmitTaskStateChange

Note
This action is only used by the Amazon ECS agent, and it is not intended for use outside of the agent.

Sent to acknowledge that a task changed states.

Request Syntax

```json
{
  "attachments": [
    {
      "attachmentArn": "string",
      "status": "string"
    }
  ],
  "cluster": "string",
  "containers": [
    {
      "containerName": "string",
      "exitCode": number,
      "imageDigest": "string",
      "networkBindings": [
        {
          "bindIP": "string",
          "containerPort": number,
          "hostPort": number,
          "protocol": "string"
        }
      ],
      "reason": "string",
      "runtimeId": "string",
      "status": "string"
    }
  ],
  "executionStoppedAt": number,
  "managedAgents": [
    {
      "containerName": "string",
      "managedAgentName": "string",
      "reason": "string",
      "status": "string"
    }
  ],
  "pullStartedAt": number,
  "pullStoppedAt": number,
  "reason": "string",
  "status": "string",
  "task": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.
attachments (p. 218)

Any attachments associated with the state change request.

Type: Array of AttachmentStateChange (p. 274) objects

Required: No

cluster (p. 218)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the task.

Type: String

Required: No

containers (p. 218)

Any containers that's associated with the state change request.

Type: Array of ContainerStateChange (p. 313) objects

Required: No

executionStoppedAt (p. 218)

The Unix timestamp for the time when the task execution stopped.

Type: Timestamp

Required: No

managedAgents (p. 218)

The details for the managed agent that's associated with the task.

Type: Array of ManagedAgentStateChange (p. 355) objects

Required: No

pullStartedAt (p. 218)

The Unix timestamp for the time when the container image pull started.

Type: Timestamp

Required: No

pullStoppedAt (p. 218)

The Unix timestamp for the time when the container image pull completed.

Type: Timestamp

Required: No

reason (p. 218)

The reason for the state change request.

Type: String

Required: No

status (p. 218)

The status of the state change request.
Type: String
Required: No

task (p. 218)
The task ID or full ARN of the task in the state change request.
Type: String
Required: No

Response Syntax

```
{
   "acknowledgment": "string"
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

acknowledgment (p. 220)
Acknowledgement of the state change.
Type: String

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException
You don't have authorization to perform the requested action.
HTTP Status Code: 400

ClientException
These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.
HTTP Status Code: 400

InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.
HTTP Status Code: 400

ServerException
These errors are usually caused by a server issue.
HTTP Status Code: 500
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
TagResource

Associates the specified tags to a resource with the specified resourceArn. If existing tags on a resource aren't specified in the request parameters, they aren't changed. When a resource is deleted, the tags that are associated with that resource are deleted as well.

Request Syntax

```
{
    "resourceArn": "string",
    "tags": [
        {
            "key": "string",
            "value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

resourceArn (p. 222)

The Amazon Resource Name (ARN) of the resource to add tags to. Currently, the supported resources are Amazon ECS capacity providers, tasks, services, task definitions, clusters, and container instances.

Type: String

Required: Yes

tags (p. 222)

The tags to add to the resource. A tag is an array of key-value pairs.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - . : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: Yes
Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ResourceNotFoundException

The specified resource wasn't found.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example tags the dev cluster with key team and value dev.

Sample Request

```
POST / HTTP/1.1
```
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.TagResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T194744Z
Authorization: AUTHPARAMS
Content-Length: 115

{
 "tags": [
 {
 "key": "team",
 "value": "dev"
 }
]
}

Sample Response

HTTP/1.1 200 OK
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
Content-Type: application/x-amz-json-1.1
Content-Length: 2
Date: Fri, 26 Oct 2018 20:01:34 GMT

{}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UntagResource

Deletes specified tags from a resource.

Request Syntax

```
{
"resourceArn": "string",
"tagKeys": [ "string" ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

resourceArn (p. 225)

The Amazon Resource Name (ARN) of the resource to delete tags from. Currently, the supported resources are Amazon ECS capacity providers, tasks, services, task definitions, clusters, and container instances.

- Type: String
- Required: Yes

tagKeys (p. 225)

The keys of the tags to be removed.

- Type: Array of strings
- Pattern: `^\p{L}\p{Z}\p{N}_\p{N}_.\./=\+\-@]*$`
- Required: Yes

Response Elements

If the action is successful, the service sends back an HTTP 200 response with an empty HTTP body.

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource. Or, it might be specifying an identifier that isn't valid.

- HTTP Status Code: 400
ClusterNotFoundException
The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.
HTTP Status Code: 400

InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.
HTTP Status Code: 400

ResourceNotFoundException
The specified resource wasn't found.
HTTP Status Code: 400

ServerException
These errors are usually caused by a server issue.
HTTP Status Code: 500

Examples
In the following example or examples, the Authorization header contents (AUTHPARAMS) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example
This example tags the dev cluster with key team and value dev.

Sample Request

```
POST / HTTP/1.1
Host: madison.us-west-2.amazonaws.com
Accept-Encoding: identity
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UntagResource
Content-Type: application/x-amz-json-1.1
X-Amz-Date: 20181026T200134Z
Authorization: AUTHPARAMS
Content-Length: 93

{
  "tagKeys": [
    "team"
  ]
}
```

Sample Response

```
HTTP/1.1 200 OK
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateCapacityProvider

Modifies the parameters for a capacity provider.

Request Syntax

```json
{
   "autoScalingGroupProvider": {
      "managedScaling": {
         "instanceWarmupPeriod": number,
         "maximumScalingStepSize": number,
         "minimumScalingStepSize": number,
         "status": "string",
         "targetCapacity": number
      },
      "managedTerminationProtection": "string"
   },
   "name": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

autoScalingGroupProvider (p. 228)

An object that represent the parameters to update for the Auto Scaling group capacity provider.

Type: AutoScalingGroupProviderUpdate (p. 277) object

Required: Yes

name (p. 228)

The name of the capacity provider to update.

Type: String

Required: Yes

Response Syntax

```json
{
   "capacityProvider": {
      "autoScalingGroupProvider": {
         "autoScalingGroupArn": "string",
         "managedScaling": {
            "instanceWarmupPeriod": number,
            "maximumScalingStepSize": number,
            "minimumScalingStepSize": number,
            "status": "string",
            "targetCapacity": number
         },
         "managedTerminationProtection": "string"
      }
   }
}
```
Amazon Elastic Container Service API Reference
Response Elements

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

capacityProvider (p. 228)
Details about the capacity provider.
Type: CapacityProvider (p. 279) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException
These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

InvalidParameterException
The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException
These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
UpdateCluster

Updates the cluster.

Request Syntax

```json
{
    "cluster": "string",
    "configuration": {
        "executeCommandConfiguration": {
            "kmsKeyId": "string",
            "logConfiguration": {
                "cloudWatchEncryptionEnabled": boolean,
                "cloudWatchLogGroupName": "string",
                "s3BucketName": "string",
                "s3EncryptionEnabled": boolean,
                "s3KeyPrefix": "string"
            },
            "logging": "string"
        }
    },
    "settings": [
        {
            "name": "string",
            "value": "string"
        }
    ]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 231)

The name of the cluster to modify the settings for.

Type: String

Required: Yes

configuration (p. 231)

The execute command configuration for the cluster.

Type: ClusterConfiguration (p. 287) object

Required: No

settings (p. 231)

The cluster settings for your cluster.

Type: Array of ClusterSetting (p. 288) objects

Required: No
Response Syntax

```json
{
  "cluster": {
    "activeServicesCount": number,
    "attachments": [
      {
        "details": [
          {
            "name": "string",
            "value": "string"
          }
        ],
        "id": "string",
        "status": "string",
        "type": "string"
      }
    ],
    "attachmentsStatus": "string",
    "capacityProviders": [ "string" ],
    "clusterArn": "string",
    "clusterName": "string",
    "defaultCapacityProviderStrategy": [
      {
        "base": number,
        "capacityProvider": "string",
        "weight": number
      }
    ],
    "pendingTasksCount": number,
    "registeredContainerInstancesCount": number,
    "runningTasksCount": number,
    "settings": [
      {
        "name": "string",
        "value": "string"
      }
    ],
    "statistics": [
      {
        "name": "string",
        "value": "string"
      }
    ],
    "status": "string",
    "tags": [
      {
        "key": "string",
        "value": "string"
      }
    ]
  }
}
```

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.
cluster (p. 232)

Details about the cluster.

Type: Cluster (p. 283) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateClusterSettings

Modifies the settings to use for a cluster.

Request Syntax

```json
{
"cluster": "string",
"settings": [
{
"name": "string",
"value": "string"
}
]
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 234)

The name of the cluster to modify the settings for.

Type: String

Required: Yes

settings (p. 234)

The setting to use by default for a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster. If this value is specified, it overrides the containerInsights value set with PutAccountSetting (p. 152) or PutAccountSettingDefault (p. 155).

Type: Array of ClusterSetting (p. 288) objects

Required: Yes

Response Syntax

```json
{
"cluster": {
"activeServicesCount": number,
"attachments": [
{
"details": [
{
"name": "string",
"value": "string"
}
],
"id": "string",
"status": "string",
"type": "string"
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

cluster (p. 234)

Details about the cluster

Type: Cluster (p. 283) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn’t have permissions to use the action or resource. Or, it might be specifying an identifier that isn’t valid.

HTTP Status Code: 400
ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateContainerAgent

Updates the Amazon ECS container agent on a specified container instance. Updating the Amazon
ECS container agent doesn't interrupt running tasks or services on the container instance. The process
for updating the agent differs depending on whether your container instance was launched with the
Amazon ECS-optimized AMI or another operating system.

Note
The UpdateContainerAgent API isn't supported for container instances using the Amazon
ECS-optimized Amazon Linux 2 (arm64) AMI. To update the container agent, you can update the
ecs-init package. This updates the agent. For more information, see Updating the Amazon
ECS container agent in the Amazon Elastic Container Service Developer Guide.

The UpdateContainerAgent API requires an Amazon ECS-optimized AMI or Amazon Linux AMI with
the ecs-init service installed and running. For help updating the Amazon ECS container agent on
other operating systems, see Manually updating the Amazon ECS container agent in the Amazon Elastic
Container Service Developer Guide.

Request Syntax

```json
{
  "cluster": "string",
  "containerInstance": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common
Parameters (p. 421).

The request accepts the following data in JSON format.

classifier (p. 237)

The short name or full Amazon Resource Name (ARN) of the classifier that your container instance is
running on. If you do not specify a classifier, the default classifier is assumed.

Type: String

Required: No

classifierInstance (p. 237)

The classifier instance ID or full ARN entries for the classifier instance where you would like to
update the Amazon ECS classifier.

Type: String

Required: Yes

Response Syntax

```json
{
  "containerInstance": {
    "agentConnected": boolean,
  }
}
```
"agentUpdateStatus": "string",
"attachments": [
 {
 "details": [
 {
 "name": "string",
 "value": "string"
 }
],
 "id": "string",
 "status": "string",
 "type": "string"
 }
],
"attributes": [
 {
 "name": "string",
 "targetId": "string",
 "targetType": "string",
 "value": "string"
 }
],
"capacityProviderName": "string",
"containerInstanceArn": "string",
"ec2InstanceId": "string",
"healthStatus": {
 "details": [
 {
 "lastStatusChange": number,
 "lastUpdated": number,
 "status": "string",
 "type": "string"
 }
],
 "overallStatus": "string"
},
"pendingTasksCount": number,
"registeredAt": number,
"registeredResources": [
 {
 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"
 }
],
"remainingResources": [
 {
 "doubleValue": number,
 "integerValue": number,
 "longValue": number,
 "name": "string",
 "stringSetValue": ["string"],
 "type": "string"
 }
],
"runningTasksCount": number,
"status": "string",
"statusReason": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
]
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

containerInstance (p. 237)

The container instance that the container agent was updated for.

Type: ContainerInstance (p. 306) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

MissingVersionException

Amazon ECS can't determine the current version of the Amazon ECS container agent on the container instance and doesn't have enough information to proceed with an update. This could be because the agent running on the container instance is a previous or custom version that doesn't use our version information.

HTTP Status Code: 400

NoUpdateAvailableException

There's no update available for this Amazon ECS container agent. This might be because the agent is already running the latest version or because it's so old that there's no update path to the current version.
HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

UpdateInProgressException

There's already a current Amazon ECS container agent update in progress on the container instance that's specified. If the container agent becomes disconnected while it's in a transitional stage, such as *PENDING* or *STAGING*, the update process can get stuck in that state. However, when the agent reconnects, it resumes where it stopped previously.

Examples

In the following example or examples, the Authorization header contents (**AUTHPARAMS**) must be replaced with an AWS Signature Version 4 signature. For more information, see [Signature Version 4 Signing Process](https://docs.aws.amazon.com/general/latest/gr/signature_version_4.html) in the *AWS General Reference*.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the [AWS Command Line Interface](https://aws.amazon.com/cli/) or one of the [AWS SDKs](https://aws.amazon.com/sdk/) to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example updates the container agent version for the container instance with the ID 53ac7152-dcd1-4102-81f5-208962864132 in the update cluster.

Sample Request

```plaintext
POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 82
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateContainerAgent
X-Amz-Date: 20150528T152756Z
User-Agent: aws-cli/1.7.30 Python/2.7.9 Darwin/14.3.0
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{"cluster": "update",
 "containerInstance": "53ac7152-dcd1-4102-81f5-208962864132"}
```

Sample Response

```plaintext
HTTP/1.1 200 OK
Server: Server
Date: Thu, 28 May 2015 15:27:54 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 1033
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f
```
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateContainerInstancesState

Modifies the status of an Amazon ECS container instance.

Once a container instance has reached an **ACTIVE** state, you can change the status of a container instance to **DRAINING** to manually remove an instance from a cluster, for example to perform system updates, update the Docker daemon, or scale down the cluster size.

Important

A container instance can't be changed to **DRAINING** until it has reached an **ACTIVE** status. If the instance is in any other status, an error will be received.

When you set a container instance to **DRAINING**, Amazon ECS prevents new tasks from being scheduled for placement on the container instance and replacement service tasks are started on other container instances in the cluster if the resources are available. Service tasks on the container instance that are in the **PENDING** state are stopped immediately.

Service tasks on the container instance that are in the **RUNNING** state are stopped and replaced according to the service's deployment configuration parameters, `minimumHealthyPercent` and `maximumPercent`. You can change the deployment configuration of your service using `UpdateService` (p. 250).

- If `minimumHealthyPercent` is below 100%, the scheduler can ignore `desiredCount` temporarily during task replacement. For example, `desiredCount` is four tasks, a minimum of 50% allows the scheduler to stop two existing tasks before starting two new tasks. If the minimum is 100%, the service scheduler can't remove existing tasks until the replacement tasks are considered healthy. Tasks for services that do not use a load balancer are considered healthy if they're in the **RUNNING** state. Tasks for services that use a load balancer are considered healthy if they're in the **RUNNING** state and are reported as healthy by the load balancer.
- The `maximumPercent` parameter represents an upper limit on the number of running tasks during task replacement. You can use this to define the replacement batch size. For example, if `desiredCount` is four tasks, a maximum of 200% starts four new tasks before stopping the four tasks to be drained, provided that the cluster resources required to do this are available. If the maximum is 100%, then replacement tasks can't start until the draining tasks have stopped.

Any **PENDING** or **RUNNING** tasks that do not belong to a service aren't affected. You must wait for them to finish or stop them manually.

A container instance has completed draining when it has no more **RUNNING** tasks. You can verify this using `ListTasks` (p. 147).

When a container instance has been drained, you can set a container instance to **ACTIVE** status and once it has reached that status the Amazon ECS scheduler can begin scheduling tasks on the instance again.

Request Syntax

```json
{
    "cluster": "string",
    "containerInstances": [ "string" ],
    "status": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).
The request accepts the following data in JSON format.

cluster (p. 242)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the container instance to update. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

containerInstances (p. 242)

A list of up to 10 container instance IDs or full ARN entries.

Type: Array of strings

Required: Yes

status (p. 242)

The container instance state to update the container instance with. The only valid values for this action are `ACTIVE` and `DRAINING`. A container instance can only be updated to `DRAINING` status once it has reached an `ACTIVE` state. If a container instance is in `REGISTERING`, `DEREGISTERING`, or `REGISTRATION_FAILED` state you can describe the container instance but can't update the container instance state.

Type: String

Valid Values: `ACTIVE` | `DRAINING` | `REGISTERING` | `DEREGISTERING` | `REGISTRATION_FAILED`

Required: Yes

Response Syntax

```json
{
   "containerInstances": [
      {
         "agentConnected": boolean,
         "agentUpdateStatus": "string",
         "attachments": [
            {
               "details": [
                  {
                     "name": "string",
                     "value": "string"
                  }
               ],
               "id": "string",
               "status": "string",
               "type": "string"
            }
         ],
         "attributes": [
            {
               "name": "string",
               "targetId": "string",
               "targetType": "string",
               "value": "string"
            }
         ],
         "capacityProviderName": "string",
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

containerInstances (p. 243)

The list of container instances.

Type: Array of ContainerInstance (p. 306) objects

failures (p. 243)

Any failures associated with the call.

Type: Array of Failure (p. 333) objects

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource., Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerError

These errors are usually caused by a server issue.

HTTP Status Code: 500

Examples

In the following example or examples, the Authorization header contents (**AUTHPARAMS**) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example sets a container instance in the default cluster with the ID 1c3be8ed-df30-47b4-8f1e-6e68eb01f34 to the DRAINING status so that it can't receive tasks for placement.
Sample Request

POST / HTTP/1.1
Host: ecs.us-west-2.amazonaws.com
Accept-Encoding: identity
Content-Length: 114
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateContainerInstancesState
X-Amz-Date: 20161220T221142Z
User-Agent: aws-cli/1.11.31 Python/2.7.12 Darwin/16.3.0 botocore/1.4.88
Authorization: AUTHPARAMS

{
 "status": "DRAINING",
 "cluster": "default",
 "containerInstances": [
 "1c3be8ed-df30-47b4-8f1e-6e68ebd01f34"
]
}

Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Tue, 20 Dec 2016 22:11:42 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 2344
Connection: keep-alive
x-amzn-RequestId: 49d68928-c701-11e6-8f99-6103d648cdad

{
 "containerInstances": [
 {
 "agentConnected": true,
 "attributes": [
 {
 "name": "ecs.availability-zone",
 "value": "us-west-2b"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.syslog"
 },
 {
 "name": "ecs.instance-type",
 "value": "c4.xlarge"
 },
 {
 "name": "ecs.ami-id",
 "value": "ami-a2ca61c2"
 },
 {
 "name": "com.amazonaws.ecs.capability.task-iam-role-network-host"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.awslogs"
 },
 {
 "name": "com.amazonaws.ecs.capability.logging-driver.json-file"
 },
 {
 "name": "com.amazonaws.ecs.capability.docker-remote-api.1.17"
 }
 }
]
}
"name": "com.amazonaws.ecs.capability.privileged-container"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.18"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.19"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.22"
},

"name": "com.amazonaws.ecs.capability.ecr-auth"
},

"name": "com.amazonaws.ecs.capability.docker-remote-api.1.23"
]
"

"containerInstanceArn": "arn:aws:ecs:us-west-2:012345678910:container-instance/1c3be8ed-df30-47b4-8f1e-6e68ebd01f34",

"ec2InstanceId": "i-05d99c76955727ec6",

"pendingTasksCount": 0,

"registeredResources": [

{ "doubleValue": 0,
 "integerValue": 4096,
 "longValue": 0,
 "name": "CPU",
 "type": "INTEGER"
},

{ "doubleValue": 0,
 "integerValue": 7482,
 "longValue": 0,
 "name": "MEMORY",
 "type": "INTEGER"
},

{ "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "PORTS",
 "stringSetValue": ["22",
 "2376",
 "2375",
 "51678",
 "51679"
],
 "type": "STRINGSET"
},

{ "doubleValue": 0,
 "integerValue": 0,
 "longValue": 0,
 "name": "ecs.os-type",
 "value": "linux"
},

{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.20"
},

{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.21"
},

{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.22"
},

{ "name": "com.amazonaws.ecs.capability.task-iam-role"
},

{ "name": "com.amazonaws.ecs.capability.docker-remote-api.1.23"
}]}
"integerValue": 0,
"longValue": 0,
"name": "PORTS_UDP",
"stringSetValue": [],
"type": "STRINGSET"
},
"remainingResources": [
{
"doubleValue": 0,
"integerValue": 4096,
"longValue": 0,
"name": "CPU",
"type": "INTEGER"
},
{
"doubleValue": 0,
"integerValue": 7482,
"longValue": 0,
"name": "MEMORY",
"type": "INTEGER"
},
{
"doubleValue": 0,
"integerValue": 0,
"longValue": 0,
"name": "PORTS",
"stringSetValue": [
"22",
"2376",
"2375",
"51678",
"51679"
],
"type": "STRINGSET"
},
{
"doubleValue": 0,
"integerValue": 0,
"longValue": 0,
"name": "PORTS_UDP",
"stringSetValue": [],
"type": "STRINGSET"
}]
,"runningTasksCount": 0,
"status": "DRAINING",
"version": 30,
"versionInfo": {
"agentHash": "efe53c6",
"agentVersion": "1.13.1",
"dockerVersion": "DockerVersion: 1.11.2"
}
],
"failures": []
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
• AWS SDK for .NET
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for JavaScript
• AWS SDK for PHP V3
• AWS SDK for Python
• AWS SDK for Ruby V3
UpdateService

Important
Updating the task placement strategies and constraints on an Amazon ECS service remains in preview and is a Beta Service as defined by and subject to the Beta Service Participation Service Terms located at https://aws.amazon.com/service-terms ("Beta Terms"). These Beta Terms apply to your participation in this preview.

Modifies the parameters of a service.

For services using the rolling update (ECS) you can update the desired count, deployment configuration, network configuration, load balancers, service registries, enable ECS managed tags option, propagate tags option, task placement constraints and strategies, and task definition. When you update any of these parameters, Amazon ECS starts new tasks with the new configuration.

For services using the blue/green (CODE_DEPLOY) deployment controller, only the desired count, deployment configuration, health check grace period, task placement constraints and strategies, enable ECS managed tags option, and propagate tags can be updated using this API. If the network configuration, platform version, task definition, or load balancer need to be updated, create a new AWS CodeDeploy deployment. For more information, see `CreateDeployment` in the [AWS CodeDeploy API Reference](https://docs.aws.amazon.com/CodeDeploy/latest/APIReference/).

For services using an external deployment controller, you can update only the desired count, task placement constraints and strategies, health check grace period, enable ECS managed tags option, and propagate tags option, using this API. If the launch type, load balancer, network configuration, platform version, or task definition need to be updated, create a new task set. For more information, see `CreateTaskSet` (p. 29).

You can add to or subtract from the number of instantiations of a task definition in a service by specifying the cluster that the service is running in and a new `desiredCount` parameter.

If you have updated the Docker image of your application, you can create a new task definition with that image and deploy it to your service. The service scheduler uses the minimum healthy percent and maximum percent parameters (in the service's deployment configuration) to determine the deployment strategy.

Note
If your updated Docker image uses the same tag as what is in the existing task definition for your service (for example, `my_image:latest`), you don't need to create a new revision of your task definition. You can update the service using the `forceNewDeployment` option. The new tasks launched by the deployment pull the current image/tag combination from your repository when they start.

You can also update the deployment configuration of a service. When a deployment is triggered by updating the task definition of a service, the service scheduler uses the deployment configuration parameters, `minimumHealthyPercent` and `maximumPercent`, to determine the deployment strategy.

- If `minimumHealthyPercent` is below 100%, the scheduler can ignore `desiredCount` temporarily during a deployment. For example, if `desiredCount` is four tasks, a minimum of 50% allows the scheduler to stop two existing tasks before starting two new tasks. Tasks for services that don't use a load balancer are considered healthy if they're in the `RUNNING` state. Tasks for services that use a load balancer are considered healthy if they're in the `RUNNING` state and are reported as healthy by the load balancer.

- The `maximumPercent` parameter represents an upper limit on the number of running tasks during a deployment. You can use it to define the deployment batch size. For example, if `desiredCount` is four tasks, a maximum of 200% starts four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available).
When `UpdateService` stops a task during a deployment, the equivalent of `docker stop` is issued to the containers running in the task. This results in a `SIGTERM` and a 30-second timeout. After this, `SIGKILL` is sent and the containers are forcibly stopped. If the container handles the `SIGTERM` gracefully and exits within 30 seconds from receiving it, no `SIGKILL` is sent.

When the service scheduler launches new tasks, it determines task placement in your cluster with the following logic:

- Determine which of the container instances in your cluster can support your service's task definition. For example, they have the required CPU, memory, ports, and container instance attributes.
- By default, the service scheduler attempts to balance tasks across Availability Zones in this manner even though you can choose a different placement strategy.
 - Sort the valid container instances by the fewest number of running tasks for this service in the same Availability Zone as the instance. For example, if zone A has one running service task and zones B and C each have zero, valid container instances in either zone B or C are considered optimal for placement.
 - Place the new service task on a valid container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the fewest number of running tasks for this service.

When the service scheduler stops running tasks, it attempts to maintain balance across the Availability Zones in your cluster using the following logic:

- Sort the container instances by the largest number of running tasks for this service in the same Availability Zone as the instance. For example, if zone A has one running service task and zones B and C each have two, container instances in either zone B or C are considered optimal for termination.
- Stop the task on a container instance in an optimal Availability Zone (based on the previous steps), favoring container instances with the largest number of running tasks for this service.

Note

You must have a service-linked role when you update any of the following service properties. If you specified a custom IAM role when you created the service, Amazon ECS automatically replaces the roleARN associated with the service with the ARN of your service-linked role. For more information, see Service-linked roles in the Amazon Elastic Container Service Developer Guide.

- `loadBalancers`,
- `serviceRegistries`

Request Syntax

```json
{
    "capacityProviderStrategy": [
        {
            "base": number,
            "capacityProvider": "string",
            "weight": number
        }
    ],
    "cluster": "string",
    "deploymentConfiguration": {
        "deploymentCircuitBreaker": {
            "enable": boolean,
            "rollback": boolean
        }
    }
}
```

API Version 2014-11-13

251
Amazon Elastic Container Service API Reference
Request Parameters

The request accepts the following data in JSON format.

capacityProviderStrategy (p. 251)

The capacity provider strategy to update the service to use.

if the service uses the default capacity provider strategy for the cluster, the service can be updated to use one or more capacity providers as opposed to the default capacity provider strategy. However,
when a service is using a capacity provider strategy that's not the default capacity provider strategy, the service can't be updated to use the cluster's default capacity provider strategy.

A capacity provider strategy consists of one or more capacity providers along with the base and weight to assign to them. A capacity provider must be associated with the cluster to be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 161) API is used to associate a capacity provider with a cluster. Only capacity providers with an ACTIVE or UPDATING status can be used.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used.

The PutClusterCapacityProviders (p. 161) API operation is used to update the list of available capacity providers for a cluster after the cluster is created.

Type: Array of CapacityProviderStrategyItem (p. 281) objects

Required: No

cluster (p. 251)

The short name or full Amazon Resource Name (ARN) of the cluster that your service runs on. If you do not specify a cluster, the default cluster is assumed.

Type: String

Required: No

deploymentConfiguration (p. 251)

Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.

Type: DeploymentConfiguration (p. 319) object

Required: No

desiredCount (p. 251)

The number of instantiations of the task to place and keep running in your service.

Type: Integer

Required: No

enableECSManagedTags (p. 251)

Determines whether to turn on Amazon ECS managed tags for the tasks in the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, set forceNewDeployment to true, so that Amazon ECS starts new tasks with the updated tags.

Type: Boolean

Required: No
enableExecuteCommand (p. 251)

If `true`, this enables execute command functionality on all task containers.

If you do not want to override the value that was set when the service was created, you can set this to `null` when performing this action.

Type: Boolean

Required: No

forceNewDeployment (p. 251)

Determines whether to force a new deployment of the service. By default, deployments aren't forced. You can use this option to start a new deployment with no service definition changes. For example, you can update a service's tasks to use a newer Docker image with the same image/tag combination (`my_image:latest`) or to roll Fargate tasks onto a newer platform version.

Type: Boolean

Required: No

healthCheckGracePeriodSeconds (p. 251)

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started. This is only valid if your service is configured to use a load balancer. If your service's tasks take a while to start and respond to Elastic Load Balancing health checks, you can specify a health check grace period of up to 2,147,483,647 seconds. During that time, the Amazon ECS service scheduler ignores the Elastic Load Balancing health check status. This grace period can prevent the ECS service scheduler from marking tasks as unhealthy and stopping them before they have time to come up.

Type: Integer

Required: No

loadBalancers (p. 251)

A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the container name, and the container port to access from the load balancer. The container name is as it appears in a container definition.

When you add, update, or remove a load balancer configuration, Amazon ECS starts new tasks with the updated Elastic Load Balancing configuration, and then stops the old tasks when the new tasks are running.

For services that use rolling updates, you can add, update, or remove Elastic Load Balancing target groups. You can update from a single target group to multiple target groups and from multiple target groups to a single target group.

For services that use blue/green deployments, you can update Elastic Load Balancing target groups by using `CreateDeployment` through AWS CodeDeploy. Note that multiple target groups are not supported for blue/green deployments. For more information see Register multiple target groups with a service in the Amazon Elastic Container Service Developer Guide.

For services that use the external deployment controller, you can add, update, or remove load balancers by using `CreateTaskSet`. Note that multiple target groups are not supported for external deployments. For more information see Register multiple target groups with a service in the Amazon Elastic Container Service Developer Guide.

You can remove existing `loadBalancers` by passing an empty list.

Type: Array of `LoadBalancer (p. 350)` objects
Required: No

networkConfiguration (p. 251)

An object representing the network configuration for the service.

Type: `NetworkConfiguration (p. 360)` object

Required: No

placementConstraints (p. 251)

An array of task placement constraint objects to update the service to use. If no value is specified, the existing placement constraints for the service will remain unchanged. If this value is specified, it will override any existing placement constraints defined for the service. To remove all existing placement constraints, specify an empty array.

You can specify a maximum of 10 constraints for each task. This limit includes constraints in the task definition and those specified at runtime.

Type: Array of `PlacementConstraint (p. 362)` objects

Required: No

placementStrategy (p. 251)

The task placement strategy objects to update the service to use. If no value is specified, the existing placement strategy for the service will remain unchanged. If this value is specified, it will override the existing placement strategy defined for the service. To remove an existing placement strategy, specify an empty object.

You can specify a maximum of five strategy rules for each service.

Type: Array of `PlacementStrategy (p. 363)` objects

Required: No

platformVersion (p. 251)

The platform version that your tasks in the service run on. A platform version is only specified for tasks using the Fargate launch type. If a platform version is not specified, the `LATEST` platform version is used. For more information, see `AWS Fargate Platform Versions` in the `Amazon Elastic Container Service Developer Guide`.

Type: String

Required: No

propagateTags (p. 251)

Determines whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Only tasks launched after the update will reflect the update. To update the tags on all tasks, set `forceNewDeployment` to `true`, so that Amazon ECS starts new tasks with the updated tags.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No

service (p. 251)

The name of the service to update.
Type: String
Required: Yes

serviceRegistries (p. 251)

The details for the service discovery registries to assign to this service. For more information, see Service Discovery.

When you add, update, or remove the service registries configuration, Amazon ECS starts new tasks with the updated service registries configuration, and then stops the old tasks when the new tasks are running.

You can remove existing `serviceRegistries` by passing an empty list.

Type: Array of `ServiceRegistry (p. 383)` objects
Required: No

taskDefinition (p. 251)

The `family` and `revision` (`family:revision`) or full ARN of the task definition to run in your service. If a `revision` is not specified, the latest **ACTIVE** revision is used. If you modify the task definition with `UpdateService`, Amazon ECS spawns a task with the new version of the task definition and then stops an old task after the new version is running.

Type: String
Required: No

Response Syntax

```json
{
    "service": {
        "capacityProviderStrategy": [
            {
                "base": number,
                "capacityProvider": "string",
                "weight": number
            }
        ],
        "clusterArn": "string",
        "createdAt": number,
        "createdBy": "string",
        "deploymentConfiguration": {
            "deploymentCircuitBreaker": {
                "enable": boolean,
                "rollback": boolean
            },
            "maximumPercent": number,
            "minimumHealthyPercent": number
        },
        "deploymentController": {
            "type": "string"
        },
        "deployments": [
            {
                "capacityProviderStrategy": [
                    {
                        "base": number,
                        "capacityProvider": "string",
                        "weight": number
                    }
                ]
            }
        ]
    }
}
```


```json
{
  "createdAt": number,
  "desiredCount": number,
  "failedTasks": number,
  "id": "string",
  "launchType": "string",
  "networkConfiguration": {
    "awsvpcConfiguration": {
      "assignPublicIp": "string",
      "securityGroups": [ "string" ],
      "subnets": [ "string" ]
    }
  },
  "pendingCount": number,
  "platformFamily": "string",
  "platformVersion": "string",
  "rolloutState": "string",
  "rolloutStateReason": "string",
  "runningCount": number,
  "status": "string",
  "taskDefinition": "string",
  "updatedAt": number
}
```

```

API Version 2014-11-13
257
```
"platformVersion": "string",
"propagateTags": "string",
"roleArn": "string",
"runningCount": number,
"schedulingStrategy": "string",
"serviceArn": "string",
"serviceName": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskDefinition": "string",
"taskSets": [
 {
 "capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
 "clusterArn": "string",
 "computedDesiredCount": number,
 "createdAt": number,
 "externalId": "string",
 "id": "string",
 "launchType": "string",
 "loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
 "networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
 },
 "pendingCount": number,
 "platformFamily": "string",
 "platformVersion": "string",
 "runningCount": number,
 "scale": {
 "unit": "string",
 "value": number
 },
 "serviceArn": "string",
 "serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
]
 }
]
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

service (p. 256)

The full description of your service following the update call.

Type: Service (p. 376) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.
HTTP Status Code: 400
PlatformTaskDefinitionIncompatibilityException
The specified platform version doesn't satisfy the required capabilities of the task definition.

HTTP Status Code: 400
PlatformUnknownException
The specified platform version doesn't exist.

HTTP Status Code: 400
ServerException
These errors are usually caused by a server issue.

HTTP Status Code: 500
ServiceNotActiveException
The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with `CreateService (p. 13)`.

HTTP Status Code: 400
ServiceNotFoundException
The specified service wasn't found. You can view your available services with `ListServices (p. 131)`. Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

Examples

In the following example or examples, the Authorization header contents (`AUTHPARAMS`) must be replaced with an AWS Signature Version 4 signature. For more information, see Signature Version 4 Signing Process in the AWS General Reference.

You only need to learn how to sign HTTP requests if you intend to create them manually. When you use the AWS Command Line Interface or one of the AWS SDKs to make requests to AWS, these tools automatically sign the requests for you, with the access key that you specify when you configure the tools. When you use these tools, you don't have to sign requests yourself.

Example

This example request updates the `hello_world` service to a desired count of 3.

Sample Request

```
POST / HTTP/1.1
Host: ecs.us-east-1.amazonaws.com
Accept-Encoding: identity
Content-Length: 45
X-Amz-Target: AmazonEC2ContainerServiceV20141113.UpdateService
X-Amz-Date: 20150429T194543Z
Content-Type: application/x-amz-json-1.1
Authorization: AUTHPARAMS

{
    "service": "hello_world",
    "desiredCount": 3
}
```
Sample Response

HTTP/1.1 200 OK
Server: Server
Date: Wed, 29 Apr 2015 19:45:43 GMT
Content-Type: application/x-amz-json-1.1
Content-Length: 13376
Connection: keep-alive
x-amzn-RequestId: 123a4b56-7c89-01d2-3ef4-example5678f

{
 "service": {
 "clusterArn": "arn:aws:ecs:us-east-1:012345678910:cluster/default",
 "deploymentConfiguration": {
 "maximumPercent": 200,
 "minimumHealthyPercent": 100
 },
 "deployments": [
 {
 "createdAt": 1430333711.033,
 "desiredCount": 3,
 "id": "ecs-svc/9223370606521064774",
 "pendingCount": 0,
 "runningCount": 0,
 "status": "PRIMARY",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10",
 "updatedAt": 1430336267.173
 }
],
 "desiredCount": 3,
 "events": [],
 "loadBalancers": [],
 "pendingCount": 0,
 "runningCount": 0,
 "serviceArn": "arn:aws:ecs:us-east-1:012345678910:service/hello_world",
 "serviceName": "hello_world",
 "status": "ACTIVE",
 "taskDefinition": "arn:aws:ecs:us-east-1:012345678910:task-definition/hello_world:10"
 }
}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
UpdateServicePrimaryTaskSet

Modifies which task set in a service is the primary task set. Any parameters that are updated on the primary task set in a service will transition to the service. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```json
{
   "cluster": "string",
   "primaryTaskSet": "string",
   "service": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 262)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set exists in.

Type: String

Required: Yes

primaryTaskSet (p. 262)

The short name or full Amazon Resource Name (ARN) of the task set to set as the primary task set in the deployment.

Type: String

Required: Yes

service (p. 262)

The short name or full Amazon Resource Name (ARN) of the service that the task set exists in.

Type: String

Required: Yes

Response Syntax

```json
{
   "taskSet": {
      "capacityProviderStrategy": [
         {
            "base": number,
            "capacityProvider": "string",
            "weight": number
         }
      ]
   }
}
```
Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

taskSet (p. 262)

Details about the task set.
Type: TaskSet (p. 406) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource, Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 13).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 107). Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400

UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
Modifies a task set. This is used when a service uses the EXTERNAL deployment controller type. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Request Syntax

```
{
    "cluster": "string",
    "scale": {
        "unit": "string",
        "value": number
    },
    "service": "string",
    "taskSet": "string"
}
```

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters (p. 421).

The request accepts the following data in JSON format.

cluster (p. 266)

The short name or full Amazon Resource Name (ARN) of the cluster that hosts the service that the task set is found in.

Type: String

Required: Yes

scale (p. 266)

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Type: Scale (p. 374) object

Required: Yes

service (p. 266)

The short name or full Amazon Resource Name (ARN) of the service that the task set is found in.

Type: String

Required: Yes

taskSet (p. 266)

The short name or full Amazon Resource Name (ARN) of the task set to update.

Type: String

Required: Yes

Response Syntax

```
{
    "taskSet": {
```
"capacityProviderStrategy": [
 {
 "base": number,
 "capacityProvider": "string",
 "weight": number
 }
],
"clusterArn": "string",
"computedDesiredCount": number,
"createdAt": number,
"externalId": "string",
"id": "string",
"launchType": "string",
"loadBalancers": [
 {
 "containerName": "string",
 "containerPort": number,
 "loadBalancerName": "string",
 "targetGroupArn": "string"
 }
],
"networkConfiguration": {
 "awsvpcConfiguration": {
 "assignPublicIp": "string",
 "securityGroups": ["string"],
 "subnets": ["string"]
 }
},
"pendingCount": number,
"platformFamily": "string",
"platformVersion": "string",
"runningCount": number,
"scale": {
 "unit": "string",
 "value": number
},
"serviceArn": "string",
"serviceRegistries": [
 {
 "containerName": "string",
 "containerPort": number,
 "port": number,
 "registryArn": "string"
 }
],
"stabilityStatus": "string",
"stabilityStatusAt": number,
"startedBy": "string",
"status": "string",
"tags": [
 {
 "key": "string",
 "value": "string"
 }
],
"taskDefinition": "string",
"taskSetArn": "string",
"updatedAt": number
}

Response Elements

If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.

taskSet (p. 266)

Details about the task set.

Type: TaskSet (p. 406) object

Errors

For information about the errors that are common to all actions, see Common Errors (p. 423).

AccessDeniedException

You don't have authorization to perform the requested action.

HTTP Status Code: 400

ClientException

These errors are usually caused by a client action. This client action might be using an action or resource on behalf of a user that doesn't have permissions to use the action or resource,. Or, it might be specifying an identifier that isn't valid.

HTTP Status Code: 400

ClusterNotFoundException

The specified cluster wasn't found. You can view your available clusters with ListClusters (p. 124). Amazon ECS clusters are Region specific.

HTTP Status Code: 400

InvalidParameterException

The specified parameter isn't valid. Review the available parameters for the API request.

HTTP Status Code: 400

ServerException

These errors are usually caused by a server issue.

HTTP Status Code: 500

ServiceNotActiveException

The specified service isn't active. You can't update a service that's inactive. If you have previously deleted a service, you can re-create it with CreateService (p. 13).

HTTP Status Code: 400

ServiceNotFoundException

The specified service wasn't found. You can view your available services with ListServices (p. 131). Amazon ECS services are cluster specific and Region specific.

HTTP Status Code: 400

TaskSetNotFoundException

The specified task set wasn't found. You can view your available task sets with DescribeTaskSets (p. 107). Task sets are specific to each cluster, service and Region.

HTTP Status Code: 400
UnsupportedFeatureException

The specified task isn't supported in this Region.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS Command Line Interface
- AWS SDK for .NET
- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for JavaScript
- AWS SDK for PHP V3
- AWS SDK for Python
- AWS SDK for Ruby V3
Data Types

The Amazon EC2 Container Service API contains several data types that various actions use. This section describes each data type in detail.

Note

The order of each element in a data type structure is not guaranteed. Applications should not assume a particular order.

The following data types are supported:

- Attachment (p. 273)
- AttachmentStateChange (p. 274)
- Attribute (p. 275)
- AutoScalingGroupProvider (p. 276)
- AutoScalingGroupProviderUpdate (p. 277)
- AwsVpcConfiguration (p. 278)
- CapacityProvider (p. 279)
- CapacityProviderStrategyItem (p. 281)
- Cluster (p. 283)
- ClusterConfiguration (p. 287)
- ClusterSetting (p. 288)
- Container (p. 289)
- ContainerDefinition (p. 292)
- ContainerDependency (p. 304)
- ContainerInstance (p. 306)
- ContainerInstanceHealthStatus (p. 310)
- ContainerOverride (p. 311)
- ContainerStateChange (p. 313)
- Deployment (p. 315)
- DeploymentCircuitBreaker (p. 318)
- DeploymentConfiguration (p. 319)
- DeploymentController (p. 321)
- Device (p. 322)
- DockerVolumeConfiguration (p. 323)
- EFSAuthorizationConfig (p. 325)
- EFSVolumeConfiguration (p. 326)
- EnvironmentFile (p. 328)
- EphemeralStorage (p. 329)
- ExecuteCommandConfiguration (p. 330)
- ExecuteCommandLogConfiguration (p. 331)
- Failure (p. 333)
- FirelensConfiguration (p. 334)
- FSxWindowsFileServerAuthorizationConfig (p. 335)
- FSxWindowsFileServerVolumeConfiguration (p. 336)
• HealthCheck (p. 337)
• HostEntry (p. 340)
• HostVolumeProperties (p. 341)
• InferenceAccelerator (p. 342)
• InferenceAcceleratorOverride (p. 343)
• InstanceHealthCheckResult (p. 344)
• KernelCapabilities (p. 345)
• KeyValueCollection (p. 347)
• LinuxParameters (p. 348)
• LoadBalancer (p. 350)
• LogConfiguration (p. 352)
• ManagedAgent (p. 354)
• ManagedAgentStateChange (p. 355)
• ManagedScaling (p. 356)
• MountPoint (p. 358)
• NetworkBinding (p. 359)
• NetworkConfiguration (p. 360)
• NetworkInterface (p. 361)
• PlacementConstraint (p. 362)
• PlacementStrategy (p. 363)
• PlatformDevice (p. 364)
• PortMapping (p. 365)
• ProxyConfiguration (p. 367)
• RepositoryCredentials (p. 369)
• Resource (p. 370)
• ResourceRequirement (p. 372)
• RuntimePlatform (p. 373)
• Scale (p. 374)
• Secret (p. 375)
• Service (p. 376)
• ServiceEvent (p. 382)
• ServiceRegistry (p. 383)
• Session (p. 385)
• Setting (p. 386)
• SystemControl (p. 387)
• Tag (p. 388)
• Task (p. 390)
• TaskDefinition (p. 397)
• TaskDefinitionPlacementConstraint (p. 403)
• TaskOverride (p. 404)
• TaskSet (p. 406)
• Tmpfs (p. 411)
• Ulimit (p. 412)
• VersionInfo (p. 413)
• Volume (p. 414)
• VolumeFrom (p. 416)
Attachment

An object representing a container instance or task attachment.

Contents

details

Details of the attachment. For elastic network interfaces, this includes the network interface ID, the MAC address, the subnet ID, and the private IPv4 address.

Type: Array of KeyValuePair (p. 347) objects

Required: No

id

The unique identifier for the attachment.

Type: String

Required: No

status

The status of the attachment. Valid values are PRECREATED, CREATED, ATTACHING, ATTACHED, DETACHING, DETACHED, DELETED, and FAILED.

Type: String

Required: No

type

The type of the attachment, such as ElasticNetworkInterface.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AttachmentStateChange

An object representing a change in state for a task attachment.

Contents

attachmentArn

The Amazon Resource Name (ARN) of the attachment.

Type: String
Required: Yes

status

The status of the attachment.

Type: String
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Attribute

An attribute is a name-value pair that's associated with an Amazon ECS object. Use attributes to extend the Amazon ECS data model by adding custom metadata to your resources. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide.

Contents

name

The name of the attribute. The name must contain between 1 and 128 characters. The name may contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), forward slashes (/), back slashes (\), or periods (.)

Type: String
Required: Yes

targetId

The ID of the target. You can specify the short form ID for a resource or the full Amazon Resource Name (ARN).

Type: String
Required: No

targetType

The type of the target to attach the attribute with. This parameter is required if you use the short form ID for a resource instead of the full ARN.

Type: String
Valid Values: container-instance
Required: No

value

The value of the attribute. The value must contain between 1 and 128 characters. It can contain letters (uppercase and lowercase), numbers, hyphens (-), underscores (_), periods (.), at signs (@), forward slashes (/), back slashes (\), colons (:), or spaces. The value can't start or end with a space.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AutoScalingGroupProvider

The details of the Auto Scaling group for the capacity provider.

Contents

autoScalingGroupArn

The Amazon Resource Name (ARN) that identifies the Auto Scaling group.

Type: String
Required: Yes

managedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

Type: ManagedScaling (p. 356) object
Required: No

managedTerminationProtection

The managed termination protection setting to use for the Auto Scaling group capacity provider. This determines whether the Auto Scaling group has managed termination protection. The default is disabled.

Important
When using managed termination protection, managed scaling must also be used otherwise managed termination protection doesn't work.

When managed termination protection is enabled, Amazon ECS prevents the Amazon EC2 instances in an Auto Scaling group that contain tasks from being terminated during a scale-in action. The Auto Scaling group and each instance in the Auto Scaling group must have instance protection from scale-in actions enabled as well. For more information, see Instance Protection in the AWS Auto Scaling User Guide.

When managed termination protection is disabled, your Amazon EC2 instances aren't protected from termination when the Auto Scaling group scales in.

Type: String
Valid Values: ENABLED | DISABLED
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AutoScalingGroupProviderUpdate

The details of the Auto Scaling group capacity provider to update.

Contents

managedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

Type: ManagedScaling (p. 356) object

Required: No

managedTerminationProtection

The managed termination protection setting to use for the Auto Scaling group capacity provider. This determines whether the Auto Scaling group has managed termination protection.

Important

When using managed termination protection, managed scaling must also be used otherwise managed termination protection doesn't work.

When managed termination protection is enabled, Amazon ECS prevents the Amazon EC2 instances in an Auto Scaling group that contain tasks from being terminated during a scale-in action. The Auto Scaling group and each instance in the Auto Scaling group must have instance protection from scale-in actions enabled. For more information, see Instance Protection in the AWS Auto Scaling User Guide.

When managed termination protection is disabled, your Amazon EC2 instances aren't protected from termination when the Auto Scaling group scales in.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
AwsVpcConfiguration

An object representing the networking details for a task or service.

Contents

assignPublicIp

Whether the task's elastic network interface receives a public IP address. The default value is DISABLED.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

securityGroups

The IDs of the security groups associated with the task or service. If you don't specify a security group, the default security group for the VPC is used. There's a limit of 5 security groups that can be specified per AwsVpcConfiguration.

Note

All specified security groups must be from the same VPC.

Type: Array of strings

Required: No

subnets

The IDs of the subnets associated with the task or service. There's a limit of 16 subnets that can be specified per AwsVpcConfiguration.

Note

All specified subnets must be from the same VPC.

Type: Array of strings

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
CapacityProvider

The details for a capacity provider.

Contents

autoScalingGroupProvider

The Auto Scaling group settings for the capacity provider.

Type: AutoScalingGroupProvider (p. 276) object

Required: No

capacityProviderArn

The Amazon Resource Name (ARN) that identifies the capacity provider.

Type: String

Required: No

name

The name of the capacity provider.

Type: String

Required: No

status

The current status of the capacity provider. Only capacity providers in an ACTIVE state can be used in a cluster. When a capacity provider is successfully deleted, it has an INACTIVE status.

Type: String

Valid Values: ACTIVE | INACTIVE

Required: No

tags

The metadata that you apply to the capacity provider to help you categorize and organize it. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects
Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

updateStatus

The update status of the capacity provider. The following are the possible states that is returned.

DELETE_IN_PROGRESS

The capacity provider is in the process of being deleted.

DELETE_COMPLETE

The capacity provider was successfully deleted and has an INACTIVE status.

DELETE_FAILED

The capacity provider can't be deleted. The update status reason provides further details about why the delete failed.

Type: String

Valid Values: DELETE_IN_PROGRESS | DELETE_COMPLETE | DELETE_FAILED | UPDATE_IN_PROGRESS | UPDATE_COMPLETE | UPDATE_FAILED

Required: No

updateStatusReason

The update status reason. This provides further details about the update status for the capacity provider.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
The details of a capacity provider strategy. A capacity provider strategy can be set when using the RunTask (p. 186) or CreateCluster (p. 7) APIs or as the default capacity provider strategy for a cluster with the CreateCluster (p. 7) API.

Only capacity providers that are already associated with a cluster and have an ACTIVE or UPDATING status can be used in a capacity provider strategy. The PutClusterCapacityProviders (p. 161) API is used to associate a capacity provider with a cluster.

If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider (p. 4) API operation.

To use a AWS Fargate capacity provider, specify either the FARGATE or FARGATE_SPOT capacity providers. The AWS Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used in a capacity provider strategy.

A capacity provider strategy may contain a maximum of 6 capacity providers.

Contents

base

The *base* value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a *base* defined. If no value is specified, the default value of 0 is used.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 100000.

Required: No

capacityProvider

The short name of the capacity provider.

Type: String

Required: Yes

weight

The *weight* value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. The *weight* value is taken into consideration after the *base* value, if defined, is satisfied.

If no *weight* value is specified, the default value of 0 is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of 0 can't be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of 0, any RunTask or CreateService actions using the capacity provider strategy will fail.

An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of 1, then when the *base* is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of 1 for capacityProviderA and a weight of 4 for capacityProviderB, then for every one task that's run using capacityProviderA, four tasks would use capacityProviderB.
Type: Integer

Valid Range: Minimum value of 0. Maximum value of 1000.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Cluster

A regional grouping of one or more container instances where you can run task requests. Each account receives a default cluster the first time you use the Amazon ECS service, but you may also create other clusters. Clusters may contain more than one instance type simultaneously.

Contents

activeServicesCount

The number of services that are running on the cluster in an **ACTIVE** state. You can view these services with `ListServices (p. 131)`.

Type: Integer

Required: No

attachments

The resources attached to a cluster. When using a capacity provider with a cluster, the Auto Scaling plan that's created is returned as a cluster attachment.

Type: Array of `Attachment (p. 273)` objects

Required: No

attachmentsStatus

The status of the capacity providers associated with the cluster. The following are the states that are returned.

UPDATE_IN_PROGRESS

The available capacity providers for the cluster are updating. This occurs when the Auto Scaling plan is provisioning or deprovisioning.

UPDATE_COMPLETE

The capacity providers have successfully updated.

UPDATE_FAILED

The capacity provider updates failed.

Type: String

Required: No

capacityProviders

The capacity providers associated with the cluster.

Type: Array of strings

Required: No

clusterArn

The Amazon Resource Name (ARN) that identifies the cluster. The ARN contains the `arn:aws:ecs` namespace, followed by the Region of the cluster, the AWS account ID of the cluster owner, the `cluster` namespace, and then the cluster name. For example, `arn:aws:ecs:region:012345678910:cluster/test`.

Type: String
Required: No

clusterName
A user-generated string that you use to identify your cluster.
Type: String
Required: No
defaultCapacityProviderStrategy
The default capacity provider strategy for the cluster. When services or tasks are run in the cluster with no launch type or capacity provider strategy specified, the default capacity provider strategy is used.
Type: Array of CapacityProviderStrategyItem (p. 281) objects
Required: No
pendingTasksCount
The number of tasks in the cluster that are in the PENDING state.
Type: Integer
Required: No
registeredContainerInstancesCount
The number of container instances registered into the cluster. This includes container instances in both ACTIVE and DRAINING status.
Type: Integer
Required: No
runningTasksCount
The number of tasks in the cluster that are in the RUNNING state.
Type: Integer
Required: No
settings
The settings for the cluster. This parameter indicates whether CloudWatch Container Insights is enabled or disabled for a cluster.
Type: Array of ClusterSetting (p. 288) objects
Required: No
statistics
Additional information about your clusters that are separated by launch type. They include the following:
• runningEC2TasksCount
• RunningFargateTasksCount
• pendingEC2TasksCount
• pendingFargateTasksCount
• activeEC2ServiceCount
• activeFargateServiceCount
• drainingEC2ServiceCount
• drainingFargateServiceCount

Type: Array of KeyValuePair (p. 347) objects

Required: No

status

The status of the cluster. The following are the possible states that are returned.

ACTIVE

The cluster is ready to accept tasks and if applicable you can register container instances with the cluster.

PROVISIONING

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider are being created.

DEPROVISIONING

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider are being deleted.

FAILED

The cluster has capacity providers that are associated with it and the resources needed for the capacity provider have failed to create.

INACTIVE

The cluster has been deleted. Clusters with an INACTIVE status may remain discoverable in your account for a period of time. However, this behavior is subject to change in the future. We don't recommend that you rely on INACTIVE clusters persisting.

Type: String

Required: No

tags

The metadata that you apply to the cluster to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

• Maximum number of tags per resource - 50
• For each resource, each tag key must be unique, and each tag key can have only one value.
• Maximum key length - 128 Unicode characters in UTF-8
• Maximum value length - 256 Unicode characters in UTF-8
• If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
• Tag keys and values are case-sensitive.
• Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterConfiguration

The execute command configuration for the cluster.

Contents

executeCommandConfiguration

- The details of the execute command configuration.
- Type: ExecuteCommandConfiguration (p. 330) object
- Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ClusterSetting

The settings to use when creating a cluster. This parameter is used to turn on CloudWatch Container Insights for a cluster.

Contents

name

The name of the cluster setting. The only supported value is containerInsights.

Type: String

Valid Values: containerInsights

Required: No

data

The value to set for the cluster setting. The supported values are enabled and disabled. If enabled is specified, CloudWatch Container Insights will be enabled for the cluster, otherwise it will be disabled unless the containerInsights account setting is enabled. If a cluster value is specified, it will override the containerInsights value set with PutAccountSetting (p. 152) or PutAccountSettingDefault (p. 155).

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Container

A Docker container that's part of a task.

Contents

containerArn

The Amazon Resource Name (ARN) of the container.

- Type: String
- Required: No

cpu

The number of CPU units set for the container. The value is 0 if no value was specified in the container definition when the task definition was registered.

- Type: String
- Required: No

exitCode

The exit code returned from the container.

- Type: Integer
- Required: No

gpuIds

The IDs of each GPU assigned to the container.

- Type: Array of strings
- Required: No

healthStatus

The health status of the container. If health checks aren't configured for this container in its task definition, then it reports the health status as **UNKNOWN**.

- Type: String
- Valid Values: **HEALTHY | UNHEALTHY | UNKNOWN**
- Required: No

image

The image used for the container.

- Type: String
- Required: No

imageDigest

The container image manifest digest.

Note

The `imageDigest` is only returned if the container is using an image hosted in Amazon ECR, otherwise it is omitted.
Type: String
Required: No

lastStatus

The last known status of the container.

Type: String
Required: No

managedAgents

The details of any Amazon ECS managed agents associated with the container.

Type: Array of ManagedAgent (p. 354) objects
Required: No

memory

The hard limit (in MiB) of memory set for the container.

Type: String
Required: No

memoryReservation

The soft limit (in MiB) of memory set for the container.

Type: String
Required: No

name

The name of the container.

Type: String
Required: No

networkBindings

The network bindings associated with the container.

Type: Array of NetworkBinding (p. 359) objects
Required: No

networkInterfaces

The network interfaces associated with the container.

Type: Array of NetworkInterface (p. 361) objects
Required: No

reason

A short (255 max characters) human-readable string to provide additional details about a running or stopped container.

Type: String
Required: No
runtimeId

The ID of the Docker container.

Type: String

Required: No

taskArn

The ARN of the task.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerDefinition

Container definitions are used in task definitions to describe the different containers that are launched as part of a task.

Contents

command

The command that's passed to the container. This parameter maps to `cmd` in the Create a container section of the Docker Remote API and the `COMMAND` parameter to docker run. For more information, see https://docs.docker.com/engine/reference/builder/#cmd. If there are multiple arguments, each argument is a separated string in the array.

Type: Array of strings

Required: No

cpu

The number of cpu units reserved for the container. This parameter maps to `CpuShares` in the Create a container section of the Docker Remote API and the `--cpu-shares` option to docker run.

This field is optional for tasks using the Fargate launch type, and the only requirement is that the total amount of CPU reserved for all containers within a task be lower than the task-level cpu value.

Note

You can determine the number of CPU units that are available per EC2 instance type by multiplying the vCPUs listed for that instance type on the Amazon EC2 Instances detail page by 1,024.

Linux containers share unallocated CPU units with other containers on the container instance with the same ratio as their allocated amount. For example, if you run a single-container task on a single-core instance type with 512 CPU units specified for that container, and that's the only task running on the container instance, that container could use the full 1,024 CPU unit share at any given time. However, if you launched another copy of the same task on that container instance, each task is guaranteed a minimum of 512 CPU units when needed. Moreover, each container could float to higher CPU usage if the other container was not using it. If both tasks were 100% active all of the time, they would be limited to 512 CPU units.

On Linux container instances, the Docker daemon on the container instance uses the CPU value to calculate the relative CPU share ratios for running containers. For more information, see CPU share constraint in the Docker documentation. The minimum valid CPU share value that the Linux kernel allows is 2. However, the CPU parameter isn't required, and you can use CPU values below 2 in your container definitions. For CPU values below 2 (including null), the behavior varies based on your Amazon ECS container agent version:

- **Agent versions less than or equal to 1.1.0:** Null and zero CPU values are passed to Docker as 0, which Docker then converts to 1,024 CPU shares. CPU values of 1 are passed to Docker as 1, which the Linux kernel converts to two CPU shares.
- **Agent versions greater than or equal to 1.2.0:** Null, zero, and CPU values of 1 are passed to Docker as 2.

On Windows container instances, the CPU limit is enforced as an absolute limit, or a quota. Windows containers only have access to the specified amount of CPU that's described in the task definition. A null or zero CPU value is passed to Docker as 0, which Windows interprets as 1% of one CPU.

Type: Integer
dependsOn

The dependencies defined for container startup and shutdown. A container can contain multiple dependencies. When a dependency is defined for container startup, for container shutdown it is reversed.

For tasks using the EC2 launch type, the container instances require at least version 1.26.0 of the container agent to turn on container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

For tasks using the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

Type: Array of ContainerDependency (p. 304) objects

disableNetworking

When this parameter is true, networking is disabled within the container. This parameter maps to NetworkDisabled in the Create a container section of the Docker Remote API.

Note
This parameter is not supported for Windows containers.

Type: Boolean

dnsSearchDomains

A list of DNS search domains that are presented to the container. This parameter maps to DnsSearch in the Create a container section of the Docker Remote API and the --dns-search option to docker run.

Note
This parameter is not supported for Windows containers.

Type: Array of strings

dnsServers

A list of DNS servers that are presented to the container. This parameter maps to Dns in the Create a container section of the Docker Remote API and the --dns option to docker run.

Note
This parameter is not supported for Windows containers.

Type: Array of strings

Required: No
dockerLabels

A key/value map of labels to add to the container. This parameter maps to `Labels` in the Create a container section of the Docker Remote API and the `--label` option to `docker run`. This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: `sudo docker version --format '{{.Server.APIVersion}}'`

Type: String to string map

Required: No

dockerSecurityOptions

A list of strings to provide custom labels for SELinux and AppArmor multi-level security systems. This field isn't valid for containers in tasks using the Fargate launch type.

With Windows containers, this parameter can be used to reference a credential spec file when configuring a container for Active Directory authentication. For more information, see Using gMSAs for Windows Containers in the Amazon Elastic Container Service Developer Guide.

This parameter maps to `SecurityOpt` in the Create a container section of the Docker Remote API and the `--security-opt` option to `docker run`.

Note

The Amazon ECS container agent running on a container instance must register with the `ECS_SELINUX_CAPABLE=true` or `ECS_APPARMOR_CAPABLE=true` environment variables before containers placed on that instance can use these security options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.

For more information about valid values, see Docker Run Security Configuration.

Valid values: "no-new-privileges" | "apparmor:PROFILE" | "label:value" | "credentialspec:CredentialSpecFilePath"

Type: Array of strings

Required: No

entryPoint

Important

Early versions of the Amazon ECS container agent don't properly handle `entryPoint` parameters. If you have problems using `entryPoint`, update your container agent or enter your commands and arguments as command array items instead.

The entry point that's passed to the container. This parameter maps to `Entrypoint` in the Create a container section of the Docker Remote API and the `--entrypoint` option to `docker run`. For more information, see https://docs.docker.com/engine/reference/builder/#entrypoint.

Type: Array of strings

Required: No

environment

The environment variables to pass to a container. This parameter maps to `Env` in the Create a container section of the Docker Remote API and the `--env` option to `docker run`.

Important

We don't recommend that you use plaintext environment variables for sensitive information, such as credential data.
Type: Array of KeyValuePair (p. 347) objects

Required: No

environmentFiles

A list of files containing the environment variables to pass to a container. This parameter maps to the --env-file option to docker run.

You can specify up to ten environment files. The file must have a .env file extension. Each line in an environment file contains an environment variable in VARIABLE=VALUE format. Lines beginning with # are treated as comments and are ignored. For more information about the environment variable file syntax, see Declare default environment variables in file.

If there are environment variables specified using the environment parameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they're processed from the top down. We recommend that you use unique variable names. For more information, see Specifying Environment Variables in the Amazon Elastic Container Service Developer Guide.

Type: Array of EnvironmentFile (p. 328) objects

Required: No

essential

If the essential parameter of a container is marked as true, and that container fails or stops for any reason, all other containers that are part of the task are stopped. If the essential parameter of a container is marked as false, its failure doesn't affect the rest of the containers in a task. If this parameter is omitted, a container is assumed to be essential.

All tasks must have at least one essential container. If you have an application that's composed of multiple containers, group containers that are used for a common purpose into components, and separate the different components into multiple task definitions. For more information, see Application Architecture in the Amazon Elastic Container Service Developer Guide.

Type: Boolean

Required: No

extraHosts

A list of hostnames and IP address mappings to append to the /etc/hosts file on the container. This parameter maps to ExtraHosts in the Create a container section of the Docker Remote API and the --add-host option to docker run.

Note

This parameter isn't supported for Windows containers or tasks that use the awsvpc network mode.

Type: Array of HostEntry (p. 340) objects

Required: No

firelensConfiguration

The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom Log Routing in the Amazon Elastic Container Service Developer Guide.

Type: FirelensConfiguration (p. 334) object

Required: No
healthCheck

The container health check command and associated configuration parameters for the container. This parameter maps to HealthCheck in the Create a container section of the Docker Remote API and the HEALTHCHECK parameter of docker run.

Type: HealthCheck (p. 337) object

hostname

The hostname to use for your container. This parameter maps to Hostname in the Create a container section of the Docker Remote API and the --hostname option to docker run.

Note

The hostname parameter is not supported if you're using the awsvpc network mode.

Type: String

image

The image used to start a container. This string is passed directly to the Docker daemon. By default, images in the Docker Hub registry are available. Other repositories are specified with either repository-url/image:tag or repository-url/image@digest. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to Image in the Create a container section of the Docker Remote API and the IMAGE parameter of docker run.

• When a new task starts, the Amazon ECS container agent pulls the latest version of the specified image and tag for the container to use. However, subsequent updates to a repository image aren't propagated to already running tasks.

• Images in Amazon ECR repositories can be specified by either using the full registry/repository:tag or registry/repository@digest. For example, 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>:latest or 012345678910.dkr.ecr.<region-name>.amazonaws.com/<repository-name>@sha256:94af1f2e64d908bc90dbca0035a5b567EXAMPLE.

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example, quay.io/assemblyline/ubuntu).

Type: String

interactive

When this parameter is true, you can deploy containerized applications that require stdin or a tty to be allocated. This parameter maps to OpenStdin in the Create a container section of the Docker Remote API and the --interactive option to docker run.

Type: Boolean

Required: No

links

The links parameter allows containers to communicate with each other without the need for port mappings. This parameter is only supported if the network mode of a task definition is bridge.
The `name:internalName` construct is analogous to `name:alias` in Docker links. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. For more information about linking Docker containers, go to Legacy container links in the Docker documentation. This parameter maps to `Links` in the Create a container section of the Docker Remote API and the `--link` option to `docker run`.

Note
This parameter is not supported for Windows containers.

Important
Containers that are collocated on a single container instance may be able to communicate with each other without requiring links or host port mappings. Network isolation is achieved on the container instance using security groups and VPC settings.

Type: Array of strings
Required: No

linuxParameters

Linux-specific modifications that are applied to the container, such as Linux kernel capabilities. For more information see [KernelCapabilities (p. 345)](https://docs.aws.amazon.com/elicencer/latest/APIReference/Content/KernelCapabilities.html).

Note
This parameter is not supported for Windows containers.

Type: [LinuxParameters (p. 348)](https://docs.aws.amazon.com/elicencer/latest/APIReference/Content/LinuxParameters.html) object
Required: No

logConfiguration

The log configuration specification for the container.

This parameter maps to `LogConfig` in the Create a container section of the Docker Remote API and the `--log-driver` option to `docker run`. By default, containers use the same logging driver that the Docker daemon uses. However the container can use a different logging driver than the Docker daemon by specifying a log driver with this parameter in the container definition. To use a different logging driver for a container, the log system must be configured properly on the container instance (or on a different log server for remote logging options). For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.

Note
Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the LogConfiguration (p. 352) data type). Additional log drivers may be available in future releases of the Amazon ECS container agent.

This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:

```bash
sudo docker version --format '{{.Server.APIVersion}}'
```

Note
The Amazon ECS container agent running on a container instance must register the logging drivers available on that instance with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.

Type: [LogConfiguration (p. 352)](https://docs.aws.amazon.com/elicencer/latest/APIReference/Content/LogConfiguration.html) object
Required: No
memory

The amount (in MiB) of memory to present to the container. If your container attempts to exceed the memory specified here, the container is killed. The total amount of memory reserved for all containers within a task must be lower than the task memory value, if one is specified. This parameter maps to Memory in the Create a container section of the Docker Remote API and the --memory option to docker run.

If using the Fargate launch type, this parameter is optional.

If using the EC2 launch type, you must specify either a task-level memory value or a container-level memory value. If you specify both a container-level memory and memoryReservation value, memory must be greater than memoryReservation. If you specify memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of memory is used.

The Docker 20.10.0 or later daemon reserves a minimum of 6 MiB of memory for a container, so you should not specify fewer than 6 MiB of memory for your containers.

The Docker 19.03.13-ce or earlier daemon reserves a minimum of 4 MiB of memory for a container, so you should not specify fewer than 4 MiB of memory for your containers.

Type: Integer

memoryReservation

The soft limit (in MiB) of memory to reserve for the container. When system memory is under heavy contention, Docker attempts to keep the container memory to this soft limit. However, your container can consume more memory when it needs to, up to either the hard limit specified with the memory parameter (if applicable), or all of the available memory on the container instance, whichever comes first. This parameter maps to MemoryReservation in the Create a container section of the Docker Remote API and the --memory-reservation option to docker run.

If a task-level memory value is not specified, you must specify a non-zero integer for one or both of memory or memoryReservation in a container definition. If you specify both, memory must be greater than memoryReservation. If you specify memoryReservation, then that value is subtracted from the available memory resources for the container instance where the container is placed. Otherwise, the value of memory is used.

For example, if your container normally uses 128 MiB of memory, but occasionally bursts to 256 MiB of memory for short periods of time, you can set a memoryReservation of 128 MiB, and a memory hard limit of 300 MiB. This configuration would allow the container to only reserve 128 MiB of memory from the remaining resources on the container instance, but also allow the container to consume more memory resources when needed.

The Docker daemon reserves a minimum of 4 MiB of memory for a container. Therefore, we recommend that you specify fewer than 4 MiB of memory for your containers.

Type: Integer

mountPoints

The mount points for data volumes in your container.

This parameter maps to Volumes in the Create a container section of the Docker Remote API and the --volume option to docker run.
Windows containers can mount whole directories on the same drive as $env:ProgramData. Windows containers can't mount directories on a different drive, and mount point can't be across drives.

Type: Array of MountPoint (p. 358) objects

name

The name of a container. If you're linking multiple containers together in a task definition, the name of one container can be entered in the links of another container to connect the containers. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This parameter maps to name in the Create a container section of the Docker Remote API and the --name option to docker run.

Type: String

portMappings

The list of port mappings for the container. Port mappings allow containers to access ports on the host container instance to send or receive traffic.

For task definitions that use the awsvpc network mode, only specify the containerPort. The hostPort can be left blank or it must be the same value as the containerPort.

Port mappings on Windows use the NetNAT gateway address rather than localhost. There's no loopback for port mappings on Windows, so you can't access a container's mapped port from the host itself.

This parameter maps to PortBindings in the Create a container section of the Docker Remote API and the --publish option to docker run. If the network mode of a task definition is set to none, then you can't specify port mappings. If the network mode of a task definition is set to host, then host ports must either be undefined or they must match the container port in the port mapping.

Note
After a task reaches the RUNNING status, manual and automatic host and container port assignments are visible in the Network Bindings section of a container description for a selected task in the Amazon ECS console. The assignments are also visible in the networkBindings section DescribeTasks (p. 100) responses.

Type: Array of PortMapping (p. 365) objects

privileged

When this parameter is true, the container is given elevated privileges on the host container instance (similar to the root user). This parameter maps to Privileged in the Create a container section of the Docker Remote API and the --privileged option to docker run.

Note
This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: Boolean

pseudoTerminal

When this parameter is true, a TTY is allocated. This parameter maps to Tty in the Create a container section of the Docker Remote API and the --tty option to docker run.
readonlyRootFilesystem

When this parameter is true, the container is given read-only access to its root file system. This parameter maps to `readonlyRootfs` in the Create a container section of the Docker Remote API and the `--read-only` option to `docker run`.

Note
This parameter is not supported for Windows containers.

Type: Boolean
Required: No

repositoryCredentials

The private repository authentication credentials to use.

Type: `RepositoryCredentials (p. 369)` object
Required: No

resourceRequirements

The type and amount of a resource to assign to a container. The only supported resource is a GPU.

Type: Array of `ResourceRequirement (p. 372)` objects
Required: No

secrets

The secrets to pass to the container. For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer Guide.

Type: Array of `Secret (p. 375)` objects
Required: No

startTimeout

Time duration (in seconds) to wait before giving up on resolving dependencies for a container. For example, you specify two containers in a task definition with containerA having a dependency on containerB reaching a COMPLETE, SUCCESS, or HEALTHY status. If a startTimeout value is specified for containerB and it doesn't reach the desired status within that time then containerA gives up and not start. This results in the task transitioning to a STOPPED state.

Note
When the `ECS_CONTAINER_START_TIMEOUT` container agent configuration variable is used, it's enforced independently from this start timeout value.

For tasks using the Fargate launch type, the task or service requires the following platforms:
- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

For tasks using the EC2 launch type, your container instances require at least version 1.26.0 of the container agent to use a container start timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the `ecs-init` package. If your container instances are launched from
version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

Type: Integer

Required: No

stopTimeout

Time duration (in seconds) to wait before the container is forcefully killed if it doesn't exit normally on its own.

For tasks using the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

The max stop timeout value is 120 seconds and if the parameter is not specified, the default value of 30 seconds is used.

For tasks that use the EC2 launch type, if the stopTimeout parameter isn't specified, the value set for the Amazon ECS container agent configuration variable ECS_CONTAINER_STOP_TIMEOUT is used. If neither the stopTimeout parameter or the ECS_CONTAINER_STOP_TIMEOUT agent configuration variable are set, then the default values of 30 seconds for Linux containers and 30 seconds on Windows containers are used. Your container instances require at least version 1.26.0 of the container agent to use a container stop timeout value. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the ecs-init package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

Type: Integer

Required: No

systemControls

A list of namespaced kernel parameters to set in the container. This parameter maps to `Sysctls` in the Create a container section of the Docker Remote API and the `--sysctl` option to `docker run`.

Note

We don't recommended that you specify network-related `systemControls` parameters for multiple containers in a single task that also uses either the `awsVpc` or `host` network modes. For tasks that use the `awsVpc` network mode, the container that's started last determines which `systemControls` parameters take effect. For tasks that use the `host` network mode, it changes the container instance's namespaced kernel parameters as well as the containers.

Type: Array of `SystemControl (p. 387)` objects

Required: No

ulimits

A list of `ulimits` to set in the container. If a ulimit value is specified in a task definition, it overrides the default values set by Docker. This parameter maps to `Ulimits` in the Create a container section of the Docker Remote API and the `--ulimit` option to `docker run`. Valid naming values are displayed in the `Ulimit (p. 412)` data type.
Amazon ECS tasks hosted on AWS Fargate use the default resource limit values set by the operating system with the exception of the `nofile` resource limit parameter which AWS Fargate overrides. The `nofile` resource limit sets a restriction on the number of open files that a container can use. The default `nofile` soft limit is 1024 and hard limit is 4096.

This parameter requires version 1.18 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:

```
sudo docker version --format '{{.Server.APIVersion}}'
```

Note
This parameter is not supported for Windows containers.

Type: Array of `Ulimit` (p. 412) objects

Required: No

user

The user to use inside the container. This parameter maps to `User` in the `Create a container` section of the Docker Remote API and the `--user` option to `docker run`.

Important
When running tasks using the `host` network mode, don't run containers using the root user (UID 0). We recommend using a non-root user for better security.

You can specify the `user` using the following formats. If specifying a UID or GID, you must specify it as a positive integer.

- `user`
- `user:group`
- `uid`
- `uid:gid`
- `user:gid`
- `uid:group`

Note
This parameter is not supported for Windows containers.

Type: String

Required: No

volumesFrom

Data volumes to mount from another container. This parameter maps to `VolumesFrom` in the `Create a container` section of the Docker Remote API and the `--volumes-from` option to `docker run`.

Type: Array of `VolumeFrom` (p. 416) objects

Required: No

workingDirectory

The working directory to run commands inside the container in. This parameter maps to `WorkingDir` in the `Create a container` section of the Docker Remote API and the `--workdir` option to `docker run`.

Type: String

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerDependency

The dependencies defined for container startup and shutdown. A container can contain multiple dependencies. When a dependency is defined for container startup, for container shutdown it is reversed.

Your Amazon ECS container instances require at least version 1.26.0 of the container agent to use container dependencies. However, we recommend using the latest container agent version. For information about checking your agent version and updating to the latest version, see Updating the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide. If you're using an Amazon ECS-optimized Linux AMI, your instance needs at least version 1.26.0-1 of the `ecs-init` package. If your container instances are launched from version 20190301 or later, then they contain the required versions of the container agent and `ecs-init`. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

Note
For tasks that use the Fargate launch type, the task or service requires the following platforms:

- Linux platform version 1.3.0 or later.
- Windows platform version 1.0.0 or later.

Contents

condition

The dependency condition of the container. The following are the available conditions and their behavior:

- `START` - This condition emulates the behavior of links and volumes today. It validates that a dependent container is started before permitting other containers to start.
- `COMPLETE` - This condition validates that a dependent container runs to completion (exits) before permitting other containers to start. This can be useful for nonessential containers that run a script and then exit. This condition can't be set on an essential container.
- `SUCCESS` - This condition is the same as `COMPLETE`, but it also requires that the container exits with a zero status. This condition can't be set on an essential container.
- `HEALTHY` - This condition validates that the dependent container passes its Docker health check before permitting other containers to start. This requires that the dependent container has health checks configured. This condition is confirmed only at task startup.

Type: String

Valid Values: `START` | `COMPLETE` | `SUCCESS` | `HEALTHY`

Required: Yes

containerName

The name of a container.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
• AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
ContainerInstance

An EC2 instance that’s running the Amazon ECS agent and has been registered with a cluster.

Contents

agentConnected

This parameter returns true if the agent is connected to Amazon ECS. Registered instances with an agent that may be unhealthy or stopped return false. Only instances connected to an agent can accept placement requests.

Type: Boolean
Required: No

agentUpdateStatus

The status of the most recent agent update. If an update wasn’t ever requested, this value is NULL.

Type: String

Valid Values: PENDING | STAGING | STAGED | UPDATING | UPDATED | FAILED

Required: No

attachments

The resources attached to a container instance, such as elastic network interfaces.

Type: Array of Attachment (p. 273) objects
Required: No

attributes

The attributes set for the container instance, either by the Amazon ECS container agent at instance registration or manually with the PutAttributes (p. 157) operation.

Type: Array of Attribute (p. 275) objects
Required: No

capacityProviderName

The capacity provider that’s associated with the container instance.

Type: String
Required: No

containerInstanceArn

The Amazon Resource Name (ARN) of the container instance. The ARN contains the arn:aws:ecs namespace, followed by the Region of the container instance, the AWS account ID of the container instance owner, the container-instance namespace, and then the container instance ID. For example, arn:aws:ecs:region:aws_account_id:container-instance/container_instance_ID.

Type: String
Required: No
ec2InstanceId

The ID of the container instance. For Amazon EC2 instances, this value is the Amazon EC2 instance ID. For external instances, this value is the AWS Systems Manager managed instance ID.

Type: String

Required: No

healthStatus

An object representing the health status of the container instance.

Type: ContainerInstanceHealthStatus (p. 310) object

Required: No

pendingTasksCount

The number of tasks on the container instance that are in the **PENDING** status.

Type: Integer

Required: No

registeredAt

The Unix timestamp for the time when the container instance was registered.

Type: Timestamp

Required: No

registeredResources

For CPU and memory resource types, this parameter describes the amount of each resource that was available on the container instance when the container agent registered it with Amazon ECS. This value represents the total amount of CPU and memory that can be allocated on this container instance to tasks. For port resource types, this parameter describes the ports that were reserved by the Amazon ECS container agent when it registered the container instance with Amazon ECS.

Type: Array of Resource (p. 370) objects

Required: No

remainingResources

For CPU and memory resource types, this parameter describes the remaining CPU and memory that wasn't already allocated to tasks and is therefore available for new tasks. For port resource types, this parameter describes the ports that were reserved by the Amazon ECS container agent (at instance registration time) and any task containers that have reserved port mappings on the host (with the host or bridge network mode). Any port that's not specified here is available for new tasks.

Type: Array of Resource (p. 370) objects

Required: No

runningTasksCount

The number of tasks on the container instance that are in the **RUNNING** status.

Type: Integer

Required: No
status

The status of the container instance. The valid values are REGISTERING, REGISTRATION_FAILED, ACTIVE, INACTIVE, DEREGISTERING, or DRAINING.

If your account has opted in to the awsvpcTrunking account setting, then any newly registered container instance will transition to a REGISTERING status while the trunk elastic network interface is provisioned for the instance. If the registration fails, the instance will transition to a REGISTRATION_FAILED status. You can describe the container instance and see the reason for failure in the statusReason parameter. Once the container instance is terminated, the instance transitions to a DEREGISTERING status while the trunk elastic network interface is deprovisioned. The instance then transitions to an INACTIVE status.

The ACTIVE status indicates that the container instance can accept tasks. The DRAINING indicates that new tasks aren't placed on the container instance and any service tasks running on the container instance are removed if possible. For more information, see Container Instance Draining in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

statusReason

The reason that the container instance reached its current status.

Type: String

Required: No

tags

The metadata that you apply to the container instance to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

version

The version counter for the container instance. Every time a container instance experiences a change that triggers a CloudWatch event, the version counter is incremented. If you're replicating your Amazon ECS container instance state with CloudWatch Events, you can compare the version of a container instance reported by the Amazon ECS APIs with the version reported in CloudWatch
Events for the container instance (inside the `detail` object) to verify that the version in your event stream is current.

Type: Long

Required: No

versionInfo

The version information for the Amazon ECS container agent and Docker daemon running on the container instance.

Type: `VersionInfo (p. 413)` object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerInstanceHealthStatus

An object representing the health status of the container instance.

Contents

details

An array of objects representing the details of the container instance health status.

Type: Array of InstanceHealthCheckResult (p. 344) objects

Required: No

overallStatus

The overall health status of the container instance. This is an aggregate status of all container instance health checks.

Type: String

Valid Values: OK | IMPAIRED | INSUFFICIENT_DATA | INITIALIZING

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerOverride

The overrides that are sent to a container. An empty container override can be passed in. An example of an empty container override is {"containerOverrides": []}. If a non-empty container override is specified, the name parameter must be included.

Contents

command

The command to send to the container that overrides the default command from the Docker image or the task definition. You must also specify a container name.

Type: Array of strings

Required: No

cpu

The number of CPU units reserved for the container, instead of the default value from the task definition. You must also specify a container name.

Type: Integer

Required: No

environment

The environment variables to send to the container. You can add new environment variables, which are added to the container at launch, or you can override the existing environment variables from the Docker image or the task definition. You must also specify a container name.

Type: Array of KeyValuePair (p. 347) objects

Required: No

environmentFiles

A list of files containing the environment variables to pass to a container, instead of the value from the container definition.

Type: Array of EnvironmentFile (p. 328) objects

Required: No

memory

The hard limit (in MiB) of memory to present to the container, instead of the default value from the task definition. If your container attempts to exceed the memory specified here, the container is killed. You must also specify a container name.

Type: Integer

Required: No

memoryReservation

The soft limit (in MiB) of memory to reserve for the container, instead of the default value from the task definition. You must also specify a container name.

Type: Integer

Required: No
name

The name of the container that receives the override. This parameter is required if any override is specified.

Type: String

Required: No

resourceRequirements

The type and amount of a resource to assign to a container, instead of the default value from the task definition. The only supported resource is a GPU.

Type: Array of ResourceRequirement (p. 372) objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ContainerStateChange

An object that represents a change in state for a container.

Contents

containerName

The name of the container.

Type: String
Required: No

exitCode

The exit code for the container, if the state change is a result of the container exiting.

Type: Integer
Required: No

imageDigest

The container image SHA 256 digest.

Type: String
Required: No

networkBindings

Any network bindings that are associated with the container.

Type: Array of NetworkBinding (p. 359) objects
Required: No

reason

The reason for the state change.

Type: String
Required: No

runtimeId

The ID of the Docker container.

Type: String
Required: No

status

The status of the container.

Type: String
Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Deployment

The details of an Amazon ECS service deployment. This is used only when a service uses the ECS deployment controller type.

Contents

capacityProviderStrategy

The capacity provider strategy that the deployment is using.

Type: Array of CapacityProviderStrategyItem (p. 281) objects

Required: No

createdAt

The Unix timestamp for the time when the service deployment was created.

Type: Timestamp

Required: No

desiredCount

The most recent desired count of tasks that was specified for the service to deploy or maintain.

Type: Integer

Required: No

failedTasks

The number of consecutively failed tasks in the deployment. A task is considered a failure if the service scheduler can't launch the task, the task doesn't transition to a RUNNING state, or if it fails any of its defined health checks and is stopped.

Note

Once a service deployment has one or more successfully running tasks, the failed task count resets to zero and stops being evaluated.

Type: Integer

Required: No

id

The ID of the deployment.

Type: String

Required: No

launchType

The launch type the tasks in the service are using. For more information, see Amazon ECS Launch Types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No
networkConfiguration

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the awsvpc networking mode.

Type: NetworkConfiguration (p. 360) object

Required: No

pendingCount

The number of tasks in the deployment that are in the PENDING status.

Type: Integer

Required: No

platformFamily

The operating system that your tasks in the service, or tasks are running on. A platform family is specified only for tasks using the Fargate launch type.

All tasks that run as part of this service must use the same platformFamily value as the service, for example, LINUX...

Type: String

Required: No

platformVersion

The platform version that your tasks in the service run on. A platform version is only specified for tasks using the Fargate launch type. If one isn't specified, the LATEST platform version is used.

For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

rolloutState

Note

The rolloutState of a service is only returned for services that use the rolling update (ECS) deployment type that aren't behind a Classic Load Balancer.

The rollout state of the deployment. When a service deployment is started, it begins in an IN_PROGRESS state. When the service reaches a steady state, the deployment transitions to a COMPLETED state. If the service fails to reach a steady state and circuit breaker is enabled, the deployment transitions to a FAILED state. A deployment in FAILED state doesn't launch any new tasks. For more information, see DeploymentCircuitBreaker (p. 318).

Type: String

Valid Values: COMPLETED | FAILED | IN_PROGRESS

Required: No

rolloutStateReason

A description of the rollout state of a deployment.

Type: String

Required: No
runningCount

The number of tasks in the deployment that are in the RUNNING status.

Type: Integer

Required: No

status

The status of the deployment. The following describes each state.

PRIMARY

The most recent deployment of a service.

ACTIVE

A service deployment that still has running tasks, but are in the process of being replaced with a new PRIMARY deployment.

INACTIVE

A deployment that has been completely replaced.

Type: String

Required: No

taskDefinition

The most recent task definition that was specified for the tasks in the service to use.

Type: String

Required: No

updatedAt

The Unix timestamp for the time when the service deployment was last updated.

Type: Timestamp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DeploymentCircuitBreaker

Note

The deployment circuit breaker can only be used for services using the rolling update (ECS) deployment type that aren't behind a Classic Load Balancer.

The deployment circuit breaker determines whether a service deployment will fail if the service can't reach a steady state. If enabled, a service deployment will transition to a failed state and stop launching new tasks. You can also configure Amazon ECS to roll back your service to the last completed deployment after a failure. For more information, see Rolling update in the Amazon Elastic Container Service Developer Guide.

Contents

enable

Determines whether to use the deployment circuit breaker logic for the service.

Type: Boolean

Required: Yes

rollback

Determines whether to configure Amazon ECS to roll back the service if a service deployment fails. If rollback is enabled, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.

Type: Boolean

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DeploymentConfiguration

Optional deployment parameters that control how many tasks run during a deployment and the ordering of stopping and starting tasks.

Contents

deploymentCircuitBreaker

Note

The deployment circuit breaker can only be used for services using the rolling update (ECS) deployment type.

The deployment circuit breaker determines whether a service deployment will fail if the service can't reach a steady state. If deployment circuit breaker is enabled, a service deployment will transition to a failed state and stop launching new tasks. If rollback is enabled, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.

Type: DeploymentCircuitBreaker (p. 318) object

Required: No

maximumPercent

If a service is using the rolling update (ECS) deployment type, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment, as a percentage of the desired number of tasks (rounded down to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%.

If a service is using the blue/green (CODE_DEPLOY) or EXTERNAL deployment types and tasks that use the EC2 launch type, the maximum percent value is set to the default value and is used to define the upper limit on the number of the tasks in the service that remain in the RUNNING state while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the maximum percent value is not used, although it is returned when describing your service.

Type: Integer

Required: No

minimumHealthyPercent

If a service is using the rolling update (ECS) deployment type, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment, as a percentage of the desired number of tasks (rounded up to the nearest integer), and while any container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. This parameter enables you to deploy without using additional cluster capacity. For example, if your service has a desired number of four tasks and a minimum healthy percent of 50%, the scheduler may stop two existing tasks to free up cluster capacity before starting two new tasks. Tasks for services that do not use a load balancer are considered healthy if they're in the RUNNING state; tasks for services that do use a load balancer are considered healthy if they're in the RUNNING state and they're reported as healthy by the load balancer. The default value for minimum healthy percent is 100%.
If a service is using the blue/green (CODE_DEPLOY) or EXTERNAL deployment types and tasks that use the EC2 launch type, the **minimum healthy percent** value is set to the default value and is used to define the lower limit on the number of the tasks in the service that remain in the **RUNNING** state while the container instances are in the **DRAINING** state. If the tasks in the service use the Fargate launch type, the minimum healthy percent value is not used, although it is returned when describing your service.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DeploymentController

The deployment controller to use for the service. For more information, see Amazon ECS Deployment Types in the Amazon Elastic Container Service Developer Guide.

Contents

type

The deployment controller type to use.

There are three deployment controller types available:

ECS

The rolling update (ECS) deployment type involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from the service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during a service deployment, as specified in the DeploymentConfiguration (p. 319).

CODE_DEPLOY

The blue/green (CODE_DEPLOY) deployment type uses the blue/green deployment model powered by AWS CodeDeploy, which allows you to verify a new deployment of a service before sending production traffic to it.

EXTERNAL

The external (EXTERNAL) deployment type enables you to use any third-party deployment controller for full control over the deployment process for an Amazon ECS service.

Type: String

Valid Values: ECS | CODE_DEPLOY | EXTERNAL

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Device

An object representing a container instance host device.

Contents

containerPath

The path inside the container at which to expose the host device.

Type: String

Required: No

hostPath

The path for the device on the host container instance.

Type: String

Required: Yes

permissions

The explicit permissions to provide to the container for the device. By default, the container has permissions for read, write, and mknod for the device.

Type: Array of strings

Valid Values: read | write | mknod

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
DockerVolumeConfiguration

This parameter is specified when you're using Docker volumes. Docker volumes are only supported when you're using the EC2 launch type. Windows containers only support the use of the local driver. To use bind mounts, specify a host instead.

Contents

autoprovision

If this value is true, the Docker volume is created if it doesn't already exist.

Note
This field is only used if the scope is shared.

Type: Boolean
Required: No

driver

The Docker volume driver to use. The driver value must match the driver name provided by Docker because it is used for task placement. If the driver was installed using the Docker plugin CLI, use `docker plugin ls` to retrieve the driver name from your container instance. If the driver was installed using another method, use Docker plugin discovery to retrieve the driver name. For more information, see Docker plugin discovery. This parameter maps to Driver in the Create a volume section of the Docker Remote API and the `--driver` option to `docker volume create`.

Type: String
Required: No

driverOpts

A map of Docker driver-specific options passed through. This parameter maps to DriverOpts in the Create a volume section of the Docker Remote API and the `--opt` option to `docker volume create`.

Type: String to string map
Required: No

labels

Custom metadata to add to your Docker volume. This parameter maps to Labels in the Create a volume section of the Docker Remote API and the `--label` option to `docker volume create`.

Type: String to string map
Required: No

scope

The scope for the Docker volume that determines its lifecycle. Docker volumes that are scoped to a task are automatically provisioned when the task starts and destroyed when the task stops. Docker volumes that are scoped as shared persist after the task stops.

Type: String
Valid Values: task | shared
Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EFSAuthorizationConfig

The authorization configuration details for the Amazon EFS file system.

Contents

accessPointId

The Amazon EFS access point ID to use. If an access point is specified, the root directory value specified in the EFSVolumeConfiguration must either be omitted or set to / which will enforce the path set on the EFS access point. If an access point is used, transit encryption must be enabled in the EFSVolumeConfiguration. For more information, see Working with Amazon EFS Access Points in the Amazon Elastic File System User Guide.

Type: String

Required: No

iam

Determines whether to use the Amazon ECS task IAM role defined in a task definition when mounting the Amazon EFS file system. If enabled, transit encryption must be enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default value of DISABLED is used. For more information, see Using Amazon EFS Access Points in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EFSVolumeConfiguration

This parameter is specified when you're using an Amazon Elastic File System file system for task storage. For more information, see Amazon EFS Volumes in the Amazon Elastic Container Service Developer Guide.

Contents

authorizationConfig

The authorization configuration details for the Amazon EFS file system.

Type: EFSAuthorizationConfig (p. 325) object

Required: No

fileSystemId

The Amazon EFS file system ID to use.

Type: String

Required: Yes

rootDirectory

The directory within the Amazon EFS file system to mount as the root directory inside the host. If this parameter is omitted, the root of the Amazon EFS volume will be used. Specifying / will have the same effect as omitting this parameter.

Important

If an EFS access point is specified in the authorizationConfig, the root directory parameter must either be omitted or set to / which will enforce the path set on the EFS access point.

Type: String

Required: No

transitEncryption

Determines whether to use encryption for Amazon EFS data in transit between the Amazon ECS host and the Amazon EFS server. Transit encryption must be enabled if Amazon EFS IAM authorization is used. If this parameter is omitted, the default value of DISABLED is used. For more information, see Encrypting Data in Transit in the Amazon Elastic File System User Guide.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

transitEncryptionPort

The port to use when sending encrypted data between the Amazon ECS host and the Amazon EFS server. If you do not specify a transit encryption port, it will use the port selection strategy that the Amazon EFS mount helper uses. For more information, see EFS Mount Helper in the Amazon Elastic File System User Guide.

Type: Integer

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EnvironmentFile

A list of files containing the environment variables to pass to a container. You can specify up to ten environment files. The file must have a `.env` file extension. Each line in an environment file should contain an environment variable in `VARIABLE=VALUE` format. Lines beginning with `#` are treated as comments and are ignored. For more information about the environment variable file syntax, see Declare default environment variables in file.

If there are environment variables specified using the `environment` parameter in a container definition, they take precedence over the variables contained within an environment file. If multiple environment files are specified that contain the same variable, they're processed from the top down. We recommend that you use unique variable names. For more information, see Specifying environment variables in the Amazon Elastic Container Service Developer Guide.

This parameter is only supported for tasks hosted on Fargate using the following platform versions:

- Linux platform version 1.4.0 or later.
- Windows platform version 1.0.0 or later.

Contents

type

The file type to use. The only supported value is `s3`.

Type: String

Valid Values: `s3`

Required: Yes

value

The Amazon Resource Name (ARN) of the Amazon S3 object containing the environment variable file.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
EphemeralStorage

The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on AWS Fargate. For more information, see Fargate task storage in the Amazon ECS User Guide for AWS Fargate.

Note
This parameter is only supported for tasks hosted on Fargate using Linux platform version 1.4.0 or later. This parameter is not supported for Windows containers on Fargate.

Contents

sizeInGiB

The total amount, in GiB, of ephemeral storage to set for the task. The minimum supported value is 21 GiB and the maximum supported value is 200 GiB.

Type: Integer
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V2
ExecuteCommandConfiguration

The details of the execute command configuration.

Contents

kmsKeyId

Specify an AWS Key Management Service key ID to encrypt the data between the local client and the container.

Type: String
Required: No

logConfiguration

The log configuration for the results of the execute command actions. The logs can be sent to CloudWatch Logs or an Amazon S3 bucket. When logging=OVERRIDE is specified, a logConfiguration must be provided.

Type: ExecuteCommandLogConfiguration (p. 331) object
Required: No

logging

The log setting to use for redirecting logs for your execute command results. The following log settings are available.

- NONE: The execute command session is not logged.
- DEFAULT: The awslogs configuration in the task definition is used. If no logging parameter is specified, it defaults to this value. If no awslogs log driver is configured in the task definition, the output won't be logged.
- OVERRIDE: Specify the logging details as a part of logConfiguration. If the OVERRIDE logging option is specified, the logConfiguration is required.

Type: String
Valid Values: NONE | DEFAULT | OVERRIDE
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ExecuteCommandLogConfiguration

The log configuration for the results of the execute command actions. The logs can be sent to CloudWatch Logs or an Amazon S3 bucket.

Contents

cloudWatchEncryptionEnabled
Determines whether to use encryption on the CloudWatch logs. If not specified, encryption will be disabled.

Type: Boolean
Required: No

cloudWatchLogGroupName
The name of the CloudWatch log group to send logs to.

Note
The CloudWatch log group must already be created.

Type: String
Required: No

s3BucketName
The name of the S3 bucket to send logs to.

Note
The S3 bucket must already be created.

Type: String
Required: No

s3EncryptionEnabled
Determines whether to use encryption on the S3 logs. If not specified, encryption is not used.

Type: Boolean
Required: No

s3KeyPrefix
An optional folder in the S3 bucket to place logs in.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
Failure

A failed resource. For a list of common causes, see API failure reasons in the Amazon Elastic Container Service Developer Guide.

Contents

arn

The Amazon Resource Name (ARN) of the failed resource.

Type: String

Required: No

detail

The details of the failure.

Type: String

Required: No

reason

The reason for the failure.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FireLensConfiguration

The FireLens configuration for the container. This is used to specify and configure a log router for container logs. For more information, see Custom Log Routing in the Amazon Elastic Container Service Developer Guide.

Contents

options

The options to use when configuring the log router. This field is optional and can be used to specify a custom configuration file or to add additional metadata, such as the task, task definition, cluster, and container instance details to the log event. If specified, the syntax to use is "options":
{"enable-ecs-log-metadata":"true|false","config-file-type:"s3|file","config-file-value":"arn:aws:s3:::mybucket/fluent.conf|filepath"}. For more information, see Creating a Task Definition that Uses a FireLens Configuration in the Amazon Elastic Container Service Developer Guide.

Note

Tasks hosted on AWS Fargate only support the file configuration file type.

Type: String to string map

Required: No

type

The log router to use. The valid values are fluentd or fluentbit.

Type: String

Valid Values: fluentd | fluentbit

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FSxWindowsFileServerAuthorizationConfig

The authorization configuration details for Amazon FSx for Windows File Server file system. See FSxWindowsFileServerVolumeConfiguration in the Amazon Elastic Container Service API Reference.

For more information and the input format, see Amazon FSx for Windows File Server Volumes in the Amazon Elastic Container Service Developer Guide.

Contents

credentialsParameter

The authorization credential option to use. The authorization credential options can be provided using either the Amazon Resource Name (ARN) of an AWS Secrets Manager secret or SSM Parameter Store parameter. The ARNs refer to the stored credentials.

Type: String
Required: Yes

domain

A fully qualified domain name hosted by an AWS Directory Service Managed Microsoft AD (Active Directory) or self-hosted AD on Amazon EC2.

Type: String
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
FSxWindowsFileServerVolumeConfiguration

This parameter is specified when you're using Amazon FSx for Windows File Server file system for task storage.

For more information and the input format, see Amazon FSx for Windows File Server Volumes in the Amazon Elastic Container Service Developer Guide.

Contents

authorizationConfig

The authorization configuration details for the Amazon FSx for Windows File Server file system.

Type: FSxWindowsFileServerAuthorizationConfig (p. 335) object

Required: Yes

fileSystemId

The Amazon FSx for Windows File Server file system ID to use.

Type: String

Required: Yes

rootDirectory

The directory within the Amazon FSx for Windows File Server file system to mount as the root directory inside the host.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
An object representing a container health check. Health check parameters that are specified in a container definition override any Docker health checks that exist in the container image (such as those specified in a parent image or from the image's Dockerfile).

Note
The Amazon ECS container agent only monitors and reports on the health checks specified in the task definition. Amazon ECS does not monitor Docker health checks that are embedded in a container image and not specified in the container definition. Health check parameters that are specified in a container definition override any Docker health checks that exist in the container image.

You can view the health status of both individual containers and a task with the DescribeTasks API operation or when viewing the task details in the console.

The following describes the possible `healthStatus` values for a container:

- **HEALTHY**—The container health check has passed successfully.
- **UNHEALTHY**—The container health check has failed.
- **UNKNOWN**—The container health check is being evaluated or there's no container health check defined.

The following describes the possible `healthStatus` values for a task. The container health check status of nonessential containers do not have an effect on the health status of a task.

- **HEALTHY**—All essential containers within the task have passed their health checks.
- **UNHEALTHY**—One or more essential containers have failed their health check.
- **UNKNOWN**—The essential containers within the task are still having their health checks evaluated or there are no container health checks defined.

If a task is run manually, and not as part of a service, the task will continue its lifecycle regardless of its health status. For tasks that are part of a service, if the task reports as unhealthy then the task will be stopped and the service scheduler will replace it.

The following are notes about container health check support:

- Container health checks require version 1.17.0 or greater of the Amazon ECS container agent. For more information, see [Updating the Amazon ECS Container Agent](#).
- Container health checks are supported for Fargate tasks if you're using platform version 1.1.0 or greater. For more information, see [AWS Fargate Platform Versions](#).
- Container health checks aren't supported for tasks that are part of a service that's configured to use a Classic Load Balancer.

Contents

command

A string array representing the command that the container runs to determine if it is healthy. The string array must start with `CMD` to execute the command arguments directly, or `CMD-SHELL` to run the command with the container's default shell.

When you use the AWS Management Console JSON panel, the AWS Command Line Interface, or the APIs, enclose the list of commands in brackets.
You don't need to include the brackets when you use the AWS Management Console.

```
"CMD-SHELL", "curl -f http://localhost/ || exit 1"
```

An exit code of 0 indicates success, and non-zero exit code indicates failure. For more information, see HealthCheck in the Create a container section of the Docker Remote API.

Type: Array of strings

Required: Yes

interval

The time period in seconds between each health check execution. You may specify between 5 and 300 seconds. The default value is 30 seconds.

Type: Integer

Required: No

retries

The number of times to retry a failed health check before the container is considered unhealthy. You may specify between 1 and 10 retries. The default value is 3.

Type: Integer

Required: No

startPeriod

The optional grace period to provide containers time to bootstrap before failed health checks count towards the maximum number of retries. You can specify between 0 and 300 seconds. By default, the `startPeriod` is disabled.

Note

If a health check succeeds within the `startPeriod`, then the container is considered healthy and any subsequent failures count toward the maximum number of retries.

Type: Integer

Required: No

timeout

The time period in seconds to wait for a health check to succeed before it is considered a failure. You may specify between 2 and 60 seconds. The default value is 5.

Type: Integer

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
HostEntry

Hostnames and IP address entries that are added to the /etc/hosts file of a container via the extraHosts parameter of its ContainerDefinition (p. 292).

Contents

hostname

The hostname to use in the /etc/hosts entry.

Type: String

Required: Yes

ipAddress

The IP address to use in the /etc/hosts entry.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
HostVolumeProperties

Details on a container instance bind mount host volume.

Contents

sourcePath

When the `host` parameter is used, specify a `sourcePath` to declare the path on the host container instance that's presented to the container. If this parameter is empty, then the Docker daemon has assigned a host path for you. If the `host` parameter contains a `sourcePath` file location, then the data volume persists at the specified location on the host container instance until you delete it manually. If the `sourcePath` value doesn't exist on the host container instance, the Docker daemon creates it. If the location does exist, the contents of the source path folder are exported.

If you're using the Fargate launch type, the `sourcePath` parameter is not supported.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InferenceAccelerator

Details on an Elastic Inference accelerator. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

deviceName

The Elastic Inference accelerator device name. The `deviceName` must also be referenced in a container definition as a `ResourceRequirement` (p. 372).

Type: String

Required: Yes

deviceType

The Elastic Inference accelerator type to use.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InferenceAcceleratorOverride

Details on an Elastic Inference accelerator task override. This parameter is used to override the Elastic Inference accelerator specified in the task definition. For more information, see Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

deviceName

The Elastic Inference accelerator device name to override for the task. This parameter must match a deviceName specified in the task definition.

Type: String
Required: No

deviceType

The Elastic Inference accelerator type to use.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
InstanceHealthCheckResult

An object representing the result of a container instance health status check.

Contents

lastStatusChange

The Unix timestamp for when the container instance health status last changed.

Type: Timestamp

Required: No

lastUpdated

The Unix timestamp for when the container instance health status was last updated.

Type: Timestamp

Required: No

status

The container instance health status.

Type: String

Valid Values: OK | IMPAIRED | INSUFFICIENT_DATA | INITIALIZING

Required: No

type

The type of container instance health status that was verified.

Type: String

Valid Values: CONTAINER_RUNTIME

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
KernelCapabilities

The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker. For more information about the default capabilities and the non-default available capabilities, see Runtime privilege and Linux capabilities in the Docker run reference. For more detailed information about these Linux capabilities, see the capabilities(7) Linux manual page.

Contents

add

The Linux capabilities for the container that have been added to the default configuration provided by Docker. This parameter maps to CapAdd in the Create a container section of the Docker Remote API and the --cap-add option to docker run.

Note

Tasks launched on AWS Fargate only support adding the SYS_PTRACE kernel capability.

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID"
| "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE"
| "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE"
| "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID"
| "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE"
| "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME"
| "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Type: Array of strings

Required: No

drop

The Linux capabilities for the container that have been removed from the default configuration provided by Docker. This parameter maps to CapDrop in the Create a container section of the Docker Remote API and the --cap-drop option to docker run.

Valid values: "ALL" | "AUDIT_CONTROL" | "AUDIT_WRITE" | "BLOCK_SUSPEND"
| "CHOWN" | "DAC_OVERRIDE" | "DAC_READ_SEARCH" | "FOWNER" | "FSETID"
| "IPC_LOCK" | "IPC_OWNER" | "KILL" | "LEASE" | "LINUX_IMMUTABLE"
| "MAC_ADMIN" | "MAC_OVERRIDE" | "MKNOD" | "NET_ADMIN" | "NET_BIND_SERVICE"
| "NET_BROADCAST" | "NET_RAW" | "SETFCAP" | "SETGID" | "SETPCAP" | "SETUID"
| "SYS_ADMIN" | "SYS_BOOT" | "SYS_CHROOT" | "SYS_MODULE" | "SYS_NICE"
| "SYS_PACCT" | "SYS_PTRACE" | "SYS_RAWIO" | "SYS_RESOURCE" | "SYS_TIME"
| "SYS_TTY_CONFIG" | "SYSLOG" | "WAKE_ALARM"

Type: Array of strings

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
• AWS SDK for Ruby V3
KeyValuePair

A key-value pair object.

Contents

name

The name of the key-value pair. For environment variables, this is the name of the environment variable.

Type: String

Required: No

value

The value of the key-value pair. For environment variables, this is the value of the environment variable.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LinuxParameters

Linux-specific options that are applied to the container, such as Linux KernelCapabilities (p. 345).

Contents

capabilities

The Linux capabilities for the container that are added to or dropped from the default configuration provided by Docker.

Note
For tasks that use the Fargate launch type, capabilities is supported for all platform versions but the add parameter is only supported if using platform version 1.4.0 or later.

Type: KernelCapabilities (p. 345) object

Required: No
devices

Any host devices to expose to the container. This parameter maps to Devices in the Create a container section of the Docker Remote API and the --device option to docker run.

Note
If you’re using tasks that use the Fargate launch type, the devices parameter isn’t supported.

Type: Array of Device (p. 322) objects

Required: No
initProcessEnabled

Run an init process inside the container that forwards signals and reaps processes. This parameter maps to the --init option to docker run. This parameter requires version 1.25 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command: sudo docker version --format '{{.Server.APIVersion}}'

Type: Boolean

Required: No
maxSwap

The total amount of swap memory (in MiB) a container can use. This parameter will be translated to the --memory-swap option to docker run where the value would be the sum of the container memory plus the maxSwap value.

If a maxSwap value of 0 is specified, the container will not use swap. Accepted values are 0 or any positive integer. If the maxSwap parameter is omitted, the container will use the swap configuration for the container instance it is running on. A maxSwap value must be set for the swappiness parameter to be used.

Note
If you’re using tasks that use the Fargate launch type, the maxSwap parameter isn’t supported.

Type: Integer

Required: No
sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-size option to `docker run`.

Note

If you are using tasks that use the Fargate launch type, the `sharedMemorySize` parameter is not supported.

Type: Integer

Required: No

swappiness

This allows you to tune a container's memory swappiness behavior. A `swappiness` value of 0 will cause swapping to not happen unless absolutely necessary. A `swappiness` value of 100 will cause pages to be swapped very aggressively. Accepted values are whole numbers between 0 and 100. If the `swappiness` parameter is not specified, a default value of 60 is used. If a value is not specified for `maxSwap` then this parameter is ignored. This parameter maps to the --memory-swappiness option to `docker run`.

Note

If you're using tasks that use the Fargate launch type, the `swappiness` parameter isn't supported.

Type: Integer

Required: No

tmpfs

The container path, mount options, and size (in MiB) of the tmpfs mount. This parameter maps to the --tmpfs option to `docker run`.

Note

If you're using tasks that use the Fargate launch type, the `tmpfs` parameter isn't supported.

Type: Array of `Tmpfs (p. 411)` objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LoadBalancer

The load balancer configuration to use with a service or task set.

For specific notes and restrictions regarding the use of load balancers with services and task sets, see the CreateService and CreateTaskSet actions.

When you add, update, or remove a load balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load Balancing configuration. This causes tasks to register to and deregister from load balancers.

We recommend that you verify this on a test environment before you update the Elastic Load Balancing configuration.

A service-linked role is required for services that use multiple target groups. For more information, see Service-linked roles in the Amazon Elastic Container Service Developer Guide.

Contents

ccontai**nerName**

The name of the container (as it appears in a container definition) to associate with the load balancer.

Type: String

Required: No

ccontai**nerPort**

The port on the container to associate with the load balancer. This port must correspond to a containerPort in the task definition the tasks in the service are using. For tasks that use the EC2 launch type, the container instance they're launched on must allow ingress traffic on the hostPort of the port mapping.

Type: Integer

Required: No

loadBalancer**Name**

The name of the load balancer to associate with the Amazon ECS service or task set.

A load balancer name is only specified when using a Classic Load Balancer. If you are using an Application Load Balancer or a Network Load Balancer the load balancer name parameter should be omitted.

Type: String

Required: No

ttargetGroupArn

The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group or groups associated with a service or task set.

A target group ARN is only specified when using an Application Load Balancer or Network Load Balancer. If you're using a Classic Load Balancer, omit the target group ARN.

For services using the ECS deployment controller, you can specify one or multiple target groups. For more information, see Registering Multiple Target Groups with a Service in the Amazon Elastic Container Service Developer Guide.
For services using the CODE_DEPLOY deployment controller, you're required to define two target groups for the load balancer. For more information, see Blue/Green Deployment with CodeDeploy in the Amazon Elastic Container Service Developer Guide.

Important
If your service's task definition uses the awsvpc network mode, you must choose ip as the target type, not instance. Do this when creating your target groups because tasks that use the awsvpc network mode are associated with an elastic network interface, not an Amazon EC2 instance. This network mode is required for the Fargate launch type.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
LogConfiguration

The log configuration for the container. This parameter maps to LogConfig in the Create a container section of the Docker Remote API and the --log-driver option to docker run.

By default, containers use the same logging driver that the Docker daemon uses. However, the container might use a different logging driver than the Docker daemon by specifying a log driver configuration in the container definition. For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.

Understand the following when specifying a log configuration for your containers.

- Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the valid values below). Additional log drivers may be available in future releases of the Amazon ECS container agent.
- This parameter requires version 1.18 of the Docker Remote API or greater on your container instance.
- For tasks that are hosted on Amazon EC2 instances, the Amazon ECS container agent must register the available logging drivers with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS container agent configuration in the Amazon Elastic Container Service Developer Guide.
- For tasks that are on AWS Fargate, because you don't have access to the underlying infrastructure your tasks are hosted on, any additional software needed must be installed outside of the task. For example, the Fluentd output aggregators or a remote host running Logstash to send Gelf logs to.

Contents

logDriver

The log driver to use for the container.

For tasks on AWS Fargate, the supported log drivers are awslogs, splunk, and awsfirelens.

For tasks hosted on Amazon EC2 instances, the supported log drivers are awslogs, fluentd, gelf, json-file, journald, logentries, syslog, splunk, and awsfirelens.

For more information about using the awslogs log driver, see Using the awslogs log driver in the Amazon Elastic Container Service Developer Guide.

For more information about using the awsfirelens log driver, see Custom log routing in the Amazon Elastic Container Service Developer Guide.

Note

If you have a custom driver that isn't listed, you can fork the Amazon ECS container agent project that's available on GitHub and customize it to work with that driver. We encourage you to submit pull requests for changes that you would like to have included. However, we don't currently provide support for running modified copies of this software.

Type: String

Valid Values: json-file | syslog | journald | gelf | fluentd | awslogs | splunk | awsfirelens

Required: Yes

options

The configuration options to send to the log driver. This parameter requires version 1.19 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version
on your container instance, log in to your container instance and run the following command:

```bash
sudo docker version --format '{{.Server.APIVersion}}'
```

Type: String to string map
Required: No

secretOptions

The secrets to pass to the log configuration. For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer Guide.

Type: Array of Secret (p. 375) objects
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ManagedAgent

Details about the managed agent status for the container.

Contents

lastStartedAt

The Unix timestamp for the time when the managed agent was last started.

Type: Timestamp

Required: No

lastStatus

The last known status of the managed agent.

Type: String

Required: No

name

The name of the managed agent. When the execute command feature is enabled, the managed agent name is ExecuteCommandAgent.

Type: String

Valid Values: ExecuteCommandAgent

Required: No

reason

The reason for why the managed agent is in the state it is in.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ManagedAgentStateChange

An object representing a change in state for a managed agent.

Contents

containerName

The name of the container that's associated with the managed agent.

Type: String

Required: Yes

managedAgentName

The name of the managed agent.

Type: String

Valid Values: ExecuteCommandAgent

Required: Yes

reason

The reason for the status of the managed agent.

Type: String

Required: No

status

The status of the managed agent.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ManagedScaling

The managed scaling settings for the Auto Scaling group capacity provider.

When managed scaling is enabled, Amazon ECS manages the scale-in and scale-out actions of the Auto Scaling group. Amazon ECS manages a target tracking scaling policy using an Amazon ECS managed CloudWatch metric with the specified targetCapacity value as the target value for the metric. For more information, see Using Managed Scaling in the Amazon Elastic Container Service Developer Guide.

If managed scaling is disabled, the user must manage the scaling of the Auto Scaling group.

Contents

instanceWarmupPeriod

The period of time, in seconds, after a newly launched Amazon EC2 instance can contribute to CloudWatch metrics for Auto Scaling group. If this parameter is omitted, the default value of 300 seconds is used.

Type: Integer

Valid Range: Minimum value of 0. Maximum value of 10000.

Required: No

maximumScalingStepSize

The maximum number of container instances that Amazon ECS scales in or scales out at one time. If this parameter is omitted, the default value of 10000 is used.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

minimumScalingStepSize

The minimum number of container instances that Amazon ECS scales in or scales out at one time. If this parameter is omitted, the default value of 1 is used.

Type: Integer

Valid Range: Minimum value of 1. Maximum value of 10000.

Required: No

status

Determines whether to use managed scaling for the capacity provider.

Type: String

Valid Values: ENABLED | DISABLED

Required: No

targetCapacity

The target capacity value for the capacity provider. The specified value must be greater than 0 and less than or equal to 100. A value of 100 results in the Amazon EC2 instances in your Auto Scaling group being completely used.
Type: Integer

Valid Range: Minimum value of 1. Maximum value of 100.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
MountPoint

Details for a volume mount point that's used in a container definition.

Contents

containerPath

The path on the container to mount the host volume at.

Type: String

Required: No

readOnly

If this value is true, the container has read-only access to the volume. If this value is false, then the container can write to the volume. The default value is false.

Type: Boolean

Required: No

sourceVolume

The name of the volume to mount. Must be a volume name referenced in the name parameter of task definition volume.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetworkBinding

Details on the network bindings between a container and its host container instance. After a task reaches the **RUNNING** status, manual and automatic host and container port assignments are visible in the `networkBindings` section of `DescribeTasks` API responses.

Contents

bindIP

The IP address that the container is bound to on the container instance.

Type: String

Required: No

containerPort

The port number on the container that's used with the network binding.

Type: Integer

Required: No

hostPort

The port number on the host that's used with the network binding.

Type: Integer

Required: No

protocol

The protocol used for the network binding.

Type: String

Valid Values: tcp | udp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetworkConfiguration

An object representing the network configuration for a task or service.

Contents

awsVpcConfiguration

The VPC subnets and security groups that are associated with a task.

Note

All specified subnets and security groups must be from the same VPC.

Type: `AwsVpcConfiguration (p. 278)` object

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
NetworkInterface

An object representing the elastic network interface for tasks that use the awsvpc network mode.

Contents

attachmentId

The attachment ID for the network interface.

Type: String

Required: No

ipv6Address

The private IPv6 address for the network interface.

Type: String

Required: No

privateIpV4Address

The private IPv4 address for the network interface.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlacementConstraint

An object representing a constraint on task placement. For more information, see Task Placement Constraints in the Amazon Elastic Container Service Developer Guide.

Note
If you're using the Fargate launch type, task placement constraints aren't supported.

Contents

expression

A cluster query language expression to apply to the constraint. The expression can have a maximum length of 2000 characters. You can't specify an expression if the constraint type is distinctInstance. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

type

The type of constraint. Use distinctInstance to ensure that each task in a particular group is running on a different container instance. Use memberOf to restrict the selection to a group of valid candidates.

Type: String
Valid Values: distinctInstance | memberOf
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlacementStrategy

The task placement strategy for a task or service. For more information, see Task Placement Strategies in the Amazon Elastic Container Service Developer Guide.

Contents

field

The field to apply the placement strategy against. For the spread placement strategy, valid values are instanceId (or host, which has the same effect), or any platform or custom attribute that's applied to a container instance, such as attribute:ecs.availability-zone. For the binpack placement strategy, valid values are cpu and memory. For the random placement strategy, this field is not used.

Type: String
Required: No

type

The type of placement strategy. The random placement strategy randomly places tasks on available candidates. The spread placement strategy spreads placement across available candidates evenly based on the field parameter. The binpack strategy places tasks on available candidates that have the least available amount of the resource that's specified with the field parameter. For example, if you binpack on memory, a task is placed on the instance with the least amount of remaining memory but still enough to run the task.

Type: String
Valid Values: random | spread | binpack
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PlatformDevice

The devices that are available on the container instance. The only supported device type is a GPU.

Contents

id

The ID for the GPUs on the container instance. The available GPU IDs can also be obtained on the container instance in the /var/lib/ecs/gpu/nvidia_gpu_info.json file.

Type: String
Required: Yes

type

The type of device that's available on the container instance. The only supported value is GPU.

Type: String
Valid Values: GPU
Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
PortMapping

Port mappings allow containers to access ports on the host container instance to send or receive traffic. Port mappings are specified as part of the container definition.

If you use containers in a task with the `awsvpc` or `host` network mode, specify the exposed ports using `containerPort`. The `hostPort` can be left blank or it must be the same value as the `containerPort`.

Note
You can't expose the same container port for multiple protocols. If you attempt this, an error is returned.

After a task reaches the `RUNNING` status, manual and automatic host and container port assignments are visible in the `networkBindings` section of `DescribeTasks (p. 100)` API responses.

Contents

containerPort

The port number on the container that's bound to the user-specified or automatically assigned host port.

If you use containers in a task with the `awsvpc` or `host` network mode, specify the exposed ports using `containerPort`.

If you use containers in a task with the `bridge` network mode and you specify a container port and not a host port, your container automatically receives a host port in the ephemeral port range. For more information, see `hostPort`. Port mappings that are automatically assigned in this way do not count toward the 100 reserved ports limit of a container instance.

Type: Integer

Required: No

hostPort

The port number on the container instance to reserve for your container.

If you use containers in a task with the `awsvpc` or `host` network mode, the `hostPort` can either be left blank or set to the same value as the `containerPort`.

If you use containers in a task with the `bridge` network mode, you can specify a non-reserved host port for your container port mapping, or you can omit the `hostPort` (or set it to 0) while specifying a `containerPort` and your container automatically receives a port in the ephemeral port range for your container instance operating system and Docker version.

The default ephemeral port range for Docker version 1.6.0 and later is listed on the instance under `/proc/sys/net/ipv4/ip_local_port_range`. If this kernel parameter is unavailable, the default ephemeral port range from 49153 through 65535 is used. Do not attempt to specify a host port in the ephemeral port range as these are reserved for automatic assignment. In general, ports below 32768 are outside of the ephemeral port range.

Note
The default ephemeral port range from 49153 through 65535 is always used for Docker versions before 1.6.0.

The default reserved ports are 22 for SSH, the Docker ports 2375 and 2376, and the Amazon ECS container agent ports 51678-51680. Any host port that was previously specified in a running task is also reserved while the task is running. That is, after a task stops, the host...
port is released. The current reserved ports are displayed in the remainingResources of DescribeContainerInstances (p. 79) output. A container instance can have up to 100 reserved ports at a time. This number includes the default reserved ports. Automatically assigned ports aren't included in the 100 reserved ports quota.

Type: Integer
Required: No

protocol

The protocol used for the port mapping. Valid values are tcp and udp. The default is tcp.

Type: String

Valid Values: tcp | udp

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ProxyConfiguration

The configuration details for the App Mesh proxy.

For tasks that use the EC2 launch type, the container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the `ecs-init` package to use a proxy configuration. If your container instances are launched from the Amazon ECS optimized AMI version 20190301 or later, then they contain the required versions of the container agent and `ecs-init`. For more information, see Amazon ECS-optimized Linux AMI

Contents

containerName

The name of the container that will serve as the App Mesh proxy.

Type: String

Required: Yes

properties

The set of network configuration parameters to provide the Container Network Interface (CNI) plugin, specified as key-value pairs.

- IgnoredUID - (Required) The user ID (UID) of the proxy container as defined by the `user` parameter in a container definition. This is used to ensure the proxy ignores its own traffic. If IgnoredGID is specified, this field can be empty.

- IgnoredGID - (Required) The group ID (GID) of the proxy container as defined by the `user` parameter in a container definition. This is used to ensure the proxy ignores its own traffic. If IgnoredUID is specified, this field can be empty.

- AppPorts - (Required) The list of ports that the application uses. Network traffic to these ports is forwarded to the ProxyIngressPort and ProxyEgressPort.

- ProxyIngressPort - (Required) Specifies the port that incoming traffic to the AppPorts is directed to.

- ProxyEgressPort - (Required) Specifies the port that outgoing traffic from the AppPorts is directed to.

- EgressIgnoredPorts - (Required) The egress traffic going to the specified ports is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

- EgressIgnoredIPs - (Required) The egress traffic going to the specified IP addresses is ignored and not redirected to the ProxyEgressPort. It can be an empty list.

Type: Array of `KeyValuePair` objects

Required: No

type

The proxy type. The only supported value is APPMESH.

Type: String

Valid Values: APPMESH

Required: No
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
RepositoryCredentials

The repository credentials for private registry authentication.

Contents

credentialsParameter

The Amazon Resource Name (ARN) of the secret containing the private repository credentials.

Note
When you use the Amazon ECS API, AWS CLI, or AWS SDK, if the secret exists in the same Region as the task that you're launching then you can use either the full ARN or the name of the secret. When you use the AWS Management Console, you must specify the full ARN of the secret.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Resource

Describes the resources available for a container instance.

Contents

doubleValue

When the `doubleValue` type is set, the value of the resource must be a double precision floating-point type.

Type: Double
Required: No

integerValue

When the `integerValue` type is set, the value of the resource must be an integer.

Type: Integer
Required: No

longValue

When the `longValue` type is set, the value of the resource must be an extended precision floating-point type.

Type: Long
Required: No

name

The name of the resource, such as CPU, MEMORY, PORTS, PORTS_UDP, or a user-defined resource.

Type: String
Required: No

stringValue

When the `stringValue` type is set, the value of the resource must be a string type.

Type: Array of strings
Required: No

type

The type of the resource. Valid values: INTEGER, DOUBLE, LONG, or STRINGSET.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
• AWS SDK for Go
• AWS SDK for Java V2
• AWS SDK for Ruby V3
ResourceRequirement

The type and amount of a resource to assign to a container. The supported resource types are GPUs and Elastic Inference accelerators. For more information, see Working with GPUs on Amazon ECS or Working with Amazon Elastic Inference on Amazon ECS in the Amazon Elastic Container Service Developer Guide.

Contents

type

The type of resource to assign to a container. The supported values are GPU or InferenceAccelerator.

Type: String

Valid Values: GPU | InferenceAccelerator

Required: Yes

value

The value for the specified resource type.

If the GPU type is used, the value is the number of physical GPUs the Amazon ECS container agent reserves for the container. The number of GPUs that’s reserved for all containers in a task can’t exceed the number of available GPUs on the container instance that the task is launched on.

If the InferenceAccelerator type is used, the value matches the deviceName for an InferenceAccelerator (p. 342) specified in a task definition.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
RuntimePlatform

Information about the platform for the Amazon ECS service or task.

For more information about `RuntimePlatform`, see `RuntimePlatform` in the *Amazon Elastic Container Service Developer Guide*.

Contents

cpuArchitecture

The CPU architecture.

You can run your Linux tasks on an ARM-based platform by setting the value to `ARM64`. This option is available for tasks that run on Linux Amazon EC2 instance or Linux containers on Fargate.

Type: String

Valid Values: `X86_64` | `ARM64`

Required: No

operatingSystemFamily

The operating system.

Type: String

Valid Values: `WINDOWS_SERVER_2019_FULL` | `WINDOWS_SERVER_2019_CORE`
| `WINDOWS_SERVER_2016_FULL` | `WINDOWS_SERVER_2004_CORE`
| `WINDOWS_SERVER_2022_CORE` | `WINDOWS_SERVER_2022_FULL` |
| `WINDOWS_SERVER_20H2_CORE` | `LINUX`

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Scale

A floating-point percentage of the desired number of tasks to place and keep running in the task set.

Contents

unit

The unit of measure for the scale value.

Type: String

Valid Values: PERCENT

Required: No

value

The value, specified as a percent total of a service's desiredCount, to scale the task set. Accepted values are numbers between 0 and 100.

Type: Double

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Secret

An object representing the secret to expose to your container. Secrets can be exposed to a container in
the following ways:

- To inject sensitive data into your containers as environment variables, use the `secrets` container
definition parameter.
- To reference sensitive information in the log configuration of a container, use the `secretOptions`
container definition parameter.

For more information, see Specifying Sensitive Data in the Amazon Elastic Container Service Developer
Guide.

Contents

ame

The name of the secret.

Type: String

Required: Yes

valueFrom

The secret to expose to the container. The supported values are either the full ARN of the AWS
Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store.

For information about the require AWS Identity and Access Management permissions, see Required
IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for
Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service
Developer Guide.

Note

If the SSM Parameter Store parameter exists in the same Region as the task you’re
launching, then you can use either the full ARN or name of the parameter. If the parameter
exists in a different Region, then the full ARN must be specified.

Type: String

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Service

Details on a service within a cluster

Contents

capacityProviderStrategy

The capacity provider strategy the service uses. When using the DescribeServices API, this field is omitted if the service was created using a launch type.

Type: Array of CapacityProviderStrategyItem (p. 281) objects

Required: No

clusterArn

The Amazon Resource Name (ARN) of the cluster that hosts the service.

Type: String

Required: No

createdAt

The Unix timestamp for the time when the service was created.

Type: Timestamp

Required: No

createdBy

The principal that created the service.

Type: String

Required: No

deploymentConfiguration

Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.

Type: DeploymentConfiguration (p. 319) object

Required: No

deploymentController

The deployment controller type the service is using. When using the DescribeServices API, this field is omitted if the service uses the ECS deployment controller type.

Type: DeploymentController (p. 321) object

Required: No

deployments

The current state of deployments for the service.

Type: Array of Deployment (p. 315) objects

Required: No
desiredCount

The desired number of instantiations of the task definition to keep running on the service. This value is specified when the service is created with CreateService (p. 13), and it can be modified with UpdateService (p. 250).

Type: Integer
Required: No

enableECSManagedTags

Determines whether to use Amazon ECS managed tags for the tasks in the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide.

Type: Boolean
Required: No

enableExecuteCommand

Determines whether the execute command functionality is enabled for the service. If true, the execute command functionality is enabled for all containers in tasks as part of the service.

Type: Boolean
Required: No

events

The event stream for your service. A maximum of 100 of the latest events are displayed.

Type: Array of ServiceEvent (p. 382) objects
Required: No

healthCheckGracePeriodSeconds

The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started.

Type: Integer
Required: No

launchType

The launch type the service is using. When using the DescribeServices API, this field is omitted if the service was created using a capacity provider strategy.

Type: String
Valid Values: EC2 | FARGATE | EXTERNAL
Required: No

loadBalancers

A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the container name, and the container port to access from the load balancer. The container name is as it appears in a container definition.

Type: Array of LoadBalancer (p. 350) objects
Required: No
networkConfiguration

The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the awsvpc networking mode.

Type: NetworkConfiguration (p. 360) object

Required: No

pendingCount

The number of tasks in the cluster that are in the PENDING state.

Type: Integer

Required: No

placementConstraints

The placement constraints for the tasks in the service.

Type: Array of PlacementConstraint (p. 362) objects

Required: No

placementStrategy

The placement strategy that determines how tasks for the service are placed.

Type: Array of PlacementStrategy (p. 363) objects

Required: No

platformFamily

The operating system that your tasks in the service run on. A platform family is specified only for tasks using the Fargate launch type.

All tasks that run as part of this service must use the same platformFamily value as the service (for example, LINUX).

Type: String

Required: No

platformVersion

The platform version to run your service on. A platform version is only specified for tasks that are hosted on AWS Fargate. If one isn't specified, the LATEST platform version is used. For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

propagateTags

Determines whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren't propagated.

Type: String

Valid Values: TASK_DEFINITION | SERVICE | NONE

Required: No
roleArn

The ARN of the IAM role that's associated with the service. It allows the Amazon ECS container agent to register container instances with an Elastic Load Balancing load balancer.

Type: String

Required: No

runningCount

The number of tasks in the cluster that are in the RUNNING state.

Type: Integer

Required: No

schedulingStrategy

The scheduling strategy to use for the service. For more information, see Services.

There are two service scheduler strategies available.

- REPLICA-The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions.

- DAEMON-The daemon scheduling strategy deploys exactly one task on each active container instance. This task meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It stop tasks that don't meet the placement constraints.

Note

Fargate tasks don't support the DAEMON scheduling strategy.

Type: String

Valid Values: REPLICA | DAEMON

Required: No

serviceArn

The ARN that identifies the service. The ARN contains the arn:aws:ecs namespace, followed by the Region of the service, the AWS account ID of the service owner, the service namespace, and then the service name. For example, arn:aws:ecs:region:012345678910:service/my-service.

Type: String

Required: No

serviceName

The name of your service. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. Service names must be unique within a cluster. However, you can have similarly named services in multiple clusters within a Region or across multiple Regions.

Type: String

Required: No

serviceRegistries

The details for the service discovery registries to assign to this service. For more information, see Service Discovery.
Type: Array of `ServiceRegistry (p. 383)` objects

Required: No

status

The status of the service. The valid values are `ACTIVE`, `DRAINING`, or `INACTIVE`.

Type: String

Required: No

tags

The metadata that you apply to the service to help you categorize and organize them. Each tag consists of a key and an optional value. You define both the key and value.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of `Tag (p. 388)` objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskDefinition

The task definition to use for tasks in the service. This value is specified when the service is created with `CreateService (p. 13)`, and it can be modified with `UpdateService (p. 250)`.

Type: String

Required: No

taskSets

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an `EXTERNAL` deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Type: Array of `TaskSet (p. 406)` objects

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
See Also

- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ServiceEvent

The details for an event that's associated with a service.

Contents

createdAt

The Unix timestamp for the time when the event was triggered.
Type: Timestamp
Required: No

id

The ID string for the event.
Type: String
Required: No

message

The event message.
Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
ServiceRegistry

The details for the service registry.

Each service may be associated with one service registry. Multiple service registries for each service are not supported.

When you add, update, or remove the service registries configuration, Amazon ECS starts a new deployment. New tasks are registered and deregistered to the updated service registry configuration.

Contents

containerName

The container name value to be used for your service discovery service. It's already specified in the task definition. If the task definition that your service task specifies uses the bridge or host network mode, you must specify a containerName and containerPort combination from the task definition. If the task definition that your service task specifies uses the awsvpc network mode and a type SRV DNS record is used, you must specify either a containerName and containerPort combination or a port value. However, you can't specify both.

Type: String
Required: No

containerPort

The port value to be used for your service discovery service. It's already specified in the task definition. If the task definition your service task specifies uses the bridge or host network mode, you must specify a containerName and containerPort combination from the task definition. If the task definition your service task specifies uses the awsvpc network mode and a type SRV DNS record is used, you must specify either a containerName and containerPort combination or a port value. However, you can't specify both.

Type: Integer
Required: No

port

The port value used if your service discovery service specified an SRV record. This field might be used if both the awsvpc network mode and SRV records are used.

Type: Integer
Required: No

registryArn

The Amazon Resource Name (ARN) of the service registry. The currently supported service registry is AWS Cloud Map. For more information, see CreateService.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:
See Also

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Session

The details for the execute command session.

Contents

sessionId

The ID of the execute command session.

Type: String

Required: No

streamUrl

A URL to the managed agent on the container that the SSM Session Manager client uses to send commands and receive output from the container.

Type: String

Required: No

tokenValue

An encrypted token value containing session and caller information. It's used to authenticate the connection to the container.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Setting

The current account setting for a resource.

Contents

name

The Amazon ECS resource name.

Type: String

Valid Values: serviceLongArnFormat | taskLongArnFormat | containerInstanceLongArnFormat | awsvpcTrunking | containerInsights

Required: No

principalArn

The ARN of the principal. It can be an IAM user, IAM role, or the root user. If this field is omitted, the authenticated user is assumed.

Type: String

Required: No

value

Determines whether the account setting is enabled or disabled for the specified resource.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
SystemControl

A list of namespaced kernel parameters to set in the container. This parameter maps to `Sysctls` in the `Create a container` section of the Docker Remote API and the `--sysctl` option to `docker run`.

We don't recommend that you specify network-related `systemControls` parameters for multiple containers in a single task. This task also uses either the `awsvpc` or `host` network mode. It does it for the following reasons.

- For tasks that use the `awsvpc` network mode, if you set `systemControls` for any container, it applies to all containers in the task. If you set different `systemControls` for multiple containers in a single task, the container that's started last determines which `systemControls` take effect.
- For tasks that use the `host` network mode, the `systemControls` parameter applies to the container instance's kernel parameter and that of all containers of any tasks running on that container instance.

Contents

namespace

The namespaced kernel parameter to set a value for.

- Type: String
- Required: No

value

The value for the namespaced kernel parameter that's specified in `namespace`.

- Type: String
- Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Tag

The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws :`, `AWS :`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Contents

key

One part of a key-value pair that make up a tag. A key is a general label that acts like a category for more specific tag values.

Type: String

Pattern: ^([\p{L}\p{Z}\p{N}_.:/=+-@]*\$)

Required: No

value

The optional part of a key-value pair that make up a tag. A value acts as a descriptor within a tag category (key).

Type: String

Length Constraints: Minimum length of 0. Maximum length of 256.

Pattern: ^([\p{L}\p{Z}\p{N}_.:/=+-@]*\$)

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
• AWS SDK for Ruby V3
Task
Details on a task in a cluster.

Contents

attachments
The Elastic Network Adapter that's associated with the task if the task uses the awsvpc network mode.
Type: Array of Attachment (p. 273) objects
Required: No

attributes
The attributes of the task
Type: Array of Attribute (p. 275) objects
Required: No

availabilityZone
The Availability Zone for the task.
Type: String
Required: No

capacityProviderName
The capacity provider that's associated with the task.
Type: String
Required: No

clusterArn
The ARN of the cluster that hosts the task.
Type: String
Required: No

connectivity
The connectivity status of a task.
Type: String
Valid Values: CONNECTED | DISCONNECTED
Required: No

connectivityAt
The Unix timestamp for the time when the task last went into CONNECTED status.
Type: Timestamp
containerInstanceArn

The ARN of the container instances that host the task.

Type: String

cpu

The number of CPU units used by the task as expressed in a task definition. It can be expressed as an integer using CPU units (for example, 1024). It can also be expressed as a string using vCPUs (for example, 1 vCPU or 1 vcpu). String values are converted to an integer that indicates the CPU units when the task definition is registered.

If you use the EC2 launch type, this field is optional. Supported values are between 128 CPU units (0.125 vCPUs) and 10240 CPU units (10 vCPUs).

If you use the Fargate launch type, this field is required. You must use one of the following values. These values determine the range of supported values for the memory parameter:

- 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available memory values: Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available memory values: Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)

createdAt

The Unix timestamp for the time when the task was created. More specifically, it's for the time when the task entered the PENDING state.

Type: Timestamp

desiredStatus

The desired status of the task. For more information, see Task Lifecycle.

Type: String
enableExecuteCommand

Determines whether execute command functionality is enabled for this task. If true, execute command functionality is enabled on all the containers in the task.

Type: Boolean
Required: No

ephemeralStorage

The ephemeral storage settings for the task.

Type: EphemeralStorage (p. 329) object
Required: No

executionStoppedAt

The Unix timestamp for the time when the task execution stopped.

Type: Timestamp
Required: No

group

The name of the task group that's associated with the task.

Type: String
Required: No

healthStatus

The health status for the task. It's determined by the health of the essential containers in the task. If all essential containers in the task are reporting as HEALTHY, the task status also reports as HEALTHY. If any essential containers in the task are reporting as UNHEALTHY or UNKNOWN, the task status also reports as UNHEALTHY or UNKNOWN.

Note
The Amazon ECS container agent doesn't monitor or report on Docker health checks that are embedded in a container image and not specified in the container definition. For example, this includes those specified in a parent image or from the image's Dockerfile. Health check parameters that are specified in a container definition override any Docker health checks that are found in the container image.

Type: String
Valid Values: HEALTHY | UNHEALTHY | UNKNOWN
Required: No

inferenceAccelerators

The Elastic Inference accelerator that's associated with the task.

Type: Array of InferenceAccelerator (p. 342) objects
Required: No

lastStatus

The last known status for the task. For more information, see Task Lifecycle.

Type: String
Required: No

launchType

The infrastructure where your task runs on. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

memory

The amount of memory (in MiB) that the task uses as expressed in a task definition. It can be expressed as an integer using MiB (for example, 1024). If it's expressed as a string using GB (for example, 1GB or 1 GB), it's converted to an integer indicating the MiB when the task definition is registered.

If you use the EC2 launch type, this field is optional.

If you use the Fargate launch type, this field is required. You must use one of the following values. The value that you choose determines the range of supported values for the cpu parameter.

- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)

Type: String

Required: No

overrides

One or more container overrides.

Type: TaskOverride (p. 404) object

Required: No

platformFamily

The operating system that your tasks are running on. A platform family is specified only for tasks that use the Fargate launch type.

All tasks that run as part of this service must use the same platformFamily value as the service (for example, LINUX.).

Type: String

Required: No

platformVersion

The platform version where your task runs on. A platform version is only specified for tasks that use the Fargate launch type. If you didn't specify one, the LATEST platform version is used. For more information, see AWS Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide.
Type: String
Required: No

pullStartedAt
The Unix timestamp for the time when the container image pull began.

Type: Timestamp
Required: No

pullStoppedAt
The Unix timestamp for the time when the container image pull completed.

Type: Timestamp
Required: No

startedAt
The Unix timestamp for the time when the task started. More specifically, it's for the time when the task transitioned from the **PENDING** state to the **RUNNING** state.

Type: Timestamp
Required: No

startedBy
The tag specified when a task is started. If an Amazon ECS service started the task, the **startedBy** parameter contains the deployment ID of that service.

Type: String
Required: No

stopCode
The stop code indicating why a task was stopped. The **stoppedReason** might contain additional details.

The following are valid values:

- **TaskFailedToStart**
- **EssentialContainerExited**
- **UserInitiated**
- **TerminationNotice**
- **ServiceSchedulerInitiated**
- **SpotInterruption**

Type: String
Valid Values: TaskFailedToStart | EssentialContainerExited | UserInitiated

Required: No

stoppedAt
The Unix timestamp for the time when the task was stopped. More specifically, it's for the time when the task transitioned from the **RUNNING** state to the **STOPPED** state.

Type: Timestamp
stoppedReason

The reason that the task was stopped.

Type: String

Required: No

stoppingAt

The Unix timestamp for the time when the task stops. More specifically, it’s for the time when the task transitions from the RUNNING state to STOPPED.

Type: Timestamp

Required: No

tags

The metadata that you apply to the task to help you categorize and organize the task. Each tag consists of a key and an optional value. You define both the key and value.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Type: Array of Tag (p. 388) objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

taskArn

The Amazon Resource Name (ARN) of the task.

Type: String

Required: No

taskDefinitionArn

The ARN of the task definition that creates the task.

Type: String

Required: No

version

The version counter for the task. Every time a task experiences a change that starts a CloudWatch event, the version counter is incremented. If you replicate your Amazon ECS task state with
CloudWatch Events, you can compare the version of a task reported by the Amazon ECS API actions with the version reported in CloudWatch Events for the task (inside the `detail` object) to verify that the version in your event stream is current.

Type: Long

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskDefinition

The details of a task definition which describes the container and volume definitions of an Amazon Elastic Container Service task. You can specify which Docker images to use, the required resources, and other configurations related to launching the task definition through an Amazon ECS service or task.

Contents

compatibilities

The task launch types the task definition validated against during task definition registration. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: Array of strings

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

containerDefinitions

A list of container definitions in JSON format that describe the different containers that make up your task. For more information about container definition parameters and defaults, see Amazon ECS Task Definitions in the Amazon Elastic Container Service Developer Guide.

Type: Array of ContainerDefinition (p. 292) objects

Required: No

cpu

The number of cpu units used by the task. If you use the EC2 launch type, this field is optional. Any value can be used. If you use the Fargate launch type, this field is required. You must use one of the following values. The value that you choose determines your range of valid values for the memory parameter.

The CPU units cannot be less than 1 vCPU when you use Windows containers on Fargate.

- 256 (.25 vCPU) - Available memory values: 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB)
- 512 (.5 vCPU) - Available memory values: 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB)
- 1024 (1 vCPU) - Available memory values: 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB)
- 2048 (2 vCPU) - Available memory values: Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB)
- 4096 (4 vCPU) - Available memory values: Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB)

Type: String

Required: No

deregisteredAt

The Unix timestamp for the time when the task definition was deregistered.

Type: Timestamp

Required: No
ephemeralStorage

The ephemeral storage settings to use for tasks run with the task definition.

Type: EphemeralStorage (p. 329) object

Required: No

executionRoleArn

The Amazon Resource Name (ARN) of the task execution role that grants the Amazon ECS container agent permission to make AWS API calls on your behalf. The task execution IAM role is required depending on the requirements of your task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

family

The name of a family that this task definition is registered to. Up to 255 characters are allowed. Letters (both uppercase and lowercase letters), numbers, hyphens (-), and underscores (_) are allowed.

A family groups multiple versions of a task definition. Amazon ECS gives the first task definition that you registered to a family a revision number of 1. Amazon ECS gives sequential revision numbers to each task definition that you add.

Type: String

Required: No

inferenceAccelerators

The Elastic Inference accelerator that's associated with the task.

Type: Array of InferenceAccelerator (p. 342) objects

Required: No

ipcMode

The IPC resource namespace to use for the containers in the task. The valid values are host, task, or none. If host is specified, then all containers within the tasks that specified the host IPC mode on the same container instance share the same IPC resources with the host Amazon EC2 instance. If task is specified, all containers within the specified task share the same IPC resources. If none is specified, then IPC resources within the containers of a task are private and not shared with other containers in a task or on the container instance. If no value is specified, then the IPC resource namespace sharing depends on the Docker daemon setting on the container instance. For more information, see IPC settings in the Docker run reference.

If the host IPC mode is used, be aware that there is a heightened risk of undesired IPC namespace expose. For more information, see Docker security.

If you are setting namespaced kernel parameters using systemControls for the containers in the task, the following will apply to your IPC resource namespace. For more information, see System Controls in the Amazon Elastic Container Service Developer Guide.

- For tasks that use the host IPC mode, IPC namespace related systemControls are not supported.
- For tasks that use the task IPC mode, IPC namespace related systemControls will apply to all containers within a task.
Note
This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: String

Valid Values: host | task | none

Required: No

memory
The amount (in MiB) of memory used by the task.

If your tasks runs on Amazon EC2 instances, you must specify either a task-level memory value or a container-level memory value. This field is optional and any value can be used. If a task-level memory value is specified, the container-level memory value is optional. For more information regarding container-level memory and memory reservation, see ContainerDefinition.

If your tasks runs on AWS Fargate, this field is required. You must use one of the following values. The value you choose determines your range of valid values for the cpu parameter.

- 512 (0.5 GB), 1024 (1 GB), 2048 (2 GB) - Available cpu values: 256 (.25 vCPU)
- 1024 (1 GB), 2048 (2 GB), 3072 (3 GB), 4096 (4 GB) - Available cpu values: 512 (.5 vCPU)
- 2048 (2 GB), 3072 (3 GB), 4096 (4 GB), 5120 (5 GB), 6144 (6 GB), 7168 (7 GB), 8192 (8 GB) - Available cpu values: 1024 (1 vCPU)
- Between 4096 (4 GB) and 16384 (16 GB) in increments of 1024 (1 GB) - Available cpu values: 2048 (2 vCPU)
- Between 8192 (8 GB) and 30720 (30 GB) in increments of 1024 (1 GB) - Available cpu values: 4096 (4 vCPU)

Type: String

Required: No

networkMode
The Docker networking mode to use for the containers in the task. The valid values are none, bridge, awsvpc, and host. If no network mode is specified, the default is bridge.

For Amazon ECS tasks on Fargate, the awsvpc network mode is required. For Amazon ECS tasks on Amazon EC2 Linux instances, any network mode can be used. For Amazon ECS tasks on Amazon EC2 Windows instances, <default> or awsvpc can be used. If the network mode is set to none, you cannot specify port mappings in your container definitions, and the tasks containers do not have external connectivity. The host and awsvpc network modes offer the highest networking performance for containers because they use the EC2 network stack instead of the virtualized network stack provided by the bridge mode.

With the host and awsvpc network modes, exposed container ports are mapped directly to the corresponding host port (for the host network mode) or the attached elastic network interface port (for the awsvpc network mode), so you cannot take advantage of dynamic host port mappings.

Important
When using the host network mode, you should not run containers using the root user (UID 0). It is considered best practice to use a non-root user.

If the network mode is awsvpc, the task is allocated an elastic network interface, and you must specify a NetworkConfiguration (p. 360) value when you create a service or run a task with the task definition. For more information, see Task Networking in the Amazon Elastic Container Service Developer Guide.

If the network mode is host, you cannot run multiple instantiations of the same task on a single container instance when port mappings are used.
For more information, see Network settings in the Docker run reference.

Type: String

Valid Values: bridge | host | awsvpc | none

Required: No

pidMode

The process namespace to use for the containers in the task. The valid values are host or task. If host is specified, then all containers within the tasks that specified the host PID mode on the same container instance share the same process namespace with the host Amazon EC2 instance. If task is specified, all containers within the specified task share the same process namespace. If no value is specified, the default is a private namespace. For more information, see PID settings in the Docker run reference.

If the host PID mode is used, be aware that there is a heightened risk of undesired process namespace expose. For more information, see Docker security.

Note

This parameter is not supported for Windows containers or tasks run on AWS Fargate.

Type: String

Valid Values: host | task

Required: No

placementConstraints

An array of placement constraint objects to use for tasks.

Note

This parameter isn't supported for tasks run on AWS Fargate.

Type: Array of TaskDefinitionPlacementConstraint (p. 403) objects

Required: No

proxyConfiguration

The configuration details for the App Mesh proxy.

Your Amazon ECS container instances require at least version 1.26.0 of the container agent and at least version 1.26.0-1 of the ecs-init package to use a proxy configuration. If your container instances are launched from the Amazon ECS optimized AMI version 20190301 or later, they contain the required versions of the container agent and ecs-init. For more information, see Amazon ECS-optimized Linux AMI in the Amazon Elastic Container Service Developer Guide.

Type: ProxyConfiguration (p. 367) object

Required: No

registeredAt

The Unix timestamp for the time when the task definition was registered.

Type: Timestamp

Required: No

registeredBy

The principal that registered the task definition.
requiresAttributes

The container instance attributes required by your task. When an Amazon EC2 instance is registered to your cluster, the Amazon ECS container agent assigns some standard attributes to the instance. You can apply custom attributes. These are specified as key-value pairs using the Amazon ECS console or the PutAttributes (p. 157) API. These attributes are used when determining task placement for tasks hosted on Amazon EC2 instances. For more information, see Attributes in the Amazon Elastic Container Service Developer Guide.

Note

This parameter isn't supported for tasks run on AWS Fargate.

Type: Array of Attribute (p. 275) objects

requiredCompatibilities

The task launch types the task definition was validated against. To determine which task launch types the task definition is validated for, see the TaskDefinition:compatibilities (p. 397) parameter.

Type: Array of strings

Valid Values: EC2 | FARGATE | EXTERNAL

requiredRevision

The revision of the task in a particular family. The revision is a version number of a task definition in a family. When you register a task definition for the first time, the revision is 1. Each time that you register a new revision of a task definition in the same family, the revision value always increases by one. This is even if you deregistered previous revisions in this family.

Type: Integer

status

The status of the task definition.

Type: String

Valid Values: ACTIVE | INACTIVE

requiredTaskDefinitionArn

The full Amazon Resource Name (ARN) of the task definition.
taskRoleArn

The short name or full Amazon Resource Name (ARN) of the AWS Identity and Access Management role that grants containers in the task permission to call AWS APIs on your behalf. For more information, see Amazon ECS Task Role in the Amazon Elastic Container Service Developer Guide.

IAM roles for tasks on Windows require that the --EnableTaskIAMRole option is set when you launch the Amazon ECS-optimized Windows AMI. Your containers must also run some configuration code to use the feature. For more information, see Windows IAM roles for tasks in the Amazon Elastic Container Service Developer Guide.

volumes

The list of data volume definitions for the task. For more information, see Using data volumes in tasks in the Amazon Elastic Container Service Developer Guide.

Note

The host and sourcePath parameters aren't supported for tasks run on AWS Fargate.

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskDefinitionPlacementConstraint

An object representing a constraint on task placement in the task definition. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide.

Note
Task placement constraints aren’t supported for tasks run on AWS Fargate.

Contents

eexpression

A cluster query language expression to apply to the constraint. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide.

Type: String
Required: No

ttype

The type of constraint. The MemberOf constraint restricts selection to be from a group of valid candidates.

Type: String
Valid Values: memberOf
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskOverride

The overrides that are associated with a task.

Contents

containerOverrides

One or more container overrides that are sent to a task.

Type: Array of ContainerOverride (p. 311) objects

Required: No

cpu

The cpu override for the task.

Type: String

Required: No

ephemeralStorage

The ephemeral storage setting override for the task.

Note

This parameter is only supported for tasks hosted on Fargate that use the following platform versions:
- Linux platform version 1.4.0 or later.
- Windows platform version 1.0.0 or later.

Type: EphemeralStorage (p. 329) object

Required: No

executionRoleArn

The Amazon Resource Name (ARN) of the task execution IAM role override for the task. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

inferenceAcceleratorOverrides

The Elastic Inference accelerator override for the task.

Type: Array of InferenceAcceleratorOverride (p. 343) objects

Required: No

memory

The memory override for the task.

Type: String

Required: No
taskRoleArn

The Amazon Resource Name (ARN) of the IAM role that containers in this task can assume. All containers in this task are granted the permissions that are specified in this role. For more information, see IAM Role for Tasks in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
TaskSet

Information about a set of Amazon ECS tasks in either an AWS CodeDeploy or an EXTERNAL deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.

Contents

capacityProviderStrategy

The capacity provider strategy that are associated with the task set.

Type: Array of `CapacityProviderStrategyItem (p. 281)` objects

Required: No

clusterArn

The Amazon Resource Name (ARN) of the cluster that the service that hosts the task set exists in.

Type: String

Required: No

computedDesiredCount

The computed desired count for the task set. This is calculated by multiplying the service's `desiredCount` by the task set's `scale` percentage. The result is always rounded up. For example, if the computed desired count is 1.2, it rounds up to 2 tasks.

Type: Integer

Required: No

createdAt

The Unix timestamp for the time when the task set was created.

Type: Timestamp

Required: No

externalId

The external ID associated with the task set.

If an AWS CodeDeploy deployment created a task set, the `externalId` parameter contains the AWS CodeDeploy deployment ID.

If a task set is created for an external deployment and is associated with a service discovery registry, the `externalId` parameter contains the `ECS_TASK_SET_EXTERNAL_ID` AWS Cloud Map attribute.

Type: String

Required: No

id

The ID of the task set.

Type: String

Required: No
launchType

The launch type the tasks in the task set are using. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.

Type: String

Valid Values: EC2 | FARGATE | EXTERNAL

Required: No

loadBalancers

Details on a load balancer that are used with a task set.

Type: Array of LoadBalancer (p. 350) objects

Required: No

networkConfiguration

The network configuration for the task set.

Type: NetworkConfiguration (p. 360) object

Required: No

pendingCount

The number of tasks in the task set that are in the PENDING status during a deployment. A task in the PENDING state is preparing to enter the RUNNING state. A task set enters the PENDING status when it launches for the first time or when it's restarted after being in the STOPPED state.

Type: Integer

Required: No

platformFamily

The operating system that your tasks in the set are running on. A platform family is specified only for tasks that use the Fargate launch type.

All tasks in the set must have the same value.

Type: String

Required: No

platformVersion

The AWS Fargate platform version where the tasks in the task set are running. A platform version is only specified for tasks run on AWS Fargate. For more information, see AWS Fargate platform versions in the Amazon Elastic Container Service Developer Guide.

Type: String

Required: No

runningCount

The number of tasks in the task set that are in the RUNNING status during a deployment. A task in the RUNNING state is running and ready for use.

Type: Integer

Required: No
scale

A floating-point percentage of your desired number of tasks to place and keep running in the task set.

Type: Scale (p. 374) object

Required: No

serviceArn

The Amazon Resource Name (ARN) of the service the task set exists in.

Type: String

Required: No

serviceRegistries

The details for the service discovery registries to assign to this task set. For more information, see Service discovery.

Type: Array of ServiceRegistry (p. 383) objects

Required: No

stabilityStatus

The stability status. This indicates whether the task set has reached a steady state. If the following conditions are met, the task set is in STEADY_STATE:

- The task runningCount is equal to the computedDesiredCount.
- The pendingCount is 0.
- There are no tasks that are running on container instances in the DRAINING status.
- All tasks are reporting a healthy status from the load balancers, service discovery, and container health checks.

If any of those conditions aren't met, the stability status returns STABILIZING.

Type: String

Valid Values: STEADY_STATE | STABILIZING

Required: No

stabilityStatusAt

The Unix timestamp for the time when the task set stability status was retrieved.

Type: Timestamp

Required: No

startedBy

The tag specified when a task set is started. If an AWS CodeDeploy deployment created the task set, the startedBy parameter is CODE_DEPLOY. If an external deployment created the task set, the startedBy field isn't used.

Type: String

Required: No

status

The status of the task set. The following describes each state.
The task set is serving production traffic.

The task set isn't serving production traffic.

The tasks in the task set are being stopped, and their corresponding targets are being deregistered from their target group.

tags

The metadata that you apply to the task set to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.

The following basic restrictions apply to tags:

- Maximum number of tags per resource - 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length - 128 Unicode characters in UTF-8
- Maximum value length - 256 Unicode characters in UTF-8
- If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- Do not use `aws:`, `AWS:`, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for AWS use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

Array Members: Minimum number of 0 items. Maximum number of 50 items.

taskDefinition

The task definition that the task set is using.

taskSetArn

The Amazon Resource Name (ARN) of the task set.

updatedAt

The Unix timestamp for the time when the task set was last updated.
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Tmpfs

The container path, mount options, and size of the tmpfs mount.

Contents

containerPath

The absolute file path where the tmpfs volume is to be mounted.

Type: String

Required: Yes

mountOptions

The list of tmpfs volume mount options.

Valid values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev" | "nodev"
| "exec" | "noexec" | "sync" | "async" | "dirsync" | "remount" | "mand"
| "nomand" | "atime" | "noatime" | "diratime" | "nodiratime" | "bind" | "rbind"
| "unbindable" | "runbindable" | "private" | "rprivate" | "shared"
| "rshared" | "slave" | "rslave" | "relatime" | "norelatime" | "strictatime"
| "nosecretatime" | "mode" | "uid" | "gid" | "nr_inodes" | "nr_blocks" | "mpol"

Type: Array of strings

Required: No

size

The maximum size (in MiB) of the tmpfs volume.

Type: Integer

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Ulimit

The ulimit settings to pass to the container.

Amazon ECS tasks hosted on AWS Fargate use the default resource limit values set by the operating system with the exception of the nofile resource limit parameter which AWS Fargate overrides. The nofile resource limit sets a restriction on the number of open files that a container can use. The default nofile soft limit is 1024 and hard limit is 4096.

Contents

hardLimit

The hard limit for the ulimit type.

Type: Integer

Required: Yes

name

The type of the ulimit.

Type: String

Valid Values: core | cpu | data | fsize | locks | memlock | msgqueue | nice | nofile | nproc | rss | rtprio | rttime | sigpending | stack

Required: Yes

softLimit

The soft limit for the ulimit type.

Type: Integer

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
VersionInfo

The Docker and Amazon ECS container agent version information about a container instance.

Contents

agentHash

The Git commit hash for the Amazon ECS container agent build on the amazon-ecs-agent GitHub repository.

Type: String

Required: No

agentVersion

The version number of the Amazon ECS container agent.

Type: String

Required: No

dockerVersion

The Docker version that's running on the container instance.

Type: String

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Volume

A data volume that's used in a task definition. For tasks that use the Amazon Elastic File System (Amazon EFS), specify an efsVolumeConfiguration. For Windows tasks that use Amazon FSx for Windows File Server file system, specify a fsxWindowsFileServerVolumeConfiguration. For tasks that use a Docker volume, specify a DockerVolumeConfiguration. For tasks that use a bind mount host volume, specify a host and optional sourcePath. For more information, see Using Data Volumes in Tasks.

Contents

dockerVolumeConfiguration

This parameter is specified when you use Docker volumes.

Windows containers only support the use of the local drive. To use bind mounts, specify the host parameter instead.

Note
Docker volumes aren't supported by tasks run on AWS Fargate.

Type: DockerVolumeConfiguration (p. 323) object

Required: No

efsVolumeConfiguration

This parameter is specified when you use an Amazon Elastic File System file system for task storage.

Type: EFSVolumeConfiguration (p. 326) object

Required: No

fsxWindowsFileServerVolumeConfiguration

This parameter is specified when you use Amazon FSx for Windows File Server file system for task storage.

Type: FSxWindowsFileServerVolumeConfiguration (p. 336) object

Required: No

host

This parameter is specified when you use bind mount host volumes. The contents of the host parameter determine whether your bind mount host volume persists on the host container instance and where it's stored. If the host parameter is empty, then the Docker daemon assigns a host path for your data volume. However, the data isn't guaranteed to persist after the containers that are associated with it stop running.

Windows containers can mount whole directories on the same drive as $env:ProgramData. Windows containers can't mount directories on a different drive, and mount point can't be across drives. For example, you can mount C:\my\path:C:\my\path and D:\D:, but not D:\my \path:C:\my\path or D:\:C:\my\path.

Type: HostVolumeProperties (p. 341) object

Required: No

name

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. This name is referenced in the sourceVolume parameter of container definition mountPoints.
See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
VolumeFrom

Details on a data volume from another container in the same task definition.

Contents

readOnly

If this value is true, the container has read-only access to the volume. If this value is false, then the container can write to the volume. The default value is false.

Type: Boolean
Required: No

sourceContainer

The name of another container within the same task definition to mount volumes from.

Type: String
Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

- AWS SDK for C++
- AWS SDK for Go
- AWS SDK for Java V2
- AWS SDK for Ruby V3
Request throttling for the Amazon ECS API

Amazon Elastic Container Service throttles all API requests for each AWS account on a per-Region basis. We do this to ensure consistent performance and fair usage of the service for all Amazon ECS customers. Throttling ensures that calls to the Amazon ECS API do not exceed the maximum allowed API request quotas for both Amazon ECS and the other AWS services that it integrates with. API calls are subject to the request quotas whether they originate from:

- A third-party application
- A command line tool
- The Amazon ECS console

If you exceed an API throttling quota, you get the ThrottlingException error code.

An error occurred (ThrottlingException) when calling the DescribeClusters operation (reached max retries: 4): Rate exceeded.
com.amazonaws.services.ecs.model.AmazonECSException: Rate exceeded (Service: AmazonECS; Status Code: 400; Error Code: ThrottlingException; Request ID: 5ed90669-e454-464d-9b2f-6523bc86f537; Proxy: null)

How throttling is applied

Amazon ECS uses the token bucket algorithm to implement API throttling. With this algorithm, your account has a bucket that holds a specific number of tokens. The number of tokens in the bucket represents your throttling quota at any given second.

Amazon ECS examines the rate of API request submissions for all Amazon ECS APIs in your account, per Region, and applies two types of API throttling quotas: sustained and burst. The sustained rate is the average number of API requests allowed per second over time for an operation. The burst rate is the maximum number of API requests allowed in any one second. With burst, you can periodically make a higher number of API requests than the sustained rate. Following which, Amazon ECS throttles subsequent API requests until the rate of API requests allowed over time stabilizes to the sustained rate. In the token bucket algorithm, the bucket maximum capacity signifies the burst rate and the bucket refill rate is the sustained rate. We will use these terms to provide you an illustration of Amazon ECS API request throttling in the following example.

You are throttled on the number of API requests you make and each request removes one token from the token bucket. For example, the bucket size for Cluster read actions, such as the DescribeClusters API, is 50 tokens, so you can make up to 50 DescribeClusters requests in one second. If you exceed 50 requests in a second, you are throttled and the remaining requests within that second fail.

Buckets automatically refill at a set rate. If the bucket is below its maximum capacity, a set number of tokens is added back to it every second until it reaches its maximum capacity. If the bucket is full when refill tokens arrive, they are discarded. The bucket cannot hold more than its maximum number of tokens. For example, the bucket size for Cluster read actions, such as the DescribeClusters API, is 50 tokens, and the refill rate is 20 tokens per second. If you make 50 DescribeClusters API requests in a
second, the bucket is immediately reduced to zero tokens. The bucket is then refilled by 20 tokens every second, until it reaches its maximum capacity of 50 tokens. This means that the previously empty bucket reaches its maximum capacity after 2.5 seconds.

You do not need to wait for the bucket to be completely full before you can make API requests. You can use tokens as they are added to the bucket. If you immediately use the refill tokens, the bucket does not reach its maximum capacity. For example, the bucket size for *Cluster read actions*, such as the DescribeClusters API, is 50 tokens, and the refill rate is 20 tokens per second. If you deplete the bucket by making 50 API requests in a second, you can continue to make 20 API requests per second. The bucket can refill to the maximum capacity only if you make fewer than 20 API requests per second.

Request Token Bucket Sizes and Refill Rates

For request rate limiting purposes, API actions are grouped into categories. All API actions in a category share the same token bucket. For instance, DescribeClusters and ListClusters APIs share the *Cluster read actions* bucket, for which capacity is 50 and refill rate is 20. This means that the cumulative number of API requests for all *Cluster read actions* is throttled by the same burst rate quota of 50 API requests. Thus, you can make 25 DescribeClusters and 25 ListClusters API requests in one second, or 30 DescribeClusters and 20 ListClusters, or 50 DescribeClusters and 0 ListClusters, or 0 DescribeClusters and 50 ListClusters, but you cannot make 50 DescribeClusters and 50 ListClusters requests at the same time. Sustained rate is similarly applied cumulatively to all API requests within a bucket.

The following table shows the bucket capacity (or burst) and refill rate (or sustained) for all AWS Regions. All API action categories enforce rate quotas for each AWS account on a per-Region basis.

<table>
<thead>
<tr>
<th>API action category</th>
<th>Actions</th>
<th>Bucket maximum capacity (or Burst rate)</th>
<th>Bucket refill rate (or Sustained rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster modify actions</td>
<td>• CreateCluster</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• DeleteCluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PutClusterCapacityProviders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateCluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateClusterSettings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster read actions</td>
<td>• DescribeClusters</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>• ListClusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task definition modify actions</td>
<td>• DeregisterTaskDefinition</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• RegisterTaskDefinition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task definition read actions</td>
<td>• DescribeTaskDefinition</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>• ListTaskDefinitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ListTaskDefinitionFamilies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity provider modify actions</td>
<td>• CreateCapacityProvider</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• DeleteCapacityProvider</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UpdateCapacityProvider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity provider read actions</td>
<td>• DescribeCapacityProviders</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>
Adjusting API throttling quotas

You can request an increase for API throttling quotas for your AWS account. To request a quota adjustment, contact the [AWS Support Center](https://aws.amazon.com/support/).

Adjusting API throttling quotas

AWS Fargate additionally throttles Amazon ECS `RunTask` API at a 20 burst and 20 sustained rate.

API Versions

API Version 2014-11-13

419
Handling API throttling

You can implement an error retry and exponential back-off strategy to avoid the impact of throttling errors on your workloads. If you use AWS SDK, the automatic retry logic is already built-in and configurable. You can refer to the following resources for more details:

- Error retries and exponential backoff in AWS in the AWS General Reference Guide
- Exponential backoff and jitter blog post
- Timeouts, retries, and backoff with jitter article in the Amazon Builder’s Library
Common Parameters

The following list contains the parameters that all actions use for signing Signature Version 4 requests with a query string. Any action-specific parameters are listed in the topic for that action. For more information about Signature Version 4, see Signature Version 4 Signing Process in the Amazon Web Services General Reference.

Action

The action to be performed.

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Version

The API version that the request is written for, expressed in the format YYYY-MM-DD.

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

X-Amz-Algorithm

The hash algorithm that you used to create the request signature.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Values:</td>
<td>AWS4-HMAC-SHA256</td>
</tr>
<tr>
<td>Required:</td>
<td>Conditional</td>
</tr>
</tbody>
</table>

X-Amz-Credential

The credential scope value, which is a string that includes your access key, the date, the region you are targeting, the service you are requesting, and a termination string ("aws4_request"). The value is expressed in the following format: access_key/YYYYMMDD/region/service/aws4_request.

For more information, see Task 2: Create a String to Sign for Signature Version 4 in the Amazon Web Services General Reference.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required:</td>
<td>Conditional</td>
</tr>
</tbody>
</table>

X-Amz-Date

The date that is used to create the signature. The format must be ISO 8601 basic format (YYYYMMDD'T'HHMMSS'Z'). For example, the following date time is a valid X-Amz-Date value: 20120325T120000Z.

Condition: X-Amz-Date is optional for all requests; it can be used to override the date used for signing requests. If the Date header is specified in the ISO 8601 basic format, X-Amz-Date is...
not required. When X-Amz-Date is used, it always overrides the value of the Date header. For more information, see Handling Dates in Signature Version 4 in the *Amazon Web Services General Reference*.

Type: string

Required: Conditional

X-Amz-Security-Token

The temporary security token that was obtained through a call to AWS Security Token Service (AWS STS). For a list of services that support temporary security credentials from AWS Security Token Service, go to *AWS Services That Work with IAM* in the *IAM User Guide*.

Condition: If you're using temporary security credentials from the AWS Security Token Service, you must include the security token.

Type: string

Required: Conditional

X-Amz-Signature

Specifies the hex-encoded signature that was calculated from the string to sign and the derived signing key.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string

Required: Conditional

X-Amz-SignedHeaders

Specifies all the HTTP headers that were included as part of the canonical request. For more information about specifying signed headers, see *Task 1: Create a Canonical Request For Signature Version 4* in the *Amazon Web Services General Reference*.

Condition: Specify this parameter when you include authentication information in a query string instead of in the HTTP authorization header.

Type: string

Required: Conditional
Common Errors

This section lists the errors common to the API actions of all AWS services. For errors specific to an API action for this service, see the topic for that API action.

AccessDeniedException

You do not have sufficient access to perform this action.

HTTP Status Code: 400

IncompleteSignature

The request signature does not conform to AWS standards.

HTTP Status Code: 400

InternalFailure

The request processing has failed because of an unknown error, exception or failure.

HTTP Status Code: 500

InvalidAction

The action or operation requested is invalid. Verify that the action is typed correctly.

HTTP Status Code: 400

InvalidClientTokenId

The X.509 certificate or AWS access key ID provided does not exist in our records.

HTTP Status Code: 403

InvalidParameterCombination

Parameters that must not be used together were used together.

HTTP Status Code: 400

InvalidParameterValue

An invalid or out-of-range value was supplied for the input parameter.

HTTP Status Code: 400

InvalidQueryParameter

The AWS query string is malformed or does not adhere to AWS standards.

HTTP Status Code: 400

MalformedQueryString

The query string contains a syntax error.

HTTP Status Code: 404

MissingAction

The request is missing an action or a required parameter.

HTTP Status Code: 400
MissingAuthenticationToken

The request must contain either a valid (registered) AWS access key ID or X.509 certificate.

HTTP Status Code: 403

MissingParameter

A required parameter for the specified action is not supplied.

HTTP Status Code: 400

NotAuthorized

You do not have permission to perform this action.

HTTP Status Code: 400

OptInRequired

The AWS access key ID needs a subscription for the service.

HTTP Status Code: 403

RequestExpired

The request reached the service more than 15 minutes after the date stamp on the request or more than 15 minutes after the request expiration date (such as for pre-signed URLs), or the date stamp on the request is more than 15 minutes in the future.

HTTP Status Code: 400

ServiceUnavailable

The request has failed due to a temporary failure of the server.

HTTP Status Code: 503

ThrottlingException

The request was denied due to request throttling.

HTTP Status Code: 400

ValidationError

The input fails to satisfy the constraints specified by an AWS service.

HTTP Status Code: 400