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What is Amazon Simple Workflow Service?

With Amazon Simple Workflow Service (Amazon SWF) you can build, run, and scale background
jobs that have parallel or sequential steps. You can coordinate work across distributed components
and track the state of tasks.

In Amazon SWF, a task represents a logical unit of work that is performed by a component of your
application. Coordinating tasks across includes managing inter-task dependencies, scheduling, and
concurrency in the flow of your application. With Amazon SWF, you can control and coordinate
tasks without worrying about underlying complexities, such as tracking progress and maintaining
task state.

When using Amazon SWF, you implement workers to perform tasks. Workers can run either on
cloud infrastructure, such as Amazon Elastic Compute Cloud (Amazon EC2), or on your own
premises. You can create tasks that are long-running, or that may fail, time out, or require restarts
—or that may complete with varying throughput and latency. Amazon SWF stores tasks and
assigns them to workers when they are ready, tracks progress, and maintains state, including
details of task completion.

To coordinate tasks, you write a program that gets the latest task state from Amazon SWF and uses
that state to initiate subsequent tasks. Amazon SWF maintains an application's execution state
durably, so your application is resilient to individual component failures. With Amazon SWF, you
can build, deploy, scale, and modify application components independently.

(@ Other AWS workflow services

For most use cases, we recommend considering AWS Step Functions for your workflow and
orchestration needs.

With Step Functions, you can create workflows, also called state machines, to build
distributed applications, automate processes, orchestrate microservices, and create data
and machine learning pipelines. In the Step Functions' console or AWS toolkit in VS

Code, you can use the graphical Workflow Studio to visualize, edit, test, and debug your
application’s workflow.

For more technical information, see the AWS Step Functions Developer Guide.
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Developing workflow components with Amazon SWF

Developing distributed applications requires coordinating many components and dealing with
latency and unreliability inherent in remote communication.

With Amazon Simple Workflow Service (Amazon SWF), you can develop asynchronous and
distributed applications by providing a programming model and infrastructure for coordinating
distributed components and maintaining their execution state in a reliable way. By relying on
Amazon SWF, you are freed to focus on building the aspects of your application that differentiate
it.

Components of a workflow

Components of a workflow The fundamental concept in Amazon SWF is the workflow. A workflow
is a set of activities that carry out some objective, together with logic that coordinates the
activities. For example, a workflow could receive a customer order and take whatever actions are
necessary to fulfill the order.

Each workflow runs in a resource called a domain, which controls the workflow's scope. An AWS
account can have multiple domains, each of which can contain multiple workflows, but workflows
in different domains can't interact.

When designing an Amazon SWF workflow, you define each of the required activities. You then
register each activity with Amazon SWF as an activity type. You will provide a name, version, and
timeout values. For example, a customer may have an expectation that an order will ship within 24
hours.

In the process of carrying out the workflow, some activities may need to be performed more than
once, perhaps with varying inputs. For example, in a customer-order workflow, you might have an
activity that handles purchased items. If the customer purchases multiple items, then this activity
would have to run multiple times. Amazon SWF has the concept of an activity task that represents
one invocation of an activity. In our example, the processing of each item would be represented by
a single activity task.

An activity worker is a program that receives activity tasks, performs them, and provides results.
The task might actually be performed by a person. For example, a statistical analyst might receive
sets of data, analyze the data, and then send back their analysis.
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Activity tasks, and the activity workers that perform them, can run synchronously or
asynchronously. Workers can run in one location or be distributed across multiple computers,
potentially in different geographic regions. Different activity workers can be written in different
programming languages and run on different operating systems. For example, one activity worker
might be running on a server in Asia, while another might be running on a mobile device in North
America.

The coordination logic in a workflow is contained in a software program called a decider. A decider
schedules activity tasks, provides input to activity workers, processes events that arrive while the
workflow is in progress, and ends (or closes) the workflow after the objective has been met.

The role of the Amazon SWF service is to function as a reliable central hub through which data is
exchanged between the decider, the activity workers, and other relevant entities such as the person
administering the workflow. Amazon SWF also maintains the state of each workflow execution,
which saves your application from having to store the state in a durable way.

The decider directs the workflow by receiving decision tasks from Amazon SWF and responding
back to Amazon SWF with decisions. A decision represents an action or set of actions, which are the
next steps in the workflow. A typical decision would be to schedule an activity task. Decisions can
also be used to delay tasks with timers, request cancellation of in-progress tasks, and to complete
workflows.

The mechanism by which both the activity workers and the decider receive their tasks (activity
tasks and decision tasks respectively) is by polling the Amazon SWF service.

Amazon SWF informs the decider of the state of the workflow by including, with each decision
task, a copy of the current workflow execution history. The workflow execution history is composed
of events, where an event represents a significant change in the state of the workflow execution.
Examples of events include task completion, task time outs, or the expiration of a timer. The
history is a complete, consistent, and authoritative record of the workflow's progress.

Amazon SWF access control uses AWS Identity and Access Management (IAM), so you can control
access to AWS resources. For example, you can allow a user to access your account, but only to run
certain workflows in a particular domain.

Running your workflow

The following provide an overview of the steps necessary to develop and run a workflow in
Amazon SWF:
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1. Write activity workers to perform the processing steps in your workflow.
2. Write a decider to handle the coordination logic of your workflow.

3. Register your activities and workflow with Amazon SWF.

You can do this step programmatically or by using the AWS Management Console.

4. Start your activity workers and decider.

These actors can run on any computing device that can access an Amazon SWF endpoint. For
example, you could use compute instances in the cloud, such as Amazon Elastic Compute Cloud
(Amazon EC2); servers in your data center; or even a mobile device, to host a decider or activity
worker. Once started, the decider and activity workers should start polling Amazon SWF for
tasks.

5. Start one or more executions of your workflow.
You can start workflows programmatically or via the AWS Management Console.

Each execution runs independently and you can provide each with its own set of input data.
When an execution is started, Amazon SWF schedules the initial decision task. In response, your
decider begins generating decisions that initiate activity tasks. Execution continues until your
decider makes a decision to close the execution.

6. View workflow executions using the AWS Management Console.

You can filter and view complete details of running and completed executions. For example, you
can select an open execution to see which tasks have been completed and what their results
were.

Setting up your development environment

You have the option of developing for Amazon SWF in any of the programming languages
supported by AWS. For Java developers, the AWS Flow Framework is also available. For more
information, see the AWS Flow Framework website, and see AWS Flow Framework for Java
Developer Guide.

To reduce latency and to store data in a location that meets your requirements, Amazon SWF
provides endpoints in different Regions.

Each endpoint in Amazon SWF is completely independent. Any domains, workflows, and activities
you have registered in one Region will not share data or attributes with those in another Region.
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When you register an Amazon SWF domain, workflow, or activity, it exists only within the Region
you registered it in. For example, you could register a domain named SWF-Flows-1 in two different
Regions, but they will share no data or attributes with each other — each acting as a completely
independent domain.

For a list of Amazon SWF endpoints, see Regions and Endpoints.

Develop with AWS SDKs

Amazon SWF is supported by the AWS SDKs for Java, .NET, Node.js, PHP, Python, and Ruby,
providing a convenient way to use the Amazon SWF HTTP API in the programming language of
your choice.

You can develop deciders, activity workers, or workflow starters using the APl exposed by these
libraries. And, you can use visibility operations through these libraries so you can develop your own
Amazon SWF monitoring and reporting tools.

To download tools for developing and managing applications on AWS, including SDKs, go to the
Developer Center.

For detailed information about the Amazon SWF operations in each SDK, refer to the language-
specific reference documentation for the SDK.

Consider the AWS Flow Framework

The AWS Flow Framework is an enhanced SDK for writing distributed, asynchronous programs that
run as workflows on Amazon SWF. The framework is available for the Java programming language
and provides classes for writing complex distributed programs.

With the AWS Flow Framework, you use preconfigured types to map the definition of your
workflow directly to methods in your program. The AWS Flow Framework supports standard
object-oriented concepts, such as exception-based error handling. Programs written with the AWS
Flow Framework can be created, run, and debugged entirely within your preferred editor or IDE. For
more information, see the AWS Flow Framework website, and see AWS Flow Framework for Java

Developer Guide.
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Getting started with Amazon SWF

You can get started with the following Amazon Simple Workflow Service workflow application
which consists of a set of four activities that operate sequentially. The tutorial also covers the
following topics:

 Setting default and execution-time workflow and activity options.

« Polling Amazon SWF for decision and activity tasks.

» Passing data between the activities and the workflow with Amazon SWF.

« Waiting for human tasks and reporting heartbeats to Amazon SWF from an activity task.

« Using Amazon SNS to create a topic, subscribe a user to it, and publish messages to subscribed
endpoints.

You can use Amazon SWF and Amazon Simple Notification Service (Amazon SNS) together to
emulate a "human task" workflow—one in which a human worker is required to perform some
action and then communicate with Amazon SWF to launch the next activity in the workflow.

Because Amazon SWF is a cloud-based web service, communication with Amazon SWF can
originate from anywhere a connection to the Internet is available. In this case, we will use Amazon
SNS to communicate with the user by either email, an SMS text message, or both.

This tutorial uses the AWS SDK for Ruby to access Amazon SWF and Amazon SNS, but there are
many development options available, including the AWS Flow Framework for Ruby, which provides

easier coordination and communication with Amazon SWF.

(® Note

This tutorial uses the AWS SDK for Ruby, but we recommend that you use the AWS Flow
Framework for Java.

Topics

About the Workflow

Prerequisites

Tutorial Steps

Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby
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» Subscription Workflow Tutorial Part 2: Implementing the Workflow

o Subscription Workflow Tutorial Part 3: Implementing the Activities

o Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller

» Subscription Workflow Tutorial: Running the Workflow

About the Workflow

The workflow that we will be developing consists of four major steps:

1. Get a subscription address (email or SMS) from the user.
2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4. If the user confirms, publish a congratulatory message to the topic.

These steps include activities that are completely automated (steps 2 and 4), and others that
require the workflow to wait for a human to provide some data to the activity before the workflow
can progress (steps 1 and 3).

Each step relies on data that is generated by the previous step (you must have an endpoint
before subscribing it to a topic, and you must have a topic subscription before you can wait for
confirmation, etc.) This tutorial will also cover how to provide activity results upon completion,
and how to pass input to a task that is being scheduled. Amazon SWF handles coordination and
delivery of information between the activities and the workflow, and vice-versa.

We're also using both keyboard input and Amazon SNS to handle communication between Amazon
SWF and the human who is providing data to the workflow. In practice, you can use many different
techniques to communicate with human users, but Amazon SNS provides a very easy way to use
email or text messages to notify the user about events in the workflow.

Prerequisites

To follow along with this tutorial, you will need the following:

« Amazon Web Services account

« Ruby interpreter
o AWS SDK for Ruby
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If you already have these set up, you're ready to continue. If you don't want to run the example,
you can still follow the tutorial—much of the content in this tutorial applies to using Amazon SWF
and Amazon SNS regardless of the development option you choose.

Tutorial Steps

This tutorial is divided into the following steps:

1. Subscription Workflow Tutorial Part 1: Using Amazon SWF with the AWS SDK for Ruby

2. Subscription Workflow Tutorial Part 2: Implementing the Workflow

3. Subscription Workflow Tutorial Part 3: Implementing the Activities

4. Subscription Workflow Tutorial Part 4: Implementing the Activities Task Poller

5. Subscription Workflow Tutorial: Running the Workflow

Subscription Workflow Tutorial Part 1: Using Amazon SWF with
the AWS SDK for Ruby

Topics

* Include the AWS SDK for Ruby

» Configuring the AWS Session

» Registering an Amazon SWF Domain

» Next Steps

Include the AWS SDK for Ruby

Begin by creating a file called utils. rb. The code in this file will obtain, or create if necessary, the
Amazon SWF domain used by both the workflow and activities code and will provide a place to put
code that is common to all of our classes.

First, we need to include the aws-sdk-v1 library in our code, so that we can use the features
provided by the SDK for Ruby.

require 'aws-sdk-v1l'
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This gives us access to the AWS namespace, which provides the ability to set global session-related
values, such as your AWS credentials and region, and also provides access to the AWS service APlIs.

Configuring the AWS Session

We'll configure the AWS Session by setting our AWS credentials (which are needed for accessing
AWS services) and the AWS region to use.

There are a number of ways to set AWS credentials in the AWS SDK for Ruby: by setting them in
environment variables (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY) or by setting them
with AWS . config. We'll use the latter method, loading them from a YAML configuration file, called
aws-config.txt, that looks like this.

:access_key_id: REPLACE_WITH_ACCESS_KEY_ID
:secret_access_key: REPLACE_WITH_SECRET_ACCESS_KEY

Create this file now, replacing the strings beginning with REPLACE_WITH_ with your AWS access
key ID and secret access key. For information about your AWS access keys, see How Do | Get
Security Credentials? in the Amazon Web Services General Reference.

We also need to set the AWS region to use. Because we'll be using the Short Message Service (SMS)

to send text messages to the user's phone with Amazon SNS, we need to make sure that we're
using region supported by Amazon SNS. See Supported Regions and Countries in the Amazon

Simple Notification Service Developer Guide.

(@ Note

If you don't have access to us-east-1, or don't care about running the demo with SMS
messaging enabled, feel free to use any region you wish to. You can remove the SMS

functionality from the sample and use email as the sole endpoint to subscribe to the
Amazon SNS topic.

For more information about sending SMS messages, see Sending and Receiving SMS

Notifications Using Amazon SNS in the Amazon Simple Notification Service Developer Guide.

We'll now add some code to utils.rb to load the config file, get the user's credentials, then
provide both the credentials and region to AWS. config.
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require 'yaml'

# Load the user's credentials from a file, if it exists.
begin
config_file = File.open('aws-config.txt') { |f| f.read }
rescue
puts "No config file! Hope you set your AWS credentials in the environment..."
end

if config_file.nil?

options = { }
else

options = YAML.load(config_file)
end

# SMS Messaging (which can be used by Amazon SNS) is available only in the
# ‘us-east-1" region.

$SMS_REGION = 'us-east-1'

options[:region] = $SMS_REGION

# Now, set the options
AWS.config = options

Registering an Amazon SWF Domain

To use Amazon SWF, you need to set up a domain: a named entity that will hold your workflows
and activities. You can have many Amazon SWF domains registered, but they must all have unique
names within your AWS account, and workflows can't interact across domains: All of the workflows
and activities for your application must be in the same domain to interact with one another.

Because we'll be using the same domain throughout our application, we'll create a function
inutils.rb called init_domain, that will retrieve the Amazon SWF domain named
SWFSampleDomain.

Once you have registered a domain, you can reuse it for many workflow executions. However, it
is an error to try to register a domain that already exists, so our code will first check to see if the
domain exists, and will use the existing domain if it can be found. If the domain can't be found,
we'll create it.

To work with Amazon SWF domains in the SDK for Ruby, use AWS::SimpleWorkflow.domains, which
returns a DomainCollection that can be used to both enumerate and register domains:

Registering an Amazon SWF Domain API Version 2012-01-25 10


https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html#domains-instance_method
https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/DomainCollection.html

Amazon Simple Workflow Service Developer Guide

» To check to see if a domain is already registered, you can look at the list provided by
AWS::Simpleworkflow.domains.registered.

» To register a new domain, use AWS::Simpleworkflow.domains.register.

Here is the code for init_domaininutils.rb.

# Registers the domain that the workflow will run in.
def init_domain

domain_name = 'SWFSampleDomain'

domain = nil

swf = AWS::SimpleWorkflow.new

# First, check to see if the domain already exists and is registered.
swf.domains.registered.each do | d |
if(d.name == domain_name)
domain = d
break
end
end

if domain.nil?
# Register the domain for one day.
domain = swf.domains.create(
domain_name, 1, { :description => "#{domain_name} domain" })
end

return domain
end

Next Steps

Next, you will create the workflow and starter code in Subscription Workflow Tutorial Part 2:

Implementing the Workflow.

Subscription Workflow Tutorial Part 2: Implementing the
Workflow

Up until now, our code has been pretty generic. This is the part where we begin to really define
what our workflow does, and what activities we'll need to implement it.
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Topics

» Designing the Workflow

» Setting up our Workflow Code

» Registering the Workflow

» Polling for Decisions

» Starting the Workflow Execution
« Next Steps

Designing the Workflow

If you recall, the initial idea for this workflow consisted of the following steps:

1. Get a subscription address (email or SMS) from the user.
2. Create an SNS topic and subscribe the provided endpoints to the topic.
3. Wait for the user to confirm the subscription.

4. If the user confirms, publish a congratulatory message to the topic.

We can think of each step in our workflow as an activity that it must perform. Our workflow is
responsible for scheduling each activity at the appropriate time, and coordinating data transfer
between activities.

For this workflow, we'll create a separate activity for each of these steps, naming them
descriptively:

1. get_contact_activity
2. subscribe_topic_activity
3. wait_for_confirmation_activity

4. send_result_activity

These activities will be executed in order, and data from each step will be used in the subsequent
step.

We could design our application so that all of the code exists in one source file, but this runs
contrary to the way that Amazon SWF was designed. It is designed for workflows that can span the
entire Internet in scope, so let's at least break the application up into two separate executables:
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e« swf_sns_workflow.rb - Contains the workflow and workflow starter.

« swf_sns_activities.rb - Contains the activities and activities starter.

The workflow and activity implementations can be run in separate windows, separate computers,
or even different parts of the world. Because Amazon SWF is keeping track of the details of your
workflows and activities, your workflow can coordinate scheduling and data transfer of your
activities no matter where they are running.

Setting up our Workflow Code

We'll begin by creating a file called swf_sns_workflow. rb. In this file, declare a class called
SampleWorkflow. Here is the class declaration and its constructor, the initialize method.

require_relative 'utils.zrb'

# SampleWorkflow - the main workflow for the SWF/SNS Sample

#

# See the file called 'README.md" for a description of what this file does.
class SampleWorkflow

attr_accessor :name
def initialize(workflowId)

# the domain to look for decision tasks in.
@domain = init_domain

# the task list is used to poll for decision tasks.
@workflowId = workflowId

# The list of activities to run, in order. These name/version hashes can be
# passed directly to AWS::SimpleWorkflow::DecisionTask#schedule_activity_task.
Eactivity_list = [
{ :name => 'get_contact_activity', :version => 'vl1' },
{ :name => 'subscribe_topic_activity', :version => 'v1' },
{ :name => 'wait_for_confirmation_activity', :version => 'v1' },
{ :name => 'send_result_activity', :version => 'vl1' },
].reverse! # reverse the order... we're treating this like a stack.

register_workflow
end
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As you can see, we are keeping the following class instance data:

e domain - The domain name retrieved from init_domainin utils.rb.
« workflowId - The task list passed into initialize.

e activity_list - The activity list, which has the names and versions of the activities we'll run.

The domain name, activity name, and activity version are enough for Amazon SWF to positively
identify an activity type, so that is all of the data we need to keep about our activities in order to
schedule them.

The task list will be used by the workflow's decider code to poll for decision tasks and schedule
activities.

At the end of this function, we call a method we haven't yet defined: register_workflow. We'll
define this method next.

Registering the Workflow

To use a workflow type, we must first register it. Like an activity type, a workflow type is identified
by its domain, name, and version. Also, like both domains and activity types, you can't re-register
an existing workflow type. If you need to change anything about a workflow type, you must
provide it with a new version, which essentially creates a new type.

Here is the code for register_workflow, which is used to either retrieve the existing workflow
type we registered on a previous run or to register the workflow if it has not yet been registered.

# Registers the workflow

def register_workflow
workflow_name = 'swf-sns-workflow'
@workflow_type = nil

# a default value...
workflow_version = '1'

# Check to see if this workflow type already exists. If so, use it.
@domain.workflow_types.each do | a |

if (a.name == workflow_name) && (a.version == workflow_version)
@workflow_type = a
end
end
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if @workflow_type.nil?
options = {
:default_child_policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

puts "registering workflow: #{workflow_name}, #{workflow_version},
#{options.inspect}"
@workflow_type = @domain.workflow_types.register(workflow_name, workflow_version,
options)
end

puts "** registered workflow: #{workflow_name}"
end

First, we check to see if the workflow name and version is already registered by iterating through
the domain's workflow_types collection. If we find a match, we'll use the workflow type that was

already registered.

If we don't find a match, then a new workflow type is registered (by calling register on the same
workflow_types collection that we were searching for the workflow in) with the name 'swf-sns-
workflow', version '1', and the following options.

options = {
:default_child_policy => :terminate,
:default_task_start_to_close_timeout => 3600,
:default_execution_start_to_close_timeout => 24 * 3600 }

Options passed in during registration are used to set default behavior for our workflow type, so we
don't need to set these values every time we start a new workflow execution.

Here, we just set some timeout values: the maximum time it can take from the time a task starts
to when it closes (one hour), and the maximum time it can take for the workflow execution to
complete (24 hours). If either of these times are exceeded, the task or workflow will timeout.

For more information about timeout values, see Amazon SWF Timeout Types .

Polling for Decisions

At the heart of every workflow execution there is a decider. The decider's responsibility is for
managing the execution of the workflow itself. The decider receives decision tasks and responds to
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them, either by scheduling new activities, cancelling and restarting activities, or by setting the state
of the workflow execution as complete, cancelled, or failed.

The decider uses the workflow execution's task list name to receive decision tasks to respond
to. To poll for decision tasks, call poll on the domain's decision_tasks collection to loop over

available decision tasks. You can then check for new events in the decision task by iterating over its
new_events collection.

The returned events are AWS::SimpleWorkflow::HistoryEvent objects, and you can get the type of
the event by using the returned event's event_type member. For a list and description of history

event types, see HistoryEvent in the Amazon Simple Workflow Service APl Reference.

Here is the beginning of the decision task poller's logic. A new method in our workflow class called
poll_for_decisions.

def poll_for_decisions
# first, poll for decision tasks...
@domain.decision_tasks.poll(e@workflowId) do | task |
task.new_events.each do | event |
case event.event_type

We'll now branch the execution of our decider based on the event_type that is received. The first
one we are likely to receive is WorkflowExecutionStarted. When this event is received, it means
that Amazon SWF is signaling to your decider that it should begin the workflow execution. We'll
begin by scheduling the first activity by calling schedule_activity_task on the task we received
while polling.

We'll pass it the first activity we declared in our activity list, which, because we reversed the list so
we can use it like a stack, occupies the 1ast position on the list. The "activities" we defined are just
maps consisting of a name and version number, but this is all that Amazon SWF needs to identify
the activity for scheduling, assuming that the activity has already been registered.

when 'WorkflowExecutionStarted'
# schedule the last activity on the (reversed, remember?) list to
# begin the workflow.
puts "** scheduling activity task: #{eactivity_list.last[:name]}"

task.schedule_activity_task( e@activity_list.last,
{ :workflowId => "#{@workflowId}-activities" } )
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When we schedule an activity, Amazon SWF sends an activity task to the activity task list that we
pass in while scheduling it, signaling the task to begin. We'll deal with activity tasks in Subscription
Workflow Tutorial Part 3: Implementing the Activities, but it is worth noting that we don't execute
the task here. We only tell Amazon SWF that it should be scheduled.

The next activity that we'll need to address is the ActivityTaskCompleted event, which occurs
when Amazon SWF has received an activity completed response from an activity task.

when 'ActivityTaskCompleted'
# we are running the activities in strict sequential order, and
# using the results of the previous activity as input for the next
# activity.
last_activity = @activity_list.pop

if(@activity_list.empty?)
puts "!! All activities complete! Sending complete_workflow_execution..."
task.complete_workflow_execution
return true;
else
# schedule the next activity, passing any results from the
# previous activity. Results will be received in the activity
# task.
puts "** scheduling activity task: #{eactivity list.last[:name]}"
if event.attributes.has_key?('result')
task.schedule_activity_task(
@activity_list.last,
{ :input => event.attributes[:result],
:workflowId => "#{@workflowId}-activities" } )
else
task.schedule_activity_task(
@activity list.last, { :workflowId => "#{e@workflowId}-activities" } )
end
end

Because we are executing our tasks in a linear fashion, and only one activity is executing at once,
we'll take this opportunity to pop the completed task from the activity_list stack. If this
results in an empty list, then we know that our workflow is complete. In this case, we signal to
Amazon SWF that our workflow is complete by calling complete_workflow_execution on the task.

In the event that the list still has entries, we'll schedule the next activity on the list (again, in the
last position). This time, however, we'll look to see if the previous activity returned any result data
to Amazon SWF upon completion, which is provided to the workflow in the event's attributes, in
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the optional result key. If the activity generated a result, we'll pass it as the input option to the
next scheduled activity, along with the activity task list.

By retrieving the result values of completed activities, and by setting the input values of
scheduled activities, we can pass data from one activity to the next, or we can use data from an
activity to change behavior in our decider based on the results from an activity.

For the purposes of this tutorial, these two event types are the most important in defining

the behavior of our workflow. However, an activity can generate events other than
ActivityTaskCompleted. We'll wrap up our decider code by providing demonstration

handler code for the ActivityTaskTimedOut and ActivityTaskFailed events, and for the
WorkflowExecutionCompleted event, which will be generated when Amazon SWF processes the
complete_workflow_execution call that we make when we run out of activities to run.

when 'ActivityTaskTimedOut'
puts "!! Failing workflow execution! (timed out activity)"
task.fail_workflow_execution
return false

when 'ActivityTaskFailed'
puts "!! Failing workflow execution! (failed activity)"
task.fail_workflow_execution
return false

when 'WorkflowExecutionCompleted'

puts "## Yesss, workflow execution completed!"
task.workflow_execution.terminate

return false

end
end
end
end

Starting the Workflow Execution

Before any decision tasks will be generated for the workflow to poll for, we need to start the
workflow execution.

To start the workflow execution, call start_execution on your registered workflow type

(AWS::SimpleWorkflow::WorkflowType). We'll define a small wrapper around this to make use of

the workflow_type instance member that we retrieved in the class constructor.
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def start_execution
workflow_execution = @workflow_type.start_execution( {
:workflowId => @workflowId } )
poll_for_decisions
end
end

Once the workflow is executing, decision events will begin to appear on the workflow's task list,
which is passed as a workflow execution option in start_execution.

Unlike options that are provided when the workflow type is registered, options that are passed to
start_execution are not considered to be part of the workflow type. You are free to change
these per workflow execution without changing the workflow's version.

Because we'd like the workflow to begin executing when we run the file, add some code that
instantiates the class and then calls the start_execution method that we just defined.

if __FILE_ == $0
require 'securerandom'

# Use a different task list name every time we start a new workflow execution.
#

# This avoids issues if our pollers re-start before SWF considers them closed,
# causing the pollers to get events from previously-run executions.

workflowId = SecureRandom.uuid

# Let the user start the activity worker first...

puts ""

puts "Amazon SWF Example"
puts "--------cmmeeaoo- "
puts
puts "Start the activity worker, preferably in a separate command-line window, with"
puts "the following command:"

puts ""

puts "> ruby swf_sns_activities.rb #{workflowId}-activities"

puts ""

puts "You can copy & paste it if you like, just don't copy the '>' character."

puts ""

puts "Press return when you're ready..."

i = gets
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# Now, start the workflow.

puts "Starting workflow execution."
sample_workflow = SampleWorkflow.new(workflowId)
sample_workflow.start_execution

end

To avoid any task list naming conflicts, we'll use SecureRandom. uuid to generate a random UUID
that we can use as the task list name, guaranteeing that a different task list name is used for each
workflow execution.

(@ Note

Task lists are used to record events about a workflow execution, so if you use the same
task list for multiple executions of the same workflow type, you might get events that
were generated during a previous execution, especially if you are running them in near
succession to each other, which is often the case when trying out new code or running
tests.

To avoid the issue of having to deal with artifacts from previous executions, we can use a new task
list for each execution, specifying it when we begin the workflow execution.

There is also a bit of code here to provide instructions for the person running it (probably you), and
to provide the "activity" version of the task list. The decider uses this task list name to schedule
activities for the workflow, and the activities implementation will listen for activity events on this
task list name to know when to begin the scheduled activities and to provide updates about the
activity execution.

The code also waits for the user to start running the activities starter before it starts the workflow
execution, so the activities starter will be ready to respond when activity tasks begin appearing on
the provided task list.

Next Steps

You have implemented the work flow. Next, you will define the activities and an activities starter, in
Subscription Workflow Tutorial Part 3: Implementing the Activities.
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Subscription Workflow Tutorial Part 3: Implementing the
Activities

We'll now implement each of the activities in our workflow, beginning with a base class that
provides some common features for the activity code.

Topics

» Defining a Basic Activity Type

» Defining GetContactActivity

» Defining SubscribeTopicActivity

» Defining WaitForConfirmationActivity

« Defining SendResultActivity
» Next Steps

Defining a Basic Activity Type

When designing the workflow, we identified the following activities:

get_contact_activity

subscribe_topic_activity

wait_for_confirmation_activity

send_result_activity

We'll implement each of these activities now. Because our activities will share some features, let's
do a little groundwork and create some common code they can share. We'll call it BasicActivity,
and define it in a new file called basic_activity.zrb.

As with the other source files, we'll include utils.rb to access the init_domain function to set
up the sample domain.

require_relative 'utils.rb'

Next, we'll declare the basic activity class and some common data that we'll be interested in for
each activity. We'll save the activity's AWS::SimpleWorkflow::ActivityType instance, name, and

results in attributes of the class.

Part 3: Implementing the Activities API Version 2012-01-25 21


https://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/ActivityType.html

Amazon Simple Workflow Service Developer Guide

class BasicActivity

attr_accessor :activity_type
attr_accessor :name
attr_accessor :results

These attributes access instance data that's defined in the class' initialize method, which takes
an activity name, and an optional version and map of options to be used when registering the
activity with Amazon SWF.

def initialize(name, version = 'vl', options = nil)

@activity_type = nil
@name = name
@results = nil

# get the domain to use for activity tasks.
@domain = init_domain

# Check to see if this activity type already exists.
@domain.activity_types.each do | a |
if (a.name == @name) && (a.version == version)
@activity_type = a
end
end

if @activity_type.nil?
# If no options were specified, use some reasonable defaults.
if options.nil?
options = {
# All timeouts are in seconds.
:default_task_heartbeat_timeout => 900,
:default_task_schedule_to_start_timeout => 120,
:default_task_schedule_to_close_timeout => 3800,
:default_task_start_to_close_timeout => 3600 }
end
@activity_type = @domain.activity_types.register(@name, version, options)
end
end

As with workflow type registration, if an activity type is already registered, we can retrieve it by
looking at the domain's activity_types collection. If the activity can't be found, it will be registered.
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Also, as with workflow types, you can set default options that are stored with your activity type
when you register it.

The last thing our basic activity gets is a consistent way to run it. We'll define a do_activity
method that takes an activity task. As shown, we can use the passed-in activity task to receive data
via its input instance attribute.

def do_activity(task)
@results = task.input # may be nil
return true
end
end

That wraps up the BasicActivity class. Now we'll use it to make defining our activities simple and
consistent.

Defining GetContactActivity

The first activity that is run during a workflow execution is get_contact_activity, which
retrieves the user's Amazon SNS topic subscription information.

Create a new file called get_contact_activity.rb, and require both yaml, which we'll use to
prepare a string for passing to Amazon SWF, and basic_activity.rb, which we'll use as the
basis for this GetContactActivity class.

require 'yaml'
require_relative 'basic_activity.rb'

# **GetContactActivity** provides a prompt for the user to enter contact
# information. When the user successfully enters contact information, the
# activity is complete.

class GetContactActivity < BasicActivity

Because we put the activity registration code in BasicActivity, the initialize method for
GetContactActivity is pretty simple. We simply call the base class constructor with the activity
name, get_contact_activity. Thisis all that is required to register our activity.

# initialize the activity
def initialize
super('get_contact_activity')
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end

We'll now define the do_activity method, which prompts for the user's email and/or phone

number.

def do_activity(task)

puts ""

puts "Please enter either an email address or SMS message (mobile phone) number
to"

puts "receive SNS notifications. You can also enter both to use both address
types."

puts ""

puts "If you enter a phone number, it must be able to receive SMS messages, and
must"

puts "be 11 digits (such as 12065550101 to represent the number

1-206-555-0101)."

input_confirmed = false
while !input_confirmed

puts
print "Email:
email = $stdin.gets.strip

print "Phone:
phone = $stdin.gets.strip
puts mnn

if (email == '') && (phone == '")

print "You provided no subscription information. Quit? (y/n)"

confirmation = $stdin.gets.strip.downcase
'y

if confirmation ==
return false
end
else

puts "You entered:"
puts email: #{emaill}"

puts phone: #{phone}"

print "\nIs this correct? (y/n):
confirmation = $stdin.gets.strip.downcase

y
input_confirmed = true

if confirmation ==

end
end

Defining GetContactActivity
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end

# make sure that @results is a single string. YAML makes this easy.
@results = { :email => email, :sms => phone }.to_yaml
return true
end
end

At the end of do_activity, we take the email and phone number retrieved from the user, place it
in @ map and then use to_yaml to convert the entire map to a YAML string. There's an important
reason for this: any results that you pass to Amazon SWF when you complete an activity must be
string data only. Ruby's ability to easily convert objects to YAML strings and then back again into
objects is, thankfully, well-suited for this purpose.

That's the end of the get_contact_activity implementation. This data will be used next in the
subscribe_topic_activity implementation.

Defining SubscribeTop