Table of Contents

What is Amazon MQ? ... 1
What Are the Main Benefits of Amazon MQ? 1
How Is Amazon MQ Different from Amazon SQS or Amazon SNS? ... 1
How Can I Get Started with Amazon MQ? 1

Setting Up .. 2
Step 1: Create an AWS Account and an IAM Administrator User ... 2
Step 2: Create an IAM User and Get Your AWS Credentials ... 2
Step 3: Get Ready to Use the Example Code ... 3
Next Steps .. 3

Getting Started .. 4
Prerequisites .. 4
Step 1: Create an ActiveMQ Broker ... 4
Step 2: Connect a Java Application to Your Broker 5
 Quick Start ... 5
 Prerequisites ... 5
 Create a Message Producer and Send a Message 6
 Create a Message Consumer and Receive the Message 7
Step 3: Delete Your Broker ... 8
Next Steps .. 8

Tutorials .. 9
Creating and Configuring a Broker .. 9
 Step 1: Configure basic broker settings 9
 Step 2: (Optional) Configure advanced broker settings 10
 Step 3: Finish creating the broker .. 11
Creating and Applying Configurations .. 12
 Step 1: Create a configuration from scratch 12
 Step 2: Create a new configuration revision 12
 Step 3: Apply a configuration revision to your broker 13
Editing Configurations and Managing Configuration Revisions 14
 To view a previous configuration revision 14
 To edit the current configuration revision 15
 To apply a configuration revision to your broker 16
 To roll back your broker to the last configuration revision 17
Connecting a Java Application to Your Broker 17
 Prerequisites ... 18
 To create a message producer and send a message 18
 To create a message consumer and receive the message 20
Listing Brokers and Viewing Broker Details 21
 To list brokers and view broker details 21
Creating and Managing Broker Users 22
 To create a new user ... 23
 To edit an existing user ... 23
 To delete a existing user .. 24
Rebooting a Broker ... 24
 To reboot an Amazon MQ broker 24
Deleting a Broker ... 25
 To delete an Amazon MQ broker 25
Accessing CloudWatch Metrics .. 25
 AWS Management Console ... 26
 AWS Command Line Interface ... 27
 Amazon CloudWatch API .. 27
How Amazon MQ Works .. 28
Basic Elements ... 28
Broker .. 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>30</td>
</tr>
<tr>
<td>Engine</td>
<td>31</td>
</tr>
<tr>
<td>User</td>
<td>31</td>
</tr>
<tr>
<td>Broker Architecture</td>
<td>32</td>
</tr>
<tr>
<td>Single-Instance Broker</td>
<td>32</td>
</tr>
<tr>
<td>Active/Standby Broker for High Availability</td>
<td>32</td>
</tr>
<tr>
<td>Broker Configuration Lifecycle</td>
<td>34</td>
</tr>
<tr>
<td>Broker Configuration Parameters</td>
<td>35</td>
</tr>
<tr>
<td>Working with Spring XML Configuration Files</td>
<td>35</td>
</tr>
<tr>
<td>Permitted Elements</td>
<td>35</td>
</tr>
<tr>
<td>Permitted Attributes</td>
<td>37</td>
</tr>
<tr>
<td>Permitted Collections</td>
<td>44</td>
</tr>
<tr>
<td>Working Java Example</td>
<td>48</td>
</tr>
<tr>
<td>Quick Start</td>
<td>48</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>48</td>
</tr>
<tr>
<td>Working Java Example</td>
<td>49</td>
</tr>
<tr>
<td>Migrating to Amazon MQ</td>
<td>51</td>
</tr>
<tr>
<td>Without Service Interruption</td>
<td>52</td>
</tr>
<tr>
<td>To migrate to Amazon MQ without service interruption</td>
<td>53</td>
</tr>
<tr>
<td>With Service Interruption</td>
<td>53</td>
</tr>
<tr>
<td>To migrate to Amazon MQ with service interruption</td>
<td>54</td>
</tr>
<tr>
<td>Best Practices</td>
<td>55</td>
</tr>
<tr>
<td>Communicating with Amazon MQ</td>
<td>55</td>
</tr>
<tr>
<td>Always Use Connection Pooling</td>
<td>55</td>
</tr>
<tr>
<td>Avoid Using Message Selectors</td>
<td>56</td>
</tr>
<tr>
<td>Limits</td>
<td>57</td>
</tr>
<tr>
<td>Brokers</td>
<td>57</td>
</tr>
<tr>
<td>Configurations</td>
<td>57</td>
</tr>
<tr>
<td>Users</td>
<td>58</td>
</tr>
<tr>
<td>Messages</td>
<td>58</td>
</tr>
<tr>
<td>Data Storage</td>
<td>58</td>
</tr>
<tr>
<td>API Throttling</td>
<td>59</td>
</tr>
<tr>
<td>Monitoring Amazon MQ using CloudWatch</td>
<td>60</td>
</tr>
<tr>
<td>Broker Metrics</td>
<td>60</td>
</tr>
<tr>
<td>Dimension for Broker Metrics</td>
<td>60</td>
</tr>
<tr>
<td>Destination (Queue and Topic) Metrics</td>
<td>61</td>
</tr>
<tr>
<td>Dimensions for Destination (Queue and Topic) Metrics</td>
<td>62</td>
</tr>
<tr>
<td>Security</td>
<td>63</td>
</tr>
<tr>
<td>Authentication and Access Control</td>
<td>63</td>
</tr>
<tr>
<td>Amazon MQ REST API Permissions Reference</td>
<td>63</td>
</tr>
<tr>
<td>Related Resources</td>
<td>65</td>
</tr>
<tr>
<td>Amazon MQ Resources</td>
<td>65</td>
</tr>
<tr>
<td>Apache ActiveMQ Resources</td>
<td>65</td>
</tr>
<tr>
<td>Document History</td>
<td>66</td>
</tr>
<tr>
<td>AWS Glossary</td>
<td>68</td>
</tr>
</tbody>
</table>
What Is Amazon MQ?

Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

Amazon MQ works with your existing applications and services without the need to manage, operate, or maintain your own messaging system.

Topics

• What Are the Main Benefits of Amazon MQ? (p. 1)
• How Is Amazon MQ Different from Amazon SQS or Amazon SNS? (p. 1)
• How Can I Get Started with Amazon MQ? (p. 1)

What Are the Main Benefits of Amazon MQ?

• Accelerated migration – Amazon MQ supports industry-standard APIs and protocols so you can migrate from your existing message broker without rewriting application code.
• Reduced cost – Amazon MQ provides cost-efficient and flexible messaging capacity—you pay for broker instance and storage usage as you go.
• Operation offloading – Amazon MQ manages the administration and maintenance of ActiveMQ brokers and automatically provisions infrastructure for high availability.

How Is Amazon MQ Different from Amazon SQS or Amazon SNS?

Amazon MQ is a managed message broker service that provides compatibility with many popular message brokers. We recommend Amazon MQ for migrating applications from existing message brokers that rely on compatibility with APIs such as JMS or protocols such as AMQP, MQTT, OpenWire, and STOMP.

Amazon SQS and Amazon SNS are queue and topic services that are highly scalable, simple to use, and don't require you to set up message brokers. We recommend these services for new applications that can benefit from nearly unlimited scalability and simple APIs.

How Can I Get Started with Amazon MQ?

• To create your first broker with Amazon MQ, see Getting Started with Amazon MQ (p. 4).
• To learn more about the functionality and architecture of Amazon MQ, see How Amazon MQ Works (p. 28).
Setting Up Amazon MQ

Before you can use Amazon MQ, you must complete the following steps.

Topics
- Step 1: Create an AWS Account and an IAM Administrator User (p. 2)
- Step 2: Create an IAM User and Get Your AWS Credentials (p. 2)
- Step 3: Get Ready to Use the Example Code (p. 3)
- Next Steps (p. 3)

Step 1: Create an AWS Account and an IAM Administrator User

To access any AWS service, you must first create an AWS account. This is an Amazon account that can use AWS products. You can use your AWS account to view your activity and usage reports and to manage authentication and access.

1. Navigate to the AWS home page, and then choose Create an AWS Account.
2. Follow the instructions.
 - Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.
3. When you finish creating your AWS account, follow the instructions in the IAM User Guide to create your first IAM administrator user and group.

Step 2: Create an IAM User and Get Your AWS Credentials

To avoid using your IAM administrator user for Amazon MQ operations, it is a best practice to create an IAM user for each person who needs administrative access to Amazon MQ.

To use the Amazon MQ REST API, you need AWS credentials that are associated with your IAM user. These credentials are comprised of an access key ID and a secret access key. For more information, see What Is IAM? in the IAM User Guide and AWS Security Credentials in the AWS General Reference.

1. Sign in to the AWS Identity and Access Management console.
2. Choose Users, Add user.
3. Type a User name, such as AmazonMQAdmin.
4. Select Programmatic access and AWS Management Console access.
5. Set a Console password and then choose Next: Permissions.
6. On the Set permissions for AmazonMQAdmin page, choose Attach existing policies directly.
7. Type AmazonMQ into the filter, choose AmazonMQFullAccess, and then choose Next: Review.
8. On the Review page, choose Create user.

The IAM user is created and the Access key ID is displayed, for example:
AKIAIOSFODNN7EXAMPLE
9. To display your Secret access key, choose Show, for example:

wJalrXUtFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Important
You can view or download your secret access key only when you create your credentials (however, you can create new credentials at any time).

10. To download your credentials, choose Download .csv. Keep this file in a secure location.

Step 3: Get Ready to Use the Example Code

The following tutorials show how you can work with Amazon MQ and ActiveMQ using the AWS Management Console and Java. To use the example code, you must install the Java Standard Edition Development Kit and make some changes to the code.

You can also create and manage brokers programmatically using Amazon MQ REST API and AWS SDKs.

Next Steps

Now that you're prepared to work with Amazon MQ, get started by creating a broker (p. 4) and then connecting a Java application (p. 17) to your broker.
Prerequisites

Before you begin, complete the steps in Setting Up Amazon MQ (p. 2).

Step 1: Create an ActiveMQ Broker

A broker is a message broker environment running on Amazon MQ. It is the basic building block of Amazon MQ. The combined description of the broker instance class (m4, t2) and size (large, micro) is a broker instance type (for example, mq.m4.large). For more information, see Broker (p. 28).

The first and most common Amazon MQ task is creating a broker. The following example shows how you can use the AWS Management Console to create a basic broker.

1. Sign in to the Amazon MQ console.
2. Do one of the following:
 - If this is your first time using Amazon MQ, in the Create a broker section, type MyBroker for Broker name and then choose Next step.
 - If you have created a broker before, on the Create a broker page, in the Broker details section, type MyBroker for Broker name.
3. Choose a Broker instance type (for example, mq.m4.large). For more information, see Instance Types (p. 29).
4. For Deployment mode, ensure that Single-instance broker is selected.
 - Note: Currently, Amazon MQ supports only the ActiveMQ broker engine, version 5.15.0.
5. In the ActiveMQ Web Console access section, type a Username and Password.
6. Choose Create broker.

 While Amazon MQ creates your broker, it displays the Creation in progress status.

 Creating the broker takes about 10 minutes.
Step 2: Connect a Java Application to Your Broker

After you create an Amazon MQ broker, you can connect your application to it. The following examples show how you can use the Java Message Service (JMS) to create a connection to the broker, create a queue, and send a message. For a complete, working Java example, see Working Example of Using Java Message Service (JMS) with ActiveMQ (p. 48).

You can connect to ActiveMQ brokers using various ActiveMQ clients. We recommend using the ActiveMQ Client.

Important
To ensure that your broker is accessible within your VPC, you must enable the enableDnsHostnames and enableDnsSupport VPC attributes. For more information, see DNS Support in your VPC in the Amazon VPC User Guide.

Quick Start

If you are experienced with Java Message Service (JMS) and ActiveMQ, you can skip the following and quickly try out Amazon MQ functionality using Apache Maven.

1. Download AmazonMQExample_1.1.zip
2. Add your broker endpoint and your username and password to the AmazonMQExample.java file.
3. From the directory with the pom.xml file, run the mvn compile exec:java command.

Prerequisites

To allow your application to work with ActiveMQ, add the activemq-client.jar and activemq-pool.jar packages to your Java build class path. The following example shows these dependencies in your Maven project's pom.xml file.

```xml
<dependencies>
  <dependency>
    <!-- Add your dependencies here -->
  </dependency>
</dependencies>
```
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-client</artifactId>
<version>5.15.0</version>
</dependency>
<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-pool</artifactId>
<version>5.15.0</version>
</dependency>
<dependencies>
For more information about activemq-client.jar, see Initial Configuration in the Apache ActiveMQ documentation.

Create a Message Producer and Send a Message

1. Create a JMS pooled connection factory for the message producer using your broker's endpoint and then call the createConnection method against the factory.

 // Create a connection factory.
 ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://b-1234a5b6-78cd-901e-2fgb-3i45j6k17l89-1.mq.us-east-1.amazonaws.com:61617");

 // Specify the username and password.
 connectionFactory.setUserName("MyUsername123");
 connectionFactory.setPassword("MyPassword456");

 // Create a pooled connection factory.
 PooledConnectionFactory pooledConnectionFactory = new PooledConnectionFactory();
 pooledConnectionFactory.setConnectionFactory(connectionFactory);
 pooledConnectionFactory.setMaxConnections(10);

 // Establish a connection for the producer.
 Connection producerConnection = pooledConnectionFactory.createConnection();
 producerConnection.start();

 Note
 Message producers should use the PooledConnectionFactory class. For more information, see Always Use Connection Pooling (p. 55).

2. Create a session, a queue named MyQueue, and a message producer.

 // Create a session.
 Session producerSession = producerConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 // Create a queue named "MyQueue".
 Destination producerDestination = producerSession.createQueue("MyQueue");

 // Create a producer from the session to the queue.
 MessageProducer producer = producerSession.createProducer(producerDestination);
 producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

3. Create the message string "Hello from Amazon MQ!" and then send the message.

 // Create a message.
 String text = "Hello from Amazon MQ!";
 TextMessage producerMessage = producerSession.createTextMessage(text);

 // Send the message.
 producer.send(producerMessage);
Create a Message Consumer and Receive the Message

1. Create a JMS connection factory for the message producer using your broker's endpoint and then call the createConnection method against the factory.

   ```java
   // Create a connection factory.
   ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617");

   // Specify the username and password.
   connectionFactory.setUserName("MyUserName");
   connectionFactory.setPassword("MyPassWord123");

   // Establish a connection for the consumer.
   Connection consumerConnection = connectionFactory.createConnection();
   consumerConnection.start();
   
   Note
   Message consumers should not use the PooledConnectionFactory class. For more information, see Always Use Connection Pooling (p. 55).
   
2. Create a session, a queue named MyQueue, and a message consumer.

   ```java
 // Create a session.
 Session consumerSession = consumerConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 // Create a queue named "MyQueue".
 Destination consumerDestination = consumerSession.createQueue("MyQueue");

 // Create a message consumer from the session to the queue.
 MessageConsumer consumer = consumerSession.createConsumer(consumerDestination);
   ```

3. Begin to wait for messages and receive the message when it arrives.

   ```java
 // Begin to wait for messages.
 Message consumerMessage = consumer.receive(1000);

 // Receive the message when it arrives.
 TextMessage consumerTextMessage = (TextMessage) consumerMessage;
 System.out.println("Message received: "+ consumerTextMessage.getText());

 Note
 Unlike AWS messaging services (such as Amazon SQS), the consumer is constantly connected to the broker.

4. Close the consumer, session, and connection.

   ```java
   consumer.close();
   consumerSession.close();
   consumerConnection.close();
   ```
Step 3: Delete Your Broker

If you don’t use an Amazon MQ broker (and don’t foresee using it in the near future), it is a best practice to delete it from Amazon MQ to reduce your AWS costs.

The following example shows how you can delete a broker using the AWS Management Console.

1. Sign in to the Amazon MQ console.
2. From the broker list, select your broker (for example, MyBroker) and then choose Delete.
3. In the Delete MyBroker? dialog box, type delete and then choose Delete.

Deleting a broker takes about 5 minutes.

Next Steps

Now that you have created a broker, connected an application to it, and sent and received a message, you might want to try the following:

- Tutorial: Creating and Configuring an Amazon MQ Broker (p. 9) (Advanced Settings)
- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)
- Tutorial: Listing Amazon MQ Brokers and Viewing Broker Details (p. 21)
- Tutorial: Creating and Managing Amazon MQ Broker Users (p. 22)
- Tutorial: Rebooting an Amazon MQ Broker (p. 24)
- Tutorial: Accessing CloudWatch Metrics for Amazon MQ (p. 25)

You can also begin to plan to migrate to Amazon MQ (p. 51).
Amazon MQ Tutorials

The following tutorials show how you can work with Amazon MQ and ActiveMQ using the AWS Management Console and Java. To use the example code, you must install the Java Standard Edition Development Kit and make some changes to the code.

Topics
- Tutorial: Creating and Configuring an Amazon MQ Broker (p. 9)
- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)
- Tutorial: Connecting a Java Application to Your Amazon MQ Broker (p. 17)
- Tutorial: Listing Amazon MQ Brokers and Viewing Broker Details (p. 21)
- Tutorial: Creating and Managing Amazon MQ Broker Users (p. 22)
- Tutorial: Rebooting an Amazon MQ Broker (p. 24)
- Tutorial: Deleting an Amazon MQ Broker (p. 25)
- Tutorial: Accessing CloudWatch Metrics for Amazon MQ (p. 25)

Tutorial: Creating and Configuring an Amazon MQ Broker

A broker is a message broker environment running on Amazon MQ. It is the basic building block of Amazon MQ. The combined description of the broker instance class (m4, t2) and size (large, micro) is a broker instance type (for example, mq.m4.large). For more information, see Broker (p. 28).

The first and most common Amazon MQ task is creating a broker. The following example shows how you can use the AWS Management Console to create and configure a broker using the AWS Management Console.

Topics
- Step 1: Configure basic broker settings (p. 9)
- Step 2: (Optional) Configure advanced broker settings (p. 10)
- Step 3: Finish creating the broker (p. 11)

Step 1: Configure basic broker settings

1. Sign in to the Amazon MQ console.
2. Do one of the following:
 - If this is your first time using Amazon MQ, in the Create a broker section, type MyBroker for Broker name and then choose Next step.
 - If you have created a broker before, on the Create a broker page, in the Broker details section, type MyBroker for Broker name.
3. Choose a **Broker instance type** (for example, **mq.m4.large**). For more information, see Instance Types (p. 29).

4. Choose a **Deployment mode**:
 - A **Single-instance broker** is comprised of one broker in one Availability Zone. The broker communicates with your application and with an AWS storage location. For more information, see Single-Instance Broker (p. 32).
 - An **Active/standby broker for high availability** is comprised of two brokers in two different Availability Zones, configured in a *redundant pair*. These brokers communicate with your application, and with a shared storage location. For more information, see Active/Standby Broker for High Availability (p. 32).

 Note
 Currently, Amazon MQ supports only the ActiveMQ broker engine, version 5.15.0.

5. In the **ActiveMQ Web Console access** section, type a **Username** and **Password**.

Step 2: (Optional) Configure advanced broker settings

1. Expand the **Advanced settings** section.

2. In the **Configuration** section, choose **Create a new configuration with default values** or **Select an existing configuration**. For more information, see Configuration (p. 30) and Amazon MQ Broker Configuration Parameters (p. 35).

3. In the **Network and security section**, configure your broker's connectivity:
 - Select the default **Virtual Private Cloud (VPC)** or create a new one on the Amazon VPC console. For more information, see What is Amazon VPC? in the Amazon VPC User Guide.
 - Select the default **Subnets** or create new ones on the Amazon VPC console. For more information, see VPCs and Subnets in the Amazon VPC User Guide.

 Note
 A single-instance broker requires one subnet (for example, the default subnet). An active/standby broker for high availability requires two subnets.

 - Select your **Security group(s)**.

 Note
 Both single-instance brokers and active/standby brokers for high availability require at least one security group (for example, the default security group).

 - Select the **Public accessibility** of your broker.

 Note
 Disabling public accessibility makes the broker accessible only within your VPC.

4. In the **Maintenance section**, configure your broker's maintenance schedule:
 - **To upgrade the broker to new versions as Apache releases them**, choose **Enable automatic minor version upgrades**. Automatic upgrades occur during the *maintenance window*, defined by the day of the week, the time of day (in 24-hour format), and the time zone (UTC by default).
 - Do one of the following:
 - **To allow Amazon MQ to select the maintenance window automatically**, choose **No preference**.
 - **To set a custom maintenance window**, choose **Select maintenance window** and then specify the **Start day** and **Start time** of the upgrades.
Step 3: Finish creating the broker

1. Choose Create broker.

While Amazon MQ creates your broker, it displays the Creation in progress status.

Creating the broker takes about 10 minutes.

When your broker is created successfully, Amazon MQ displays the Running status.

<table>
<thead>
<tr>
<th>Name</th>
<th>Creation</th>
<th>Status</th>
<th>Deployment mode</th>
<th>Instance type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyBroker</td>
<td>Nov 28, 2017 1:00 PM</td>
<td>Running</td>
<td>Single-instance broker</td>
<td>mq.m4.large</td>
</tr>
</tbody>
</table>

2. Choose MyBroker.

On the MyBroker page, in the Connect section, note your broker's ActiveMQ Web Console URL, for example:

https://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:8162

Also, note your broker's wire-level protocol Endpoints. The following is an example of an OpenWire endpoint:

ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617

Note

For an active/standby broker for high availability, Amazon MQ provides two ActiveMQ Web Console URLs, but only one URL is active at a time. Likewise, Amazon MQ provides two endpoints for each wire-level protocol, but only one endpoint is active in each pair at a time. The –1 and –2 suffixes denote a redundant pair. For more information, see Amazon MQ Broker Architecture (p. 32)).

For wire-level protocol endpoints, you can allow your application to connect to either endpoint by using the Failover Transport.
Tutorial: Creating and Applying Amazon MQ Broker Configurations

A configuration contains all of the settings for your ActiveMQ broker, in XML format (similar to ActiveMQ's `activemq.xml` file). You can create a configuration before creating any brokers. You can then apply the configuration to one or more brokers. You can apply a configuration immediately or during a maintenance window. For more information, see the following:

- Configuration (p. 30)
- Amazon MQ Broker Configuration Lifecycle (p. 34)
- Amazon MQ Broker Configuration Parameters (p. 35)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)

The following example shows how you can create and apply an Amazon MQ broker configuration using the AWS Management Console.

Topics

- Step 1: Create a configuration from scratch (p. 12)
- Step 2: Create a new configuration revision (p. 12)
- Step 3: Apply a configuration revision to your broker (p. 13)

Step 1: Create a configuration from scratch

1. Sign in to the Amazon MQ console.
2. On the left, expand the navigation panel and choose Configurations.
3. On the Configurations page, choose Create configuration.
4. On the Create configuration page, in the Details section, type the Configuration name (for example, MyConfiguration).

 Note
 Currently, Amazon MQ supports only the ActiveMQ broker engine, version 5.15.0.
5. Choose Create configuration.

Step 2: Create a new configuration revision

1. From the configuration list, choose MyConfiguration.

 Note
 The first configuration revision is always created for you when Amazon MQ creates the configuration.

 On the MyConfiguration page, the broker engine type and version that your new configuration revision uses (for example, Apache ActiveMQ 5.15.0) are displayed.
Step 3: Apply a configuration revision to your broker

1. On the left, expand the navigation panel and choose Brokers.

2. From the broker list, select your broker (for example, MyBroker) and then choose Edit.

3. On the Edit MyBroker page, in the Configuration section, select a Configuration and a Revision and then choose Schedule Modifications.

Important
The Amazon MQ console automatically sanitizes invalid and prohibited configuration parameters according to a schema. For more information and a full list of permitted XML parameters, see Amazon MQ Broker Configuration Parameters (p. 35).

Making changes to a configuration does not apply the changes to the broker immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).

Currently, it isn’t possible to delete a configuration.
4. In the **Schedule broker modifications** section, choose whether to apply modifications **During the next scheduled maintenance window** or **Immediately**.

 Important
 Your broker will be offline while it is being rebooted.

5. Choose **Apply**.

 Your configuration revision is applied to your broker at the specified time.

Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions

A *configuration* contains all of the settings for your ActiveMQ broker, in XML format (similar to ActiveMQ's `activemq.xml` file). You can apply a configuration immediately or during a *maintenance window*. To keep track of the changes you make to your configuration, you can create *configuration revisions*. For more information, see the following:

- Configuration (p. 30)
- Amazon MQ Broker Configuration Lifecycle (p. 34)
- Amazon MQ Broker Configuration Parameters (p. 35)
- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)

The following examples show how you can edit Amazon MQ broker configurations and manage broker configuration revisions using the AWS Management Console.

Topics

- To view a previous configuration revision (p. 14)
- To edit the current configuration revision (p. 15)
- To apply a configuration revision to your broker (p. 16)
- To roll back your broker to the last configuration revision (p. 17)

To view a previous configuration revision

1. Sign in to the Amazon MQ console.
2. From the broker list, select your broker (for example, **MyBroker**) and then choose **Edit**.
3. On the **Edit MyBroker** page, in the **Configuration** section, select a **Configuration** and a **Revision** and choose **View**.
To edit the current configuration revision

1. Sign in to the Amazon MQ console.
2. From the broker list, select your broker (for example, MyBroker) and then choose Edit.
4. On the Edit MyBroker page, in the Configuration section, select a Configuration and a Revision and choose View.

Note
Unless you select a configuration when you create a broker, the first configuration revision is always created for you when Amazon MQ creates the broker.

On the MyBroker page, the broker engine type and version that the configuration uses (for example, Apache ActiveMQ 5.15.0) are displayed.

5. On the Configuration details tab, the configuration revision number, description, and broker configuration in XML format are displayed.

Note
Editing the current configuration creates a new configuration revision.
To apply a configuration revision to your broker

6. Choose **Edit configuration** and make changes to the XML configuration.
7. Choose **Save**.

 The **Save revisions** dialog box is displayed.

8. (Optional) Type **A description of the changes in this revision**.
9. Choose **Save**.

 The new revision of the configuration is saved.

 Important
 The Amazon MQ console automatically sanitizes invalid and prohibited configuration parameters according to a schema. For more information and a full list of permitted XML parameters, see Amazon MQ Broker Configuration Parameters (p. 35).
 Making changes to a configuration does not apply the changes to the broker immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).
 Currently, it isn’t possible to delete a configuration.

To apply a configuration revision to your broker

1. Sign in to the Amazon MQ console.
2. From the broker list, select your broker (for example, **MyBroker**) and then choose **Edit**.
3. On the **Edit MyBroker** page, in the **Configuration** section, select a **Configuration** and a **Revision** and then choose **Schedule Modifications**.

4. In the **Schedule broker modifications** section, choose whether to apply modifications **During the next scheduled maintenance window** or **Immediately**.

 Important
 Your broker will be offline while it is being rebooted.

5. Choose **Apply**.

 Your configuration revision is applied to your broker at the specified time.
To roll back your broker to the last configuration revision

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker).
3. On the MyBroker page, choose Actions, Roll back to last configuration.
4. (Optional) To review the Current configuration or the Last configuration, on the Roll back to the last configuration page, in the Summary section, choose View for either configuration.
5. In the Schedule broker modifications section, choose whether to apply modifications During the next scheduled maintenance window or Immediately.
 - Important
 - Your broker will be offline while it is being rebooted.
6. Choose Apply.

Your configuration revision is applied to your broker at the specified time.

Tutorial: Connecting a Java Application to Your Amazon MQ Broker

After you create an Amazon MQ broker, you can connect your application to it. The following examples show how you can use the Java Message Service (JMS) to create a connection to the broker, create a queue, and send a message. For a complete, working Java example, see Working Example of Using Java Message Service (JMS) with ActiveMQ (p. 48).

You can connect to ActiveMQ brokers using various ActiveMQ clients. We recommend using the ActiveMQ Client.

- Important
 - To ensure that your broker is accessible within your VPC, you must enable the enableDnsHostnames and enableDnsSupport VPC attributes. For more information, see DNS Support in your VPC in the Amazon VPC User Guide.

Topics
- Prerequisites (p. 18)
- To create a message producer and send a message (p. 18)
- To create a message consumer and receive the message (p. 20)
Prerequisites

Enable Inbound Connections

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker).
3. On the MyBroker page, in the Connections section, note the addresses and ports of the broker's ActiveMQ Web Console URL and wire-level protocols.
4. In the Details section, choose the name of your security group or Security Groups. The Security Groups section of the VPC Dashboard is displayed.
5. Choose your security group, choose Inbound Rules, and then choose Edit.
6. Create an inbound rule for each address and port that you want to be publicly accessible (the following example shows how to do this for an ActiveMQ Web Console).
 a. For Type, select Custom TCP Rule.
 TCP (6) is selected for Protocol.
 b. For Port, type the ActiveMQ Web Console port (8162).
 c. For Source, type the IP address of the system that you want to be able to access the ActiveMQ Web Console (for example, 192.0.2.1).
 d. Choose Save.

Your broker can now accept inbound connections.

Add Java Dependencies

To allow your application to work with ActiveMQ, add the activemq-client.jar and activemq-pool.jar packages to your Java build class path. The following example shows these dependencies in your Maven project's pom.xml file.

```xml
<dependencies>
    <dependency>
        <groupId>org.apache.activemq</groupId>
        <artifactId>activemq-client</artifactId>
        <version>5.15.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.activemq</groupId>
        <artifactId>activemq-pool</artifactId>
        <version>5.15.0</version>
    </dependency>
</dependencies>
```

For more information about activemq-client.jar, see Initial Configuration in the Apache ActiveMQ documentation.

To create a message producer and send a message

1. Create a JMS pooled connection factory for the message producer using your broker's endpoint and then call the createConnection method against the factory.

 Note
 For an active/standby broker for high availability, Amazon MQ provides two ActiveMQ Web Console URLs, but only one URL is active at a time. Likewise, Amazon MQ provides two
To create a message producer and send a message

endpoints for each wire-level protocol, but only one endpoint is active in each pair at a time. The -1 and -2 suffixes denote a redundant pair. For more information, see Amazon MQ Broker Architecture (p. 32).

For wire-level protocol endpoints, you can allow your application to connect to either endpoint by using the Failover Transport.

```java
// Create a connection factory.
ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://
    b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617");

// Specify the username and password.
connectionFactory.setUserName("MyUsername123");
connectionFactory.setPassword("MyPassword456");

// Create a pooled connection factory.
PooledConnectionFactory pooledConnectionFactory = new PooledConnectionFactory();
pooledConnectionFactory.setConnectionFactory(connectionFactory);
pooledConnectionFactory.setMaxConnections(10);

// Establish a connection for the producer.
Connection producerConnection = pooledConnectionFactory.createConnection();
producerConnection.start();

Note
Message producers should use the PooledConnectionFactory class. For more information, see Always Use Connection Pooling (p. 55).

2. Create a session, a queue named MyQueue, and a message producer.

```java
// Create a session.
Session producerSession = producerConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

// Create a queue named "MyQueue".
Destination producerDestination = producerSession.createQueue("MyQueue");

// Create a producer from the session to the queue.
MessageProducer producer = producerSession.createProducer(producerDestination);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
```

3. Create the message string "Hello from Amazon MQ!" and then send the message.

```java
// Create a message.
String text = "Hello from Amazon MQ!";
TextMessage producerMessage = producerSession.createTextMessage(text);

// Send the message.
producer.send(producerMessage);
System.out.println("Message sent.");
```

4. Clean up the producer.

```java
producer.close();
producerSession.close();
producerConnection.close();
```
To create a message consumer and receive the message

1. Create a JMS connection factory for the message producer using your broker's endpoint and then call the createConnection method against the factory.

   ```java
 // Create a connection factory.
 ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://
 b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617");

 // Specify the username and password.
 connectionFactory.setUserName("MyUserName");
 connectionFactory.setPassword("MyPassWord123");

 // Establish a connection for the consumer.
 Connection consumerConnection = connectionFactory.createConnection();
 consumerConnection.start();
   ```

   **Note**
   Message consumers should *not* use the PooledConnectionFactory class. For more information, see [Always Use Connection Pooling](#).

2. Create a session, a queue named MyQueue, and a message consumer.

   ```java
 // Create a session.
 Session consumerSession = consumerConnection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // Create a queue named "MyQueue".
 Destination consumerDestination = consumerSession.createQueue("MyQueue");

 // Create a message consumer from the session to the queue.
 MessageConsumer consumer = consumerSession.createConsumer(consumerDestination);
   ```

3. Begin to wait for messages and receive the message when it arrives.

   ```java
 // Begin to wait for messages.
 Message consumerMessage = consumer.receive(1000);

 // Receive the message when it arrives.
 TextMessage consumerTextMessage = (TextMessage) consumerMessage;
 System.out.println("Message received: " + consumerTextMessage.getText());
   ```

   **Note**
   Unlike AWS messaging services (such as Amazon SQS), the consumer is constantly connected to the broker.

4. Close the consumer, session, and connection.

   ```java
 consumer.close();
 consumerSession.close();
 consumerConnection.close();
 pooledConnectionFactory.stop();
   ```
Tutorial: Listing Amazon MQ Brokers and Viewing Broker Details

When you request that Amazon MQ create a broker, the creation process can take about 10 minutes.

The following example shows how you can confirm your broker's existence by listing your brokers in the current region using the AWS Management Console.

To list brokers and view broker details

1. Sign in to the Amazon MQ console.

Your brokers in the current region are listed.

The following information is displayed for each broker:

- Name
- Creation date
- Status (p. 30)
- Deployment mode (p. 32)
- Instance type (p. 29)

2. Choose your broker's name (for example, MyBroker).

On the MyBroker page, the configured (p. 30) Details are displayed for your broker:
Below the Details section, the following information is displayed:

- In the Connections section, the ActiveMQ Web Console URL and the wire-level protocol endpoints
- In the Users section, the users (p. 31) associated with the broker

### Tutorial: Creating and Managing Amazon MQ Broker Users

An ActiveMQ user is a person or an application that can access the queues and topics of an ActiveMQ broker. You can configure users to have specific permissions. For example, you can allow some users to access the ActiveMQ Web Console.

A user can belong to a group. You can configure which users belong to which groups and which groups have permission to send to, receive from, and administer specific queues and topics.

The following examples show how you can create, edit, and delete Amazon MQ broker users using the AWS Management Console.

**Topics**

- To create a new user (p. 23)
- To edit an existing user (p. 23)
To create a new user

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker) and then choose Edit.

On the MyBroker page, in the Users section, all the users for this broker are listed.

3. Choose Create user.
4. In the Create user dialog box, type a Username and Password.
5. (Optional) Type the names of groups to which the user belongs, separated by commas (for example: Devs, Admins).
6. (Optional) To enable the user to access the ActiveMQ Web Console, choose ActiveMQ Web Console.
7. Choose Create user.

**Important**
Making changes to a user does not apply the changes to the user immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).

To edit an existing user

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker) and then choose Edit.

On the MyBroker page, in the Users section, all the users for this broker are listed.

3. Select a username and choose Edit.

   The Edit user dialog box is displayed.
4. (Optional) Type a new Password.
5. (Optional) Add or remove the names of groups to which the user belongs, separated by commas (for example: Managers, Admins).
6. (Optional) To enable the user to access the ActiveMQ Web Console, choose ActiveMQ Web Console.
7. To save the changes to the user, choose Done.

**Important**
Making changes to a user does not apply the changes to the user immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot
To delete a existing user

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker) and then choose Edit.

On the MyBroker page, in the Users section, all the users for this broker are listed.

<table>
<thead>
<tr>
<th>Username</th>
<th>Console access</th>
<th>Groups</th>
<th>Pending modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>paolo.santos</td>
<td>No</td>
<td>Devs</td>
<td></td>
</tr>
<tr>
<td>jane.doe</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Select a username (for example, MyUser) and then choose Delete.
4. To confirm deleting the user, in the Delete MyUser? dialog box, choose Delete.

Important
Making changes to a user does not apply the changes to the user immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).

Tutorial: Rebooting an Amazon MQ Broker

To apply a new configuration to a broker, you can reboot the broker. In addition, if your broker becomes unresponsive, you can reboot it to recover from a faulty state.

The following example shows how you can reboot an Amazon MQ broker using the AWS Management Console.

To reboot an Amazon MQ broker

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker).

Important
Your broker will be offline while it is being rebooted.

4. In the Reboot broker dialog box, choose Reboot.

Rebooting the broker takes about 5 minutes.
Tutorial: Deleting an Amazon MQ Broker

If you don’t use an Amazon MQ broker (and don’t foresee using it in the near future), it is a best practice to delete it from Amazon MQ to reduce your AWS costs.

The following example shows how you can delete a broker using the AWS Management Console.

To delete an Amazon MQ broker

1. Sign in to the Amazon MQ console.
2. From the broker list, select your broker (for example, MyBroker) and then choose Delete.
3. In the Delete MyBroker? dialog box, type delete and then choose Delete.

Deleting a broker takes about 5 minutes.

Tutorial: Accessing CloudWatch Metrics for Amazon MQ

Amazon MQ and Amazon CloudWatch are integrated so you can use CloudWatch to view and analyze metrics for your ActiveMQ broker and the broker’s destinations (queues and topics). You can view and analyze your Amazon MQ metrics from the CloudWatch console, the AWS CLI, or the CloudWatch CLI. CloudWatch metrics for Amazon MQ are automatically polled from the broker and then pushed to CloudWatch every minute.

For a full list of Amazon MQ metrics, see Monitoring Amazon MQ using Amazon CloudWatch (p. 60).

For information about creating a CloudWatch alarm for a metrics, see Create or Edit a CloudWatch Alarm in the Amazon CloudWatch User Guide.

Note
There is no charge for the Amazon MQ metrics reported in CloudWatch. These metrics are provided as part of the Amazon MQ service. CloudWatch monitors only the first 200 destinations.

Topics
- AWS Management Console (p. 26)
- AWS Command Line Interface (p. 27)
- Amazon CloudWatch API (p. 27)
The following example shows you how to access CloudWatch metrics for Amazon MQ using the AWS Management Console.

**Note**
If you're already signed into the Amazon MQ console, on the broker **Details** page, choose **Actions, View CloudWatch metrics**.

1. Sign in to the **CloudWatch console**.
2. On the navigation panel, choose **Metrics**.
3. Select the **AmazonMQ** metric namespace.
4. Select one of the following metric dimensions:
   - **Broker Metrics**
   - **Queue Metrics by Broker**
   - **Topic Metrics by Broker**

In this example, **Broker Metrics** is selected.
5. You can now examine your Amazon MQ metrics:
   - To sort the metrics, use the column heading.
To graph the metric, select the check box next to the metric.
To filter by metric, choose the metric name and then choose **Add to search**.

### AWS Command Line Interface

To access Amazon MQ metrics using the AWS CLI, use the `get-metric-statistics` command.

For more information, see [Get Statistics for a Metric](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/get-metrics.html) in the *Amazon CloudWatch User Guide*.

### Amazon CloudWatch API

To access Amazon MQ metrics using the CloudWatch API, use the `GetMetricStatistics` action.

For more information, see [Get Statistics for a Metric](https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html) in the *Amazon CloudWatch User Guide*.
How Amazon MQ Works

Amazon MQ makes it easy to create a message broker with the computing and storage resources that fit your needs. You can create, manage, and delete brokers using the AWS Management Console, Amazon MQ REST API, or the AWS Command Line Interface.

This section describes the basic elements of a message broker, lists available Amazon MQ broker instance types and their statuses, provides an overview of broker architecture, explains broker configuration parameters and offers a working example of using Java Message Service (JMS) with an ActiveMQ broker.

Topics
- Amazon MQ Basic Elements (p. 28)
- Amazon MQ Broker Architecture (p. 32)
- Amazon MQ Broker Configuration Lifecycle (p. 34)
- Amazon MQ Broker Configuration Parameters (p. 35)
- Working Example of Using Java Message Service (JMS) with ActiveMQ (p. 48)

Amazon MQ Basic Elements

This section introduces key concepts essential to understanding Amazon MQ.

Broker

A **broker** is a message broker environment running on Amazon MQ. It is the basic building block of Amazon MQ. The combined description of the broker instance class (m4, t2) and size (large, micro) is a **broker instance type** (for example, mq.m4.large). For more information, see Instance Types (p. 29).

- A **single-instance broker** is comprised of one broker in one Availability Zone. The broker communicates with your application and with an AWS storage location.
- An **active/standby broker for high availability** is comprised of two brokers in two different Availability Zones, configured in a **redundant pair**. These brokers communicate with your application, and with a shared storage location.

For more information, see Amazon MQ Broker Architecture (p. 32).

You can enable **automatic minor version upgrades** to new minor versions of the broker engine, as Apache releases new versions. Automatic upgrades occur during the **maintenance window**, defined by the day of the week, the time of day (in 24-hour format), and the time zone (UTC by default).

For information about creating and managing brokers, see the following:
- Tutorial: Creating and Configuring an Amazon MQ Broker (p. 9)
- Brokers (p. 57)
- Statuses (p. 30)

Attributes

A broker has several attributes, for example:

- A name (MyBroker)
- An ID (b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9)
• An Amazon Resource Name (ARN) (arn:aws:mq:us-east-1:123456789012:broker:MyBroker:b-1234a5b6-78cd-901e-2fgh-3i45j6k17819)

• An ActiveMQ Web Console URL (https://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:8162)

For more information, see Web Console in the Apache ActiveMQ documentation.

• Wire-level protocol endpoints:
  • amqp+ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:5671
  • mqtt+ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:8883
  • ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:61617

  **Note**
  This is an OpenWire endpoint.

  • stomp+ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:61614
  • wss://b-1234a5b6-78cd-901e-2fgh-3i45j6k17819-1.mq.us-east-1.amazonaws.com:61619

For more information, see Configuring Transports in the Apache ActiveMQ documentation.

**Note**
For an active/standby broker for high availability, Amazon MQ provides two ActiveMQ Web Console URLs, but only one URL is active at a time. Likewise, Amazon MQ provides two endpoints for each wire-level protocol, but only one endpoint is active in each pair at a time. The -1 and -2 suffixes denote a redundant pair.

For a full list of broker attributes, see the following in the Amazon MQ REST API Reference:

• Operation ID: Broker
• Operation ID: Brokers
• Operation ID: Broker Reboot

**Instance Types**

The combined description of the broker instance class (m4, t2) and size (large, micro) is a broker instance type (for example, mq.m4.large). The following table lists the available Amazon MQ broker instance types.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>vCPU</th>
<th>Memory (GiB)</th>
<th>Network Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mq.m4.large</td>
<td>2</td>
<td>8</td>
<td>Moderate</td>
</tr>
<tr>
<td>Micro-Instance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mq.t2.micro</td>
<td>1</td>
<td>1</td>
<td>Low</td>
</tr>
</tbody>
</table>

**Note**
The mq.t2.micro instance type (single-instance brokers only) qualifies for the AWS Free Tier.
**Statuses**

A broker's current condition is indicated by a *status*. The following table lists the statuses of an Amazon MQ broker.

<table>
<thead>
<tr>
<th>Console</th>
<th>API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation failed</td>
<td>CREATION_FAILED</td>
<td>The broker couldn't be created.</td>
</tr>
<tr>
<td>Creation in progress</td>
<td>CREATION_IN_PROGRESS</td>
<td>The broker is currently being created.</td>
</tr>
<tr>
<td>Deletion in progress</td>
<td>DELETION_IN_PROGRESS</td>
<td>The broker is currently being deleted.</td>
</tr>
<tr>
<td>Reboot in progress</td>
<td>REBOOT_IN_PROGRESS</td>
<td>The broker is currently being rebooted.</td>
</tr>
<tr>
<td>Running</td>
<td>RUNNING</td>
<td>The broker is operational.</td>
</tr>
</tbody>
</table>

**Configuration**

A *configuration* contains all of the settings for your ActiveMQ broker, in XML format (similar to ActiveMQ's `activemq.xml` file). You can create a configuration before creating any brokers. You can then apply the configuration to one or more brokers.

**Important**  
Making changes to a configuration does *not* apply the changes to the broker immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see *Amazon MQ Broker Configuration Lifecycle* (p. 34).

Currently, it isn't possible to delete a configuration.

For information about creating, editing, and managing configurations, see the following:

- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)
- Configurations (p. 57)
- Amazon MQ Broker Configuration Parameters (p. 35)

To keep track of the changes you make to your configuration, you can create *configuration revisions*. For more information, see Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12) and Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14).
Attributes

A broker configuration has several attributes, for example:

- A name (MyConfiguration)
- An ID (c-1234a5b6-78cd-901e-2fgh-3i45j6k17819)
- An Amazon Resource Name (ARN) (arn:aws:mq:us-east-1:123456789012:configuration:MyConfiguration:c-1234a5b6-78cd-901e-2fgh-3i45j6k17819)

For a full list of configuration attributes, see the following in the Amazon MQ REST API Reference:

- Operation ID: Configuration
- Operation ID: Configurations

For a full list of configuration revision attributes, see the following:

- Operation ID: Configuration Revision
- Operation ID: Configuration Revisions

Engine

A broker engine is a type of message broker that runs on Amazon MQ.

Note
Currently, Amazon MQ supports only the ActiveMQ broker engine, version 5.15.0.

User

An ActiveMQ user is a person or an application that can access the queues and topics of an ActiveMQ broker. You can configure users to have specific permissions. For example, you can allow some users to access the ActiveMQ Web Console.

A user can belong to a group. You can configure which users belong to which groups and which groups have permission to send to, receive from, and administer specific queues and topics.

Important
Making changes to a user does not apply the changes to the user immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).

For information about users and groups, see the following in the Apache ActiveMQ documentation:

- Authorization
- Authorization Example

For information about creating, editing, and deleting ActiveMQ users, see the following:

- Tutorial: Creating and Managing Amazon MQ Broker Users (p. 22)
- Users (p. 58)
Attributes

For a full list of user attributes, see the following in the Amazon MQ REST API Reference:

- Operation ID: User
- Operation ID: Users

Amazon MQ Broker Architecture

Amazon MQ brokers can be created as single-instance brokers or active/standby brokers for high availability. For both deployment modes, Amazon MQ provides high durability by storing its data redundantly, across multiple Availability Zones (multi-AZs) within an AWS Region. Amazon MQ ensures high availability by providing failover to a standby instance in a second Availability Zone.

Note

Amazon MQ uses Apache KahaDB as its data store. Other data stores, such as JDBC and LevelDB, aren't supported.

Single-Instance Broker

A single-instance broker is comprised of one broker in one Availability Zone. The broker communicates with your application and with an AWS storage location.

The following diagram illustrates a single-instance broker.

Active/Standby Broker for High Availability

An active/standby broker for high availability is comprised of two brokers in two different Availability Zones, configured in a redundant pair. These brokers communicate with your application, and with a shared storage location.
Normally, only one of the broker instances is active at any time, while the other broker instance is on standby. If one of the broker instances malfunctions, it takes Amazon MQ a short while to take the malfunctioning instance out of service, allowing the healthy standby instance to become active and to begin accepting incoming communications. When you reboot a broker, the failover takes only a few seconds.

For an active/standby broker for high availability, Amazon MQ provides two ActiveMQ Web Console URLs, but only one URL is active at a time. Likewise, Amazon MQ provides two endpoints for each wire-level protocol, but only one endpoint is active in each pair at a time. The -1 and -2 suffixes denote a redundant pair. For wire-level protocol endpoints, you can allow your application to connect to either endpoint by using the Failover Transport.

The following diagram illustrates an active/standby broker for high availability.
Amazon MQ Broker Configuration Lifecycle

Making changes to a configuration revision or an ActiveMQ user does not apply the changes immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34).

The following diagram illustrates the configuration lifecycle.

**Important**

The next scheduled maintenance window triggers a reboot. If the broker is rebooted before the next scheduled maintenance window, the changes are applied after the reboot.

For information about creating, editing, and managing configurations, see the following:

- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)
- Amazon MQ Broker Configuration Parameters (p. 35)

For information about creating, editing, and deleting ActiveMQ users, see the following:

- Tutorial: Creating and Managing Amazon MQ Broker Users (p. 22)
- Users (p. 58)
Amazon MQ Broker Configuration Parameters

A configuration contains all of the settings for your ActiveMQ broker, in XML format (similar to ActiveMQ's activemq.xml file). You can create a configuration before creating any brokers. You can then apply the configuration to one or more brokers. For more information, see the following:

- Configuration (p. 30)
- Tutorial: Creating and Applying Amazon MQ Broker Configurations (p. 12)
- Tutorial: Editing Amazon MQ Broker Configurations and Managing Configuration Revisions (p. 14)
- Configurations (p. 57)

Topics
- Working with Spring XML Configuration Files (p. 35)
- Permitted Elements (p. 35)
- Permitted Attributes (p. 37)
- Permitted Collections (p. 44)

Working with Spring XML Configuration Files

ActiveMQ brokers are configured using Spring XML files. You can configure many aspects of your ActiveMQ broker, such as predefined destinations, destination policies, authorization policies, and plugins. Amazon MQ controls some of these configuration elements, such as network transports and storage. Other configuration options, such as creating networks of brokers, aren't currently supported.

The full set of supported configuration options is specified in the Amazon MQ XML schema. You can use this schema to validate and sanitize your configuration files. Amazon MQ also lets you provide configurations by uploading XML files. When you upload an XML file, Amazon MQ automatically sanitizes and removes invalid and prohibited configuration parameters according to the schema.

**Note**

You can only use static values for attributes. Amazon MQ sanitizes elements and attributes that contain Spring expressions, variables, and element references from your configuration.

The following is a detailed listing of the elements permitted in Amazon MQ configurations. For more information, see XML Configuration in the Apache ActiveMQ documentation.

**Permitted Elements**

<table>
<thead>
<tr>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>abortSlowAckConsumerStrategy</td>
</tr>
<tr>
<td>abortSlowConsumerStrategy</td>
</tr>
<tr>
<td>authorizationEntry</td>
</tr>
<tr>
<td>authorizationMap</td>
</tr>
<tr>
<td>authorizationPlugin</td>
</tr>
<tr>
<td>broker</td>
</tr>
<tr>
<td>cachedMessageGroupMapFactory</td>
</tr>
<tr>
<td>Element</td>
</tr>
<tr>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>compositeQueue</td>
</tr>
<tr>
<td>compositeTopic</td>
</tr>
<tr>
<td>constantPendingMessageLimitStrategy</td>
</tr>
<tr>
<td>discarding</td>
</tr>
<tr>
<td>discardingDLQBrokerPlugin</td>
</tr>
<tr>
<td>fileCursor</td>
</tr>
<tr>
<td>fileDurableSubscriberCursor</td>
</tr>
<tr>
<td>fileQueueCursor</td>
</tr>
<tr>
<td>filteredDestination</td>
</tr>
<tr>
<td>fixedCountSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>fixedSizedSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>forcePersistencyModeBrokerPlugin</td>
</tr>
<tr>
<td>individualDeadLetterStrategy</td>
</tr>
<tr>
<td>lastImageSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>messageGroupHashBucketFactory</td>
</tr>
<tr>
<td>mirroredQueue</td>
</tr>
<tr>
<td>noSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>oldestMessageEvictionStrategy</td>
</tr>
<tr>
<td>oldestMessageWithLowestPriorityEvictionStrategy</td>
</tr>
<tr>
<td>policyEntry</td>
</tr>
<tr>
<td>policyMap</td>
</tr>
<tr>
<td>prefetchRatePendingMessageLimitStrategy</td>
</tr>
<tr>
<td>priorityDispatchPolicy</td>
</tr>
<tr>
<td>priorityNetworkDispatchPolicy</td>
</tr>
<tr>
<td>queryBasedSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>queue</td>
</tr>
<tr>
<td>redeliveryPlugin</td>
</tr>
<tr>
<td>redeliveryPolicy</td>
</tr>
<tr>
<td>redeliveryPolicyMap</td>
</tr>
<tr>
<td>retainedMessageSubscriptionRecoveryPolicy</td>
</tr>
<tr>
<td>roundRobinDispatchPolicy</td>
</tr>
</tbody>
</table>
### Permitted Attributes

<table>
<thead>
<tr>
<th>Element</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>abortSlowAckConsumerStrategy</td>
<td>abortConnection</td>
</tr>
<tr>
<td></td>
<td>checkPeriod</td>
</tr>
<tr>
<td></td>
<td>ignoreIdleConsumers</td>
</tr>
<tr>
<td></td>
<td>ignoreNetworkConsumers</td>
</tr>
<tr>
<td></td>
<td>maxSlowCount</td>
</tr>
<tr>
<td></td>
<td>maxSlowDuration</td>
</tr>
<tr>
<td></td>
<td>maxTimeSinceLastAck</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td>simpleDispatchPolicy</td>
<td></td>
</tr>
<tr>
<td>simpleMessageGroupMapFactory</td>
<td></td>
</tr>
<tr>
<td>statisticsBrokerPlugin</td>
<td></td>
</tr>
<tr>
<td>storeCursor</td>
<td></td>
</tr>
<tr>
<td>storeDurableSubscriberCursor</td>
<td></td>
</tr>
<tr>
<td>strictOrderDispatchPolicy</td>
<td></td>
</tr>
<tr>
<td>tempDestinationAuthorizationEntry</td>
<td></td>
</tr>
<tr>
<td>tempQueue</td>
<td></td>
</tr>
<tr>
<td>tempTopic</td>
<td></td>
</tr>
<tr>
<td>timedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td>timeStampingBrokerPlugin</td>
<td></td>
</tr>
<tr>
<td>topic</td>
<td></td>
</tr>
<tr>
<td>uniquePropertyMessageEvictionStrategy</td>
<td></td>
</tr>
<tr>
<td>virtualDestinationInterceptor</td>
<td></td>
</tr>
<tr>
<td>virtualTopic</td>
<td></td>
</tr>
<tr>
<td>vmCursor</td>
<td></td>
</tr>
<tr>
<td>vmDurableCursor</td>
<td></td>
</tr>
<tr>
<td>vmQueueCursor</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>abortSlowConsumerStrategy</td>
<td>abortConnection</td>
</tr>
<tr>
<td></td>
<td>checkPeriod</td>
</tr>
<tr>
<td></td>
<td>ignoreNetworkConsumers</td>
</tr>
<tr>
<td></td>
<td>maxSlowCount</td>
</tr>
<tr>
<td></td>
<td>maxSlowDuration</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td>authorizationEntry</td>
<td>admin</td>
</tr>
<tr>
<td></td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>read</td>
</tr>
<tr>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
<tr>
<td>broker</td>
<td>advisorySupport</td>
</tr>
<tr>
<td></td>
<td>allowTempAutoCreationOnSend</td>
</tr>
<tr>
<td></td>
<td>cacheTempDestinations</td>
</tr>
<tr>
<td></td>
<td>consumerSystemUsagePortion</td>
</tr>
<tr>
<td></td>
<td>dedicatedTaskRunner</td>
</tr>
<tr>
<td></td>
<td>deleteAllMessagesOnStartup</td>
</tr>
<tr>
<td></td>
<td>keepDurableSubsActive</td>
</tr>
<tr>
<td></td>
<td>maxPurgedDestinationsPerSweep</td>
</tr>
<tr>
<td></td>
<td>monitorConnectionSplits</td>
</tr>
<tr>
<td></td>
<td>offlineDurableSubscriberTaskSchedule</td>
</tr>
<tr>
<td></td>
<td>offlineDurableSubscriberTimeout</td>
</tr>
<tr>
<td></td>
<td>persistenceThreadPriority</td>
</tr>
<tr>
<td></td>
<td>persistent</td>
</tr>
<tr>
<td></td>
<td>populateJMSXUserID</td>
</tr>
<tr>
<td></td>
<td>producerSystemUsagePortion</td>
</tr>
<tr>
<td></td>
<td>rejectDurableConsumers</td>
</tr>
<tr>
<td></td>
<td>rollbackOnlyOnAsyncException</td>
</tr>
<tr>
<td></td>
<td>schedulePeriodForDestinationPurge</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>schedulerSupport</td>
<td>splitSystemUsageForProducersConsumers</td>
</tr>
<tr>
<td></td>
<td>taskRunnerPriority</td>
</tr>
<tr>
<td></td>
<td>timeBeforePurgeTempDestinations</td>
</tr>
<tr>
<td></td>
<td>useAuthenticatedPrincipalForJMSXUserID</td>
</tr>
<tr>
<td></td>
<td>useMirroredQueues</td>
</tr>
<tr>
<td></td>
<td>useTempMirroredQueues</td>
</tr>
<tr>
<td></td>
<td>useVirtualDestSubs</td>
</tr>
<tr>
<td></td>
<td>useVirtualDestSubsOnCreation</td>
</tr>
<tr>
<td></td>
<td>useVirtualTopics</td>
</tr>
<tr>
<td>cachedMessageGroupMapFactory</td>
<td>cacheSize</td>
</tr>
<tr>
<td>compositeQueue</td>
<td>concurrentSend</td>
</tr>
<tr>
<td></td>
<td>copyMessage</td>
</tr>
<tr>
<td></td>
<td>forwardOnly</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td>compositeTopic</td>
<td>concurrentSend</td>
</tr>
<tr>
<td></td>
<td>copyMessage</td>
</tr>
<tr>
<td></td>
<td>forwardOnly</td>
</tr>
<tr>
<td></td>
<td>name</td>
</tr>
<tr>
<td>constantPendingMessageLimitStrategy</td>
<td>limit</td>
</tr>
<tr>
<td>discarding</td>
<td>deadLetterQueue</td>
</tr>
<tr>
<td></td>
<td>enableAudit</td>
</tr>
<tr>
<td></td>
<td>expiration</td>
</tr>
<tr>
<td></td>
<td>maxAuditDepth</td>
</tr>
<tr>
<td></td>
<td>maxProducersToAudit</td>
</tr>
<tr>
<td></td>
<td>processExpired</td>
</tr>
<tr>
<td></td>
<td>processNonPersistent</td>
</tr>
<tr>
<td>discardingDLQBrokerPlugin</td>
<td>dropAll</td>
</tr>
<tr>
<td></td>
<td>dropOnly</td>
</tr>
<tr>
<td></td>
<td>dropTemporaryQueues</td>
</tr>
<tr>
<td></td>
<td>dropTemporaryTopics</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>================================================================</td>
</tr>
<tr>
<td>reportInterval</td>
<td></td>
</tr>
<tr>
<td>filteredDestination</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>selector</td>
</tr>
<tr>
<td></td>
<td>topic</td>
</tr>
<tr>
<td>fixedCountSubscriptionRecoveryPolicy</td>
<td>maximumSize</td>
</tr>
<tr>
<td>fixed SizedSubscriptionRecoveryPolicy</td>
<td>maximumSize</td>
</tr>
<tr>
<td></td>
<td>useSharedBuffer</td>
</tr>
<tr>
<td>forcePersistencyModeBrokerPlugin</td>
<td>persistenceFlag</td>
</tr>
<tr>
<td>individualDeadLetterStrategy</td>
<td>destinationPerDurableSubscriber</td>
</tr>
<tr>
<td></td>
<td>enableAudit</td>
</tr>
<tr>
<td></td>
<td>expiration</td>
</tr>
<tr>
<td></td>
<td>maxAuditDepth</td>
</tr>
<tr>
<td></td>
<td>maxProducersToAudit</td>
</tr>
<tr>
<td></td>
<td>processExpired</td>
</tr>
<tr>
<td></td>
<td>processNonPersistent</td>
</tr>
<tr>
<td></td>
<td>queuePrefix</td>
</tr>
<tr>
<td></td>
<td>queueSuffix</td>
</tr>
<tr>
<td></td>
<td>topicPrefix</td>
</tr>
<tr>
<td></td>
<td>topicSuffix</td>
</tr>
<tr>
<td></td>
<td>useQueueForQueueMessages</td>
</tr>
<tr>
<td></td>
<td>useQueueForTopicMessages</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>messageGroupHashBucketFactory</td>
<td>bucketCount</td>
</tr>
<tr>
<td></td>
<td>cacheSize</td>
</tr>
<tr>
<td>mirroredQueue</td>
<td>copyMessage</td>
</tr>
<tr>
<td></td>
<td>postfix</td>
</tr>
<tr>
<td></td>
<td>prefix</td>
</tr>
<tr>
<td>oldestMessageEvictionStrategy</td>
<td>evictExpiredMessagesHighWatermark</td>
</tr>
<tr>
<td>oldestMessageWithLowestPriorityEvictionStrategy</td>
<td>evictExpiredMessagesHighWatermark</td>
</tr>
<tr>
<td>policyEntry</td>
<td>advisoryForConsumed</td>
</tr>
<tr>
<td></td>
<td>advisoryForDelivery</td>
</tr>
<tr>
<td></td>
<td>advisoryForDiscardingMessages</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>advisoryForFastProducers</td>
<td></td>
</tr>
<tr>
<td>advisoryForSlowConsumers</td>
<td></td>
</tr>
<tr>
<td>advisoryWhenFull</td>
<td></td>
</tr>
<tr>
<td>allConsumersExclusiveByDefault</td>
<td></td>
</tr>
<tr>
<td>alwaysRetroactive</td>
<td></td>
</tr>
<tr>
<td>blockedProducerWarningInterval</td>
<td></td>
</tr>
<tr>
<td>consumersBeforeDispatchStarts</td>
<td></td>
</tr>
<tr>
<td>cursorMemoryHighWaterMark</td>
<td></td>
</tr>
<tr>
<td>doOptimizeMessageStorage</td>
<td></td>
</tr>
<tr>
<td>durableTopicPrefetch</td>
<td></td>
</tr>
<tr>
<td>enableAudit</td>
<td></td>
</tr>
<tr>
<td>expireMessagesPeriod</td>
<td></td>
</tr>
<tr>
<td>gcInactiveDestinations</td>
<td></td>
</tr>
<tr>
<td>gcWithNetworkConsumers</td>
<td></td>
</tr>
<tr>
<td>inactiveTimeoutBeforeGC</td>
<td></td>
</tr>
<tr>
<td>inactiveTimeoutBeforeGC</td>
<td></td>
</tr>
<tr>
<td>includeBodyForAdvisory</td>
<td></td>
</tr>
<tr>
<td>lazyDispatch</td>
<td></td>
</tr>
<tr>
<td>maxAuditDepth</td>
<td></td>
</tr>
<tr>
<td>maxBrowsePageSize</td>
<td></td>
</tr>
<tr>
<td>maxDestinations</td>
<td></td>
</tr>
<tr>
<td>maxExpirePageSize</td>
<td></td>
</tr>
<tr>
<td>maxPageSize</td>
<td></td>
</tr>
<tr>
<td>maxProducersToAudit</td>
<td></td>
</tr>
<tr>
<td>maxQueueAuditDepth</td>
<td></td>
</tr>
<tr>
<td>memoryLimit</td>
<td></td>
</tr>
<tr>
<td>messageGroupMapFactoryType</td>
<td></td>
</tr>
<tr>
<td>minimumMessageSize</td>
<td></td>
</tr>
<tr>
<td>optimizedDispatch</td>
<td></td>
</tr>
<tr>
<td>optimizeMessageStoreInFlightLimit</td>
<td></td>
</tr>
<tr>
<td>persistJMSRedelivered</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>prioritizedMessages</td>
</tr>
<tr>
<td></td>
<td>producerFlowControl</td>
</tr>
<tr>
<td>queue</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>queueBrowserPrefetch</td>
</tr>
<tr>
<td></td>
<td>queuePrefetch</td>
</tr>
<tr>
<td></td>
<td>reduceMemoryFootprint</td>
</tr>
<tr>
<td></td>
<td>sendAdvisoryIfNoConsumers</td>
</tr>
<tr>
<td></td>
<td>storeUsageHighWaterMark</td>
</tr>
<tr>
<td></td>
<td>strictOrderDispatch</td>
</tr>
<tr>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td>timeBeforeDispatchStarts</td>
</tr>
<tr>
<td>topic</td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td>topicPrefetch</td>
</tr>
<tr>
<td></td>
<td>useCache</td>
</tr>
<tr>
<td></td>
<td>useConsumerPriority</td>
</tr>
<tr>
<td></td>
<td>usePrefetchExtension</td>
</tr>
<tr>
<td></td>
<td>prefetchRatePendingMessageLimitStrategy</td>
</tr>
<tr>
<td></td>
<td>multiplier</td>
</tr>
<tr>
<td>queryBasedSubscriptionRecoveryPolicy</td>
<td>query</td>
</tr>
<tr>
<td>queue</td>
<td>DLQ</td>
</tr>
<tr>
<td></td>
<td>physicalName</td>
</tr>
<tr>
<td>redeliveryPlugin</td>
<td>fallbackToDeadLetter</td>
</tr>
<tr>
<td></td>
<td>sendToDlqIfMaxRetriesExceeded</td>
</tr>
<tr>
<td>redeliveryPolicy</td>
<td>backOffMultiplier</td>
</tr>
<tr>
<td></td>
<td>collisionAvoidancePercent</td>
</tr>
<tr>
<td></td>
<td>initialRedeliveryDelay</td>
</tr>
<tr>
<td></td>
<td>maximumRedeliveries</td>
</tr>
<tr>
<td></td>
<td>maximumRedeliveryDelay</td>
</tr>
<tr>
<td></td>
<td>preDispatchCheck</td>
</tr>
<tr>
<td></td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>redeliveryDelay</td>
</tr>
<tr>
<td>Element</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td>useCollisionAvoidance</td>
</tr>
<tr>
<td></td>
<td>useExponentialBackOff</td>
</tr>
<tr>
<td>sharedDeadLetterStrategy</td>
<td>enableAudit</td>
</tr>
<tr>
<td></td>
<td>expiration</td>
</tr>
<tr>
<td></td>
<td>maxAuditDepth</td>
</tr>
<tr>
<td></td>
<td>maxProducersToAudit</td>
</tr>
<tr>
<td></td>
<td>processExpired</td>
</tr>
<tr>
<td></td>
<td>processNonPersistent</td>
</tr>
<tr>
<td>storeDurableSubscriberCursor</td>
<td>immediatePriorityDispatch</td>
</tr>
<tr>
<td></td>
<td>useCache</td>
</tr>
<tr>
<td>tempDestinationAuthorizationEntry</td>
<td>admin</td>
</tr>
<tr>
<td></td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>read</td>
</tr>
<tr>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
<tr>
<td>tempQueue</td>
<td>DLQ</td>
</tr>
<tr>
<td></td>
<td>physicalName</td>
</tr>
<tr>
<td>tempTopic</td>
<td>DLQ</td>
</tr>
<tr>
<td></td>
<td>physicalName</td>
</tr>
<tr>
<td>timeStampingBrokerPlugin</td>
<td>recoverDuration</td>
</tr>
<tr>
<td></td>
<td>futureOnly</td>
</tr>
<tr>
<td></td>
<td>processNetworkMessages</td>
</tr>
<tr>
<td></td>
<td>ttlCeiling</td>
</tr>
<tr>
<td>timedSubscriptionRecoveryPolicy</td>
<td>zeroExpirationOverride</td>
</tr>
<tr>
<td>topic</td>
<td>DLQ</td>
</tr>
<tr>
<td></td>
<td>physicalName</td>
</tr>
</tbody>
</table>
### Permitted Collections

<table>
<thead>
<tr>
<th>Element</th>
<th>Child Collection Element</th>
<th>Child Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorizationMap</td>
<td>authorizationEntries</td>
<td>authorizationEntry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempDestinationAuthorizationEntry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>defaultEntry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempDestinationAuthorizationEntry</td>
</tr>
<tr>
<td></td>
<td>map</td>
<td>authorizationMap</td>
</tr>
<tr>
<td>broker</td>
<td>destinationInterceptors</td>
<td>mirroredQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>virtualDestinationInterceptor</td>
</tr>
<tr>
<td></td>
<td>destinationPolicy</td>
<td>policyMap</td>
</tr>
<tr>
<td>destinations</td>
<td>queue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>topic</td>
</tr>
<tr>
<td>plugins</td>
<td>authorizationPlugin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>discardingDLQBrokerPlugin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>forcePersistencyModeBrokerPlugin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>redeliveryPlugin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>statisticsBrokerPlugin</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Child Collection Element</td>
<td>Child Element</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>timeStamppingBrokerPlugin</td>
</tr>
<tr>
<td>compositeQueue</td>
<td>forwardTo</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>filteredDestination</td>
</tr>
<tr>
<td>compositeTopic</td>
<td>forwardTo</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>topic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>filteredDestination</td>
</tr>
<tr>
<td>policyEntry</td>
<td>deadLetterStrategy</td>
<td>discarding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>individualDeadLetterStrategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sharedDeadLetterStrategy</td>
</tr>
<tr>
<td></td>
<td>destination</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tempTopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>topic</td>
</tr>
<tr>
<td>dispatchPolicy</td>
<td></td>
<td>priorityDispatchPolicy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>priorityNetworkDispatchPolicy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>roundRobinDispatchPolicy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simpleDispatchPolicy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>strictOrderDispatchPolicy</td>
</tr>
<tr>
<td>messageEvictionStrategy</td>
<td></td>
<td>oldestMessageEvictionStrategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oldestMessageWithLowestPriorityEvictionStrategy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uniquePropertyMessageEvictionStrategy</td>
</tr>
<tr>
<td>messageGroupMapFactory</td>
<td></td>
<td>cachedMessageGroupMapFactory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>messageGroupHashBucketFactory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simpleMessageGroupMapFactory</td>
</tr>
<tr>
<td></td>
<td>pendingDurableSubscriberPolicy</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Child Collection Element</td>
<td>Child Element</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>vmDurableCursor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pendingMessageLimitStrategy</td>
<td>constatPendingMessageLimitStrategy</td>
<td></td>
</tr>
<tr>
<td>prefetchRatePendingMessageLimitStrategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pendingQueuePolicy</td>
<td>fileQueueCursor</td>
<td></td>
</tr>
<tr>
<td>storeCursor</td>
<td>vmQueueCursor</td>
<td></td>
</tr>
<tr>
<td>pendingSubscriberPolicy</td>
<td>fileCursor</td>
<td></td>
</tr>
<tr>
<td>vmCursor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slowConsumerStrategy</td>
<td>abortSlowAckConsumerStrategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abortSlowConsumerStrategy</td>
<td></td>
</tr>
<tr>
<td>subscriptionRecoveryPolicy</td>
<td>fixedCountSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fixedSizedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lastImageSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>noSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>queryBasedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>retainedMessageSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>timedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td>policyMap</td>
<td>defaultEntry</td>
<td>policyEntry</td>
</tr>
<tr>
<td></td>
<td>policyEntries</td>
<td>policyEntry</td>
</tr>
<tr>
<td>redeliveryPlugin</td>
<td>redeliveryPolicyMap</td>
<td>redeliveryPolicyMap</td>
</tr>
<tr>
<td>redeliveryPolicyMap</td>
<td>defaultEntry</td>
<td>redeliveryPolicy</td>
</tr>
<tr>
<td></td>
<td>redeliveryPolicyEntries</td>
<td>redeliveryPolicy</td>
</tr>
<tr>
<td>retainedMessageSubscription</td>
<td>fixedCountSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fixedSizedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lastImageSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>noSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>queryBasedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>retainedMessageSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>timedSubscriptionRecoveryPolicy</td>
<td></td>
</tr>
<tr>
<td>sharedDeadLetterStrategy</td>
<td>deadLetterQueue</td>
<td>queue</td>
</tr>
<tr>
<td></td>
<td>tempQueue</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Child Collection Element</td>
<td>Child Element</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Element</td>
<td>Child Collection Element</td>
<td>Child Element</td>
</tr>
<tr>
<td>tempTopic</td>
<td></td>
<td>topic</td>
</tr>
<tr>
<td>topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>virtualDestinationInterceptor</td>
<td>virtualDestinations</td>
<td>compositeQueue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compositeTopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>virtualTopic</td>
</tr>
</tbody>
</table>
Working Example of Using Java Message Service (JMS) with ActiveMQ

The following example Java code connects to a broker, creates a queue, and sends and receives a message. For a detailed breakdown and explanation of this code, see Tutorial: Connecting a Java Application to Your Amazon MQ Broker (p. 17).

Quick Start

If you are experienced with Java Message Service (JMS) and ActiveMQ, you can quickly try out Amazon MQ functionality using Apache Maven.

1. Download AmazonMQExample_1.1.zip
2. Add your broker endpoint and your username and password to the AmazonMQExample.java file.
3. From the directory with the pom.xml file, run the mvn compile exec:java command.

Prerequisites

Enable Inbound Connections

1. Sign in to the Amazon MQ console.
2. From the broker list, choose the name of your broker (for example, MyBroker).
3. On the MyBroker page, in the Connections section, note the addresses and ports of the broker’s ActiveMQ Web Console URL and wire-level protocols.
4. In the Details section, choose the name of your security group or [ ].
   The Security Groups section of the VPC Dashboard is displayed.
5. Choose your security group, choose Inbound Rules, and then choose Edit.
6. Create an inbound rule for each address and port that you want to be publicly accessible (the following example shows how to do this for an ActiveMQ Web Console).
   a. For Type, select Custom TCP Rule.
   b. For Port, type the ActiveMQ Web Console port (8162).
   c. For Source, type the IP address of the system that you want to be able to access the ActiveMQ Web Console (for example, 192.0.2.1).
   d. Choose Save.

Your broker can now accept inbound connections.

Add Java Dependencies

To allow your application to work with ActiveMQ, ensure that the activemq-client.jar and activemq-pool.jar packages are added to your Java build class path. The following example shows these dependencies in your Maven project’s pom.xml file.

```xml
<dependencies>
 <dependency>
 <!-- Add your dependencies here -->
 </dependency>
</dependencies>
```
For more information about activemq-client.jar, see Initial Configuration in the Apache ActiveMQ documentation.

Working Java Example

```java
/*
 * Copyright 2010-2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 * http://aws.amazon.com/apache2.0
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

import org.apache.activemq.jms.pool.PooledConnectionFactory;
import org.apache.activemq.ActiveMQConnectionFactory;
import javax.jms.Connection;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

public class AmazonMQExample {
 public static void main(String[] args) throws JMSException {
 // Create a connection factory.
 ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://b-1234567890-1234567890123.mq.us-east-1.amazonaws.com:61617");
 // Specify the username and password.
 connectionFactory.setUserName("MyUsername123");
 connectionFactory.setPassword("MyPassword456");
 // Create a pooled connection factory.
 PooledConnectionFactory pooledConnectionFactory = new PooledConnectionFactory();
 pooledConnectionFactory.setConnectionFactory(connectionFactory);
 pooledConnectionFactory.setMaxConnections(10);
 // Establish a connection for the producer.
```
Connection producerConnection = pooledConnectionFactory.createConnection();
producerConnection.start();

// Create a session.
Session producerSession = producerConnection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

// Create a queue named "MyQueue".
Destination producerDestination = producerSession.createQueue("MyQueue");

// Create a producer from the session to the queue.
MessageProducer producer = producerSession.createProducer(producerDestination);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

// Create a message.
String text = "Hello from Amazon MQ!";
TextMessage producerMessage = producerSession.createTextMessage(text);

// Send the message.
producer.send(producerMessage);
System.out.println("Message sent.");

// Clean up the producer.
producer.close();
producerSession.close();
producerConnection.close();

// Establish a connection for the consumer.
// Note: Consumers should not use PooledConnectionFactory.
Connection consumerConnection = connectionFactory.createConnection();
consumerConnection.start();

// Create a session.
Session consumerSession = consumerConnection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

// Create a queue named "MyQueue".
Destination consumerDestination = consumerSession.createQueue("MyQueue");

// Create a message consumer from the session to the queue.
MessageConsumer consumer = consumerSession.createConsumer(consumerDestination);

// Begin to wait for messages.
Message consumerMessage = consumer.receive(1000);

// Receive the message when it arrives.
TextMessage consumerTextMessage = (TextMessage) consumerMessage;
System.out.println("Message received: " + consumerTextMessage.getText());

// Clean up the consumer.
consumer.close();
consumerSession.close();
consumerConnection.close();
pooledConnectionFactory.stop();
}
Migrating to Amazon MQ

Use the following topics to get started with migrating your on-premises message broker to Amazon MQ.

Topics
- Migrating without Service Interruption (p. 52)
- Migrating with Service Interruption (p. 53)
Migrating without Service Interruption

The following diagrams illustrate the scenario of migrating from an on-premises message broker to an Amazon MQ broker in the AWS Cloud without service interruption.

**Important**
This scenario might cause messages to be delivered out of order. If you’re concerned about message ordering, follow the steps in Migrating with Service Interruption (p. 53).
To migrate to Amazon MQ without service interruption

1. Create and configure an Amazon MQ broker (p. 9) and note your broker’s endpoint, for example:

   ```
 ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617
   ```

2. For either of the following cases, use the Failover Transport to allow your consumers to randomly connect to your on-premises broker’s endpoint or your Amazon MQ broker’s endpoint. For example:

   ```
 failover:(ssl://on-premises-broker.example.com:61617,ssl://
b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617)?
 randomize=true
   ```

   Do one of the following:
   
   - One by one, point each existing consumer to your Amazon MQ broker’s endpoint.
   - Create new consumers and point them to your Amazon MQ broker’s endpoint.

   **Note**
   If you scale up your consumer fleet during the migration process, it is a best practice to scale it down afterward.

3. One by one, stop each existing producer, point the producer to your Amazon MQ broker’s endpoint, and then restart the producer.

4. Wait for your consumers to drain the destinations on your on-premises broker.

5. Change your consumers’ Failover transport to include only your Amazon MQ broker’s endpoint. For example:

   ```
 failover:(ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617)
   ```

6. Stop your on-premises broker.

Migrating with Service Interruption

The following diagrams illustrate the scenario of migrating from an on-premises message broker to an Amazon MQ broker in the AWS Cloud with service interruption.

**Important**
This scenario requires you to point your producer to your Amazon MQ broker’s endpoint before you do the same for your consumers. This sequence ensures that any messages in a FIFO (first-in-first-out) queue maintain their order during the migration process. If you’re not concerned about message ordering, follow the steps in Migrating without Service Interruption (p. 52).
To migrate to Amazon MQ with service interruption

1. Create and configure an Amazon MQ broker (p. 9) and note your broker's endpoint, for example:

   ```
 ssl://b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617
   ```

2. Stop your existing producer, point the producer to your Amazon MQ broker's endpoint, and then restart the producer.

   **Important**
   This step requires an interruption of your application's functionality because no consumers are yet consuming messages from the Amazon MQ broker.

3. Wait for your consumers to drain the destinations on your on-premises broker.

4. Do one of the following:

   - One by one, point each existing consumer to your Amazon MQ broker's endpoint.
   - Create new consumers and point them to your Amazon MQ broker's endpoint.

   **Note**
   If you scale up your consumer fleet during the migration process, it is a best practice to scale it down afterward.

5. Stop your on-premises broker.
Best Practices for Amazon MQ

Use these best practices to make the most of Amazon MQ.

Communicating with Amazon MQ

The following design patterns can improve the effectiveness of your application's communication with Amazon MQ brokers.

**Always Use Connection Pooling**

In a scenario with a single producer and single consumer (such as the Getting Started with Amazon MQ (p. 4) tutorial), you can use a single `ActiveMQConnectionFactory` class for every producer and consumer. For example:

```java
// Create a connection factory.
ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://
 b-1234a5b6-78cd-901e-2fgh-3i45j6k178l9-1.mq.us-east-1.amazonaws.com:61617");

// Specify the username and password.
connectionFactory.setUserName("MyUserName");
connectionFactory.setPassword("MyPassWord123");

// Establish a connection for the consumer.
Connection consumerConnection = connectionFactory.createConnection();
consumerConnection.start();
```
However, in more realistic scenarios with multiple producers and consumers, it can be costly to create a large number of connections for multiple producers. In these scenarios, you should group multiple producer requests using the `PooledConnectionFactory` class. For example:

```java
// Create a connection factory.
ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("ssl://b-1234567890-abcdefg-1234567890-1.mq.us-east-1.amazonaws.com:61617");

// Specify the username and password.
connectionFactory.setUserName("MyUsername");
connectionFactory.setPassword("MyPassword123");

// Create a pooled connection factory.
PooledConnectionFactory pooledConnectionFactory = new PooledConnectionFactory();
pooledConnectionFactory.setConnectionFactory(connectionFactory);
pooledConnectionFactory.setMaxConnections(10);

// Establish a connection for the producer.
Connection producerConnection = pooledConnectionFactory.createConnection();
producerConnection.start();
```

Avoid Using Message Selectors

It is possible to use JMS selectors to attach filters to topic subscriptions (to route messages to consumers based on their content). However, the use of JMS selectors fills up the Amazon MQ broker’s filter buffer, preventing it from filtering messages.

In general, avoid letting consumers route messages because, for optimal decoupling of consumers and producers, both the consumer and the producer should be ephemeral.
Limits in Amazon MQ

This topic lists limits within Amazon MQ.

Topics

- Brokers (p. 57)
- Configurations (p. 57)
- Users (p. 58)
- Messages (p. 58)
- Data Storage (p. 58)
- API Throttling (p. 59)

Brokers

The following table lists limits related to Amazon MQ brokers.

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broker name</td>
<td>Must be unique in your AWS account. Must be 1-50 characters long. Must contain only characters specified in the ASCII Printable Character Set. Can contain only alphanumeric characters, dashes, periods, underscores, and tildes (- . _ ~).</td>
</tr>
<tr>
<td>Brokers per broker instance type (p. 29), per AWS account, per region</td>
<td>20</td>
</tr>
<tr>
<td>Broker configuration history depth</td>
<td>10</td>
</tr>
<tr>
<td>Security groups per broker</td>
<td>5</td>
</tr>
<tr>
<td>Destinations (queues and topics) monitored in CloudWatch</td>
<td>CloudWatch monitors only the first 200 destinations.</td>
</tr>
</tbody>
</table>

Configurations

The following table lists limits related to Amazon MQ configurations.

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration name</td>
<td>Must be 1-150 characters long. Must contain only characters specified in the ASCII Printable Character Set. Can contain only alphanumeric characters, dashes, periods, underscores, and tildes (- . _ ~).</td>
</tr>
</tbody>
</table>
## Users

The following table lists limits related to Amazon MQ users (p. 31).

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>• Must be 1-100 characters long.</td>
</tr>
<tr>
<td></td>
<td>• Must contain only characters specified in the ASCII Printable Character Set.</td>
</tr>
<tr>
<td></td>
<td>• Can contain only alphanumeric characters, dashes, periods, underscores, and tildes (~ . _).</td>
</tr>
<tr>
<td></td>
<td>• Must not contain commas (, ).</td>
</tr>
<tr>
<td>Password</td>
<td>• Must be 12-250 characters long.</td>
</tr>
<tr>
<td></td>
<td>• Must contain only characters specified in the ASCII Printable Character Set.</td>
</tr>
<tr>
<td></td>
<td>• Must contain at least 4 unique characters.</td>
</tr>
<tr>
<td></td>
<td>• Must not contain commas (, ).</td>
</tr>
<tr>
<td>Users per broker</td>
<td>100</td>
</tr>
<tr>
<td>Groups per user</td>
<td>5</td>
</tr>
</tbody>
</table>

## Messages

The following table lists limits related to messages transferred through Amazon MQ.

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message size</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Message throughput</td>
<td>10 MiB per second for persistent storage</td>
</tr>
</tbody>
</table>

## Data Storage

The following table lists limits related to Amazon MQ data storage.

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage capacity per broker</td>
<td>200 GB</td>
</tr>
</tbody>
</table>
### API Throttling

The following throttling limits are aggregated per AWS account, *across all Amazon MQ APIs* to maintain service bandwidth.

<table>
<thead>
<tr>
<th>Bucket Size</th>
<th>Refill Rate per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15</td>
</tr>
</tbody>
</table>

Amazon MQ uses Apache KahaDB as its data store. Other data stores, such as JDBC and LevelDB, aren't supported.
Monitoring Amazon MQ using Amazon CloudWatch

Amazon MQ and Amazon CloudWatch are integrated so you can use CloudWatch to view and analyze metrics for your ActiveMQ broker and the broker’s destinations (queues and topics). You can view and analyze your Amazon MQ metrics from the CloudWatch console, the AWS CLI, or the CloudWatch CLI. CloudWatch metrics for Amazon MQ are automatically polled from the broker and then pushed to CloudWatch every minute.

For information about accessing Amazon MQ CloudWatch metrics, see Tutorial: Accessing CloudWatch Metrics for Amazon MQ (p. 25).

**Note**
The following statistics are valid for all of the metrics:

- Average
- Minimum
- Maximum
- Sum

The AWS/AmazonMQ namespace includes the following metrics.

### Broker Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpuUtilization</td>
<td>Percent</td>
<td>The percentage of allocated EC2 compute units that the broker currently uses.</td>
</tr>
<tr>
<td>HeapUsage</td>
<td>Percent</td>
<td>The percentage of the ActiveMQ JVM memory limit that the broker currently uses.</td>
</tr>
<tr>
<td>NetworkIn</td>
<td>Bytes</td>
<td>The volume of incoming traffic for the broker.</td>
</tr>
<tr>
<td>NetworkOut</td>
<td>Bytes</td>
<td>The volume of outgoing traffic for the broker.</td>
</tr>
<tr>
<td>TotalMessageCount</td>
<td>Count</td>
<td>The number of messages stored on the broker.</td>
</tr>
</tbody>
</table>

### Dimension for Broker Metrics

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broker</td>
<td>The name of the broker.</td>
</tr>
</tbody>
</table>
### Destination (Queue and Topic) Metrics

**Important**
The following metrics record only values since CloudWatch polled the metrics last:

- EnqueueCount
- ExpiredCount
- DequeueCount
- DispatchCount

<table>
<thead>
<tr>
<th>Metric</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConsumerCount</td>
<td>Count</td>
<td>The number of consumers subscribed to the destination.</td>
</tr>
<tr>
<td>EnqueueCount</td>
<td>Count</td>
<td>The number of messages sent to the destination.</td>
</tr>
<tr>
<td>EnqueueTime</td>
<td>Time (milliseconds)</td>
<td>The amount of time it takes the broker to accept a message from the producer and send it to the destination.</td>
</tr>
<tr>
<td>ExpiredCount</td>
<td>Count</td>
<td>The number of messages that couldn't be delivered because they expired.</td>
</tr>
<tr>
<td>InflightCount</td>
<td>Count</td>
<td>The number of messages sent to consumers that the consumers still have to acknowledge.</td>
</tr>
<tr>
<td>DispatchCount</td>
<td>Count</td>
<td>The number of messages sent to consumers.</td>
</tr>
<tr>
<td>DequeueCount</td>
<td>Count</td>
<td>The number of messages acknowledged by consumers.</td>
</tr>
<tr>
<td>MemoryUsage</td>
<td>Percent</td>
<td>The percentage of the memory limit that the destination currently uses.</td>
</tr>
<tr>
<td>ProducerCount</td>
<td>Count</td>
<td>The number of producers for the destination.</td>
</tr>
<tr>
<td>QueueSize</td>
<td>Count</td>
<td>The number of messages in the queue.</td>
</tr>
</tbody>
</table>

**Important**
This metric applies only to queues.
## Dimensions for Destination (Queue and Topic) Metrics

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broker</td>
<td>The name of the broker.</td>
</tr>
<tr>
<td>Topic or Queue</td>
<td>The name of the topic or queue.</td>
</tr>
</tbody>
</table>
Amazon MQ Security

This section provides information about Amazon MQ security and authentication and access control.

Authentication and Access Control for Amazon MQ

Access to Amazon MQ requires credentials that AWS can use to authenticate your requests. These credentials must have permissions to access AWS resources, such as Amazon MQ brokers, configurations, configuration revisions, engines, and users. The following sections provide details on how you can use AWS Identity and Access Management (IAM) and Amazon MQ to help secure your resources by controlling access to them.

Amazon MQ REST API Permissions: Actions and Resource Reference

When you write permissions policies that you can attach to an IAM identity, you can use the following table as a reference. The list includes each Amazon MQ API operation, the corresponding operations for which you can grant permissions, and the AWS resource for which you can grant permissions.

Specify the actions in the policy's Action field, and the resource value in the policy's Resource field. To specify an action, use the `mq:` prefix followed by the REST API operation ID (for example, `mq:CreateBroker`).

**Note**
Currently, Amazon MQ doesn't support resource-based permissions or resource-based policies.

Amazon Simple Queue Service API and Required Permissions for Actions

*CreateBroker*

**Action:** `mq:CreateBroker`

**Resource:** *

*CreateConfiguration*

**Action:** `mq:CreateConfiguration`

**Resource:** *

*CreateUser*

**Action:** `mq:CreateUser`

**Resource:** *

*DeleteBroker*

**Action:** `mq:DeleteBroker`

**Resource:** *

*DeleteUser*

**Action:** `mq:DeleteUser`
Resource: *
DescribeBroker
  Action: mq:DescribeBroker
Resource: *
DescribeConfiguration
  Action: mq:DescribeConfiguration
Resource: *
DescribeUser
  Action: mq:DescribeUser
Resource: *
ListBrokers
  Action: mq:ListBrokers
Resource: *
ListConfigurationRevisions
  Action: mq:ListConfigurationRevisions
Resource: *
ListConfigurations
  Action: mq:ListConfigurations
Resource: *
ListUsers
  Action: mq:ListUsers
Resource: *
RebootBroker
  Action: mq:RebootBroker (RestartBroker in IAM)
Resource: *
UpdateBroker
  Action: mq:UpdateBroker (ModifyBroker in IAM)
Resource: *
UpdateConfiguration
  Action: mq:UpdateConfiguration
Resource: *
UpdateUser
  Action: mq:UpdateUser
Resource: *
Related Resources

Amazon MQ Resources

The following table lists useful resources for working with Amazon MQ.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon MQ REST API Reference</td>
<td>Complete descriptions of REST resources, example requests, HTTP methods, schemas, parameters, and the errors that the service returns.</td>
</tr>
<tr>
<td>Regions and Endpoints</td>
<td>Information about Amazon MQ regions and endpoints</td>
</tr>
<tr>
<td>Amazon MQ Product Page</td>
<td>The primary web page for information about Amazon MQ.</td>
</tr>
<tr>
<td>Amazon MQ Discussion Forum</td>
<td>A community-based forum for developers to discuss technical questions related to Amazon MQ.</td>
</tr>
<tr>
<td>AWS Premium Support Information</td>
<td>The primary web page for information about AWS Premium Support, a one-on-one, fast-response support channel to help you build and run applications on AWS infrastructure services</td>
</tr>
</tbody>
</table>

Apache ActiveMQ Resources

The following table lists useful resources for working with Apache ActiveMQ.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache ActiveMQ Getting Started Guide</td>
<td>The official documentation of Apache ActiveMQ.</td>
</tr>
<tr>
<td>ActiveMQ in Action</td>
<td>A guide to Apache ActiveMQ that covers the anatomy of JMS messages, connectors, message persistence, authentication, and authorization.</td>
</tr>
</tbody>
</table>
Document History

The following table describes the important changes to the documentation since the last release of the Amazon MQ Developer Guide.

**Latest documentation update:** December 8, 2017

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
</table>
| Update               | • Added the Enable Inbound Connections (p. 18) prerequisite to the Tutorial: Connecting a Java Application to Your Amazon MQ Broker (p. 17) and Working Example of Using Java Message Service (JMS) with ActiveMQ (p. 48) sections.  
  • Added the following note throughout this guide: Currently, it isn’t possible to delete a configuration.                                                                 | December 8, 2017      |
| Update               | • Improved the code in the Working Java Example (p. 49).  
  • Improved the code in AmazonMQExample_1.1.zip.  
  • Added the Amazon MQ REST API Permissions: Actions and Resource Reference (p. 63) section.                                                                 | December 7, 2017      |
| Update               | • Clarified and corrected information in the Monitoring Amazon MQ using Amazon CloudWatch (p. 60) section:  
  • Improved the metric descriptions.  
  • Added the Dimension for Broker Metrics (p. 60) and Dimensions for Destination (Queue and Topic) Metrics (p. 62) sub-sections.  
  • Added the "Introducing Amazon MQ" video to the What Is Amazon MQ? (p. 1) section.                                                                                                                                 | December 5, 2017      |
| Update               | • Clarified the following information in the Data Storage (p. 58) section: Storage capacity per broker is 200 GB.  
  • Added the Prerequisites (p. 48) to the Working Example of Using Java Message Service (JMS) with ActiveMQ (p. 48) section. (The activemq-client.jar and activemq-pool.jar packages are required for the example to work. For more information, see Tutorial: Connecting a Java Application to Your Amazon MQ Broker (p. 17)). | December 4, 2017      |
| Update               | • Updated and improved the screenshots in all the tutorials.  
  • Clarified the following explanation throughout this guide: Making changes to a configuration revision or an ActiveMQ user does not apply the changes immediately. To apply your changes, you must wait for the next maintenance window (p. 16) or reboot the broker (p. 24). For more information, see Amazon MQ Broker Configuration Lifecycle (p. 34). | December 1, 2017      |
| Initial Release      | This is the first release of Amazon MQ and the Amazon MQ Developer Guide.  
  • You can create mq.m4.large and mq.t2.micro brokers in the following regions:  
  • US East (Ohio)                                                                                                                                                         | November 28, 2017     |
<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>• US East (N. Virginia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• US West (Oregon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Asia Pacific (Sydney)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EU (Frankfurt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EU (Ireland)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• You can use the ActiveMQ 5.15.0 broker engine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• You can also create and manage brokers programmatically using</td>
<td>Amazon MQ <a href="https://aws.amazon.com/documentation/mq/rest-api/">REST API</a> and</td>
<td></td>
</tr>
<tr>
<td>Amazon MQ REST API and AWS SDKs.</td>
<td>AWS SDKs.</td>
<td></td>
</tr>
<tr>
<td>• You can access your brokers using <a href="https://activemq.apache.org/programming-language-support.html">any programming language</a> that ActiveMQ supports and the following protocols with SSL enabled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• AMQP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MQTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MQTT over WebSocket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• OpenWire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• STOMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• STOMP over WebSocket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• You can connect to ActiveMQ brokers using various ActiveMQ clients.</td>
<td><a href="https://activemq.apache.org/client.html">ActiveMQ Client</a>. For more</td>
<td></td>
</tr>
<tr>
<td>clients. We recommend using the ActiveMQ Client. For more</td>
<td>information, see [Tutorial: Connecting a Java Application to Your</td>
<td></td>
</tr>
<tr>
<td>information, see Tutorial: Connecting a Java Application to Your</td>
<td>Amazon MQ Broker](<a href="https://aws.amazon.com/documentation/mq/java/">https://aws.amazon.com/documentation/mq/java/</a>). For more</td>
<td></td>
</tr>
<tr>
<td>Amazon MQ Broker](<a href="https://aws.amazon.com/documentation/mq/java/">https://aws.amazon.com/documentation/mq/java/</a>).</td>
<td>information, see Tutorial: Connecting a Java Application to Your Amazon MQ</td>
<td></td>
</tr>
<tr>
<td>• Your broker can send and receive messages of any size.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AWS Glossary

Numbers and Symbols

100-continue

A method that enables a client to see if a server can accept a request before actually sending it. For large PUT requests, this method can save both time and bandwidth charges.

A

AAD

See additional authenticated data.

access control list (ACL)

A document that defines who can access a particular bucket (p. 81) or object. Each bucket (p. 81) and object in Amazon S3 (p. 73) has an ACL. The document defines what each type of user can do, such as write and read permissions.

access identifiers

See credentials.

access key

The combination of an access key ID (p. 68) (like AKIAIOSFODNN7EXAMPLE) and a secret access key (p. 109) (like wJalrXUtznFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). You use access keys to sign API requests that you make to AWS.

access key ID

A unique identifier that's associated with a secret access key (p. 109); the access key ID and secret access key are used together to sign programmatic AWS requests cryptographically.

access key rotation

A method to increase security by changing the AWS access key ID. This method enables you to retire an old key at your discretion.

access policy language

A language for writing documents (that is, policies (p. 102)) that specify who can access a particular AWS resource (p. 106) and under what conditions.
account

A formal relationship with AWS that is associated with (1) the owner email address and password, (2) the control of resource (p. 106)s created under its umbrella, and (3) payment for the AWS activity related to those resources. The AWS account has permission to do anything and everything with all the AWS account resources. This is in contrast to a user (p. 116), which is an entity contained within the account.

account activity

A web page showing your month-to-date AWS usage and costs. The account activity page is located at https://aws.amazon.com/account-activity/.

ACL

See access control list (ACL).

ACM

See AWS Certificate Manager (ACM).

action

An API function. Also called operation or call. The activity the principal (p. 103) has permission to perform. The action is B in the statement "A has permission to do B to C where D applies." For example, Jane sends a request to Amazon SQS (p. 73) with Action=ReceiveMessage.

Amazon CloudWatch (p. 70): The response initiated by the change in an alarm's state: for example, from OK to ALARM. The state change may be triggered by a metric reaching the alarm threshold, or by a SetAlarmState request. Each alarm can have one or more actions assigned to each state. Actions are performed once each time the alarm changes to a state that has an action assigned, such as an Amazon Simple Notification Service (p. 73) notification, an Auto Scaling (p. 75) policy (p. 102) execution or an Amazon EC2 (p. 71) instance (p. 94) stop/terminate action.

active trusted signers

A list showing each of the trusted signers you've specified and the IDs of the corresponding active key pairs that Amazon CloudFront (p. 70) is aware of. To be able to create working signed URLs, a trusted signer must appear in this list with at least one key pair ID.

additional authenticated data

Information that is checked for integrity but not encrypted, such as headers or other contextual metadata.

administrative suspension

Auto Scaling (p. 75) might suspend processes for Auto Scaling group (p. 75) that repeatedly fail to launch instances. Auto Scaling groups that most commonly experience administrative suspension have zero running instances, have been trying to launch instances for more than 24 hours, and have not succeeded in that time.

alarm

An item that watches a single metric over a specified time period, and triggers an Amazon SNS (p. 73) topic (p. 115) or an Auto Scaling (p. 75) policy (p. 102) if the value of the metric crosses a threshold value over a predetermined number of time periods.

allow

One of two possible outcomes (the other is deny (p. 87)) when an IAM (p. 77) access policy (p. 102) is evaluated. When a user makes a request to AWS, AWS evaluates the request based on all permissions that apply to the user and then returns either allow or deny.

Amazon API Gateway

A fully managed service that makes it easy for developers to create, publish, maintain, monitor, and secure APIs at any scale. See Also https://aws.amazon.com/api-gateway.

Amazon AppStream

A web service for streaming existing Windows applications from the cloud to any device. See Also https://aws.amazon.com/appstream/.
<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Aurora</td>
<td>A fully managed MySQL-compatible relational database engine that combines the speed and availability of commercial databases with the simplicity and cost-effectiveness of open source databases. See Also <a href="https://aws.amazon.com/rds/aurora/">https://aws.amazon.com/rds/aurora/</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon CloudFront</td>
<td>An AWS content delivery service that helps you improve the performance, reliability, and availability of your websites and applications. See Also <a href="https://aws.amazon.com/cloudfront">https://aws.amazon.com/cloudfront</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon CloudSearch</td>
<td>A fully managed service in the AWS cloud that makes it easy to set up, manage, and scale a search solution for your website or application.</td>
<td></td>
</tr>
<tr>
<td>Amazon CloudWatch</td>
<td>A web service that enables you to monitor and manage various metrics, and configure alarm actions based on data from those metrics. See Also <a href="https://aws.amazon.com/cloudwatch">https://aws.amazon.com/cloudwatch</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon CloudWatch Events</td>
<td>A web service that enables you to deliver a timely stream of system events that describe changes in AWS resource (p. 106)s to AWS Lambda (p. 78) functions, streams in Amazon Kinesis Data Streams (p. 72), Amazon Simple Notification Service (p. 73) topics, or built-in targets. See Also <a href="https://aws.amazon.com/cloudwatch">https://aws.amazon.com/cloudwatch</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon CloudWatch Logs</td>
<td>A web service for monitoring and troubleshooting your systems and applications from your existing system, application, and custom log files. You can send your existing log files to CloudWatch Logs and monitor these logs in near real-time. See Also <a href="https://aws.amazon.com/cloudwatch">https://aws.amazon.com/cloudwatch</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon Cognito</td>
<td>A web service that makes it easy to save mobile user data, such as app preferences or game state, in the AWS cloud without writing any back-end code or managing any infrastructure. Amazon Cognito offers mobile identity management and data synchronization across devices. See Also <a href="https://aws.amazon.com/cognito/">https://aws.amazon.com/cognito/</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon DevPay</td>
<td>An easy-to-use online billing and account management service that makes it easy for you to sell an Amazon EC2 (p. 71) AMI (p. 72) or an application built on Amazon S3 (p. 73). See Also <a href="https://aws.amazon.com/devpay">https://aws.amazon.com/devpay</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon DynamoDB</td>
<td>A fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. See Also <a href="https://aws.amazon.com/dynamodb/">https://aws.amazon.com/dynamodb/</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon DynamoDB Storage Backend for Titan</td>
<td>A storage backend for the Titan graph database implemented on top of Amazon DynamoDB. Titan is a scalable graph database optimized for storing and querying graphs. See Also <a href="https://aws.amazon.com/dynamodb/">https://aws.amazon.com/dynamodb/</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon DynamoDB Streams</td>
<td>An AWS service that captures a time-ordered sequence of item-level modifications in any Amazon DynamoDB table, and stores this information in a log for up to 24 hours. Applications can access this log and view the data items as they appeared before and after they were modified, in near real time. See Also <a href="https://aws.amazon.com/dynamodb/">https://aws.amazon.com/dynamodb/</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon Elastic Block Store (Amazon EBS)</td>
<td>A service that provides block level storage volume (p. 117)s for use with EC2 instance (p. 88)s. See Also <a href="https://aws.amazon.com/ebs">https://aws.amazon.com/ebs</a>.</td>
<td></td>
</tr>
<tr>
<td>Amazon EBS-backed AMI</td>
<td>A type of Amazon Machine Image (AMI) (p. 72) whose instance (p. 94)s use an Amazon EBS (p. 70) volume (p. 117) as their root device. Compare this</td>
<td></td>
</tr>
</tbody>
</table>
with instances launched from instance store-backed AMI (p. 94)s, which use the instance store (p. 94) as the root device.

Amazon Elastic Container Registry (Amazon ECR) A fully managed Docker container registry that makes it easy for developers to store, manage, and deploy Docker container images. Amazon ECR is integrated with Amazon Elastic Container Service (Amazon ECS) (p. 71) and AWS Identity and Access Management (IAM) (p. 77). See Also https://aws.amazon.com/ecr.

Amazon Elastic Container Service (Amazon ECS) A highly scalable, fast, container (p. 84) management service that makes it easy to run, stop, and manage Docker containers on a cluster (p. 83) of EC2 instance (p. 88)s. See Also https://aws.amazon.com/ecs.

Amazon ECS service A service for running and maintaining a specified number of task (p. 114)s (instantiations of a task definition (p. 114)) simultaneously. See Also https://aws.amazon.com/ecs.

Amazon EC2 VM Import Connector See https://aws.amazon.com/ec2/vm-import.

Amazon Elastic Compute Cloud (Amazon EC2) A web service that enables you to launch and manage Linux/UNIX and Windows server instance (p. 94)s in Amazon's data centers. See Also https://aws.amazon.com/ec2.

Amazon Elastic File System (Amazon EFS) A file storage service for EC2 (p. 71) instance (p. 94)s. Amazon EFS is easy to use and provides a simple interface with which you can create and configure file systems. Amazon EFS storage capacity grows and shrinks automatically as you add and remove files. See Also https://aws.amazon.com/efs/.

Amazon EMR (Amazon EMR) A web service that makes it easy to process large amounts of data efficiently. Amazon EMR uses Hadoop (p. 92) processing combined with several AWS products to do such tasks as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehousing. See Also https://aws.amazon.com/elasticmapreduce.

Amazon Elastic Transcoder A cloud-based media transcoding service. Elastic Transcoder is a highly scalable tool for converting (or transcoding) media files from their source format into versions that will play on devices like smartphones, tablets, and PCs. See Also https://aws.amazon.com/elastictranscoder/.

Amazon ElastiCache A web service that simplifies deploying, operating, and scaling an in-memory cache in the cloud. The service improves the performance of web applications by providing information retrieval from fast, managed, in-memory caches, instead of relying entirely on slower disk-based databases. See Also https://aws.amazon.com/elasticache/.

Amazon Elasticsearch Service (Amazon ES) An AWS managed service for deploying, operating, and scaling Elasticsearch, an open-source search and analytics engine, in the AWS Cloud. Amazon Elasticsearch Service (Amazon ES) also offers security options, high availability, data durability, and direct access to the Elasticsearch APIs. See Also https://aws.amazon.com/elasticsearch-service.

Amazon GameLift A managed service for deploying, operating, and scaling session-based multiplayer games. See Also https://aws.amazon.com/gamelift/.

Amazon Glacier A secure, durable, and low-cost storage service for data archiving and long-term backup. You can reliably store large or small amounts of data for significantly
less than on-premises solutions. Amazon Glacier is optimized for infrequently accessed data, where a retrieval time of several hours is suitable. See Also https://aws.amazon.com/glacier/.

**Amazon GuardDuty**
A continuous security monitoring service. Amazon GuardDuty can help to identify unexpected and potentially unauthorized or malicious activity in your AWS environment. See Also https://aws.amazon.com/guardduty/.

**Amazon Inspector**
An automated security assessment service that helps improve the security and compliance of applications deployed on AWS. Amazon Inspector automatically assesses applications for vulnerabilities or deviations from best practices. After performing an assessment, Amazon Inspector produces a detailed report with prioritized steps for remediation. See Also https://aws.amazon.com/inspector.

**Amazon Kinesis**
A platform for streaming data on AWS. Kinesis offers services that simplify the loading and analysis of streaming data. See Also https://aws.amazon.com/kinesis/.

**Amazon Kinesis Data Firehose**
A fully managed service for loading streaming data into AWS. Kinesis Data Firehose can capture and automatically load streaming data into Amazon S3 (p. 73) and Amazon Redshift (p. 73), enabling near real-time analytics with existing business intelligence tools and dashboards. Kinesis Data Firehose automatically scales to match the throughput of your data and requires no ongoing administration. It can also batch, compress, and encrypt the data before loading it. See Also https://aws.amazon.com/kinesis/firehose/.

**Amazon Kinesis Data Streams**
A web service for building custom applications that process or analyze streaming data for specialized needs. Amazon Kinesis Data Streams can continuously capture and store terabytes of data per hour from hundreds of thousands of sources. See Also https://aws.amazon.com/kinesis/streams/.

**Amazon Lumberyard**
A cross-platform, 3D game engine for creating high-quality games. You can connect games to the compute and storage of the AWS cloud and engage fans on Twitch. See Also https://aws.amazon.com/lumberyard/.

**Amazon Machine Image (AMI)**
An encrypted machine image stored in Amazon Elastic Block Store (Amazon EBS) (p. 70) or Amazon Simple Storage Service (p. 73). AMIs are like a template of a computer's root drive. They contain the operating system and can also include software and layers of your application, such as database servers, middleware, web servers, and so on.

**Amazon Machine Learning**
A cloud-based service that creates machine learning (ML) models by finding patterns in your data, and uses these models to process new data and generate predictions. See Also http://aws.amazon.com/machine-learning/.

**Amazon Macie**
A security service that uses machine learning to automatically discover, classify, and protect sensitive data in AWS. See Also http://aws.amazon.com/macie/.

**Amazon ML**
See Amazon Machine Learning.

**Amazon Mobile Analytics**
A service for collecting, visualizing, understanding, and extracting mobile app usage data at scale. See Also https://aws.amazon.com/mobileanalytics.
<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Redshift</td>
<td>A fully managed, petabyte-scale data warehouse service in the cloud. With Amazon Redshift you can analyze your data using your existing business intelligence tools.</td>
<td>See Also <a href="https://aws.amazon.com/redshift/">https://aws.amazon.com/redshift/</a></td>
</tr>
<tr>
<td>Amazon Relational Database Service (Amazon RDS)</td>
<td>A web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizable capacity for an industry-standard relational database and manages common database administration tasks.</td>
<td>See Also <a href="https://aws.amazon.com/rds">https://aws.amazon.com/rds</a>.</td>
</tr>
<tr>
<td>Amazon Resource Name (ARN)</td>
<td>A standardized way to refer to an AWS resource (p. 106). For example: arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/Bob.</td>
<td></td>
</tr>
<tr>
<td>Amazon Route 53</td>
<td>A web service you can use to create a new DNS service or to migrate your existing DNS service to the cloud.</td>
<td>See Also <a href="https://aws.amazon.com(route53)">https://aws.amazon.com(route53)</a>.</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>See Amazon Simple Storage Service (Amazon S3).</td>
<td></td>
</tr>
<tr>
<td>Amazon S3-Backed AMI</td>
<td>See instance store-backed AMI.</td>
<td></td>
</tr>
<tr>
<td>Amazon Silk</td>
<td>A next-generation web browser available only on Fire OS tablets and phones. Built on a split architecture that divides processing between the client and the AWS cloud, Amazon Silk is designed to create a faster, more responsive mobile browsing experience.</td>
<td></td>
</tr>
<tr>
<td>Amazon Simple Email Service (Amazon SES)</td>
<td>An easy-to-use, cost-effective email solution for applications.</td>
<td>See Also <a href="https://aws.amazon.com/ses">https://aws.amazon.com/ses</a>.</td>
</tr>
<tr>
<td>Amazon Simple Notification Service (Amazon SNS)</td>
<td>A web service that enables applications, end-users, and devices to instantly send and receive notifications from the cloud.</td>
<td>See Also <a href="https://aws.amazon.com/sns">https://aws.amazon.com/sns</a>.</td>
</tr>
<tr>
<td>Amazon Simple Queue Service (Amazon SQS)</td>
<td>Reliable and scalable hosted queues for storing messages as they travel between computers.</td>
<td>See Also <a href="https://aws.amazon.com/sqs">https://aws.amazon.com/sqs</a>.</td>
</tr>
<tr>
<td>Amazon Simple Storage Service (Amazon S3)</td>
<td>Storage for the internet. You can use it to store and retrieve any amount of data at any time, from anywhere on the web.</td>
<td>See Also <a href="https://aws.amazon.com/s3">https://aws.amazon.com/s3</a>.</td>
</tr>
<tr>
<td>Amazon Simple Workflow Service (Amazon SWF)</td>
<td>A fully managed service that helps developers build, run, and scale background jobs that have parallel or sequential steps. Amazon SWF is like a state tracker and task coordinator in the cloud.</td>
<td>See Also <a href="https://aws.amazon.com/swf/">https://aws.amazon.com/swf/</a>.</td>
</tr>
<tr>
<td>Amazon Virtual Private Cloud (Amazon VPC)</td>
<td>A web service for provisioning a logically isolated section of the AWS cloud where you can launch AWS resource (p. 106)s in a virtual network that you define. You control your virtual networking environment, including selection of your own IP address range, creation of subnet (p. 113)s, and configuration of route table (p. 107)s and network gateways.</td>
<td>See Also <a href="https://aws.amazon.com/vpc">https://aws.amazon.com/vpc</a>.</td>
</tr>
<tr>
<td>Amazon VPC</td>
<td>See Amazon Virtual Private Cloud (Amazon VPC).</td>
<td></td>
</tr>
<tr>
<td>Amazon Web Services (AWS)</td>
<td>An infrastructure web services platform in the cloud for companies of all sizes.</td>
<td>See Also <a href="https://aws.amazon.com/what-is-cloud-computing/">https://aws.amazon.com/what-is-cloud-computing/</a>.</td>
</tr>
<tr>
<td>Amazon WorkDocs</td>
<td>A managed, secure enterprise document storage and sharing service with administrative controls and feedback capabilities.</td>
<td></td>
</tr>
</tbody>
</table>
Amazon WorkMail is a managed, secure business email and calendar service with support for existing desktop and mobile email clients. See Also https://aws.amazon.com/workmail/.

Amazon WorkSpaces is a managed, secure desktop computing service for provisioning cloud-based desktops and providing users access to documents, applications, and resource (p. 106)s from supported devices. See Also https://aws.amazon.com/workspaces/.

Amazon WorkSpaces Application Manager (Amazon WAM) is a web service for deploying and managing applications for Amazon WorkSpaces. Amazon WAM accelerates software deployment, upgrades, patching, and retirement by packaging Windows desktop applications into virtualized application containers. See Also https://aws.amazon.com/workspaces/applicationmanager.

AMI is See Amazon Machine Image (AMI).

AMO analysis scheme is Amazon CloudSearch (p. 70): Language-specific text analysis options that are applied to a text field to control stemming and configure stopwords and synonyms.

AWS Elastic Beanstalk (p. 77) is a logical collection of components, including environments, versions, and environment configurations. An application is conceptually similar to a folder.

AWS CodeDeploy (p. 76) is a name that uniquely identifies the application to be deployed. AWS CodeDeploy uses this name to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment.

Application Billing is the location where your customers manage the Amazon DevPay products they've purchased. The web address is http://www.amazon.com/dp-applications.

Application revision is an archive file containing source content—such as source code, web pages, executable files, and deployment scripts—along with an application specification file (p. 74). Revisions are stored in Amazon S3 (p. 73) bucket (p. 81)s or GitHub (p. 92) repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID.

Application specification file is a YAML-formatted file used to map the source files in an application revision to destinations on the instance; specify custom permissions for deployed files; and specify scripts to be run on each instance at various stages of the deployment process.

AWS CodeDeploy (p. 76) is a specific, labeled iteration of an application that represents a functionally consistent set of deployable application code. A version points to an Amazon S3 (p. 73) object (a JAVA WAR file) that contains the application code.

AppSpec file is See application specification file.

AUC (Area Under a Curve) is an industry-standard metric to evaluate the quality of a binary classification machine learning model. AUC measures the ability of the model to predict a higher score for positive examples, those that are “correct,” than for negative examples, those that are “incorrect.” The AUC metric returns a decimal value from 0 to 1. AUC values near 1 indicate an ML model that is highly accurate.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARN</td>
<td>See Amazon Resource Name (ARN).</td>
</tr>
<tr>
<td>artifact</td>
<td>AWS CodePipeline (p. 76): A copy of the files or changes that will be worked upon by the pipeline.</td>
</tr>
<tr>
<td>asymmetric encryption</td>
<td>Encryption (p. 89) that uses both a public key and a private key.</td>
</tr>
<tr>
<td>asynchronous bounce</td>
<td>A type of bounce (p. 81) that occurs when a receiver (p. 105) initially accepts an email message for delivery and then subsequently fails to deliver it.</td>
</tr>
<tr>
<td>atomic counter</td>
<td>DynamoDB: A method of incrementing or decrementing the value of an existing attribute without interfering with other write requests.</td>
</tr>
<tr>
<td>attribute</td>
<td>A fundamental data element, something that does not need to be broken down any further. In DynamoDB, attributes are similar in many ways to fields or columns in other database systems.</td>
</tr>
<tr>
<td>Amazon Machine Learning</td>
<td>Amazon Machine Learning: A unique, named property within an observation in a data set. In tabular data, such as spreadsheets or comma-separated values (.csv) files, the column headings represent the attributes, and the rows contain values for each attribute.</td>
</tr>
<tr>
<td>Aurora</td>
<td>See Amazon Aurora.</td>
</tr>
<tr>
<td>authenticated encryption</td>
<td>Encryption (p. 89) that provides confidentiality, data integrity, and authenticity assurances of the encrypted data.</td>
</tr>
<tr>
<td>authentication</td>
<td>The process of proving your identity to a system.</td>
</tr>
<tr>
<td>Auto Scaling</td>
<td>A web service designed to launch or terminate instance (p. 94)s automatically based on user-defined policies (p. 102), schedules, and health check (p. 92)s. See Also <a href="https://aws.amazon.com//autoscaling">https://aws.amazon.com//autoscaling</a>.</td>
</tr>
<tr>
<td>Auto Scaling group</td>
<td>A representation of multiple EC2 instance (p. 88)s that share similar characteristics, and that are treated as a logical grouping for the purposes of instance scaling and management.</td>
</tr>
<tr>
<td>Availability Zone</td>
<td>A distinct location within a region (p. 105) that is insulated from failures in other Availability Zones, and provides inexpensive, low-latency network connectivity to other Availability Zones in the same region.</td>
</tr>
<tr>
<td>AWS</td>
<td>See Amazon Web Services (AWS).</td>
</tr>
<tr>
<td>AWS Application Discovery Service</td>
<td>A web service that helps you plan to migrate to AWS by identifying IT assets in a data center—including servers, virtual machines, applications, application dependencies, and network infrastructure. See Also <a href="https://aws.amazon.com/about-aws/whats-new/2016/04/aws-application-discovery-service/">https://aws.amazon.com/about-aws/whats-new/2016/04/aws-application-discovery-service/</a>.</td>
</tr>
<tr>
<td>AWS Billing and Cost Management</td>
<td>The AWS cloud computing model in which you pay for services on demand and use as much or as little at any given time as you need. While resource (p. 106)s are active under your account, you pay for the cost of allocating those resources and for any incidental usage associated with those resources, such as data transfer or allocated storage. See Also <a href="https://aws.amazon.com/billing/new-user-faqs/">https://aws.amazon.com/billing/new-user-faqs/</a>.</td>
</tr>
</tbody>
</table>
### AWS CloudFormation
A service for writing or changing templates that create and delete related AWS resources together as a unit. See Also https://aws.amazon.com/cloudformation/.

### AWS CloudHSM
A web service that helps you meet corporate, contractual, and regulatory compliance requirements for data security by using dedicated hardware security module (HSM) appliances within the AWS cloud. See Also https://aws.amazon.com/cloudhsm/.

### AWS CloudTrail
A web service that records AWS API calls for your account and delivers log files to you. The recorded information includes the identity of the API caller, the time of the API call, the source IP address of the API caller, the request parameters, and the response elements returned by the AWS service. See Also https://aws.amazon.com/cloudtrail/.

### AWS CodeCommit
A fully managed source control service that makes it easy for companies to host secure and highly scalable private Git repositories. See Also https://aws.amazon.com/codecommit/.

### AWS CodeDeploy
A service that automates code deployments to any instance, including EC2 instance(s) and instance(s) running on-premises. See Also https://aws.amazon.com/codedeploy/.

### AWS CodeDeploy agent
A software package that, when installed and configured on an instance, enables that instance to be used in AWS CodeDeploy deployments.

### AWS CodePipeline
A continuous delivery service for fast and reliable application updates. See Also https://aws.amazon.com/codepipeline/.

### AWS Command Line Interface (AWS CLI)
A unified downloadable and configurable tool for managing AWS services. Control multiple AWS services from the command line and automate them through scripts. See Also https://aws.amazon.com/cli/.

### AWS Config
A fully managed service that provides an AWS resource inventory, configuration history, and configuration change notifications for better security and governance. You can create rules that automatically check the configuration of AWS resources that AWS Config records. See Also https://aws.amazon.com/config/.

### AWS Elemental MediaConvert
A file-based video conversion service that transforms media into formats required for traditional broadcast and for internet streaming to multi-screen devices. See Also https://aws.amazon.com/mediaconvert/.

### AWS Elemental MediaLive
A video service that lets you easily create live outputs for broadcast and streaming delivery. See Also https://aws.amazon.com/medialive/.

### AWS Elemental MediaPackage
A just-in-time packaging and origination service that lets you format highly secure and reliable live outputs for a variety of devices. See Also https://aws.amazon.com/mediapackage/.

### AWS Elemental MediaStore
A storage service optimized for media that provides the performance, consistency, and low latency required to deliver live and on-demand video content at scale. See Also https://aws.amazon.com/mediastore/.

### AWS Elemental MediaTailor
A video service that lets you serve targeted ads to viewers while maintaining broadcast quality in over-the-top (OTT) video applications.
<table>
<thead>
<tr>
<th>AWS Service</th>
<th>Description</th>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Database Migration Service</td>
<td>A web service that can help you migrate data to and from many widely used commercial and open-source databases.</td>
<td><a href="https://aws.amazon.com/dms">https://aws.amazon.com/dms</a>.</td>
</tr>
<tr>
<td>AWS Data Pipeline</td>
<td>A web service for processing and moving data between different AWS compute and storage services, as well as on-premises data sources, at specified intervals.</td>
<td><a href="https://aws.amazon.com/datapipeline">https://aws.amazon.com/datapipeline</a>.</td>
</tr>
<tr>
<td>AWS Device Farm</td>
<td>An app testing service that allows developers to test Android, iOS, and Fire OS devices on real, physical phones and tablets that are hosted by AWS.</td>
<td><a href="https://aws.amazon.com/device-farm">https://aws.amazon.com/device-farm</a>.</td>
</tr>
<tr>
<td>AWS Direct Connect</td>
<td>A web service that simplifies establishing a dedicated network connection from your premises to AWS. Using AWS Direct Connect, you can establish private connectivity between AWS and your data center, office, or colocation environment.</td>
<td><a href="https://aws.amazon.com/directconnect">https://aws.amazon.com/directconnect</a>.</td>
</tr>
<tr>
<td>AWS Directory Service</td>
<td>A managed service for connecting your AWS resource to an existing on-premises Microsoft Active Directory or to set up and operate a new, standalone directory in the AWS cloud.</td>
<td><a href="https://aws.amazon.com/directoryservice">https://aws.amazon.com/directoryservice</a>.</td>
</tr>
<tr>
<td>AWS Glue</td>
<td>A fully managed extract, transform, and load (ETL) service that you can use to catalog data and load it for analytics. With AWS Glue, you can discover your data, develop scripts to transform sources into targets, and schedule and run ETL jobs in a serverless environment.</td>
<td><a href="https://aws.amazon.com/glue">https://aws.amazon.com/glue</a>.</td>
</tr>
<tr>
<td>AWS Identity and Access Management (IAM)</td>
<td>A web service that enables Amazon Web Services (AWS) customers to manage users and user permissions within AWS.</td>
<td><a href="https://aws.amazon.com/iam">https://aws.amazon.com/iam</a>.</td>
</tr>
<tr>
<td>AWS Key Management Service (AWS KMS)</td>
<td>A managed service that simplifies the creation and control of encryption keys that are used to encrypt data.</td>
<td><a href="https://aws.amazon.com/kms">https://aws.amazon.com/kms</a>.</td>
</tr>
</tbody>
</table>
AWS Lambda
A web service that lets you run code without provisioning or managing servers. You can run code for virtually any type of application or back-end service with zero administration. You can set up your code to automatically trigger from other AWS services or call it directly from any web or mobile app. See Also https://aws.amazon.com/lambda/.

AWS managed key
One of two types of customer master key (CMK) (p. 85)s in AWS Key Management Service (AWS KMS) (p. 77).

AWS managed policy
An IAM (p. 77) managed policy (p. 98) that is created and managed by AWS.

AWS Management Console
A graphical interface to manage compute, storage, and other cloud resource (p. 106)s. See Also https://aws.amazon.com/console.

AWS Management Portal for vCenter
A web service for managing your AWS resource (p. 106)s using VMware vCenter. You install the portal as a vCenter plug-in within your existing vCenter environment. Once installed, you can migrate VMware VMs to Amazon EC2 (p. 71) and manage AWS resources from within vCenter. See Also https://aws.amazon.com/ec2/vcenter-portal/.

AWS Marketplace
A web portal where qualified partners to market and sell their software to AWS customers. AWS Marketplace is an online software store that helps customers find, buy, and immediately start using the software and services that run on AWS. See Also https://aws.amazon.com/partners/aws-marketplace/.

AWS Mobile Hub
An integrated console that for building, testing, and monitoring mobile apps. See Also https://aws.amazon.com/mobile.

AWS Mobile SDK
A software development kit whose libraries, code samples, and documentation help you build high quality mobile apps for the iOS, Android, Fire OS, Unity, and Xamarin platforms. See Also https://aws.amazon.com/mobile/sdk.

AWS OpsWorks
A configuration management service that helps you use Chef to configure and operate groups of instances and applications. You can define the application’s architecture and the specification of each component including package installation, software configuration, and resource (p. 106)s such as storage. You can automate tasks based on time, load, lifecycle events, and more. See Also https://aws.amazon.com/opsworks/.

AWS Organizations
An account management service that enables you to consolidate multiple AWS accounts into an organization that you create and centrally manage. See Also https://aws.amazon.com/organizations/.

AWS SDK for C++
A software development kit for that provides C++ APIs for many AWS services including Amazon S3 (p. 73), Amazon EC2 (p. 71), Amazon DynamoDB (p. 70), and more. The single, downloadable package includes the AWS C++ library, code samples, and documentation. See Also https://aws.amazon.com/sdk-for-cpp/.

AWS SDK for Go
A software development kit for integrating your Go application with the full suite of AWS services. See Also https://aws.amazon.com/sdk-for-go/.

AWS SDK for Java
A software development kit that provides Java APIs for many AWS services including Amazon S3 (p. 73), Amazon EC2 (p. 71), Amazon DynamoDB (p. 70), and more. The single, downloadable package includes the AWS Java library, code samples, and documentation.
AWS SDK for JavaScript in the Browser
A software development kit for accessing AWS services from JavaScript code running in the browser. Authenticate users through Facebook, Google, or Login with Amazon using web identity federation. Store application data in Amazon DynamoDB (p. 70), and save user files to Amazon S3 (p. 73).
See Also http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/.

AWS SDK for JavaScript in Node.js
A software development kit for accessing AWS services from JavaScript in Node.js. The SDK provides JavaScript objects for AWS services, including Amazon S3 (p. 73), Amazon EC2 (p. 71), Amazon DynamoDB (p. 70), and Amazon Simple Workflow Service (Amazon SWF) (p. 73). The single, downloadable package includes the AWS JavaScript library and documentation.
See Also http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/.

AWS SDK for .NET
A software development kit that provides .NET API actions for AWS services including Amazon S3 (p. 73), Amazon EC2 (p. 71), IAM (p. 77), and more. You can download the SDK as multiple service-specific packages on NuGet.
See Also https://aws.amazon.com/sdk-for-net/.

AWS SDK for PHP
A software development kit and open-source PHP library for integrating your PHP application with AWS services like Amazon S3 (p. 73), Amazon Glacier (p. 71), and Amazon DynamoDB (p. 70).
See Also https://aws.amazon.com/sdk-for-php/.

AWS SDK for Python (Boto)
A software development kit for using Python to access AWS services like Amazon EC2 (p. 71), Amazon EMR (p. 71), Auto Scaling (p. 75), Amazon Kinesis (p. 72), AWS Lambda (p. 78), and more.
See Also http://boto.readthedocs.org/en/latest/.

AWS SDK for Ruby
A software development kit for accessing AWS services from Ruby. The SDK provides Ruby classes for many AWS services including Amazon S3 (p. 73), Amazon EC2 (p. 71), Amazon DynamoDB (p. 70), and more. The single, downloadable package includes the AWS Ruby Library and documentation.
See Also https://aws.amazon.com/sdk-for-ruby/.

AWS Security Token Service (AWS STS)
A web service for requesting temporary, limited-privilege credentials for AWS Identity and Access Management (IAM) users or for users that you authenticate (federated users).
See Also https://aws.amazon.com/iam/.

AWS Service Catalog
A web service that helps organizations create and manage catalogs of IT services that are approved for use on AWS. These IT services can include everything from virtual machine images, servers, software, and databases to complete multitier application architectures.
See Also https://aws.amazon.com/servicecatalog/.

AWS Storage Gateway
A web service that connects an on-premises software appliance with cloud-based storage to provide seamless and secure integration between an organization's on-premises IT environment and AWS's storage infrastructure.
See Also https://aws.amazon.com/storagegateway/.

AWS Toolkit for Eclipse
An open-source plug-in for the Eclipse Java IDE that makes it easier for developers to develop, debug, and deploy Java applications using Amazon Web Services.
See Also https://aws.amazon.com/eclipse/.

AWS Toolkit for Visual Studio
An extension for Microsoft Visual Studio that helps developers develop, debug, and deploy .NET applications using Amazon Web Services.
See Also https://aws.amazon.com/visualstudio/.
AWS Tools for Windows PowerShell	A set of PowerShell cmdlets to help developers and administrators manage their AWS services from the Windows PowerShell scripting environment. See Also https://aws.amazon.com/powershell/.
AWS Tools for Microsoft Visual Studio Team Services	Provides tasks you can use in build and release definitions in VSTS to interact with AWS services. See Also https://aws.amazon.com/vsts/.
AWS Trusted Advisor	A web service that inspects your AWS environment and makes recommendations for saving money, improving system availability and performance, and helping to close security gaps. See Also https://aws.amazon.com/premiumsupport/trustedadvisor/.
AWS VPN CloudHub	Enables secure communication between branch offices using a simple hub-and-spoke model, with or without a VPC (p. 117).
AWS WAF	A web application firewall service that controls access to content by allowing or blocking web requests based on criteria that you specify, such as header values or the IP addresses that the requests originate from. AWS WAF helps protect web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources. See Also https://aws.amazon.com/waf/.
AWS X-Ray	A web service that collects data about requests that your application serves, and provides tools you can use to view, filter, and gain insights into that data to identify issues and opportunities for optimization. See Also https://aws.amazon.com/xray/.

**B**


- **basic monitoring** Monitoring of AWS provided metrics derived at a 5-minute frequency.
- **batch** See document batch.
- **BGP ASN** Border Gateway Protocol Autonomous System Number. A unique identifier for a network, for use in BGP routing. Amazon EC2 (p. 71) supports all 2-byte ASN numbers in the range of 1 – 65335, with the exception of 7224, which is reserved.
- **batch prediction** Amazon Machine Learning: An operation that processes multiple input data observations at one time (asynchronously). Unlike real-time predictions, batch predictions are not available until all predictions have been processed. See Also real-time predictions.
- **billing** See AWS Billing and Cost Management.
- **binary attribute** Amazon Machine Learning: An attribute for which one of two possible values is possible. Valid positive values are 1, y, yes, t, and true answers. Valid negative values are 0, n, no, f, and false. Amazon Machine Learning outputs 1 for positive values and 0 for negative values. See Also attribute.
- **binary classification model** Amazon Machine Learning: A machine learning model that predicts the answer to questions where the answer can be expressed as a binary variable. For example, questions with answers of “1” or “0”, “yes” or “no”, “will click” or “will not click”.
are questions that have binary answers. The result for a binary classification model is always either a "1" (for a "true" or affirmative answers) or a "0" (for a "false" or negative answers).

**blacklist**
A list of IP addresses, email addresses, or domains that an internet service provider (p. 94) suspects to be the source of spam (p. 111). The ISP blocks incoming email from these addresses or domains.

**block**
A data set. Amazon EMR (p. 71) breaks large amounts of data into subsets. Each subset is called a data block. Amazon EMR assigns an ID to each block and uses a hash table to keep track of block processing.

**block device**
A storage device that supports reading and (optionally) writing data in fixed-size blocks, sectors, or clusters.

**block device mapping**
A mapping structure for every AMI (p. 72) and instance (p. 94) that specifies the block devices attached to the instance.

**blue/green deployment**
AWS CodeDeploy: A deployment method in which the instances in a deployment group (the original environment) are replaced by a different set of instances (the replacement environment).

**bootstrap action**
A user-specified default or custom action that runs a script or an application on all nodes of a job flow before Hadoop (p. 92) starts.

**Border Gateway Protocol Autonomous System Number**
See BGP ASN.

**bounce**
A failed email delivery attempt.

**breach**
Auto Scaling (p. 75): The condition in which a user-set threshold (upper or lower boundary) is passed. If the duration of the breach is significant, as set by a breach duration parameter, it can possibly start a scaling activity (p. 108).

**bucket**
Amazon Simple Storage Service (Amazon S3) (p. 73): A container for stored objects. Every object is contained in a bucket. For example, if the object named photos/puppy.jpg is stored in the johnsmith bucket, then authorized users can access the object with the URL http://johnsmith.s3.amazonaws.com/photos/puppy.jpg.

**bucket owner**
The person or organization that owns a bucket (p. 81) in Amazon S3 (p. 73). Just as Amazon is the only owner of the domain name Amazon.com, only one person or organization can own a bucket.

**bundling**
A commonly used term for creating an Amazon Machine Image (AMI) (p. 72). It specifically refers to creating instance store-backed AMI (p. 94)s.

**cache cluster**
A logical cache distributed over multiple cache node (p. 82)s. A cache cluster can be set up with a specific number of cache nodes.

**cache cluster identifier**
Customer-supplied identifier for the cache cluster that must be unique for that customer in an AWS region (p. 105).
cache engine version  The version of the Memcached service that is running on the cache node.
cache node  A fixed-size chunk of secure, network-attached RAM. Each cache node runs an
instance of the Memcached service, and has its own DNS name and port. Multiple
types of cache nodes are supported, each with varying amounts of associated
memory.
cache node type  An EC2 instance (p. 88) type used to run the cache node.
cache parameter group  A container for cache engine parameter values that can be applied to one or more
cache clusters.
cache security group  A group maintained by ElastiCache that combines ingress authorizations to cache
nodes for hosts belonging to Amazon EC2 (p. 71) security group (p. 109)s
specified through the console or the API or command line tools.
canned access policy  A standard access control policy that you can apply to a bucket (p. 81)
or object. Options include: private, public-read, public-read-write, and
authenticated-read.
canonicalization  The process of converting data into a standard format that a service such as
Amazon S3 (p. 73) can recognize.
capacity  The amount of available compute size at a given time. Each Auto Scaling
group (p. 75) is defined with a minimum and maximum compute size. A scaling
activity (p. 108) increases or decreases the capacity within the defined minimum
and maximum values.
cartesian product processor  A processor that calculates a cartesian product. Also known as a cartesian data
processor.
cartesian product  A mathematical operation that returns a product from multiple sets.
certificate  A credential that some AWS products use to authenticate AWS account (p. 69)s
and users. Also known as an X.509 certificate (p. 117) . The certificate is paired
with a private key.
chargeable resources  Features or services whose use incurs fees. Although some AWS products are
free, others include charges. For example, in an AWS CloudFormation (p. 76)
stack (p. 112), AWS resource (p. 106)s that have been created incur charges.
The amount charged depends on the usage load. Use the Amazon Web Services
Simple Monthly Calculator at http://calculator.s3.amazonaws.com/calc5.html to
estimate your cost prior to creating instances, stacks, or other resources.
CIDR block  Classless Inter-Domain Routing. An internet protocol address allocation and route
aggregation methodology.
See Also Classless Inter-Domain Routing in Wikipedia.
ciphertext  Information that has been encrypted (p. 89), as opposed to plaintext (p. 102),
which is information that has not.
ClassicLink  A feature for linking an EC2-Classic instance (p. 94) to a VPC (p. 117),
allowing your EC2-Classic instance to communicate with VPC instances using
private IP addresses.
See Also link to VPC, unlink from VPC.
classification  In machine learning, a type of problem that seeks to place (classify) a data sample
into a single category or “class.” Often, classification problems are modeled to
choose one category (class) out of two. These are binary classification problems.
Problems where more than two categories (classes) are available are called
“multiclass classification” problems.
See Also binary classification model, multiclass classification model.

cloud service provider
A company that provides subscribers with access to internet-hosted computing, storage, and software services.

CloudHub
See AWS VPN CloudHub.

CLI
See AWS Command Line Interface (AWS CLI).

cluster
A logical grouping of container instance (p. 84)s that you can place task (p. 114)s on.

Amazon Elasticsearch Service (Amazon ES) (p. 71): A logical grouping of one or more data nodes, optional dedicated master nodes, and storage required to run Amazon Elasticsearch Service (Amazon ES) and operate your Amazon ES domain. See Also data node, dedicated master node, node.

cluster compute instance
A type of instance (p. 94) that provides a great amount of CPU power coupled with increased networking performance, making it well suited for High Performance Compute (HPC) applications and other demanding network-bound applications.

cluster placement group
A logical cluster compute instance (p. 83) grouping to provide lower latency and high-bandwidth connectivity between the instance (p. 94)s.

cluster status
Amazon Elasticsearch Service (Amazon ES) (p. 71): An indicator of the health of a cluster. A status can be green, yellow, or red. At the shard level, green means that all shards are allocated to nodes in a cluster, yellow means that the primary shard is allocated but the replica shards are not, and red means that the primary and replica shards of at least one index are not allocated. The shard status determines the index status, and the index status determines the cluster status.

CMK
See customer master key (CMK).

CNAME
Canonical Name Record. A type of resource record (p. 107) in the Domain Name System (DNS) that specifies that the domain name is an alias of another, canonical domain name. More simply, it is an entry in a DNS table that lets you alias one fully qualified domain name to another.

complaint
The event in which a recipient (p. 105) who does not want to receive an email message clicks “Mark as Spam” within the email client, and the internet service provider (p. 94) sends a notification to Amazon SES (p. 73).

compound query
Amazon CloudSearch (p. 70): A search request that specifies multiple search criteria using the Amazon CloudSearch structured search syntax.

condition
IAM (p. 77): Any restriction or detail about a permission. The condition is $D$ in the statement “A has permission to do B to C where D applies.”

AWS WAF (p. 80): A set of attributes that AWS WAF searches for in web requests to AWS resource (p. 106)s such as Amazon CloudFront (p. 70) distributions. Conditions can include values such as the IP addresses that web requests originate from or values in request headers. Based on the specified conditions, you can configure AWS WAF to allow or block web requests to AWS resources.

conditional parameter
See mapping.

configuration API
Amazon CloudSearch (p. 70): The API call that you use to create, configure, and manage search domains.
configuration template  A series of key–value pairs that define parameters for various AWS products so that AWS Elastic Beanstalk (p. 77) can provision them for an environment.

consistency model  The method a service uses to achieve high availability. For example, it could involve replicating data across multiple servers in a data center. See Also eventual consistency.

console  See AWS Management Console.

consolidated billing  A feature of the AWS Organizations service for consolidating payment for multiple AWS accounts. You create an organization that contains your AWS accounts, and you use the master account of your organization to pay for all member accounts. You can see a combined view of AWS costs that are incurred by all accounts in your organization, and you can get detailed cost reports for individual accounts.

container  A Linux container that was created from a Docker image as part of a task (p. 114).

container definition  Specifies which Docker image (p. 87) to use for a container (p. 84), how much CPU and memory the container is allocated, and more options. The container definition is included as part of a task definition (p. 114).

container instance  An EC2 instance (p. 88) that is running the Amazon Elastic Container Service (Amazon ECS) (p. 71) agent and has been registered into a cluster (p. 83). Amazon ECS task (p. 114)s are placed on active container instances.

container registry  Stores, manages, and deploys Docker image (p. 87)s.

continuous delivery  A software development practice in which code changes are automatically built, tested, and prepared for a release to production. See Also https://aws.amazon.com/devops/continuous-delivery/.

continuous integration  A software development practice in which developers regularly merge code changes into a central repository, after which automated builds and tests are run. See Also https://aws.amazon.com/devops/continuous-integration/.

cool down period  Amount of time during which Auto Scaling (p. 75) does not allow the desired size of the Auto Scaling group (p. 75) to be changed by any other notification from an Amazon CloudWatch (p. 70) alarm (p. 69).

core node  An EC2 instance (p. 88) that runs Hadoop (p. 92) map and reduce tasks and stores data using the Hadoop Distributed File System (HDFS). Core nodes are managed by the master node (p. 98), which assigns Hadoop tasks to nodes and monitors their status. The EC2 instances you assign as core nodes are capacity that must be allotted for the entire job flow run. Because core nodes store data, you can't remove them from a job flow. However, you can add more core nodes to a running job flow.

Core nodes run both the DataNodes and TaskTracker Hadoop daemons.

corpus  Amazon CloudSearch (p. 70): A collection of data that you want to search.

credential helper  AWS CodeCommit (p. 76): A program that stores credentials for repositories and supplies them to Git when making connections to those repositories. The AWS CLI (p. 76) includes a credential helper that you can use with Git when connecting to AWS CodeCommit repositories.

credentials  Also called access credentials or security credentials. In authentication and authorization, a system uses credentials to identify who is making a call and
whether to allow the requested access. In AWS, these credentials are typically the access key ID (p. 68) and the secret access key (p. 109).

**cross-account access**

The process of permitting limited, controlled use of resource (p. 106)s in one AWS account (p. 69) by a user in another AWS account. For example, in AWS CodeCommit (p. 76) and AWS CodeDeploy (p. 76) you can configure cross-account access so that a user in AWS account A can access an AWS CodeCommit repository created by account B. Or a pipeline in AWS CodePipeline (p. 76) created by account A can use AWS CodeDeploy resources created by account B. In IAM (p. 77) you use a role (p. 107) to delegate (p. 86) temporary access to a user (p. 116) in one account to resources in another.

**cross-region replication**

A client-side solution for maintaining identical copies of Amazon DynamoDB (p. 70) tables across different AWS Region (p. 105)s, in near real time.

**customer gateway**

A router or software application on your side of a VPN tunnel that is managed by Amazon VPC (p. 73). The internal interfaces of the customer gateway are attached to one or more devices in your home network. The external interface is attached to the virtual private gateway (p. 117) across the VPN tunnel.

**customer managed policy**

An IAM (p. 77) managed policy (p. 98) that you create and manage in your AWS account (p. 69).

**customer master key (CMK)**

The fundamental resource (p. 106) that AWS Key Management Service (AWS KMS) (p. 77) manages. CMKs can be either customer managed keys or AWS managed keys. Use CMKs inside AWS KMS to encrypt (p. 89) or decrypt up to 4 kilobytes of data directly or to encrypt generated data keys, which are then used to encrypt or decrypt larger amounts of data outside of the service.

**Dashboard**

See service health dashboard.

**data consistency**

A concept that describes when data is written or updated successfully and all copies of the data are updated in all AWS Region (p. 105)s. However, it takes time for the data to propagate to all storage locations. To support varied application requirements, Amazon DynamoDB (p. 70) supports both eventually consistent and strongly consistent reads. See Also eventual consistency, eventually consistent read, strongly consistent read.

**data node**

Amazon Elasticsearch Service (Amazon ES) (p. 71): An Elasticsearch instance that holds data and responds to data upload requests. See Also dedicated master node, node.

**data schema**

See schema.

**data source**

The database, file, or repository that provides information required by an application or database. For example, in AWS OpsWorks (p. 78), valid data sources include an instance (p. 94) for a stack's MySQL layer or a stack's Amazon RDS (p. 73) service layer. In Amazon Redshift (p. 73), valid data sources include text files in an Amazon S3 (p. 73) bucket (p. 81), in an
Amazon EMR (p. 71) cluster, or on a remote host that a cluster can access through an SSH connection.  
See Also datasource.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>database engine</td>
<td>The database software and version running on the DB instance (p. 86).</td>
</tr>
<tr>
<td>database name</td>
<td>The name of a database hosted in a DB instance (p. 86). A DB instance can host multiple databases, but databases hosted by the same DB instance must each have a unique name within that instance.</td>
</tr>
<tr>
<td>datasource</td>
<td>Amazon Machine Learning (p. 72): An object that contains metadata about the input data. Amazon ML reads the input data, computes descriptive statistics on its attributes, and stores the statistics—along with a schema and other information—as part of the datasource object. Amazon ML uses datasources to train and evaluate a machine learning model and generate batch predictions. See Also data source.</td>
</tr>
<tr>
<td>DB compute class</td>
<td>Size of the database compute platform used to run the instance.</td>
</tr>
<tr>
<td>DB instance</td>
<td>An isolated database environment running in the cloud. A DB instance can contain multiple user-created databases.</td>
</tr>
<tr>
<td>DB instance identifier</td>
<td>User-supplied identifier for the DB instance. The identifier must be unique for that user in an AWS region (p. 105).</td>
</tr>
<tr>
<td>DB parameter group</td>
<td>A container for database engine parameter values that apply to one or more DB instances (p. 86).</td>
</tr>
<tr>
<td>DB security group</td>
<td>A method that controls access to the DB instance (p. 86). By default, network access is turned off to DB instances. After ingress is configured for a security group (p. 109), the same rules apply to all DB instances associated with that group.</td>
</tr>
<tr>
<td>DB snapshot</td>
<td>A user-initiated point backup of a DB instance (p. 86).</td>
</tr>
<tr>
<td>Dedicated Host</td>
<td>A physical server with EC2 instance (p. 88) capacity fully dedicated to a user.</td>
</tr>
<tr>
<td>Dedicated Instance</td>
<td>An instance (p. 94) that is physically isolated at the host hardware level and launched within a VPC (p. 117).</td>
</tr>
<tr>
<td>dedicated master node</td>
<td>Amazon Elasticsearch Service (Amazon ES) (p. 71): An Elasticsearch instance that performs cluster management tasks, but does not hold data or respond to data upload requests. Amazon Elasticsearch Service (Amazon ES) uses dedicated master nodes to increase cluster stability. See Also data node, node.</td>
</tr>
<tr>
<td>Dedicated Reserved Instance</td>
<td>An option that you purchase to guarantee that sufficient capacity will be available to launch Dedicated Instance (p. 86) s into a VPC (p. 117).</td>
</tr>
<tr>
<td>delegation</td>
<td>Within a single AWS account (p. 69): Giving AWS user (p. 116)s access to resource (p. 106)s in your AWS account. Between two AWS accounts: Setting up a trust between the account that owns the resource (the trusting account), and the account that contains the users that need to access the resource (the trusted account). See Also trust policy.</td>
</tr>
<tr>
<td>delete marker</td>
<td>An object with a key and version ID, but without content. Amazon S3 (p. 73) inserts delete markers automatically into versioned bucket (p. 81) s when an object is deleted.</td>
</tr>
<tr>
<td><strong>deliverability</strong></td>
<td>The likelihood that an email message will arrive at its intended destination.</td>
</tr>
<tr>
<td><strong>deliveries</strong></td>
<td>The number of email messages, sent through Amazon SES (p. 73), that were accepted by an internet service provider (p. 94) for delivery to recipient (p. 105)s over a period of time.</td>
</tr>
<tr>
<td><strong>deny</strong></td>
<td>The result of a policy (p. 102) statement that includes deny as the effect, so that a specific action or actions are expressly forbidden for a user, group, or role. Explicit deny take precedence over explicit allow (p. 69).</td>
</tr>
<tr>
<td><strong>deployment configuration</strong></td>
<td>AWS CodeDeploy (p. 76): A set of deployment rules and success and failure conditions used by the service during a deployment.</td>
</tr>
<tr>
<td><strong>deployment group</strong></td>
<td>AWS CodeDeploy (p. 76): A set of individually tagged instance (p. 94)s, EC2 instance (p. 88)s in Auto Scaling group (p. 75)s, or both.</td>
</tr>
<tr>
<td><strong>detailed monitoring</strong></td>
<td>Monitoring of AWS provided metrics derived at a 1-minute frequency.</td>
</tr>
<tr>
<td><strong>Description property</strong></td>
<td>A property added to parameters, resource (p. 106)s, resource properties, mappings, and outputs to help you to document AWS CloudFormation (p. 76) template elements.</td>
</tr>
<tr>
<td><strong>dimension</strong></td>
<td>A name–value pair (for example, InstanceType=m1.small, or EngineName=mysql), that contains additional information to identify a metric.</td>
</tr>
<tr>
<td><strong>discussion forums</strong></td>
<td>A place where AWS users can post technical questions and feedback to help accelerate their development efforts and to engage with the AWS community. The discussion forums are located at <a href="https://aws.amazon.com/forums/">https://aws.amazon.com/forums/</a>.</td>
</tr>
<tr>
<td><strong>distribution</strong></td>
<td>A link between an origin server (such as an Amazon S3 (p. 73) bucket (p. 81)) and a domain name, which CloudFront (p. 70) automatically assigns. Through this link, CloudFront identifies the object you have stored in your origin server (p. 101).</td>
</tr>
<tr>
<td><strong>DKIM</strong></td>
<td>DomainKeys Identified Mail. A standard that email senders use to sign their messages. ISPs use those signatures to verify that messages are legitimate. For more information, see <a href="http://www.dkim.org">http://www.dkim.org</a>.</td>
</tr>
<tr>
<td><strong>DNS</strong></td>
<td>See Domain Name System.</td>
</tr>
<tr>
<td><strong>Docker image</strong></td>
<td>A layered file system template that is the basis of a Docker container (p. 84). Docker images can comprise specific operating systems or applications.</td>
</tr>
<tr>
<td><strong>document</strong></td>
<td>Amazon CloudSearch (p. 70): An item that can be returned as a search result. Each document has a collection of fields that contain the data that can be searched or returned. The value of a field can be either a string or a number. Each document must have a unique ID and at least one field.</td>
</tr>
<tr>
<td><strong>document batch</strong></td>
<td>Amazon CloudSearch (p. 70): A collection of add and delete document operations. You use the document service API to submit batches to update the data in your search domain.</td>
</tr>
<tr>
<td><strong>document service API</strong></td>
<td>Amazon CloudSearch (p. 70): The API call that you use to submit document batches to update the data in a search domain.</td>
</tr>
<tr>
<td><strong>document service endpoint</strong></td>
<td>Amazon CloudSearch (p. 70): The URL that you connect to when sending document updates to an Amazon CloudSearch domain. Each search domain has a unique document service endpoint that remains the same for the life of the domain.</td>
</tr>
</tbody>
</table>
domain  Amazon Elasticsearch Service (Amazon ES) (p. 71): The hardware, software, and data exposed by Amazon Elasticsearch Service (Amazon ES) endpoints. An Amazon ES domain is a service wrapper around an Elasticsearch cluster. An Amazon ES domain encapsulates the engine instances that process Amazon ES requests, the indexed data that you want to search, snapshots of the domain, access policies, and metadata. See Also cluster, Elasticsearch.

Domain Name System A service that routes internet traffic to websites by translating friendly domain names like www.example.com into the numeric IP addresses like 192.0.2.1 that computers use to connect to each other.

Donation button An HTML-coded button to provide an easy and secure way for US-based, IRS-certified 501(c)3 nonprofit organizations to solicit donations.

DynamoDB stream An ordered flow of information about changes to items in an Amazon DynamoDB (p. 70) table. When you enable a stream on a table, DynamoDB captures information about every modification to data items in the table. See Also Amazon DynamoDB Streams.

E


EBS See Amazon Elastic Block Store (Amazon EBS).

EC2 See Amazon Elastic Compute Cloud (Amazon EC2).

EC2 compute unit An AWS standard for compute CPU and memory. You can use this measure to evaluate the CPU capacity of different EC2 instance (p. 88) types.

EC2 instance A compute instance (p. 94) in the Amazon EC2 (p. 71) service. Other AWS services use the term EC2 instance to distinguish these instances from other types of instances they support.

ECR See Amazon Elastic Container Registry (Amazon ECR).

ECS See Amazon Elastic Container Service (Amazon ECS).

edge location A site that CloudFront (p. 70) uses to cache copies of your content for faster delivery to users at any location.

EFS See Amazon Elastic File System (Amazon EFS).

Elastic A company that provides open-source solutions—including Elasticsearch, Logstash, Kibana, and Beats—that are designed to take data from any source and search, analyze, and visualize it in real time.

Amazon Elasticsearch Service (Amazon ES) is an AWS managed service for deploying, operating, and scaling Elasticsearch in the AWS Cloud. See Also Amazon Elasticsearch Service (Amazon ES), Elasticsearch.

Elastic Block Store See Amazon Elastic Block Store (Amazon EBS).

Elastic IP address A fixed (static) IP address that you have allocated in Amazon EC2 (p. 71) or Amazon VPC (p. 73) and then attached to an instance (p. 94). Elastic IP
addresses are associated with your account, not a specific instance. They are elastic because you can easily allocate, attach, detach, and free them as your needs change. Unlike traditional static IP addresses, Elastic IP addresses allow you to mask instance or Availability Zone failures by rapidly remapping your public IP addresses to another instance.

Elastic Load Balancing

A web service that improves an application's availability by distributing incoming traffic between two or more EC2 instance.

See Also https://aws.amazon.com/elasticloadbalancing.

elastic network interface

An additional network interface that can be attached to an instance. Elastic network interfaces include a primary private IP address, one or more secondary private IP addresses, an elastic IP address (optional), a MAC address, membership in specified security group, a description, and a source/destination check flag. You can create an elastic network interface, attach it to an instance, detach it from an instance, and attach it to another instance.

Elasticsearch

An open source, real-time distributed search and analytics engine used for full-text search, structured search, and analytics. Elasticsearch was developed by the Elastic company.

Amazon Elasticsearch Service (Amazon ES) is an AWS managed service for deploying, operating, and scaling Elasticsearch in the AWS Cloud.

See Also Amazon Elasticsearch Service (Amazon ES), Elastic.

EMR

See Amazon EMR.

encrypt

To use a mathematical algorithm to make data unintelligible to unauthorized user while allowing authorized users a method (such as a key or password) to convert the altered data back to its original state.

encryption context

A set of key–value pairs that contains additional information associated with AWS Key Management Service (AWS KMS)–encrypted information.

endpoint

A URL that identifies a host and port as the entry point for a web service. Every web service request contains an endpoint. Most AWS products provide regional endpoints to enable faster connectivity.

Amazon ElastiCache: The DNS name of a cache node.

Amazon RDS: The DNS name of a DB instance.

AWS CloudFormation: The DNS name or IP address of the server that receives an HTTP request.

endpoint port

Amazon ElastiCache: The port number used by a cache node.

Amazon RDS: The port number used by a DB instance.

envelope encryption

The use of a master key and a data key to algorithmically protect data. The master key is used to encrypt and decrypt the data key and the data key is used to encrypt and decrypt the data itself.

environment

AWS Elastic Beanstalk: A specific running instance of an application. The application has a CNAME and includes an application version and a customizable configuration (which is inherited from the default container type).

AWS CodeDeploy: Instances in a deployment group in a blue/green deployment. At the start of a blue/green deployment, the deployment group is
made up of instances in the original environment. At the end of the deployment, the deployment group is made up of instances in the replacement environment.

**environment configuration**
A collection of parameters and settings that define how an environment and its associated resources behave.

**ephemeral store**
See instance store.

**epoch**
The date from which time is measured. For most Unix environments, the epoch is January 1, 1970.

**evaluation**
Amazon Machine Learning: The process of measuring the predictive performance of a machine learning (ML) model.

Also a machine learning object that stores the details and result of an ML model evaluation.

**evaluation datasource**
The data that Amazon Machine Learning uses to evaluate the predictive accuracy of a machine learning model.

**eventual consistency**
The method through which AWS products achieve high availability, which involves replicating data across multiple servers in Amazon's data centers. When data is written or updated and success is returned, all copies of the data are updated. However, it takes time for the data to propagate to all storage locations. The data will eventually be consistent, but an immediate read might not show the change. Consistency is usually reached within seconds.

See Also data consistency, eventually consistent read, strongly consistent read.

**eventually consistent read**
A read process that returns data from only one region and might not show the most recent write information. However, if you repeat your read request after a short time, the response should eventually return the latest data.

See Also data consistency, eventual consistency, strongly consistent read.

**eviction**
The deletion by CloudFront (p. 70) of an object from an edge location (p. 88) before its expiration time. If an object in an edge location isn't frequently requested, CloudFront might evict the object (remove the object before its expiration date) to make room for objects that are more popular.

**exbibyte**
A contraction of exa binary byte, an exbibyte is $2^{60}$ or $1,152,921,504,606,846,976$ bytes. An exabyte (EB) is $10^{18}$ or $1,000,000,000,000,000,000$ bytes. $1,024$ EiB is a zebibyte (p. 118).

**expiration**
For CloudFront (p. 70) caching, the time when CloudFront stops responding to user requests with an object. If you don't use headers or CloudFront distribution (p. 87) settings to specify how long you want objects to stay in an edge location (p. 88), the objects expire after 24 hours. The next time a user requests an object that has expired, CloudFront forwards the request to the origin (p. 101).

**explicit launch permission**
An Amazon Machine Image (AMI) (p. 72) launch permission granted to a specific AWS account (p. 69).

**exponential backoff**
A strategy that incrementally increases the wait between retry attempts in order to reduce the load on the system and increase the likelihood that repeated requests will succeed. For example, client applications might wait up to 400 milliseconds before attempting the first retry, up to 1600 milliseconds before the second, up to 6400 milliseconds (6.4 seconds) before the third, and so on.

**expression**
Amazon CloudSearch (p. 70): A numeric expression that you can use to control how search hits are sorted. You can construct Amazon CloudSearch expressions
using numeric fields, other rank expressions, a document's default relevance score, and standard numeric operators and functions. When you use the sort option to specify an expression in a search request, the expression is evaluated for each search hit and the hits are listed according to their expression values.

F

facet Amazon CloudSearch (p. 70): An index field that represents a category that you want to use to refine and filter search results.

facet enabled Amazon CloudSearch (p. 70): An index field option that enables facet information to be calculated for the field.

FBL See feedback loop.

feature transformation Amazon Machine Learning: The machine learning process of constructing more predictive input representations or “features” from the raw input variables to optimize a machine learning model’s ability to learn and generalize. Also known as data transformation or feature engineering.

federated identity management Allows individuals to sign in to different networks or services, using the same group or personal credentials to access data across all networks. With identity federation in AWS, external identities (federated users) are granted secure access to resource (p. 106)s in an AWS account (p. 69) without having to create IAM user (p. 116)s. These external identities can come from a corporate identity store (such as LDAP or Windows Active Directory) or from a third party (such as Login with Amazon, Facebook, or Google). AWS federation also supports SAML 2.0.

federated user See federated identity management.

federation See federated identity management.

feedback loop The mechanism by which a mailbox provider (for example, an internet service provider (p. 94)) forwards a recipient (p. 105)’s complaint (p. 83) back to the sender (p. 109).

field weight The relative importance of a text field in a search index. Field weights control how much matches in particular text fields affect a document’s relevance score.

filter A criterion that you specify to limit the results when you list or describe your Amazon EC2 (p. 71) resource (p. 106)s.

filter query A way to filter search results without affecting how the results are scored and sorted. Specified with the Amazon CloudSearch (p. 70) $fq$ parameter.

FIM See federated identity management.

Firehose See Amazon Kinesis Data Firehose.

format version See template format version.

forums See discussion forums.
function

See **intrinsic function**.

fuzzy search

A simple search query that uses approximate string matching (fuzzy matching) to correct for typographical errors and misspellings.

G

geospatial search

A search query that uses locations specified as a latitude and longitude to determine matches and sort the results.

gibibyte

A contraction of giga binary byte, a gibibyte is $2^{30}$ or 1,073,741,824 bytes. A gigabyte (GB) is $10^9$ or 1,000,000,000 bytes. 1,024 GiB is a tebibyte (p. 114).

GitHub

A web-based repository that uses Git for version control.

global secondary index

An index with a partition key and a sort key that can be different from those on the table. A global secondary index is considered global because queries on the index can span all of the data in a table, across all partitions. See Also **local secondary index**.

grant

**AWS Key Management Service (AWS KMS)** (p. 77): A mechanism for giving **AWS principal** (p. 103)s long-term permissions to use **customer master key (CMK)** (p. 85)s.

grant token

A type of identifier that allows the permissions in a **grant** (p. 92) to take effect immediately.

ground truth

The observations used in the machine learning (ML) model training process that include the correct value for the target attribute. To train an ML model to predict house sales prices, the input observations would typically include prices of previous house sales in the area. The sale prices of these houses constitute the ground truth.

group

A collection of **IAM** (p. 77) **user** (p. 116)s. You can use IAM groups to simplify specifying and managing permissions for multiple users.

H

Hadoop

Software that enables distributed processing for big data by using clusters and simple programming models. For more information, see [http://hadoop.apache.org](http://hadoop.apache.org).

hard bounce

A persistent email delivery failure such as "mailbox does not exist."

hardware VPN

A hardware-based IPsec VPN connection over the internet.

health check

A system call to check on the health status of each instance in an **Auto Scaling** (p. 75) group.
high-quality email  
Email that recipients find valuable and want to receive. Value means different things to different recipients and can come in the form of offers, order confirmations, receipts, newsletters, etc.

highlights  
Amazon CloudSearch (p. 70): Excerpts returned with search results that show where the search terms appear within the text of the matching documents.

highlight enabled  
Amazon CloudSearch (p. 70): An index field option that enables matches within the field to be highlighted.

hit  
A document that matches the criteria specified in a search request. Also referred to as a search result.

HMAC  
Hash-based Message Authentication Code. A specific construction for calculating a message authentication code (MAC) involving a cryptographic hash function in combination with a secret key. You can use it to verify both the data integrity and the authenticity of a message at the same time. AWS calculates the HMAC using a standard, cryptographic hash algorithm, such as SHA-256.

hosted zone  
A collection of resource record (p. 107) sets that Amazon Route 53 (p. 73) hosts. Like a traditional DNS zone file, a hosted zone represents a collection of records that are managed together under a single domain name.

HVM virtualization  
Hardware Virtual Machine virtualization. Allows the guest VM to run as though it is on a native hardware platform, except that it still uses paravirtual (PV) network and storage drivers for improved performance. See Also PV virtualization.

IAM See AWS Identity and Access Management (IAM).

IAM group See group.

IAM policy simulator See policy simulator.

IAM role See role.

IAM user See user.

Identity and Access Management See AWS Identity and Access Management (IAM).

identity provider (IdP)  
An IAM (p. 77) entity that holds metadata about external identity providers.

IdP  
See identity provider (IdP).

image  
See Amazon Machine Image (AMI).

import/export station  
A machine that uploads or downloads your data to or from Amazon S3 (p. 73).

import log  
A report that contains details about how AWS Import/Export (p. 77) processed your data.
in-place deployment: AWS CodeDeploy: A deployment method in which the application on each instance in the deployment group is stopped, the latest application revision is installed, and the new version of the application is started and validated. You can choose to use a load balancer so each instance is deregistered during its deployment and then restored to service after the deployment is complete.

index: See search index.

index field: A name–value pair that is included in an Amazon CloudSearch domain's index. An index field can contain text or numeric data, dates, or a location.

indexing options: Configuration settings that define an Amazon CloudSearch domain's index fields, how document data is mapped to those index fields, and how the index fields can be used.

inline policy: An IAM policy that is embedded in a single IAM user, group, or role.

input data: Amazon Machine Learning: The observations that you provide to Amazon Machine Learning to train and evaluate a machine learning model and generate predictions.

instance: A copy of an Amazon Machine Image (AMI) running as a virtual server in the AWS cloud.

instance family: A general instance type grouping using either storage or CPU capacity.

instance group: A Hadoop cluster contains one master instance group that contains one master node, a core instance group containing one or more core node and an optional task node instance group, which can contain any number of task nodes.

instance profile: A container that passes IAM role information to an EC2 instance at launch.

instance store: Disk storage that is physically attached to the host computer for an EC2 instance, and therefore has the same lifespan as the instance. When the instance is terminated, you lose any data in the instance store.

instance store-backed AMI: A type of Amazon Machine Image whose instance's use an instance store volume as the root device. Compare this with instances launched from Amazon EBS-backed AMIs, which use an Amazon EBS volume as the root device.

instance type: A specification that defines the memory, CPU, storage capacity, and usage cost for an instance. Some instance types are designed for standard applications, whereas others are designed for CPU-intensive, memory-intensive applications, and so on.

internet gateway: Connects a network to the internet. You can route traffic for IP addresses outside your VPC to the internet gateway.

internet service provider: A company that provides subscribers with access to the internet. Many ISPs are also mailbox providers. Mailbox providers are sometimes referred to as ISPs, even if they only provide mailbox services.

intrinsic function: A special action in a AWS CloudFormation template that assigns values to properties not available until runtime. These functions follow the format Fn::Attribute, such as Fn::GetAtt. Arguments for intrinsic functions can be parameters, pseudo parameters, or the output of other intrinsic functions.
IP address

A numerical address (for example, 192.0.2.44) that networked devices use to communicate with one another using the Internet Protocol (IP). All EC2 instance (p. 88)s are assigned two IP addresses at launch, which are directly mapped to each other through network address translation (NAT (p. 99)): a private IP address (following RFC 1918) and a public IP address. Instances launched in a VPC (p. 73) are assigned only a private IP address. Instances launched in your default VPC are assigned both a private IP address and a public IP address.

IP match condition

AWS WAF (p. 80): An attribute that specifies the IP addresses or IP address ranges that web requests originate from. Based on the specified IP addresses, you can configure AWS WAF to allow or block web requests to AWS resource (p. 106)s such as Amazon CloudFront (p. 70) distributions.

ISP

See internet service provider.

issuer

The person who writes a policy (p. 102) to grant permissions to a resource (p. 106). The issuer (by definition) is always the resource owner. AWS does not permit Amazon SQS (p. 73) users to create policies for resources they don't own. If John is the resource owner, AWS authenticates John's identity when he submits the policy he's written to grant permissions for that resource.

item

A group of attributes that is uniquely identifiable among all of the other items. Items in Amazon DynamoDB (p. 70) are similar in many ways to rows, records, or tuples in other database systems.

J


job flow

Amazon EMR (p. 71): One or more step (p. 112)s that specify all of the functions to be performed on the data.

job ID

A five-character, alphanumeric string that uniquely identifies an AWS Import/Export (p. 77) storage device in your shipment. AWS issues the job ID in response to a CREATE JOB email command.

job prefix

An optional string that you can add to the beginning of an AWS Import/Export (p. 77) log file name to prevent collisions with objects of the same name. See Also key prefix.

JSON

JavaScript Object Notation. A lightweight data interchange format. For information about JSON, see http://www.json.org/.

junk folder

The location where email messages that various filters determine to be of lesser value are collected so that they do not arrive in the recipient (p. 105)'s inbox but are still accessible to the recipient. This is also referred to as a spam (p. 111) or bulk folder.

K

Numbers and Symbols (p. 68) | A (p. 68) | B (p. 80) | C (p. 81) | D (p. 85) | E (p. 88) | F (p. 91) | G (p. 92) | H (p. 92) | I (p. 93) | J (p. 95) | K (p. 95) | L (p. 96) | M (p. 97) | N (p. 99) | O (p. 100)
A credential that identifies an AWS account (p. 69) or user (p. 116) to AWS (such as the AWS secret access key (p. 109)).

Amazon Simple Storage Service (Amazon S3) (p. 73), Amazon EMR (Amazon EMR) (p. 71): The unique identifier for an object in a bucket (p. 81). Every object in a bucket has exactly one key. Because a bucket and key together uniquely identify each object, you can think of Amazon S3 as a basic data map between the bucket + key, and the object itself. You can uniquely address every object in Amazon S3 through the combination of the web service endpoint, bucket name, and key, as in this example: http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, where doc is the name of the bucket, and 2006-03-01/AmazonS3.wsdl is the key.

AWS Import/Export (p. 77): The name of an object in Amazon S3. It is a sequence of Unicode characters whose UTF-8 encoding cannot exceed 1024 bytes. If a key, for example, logPrefix + import-log-JOBID, is longer than 1024 bytes, AWS Elastic Beanstalk (p. 77) returns an InvalidManifestField error.

IAM (p. 77): In a policy (p. 102), a specific characteristic that is the basis for restricting access (such as the current time, or the IP address of the requester). Tagging resources: A general tag (p. 114) label that acts like a category for more specific tag values. For example, you might have EC2 instance (p. 88) with the tag key of Owner and the tag value of Jan. You can tag an AWS resource (p. 106) with up to 10 key–value pairs. Not all AWS resources can be tagged.

A set of security credentials that you use to prove your identity electronically. A key pair consists of a private key and a public key.

A logical grouping of the objects in a bucket (p. 81). The prefix value is similar to a directory name that enables you to store similar data under the same directory in a bucket.

A contraction of kilo binary byte, a kibibyte is $2^{10}$ or 1,024 bytes. A kilobyte (KB) is $10^3$ or 1,000 bytes. 1,024 KiB is a mebibyte (p. 98).

See AWS Key Management Service (AWS KMS).

In machine learning, data for which you already know the target or “correct” answer.

A set of descriptive parameters used to create new EC2 instance (p. 88)s in an Auto Scaling (p. 75) activity.

A template that an Auto Scaling group (p. 75) uses to launch new EC2 instances. The launch configuration contains information such as the Amazon Machine Image (AMI) (p. 72) ID, the instance type, key pairs, security...
launch permission  
An Amazon Machine Image (AMI) (p. 72) attribute that allows users to launch an AMI.

lifecycle  
The lifecycle state of the EC2 instance (p. 88) contained in an Auto Scaling group (p. 75). EC2 instances progress through several states over their lifespan; these include Pending, InService, Terminating and Terminated.

lifecycle action  
An action that can be paused by Auto Scaling, such as launching or terminating an EC2 instance.

lifecycle hook  
Enables you to pause Auto Scaling after it launches or terminates an EC2 instance so that you can perform a custom action while the instance is not in service.

link to VPC  
The process of linking (or attaching) an EC2-Classic instance (p. 94) to a ClassicLink-enabled VPC (p. 117).  
See Also ClassicLink, unlink from VPC.

load balancer  
A DNS name combined with a set of ports, which together provide a destination for all requests intended for your application. A load balancer can distribute traffic to multiple application instances across every Availability Zone (p. 75) within a region (p. 105). Load balancers can span multiple Availability Zones within an Amazon EC2 (p. 71) region, but they cannot span multiple regions.

local secondary index  
An index that has the same partition key as the table, but a different sort key. A local secondary index is local in the sense that every partition of a local secondary index is scoped to a table partition that has the same partition key value.  
See Also local secondary index.

logical name  
A case-sensitive unique string within an AWS CloudFormation (p. 76) template that identifies a resource (p. 106), mapping (p. 98), parameter, or output. In an AWS CloudFormation template, each parameter, resource (p. 106), property, mapping, and output must be declared with a unique logical name. You use the logical name when dereferencing these items using the Ref function.

Mail Transfer Agent (MTA)  
Software that transports email messages from one computer to another by using a client-server architecture.

mailbox provider  
An organization that provides email mailbox hosting services. Mailbox providers are sometimes referred to as internet service provider (p. 94)s, even if they only provide mailbox services.

mailbox simulator  
A set of email addresses that you can use to test an Amazon SES (p. 73)-based email sending application without sending messages to actual recipients. Each email address represents a specific scenario (such as a bounce or complaint) and generates a typical response that is specific to the scenario.

main route table  
The default route table (p. 107) that any new VPC (p. 117) subnet (p. 113) uses for routing. You can associate a subnet with a different route table of your choice. You can also change which route table is the main route table.
managed policy
A standalone IAM policy that you can attach to multiple user, group, and role in your IAM account. Managed policies can either be AWS managed policies (which are created and managed by AWS) or customer managed policies (which you create and manage in your AWS account).

manifest
When sending a create job request for an import or export operation, you describe your job in a text file called a manifest. The manifest file is a YAML-formatted file that specifies how to transfer data between your storage device and the AWS cloud.

manifest file
Amazon Machine Learning: The file used for describing batch predictions. The manifest file relates each input data file with its associated batch prediction results. It is stored in the Amazon S3 output location.

mapping
A way to add conditional parameter values to an AWS CloudFormation template. You specify mappings in the template's optional Mappings section and retrieve the desired value using the `fn::findInMap` function.

marker
See pagination token.

master node
A process running on an Amazon Machine Image (AMI) that keeps track of the work its core and task nodes complete.

maximum price
The maximum price you will pay to launch one or more Spot Instance. If your maximum price exceeds the current Spot price and your restrictions are met, Amazon EC2 launches instances on your behalf.

maximum send rate
The maximum number of email messages that you can send per second using Amazon SES.

mebibyte
A contraction of mega binary byte, a mebibyte is $2^{20}$ or 1,048,576 bytes. A megabyte (MB) is $10^6$ or 1,000,000 bytes. 1,024 MiB is a gibibyte.

member resources
See resource.

message ID
Amazon Simple Email Service (Amazon SES): A unique identifier that is assigned to every email message that is sent.

Amazon Simple Queue Service (Amazon SQS): The identifier returned when you send a message to a queue.

metadata
Information about other data or objects. In Amazon Simple Storage Service (Amazon S3) and Amazon EMR (Amazon EMR) metadata takes the form of name–value pairs that describe the object. These include default metadata such as the date last modified and standard HTTP metadata such as Content-Type. Users can also specify custom metadata at the time they store an object. In Amazon Elastic Compute Cloud (Amazon EC2) metadata includes data about an EC2 instance that the instance can retrieve to determine things about itself, such as the instance type, the IP address, and so on.

metric
An element of time-series data defined by a unique combination of exactly one namespace, exactly one metric name, and between zero and ten dimensions. Metrics and the statistics derived from them are the basis of Amazon CloudWatch.

metric name
The primary identifier of a metric, used in combination with a namespace and optional dimensions.

MFA
See multi-factor authentication (MFA).
micro instance  A type of EC2 instance (p. 88) that is more economical to use if you have occasional bursts of high CPU activity.

MIME  See Multipurpose Internet Mail Extensions (MIME).

ML model  In machine learning (ML), a mathematical model that generates predictions by finding patterns in data. Amazon Machine Learning supports three types of ML models: binary classification, multiclass classification, and regression. Also known as a predictive model. See Also binary classification model, multiclass classification model, regression model.

MTA  See Mail Transfer Agent (MTA).

Multi-AZ deployment  A primary DB instance (p. 86) that has a synchronous standby replica in a different Availability Zone (p. 75). The primary DB instance is synchronously replicated across Availability Zones to the standby replica.

multiclass classification model  A machine learning model that predicts values that belong to a limited, predefined set of permissible values. For example, “Is this product a book, movie, or clothing?”

multi-factor authentication (MFA)  An optional AWS account (p. 69) security feature. Once you enable AWS MFA, you must provide a six-digit, single-use code in addition to your sign-in credentials whenever you access secure AWS webpages or the AWS Management Console (p. 78). You get this single-use code from an authentication device that you keep in your physical possession. See Also https://aws.amazon.com/mfa/.

multi-valued attribute  An attribute with more than one value.

multipart upload  A feature that allows you to upload a single object as a set of parts.

Multipurpose Internet Mail Extensions (MIME)  An internet standard that extends the email protocol to include non-ASCII text and nontext elements like attachments.

Multitool  A cascading application that provides a simple command-line interface for managing large datasets.

namespace  An abstract container that provides context for the items (names, or technical terms, or words) it holds, and allows disambiguation of homonym items residing in different namespaces.

NAT  Network address translation. A strategy of mapping one or more IP addresses to another while data packets are in transit across a traffic routing device. This is commonly used to restrict internet communication to private instances while allowing outgoing traffic. See Also Network Address Translation and Protocol Translation, NAT gateway, NAT instance.

NAT gateway  A NAT (p. 99) device, managed by AWS, that performs network address translation in a private subnet (p. 113), to secure inbound internet traffic. A NAT gateway uses both NAT and port address translation.
NAT instance

A NAT (p. 99) device, configured by a user, that performs network address translation in a VPC (p. 117) public subnet (p. 113) to secure inbound internet traffic.

See Also NAT gateway.

network ACL

An optional layer of security that acts as a firewall for controlling traffic in and out of a subnet (p. 113). You can associate multiple subnets with a single network ACL (p. 68), but a subnet can be associated with only one network ACL at a time.

Network Address Translation and Protocol Translation

(NAT (p. 99)-PT) An internet protocol standard defined in RFC 2766.

See Also NAT instance, NAT gateway.

n-gram processor

A processor that performs n-gram transformations.

See Also n-gram transformation.

n-gram transformation

Amazon Machine Learning: A transformation that aids in text string analysis. An n-gram transformation takes a text variable as input and outputs strings by sliding a window of size \( n \) words, where \( n \) is specified by the user, over the text, and outputting every string of words of size \( n \) and all smaller sizes. For example, specifying the n-gram transformation with window size =2 returns all the two-word combinations and all of the single words.

node

Amazon Elasticsearch Service (Amazon ES) (p. 71): An Elasticsearch instance. A node can be either a data instance or a dedicated master instance.

See Also dedicated master node.

NoEcho

A property of AWS CloudFormation (p. 76) parameters that prevent the otherwise default reporting of names and values of a template parameter. Declaring the NoEcho property causes the parameter value to be masked with asterisks in the report by the cfn-describe-stacks command.

NoSQL

Nonrelational database systems that are highly available, scalable, and optimized for high performance. Instead of the relational model, NoSQL databases (like Amazon DynamoDB (p. 70)) use alternate models for data management, such as key-value pairs or document storage.

null object

A null object is one whose version ID is null. Amazon S3 (p. 73) adds a null object to a bucket (p. 81) when versioning (p. 116) for that bucket is suspended. It is possible to have only one null object for each key in a bucket.

number of passes

The number of times that you allow Amazon Machine Learning to use the same data records to train a machine learning model.

Object

Amazon Simple Storage Service (Amazon S3) (p. 73): The fundamental entity type stored in Amazon S3. Objects consist of object data and metadata. The data portion is opaque to Amazon S3.

Amazon CloudFront (p. 70): Any entity that can be served either over HTTP or a version of RTMP.
observation

Amazon Machine Learning: A single instance of data that Amazon Machine Learning (Amazon ML) uses to either train a machine learning model how to predict or to generate a prediction. Each row in an Amazon ML input data file is an observation.

On-Demand Instance

An Amazon EC2 (p. 71) pricing option that charges you for compute capacity by the hour with no long-term commitment.

operation

An API function. Also called an action.

optimistic locking

A strategy to ensure that an item that you want to update has not been modified by others before you perform the update. For Amazon DynamoDB (p. 70), optimistic locking support is provided by the AWS SDKs.

organization

AWS Organizations (p. 78): An entity that you create to consolidate and manage your AWS accounts. An organization has one master account along with zero or more member accounts.

organizational unit

AWS Organizations (p. 78): A container for accounts within a root (p. 107) of an organization. An organizational unit (OU) can contain other OUs.

origin access identity

Also called OAI. When using Amazon CloudFront (p. 70) to serve content with an Amazon S3 (p. 73) bucket (p. 81) as the origin, a virtual identity that you use to require users to access your content through CloudFront URLs instead of Amazon S3 URLs. Usually used with CloudFront private content (p. 103).

origin server

The Amazon S3 (p. 73) bucket (p. 81) or custom origin containing the definitive original version of the content you deliver through CloudFront (p. 70).

original environment

The instances in a deployment group at the start of an AWS CodeDeploy blue/green deployment.

OSB transformation

Orthogonal sparse bigram transformation. In machine learning, a transformation that aids in text string analysis and that is an alternative to the n-gram transformation. OSB transformations are generated by sliding the window of size $n$ words over the text, and outputting every pair of words that includes the first word in the window.

See Also n-gram transformation.

OU

See organizational unit.

output location

Amazon Machine Learning: An Amazon S3 location where the results of a batch prediction are stored.

pagination

The process of responding to an API request by returning a large list of records in small separate parts. Pagination can occur in the following situations:

- The client sets the maximum number of returned records to a value below the total number of records.
- The service has a default maximum number of returned records that is lower than the total number of records.
When an API response is paginated, the service sends a subset of the large list of records and a pagination token that indicates that more records are available. The client includes this pagination token in a subsequent API request, and the service responds with the next subset of records. This continues until the service responds with a subset of records and no pagination token, indicating that all records have been sent.

**pagination token**
A marker that indicates that an API response contains a subset of a larger list of records. The client can return this marker in a subsequent API request to retrieve the next subset of records until the service responds with a subset of records and no pagination token, indicating that all records have been sent.
See Also pagination.

**paid AMI**
An Amazon Machine Image (AMI) (p. 72) that you sell to other Amazon EC2 (p. 71) users on AWS Marketplace (p. 78).

**paravirtual virtualization**
See PV virtualization.

**part**
A contiguous portion of the object’s data in a multipart upload request.

**partition key**
A simple primary key, composed of one attribute (also known as a hash attribute).
See Also partition key, sort key.

**PAT**
Port address translation.

**pebibyte**
A contraction of peta binary byte, a pebibyte is 2^50 or 1,125,899,906,842,624 bytes. A petabyte (PB) is 10^15 or 1,000,000,000,000,000 bytes. 1,024 PiB is an exabyte (p. 90).

**period**
See sampling period.

**permission**
A statement within a policy (p. 102) that allows or denies access to a particular resource (p. 106). You can state any permission like this: "A has permission to do B to C." For example, Jane (A) has permission to read messages (B) from John's Amazon SQS (p. 73) queue (C). Whenever Jane sends a request to Amazon SQS to use John's queue, the service checks to see if she has permission and if the request satisfies the conditions John set forth in the permission.

**persistent storage**
A data storage solution where the data remains intact until it is deleted. Options within AWS (p. 73) include: Amazon S3 (p. 73), Amazon RDS (p. 73), Amazon DynamoDB (p. 70), and other services.

**physical name**
A unique label that AWS CloudFormation (p. 76) assigns to each resource (p. 106) when creating a stack (p. 112). Some AWS CloudFormation commands accept the physical name as a value with the `--physical-name` parameter.

**pipeline**
AWS CodePipeline (p. 76): A workflow construct that defines the way software changes go through a release process.

**plaintext**
Information that has not been encrypted (p. 89), as opposed to ciphertext (p. 82).

**policy**
IAM (p. 77): A document defining permissions that apply to a user, group, or role; the permissions in turn determine what users can do in AWS. A policy typically allow (p. 69)s access to specific actions, and can optionally grant that the actions are allowed for specific resource (p. 106)s, like EC2 instance (p. 88)s, Amazon S3 (p. 73) bucket (p. 81)s, and so on. Policies can also explicitly deny (p. 87) access.
Auto Scaling (p. 75): An object that stores the information needed to launch or terminate instances for an Auto Scaling group. Executing the policy causes instances to be launched or terminated. You can configure an alarm (p. 69) to invoke an Auto Scaling policy.

**Policy Generator**
A tool in the IAM (p. 77) AWS Management Console (p. 78) that helps you build a policy (p. 102) by selecting elements from lists of available options.

**Policy Simulator**
A tool in the IAM (p. 77) AWS Management Console (p. 78) that helps you test and troubleshoot policies (p. 102) so you can see their effects in real-world scenarios.

**Policy Validator**
A tool in the IAM (p. 77) AWS Management Console (p. 78) that examines your existing IAM access control policies (p. 102) to ensure that they comply with the IAM policy grammar.

**Presigned URL**
A web address that uses query string authentication (p. 104).

**Prefix**
See job prefix.

**Premium Support**
A one-on-one, fast-response support channel that AWS customers can subscribe to for support for AWS infrastructure services. See Also https://aws.amazon.com/premiumsupport/.

**Primary Key**
One or two attributes that uniquely identify each item in a Amazon DynamoDB (p. 70) table, so that no two items can have the same key. See Also partition key, sort key.

**Primary Shard**
See shard.

**Principal**
The user (p. 116), service, or account (p. 69) that receives permissions that are defined in a policy (p. 102). The principal is A in the statement "A has permission to do B to C."

**Private Content**
When using Amazon CloudFront (p. 70) to serve content with an Amazon S3 (p. 73) bucket (p. 81) as the origin, a method of controlling access to your content by requiring users to use signed URLs. Signed URLs can restrict user access based on the current date and time and/or the IP addresses that the requests originate from.

**Private IP Address**
A private numerical address (for example, 192.0.2.44) that networked devices use to communicate with one another using the Internet Protocol (IP). All EC2 instance (p. 88)s are assigned two IP addresses at launch, which are directly mapped to each other through Network Address Translation (NAT (p. 99)): a private address (following RFC 1918) and a public address. Exception: Instances launched in Amazon VPC (p. 73) are assigned only a private IP address.

**Private Subnet**
A VPC (p. 117) subnet (p. 113) whose instances cannot be reached from the internet.

**Product Code**
An identifier provided by AWS when you submit a product to AWS Marketplace (p. 78).

**Properties**
See resource property.

**Property Rule**
A JSON (p. 95)-compliant markup standard for declaring properties, mappings, and output values in an AWS CloudFormation (p. 76) template.

**Provisioned IOPS**
A storage option designed to deliver fast, predictable, and consistent I/O performance. When you specify an IOPS rate while creating a DB instance,
Amazon RDS (p. 73) provisions that IOPS rate for the lifetime of the DB instance.

pseudo parameter
A predefined setting, such as AWS:StackName that can be used in AWS CloudFormation (p. 76) templates without having to declare them. You can use pseudo parameters anywhere you can use a regular parameter.

public AMI
An Amazon Machine Image (AMI) (p. 72) that all AWS account (p. 69)s have permission to launch.

public data set
A large collection of public information that can be seamlessly integrated into AWS cloud-based applications. Amazon stores public data sets at no charge to the community and, like all AWS services, users pay only for the compute and storage they use for their own applications. These data sets currently include data from the Human Genome Project, the U.S. Census, Wikipedia, and other sources. See Also https://aws.amazon.com/publicdatasets.

public IP address
A public numerical address (for example, 192.0.2.44) that networked devices use to communicate with one another using the Internet Protocol (IP). EC2 instance (p. 88)s are assigned two IP addresses at launch, which are directly mapped to each other through Network Address Translation (NAT (p. 99)): a private address (following RFC 1918) and a public address. Exception: Instances launched in Amazon VPC (p. 73) are assigned only a private IP address.

public subnet
A subnet (p. 113) whose instances can be reached from the internet.

PV virtualization
Paravirtual virtualization. Allows guest VMs to run on host systems that do not have special support extensions for full hardware and CPU virtualization. Because PV guests run a modified operating system that does not use hardware emulation, they cannot provide hardware-related features such as enhanced networking or GPU support. See Also HVM virtualization.

quartile binning transformation
Amazon Machine Learning: A process that takes two inputs, a numerical variable and a parameter called a bin number, and outputs a categorical variable. Quartile binning transformations discover non-linearity in a variable's distribution by enabling the machine learning model to learn separate importance values for parts of the numeric variable's distribution.

Query
A type of web service that generally uses only the GET or POST HTTP method and a query string with parameters in the URL. See Also REST.

query string authentication
An AWS feature that lets you place the authentication information in the HTTP request query string instead of in the Authorization header, which enables URL-based access to objects in a bucket (p. 81).

queue
A sequence of messages or jobs that are held in temporary storage awaiting transmission or processing.

queue URL
A web address that uniquely identifies a queue.
quota

Amazon RDS (p. 73): The maximum number of DB instance (p. 86)s and available storage you can use.

Amazon ElastiCache (p. 71): The maximum number of the following items:

- The number of cache clusters for each AWS account (p. 69)
- The number of cache nodes per cache cluster
- The total number of cache nodes per AWS account across all cache clusters created by that AWS account

R


range GET

A request that specifies a byte range of data to get for a download. If an object is large, you can break up a download into smaller units by sending multiple range GET requests that each specify a different byte range to GET.

raw email

A type of sendmail request with which you can specify the email headers and MIME types.

RDS

See Amazon Relational Database Service (Amazon RDS).

read replica

Amazon RDS (p. 73): An active copy of another DB instance. Any updates to the data on the source DB instance are replicated to the read replica DB instance using the built-in replication feature of MySQL 5.1.

real-time predictions

Amazon Machine Learning: Synchronously generated predictions for individual data observations.

See Also batch prediction.

receipt handle

Amazon SQS (p. 73): An identifier that you get when you receive a message from the queue. This identifier is required to delete a message from the queue or when changing a message’s visibility timeout.

receiver

The entity that consists of the network systems, software, and policies that manage email delivery for a recipient (p. 105).

recipient

Amazon Simple Email Service (Amazon SES) (p. 73): The person or entity receiving an email message. For example, a person named in the “To” field of a message.

Redis

A fast, open source, in-memory key-value data structure store. Redis comes with a set of versatile in-memory data structures with which you can easily create a variety of custom applications.

reference

A means of inserting a property from one AWS resource (p. 106) into another. For example, you could insert an Amazon EC2 (p. 71) security group (p. 109) property into an Amazon RDS (p. 73) resource.

region

A named set of AWS resource (p. 106)s in the same geographical area. A region comprises at least two Availability Zone (p. 75)s.

regression model

Amazon Machine Learning: Preformatted instructions for common data transformations that fine-tune machine learning model performance.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>regression model</td>
<td>A type of machine learning model that predicts a numeric value, such as the exact purchase price of a house.</td>
</tr>
<tr>
<td>regularization</td>
<td>A machine learning (ML) parameter that you can tune to obtain higher-quality ML models. Regularization helps prevent ML models from memorizing training data examples instead of learning how to generalize the patterns it sees (called overfitting). When training data is overfitted, the ML model performs well on the training data but does not perform well on the evaluation data or on new data.</td>
</tr>
<tr>
<td>replacement environment</td>
<td>The instances in a deployment group after the AWS CodeDeploy blue/green deployment.</td>
</tr>
<tr>
<td>replica shard</td>
<td>See shard.</td>
</tr>
<tr>
<td>reply path</td>
<td>The email address to which an email reply is sent. This is different from the return path (p. 107).</td>
</tr>
<tr>
<td>representational state transfer</td>
<td>See REST.</td>
</tr>
<tr>
<td>reputation</td>
<td>1. An Amazon SES (p. 73) metric, based on factors that might include bounce (p. 81)s, complaint (p. 83)s, and other metrics, regarding whether or not a customer is sending high-quality email.</td>
</tr>
<tr>
<td></td>
<td>2. A measure of confidence, as judged by an internet service provider (p. 94) or other entity that an IP address that they are receiving email from is not the source of spam (p. 111).</td>
</tr>
<tr>
<td>requester</td>
<td>The person (or application) that sends a request to AWS to perform a specific action. When AWS receives a request, it first evaluates the requester's permissions to determine whether the requester is allowed to perform the request action (if applicable, for the requested resource (p. 106)).</td>
</tr>
<tr>
<td>Requester Pays</td>
<td>An Amazon S3 (p. 73) feature that allows a bucket owner (p. 81) to specify that anyone who requests access to objects in a particular bucket (p. 81) must pay the data transfer and request costs.</td>
</tr>
<tr>
<td>reservation</td>
<td>A collection of EC2 instance (p. 88)s started as part of the same launch request. Not to be confused with a Reserved Instance (p. 106).</td>
</tr>
<tr>
<td>Reserved Instance</td>
<td>A pricing option for EC2 instance (p. 88)s that discounts the on-demand (p. 101) usage charge for instances that meet the specified parameters. Customers pay for the entire term of the instance, regardless of how they use it.</td>
</tr>
<tr>
<td>Reserved Instance Marketplace</td>
<td>An online exchange that matches sellers who have reserved capacity that they no longer need with buyers who are looking to purchase additional capacity. Reserved Instance (p. 106)s that you purchase from third-party sellers have less than a full standard term remaining and can be sold at different upfront prices. The usage or reoccurring fees remain the same as the fees set when the Reserved Instances were originally purchased. Full standard terms for Reserved Instances available from AWS run for one year or three years.</td>
</tr>
<tr>
<td>resource</td>
<td>An entity that users can work with in AWS, such as an EC2 instance (p. 88), an Amazon DynamoDB (p. 70) table, an Amazon S3 (p. 73) bucket (p. 81), an IAM (p. 77) user, an AWS OpsWorks (p. 78) stack (p. 112), and so on.</td>
</tr>
<tr>
<td>resource property</td>
<td>A value required when including an AWS resource (p. 106) in an AWS CloudFormation (p. 76) stack (p. 112). Each resource may have one or more properties associated with it. For example, an AWS::EC2::Instance resource</td>
</tr>
</tbody>
</table>
may have a UserData property. In an AWS CloudFormation template, resources must declare a properties section, even if the resource has no properties.

resource record
Also called resource record set. The fundamental information elements in the Domain Name System (DNS).
See Also Domain Name System in Wikipedia.

REST
Representational state transfer. A simple stateless architecture that generally runs over HTTPS/TLS. REST emphasizes that resources have unique and hierarchical identifiers (URIs), are represented by common media types (HTML, XML, JSON (p. 95), and so on), and that operations on the resources are either predefined or discoverable within the media type. In practice, this generally results in a limited number of operations.
See Also Query, WSDL, SOAP.

RESTful web service
Also known as RESTful API. A web service that follows REST (p. 107) architectural constraints. The API operations must use HTTP methods explicitly; expose hierarchical URIs; and transfer either XML, JSON (p. 95), or both.

HTTP-Query
See Query.

return enabled
Amazon CloudSearch (p. 70): An index field option that enables the field's values to be returned in the search results.

return path
The email address to which bounced email is returned. The return path is specified in the header of the original email. This is different from the reply path (p. 106).

revision
AWS CodePipeline (p. 76): A change made to a source that is configured in a source action, such as a pushed commit to a GitHub (p. 92) repository or an update to a file in a versioned Amazon S3 (p. 73) bucket (p. 81).

role
A tool for giving temporary access to AWS resource (p. 106)s in your AWS account (p. 69).

rollback
A return to a previous state that follows the failure to create an object, such as AWS CloudFormation (p. 76) stack (p. 112). All resource (p. 106)s associated with the failure are deleted during the rollback. For AWS CloudFormation, you can override this behavior using the --disable-rollback option on the command line.

root
AWS Organizations (p. 78): A parent container for the accounts in your organization. If you apply a service control policy (p. 110) to the root, it applies to every organizational unit (p. 101) and account in the organization.

root credentials
Authentication information associated with the AWS account (p. 69) owner.

root device volume
A volume (p. 117) that contains the image used to boot the instance (p. 94) (also known as a root device). If you launched the instance from an AMI (p. 72) backed by instance store (p. 94), this is an instance store volume (p. 117) created from a template stored in Amazon S3 (p. 73). If you launched the instance from an AMI backed by Amazon EBS (p. 70), this is an Amazon EBS volume created from an Amazon EBS snapshot.

route table
A set of routing rules that controls the traffic leaving any subnet (p. 113) that is associated with the route table. You can associate multiple subnets with a single route table, but a subnet can be associated with only one route table at a time.

row identifier
row ID. Amazon Machine Learning: An attribute in the input data that you can include in the evaluation or prediction output to make it easier to associate a prediction with an observation.
rule  AWS WAF (p. 80): A set of conditions that AWS WAF searches for in web requests to AWS resource (p. 106)s such as Amazon CloudFront (p. 70) distributions. You add rules to a web ACL (p. 117), and then specify whether you want to allow or block web requests based on each rule.

S


S3 See Amazon Simple Storage Service (Amazon S3).

sampling period A defined duration of time, such as one minute, over which Amazon CloudWatch (p. 70) computes a statistic (p. 112).

sandbox A testing location where you can test the functionality of your application without affecting production, incurring charges, or purchasing products.

Amazon SES (p. 73): An environment that is designed for developers to test and evaluate the service. In the sandbox, you have full access to the Amazon SES API, but you can only send messages to verified email addresses and the mailbox simulator. To get out of the sandbox, you need to apply for production access. Accounts in the sandbox also have lower sending limits (p. 109) than production accounts.

scale in To remove EC2 instances from an Auto Scaling group (p. 75).

scale out To add EC2 instances to an Auto Scaling group (p. 75).

scaling policy A description of how Auto Scaling should automatically scale an Auto Scaling group (p. 75) in response to changing demand. See Also scale in, scale out.

scaling activity A process that changes the size, configuration, or makeup of an Auto Scaling group (p. 75) by launching or terminating instances.

scheduler The method used for placing task (p. 114)s on container instance (p. 84)s.

schema Amazon Machine Learning: The information needed to interpret the input data for a machine learning model, including attribute names and their assigned data types, and the names of special attributes.

core cut-off value Amazon Machine Learning: A binary classification models output a score that ranges from 0 to 1. To decide whether an observation should be classified as 1 or 0, you pick a classification threshold, or cut-off, and Amazon ML compares the score against it. Observations with scores higher than the cut-off are predicted as target equals 1, and scores lower than the cut-off are predicted as target equals 0.

SCP See service control policy.

search API Amazon CloudSearch (p. 70): The API that you use to submit search requests to a search domain (p. 108).

search domain Amazon CloudSearch (p. 70): Encapsulates your searchable data and the search instances that handle your search requests. You typically set up a separate Amazon CloudSearch domain for each different collection of data that you want to search.
search domain configuration  
Amazon CloudSearch (p. 70): An domain's indexing options, analysis scheme (p. 74)s, expression (p. 90)s, suggester (p. 113)s, access policies, and scaling and availability options.

search enabled  
Amazon CloudSearch (p. 70): An index field option that enables the field data to be searched.

search endpoint  
Amazon CloudSearch (p. 70): The URL that you connect to when sending search requests to a search domain. Each Amazon CloudSearch domain has a unique search endpoint that remains the same for the life of the domain.

search index  
Amazon CloudSearch (p. 70): A representation of your searchable data that facilitates fast and accurate data retrieval.

search instance  
Amazon CloudSearch (p. 70): A compute resource (p. 106) that indexes your data and processes search requests. An Amazon CloudSearch domain has one or more search instances, each with a finite amount of RAM and CPU resources. As your data volume grows, more search instances or larger search instances are deployed to contain your indexed data. When necessary, your index is automatically partitioned across multiple search instances. As your request volume or complexity increases, each search partition is automatically replicated to provide additional processing capacity.

search request  
Amazon CloudSearch (p. 70): A request that is sent to an Amazon CloudSearch domain's search endpoint to retrieve documents from the index that match particular search criteria.

search result  
Amazon CloudSearch (p. 70): A document that matches a search request. Also referred to as a search hit.

secret access key  
A key that is used in conjunction with the access key ID (p. 68) to cryptographically sign programmatic AWS requests. Signing a request identifies the sender and prevents the request from being altered. You can generate secret access keys for your AWS account (p. 69), individual IAM user (p. 116)s, and temporary sessions.

security group  
A named set of allowed inbound network connections for an instance. (Security groups in Amazon VPC (p. 73) also include support for outbound connections.) Each security group consists of a list of protocols, ports, and IP address ranges. A security group can apply to multiple instances, and multiple groups can regulate a single instance.

sender  
The person or entity sending an email message.

Sender ID  
A Microsoft-controlled version of SPF (p. 111). An email authentication and anti-spoofing system. For more information about Sender ID, see Sender ID in Wikipedia.

sending limits  
The sending quota (p. 109) and maximum send rate (p. 98) that are associated with every Amazon SES (p. 73) account.

sending quota  
The maximum number of email messages that you can send using Amazon SES (p. 73) in a 24-hour period.

server-side encryption (SSE)  
The encrypting (p. 89) of data at the server level. Amazon S3 (p. 73) supports three modes of server-side encryption: SSE-S3, in which Amazon S3 manages the keys; SSE-C, in which the customer manages the keys; and SSE-KMS, in which AWS Key Management Service (AWS KMS) (p. 77) manages keys.

service  
See Amazon ECS service.
<table>
<thead>
<tr>
<th><strong>service control policy</strong></th>
<th><strong>AWS Organizations (p. 78):</strong> A policy-based control that specifies the services and actions that users and roles can use in the accounts that the service control policy (SCP) affects.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>service endpoint</strong></td>
<td><strong>See endpoint.</strong></td>
</tr>
<tr>
<td><strong>service health dashboard</strong></td>
<td>A web page showing up-to-the-minute information about AWS service availability. The dashboard is located at <a href="http://status.aws.amazon.com/">http://status.aws.amazon.com/</a>.</td>
</tr>
<tr>
<td><strong>service role</strong></td>
<td>An <strong>IAM (p. 77) role (p. 107)</strong> that grants permissions to an AWS service so it can access AWS resource (p. 106)s. The policies that you attach to the service role determine which AWS resources the service can access and what it can do with those resources.</td>
</tr>
<tr>
<td><strong>SES</strong></td>
<td><strong>See Amazon Simple Email Service (Amazon SES).</strong></td>
</tr>
<tr>
<td><strong>session</strong></td>
<td>The period during which the temporary security credentials provided by <strong>AWS Security Token Service (AWS STS) (p. 79)</strong> allow access to your AWS account.</td>
</tr>
<tr>
<td><strong>SHA</strong></td>
<td><strong>Secure Hash Algorithm. SHA1 is an earlier version of the algorithm, which AWS has deprecated in favor of SHA256.</strong></td>
</tr>
<tr>
<td><strong>shard</strong></td>
<td><strong>Amazon Elasticsearch Service (Amazon ES) (p. 71):</strong> A partition of data in an index. You can split an index into multiple shards, which can include primary shards (original shards) and replica shards (copies of the primary shards). Replica shards provide failover, which means that a replica shard is promoted to a primary shard if a cluster node that contains a primary shard fails. Replica shards also can handle requests.</td>
</tr>
<tr>
<td><strong>shared AMI</strong></td>
<td><strong>An Amazon Machine Image (AMI) (p. 72) that a developer builds and makes available for others to use.</strong></td>
</tr>
<tr>
<td><strong>shutdown action</strong></td>
<td><strong>Amazon EMR (p. 71):</strong> A predefined bootstrap action that launches a script that executes a series of commands in parallel before terminating the job flow.</td>
</tr>
<tr>
<td><strong>signature</strong></td>
<td>Refers to a <strong>digital signature</strong>, which is a mathematical way to confirm the authenticity of a digital message. <strong>AWS uses signatures to authenticate the requests you send to our web services. For more information, to <a href="https://aws.amazon.com/security">https://aws.amazon.com/security</a>.</strong></td>
</tr>
<tr>
<td><strong>SIGNATURE file</strong></td>
<td><strong>AWS Import/Export (p. 77):</strong> A file you copy to the root directory of your storage device. The file contains a job ID, manifest file, and a signature.</td>
</tr>
<tr>
<td><strong>Signature Version 4</strong></td>
<td>Protocol for authenticating inbound API requests to AWS services in all AWS regions.</td>
</tr>
<tr>
<td><strong>Simple Mail Transfer Protocol</strong></td>
<td><strong>See SMTP.</strong></td>
</tr>
<tr>
<td><strong>Simple Object Access Protocol</strong></td>
<td><strong>See SOAP.</strong></td>
</tr>
<tr>
<td><strong>Simple Storage Service</strong></td>
<td><strong>See Amazon Simple Storage Service (Amazon S3).</strong></td>
</tr>
<tr>
<td><strong>Single-AZ DB instance</strong></td>
<td>A standard (non-Multi-AZ) **DB instance (p. 86) that is deployed in one Availability Zone (p. 75), without a standby replica in another Availability Zone. See Also Multi-AZ deployment.</td>
</tr>
<tr>
<td><strong>sloppy phrase search</strong></td>
<td>A search for a phrase that specifies how close the terms must be to one another to be considered a match.</td>
</tr>
<tr>
<td><strong>SMTP</strong></td>
<td><strong>Simple Mail Transfer Protocol. The standard that is used to exchange email messages between internet hosts for the purpose of routing and delivery.</strong></td>
</tr>
</tbody>
</table>
snapshot

Amazon Elastic Block Store (Amazon EBS) (p. 70): A backup of your volume (p. 117)s that is stored in Amazon S3 (p. 73). You can use these snapshots as the starting point for new Amazon EBS volumes or to protect your data for long-term durability. See Also DB snapshot.

SNS

See Amazon Simple Notification Service (Amazon SNS).

Snowball

An AWS Import/Export (p. 77) feature that uses Amazon-owned Snowball appliances for transferring your data. See Also https://aws.amazon.com/importexport.

SOAP

Simple Object Access Protocol. An XML-based protocol that lets you exchange information over a particular protocol (HTTP or SMTP, for example) between applications. See Also REST, WSDL.

soft bounce

A temporary email delivery failure such as one resulting from a full mailbox.

software VPN

A software appliance-based VPN connection over the internet.

sort enabled

Amazon CloudSearch (p. 70): An index field option that enables a field to be used to sort the search results.

sort key

An attribute used to sort the order of partition keys in a composite primary key (also known as a range attribute). See Also partition key, primary key.

source/destination checking

A security measure to verify that an EC2 instance (p. 88) is the origin of all traffic that it sends and the ultimate destination of all traffic that it receives; that is, that the instance is not relaying traffic. Source/destination checking is enabled by default. For instances that function as gateways, such as VPC (p. 117) NAT (p. 99) instances, source/destination checking must be disabled.

spam

Unsolicited bulk email.

spamtrap

An email address that is set up by an anti-spam (p. 111) entity, not for correspondence, but to monitor unsolicited email. This is also called a honeypot.

SPF


Spot Instance

A type of EC2 instance (p. 88) that you can bid on to take advantage of unused Amazon EC2 (p. 71) capacity.

Spot price

The price for a Spot Instance (p. 111) at any given time. If your maximum price exceeds the current price and your restrictions are met, Amazon EC2 (p. 71) launches instances on your behalf.

SQL injection match condition

AWS WAF (p. 80): An attribute that specifies the part of web requests, such as a header or a query string, that AWS WAF inspects for malicious SQL code. Based on the specified conditions, you can configure AWS WAF to allow or block web requests to AWS resource (p. 106)s such as Amazon CloudFront (p. 70) distributions.

SQS

See Amazon Simple Queue Service (Amazon SQS).

SSE

See server-side encryption (SSE).

SSL

Secure Sockets Layer See Also Transport Layer Security.
stack  **AWS CloudFormation (p. 76):** A collection of AWS resource (p. 106)s that you create and delete as a single unit.

  **AWS OpsWorks (p. 78):** A set of instances that you manage collectively, typically because they have a common purpose such as serving PHP applications. A stack serves as a container and handles tasks that apply to the group of instances as a whole, such as managing applications and cookbooks.

station  **AWS CodePipeline (p. 76):** A portion of a pipeline workflow where one or more actions are performed.

statistic  One of five functions of the values submitted for a given sampling period (p. 108). These functions are Maximum, Minimum, Sum, Average, and SampleCount.

stem  The common root or substring shared by a set of related words.

stemming  The process of mapping related words to a common stem. This enables matching on variants of a word. For example, a search for "horse" could return matches for horses, horseback, and horsing, as well as horse. Amazon CloudSearch (p. 70) supports both dictionary based and algorithmic stemming.

step  **Amazon EMR (p. 71):** A single function applied to the data in a job flow (p. 95). The sum of all steps comprises a job flow.

step type  **Amazon EMR (p. 71):** The type of work done in a step. There are a limited number of step types, such as moving data from Amazon S3 (p. 73) to Amazon EC2 (p. 71) or from Amazon EC2 to Amazon S3.

sticky session  A feature of the Elastic Load Balancing (p. 89) load balancer that binds a user's session to a specific application instance so that all requests coming from the user during the session are sent to the same application instance. By contrast, a load balancer defaults to route each request independently to the application instance with the smallest load.

stopping  The word process of filtering stop words from an index or search request.

stopword  A word that is not indexed and is automatically filtered out of search requests because it is either insignificant or so common that including it would result in too many matches to be useful. Stop words are language-specific.

streaming  **Amazon EMR (Amazon EMR) (p. 71):** A utility that comes with Hadoop (p. 92) that enables you to develop MapReduce executables in languages other than Java.

  **Amazon CloudFront (p. 70):** The ability to use a media file in real time—as it is transmitted in a steady stream from a server.

streaming distribution  A special kind of distribution (p. 87) that serves streamed media files using a Real Time Messaging Protocol (RTMP) connection.

Streams  See Amazon Kinesis Data Streams.

string-to-sign  Before you calculate an HMAC (p. 93) signature, you first assemble the required components in a canonical order. The preencrypted string is the string-to-sign.

string match condition  **AWS WAF (p. 80):** An attribute that specifies the strings that AWS WAF searches for in a web request, such as a value in a header or a query string. Based
on the specified strings, you can configure AWS WAF to allow or block web requests to AWS resource (p. 106)s such as CloudFront (p. 70) distributions.

**strongly consistent read**
A read process that returns a response with the most up-to-date data, reflecting the updates from all prior write operations that were successful—regardless of the region.

*See Also data consistency, eventual consistency, eventually consistent read.*

**structured query**
Search criteria specified using the Amazon CloudSearch (p. 70) structured query language. You use the structured query language to construct compound queries that use advanced search options and combine multiple search criteria using Boolean operators.

**STS**
See AWS Security Token Service (AWS STS).

**subnet**
A segment of the IP address range of a VPC (p. 117) that EC2 instance (p. 88)s can be attached to. You can create subnets to group instances according to security and operational needs.

**Subscription button**
An HTML-coded button that enables an easy way to charge customers a recurring fee.

**suggester**
Amazon CloudSearch (p. 70): Specifies an index field you want to use to get autocomplete suggestions and options that can enable fuzzy matches and control how suggestions are sorted.

**suggestions**
Documents that contain a match for the partial search string in the field designated by the suggester (p. 113). Amazon CloudSearch (p. 70) suggestions include the document IDs and field values for each matching document. To be a match, the string must match the contents of the field starting from the beginning of the field.

**supported AMI**
An Amazon Machine Image (AMI) (p. 72) similar to a paid AMI (p. 102), except that the owner charges for additional software or a service that customers use with their own AMIs.

**SWF**
See Amazon Simple Workflow Service (Amazon SWF).

**symmetric encryption**
Encryption (p. 89) that uses a private key only. See Also asymmetric encryption.

**synchronous bounce**
A type of bounce (p. 81) that occurs while the email servers of the sender (p. 109) and receiver (p. 105) are actively communicating.

**synonym**
A word that is the same or nearly the same as an indexed word and that should produce the same results when specified in a search request. For example, a search for "Rocky Four" or "Rocky 4" should return the fourth Rocky movie. This can be done by designating that 4 and 4 are synonyms for Ⅳ. Synonyms are language-specific.

**T**


**table**
A collection of data. Similar to other database systems, DynamoDB stores data in tables.
tag
Metadata that you can define and assign to AWS resource (p. 106)s, such as an EC2 instance (p. 88). Not all AWS resources can be tagged.

tagging
Tagging resources: Applying a tag (p. 114) to an AWS resource (p. 106).

Amazon SES (p. 73): Also called labeling. A way to format return path (p. 107) email addresses so that you can specify a different return path for each recipient of a message. Tagging enables you to support VERP (p. 116). For example, if Andrew manages a mailing list, he can use the return paths andrew+recipient1@example.net and andrew+recipient2@example.net so that he can determine which email bounced.

target attribute
Amazon Machine Learning (Amazon ML): The attribute in the input data that contains the “correct” answers. Amazon ML uses the target attribute to learn how to make predictions on new data. For example, if you were building a model for predicting the sale price of a house, the target attribute would be ”target sale price in USD.”

target revision
AWS CodeDeploy (p. 76): The most recent version of the application revision that has been uploaded to the repository and will be deployed to the instances in a deployment group. In other words, the application revision currently targeted for deployment. This is also the revision that will be pulled for automatic deployments.

task
An instantiation of a task definition (p. 114) that is running on a container instance (p. 84).

task definition
The blueprint for your task. Specifies the name of the task (p. 114), revisions, container definition (p. 84)s, and volume (p. 117) information.

task node
An EC2 instance (p. 88) that runs Hadoop (p. 92) map and reduce tasks, but does not store data. Task nodes are managed by the master node (p. 98), which assigns Hadoop tasks to nodes and monitors their status. While a job flow is running you can increase and decrease the number of task nodes. Because they don’t store data and can be added and removed from a job flow, you can use task nodes to manage the EC2 instance capacity your job flow uses, increasing capacity to handle peak loads and decreasing it later.

Task nodes only run a TaskTracker Hadoop daemon.

tebibyte
A contraction of tera binary byte, a tebibyte is 2^40 or 1,099,511,627,776 bytes. A terabyte (TB) is 10^12 or 1,000,000,000,000 bytes. 1,024 TiB is a pebibyte (p. 102).

template format version
The version of an AWS CloudFormation (p. 76) template design that determines the available features. If you omit the AWSTemplateFormatVersion section from your template, AWS CloudFormation assumes the most recent format version.

template validation
The process of confirming the use of JSON (p. 95) code in an AWS CloudFormation (p. 76) template. You can validate any AWS CloudFormation template using the cfn-validate-template command.

temporary security credentials
Authentication information that is provided by AWS STS (p. 79) when you call an STS API action. Includes an access key ID (p. 68), a secret access key (p. 109), a session (p. 110) token, and an expiration time.

throttling
The automatic restricting or slowing down of a process based on one or more limits. Examples: Amazon Kinesis Data Streams (p. 72) throttles operations if an application (or group of applications operating on the same stream) attempts
to get data from a shard at a rate faster than the shard limit. Amazon API Gateway (p. 69) uses throttling to limit the steady-state request rates for a single account. Amazon SES (p. 73) uses throttling to reject attempts to send email that exceeds the sending limits (p. 109).

time series data
Data provided as part of a metric. The time value is assumed to be when the value occurred. A metric is the fundamental concept for Amazon CloudWatch (p. 70) and represents a time-ordered set of data points. You publish metric data points into CloudWatch and later retrieve statistics about those data points as a time-series ordered data set.

time stamp
A date/time string in ISO 8601 format.

TLS

tokenization
The process of splitting a stream of text into separate tokens on detectable boundaries such as whitespace and hyphens.

topic
A communication channel to send messages and subscribe to notifications. It provides an access point for publishers and subscribers to communicate with each other.

training datasource
A datasource that contains the data that Amazon Machine Learning uses to train the machine learning model to make predictions.

transition
AWS CodePipeline (p. 76): The act of a revision in a pipeline continuing from one stage to the next in a workflow.

Transport Layer Security
A cryptographic protocol that provides security for communication over the internet. Its predecessor is Secure Sockets Layer (SSL).

trust policy
An IAM (p. 77) policy (p. 102) that is an inherent part of an IAM role (p. 107). The trust policy specifies which principal (p. 103)s are allowed to use the role.

trusted signers
AWS account (p. 69)s that the CloudFront (p. 70) distribution owner has given permission to create signed URLs for a distribution's content.

tuning
Selecting the number and type of AMIs (p. 72) to run a Hadoop (p. 92) job flow most efficiently.

tunnel
A route for transmission of private network traffic that uses the internet to connect nodes in the private network. The tunnel uses encryption and secure protocols such as PPTP to prevent the traffic from being intercepted as it passes through public routing nodes.

unbounded
The number of potential occurrences is not limited by a set number. This value is often used when defining a data type that is a list (for example, `maxOccurs=unbounded`), in WSDL (p. 117).

unit
Standard measurement for the values submitted to Amazon CloudWatch (p. 70) as metric data. Units include seconds, percent, bytes, bits, count, bytes/second, bits/second, count/second, and none.
unlink from VPC

The process of unlinking (or detaching) an EC2-Classic instance (p. 94) from a ClassicLink-enabled VPC (p. 117).
See Also ClassicLink, link to VPC.

usage report

An AWS record that details your usage of a particular AWS service. You can generate and download usage reports from https://aws.amazon.com/usage-reports/.

user

A person or application under an account (p. 69) that needs to make API calls to AWS products. Each user has a unique name within the AWS account, and a set of security credentials not shared with other users. These credentials are separate from the AWS account's security credentials. Each user is associated with one and only one AWS account.

V


validation

See template validation.

value

Instances of attributes (p. 75) for an item, such as cells in a spreadsheet. An attribute might have multiple values.

Tagging resources: A specific tag (p. 114) label that acts as a descriptor within a tag category (key). For example, you might have EC2 instance (p. 88) with the tag key of Owner and the tag value of Jan. You can tag an AWS resource (p. 106) with up to 10 key–value pairs. Not all AWS resources can be tagged.

Variable Envelope Return Path

See VERP.

verification

The process of confirming that you own an email address or a domain so that you can send email from or to it.

VERP

Variable Envelope Return Path. A way in which email sending applications can match bounce (p. 81)d email with the undeliverable address that caused the bounce by using a different return path (p. 107) for each recipient. VERP is typically used for mailing lists. With VERP, the recipient's email address is embedded in the address of the return path, which is where bounced email is returned. This makes it possible to automate the processing of bounced email without having to open the bounce messages, which may vary in content.

versioning

Every object in Amazon S3 (p. 73) has a key and a version ID. Objects with the same key, but different version IDs can be stored in the same bucket (p. 81). Versioning is enabled at the bucket layer using PUT Bucket versioning.

VGW

See virtual private gateway.

virtualization

Allows multiple guest virtual machines (VM) to run on a host operating system. Guest VMs can run on one or more levels above the host hardware, depending on the type of virtualization.
See Also PV virtualization, HVM virtualization.

virtual private cloud

See VPC.
virtual private gateway (VGW) The Amazon side of a VPN connection (p. 117) that maintains connectivity. The internal interfaces of the virtual private gateway connect to your VPC (p. 117) via the VPN attachment and the external interfaces connect to the VPN connection, which leads to the customer gateway (p. 85).

visibility timeout The period of time that a message is invisible to the rest of your application after an application component gets it from the queue. During the visibility timeout, the component that received the message usually processes it, and then deletes it from the queue. This prevents multiple components from processing the same message.

volume A fixed amount of storage on an instance (p. 94). You can share volume data between container (p. 84)s and persist the data on the container instance (p. 84) when the containers are no longer running.

VPC Virtual private cloud. An elastic network populated by infrastructure, platform, and application services that share common security and interconnection.

VPC endpoint A feature that enables you to create a private connection between your VPC (p. 117) and an another AWS service without requiring access over the internet, through a NAT (p. 99) instance, a VPN connection (p. 117), or AWS Direct Connect (p. 77).

VPG See virtual private gateway.

VPN CloudHub See AWS VPN CloudHub.

VPN connection Amazon Web Services (AWS) (p. 73): The IPsec connection between a VPC (p. 117) and some other network, such as a corporate data center, home network, or co-location facility.

W

WAM See Amazon WorkSpaces Application Manager (Amazon WAM).

web access control list AWS WAF (p. 80): A set of rules that defines the conditions that AWS WAF searches for in web requests to AWS resource (p. 106)s such as Amazon CloudFront (p. 70) distributions. A web access control list (web ACL) specifies whether to allow, block, or count the requests.

Web Services Description Language See WSDL.

WSDL Web Services Description Language. A language used to describe the actions that a web service can perform, along with the syntax of action requests and responses. See Also REST, SOAP.

X, Y, Z

X.509 certificate An digital document that uses the X.509 public key infrastructure (PKI) standard to verify that a public key belongs to the entity described in the certificate (p. 82).
yobibyte

A contraction of yotta binary byte, a yobibyte is $2^{80}$ or $1,208,925,819,614,629,174,706,176$ bytes. A yottabyte (YB) is $10^{24}$ or $1,000,000,000,000,000,000,000,000,000$ bytes.

zebibyte

A contraction of zetta binary byte, a zebibyte is $2^{70}$ or $1,180,591,620,717,411,303,424$ bytes. A zettabyte (ZB) is $10^{21}$ or $1,000,000,000,000,000,000,000,000$ bytes. $1,024$ ZiB is a yobibyte (p. 118).

zone awareness

Amazon Elasticsearch Service (Amazon ES) (p. 71): A configuration that distributes nodes in a cluster across two Availability Zone (p. 75)s in the same region. Zone awareness helps to prevent data loss and minimizes downtime in the event of node and data center failure. If you enable zone awareness, you must have an even number of data instances in the instance count, and you also must use the Amazon Elasticsearch Service Configuration API to replicate your data for your Elasticsearch cluster.