aws

Developer Guide

Amazon Simple Workflow Service

API Version 2012-01-25

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Service: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Simple Workflow Service Developer Guide

Table of Contents

What is AMQAzon SWF?eeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiss 1
WOrkflOW COMPONENTS ...ciiiiiiieeneneiiiiiieiiiiineneensneessssssecesss 2
WOTrKFLOW COMPONENTES ...ttt e et e st e te st e st s se e e s e e e et e b e tassessessnenaenaanean 2
RUNNING YOUF WOTKFLOW ...ttt sttt ettt e st s be b e e e e e sa et e aanan 3
Setting up your development ENVIFONMENTcc.ooeiiiiiieiececececec et ste e sre s e re e e s saesaesaesaens 4
DEVELOP WIth AWS SDKS ...ttt te e steste s e e s e e sae st e saesae s s e saesseesae s et estessassassassaesasssensanes 5
Consider the AWS FLOW FramEWOIKccvireriiineneniienenietsenesseesessesteessessesessessessesessessessssassessesasses 5
Getting StArtedcccciiiiiiieeeeeriiiiieiiiiiiiienetnseeisiiiseeeeteeesssssssssssssssssess 6
ADOUL the WOIKTLOW ...ttt ettt sttt ettt et e e s sb e st s ssa s s e ssassenaenas 7
PrEIEGQUISITES ..ottt ettt et e s et s e e e s ae e st e s st e s s st e s be e st e s ae s saesssaesstasssesassasssesstesssesssaessseessaens 7
TULOTIAL SEEPS ettt ettt et e st e e e e e st s e st et e st et e st e seeseesaesaesaenae st et asassessasseenaanaensansanes 8
Part 1: Using Amazon SWF with the SDK for RUDY ...ttt 8
INnclude the AWS SDK fOr RUDY ...ttt ste e e et st teste st esse e e e s e aesae s nan 8
ConfiguriNg the AWS SESSIONceecuieieieieeeeeeee ettt ste e e e et e saesaestessessa e e e s e s e aeaenaessanes 9
Registering an Amazon SWF DOMAIN ...ttt essresseesseeesseessaessssessaessseesssesssaessnes 10

NEXE STEPS coeeiieieetticteert ettt e st s ste e st e e sae e st e s sae s sae s sseessbe s saesssesssaasssesssaesssessseesssessssesssesssaesssennns 11

Part 2: Implementing the WOrkflOW ...ttt 11
DeSigNiNg the WOIKFLOWc.oueeieeceeeeee ettt e st te st st e st e et a e b e aa s 12
Setting up oUr WOIKFLOW COE ...ttt ste st et st ae e e e s a et e e 13
Registering the WOTrKFLOW ...ttt st a e aesaenaans 14
POLLING FOr DECISIONS ..ottt s e ettt e st et e saeste s e s e e s e s eaesaastassassassassaennansans 15
Starting the Workflow EXECULION ...ttt ste e a e aeneaens 18

NEXE STEPS coeeiieieetticteert ettt e st s ste e st e e sae e st e s sae s sae s sseessbe s saesssesssaasssesssaesssessseesssessssesssesssaesssennns 20

Part 3: Implementing the ACLIVITIES ..ottt nan 21
Defining @ BasiC ACLIVILY TYPE .ottt ettt e te s e s e e e e e ss e st e s aesba s s saesa e e e aennan 21
Defining GEtCONTACTACTIVITY .oueeeeeeeeee ettt st a e a et e s 23
Defining SubSCribETOPICACEIVILY .veeueeeeeieeeeeeeee ettt re e a e sa e aeaan 25
Defining WaitForConfirmatioNACHIVITY ..ot aens 28
Defining SENARESULLACLIVILY ...c.ooueeieeeeeeee ettt sa et et e st s e e e e e e e e e e saanaans 31

NEXE STEPS oottt ettt et e st e st e st e e sae e s b e s sae s saeesseessbe s saessaasssaesssesssaesssassseesssessssessseessaesssennns 32

Part 4: Implementing the Activities Task POLLEI ... 32
RUNNING the WOTKFLOW ...ttt ettt ettt b et st sn e s 35
Where DO | GO frOM HEFEY ...ttt ettt te st sttt e s et e a s e b e st s e sa s e e s sasaessenas 40
WOrking in the CONSOLE ...cciiiiiiieeeiciiiiiiiiiiiiiieennnnniiiisieeeetttssesses 41

API Version 2012-01-25 iii

Amazon Simple Workflow Service Developer Guide

REGISTErING @ AOM@IN ..ottt et e st e st e s b e e s e e e s e e s et et e te st e saessassesnnenaanes 41
Registering WOIKFLOW TYPESu ettt st st e s te s se s e s aea e e e aanan 42
ReGIStEriNg QCHIVITY TYPES oottt sttt s s e s s ae e s ae s sae e aessaeesaessaaesanassaeassnasnnes 42
SEArtiNg @ WOTKFLOW ..ottt ettt st e s re st st e e s e e et et et e st e b e s saesn e e ennennan 43
To start a workflow execution using the CoONSOLEccoveeeeceeeeeeeeeeeee e 43
Managing WOrKflOW @XECULIONScoueouiieeeeceeeeeee ettt ettt s b e s re s 44
BaSiC CONCEPLS ..cciiiieeeenenniiiiiieeiiineeenssssnesssssssssesssns 47
Creating @ WOTKFLOWeeeeeeeee ettt sttt ae s b e st e s e e e e e s e e s et e saanbaneans 48
Modeling Your Workflow and ItS ACLIVILIES ...cceeueeiieeieeeeec ettt aens 49
RUNNING WOTKFLOWS ..ttt e ettt saesteste e e e e s e e et et e aassessessseseennenaansansans 49
WOTKFLOW RSTOIY ..ottt ettt et st e st s e et et et e st et e s e e seeseesaesaenaensansansan 50
(@] o T=Tar dl Te 1= o1 1 1 1= OO P SRS STR SRS USRS 55
DOMIGINS ..ttt sttt sttt e b e st et b e st e et e s b e e b e e st s s e st e e st e s st et e e st e sbesneentenseeane 56
ALCTOLS ettt ettt st e a e s et e et s e e st e e e e e et et e s a e et e e a e e st e s st e e ne s nt e saesane 57
What is an Actor in AMAzon SWF? ...ttt sse st et ssesse st s sastesasassesassans 57
WOTKFLOW STAIEEIS .ottt ettt et sttt et st e e s sae st e e saasaesassanans 58
DECIAELS .ottt ettt sttt st ettt s b st s et et e s b et et s ae st et e e s be st et e sabastesassassentsaesansesessensensses 58
ACEIVIEY WOTKETS ..ttt sttt ettt e s te st e e e e e et e st e st e be s b e s bassaeseesaensansansansansansans 60
Data EXChange BEEWEEN ACLOIScoiciiieecteietecerteeee et stestestesve e ste e e e e e e e saesae st essessassessassnesnennan 60
TASKS ettt sttt et b et e s b et e e R et et e R e s te e e s e b et et e R et et e seese s et enessentenans 61
TASK LISES ettt sttt ae st et s b st et et st e s s st et e seeae st et e se et et e e e aeste e eaasaentenaen 62
DECISION TASK LISES ..vuerveriiiiiniiieirenteteeseste sttt e e sttt e ste st e ae st e e s e saesaesassestesassassensenassessensesansans 62
ACEIVITY TASK LISES cuviieieeieeeeeeeetetete ettt ettt te st e s tesae s e s e e e e e e e st e be s b e s e s sessseneesaesaensansansanes 63
TASK ROULING ..ottt ettt te et e s se st s e s et et e st e s e b e s seeseesaensesestansansassasseessassensansansans 63
WOTKFLOW @XECULION CLOSUIE ..ottt sttt sa et ss et e e s sae e s snans 64
WOrkflow @XeCULION LIf@ CYCLE ettt st ae s aesan e an 65
WOrkflow EXECULION Life CYCLE ottt ettt sae st e s e ae s s s enaennens 65
POLLING FOF TASKS ettt ettt e te e s e e e e e et et et e be st e sessesseesaenaensanaanean 71
AdVaNCEd CONCEPLS ...ceeeeeeeneiiiiiiiiiiiiieneessesssssssssesess 73
VEISIONING eeviiiteieeeeteeiecct et e stesstese e e s ste e st e s ae s s e e s sse e s st asssesssaesseesstesssesassesssaesstesssessssensseesseesssessseessseessaenss 73
SHGNALS ettt e a ettt e st e b e e s e aeeReeae et et et e tenteeseeseeseenee st etetetaaansanes 74
CRILA WOTKFLOWS ..ttt sttt ettt et st sa et e b e st s s s e b e e e b et e e ssassenaens 76
IMAIKETS .ottt sttt sttt sttt e s b et e s et et s e st et e e s sa b e st e sa s s et esaesesestesessantesessensassensssansanaen 77
TGS ettt ettt st e et e st e e st e st e e s a e e st e e s a e e b e e b e e st e e bt e et e et e e et e e bt e R e e et e e Rt e e ae e s e e e sa e st e e beesraeeteestans 79
MANAGE TGS oottt sttt s e et eete s sae e st e s sse e e ae s se e s s asssaaesaeessaeeste e se e s te e aa et eesaeeestasraenas 79
Tag WOrKFLOW @XECULIONS ...ttt st ae s et e e e e e e e e e e saesae s e ssessaesnennens 80

API Version 2012-01-25 iv

Amazon Simple Workflow Service Developer Guide

Control access to domains With tags ...ttt aaan 81
EXCLUSIVE CROICE ettt ettt ettt ae st ettt s st e st e s b et e e s sasbansenaons 82
THMIEES ettt sttt b e st s b st e et e b e st e e st s b e et e e st e b e sateeatsese et e st e beenteenesabesntesseenne 85
CaNCElliNg ACLIVITY tASKS ..veeeeieeceeeeeee ettt e e e e a e et sbe st e s s e e e e se e e e s e b e bansanean 85

SECUNITY ceiiiiiiinennnnniiiiiiietiiiennsessssssssssssessesssssssssssssssssssssesssasssnssssssss 88
DAta Prot@CTION ..ottt ettt st st a et a e st st s b e et e s st e sbesaesneesaaas 88

ENCIYPEION <ttt ettt e e e s st s s e e s ae e e e s s ae s sa e s sa e e s st asaa e st esssaesssessseasssessssenseens 89
Identity and AccesS ManNAQEMIENLceeieiiciecececeeeee ettt te e s e e e et saesaesaeste s e st e e e e s e e eaensansans 89

AUGIENCE ...ttt ettt et et e e sttt s e sa et s e s s et et s aa b et e se s e st e st esestestesassentensssassessesarsanseses 91

Authenticating With id@ntities ..ot ee s 91

Managing access USING POLICIES ..c.ucoueeuieieieieieeceecee ettt a et e sae st e saesse e saneaans 95

ACCESS CONTIOL 1ttt ettt ettt te sttt esbe st e s be st e e sbe st et esessesaesassessentesassansesessansansesans 97

POLICY QCHIONS .ttt et st e st e st e st e st e s e e e e e e e be st e sasbassaeseeseensansansansansan 97

POLICY FESOUITES ...veuveteieeiieiietetete e e te et e et et et estestesae e e e e e e ssaessestasassassessasssasaessessansassesassassesssensanes 98

POLICY CONAILION KBYS ..ttt ettt s et a s st e st et e st e s b e se e e e e e e e saensastansansan 99

ACLS ettt sttt e s ettt ettt s bt et a e st et e A et et e R et et e ae e b et et e b et e e e s e be e et e s et et eseete st enaesans 99

ABA ..ttt ettt ettt ettt e s b s st st st e et e e bt e s e e e s e e e e e et e e s e e e b e e s e e et e e aa e et e e st eesraensaesntennres 100

TeMPOrary Cred@NLIAlS ...ccviceeieeeeeeeeeeeee ettt e st e s e e e e e et e st e s tesaessessesseesnenaennans 100

PrinCipal PEIMISSIONSccuviieieieeceeeetcte et te e et e s te s te s aesse et e e e s e s e b et et e s sassessaesaansensansanes 101

SEIVICE TOLES ...ttt ettt ettt st e st et e s e st et e s be st et saess et e e sassenaesassantensssensestesassans 101

SEIVICE-LINKEA FOLES ...ttt ettt et et s s st e s st e e s e sbe b e e saanes 101

Identity-based POLICIES ...ttt st sttt et st be e s e nnans 102

RESOUICE-DASEA POLICIES ...veveeeeieietetetecete ettt st e s e et e e e e s e st e aestessasseesee e ennensaneans 102

How Amazon Simple Workflow Service works wWith 1AM ... 103

Identity-based POliCY EXAMPLES ...ttt a et aesaenaens 104

BASIC PrINCIPLES .ottt ettt et e st e st e s te e e e s e e e et e st et e s basaeesaesessae s ennensansanes 106

AMAZON SWF TAM POLICIES ..cverieteirerieirtresteesesteteeseste e ste st s e sse st e e st este s s e sse st e e ssasaesassassenssnanns 108

APL SUMIMIAIY coniieiiiiteeiteeteeseestes e sseesstesseessae s s e essaessssessesssaesssessssasssessseesssessssesssessssesssessssesssesssnens 114

TAG-DASEA POLICIES ...ttt et st st esae st e e e e s et et e aestasbassassaesnennenaanes 122

AMAzZoN VPC @NAPOINTS ..ooiiieieeeeeceetcetetee ettt steste e s te s e e e e e e et e st et e ssessesseesaeseenaennanes 122

TrOUBLESNOOTING ..ttt sttt et et e st e st e be s e e e e e esaeae s entanean 124
Logging and MONITOFING ..cueeiieieeeececeee ettt ettt e st e s te s e e e e e e s et e st e st e saessessessaesesnsennenaansans 126

Amazon SWF Metrics for CLoudWAtch ...ttt 126

Viewing AMAzon SWEF MELIICS .ttt cstesstesseessse e st e ssaesssaessaessseesssesssaesssessssasssasnne 136

Recording t0 CLOUATIAIL c.coueeuieieeeeeecee ettt e steste e e e e e e sa e b e s aasaa s e sessnennan 140

EventBridge fOr AMAazon SWEF ...ttt stestesse s e e e e st saesaesaassa s e e aesnens 147

API Version 2012-01-25 v

Amazon Simple Workflow Service Developer Guide

Using AWS User Notifications with AmMazon SWF ...ttt eenens 156
ComMPLIANCE Valid@tion ...ttt te e e e s et e st e saesbesse s e eseennesaaneans 156
RESILIEICE .ottt sttt ettt ettt s s bt et s et et e et et esasse b e st esassastesaesansenens 157
INFrAaStrUCTUIE SECUIILY ..ottt se e e e st e st e s e e e e e e e s et e saesaassessesnneseanaans 157
Configuration and Vulnerability ANQLYSISccoueoieeieieeeeeeeeeeeres et nan 158

USING the AWS CLIrerrieiiiiiiiiiiiinneenssnsssisiieceessans 159
WOKrKiNG WIth APISeeeeeeiiiiiiiiiiiiitnnennseiiiiiieceessass 161
MaKiNG HTTP REQUESTES ..ottt testesaestesee e et e e e s e stesaessesseesse e s s esaensansasassessessnesaensans 161

HTTP HEader CONTENTS ..cc.coviiiiiitrereteerentet ettt ettt et sbe st e e s s et e e s e sae e s e sseaeasnas 162

HTTP BOAY CONTENT ...ttt te e et s e sae st e b e s s e s e e e e e e et e s ae st e saassassaennensanes 164

Sample JSON Request and RESPONSEccuccveeieeiereeieecteteteste e ste e e e e s eesaestessessesses e e e esaesnennan 164

Calculating the HMAC-SHA SigNatUre ...ttt stesve e e s e sn s sae s 165
List Of AMAZON SWF ACLIONS ...oouiriiiiirieieirerteteesiestets e ste st sesseste e s e sse st s e sse st e e ssessesessassessensssassessesans 168

Actions Related tO ACLIVITIES .c.ccivereeeereieeresetrereeseet ettt ettt sttt sa s ne 168

Actions Related t0 DECIAELS ...ttt ettt ettt s sse st e s sa et s e basaenans 168

Actions Related to WOrkflow EXECULIONSc.coeeiiirieniiirenieircnestceseseesteesesse st se st s e ssesaesessens 169

Actions Related to AdMINISEratioNcoccoeviiirenirreeeseee ettt et s e e ne 169

VISIDILITY ACLIONS ..ttt ettt e s te st et e et e s e e e e sa et e b e st et e bassessaensesaanaansansansansen 170
ReGIStering @ DOMIAIN ...couiiiiiiieeteetecteeteect et et re et e e sae s s e e s sse s e e s saesssaessaesssaesssessssesssaesssesssesssaasans 171

SEE ALSO ettt sttt ettt e b e e e e bt b et e e s et et et et et erate e eaeene 172
SEttiNg tIMEOUL VALUEBS ...ceeeeeeeeee ettt sttt et e st e sae e e se e e e e e e et e naanes 172

QUOLAS ON TIMEOUL VALUES ...ttt et cas e te e be e e sbesseesabeenssssssesnssesaneen 172

Workflow Execution and Decision Task TimMEOULSccccceverevirienenienenerteeseseesesse s eesaesaenees 172

ACLIVItY TASK TIMEOULS ...ttt ettt e st este e e s e e s et e st e b e s e ssassasseennenaanes 173

SEE ALSO ettt ettt ettt et e e e s e b et e e b et et e a et et e et et e e erasbe e eaeene 174
Registering @ WOIKFLOW TYPE ...ttt te ettt tesaestesae s e e e s e s e st e saesbasbassesseesessnennanns 174

SEE ALSO .ttt sttt ettt a e e e b et e e b et et e st et e et et et ereste e enaene 174
RegiStering @n ACHIVITY TYPO ettt sttt s ee s sae e s e e s sae s s s e s saeessaassaasssaesssaesnnans 174

SEE ALSO .ttt ettt et s e e e e e b et et et et a et et et et e e ere b et eneene 175
LamMIBDA@ tASKS .eeeeeieieiricteeceetceetet ettt ettt ettt s a et ettt e e s a et e sae e e e ene 175

ADOUL AWS LambBda ..ottt ettt st ettt s e st et s s s e st e e s e b et s e saesaenas 175

Benefits and limitations of using Lambda tasks ... 176

Using Lambda tasks in your WOrkflOWS ...ttt 176
Developing an ACLIVILY WOTKEL ...ttt e st et sae e e s e e s e e e aesaessans 181

POLLING FOr ACLIVILY TASKS ..oeviiiieeeeectetetetes ettt ettt steste st re e e e e e e et et e st e s e sse e e ese e s enneneanean 182

Performing the ACtiVIty TASK ...ttt s ae e e e s s e aenens 182

API Version 2012-01-25 vi

Amazon Simple Workflow Service Developer Guide

Reporting Activity Task HEArtbeats ...ttt sve e nnens 183
Completing or Failing an ActiVity Taskc.cceceoeeereeieceececesee ettt sre e e e nenens 184
LAuNChiNG ACEIVITY WOTKEFS ..ottt stesteste s e sae e e e e e s e s e e esaasaneans 185
DEVELOPING ECIAEBLS ...ttt te s e e e et e e e st e st e s ae s e s se e e e s ete st e ssansassassnesesnaans 185
Defining Coordination LOGIC ...ttt a st st sae e e et sae s 187
POLLING fOr DECISION TASKS ...cveeeeeieeeteteteterte ettt stestestesse e e e e saestesaesae s e seesn e s ennenaenaanes 187
Applying the Coordination LOGICc.cccciiieeeeeiceeietetete ettt sae e s e e s sa e sae s 189
ReSPONAiNG With DECISIONSecuiiieieieecteecee ettt e e e e sae e et e sa e se s e s se e e s e e s e saeaanaan 190
Closing @ WOTrKFLOW EXECULIONcveveieiecieeeceeectete ettt e e e e et et saesaeste s e s e ssaeaenesaanaanes 191
LAUNCRING DECIARLS ...ttt et e st esse st ese s e e s et et et estassasseesessaenaansansansan 192
STArtiNG WOIKFLOWS ...ttt ettt te e e a ettt e st e s te e e se e e e e et et e naanes 193
SETEING tASK PriOFLY eveeeieieeceeecee ettt ettt e s te st e e e e e e e e et e sae st e sae st e sse e e esaenaessansansansanes 194
Setting Task Priority fOr WOrKFLOWScc.eoeceeiececeeeee ettt sae e 195
Setting Task Priority fOr ACHIVITIES ...c.cc et saeaens 197
Actions that Return Task Priority INformation ..., 198
HANALING EITOIS ..ttt cte et e e e e et et et e st e st e st e s e s seeseesaesa et astansasensassaesesssensansansansan 199
ValidQtION EFTOIS ..ottt ettt st et a e st s st st s st st e s s e st e e s e sae st e e ssassesaesassansanas 199
Errors in Enacting Actions OF DECISIONScccuiirieirieriieinteniecctesresseesseeeseesssessssesssessssesssessseesaees 199
TIMEOULS .ttt st a et s s a e st s e s b e e b e e st s ae st e s st e sseebe st esesasasntesenne 200
Errors raised DY USEr COAE ...ttt ettt a e e a s 200
Errors related to closing @ Workflow eXeCutioncccceceeeeiceeceecicceeecee et 200

[1110) - 13PN 202
General Account QUOLAS FOr AMAZON SWF ...ttt et eeesteeessaeesssseessssesssssesssseessnne 202
QuOtas 0N WOTKFLOW EXECULIONS ...ueeeeeieieieeecteectecte ettt caecearecseessseesesessesssessseesseesssesnns 203
(@110 = 10] T I 1 L = (=T UL (o] o F SRR 203
Amazon SWF throttling QUOTAS ...ttt sttt a e sa et aan 205
Throttling quotas for all REGIONS ...ttt st st 205
Decision quotas for all REGIONS ...ttt sae b e s s e nennan 207
WOTIKFLOW-LEVEL QUOLAS ..ottt ettt et e s teste e s e s e s et et e st e ssessaesassaennenaanes 208
ReqUuEStiNg @ QUOTA INCIEASEecoviieieiieeteetteeteete st es st et e s sae s st e s saeesaeesssesssaesssesssaasssessssesssassssesssennns 208
AdditioNal FESOUICES ...ccevrriiiiiiiiiiiiiiiiiiiiisieesses 209
TIMEOUT TYPES ettt ettt ettt ssre e st e s sae s st e s s ae s s st e s ae e saeesaa e st essaa e ssessaeesssassseesssessseesssesssaennsens 209
Timeouts in Workflow and DeciSion TasKSccceireririreneninienenieeneneneeesessesteessessesessessessesens 209
TiMEOULS IN ACLIVILY TASKS ..ooriiiieeieeeeeeeeteetete ettt et et esteste st e e e e e e s e s et e saesaessessassaesaennans 210
ENAPOINTS ..ttt e ettt et e st e st e e e e e e e e aeess et et et e bessaeseesaesaentastansansessesseeseaseensansanes 212
Additional DOCUMENTAtIONciiuirieieiriietrerertctr ettt ettt st sba st e e ssesae st e e ssassesanas 212

API Version 2012-01-25 vii

Amazon Simple Workflow Service Developer Guide

Amazon Simple Workflow Service APl REfErencCeuoeeeeeeeieeeeeececeeee et 212
AWS Flow Framework Documentationcoeieiecienieeceseeee ettt sae e sae s 213
AWS SDK DOCUMENTATION ..ottt ettt sae st ssae s aaessaeesan e s aasssaessaesssnassaessnnasnnas 213
AWS CLI DOCUMENTATION ..ottt e st ssee e s e e s sae s s e e s ssaesanessaessssesssaessnassseens 215
WED RESOUICTES ...ttt ettt te e s teste e e e e e e e e e et et e st et e st e e saesaesaesaestassansassassassaesesseensassansansanes 215
AMAZON SWF FOTUM .ttt estessae s saeesseeseesssesssaesssessseasssassssesssessssesssessssessseessaesssesnes 215
AMAZON SWF FAQ oottt ccctteeceeeteeeeeesaasesesssaseesessssseesssssssssssssssesessssasessssssssessssssssessnns 215
AMAZON SWF VIAEOS ..ottt ettt aestestesaesteste s e e e s e e s et e sae st e st assessassessae s ansensansanes 216
RUDY FLOW OPLIONS ..ttt ste e e e e e e et s saeste st e ssessa e e s e e s e s et e ssassassessaennsnsensansansans 216
Continue to use the Ruby FLOW FrameWork ...ttt 217
Migrate to the Java FLOW FrameWOrK ...ttt ae e ennens 217
Migrate t0 STEP FUNCLIONS ...ttt sttt et e et e ae s re e s e e s sae e sne s saessaassneans 217
Use the AmMAazon SWF APl dir€CtLY ..coeoeeeeeeeeeceeeeceeeeee ettt st et ae e s 218
DOCUMENT NISTOIY auuueiiiiiiiiiiiiiieeennnniiiiiiiieeinieennssssssssssssseseesses 219

API Version 2012-01-25 viii

Amazon Simple Workflow Service Developer Guide

What is Amazon Simple Workflow Service?

With Amazon Simple Workflow Service (Amazon SWF) you can build, run, and scale background
jobs that have parallel or sequential steps. You can coordinate work across distributed components
and track the state of tasks.

In Amazon SWF, a task represents a logical unit of work that is performed by a component of your
application. Coordinating tasks across includes managing inter-task dependencies, scheduling, and
concurrency in the flow of your application. With Amazon SWF, you can control and coordinate
tasks without worrying about underlying complexities, such as tracking progress and maintaining
task state.

When using Amazon SWF, you implement workers to perform tasks. Workers can run either on
cloud infrastructure, such as Amazon Elastic Compute Cloud (Amazon EC2), or on your own
premises. You can create tasks that are long-running, or that may fail, time out, or require restarts
—or that may complete with varying throughput and latency. Amazon SWF stores tasks and
assigns them to workers when they are ready, tracks progress, and maintains state, including
details of task completion.

To coordinate tasks, you write a program that gets the latest task state from Amazon SWF and uses
that state to initiate subsequent tasks. Amazon SWF maintains an application's execution state
durably, so your application is resilient to individual component failures. With Amazon SWF, you
can build, deploy, scale, and modify application components independently.

(@ Other AWS workflow services

For most use cases, we recommend considering AWS Step Functions for your workflow and
orchestration needs.

With Step Functions, you can create workflows, also called state machines, to build
distributed applications, automate processes, orchestrate microservices, and create data
and machine learning pipelines. In the Step Functions' console or AWS toolkit in VS

Code, you can use the graphical Workflow Studio to visualize, edit, test, and debug your
application’s workflow.

For more technical information, see the AWS Step Functions Developer Guide.

API Version 2012-01-25 1

https://docs.aws.amazon.com/step-functions/latest/dg/

Amazon Simple Workflow Service Developer Guide

Developing workflow components with Amazon SWF

Developing distributed applications requires coordinating many components and dealing with
latency and unreliability inherent in remote communication.

With Amazon Simple Workflow Service (Amazon SWF), you can develop asynchronous and
distributed applications by providing a programming model and infrastructure for coordinating
distributed components and maintaining their execution state in a reliable way. By relying on
Amazon SWF, you are freed to focus on building the aspects of your application that differentiate
it.

Components of a workflow

Components of a workflow The fundamental concept in Amazon SWF is the workflow. A workflow
is a set of activities that carry out some objective, together with logic that coordinates the
activities. For example, a workflow could receive a customer order and take whatever actions are
necessary to fulfill the order.

Each workflow runs in a resource called a domain, which controls the workflow's scope. An AWS
account can have multiple domains, each of which can contain multiple workflows, but workflows
in different domains can't interact.

When designing an Amazon SWF workflow, you define each of the required activities. You then
register each activity with Amazon SWF as an activity type. You will provide a name, version, and
timeout values. For example, a customer may have an expectation that an order will ship within 24
hours.

In the process of carrying out the workflow, some activities may need to be performed more than
once, perhaps with varying inputs. For example, in a customer-order workflow, you might have an
activity that handles purchased items. If the customer purchases multiple items, then this activity
would have to run multiple times. Amazon SWF has the concept of an activity task that represents
one invocation of an activity. In our example, the processing of each item would be represented by
a single activity task.

An activity worker is a program that receives activity tasks, performs them, and provides results.
The task might actually be performed by a person. For example, a statistical analyst might receive
sets of data, analyze the data, and then send back their analysis.

Workflow components API Version 2012-01-25 2

Amazon Simple Workflow Service Developer Guide

Activity tasks, and the activity workers that perform them, can run synchronously or
asynchronously. Workers can run in one location or be distributed across multiple computers,
potentially in different geographic regions. Different activity workers can be written in different
programming languages and run on different operating systems. For example, one activity worker
might be running on a server in Asia, while another might be running on a mobile device in North
America.

The coordination logic in a workflow is contained in a software program called a decider. A decider
schedules activity tasks, provides input to activity workers, processes events that arrive while the
workflow is in progress, and ends (or closes) the workflow after the objective has been met.

The role of the Amazon SWF service is to function as a reliable central hub through which data is
exchanged between the decider, the activity workers, and other relevant entities such as the person
administering the workflow. Amazon SWF also maintains the state of each workflow execution,
which saves your application from having to store the state in a durable way.

The decider directs the workflow by receiving decision tasks from Amazon SWF and responding
back to Amazon SWF with decisions. A decision represents an action or set of actions, which are the
next steps in the workflow. A typical decision would be to schedule an activity task. Decisions can
also be used to delay tasks with timers, request cancellation of in-progress tasks, and to complete
workflows.

The mechanism by which both the activity workers and the decider receive their tasks (activity
tasks and decision tasks respectively) is by polling the Amazon SWF service.

Amazon SWF informs the decider of the state of the workflow by including, with each decision
task, a copy of the current workflow execution history. The workflow execution history is composed
of events, where an event represents a significant change in the state of the workflow execution.
Examples of events include task completion, task time outs, or the expiration of a timer. The
history is a complete, consistent, and authoritative record of the workflow's progress.

Amazon SWF access control uses AWS Identity and Access Management (IAM), so you can control
access to AWS resources. For example, you can allow a user to access your account, but only to run
certain workflows in a particular domain.

Running your workflow

The following provide an overview of the steps necessary to develop and run a workflow in
Amazon SWF:

Running your workflow API Version 2012-01-25 3

Amazon Simple Workflow Service Developer Guide

1. Write activity workers to perform the processing steps in your workflow.
2. Write a decider to handle the coordination logic of your workflow.

3. Register your activities and workflow with Amazon SWF.

You can do this step programmatically or by using the AWS Management Console.

4. Start your activity workers and decider.

These actors can run on any computing device that can access an Amazon SWF endpoint. For
example, you could use compute instances in the cloud, such as Amazon Elastic Compute Cloud
(Amazon EC2); servers in your data center; or even a mobile device, to host a decider or activity
worker. Once started, the decider and activity workers should start polling Amazon SWF for
tasks.

5. Start one or more executions of your workflow.
You can start workflows programmatically or via the AWS Management Console.

Each execution runs independently and you can provide each with its own set of input data.
When an execution is started, Amazon SWF schedules the initial decision task. In response, your
decider begins generating decisions that initiate activity tasks. Execution continues until your
decider makes a decision to close the execution.

6. View workflow executions using the AWS Management Console.

You can filter and view complete details of running and completed executions. For example, you
can select an open execution to see which tasks have been completed and what their results
were.

Setting up your development environment

You have the option of developing for Amazon SWF in any of the programming languages
supported by AWS. For Java developers, the AWS Flow Framework is also available. For more
information, see the AWS Flow Framework website, and see AWS Flow Framework for Java
Developer Guide.

To reduce latency and to store data in a location that meets your requirements, Amazon SWF
provides endpoints in different Regions.

Each endpoint in Amazon SWF is completely independent. Any domains, workflows, and activities
you have registered in one Region will not share data or attributes with those in another Region.

Setting up your development environment API Version 2012-01-25 4

https://aws.amazon.com/swf/flow/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

Amazon Simple Workflow Service Developer Guide

When you register an Amazon SWF domain, workflow, or activity, it exists only within the Region
you registered it in. For example, you could register a domain named SWF-Flows-1 in two different
Regions, but they will share no data or attributes with each other — each acting as a completely
independent domain.

For a list of Amazon SWF endpoints, see Regions and Endpoints.

Develop with AWS SDKs

Amazon SWF is supported by the AWS SDKs for Java, .NET, Node.js, PHP, Python, and Ruby,
providing a convenient way to use the Amazon SWF HTTP API in the programming language of
your choice.

You can develop deciders, activity workers, or workflow starters using the APl exposed by these
libraries. And, you can use visibility operations through these libraries so you can develop your own
Amazon SWF monitoring and reporting tools.

To download tools for developing and managing applications on AWS, including SDKs, go to the
Developer Center.

For detailed information about the Amazon SWF operations in each SDK, refer to the language-
specific reference documentation for the SDK.

Consider the AWS Flow Framework

The AWS Flow Framework is an enhanced SDK for writing distributed, asynchronous programs that
run as workflows on Amazon SWF. The framework is available for the Java programming language
and provides classes for writing complex distributed programs.

With the AWS Flow Framework, you use preconfigured types to map the definition of your
workflow directly to methods in your program. The AWS Flow Framework supports standard
object-oriented concepts, such as exception-based error handling. Programs written with the AWS
Flow Framework can be created, run, and debugged entirely within your preferred editor or IDE. For
more information, see the AWS Flow Framework website, and see AWS Flow Framework for Java

Developer Guide.

Develop with AWS SDKs API Version 2012-01-25 5

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/developer/tools
https://aws.amazon.com/swf/flow/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

Amazon Simple Workflow Service Developer Guide

Getting started with Amazon SWF

You can get started with the following Amazon Simple Workflow Service workflow application
which consists of a set of four activities that operate sequentially. The tutorial also covers the
following topics:

 Setting default and execution-time workflow and activity options.

« Polling Amazon SWF for decision and activity tasks.

» Passing data between the activities and the workflow with Amazon SWF.

« Waiting for human tasks and reporting heartbeats to Amazon SWF from an activity task.

« Using Amazon SNS to create a topic, subscribe a user to it, and publish messages to subscribed
endpoints.

You can use Amazon SWF and Amazon Simple Notification Service (Amazon SNS) together to
emulate a "human task" workflow—one in which a human worker is required to perform some
action and then communicate with Amazon SWF to launch the next activity in the workflow.

Because Amazon SWF is a cloud-based web service, communication with Amazon SWF can
originate from anywhere a connection to the Internet is available. In this case, we will use Amazon
SNS to communicate with the user by either email, an SMS text message, or both.

This tutorial uses the AWS SDK for Ruby to access Amazon SWF and Amazon SNS, but there are
many development options available, including the AWS Flow Framework for Ruby, which provides

easier coordination and communication with Amazon SWF.

(® Note

This tutorial uses the AWS SDK for Ruby, but we recommend that you use the AWS Flow
Framework for Java.

Topics

About the Workflow

Prerequisites

Tutorial Steps

Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby

API Version 2012-01-25 6

https://aws.amazon.com/sdkforruby/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

Amazon Simple Workflow Service Developer Guide

» Subscription Workflow Tutorial Part 2: Implementing the Workflow

o Subscription Workflow Tutorial Part 3: Implementing the Activities

o Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller

» Subscription Workflow Tutorial: Running the Workflow

About the Workflow

The workflow that we will be developing consists of four major steps:

1. Get a subscription address (email or SMS) from the user.
2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4. If the user confirms, publish a congratulatory message to the topic.

These steps include activities that are completely automated (steps 2 and 4), and others that
require the workflow to wait for a human to provide some data to the activity before the workflow
can progress (steps 1 and 3).

Each step relies on data that is generated by the previous step (you must have an endpoint
before subscribing it to a topic, and you must have a topic subscription before you can wait for
confirmation, etc.) This tutorial will also cover how to provide activity results upon completion,
and how to pass input to a task that is being scheduled. Amazon SWF handles coordination and
delivery of information between the activities and the workflow, and vice-versa.

We're also using both keyboard input and Amazon SNS to handle communication between Amazon
SWF and the human who is providing data to the workflow. In practice, you can use many different
techniques to communicate with human users, but Amazon SNS provides a very easy way to use
email or text messages to notify the user about events in the workflow.

Prerequisites

To follow along with this tutorial, you will need the following:

« Amazon Web Services account

« Ruby interpreter
o AWS SDK for Ruby

About the Workflow API Version 2012-01-25 7

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://www.ruby-lang.org/en/downloads/
https://aws.amazon.com/sdkforruby/

Amazon Simple Workflow Service Developer Guide

If you already have these set up, you're ready to continue. If you don't want to run the example,
you can still follow the tutorial—much of the content in this tutorial applies to using Amazon SWF
and Amazon SNS regardless of the development option you choose.

Tutorial Steps

This tutorial is divided into the following steps:

1. Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby

2. Subscription Workflow Tutorial Part 2: Implementing the Workflow

3. Subscription Workflow Tutorial Part 3: Implementing the Activities

4. Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller

5. Subscription Workflow Tutorial: Running the Workflow

Subscription Workflow Tutorial Part 1: Using Amazon SWF with
the AWS SDK for Ruby

Topics

* Include the AWS SDK for Ruby

» Configuring the AWS Session

» Registering an Amazon SWF Domain

» Next Steps

Include the AWS SDK for Ruby

Begin by creating a file called utils. rb. The code in this file will obtain, or create if necessary, the
Amazon SWF domain used by both the workflow and activities code and will provide a place to put
code that is common to all of our classes.

First, we need to include the aws-sdk-v1 library in our code, so that we can use the features
provided by the SDK for Ruby.

require 'aws-sdk-v1l'

Tutorial Steps API Version 2012-01-25 8

Amazon Simple Workflow Service Developer Guide

This gives us access to the AWS namespace, which provides the ability to set global session-related
values, such as your AWS credentials and region, and also provides access to the AWS service APlIs.

Configuring the AWS Session

We'll configure the AWS Session by setting our AWS credentials (which are needed for accessing
AWS services) and the AWS region to use.

There are a number of ways to set AWS credentials in the AWS SDK for Ruby: by setting them in
environment variables (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) or by setting them
with AWS . config. We'll use the latter method, loading them from a YAML configuration file, called
aws-config.txt, that looks like this.

:access_key_id: REPLACE_WITH_ACCESS_KEY_ID
:secret_access_key: REPLACE_WITH_SECRET_ACCESS_KEY

Create this file now, replacing the strings beginning with REPLACE_WITH_ with your AWS access
key ID and secret access key. For information about your AWS access keys, see How Do | Get
Security Credentials? in the Amazon Web Services General Reference.

We also need to set the AWS region to use. Because we'll be using the Short Message Service (SMS)

to send text messages to the user's phone with Amazon SNS, we need to make sure that we're
using region supported by Amazon SNS. See Supported Regions and Countries in the Amazon

Simple Notification Service Developer Guide.

(@ Note

If you don't have access to us-east-1, or don't care about running the demo with SMS
messaging enabled, feel free to use any region you wish to. You can remove the SMS

functionality from the sample and use email as the sole endpoint to subscribe to the
Amazon SNS topic.

For more information about sending SMS messages, see Sending and Receiving SMS

Notifications Using Amazon SNS in the Amazon Simple Notification Service Developer Guide.

We'll now add some code to utils.rb to load the config file, get the user's credentials, then
provide both the credentials and region to AWS. config.

Configuring the AWS Session API Version 2012-01-25 9

https://docs.aws.amazon.com/AWSRubySDK/latest/index.html#Basic_Configuration
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://en.wikipedia.org/wiki/Short_Message_Service
https://docs.aws.amazon.com/sns/latest/dg/sms_supported-countries.html
https://docs.aws.amazon.com/sns/latest/dg/SMSMessages.html
https://docs.aws.amazon.com/sns/latest/dg/SMSMessages.html
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method

Amazon Simple Workflow Service Developer Guide

require 'yaml'

Load the user's credentials from a file, if it exists.
begin
config_file = File.open('aws-config.txt') { |f| f.read }
rescue
puts "No config file! Hope you set your AWS credentials in the environment..."
end

if config_file.nil?

options = { }
else

options = YAML.load(config_file)
end

SMS Messaging (which can be used by Amazon SNS) is available only in the
‘us-east-1" region.

$SMS_REGION = 'us-east-1'

options[:region] = $SMS_REGION

Now, set the options
AWS.config = options

Registering an Amazon SWF Domain

To use Amazon SWF, you need to set up a domain: a named entity that will hold your workflows
and activities. You can have many Amazon SWF domains registered, but they must all have unique
names within your AWS account, and workflows can't interact across domains: All of the workflows
and activities for your application must be in the same domain to interact with one another.

Because we'll be using the same domain throughout our application, we'll create a function
inutils.rb called init_domain, that will retrieve the Amazon SWF domain named
SWFSampleDomain.

Once you have registered a domain, you can reuse it for many workflow executions. However, it
is an error to try to register a domain that already exists, so our code will first check to see if the
domain exists, and will use the existing domain if it can be found. If the domain can't be found,
we'll create it.

To work with Amazon SWF domains in the SDK for Ruby, use AWS::SimpleWorkflow.domains, which
returns a DomainCollection that can be used to both enumerate and register domains:

Registering an Amazon SWF Domain API Version 2012-01-25 10

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html#domains-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html

Amazon Simple Workflow Service Developer Guide

» To check to see if a domain is already registered, you can look at the list provided by
AWS::Simpleworkflow.domains.registered.

» To register a new domain, use AWS::Simpleworkflow.domains.register.

Here is the code for init_domaininutils.rb.

Registers the domain that the workflow will run in.
def init_domain

domain_name = 'SWFSampleDomain'

domain = nil

swf = AWS::SimpleWorkflow.new

First, check to see if the domain already exists and is registered.
swf.domains.registered.each do | d |
if(d.name == domain_name)
domain = d
break
end
end

if domain.nil?
Register the domain for one day.
domain = swf.domains.create(
domain_name, 1, { :description => "#{domain_name} domain" })
end

return domain
end

Next Steps

Next, you will create the workflow and starter code in Subscription Workflow Tutorial Part 2:

Implementing the Workflow.

Subscription Workflow Tutorial Part 2: Implementing the
Workflow

Up until now, our code has been pretty generic. This is the part where we begin to really define
what our workflow does, and what activities we'll need to implement it.

Next Steps API Version 2012-01-25 11

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html#registered-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html#register-instance_method

Amazon Simple Workflow Service Developer Guide

Topics

» Designing the Workflow

» Setting up our Workflow Code

» Registering the Workflow

» Polling for Decisions

» Starting the Workflow Execution
« Next Steps

Designing the Workflow

If you recall, the initial idea for this workflow consisted of the following steps:

1. Get a subscription address (email or SMS) from the user.
2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4. If the user confirms, publish a congratulatory message to the topic.

We can think of each step in our workflow as an activity that it must perform. Our workflow is
responsible for scheduling each activity at the appropriate time, and coordinating data transfer
between activities.

For this workflow, we'll create a separate activity for each of these steps, naming them
descriptively:

1. get_contact_activity
2. subscribe_topic_activity
3. wait_for_confirmation_activity

4. send_result_activity

These activities will be executed in order, and data from each step will be used in the subsequent
step.

We could design our application so that all of the code exists in one source file, but this runs
contrary to the way that Amazon SWF was designed. It is designed for workflows that can span the
entire Internet in scope, so let's at least break the application up into two separate executables:

Designing the Workflow API Version 2012-01-25 12

Amazon Simple Workflow Service Developer Guide

e« swf_sns_workflow.rb - Contains the workflow and workflow starter.

« swf_sns_activities.rb - Contains the activities and activities starter.

The workflow and activity implementations can be run in separate windows, separate computers,
or even different parts of the world. Because Amazon SWF is keeping track of the details of your
workflows and activities, your workflow can coordinate scheduling and data transfer of your
activities no matter where they are running.

Setting up our Workflow Code

We'll begin by creating a file called swf_sns_workflow. rb. In this file, declare a class called
SampleWorkflow. Here is the class declaration and its constructor, the initialize method.

require_relative 'utils.zrb'

SampleWorkflow - the main workflow for the SWF/SNS Sample

#

See the file called 'README.md" for a description of what this file does.
class SampleWorkflow

attr_accessor :name
def initialize(workflowId)

the domain to look for decision tasks in.
@domain = init_domain

the task list is used to poll for decision tasks.
@workflowId = workflowId

The list of activities to run, in order. These name/version hashes can be
passed directly to AWS::SimpleWorkflow::DecisionTask#schedule_activity_task.
Eactivity_list = [
{ :name => 'get_contact_activity', :version => 'vl1' },
{ :name => 'subscribe_topic_activity', :version => 'v1' },
{ :name => 'wait_for_confirmation_activity', :version => 'v1' },
{ :name => 'send_result_activity', :version => 'vl1' },
].reverse! # reverse the order... we're treating this like a stack.

register_workflow
end

Setting up our Workflow Code API Version 2012-01-25 13

Amazon Simple Workflow Service Developer Guide

As you can see, we are keeping the following class instance data:

e domain - The domain name retrieved from init_domainin utils.rb.
« workflowId - The task list passed into initialize.

e activity_list - The activity list, which has the names and versions of the activities we'll run.

The domain name, activity name, and activity version are enough for Amazon SWF to positively
identify an activity type, so that is all of the data we need to keep about our activities in order to
schedule them.

The task list will be used by the workflow's decider code to poll for decision tasks and schedule
activities.

At the end of this function, we call a method we haven't yet defined: register_workflow. We'll
define this method next.

Registering the Workflow

To use a workflow type, we must first register it. Like an activity type, a workflow type is identified
by its domain, name, and version. Also, like both domains and activity types, you can't re-register
an existing workflow type. If you need to change anything about a workflow type, you must
provide it with a new version, which essentially creates a new type.

Here is the code for register_workflow, which is used to either retrieve the existing workflow
type we registered on a previous run or to register the workflow if it has not yet been registered.

Registers the workflow

def register_workflow
workflow_name = 'swf-sns-workflow'
@workflow_type = nil

a default value...
workflow_version = '1'

Check to see if this workflow type already exists. If so, use it.
@domain.workflow_types.each do | a |

if (a.name == workflow_name) && (a.version == workflow_version)
@workflow_type = a
end
end

Registering the Workflow API Version 2012-01-25 14

Amazon Simple Workflow Service Developer Guide

if @workflow_type.nil?
options = {
:default_child_policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

puts "registering workflow: #{workflow_name}, #{workflow_version},
#{options.inspect}"
@workflow_type = @domain.workflow_types.register(workflow_name, workflow_version,
options)
end

puts "** registered workflow: #{workflow_name}"
end

First, we check to see if the workflow name and version is already registered by iterating through
the domain's workflow_types collection. If we find a match, we'll use the workflow type that was

already registered.

If we don't find a match, then a new workflow type is registered (by calling register on the same
workflow_types collection that we were searching for the workflow in) with the name 'swf-sns-
workflow', version '1', and the following options.

options = {
:default_child_policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

Options passed in during registration are used to set default behavior for our workflow type, so we
don't need to set these values every time we start a new workflow execution.

Here, we just set some timeout values: the maximum time it can take from the time a task starts
to when it closes (one hour), and the maximum time it can take for the workflow execution to
complete (24 hours). If either of these times are exceeded, the task or workflow will timeout.

For more information about timeout values, see Amazon SWF Timeout Types .

Polling for Decisions

At the heart of every workflow execution there is a decider. The decider's responsibility is for
managing the execution of the workflow itself. The decider receives decision tasks and responds to

Polling for Decisions API Version 2012-01-25 15

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#workflow_types-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowTypeCollection.html#register-instance_method

Amazon Simple Workflow Service Developer Guide

them, either by scheduling new activities, cancelling and restarting activities, or by setting the state
of the workflow execution as complete, cancelled, or failed.

The decider uses the workflow execution's task list name to receive decision tasks to respond
to. To poll for decision tasks, call poll on the domain's decision_tasks collection to loop over

available decision tasks. You can then check for new events in the decision task by iterating over its
new_events collection.

The returned events are AWS::SimpleWorkflow::HistoryEvent objects, and you can get the type of
the event by using the returned event's event_type member. For a list and description of history

event types, see HistoryEvent in the Amazon Simple Workflow Service APl Reference.

Here is the beginning of the decision task poller's logic. A new method in our workflow class called
poll_for_decisions.

def poll_for_decisions
first, poll for decision tasks...
@domain.decision_tasks.poll(e@workflowId) do | task |
task.new_events.each do | event |
case event.event_type

We'll now branch the execution of our decider based on the event_type that is received. The first
one we are likely to receive is WorkflowExecutionStarted. When this event is received, it means
that Amazon SWF is signaling to your decider that it should begin the workflow execution. We'll
begin by scheduling the first activity by calling schedule_activity_task on the task we received
while polling.

We'll pass it the first activity we declared in our activity list, which, because we reversed the list so
we can use it like a stack, occupies the 1ast position on the list. The "activities" we defined are just
maps consisting of a name and version number, but this is all that Amazon SWF needs to identify
the activity for scheduling, assuming that the activity has already been registered.

when 'WorkflowExecutionStarted'
schedule the last activity on the (reversed, remember?) list to
begin the workflow.
puts "** scheduling activity task: #{eactivity_list.last[:name]}"

task.schedule_activity_task(e@activity_list.last,
{ :workflowId => "#{@workflowId}-activities" })

Polling for Decisions API Version 2012-01-25 16

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTaskCollection.html#poll-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#decision_tasks-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#new_events-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/HistoryEvent.html
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/HistoryEvent.html#event_type-instance_method
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#schedule_activity_task-instance_method

Amazon Simple Workflow Service Developer Guide

When we schedule an activity, Amazon SWF sends an activity task to the activity task list that we
pass in while scheduling it, signaling the task to begin. We'll deal with activity tasks in Subscription
Workflow Tutorial Part 3: Implementing the Activities, but it is worth noting that we don't execute
the task here. We only tell Amazon SWF that it should be scheduled.

The next activity that we'll need to address is the ActivityTaskCompleted event, which occurs
when Amazon SWF has received an activity completed response from an activity task.

when 'ActivityTaskCompleted'
we are running the activities in strict sequential order, and
using the results of the previous activity as input for the next
activity.
last_activity = @activity_list.pop

if(@activity_list.empty?)
puts "!! All activities complete! Sending complete_workflow_execution..."
task.complete_workflow_execution
return true;
else
schedule the next activity, passing any results from the
previous activity. Results will be received in the activity
task.
puts "** scheduling activity task: #{eactivity list.last[:name]}"
if event.attributes.has_key?('result')
task.schedule_activity_task(
@activity_list.last,
{ :input => event.attributes[:result],
:workflowId => "#{@workflowId}-activities" })
else
task.schedule_activity_task(
@activity list.last, { :workflowId => "#{e@workflowId}-activities" })
end
end

Because we are executing our tasks in a linear fashion, and only one activity is executing at once,
we'll take this opportunity to pop the completed task from the activity_list stack. If this
results in an empty list, then we know that our workflow is complete. In this case, we signal to
Amazon SWF that our workflow is complete by calling complete_workflow_execution on the task.

In the event that the list still has entries, we'll schedule the next activity on the list (again, in the
last position). This time, however, we'll look to see if the previous activity returned any result data
to Amazon SWF upon completion, which is provided to the workflow in the event's attributes, in

Polling for Decisions API Version 2012-01-25 17

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DecisionTask.html#complete_workflow_execution-instance_method

Amazon Simple Workflow Service Developer Guide

the optional result key. If the activity generated a result, we'll pass it as the input option to the
next scheduled activity, along with the activity task list.

By retrieving the result values of completed activities, and by setting the input values of
scheduled activities, we can pass data from one activity to the next, or we can use data from an
activity to change behavior in our decider based on the results from an activity.

For the purposes of this tutorial, these two event types are the most important in defining

the behavior of our workflow. However, an activity can generate events other than
ActivityTaskCompleted. We'll wrap up our decider code by providing demonstration

handler code for the ActivityTaskTimedOut and ActivityTaskFailed events, and for the
WorkflowExecutionCompleted event, which will be generated when Amazon SWF processes the
complete_workflow_execution call that we make when we run out of activities to run.

when 'ActivityTaskTimedOut'
puts "!! Failing workflow execution! (timed out activity)"
task.fail_workflow_execution
return false

when 'ActivityTaskFailed'
puts "!! Failing workflow execution! (failed activity)"
task.fail_workflow_execution
return false

when 'WorkflowExecutionCompleted'

puts "## Yesss, workflow execution completed!"
task.workflow_execution.terminate

return false

end
end
end
end

Starting the Workflow Execution

Before any decision tasks will be generated for the workflow to poll for, we need to start the
workflow execution.

To start the workflow execution, call start_execution on your registered workflow type

(AWS::SimpleWorkflow::WorkflowType). We'll define a small wrapper around this to make use of

the workflow_type instance member that we retrieved in the class constructor.

Starting the Workflow Execution API Version 2012-01-25 18

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html#start_execution-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html

Amazon Simple Workflow Service Developer Guide

def start_execution
workflow_execution = @workflow_type.start_execution({
:workflowId => @workflowId })
poll_for_decisions
end
end

Once the workflow is executing, decision events will begin to appear on the workflow's task list,
which is passed as a workflow execution option in start_execution.

Unlike options that are provided when the workflow type is registered, options that are passed to
start_execution are not considered to be part of the workflow type. You are free to change
these per workflow execution without changing the workflow's version.

Because we'd like the workflow to begin executing when we run the file, add some code that
instantiates the class and then calls the start_execution method that we just defined.

if __FILE_ == $0
require 'securerandom'

Use a different task list name every time we start a new workflow execution.
#

This avoids issues if our pollers re-start before SWF considers them closed,
causing the pollers to get events from previously-run executions.

workflowId = SecureRandom.uuid

Let the user start the activity worker first...

puts ""

puts "Amazon SWF Example"
puts "--------cmmeeaoo- "
puts
puts "Start the activity worker, preferably in a separate command-line window, with"
puts "the following command:"

puts ""

puts "> ruby swf_sns_activities.rb #{workflowId}-activities"

puts ""

puts "You can copy & paste it if you like, just don't copy the '>' character."

puts ""

puts "Press return when you're ready..."

i = gets

Starting the Workflow Execution API Version 2012-01-25 19

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/WorkflowType.html#start_execution-instance_method

Amazon Simple Workflow Service Developer Guide

Now, start the workflow.

puts "Starting workflow execution."
sample_workflow = SampleWorkflow.new(workflowId)
sample_workflow.start_execution

end

To avoid any task list naming conflicts, we'll use SecureRandom. uuid to generate a random UUID
that we can use as the task list name, guaranteeing that a different task list name is used for each
workflow execution.

(@ Note

Task lists are used to record events about a workflow execution, so if you use the same
task list for multiple executions of the same workflow type, you might get events that
were generated during a previous execution, especially if you are running them in near
succession to each other, which is often the case when trying out new code or running
tests.

To avoid the issue of having to deal with artifacts from previous executions, we can use a new task
list for each execution, specifying it when we begin the workflow execution.

There is also a bit of code here to provide instructions for the person running it (probably you), and
to provide the "activity" version of the task list. The decider uses this task list name to schedule
activities for the workflow, and the activities implementation will listen for activity events on this
task list name to know when to begin the scheduled activities and to provide updates about the
activity execution.

The code also waits for the user to start running the activities starter before it starts the workflow
execution, so the activities starter will be ready to respond when activity tasks begin appearing on
the provided task list.

Next Steps

You have implemented the work flow. Next, you will define the activities and an activities starter, in
Subscription Workflow Tutorial Part 3: Implementing the Activities.

Next Steps API Version 2012-01-25 20

Amazon Simple Workflow Service Developer Guide

Subscription Workflow Tutorial Part 3: Implementing the
Activities

We'll now implement each of the activities in our workflow, beginning with a base class that
provides some common features for the activity code.

Topics

» Defining a Basic Activity Type

» Defining GetContactActivity

» Defining SubscribeTopicActivity

» Defining WaitForConfirmationActivity

« Defining SendResultActivity
» Next Steps

Defining a Basic Activity Type

When designing the workflow, we identified the following activities:

get_contact_activity

subscribe_topic_activity

wait_for_confirmation_activity

send_result_activity

We'll implement each of these activities now. Because our activities will share some features, let's
do a little groundwork and create some common code they can share. We'll call it BasicActivity,
and define it in a new file called basic_activity.zrb.

As with the other source files, we'll include utils.rb to access the init_domain function to set
up the sample domain.

require_relative 'utils.rb'

Next, we'll declare the basic activity class and some common data that we'll be interested in for
each activity. We'll save the activity's AWS::SimpleWorkflow::ActivityType instance, name, and

results in attributes of the class.

Part 3: Implementing the Activities API Version 2012-01-25 21

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityType.html

Amazon Simple Workflow Service Developer Guide

class BasicActivity

attr_accessor :activity_type
attr_accessor :name
attr_accessor :results

These attributes access instance data that's defined in the class' initialize method, which takes
an activity name, and an optional version and map of options to be used when registering the
activity with Amazon SWF.

def initialize(name, version = 'vl', options = nil)

@activity_type = nil
@name = name
@results = nil

get the domain to use for activity tasks.
@domain = init_domain

Check to see if this activity type already exists.
@domain.activity_types.each do | a |
if (a.name == @name) && (a.version == version)
@activity_type = a
end
end

if @activity_type.nil?
If no options were specified, use some reasonable defaults.
if options.nil?
options = {
All timeouts are in seconds.
:default_task_heartbeat_timeout => 900,
:default_task_schedule_to_start_timeout => 120,
:default_task_schedule_to_close_timeout => 3800,
:default_task_start_to_close_timeout => 3600 }
end
@activity_type = @domain.activity_types.register(@name, version, options)
end
end

As with workflow type registration, if an activity type is already registered, we can retrieve it by
looking at the domain's activity_types collection. If the activity can't be found, it will be registered.

Defining a Basic Activity Type API Version 2012-01-25 22

https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html#activity_types-instance_method

Amazon Simple Workflow Service Developer Guide

Also, as with workflow types, you can set default options that are stored with your activity type
when you register it.

The last thing our basic activity gets is a consistent way to run it. We'll define a do_activity
method that takes an activity task. As shown, we can use the passed-in activity task to receive data
via its input instance attribute.

def do_activity(task)
@results = task.input # may be nil
return true
end
end

That wraps up the BasicActivity class. Now we'll use it to make defining our activities simple and
consistent.

Defining GetContactActivity

The first activity that is run during a workflow execution is get_contact_activity, which
retrieves the user's Amazon SNS topic subscription information.

Create a new file called get_contact_activity.rb, and require both yaml, which we'll use to
prepare a string for passing to Amazon SWF, and basic_activity.rb, which we'll use as the
basis for this GetContactActivity class.

require 'yaml'
require_relative 'basic_activity.rb'

GetContactActivity provides a prompt for the user to enter contact
information. When the user successfully enters contact information, the
activity is complete.

class GetContactActivity < BasicActivity

Because we put the activity registration code in BasicActivity, the initialize method for
GetContactActivity is pretty simple. We simply call the base class constructor with the activity
name, get_contact_activity. Thisis all that is required to register our activity.

initialize the activity
def initialize
super('get_contact_activity')

Defining GetContactActivity API Version 2012-01-25 23

Amazon Simple Workflow Service

Developer Guide

end

We'll now define the do_activity method, which prompts for the user's email and/or phone

number.

def do_activity(task)

puts ""

puts "Please enter either an email address or SMS message (mobile phone) number
to"

puts "receive SNS notifications. You can also enter both to use both address
types."

puts ""

puts "If you enter a phone number, it must be able to receive SMS messages, and
must"

puts "be 11 digits (such as 12065550101 to represent the number

1-206-555-0101)."

input_confirmed = false
while !input_confirmed

puts
print "Email:
email = $stdin.gets.strip

print "Phone:
phone = $stdin.gets.strip
puts mnn

if (email == '') && (phone == '")

print "You provided no subscription information. Quit? (y/n)"

confirmation = $stdin.gets.strip.downcase
'y

if confirmation ==
return false
end
else

puts "You entered:"
puts email: #{emaill}"

puts phone: #{phone}"

print "\nIs this correct? (y/n):
confirmation = $stdin.gets.strip.downcase

y
input_confirmed = true

if confirmation ==

end
end

Defining GetContactActivity

API Version 2012-01-25 24

Amazon Simple Workflow Service Developer Guide

end

make sure that @results is a single string. YAML makes this easy.
@results = { :email => email, :sms => phone }.to_yaml
return true
end
end

At the end of do_activity, we take the email and phone number retrieved from the user, place it
in @ map and then use to_yaml to convert the entire map to a YAML string. There's an important
reason for this: any results that you pass to Amazon SWF when you complete an activity must be
string data only. Ruby's ability to easily convert objects to YAML strings and then back again into
objects is, thankfully, well-suited for this purpose.

That's the end of the get_contact_activity implementation. This data will be used next in the
subscribe_topic_activity implementation.

Defining SubscribeTop