What Is AWS Application Discovery Service?

AWS Application Discovery Service helps you plan your migration to the AWS cloud by collecting usage and configuration data about your on-premises servers. Application Discovery Service is integrated with AWS Migration Hub, which simplifies your migration tracking. After performing discovery, you can view the discovered servers, group them into applications, and then track the migration status of each application from the Migration Hub console. The discovered data can be exported for analysis in Microsoft Excel or AWS analysis tools such as Amazon Athena and Amazon QuickSight.

Using Application Discovery Service APIs, you can export the system performance and utilization data for your discovered servers. You can input this data into your cost model to compute the cost of running those servers in AWS. Additionally, you can export the network connections and process data to understand the network connections that exist between servers. This will help you determine the network dependencies between servers and group them into applications for migration planning.

Application Discovery Service offers two ways of performing discovery and collecting data about your on-premises servers:

- **Agentless discovery** can be performed by deploying the AWS Agentless Discovery Connector (OVA file) through your VMware vCenter. After the Discovery Connector is configured, it identifies virtual machines (VMs) and hosts associated with vCenter. The Discovery Connector collects the following static configuration data: Server hostnames, IP addresses, MAC addresses, disk resource allocations. Additionally, it collects the utilization data for each VM and computes average and peak utilization for metrics such as CPU, RAM, and Disk I/O. You can export a summary of the system performance information for all the VMs associated with a given VM host and perform a cost analysis of running them in AWS.

- **Agent-based discovery** can be performed by deploying the AWS Application Discovery Agent on each of your VMs and physical servers. The agent installer is available for both Windows and Linux operating systems. It collects static configuration data, detailed time-series system-performance information, inbound and outbound network connections, and processes that are running. You can export this data to perform a detailed cost analysis and to identify network connections between servers for grouping servers as applications.

How to decide which discovery tool to use

If you have virtual machines (VMs) that are running in the VMware vCenter environment, you can use the Discovery Connector to collect system information without having to install an agent on each VM. Instead, you load this on-premises appliance into vCenter and allow it to discover all of its hosts and VMs.

The Discovery Connector captures system performance information and resource utilization for each VM running in the vCenter, regardless of what operating system is in use. However, it cannot “look inside” each of the VMs, and as such, cannot figure out what processes are running on each VM nor what network connections exist. Therefore, if you need this level of detail and want to take a closer look at some of your existing VMs in order to assist in planning your migration, you can install the Discovery Agent on an as-needed basis.

Also, for VMs hosted on VMware, you can use both the Discovery Connector and Discovery Agent to perform discovery simultaneously. For details regarding the exact types of data each discovery tool will collect, see Data Collected by the Discovery Connector (p. 16) and Data Collected by the Discovery Agent.
Agent (p. 24). A quick view comparison table of the Discovery Connector the Discovery Agent is provided below.

<table>
<thead>
<tr>
<th>Supported server types</th>
<th>Discovery Connector</th>
<th>Discovery Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware virtual machine</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Physical server</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Discovery Connector</th>
<th>Discovery Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per server</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Per vCenter</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collected data</th>
<th>Discovery Connector</th>
<th>Discovery Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static configuration data</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>VM utilization metrics</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Time series performance</td>
<td>no</td>
<td>yes (Export only)</td>
</tr>
<tr>
<td>information</td>
<td>no</td>
<td>yes (Export only)</td>
</tr>
<tr>
<td>Network inbound/outbound</td>
<td>no</td>
<td>yes (Export only)</td>
</tr>
<tr>
<td>connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running processes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supported OS</th>
<th>Discovery Connector</th>
<th>Discovery Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any OS running in VMware vCenter (V5.5, V6, & V6.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>Amazon Linux 2012.03, 2015.03</td>
<td></td>
</tr>
<tr>
<td>Ubuntu 12.04, 14.04, 16.04</td>
<td>Red Hat Enterprise Linux 5.11, 6.9, 7.3</td>
<td></td>
</tr>
<tr>
<td>CentOS 5.11, 6.9, 7.3</td>
<td>CentOS 5.11, 6.9, 7.3</td>
<td></td>
</tr>
<tr>
<td>SUSE 11 SP4, 12 SP2</td>
<td>SUSE 11 SP4, 12 SP2</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>Windows Server 2003 R2 SP2</td>
<td></td>
</tr>
<tr>
<td>Windows Server 2008 R1 SP2, 2008 R2 SP1</td>
<td>Windows Server 2012 R1, 2012 R2</td>
<td></td>
</tr>
</tbody>
</table>
Setting Up AWS Application Discovery Service

Before you use AWS Application Discovery Service for the first time, complete the following tasks:

- **Step 1: Sign Up for AWS (p. 3)**
- **Step 2: Create an IAM User (p. 3)**
- **Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies (p. 5)**

Once you have completed the three steps of Setting Up AWS Application Discovery Service (p. 3), it is recommended that you read the section Understanding and Using Service-Linked Roles for Application Discovery Service (p. 9). There is no set-up required for you to use this service-linked role as it is automatically created for you when Continuous Export is turned on by enabling Data Exploration in Amazon Athena (p. 37). However, it is important to understand the concept and this section also gives instructions for deleting the service-linked role.

Step 1: Sign Up for AWS

When you sign up for Amazon Web Services (AWS), you are charged only for the services that you use. If you already have an AWS account, you can skip ahead to step 2. If you don't have an AWS account, use the following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

 Note

 This might be unavailable in your browser if you previously signed into the AWS Management Console. In that case, choose Sign in to a different account, and then choose Create a new AWS account.

2. Follow the online instructions.

 Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.

 Note your AWS account number, because you'll need it for the next task.

Step 2: Create an IAM User

Services such as AWS Application Discovery Service require that you provide credentials when you access them. This way the service can determine whether you have permissions to access its resources. We recommend that you don't use the AWS account root user credentials to make requests. Instead, create an AWS Identity and Access Management (IAM) user, and grant that user full access. We refer to these users as having administrator-level credentials. You can use the administrator-level credentials to interact with AWS and perform tasks such as create an AWS S3 bucket, create additional IAM users, and grant permissions. For more information, see Root Account Credentials vs. IAM User Credentials in the AWS General Reference and IAM Best Practices in the IAM User Guide.
If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM console.

To create an IAM user for yourself and add the user to an Administrators group

1. Use your AWS account email address and password to sign in as the *AWS account root user* to the IAM console at https://console.aws.amazon.com/iam/.

 Note
 We strongly recommend that you adhere to the best practice of using the *Administrators* IAM user below and securely lock away the root user credentials. Sign in as the root user only to perform a few account and service management tasks.

2. In the navigation pane of the console, choose *Users*, and then choose *Add user*.

3. For *User name*, type *Administrator*.

4. Select the check box next to *AWS Management Console access*, select *Custom password*, and then type the new user's password in the text box. You can optionally select *Require password reset* to force the user to create a new password the next time the user signs in.

5. Choose *Next: Permissions*.

6. On the *Set permissions* page, choose *Add user to group*.

7. Choose *Create group*.

8. In the *Create group* dialog box, for *Group name* type *Administrators*.

9. For *Filter policies*, select the check box for *AWS managed - job function*.

10. In the policy list, select the check box for *AdministratorAccess*. Then choose *Create group*.

11. Back in the list of groups, select the check box for your new group. Choose *Refresh* if necessary to see the group in the list.

12. Choose *Next: Review* to see the list of group memberships to be added to the new user. When you are ready to proceed, choose *Create user*.

You can use this same process to create more groups and users, and to give your users access to your AWS account resources. To learn about using policies to restrict users' permissions to specific AWS resources, go to *Access Management* and *Example Policies*.

Note

- An administrator account will by default inherit all the policies required for accessing Application Discovery Service.
- For a non-administrator user, you can manually add the policies required to access Application Discovery Service. Refer to *Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies* (p. 5) for details.

To sign in as this new IAM user, first sign out of the AWS Management Console. Next, use the following URL, where *your_aws_account_id* is your AWS account number without the hyphens. For example, if your AWS account number is 1234-5678-9012, then *your_aws_account_id* is 123456789012).

```
https://your_aws_account_id.signin.aws.amazon.com/console/
```

Enter the IAM user name and password that you just created. When you're signed in, the navigation bar displays *your_user_name@your_aws_account_id*.

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account alias. From the IAM dashboard, click *Create Account Alias* and enter an alias, such as your company name. To sign in after you create an account alias, use the following URL:
To verify the sign-in link for IAM users for your account, open the IAM console and check under **AWS Account Alias** on the dashboard.

Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies

Application Discovery Service uses the IAM-managed policies listed here to control access to the service or components of the service. An administrator account will by default inherit all the policies required for accessing Application Discovery Service. If your account is a non-administrative account, in order to access Application Discovery Service, you need to request your administrator to add the below policies to your account. For information about how to attach these managed policies to an IAM user account, see Working with Managed Policies in the [IAM User Guide](https://aws.amazon.com/).

AWSApplicationDiscoveryServiceFullAccess

Grants the IAM user account access to the Application Discovery Service and Migration Hub APIs. With this policy, the user can configure Application Discovery Service, start and stop agents, start and stop agentless discovery, and query data from the AWS Discovery Service database.

AWSApplicationDiscoveryAgentAccess

Grants the Application Discovery Agent access to register and communicate with Application Discovery Service. Attach this policy to any user whose credentials are used by Application Discovery Agent. This policy also grants the user access to Arsenal. Arsenal is an agent service that is managed and hosted by AWS. Arsenal forwards data to Application Discovery Service in the cloud.

AWSAgentlessDiscoveryService

Grants the AWS Agentless Discovery Connector that is running in your VMware vCenter Server the access to register, communicate with, and share connector health metrics with Application Discovery Service. Attach this policy to any user whose credentials are used by the connector.

ApplicationDiscoveryServiceContinuousExportServiceRolePolicy

This policy is automatically added to your account when you turn on Data Exploration in Amazon Athena and have the AWSApplicationDiscoveryServiceFullAccess policy assigned. It allows AWS Application Discovery Service to create Amazon Kinesis Data Firehose streams to transform and deliver data collected by AWS Application Discovery Service agents to an Amazon S3 bucket in your AWS account. In addition, this policy creates an AWS Glue Data Catalog with a new database called `application_discovery_service_database` and table schemas for mapping data collected by the agents.

AWSApplicationDiscoveryServiceFirehose

This policy is required to use Data Exploration in Amazon Athena. It allows Amazon Kinesis Data Firehose to write data collected from Application Discovery Service to Amazon S3.

An administrator needs to attach the above policies to your user. For AWSApplicationDiscoveryServiceFirehose policy, the administrator needs to create a role named "AWSApplicationDiscoveryServiceFirehose" with Kinesis Data Firehose as a trusted entity and then attach the policy AWSApplicationDiscoveryServiceFirehose to the role as show in the procedures below:

1. In the IAM console, choose **Roles** on the navigation pane.
2. Choose Create Role.
3. Choose Kinesis.
4. Choose Kinesis Firehose as your use case.
5. Choose Next: Permissions.
7. Check the box beside AWSApplicationDiscoveryServiceFirehose and then choose Next: Review.
8. Enter AWSApplicationDiscoveryServiceFirehose as the role name and then choose Create role.

Each of the Application Discovery Service managed policies is shown here so that you can customize them as needed.

AWSApplicationDiscoveryServiceFullAccess

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": [
        "mgh:*",
        "discovery:*"
      ],
      "Effect": "Allow",
      "Resource": "*"
    },
    {
      "Action": [
        "iam:GetRole"
      ],
      "Effect": "Allow",
      "Resource": "*"
    }
  ]
}
```

AWSApplicationDiscoveryAgentAccess

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "arsenal:RegisterOnPremisesAgent"
      ],
      "Resource": "*"
    }
  ]
}
```

AWSAgentlessDiscoveryService

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "awsconnector:RegisterConnector",
        "awsconnector:PublishServiceDiscovery",
        "awsconnector:PublishSharedServiceDiscovery"
      ],
      "Resource": "*"
    }
  ]
}
```
"awsconnector:GetConnectorHealth",
"Resource": "**",

{"Effect": "Allow",
"Action": ["iam:GetUser",
"Resource": "**",

{"Effect": "Allow",
"Action": ["s3:GetObject",
"s3:ListBucket"
]
,
"Resource": ["arn:aws:s3:::connector-platform-upgrade-info/*",
"arn:aws:s3:::connector-platform-upgrade-info",
"arn:aws:s3:::connector-platform-upgrade-bundles/**",
"arn:aws:s3:::connector-platform-upgrade-bundles",
"arn:aws:s3:::connector-platform-release-notes/**",
"arn:aws:s3:::connector-platform-release-notes",
"arn:aws:s3:::prod.agentless.discovery.connector.upgrade/**",
"arn:aws:s3:::prod.agentless.discovery.connector.upgrade",

"arn:aws:s3:::import-to-ec2-connector-debug-logs/**"
]
,
"Action": ["s3:PutObject",
"s3:PutObjectAcl"
]
,
"Resource": ["arn:aws:s3:::import-to-ec2-connector-debug-logs/**"
]
,
"Effect": "Allow",
"Action": ["SNS:Publish"
]
,
"Resource": "arn:aws:sns:*:*:metrics-sns-topic-for-**"
]
,
"Sid": "Discovery",
"Effect": "Allow",
"Action": ["Discovery:*"
]
,
"Resource": "*

{
"Sid": "arsenal",
"Effect": "Allow",
"Action": ["arsenal:RegisterOnPremisesAgent"
]
,
"Resource": "**"
]
"Version": "2012-10-17",
"Statement": [
 {
 "Action": [
 "glue:CreateDatabase",
 "glue:UpdateDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "firehose:CreateDeliveryStream",
 "firehose:DescribeDeliveryStream",
 "logs:CreateLogGroup"
],
 "Effect": "Allow",
 "Resource": "*
 },
 {
 "Action": [
 "firehose:DeleteDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch",
 "firehose:UpdateDestination"
],
 "Effect": "Allow",
 "Resource": "arn:aws:firehose:*:*:deliverystream/aws-application-discovery-service*"
 },
 {
 "Action": [
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:PutBucketLogging",
 "s3:PutEncryptionConfiguration"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::aws-application-discovery-service*"
 },
 {
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::aws-application-discovery-service/*"
 },
 {
 "Action": [
 "logs:CreateLogStream",
 "logs:PutRetentionPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:log-group:/aws/application-discovery-service/firehose*"
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/AWSApplicationDiscoveryServiceFirehose",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "firehose.amazonaws.com"
 }
 }
 }
]
}
Understanding and Using Service-Linked Roles for Application Discovery Service

AWS Application Discovery Service uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to Application Discovery Service.
Service-linked roles are predefined by Application Discovery Service and include all the permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up Application Discovery Service easier because you don’t have to manually add the necessary permissions. Application Discovery Service defines the permissions of its service-linked roles, and unless defined otherwise, only Application Discovery Service can assume its roles. The defined permissions include the trust policy and the permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects your Application Discovery Service resources because you can’t inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

Service-Linked Role Permissions for Application Discovery Service

Application Discovery Service uses the service-linked role named AWSServiceRoleForApplicationDiscoveryServiceContinuousExport – Enables access to AWS Services and Resources used or managed by AWS Application Discovery Service.

The AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role trusts the following services to assume the role:

• continuousexport.discovery.amazonaws.com

The role permissions policy allows Application Discovery Service to complete the following actions:

glue

CreateDatabase
UpdateDatabase
CreateTable
UpdateTable

firehose

CreateDeliveryStream
DeleteDeliveryStream
DescribeDeliveryStream
PutRecord
PutRecordBatch
UpdateDestination

s3

CreateBucket
Service-Linked Role Permissions for Application Discovery Service

ListBucket
GetObject
logs
CreateLogGroup
CreateLogStream
PutRetentionPolicy
iam
PassRole

This is the full policy showing which resources the above actions apply to:

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "glue:CreateDatabase",
                "glue:UpdateDatabase",
                "glue:CreateTable",
                "glue:UpdateTable",
                "firehose:CreateDeliveryStream",
                "firehose:DescribeDeliveryStream",
                "logs:CreateLogGroup"
            ],
            "Effect": "Allow",
            "Resource": "*"
        },
        {
            "Action": [
                "firehose:DeleteDeliveryStream",
                "firehose:PutRecord",
                "firehose:PutRecordBatch",
                "firehose:UpdateDestination"
            ],
            "Effect": "Allow",
            "Resource": "arn:aws:firehose:*:*:deliverystream/aws-application-discovery-service*"
        },
        {
            "Action": [
                "s3:CreateBucket",
                "s3:ListBucket",
                "s3:PutBucketLogging",
                "s3:PutEncryptionConfiguration"
            ],
            "Effect": "Allow",
            "Resource": "arn:aws:s3:::aws-application-discovery-service*"
        },
        {
            "Action": [
                "s3:GetObject"
            ],
            "Effect": "Allow",
            "Resource": "arn:aws:s3:::aws-application-discovery-service/*/"
        },
        {
            "Action": [
Creating a Service-Linked Role for Application Discovery Service

You don't need to manually create a service-linked role. The AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role is automatically created when Continuous Export is implicitly turned on by a) confirming options in the dialog box presented from the Data Collectors page after you choose “Start data collection”, or click the slider labeled, “Data exploration in Athena”, or b) when you call the StartContinuousExport API using the AWS CLI.

Important
This service-linked role can appear in your account if you completed an action in another service that uses the features supported by this role. To learn more, see A New Role Appeared in My IAM Account.

Creating the Service-Linked Role from the Migration Hub Console

You can use the Migration Hub console to create the AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role.
To create the service-linked role (console)

1. In the navigation pane, choose Data Collectors.
2. Choose the Agents tab.
3. Toggle the Data exploration in Athena slider to the On position.
4. In the dialog box generated from the previous step, click the checkbox agreeing to associated costs and choose Continue or Enable.

Creating the Service-Linked Role from the AWS CLI

You can use Application Discovery Service commands from the AWS Command Line Interface to create the AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role.

This service-linked role is automatically created when you start Continuous Export from the AWS CLI (the AWS CLI must first be installed in your environment).

To create the service-linked role (CLI) by starting Continuous Export from the AWS CLI

1. Install the AWS CLI for your operating system (Linux, macOS, or Windows). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (Linux or macOS).
   a. Type aws configure and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter us-west-2 for the Default Region Name.
   d. Enter text for Default Output Format.
3. Type the following command:
   ```bash
 aws discovery start-continuous-export
   ```

You can also use the IAM console to create a service-linked role with the Discovery Service - Continuous Export use case. In the IAM CLI or the IAM API, create a service-linked role with the continuousexport.discovery.amazonaws.com service name. For more information, see Creating a Service-Linked Role in the IAM User Guide. If you delete this service-linked role, you can use this same process to create the role again.

Deleting a Service-Linked Role for Application Discovery Service

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don’t have an unused entity that is not actively monitored or maintained. However, you must clean up your service-linked role before you can manually delete it.

Cleaning Up the Service-Linked Role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by the role.

Note

If the Application Discovery Service service is using the role when you try to delete the resources, then the deletion might fail. If that happens, wait for a few minutes and try the operation again.
To delete Application Discovery Service resources used by the AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role from the Migration Hub Console

1. In the navigation pane, choose Data Collectors.
2. Choose the Agents tab.
3. Toggle the Data exploration in Athena slider to the Off position.

To delete Application Discovery Service resources used by the AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role from the AWS CLI

1. Install the AWS CLI for your operating system (Linux, macOS, or Windows). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (Linux or macOS).
   a. Type `aws configure` and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter `us-west-2` for the Default Region Name.
   d. Enter `text` for Default Output Format.
3. Type the following command:
   ```
 aws discovery stop-continuous-export --export-id <export ID>
   ```
   • If you don't know the export-ID of the continuous export you want to stop, enter the following command to see the continuous export's ID:
   ```
 aws discovery describe-continuous-exports
   ```
4. Enter the follow command to ensure that Continuous Export has stopped by verifying its return status is "INACTIVE":
   ```
 aws discovery describe-continuous-export
   ```

Manually Delete the Service-Linked Role

You can delete the AWSServiceRoleForApplicationDiscoveryServiceContinuousExport service-linked role by using the IAM console, the IAM CLI, or the IAM API. If you no longer need to use the Discovery Service - Continuous Export features that require this service-linked role, we recommend that you delete that role. That way you don't have an unused entity that is not actively monitored or maintained. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Note
You must first clean up your service-linked role before you can delete it. See Cleaning Up the Service-Linked Role (p. 13).
Getting Started with AWS Application Discovery Service

In this section, you can find information about how to get started with AWS Application Discovery Service. Included are topics about how to access the Application Discovery Service console and the two ways of discovering data on your local servers.

Topics
- Assumptions (p. 15)
- Accessing AWS Application Discovery Service (p. 15)
- Two Ways to Start Collecting Data (p. 15)
- AWS Agentless Discovery Connector (p. 16)
- AWS Application Discovery Agent (p. 23)

Assumptions

To use Application Discovery Service, the following is assumed:

- You have signed up for AWS. For more information, see Setting Up AWS Application Discovery Service (p. 3)
- The Application Discovery Service tools only send their operational status if you have authorized, that is, connected, them.
- For a list of AWS Regions where you can use Application Discovery Service, see the Amazon Web Services General Reference.

Accessing AWS Application Discovery Service

You can use AWS Application Discovery Service to help you plan your migration to the AWS Cloud by collecting usage and configuration data about your on-premises servers. Using the integrated AWS Migration Hub console, you can view the discovered servers, group them into applications, and then track the migration status of each application. You can find AWS Application Discovery Service at AWS Application Discovery Service.

Additionally, you can use the AWS Application Discovery Service API to export system data and network connections about your discovered servers. This information helps you to group your servers into applications for migration planning. For more information about the API, see the Application Discovery Service API Reference.

You can also use the AWS SDKs to develop applications that interact with Application Discovery Service. The AWS SDKs for Java, .NET, and PHP wrap the underlying Application Discovery Service API to simplify your programming tasks. For information about downloading the SDK libraries, see Sample Code Libraries.

Two Ways to Start Collecting Data

To begin collecting data, use either the Discovery Connector or the Discovery Agent. A detailed description follows in each topic that will help you decide which discovery tool to use. Each of the following topics also has instructions to guide you through installation and deployment.
AWS Agentless Discovery Connector

Agentless discovery uses the AWS Discovery Connector. The AWS Discovery Connector is a VMware appliance that can collect information only about VMware virtual machines (VMs). This mode doesn’t require you to install a connector on each host. You install the Discovery Connector as a VM in your VMware vCenter Server environment using an Open Virtualization Archive (OVA) file. Because the Discovery Connector relies on VMware metadata to gather server information regardless of operating system, it minimizes the time required for initial on-premises infrastructure assessment.

After you deploy and configure the Discovery Connector, it registers with the Application Discovery Service endpoint, https://arsenal.us-west-2.amazonaws.com/, and pings the service at regular intervals, approximately every 60 minutes, for configuration information. When you start the connector’s data collecting process, it connects to VMware vCenter Server where it collects information about all the VMs and hosts managed by this specific vCenter. The collected data is sent to the Application Discovery Service using Secure Sockets Layer (SSL) encryption. The connector is configured to automatically upgrade when new versions of the connector become available. You can change this configuration setting at any time.

Data Collected by the Discovery Connector

The Discovery Connector collects information about your VMware vCenter Server hosts and VMs, including performance data about those hosts and VMs. However, you can capture this data only if VMware vCenter Server tools are installed. See Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies (p. 5) for Discovery Connector installation prerequisites.

Following, you can find an inventory of the information collected by the Discovery Connector.

Table legend for Discovery Connector collected data:

- Collected data is in measurements of kilobytes (KB) unless stated otherwise.
- Equivalent data in the Migration Hub console is reported in megabytes (MB).
- Data fields denoted with an asterisk (*) are only available in the .csv files produced from the connector’s API export function.
- The polling period is in intervals of approximately 60 minutes.
- Data fields denoted with a double asterisk (**) currently return a null value.
<table>
<thead>
<tr>
<th>Data field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>applicationConfigurationId</td>
<td>ID of the migration application the VM is grouped under</td>
</tr>
<tr>
<td>avgCpuUsagePct</td>
<td>Average percentage of CPU usage over polling period</td>
</tr>
<tr>
<td>avgDiskBytesReadPerSecond</td>
<td>Average number of bytes read from disk over polling period</td>
</tr>
<tr>
<td>avgDiskBytesWrittenPerSecond</td>
<td>Average number of bytes written to disk over polling period</td>
</tr>
<tr>
<td>avgDiskReadOpsPerSecond</td>
<td>Average number of read I/O operations per second null</td>
</tr>
<tr>
<td>avgDiskWriteOpsPerSecond</td>
<td>Average number of write I/O operations per second</td>
</tr>
<tr>
<td>avgFreeRAM</td>
<td>Average free RAM expressed in MB</td>
</tr>
<tr>
<td>avgNetworkBytesReadPerSecond</td>
<td>Average amount of throughput of bytes read per second</td>
</tr>
<tr>
<td>avgNetworkBytesWrittenPerSecond</td>
<td>Average amount of throughput of bytes written per second</td>
</tr>
<tr>
<td>configId</td>
<td>Application Discovery Service assigned ID to the discovered VM</td>
</tr>
<tr>
<td>configType</td>
<td>Type of resource discovered</td>
</tr>
<tr>
<td>connectorId</td>
<td>ID of the Discovery Connector virtual appliance</td>
</tr>
<tr>
<td>cpuType</td>
<td>vCPU for a VM, actual model for a host</td>
</tr>
<tr>
<td>datacenterId</td>
<td>ID of the vCenter</td>
</tr>
<tr>
<td>hostId</td>
<td>ID of the VM host</td>
</tr>
<tr>
<td>hostName</td>
<td>Name of host running the virtualization software</td>
</tr>
<tr>
<td>hypervisor</td>
<td>Type of hypervisor</td>
</tr>
<tr>
<td>id</td>
<td>ID of server</td>
</tr>
<tr>
<td>lastModifiedTimeStamp</td>
<td>Latest date and time of data collection before data export</td>
</tr>
<tr>
<td>macAddress</td>
<td>MAC address of the VM</td>
</tr>
<tr>
<td>manufacturer</td>
<td>Maker of the virtualization software</td>
</tr>
<tr>
<td>maxCpuUsagePct</td>
<td>Max. percentage of CPU usage during polling period</td>
</tr>
<tr>
<td>maxDiskBytesReadPerSecond</td>
<td>Max. number of bytes read from disk over polling period</td>
</tr>
<tr>
<td>Data field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>maxDiskBytesWrittenPerSecond</td>
<td>Max. number of bytes written to disk over polling period</td>
</tr>
<tr>
<td>maxDiskReadOpsPerSecond</td>
<td>Max. number of read I/O operations per second</td>
</tr>
<tr>
<td>maxDiskWriteOpsPerSecond</td>
<td>Max. number of write I/O operations per second</td>
</tr>
<tr>
<td>maxNetworkBytesReadPerSecond</td>
<td>Max. amount of throughput of bytes read per second</td>
</tr>
<tr>
<td>maxNetworkBytesWrittenPerSecond</td>
<td>Max. amount of throughput of bytes written per second</td>
</tr>
<tr>
<td>memoryReservation</td>
<td>Limit to avoid overcommitment of memory on VM</td>
</tr>
<tr>
<td>moRefId</td>
<td>Unique vCenter Managed Object Reference ID</td>
</tr>
<tr>
<td>name</td>
<td>Name of VM or network (user specified)</td>
</tr>
<tr>
<td>numCores</td>
<td>Number of independent processing units within CPU</td>
</tr>
<tr>
<td>numCpus</td>
<td>Number of central processing units on VM</td>
</tr>
<tr>
<td>numDisks**</td>
<td>Number of disks on VM</td>
</tr>
<tr>
<td>numNetworkCards**</td>
<td>Number of network cards on VM</td>
</tr>
<tr>
<td>osName</td>
<td>Operating system name on VM</td>
</tr>
<tr>
<td>osVersion</td>
<td>Operating system version on VM</td>
</tr>
<tr>
<td>portGroupId**</td>
<td>ID of group of member ports of VLAN</td>
</tr>
<tr>
<td>portGroupName**</td>
<td>Name of group of member ports of VLAN</td>
</tr>
<tr>
<td>powerState**</td>
<td>Status of power</td>
</tr>
<tr>
<td>serverId</td>
<td>Application Discovery Service assigned ID to the discovered VM</td>
</tr>
<tr>
<td>smBiosId**</td>
<td>ID/version of the system management BIOS</td>
</tr>
<tr>
<td>state**</td>
<td>Status of the Discovery Connector virtual appliance</td>
</tr>
<tr>
<td>tagKey</td>
<td>User-defined key to store custom data or metadata about servers</td>
</tr>
<tr>
<td>tagValue</td>
<td>User-defined value to further define a key's custom data or metadata about servers</td>
</tr>
<tr>
<td>toolsStatus</td>
<td>Operational state of VMware tools (See Viewing and Sorting Data Collectors (p. 44) for a complete list.)</td>
</tr>
<tr>
<td>totalDiskSize</td>
<td>Total capacity of disk expressed in MB</td>
</tr>
<tr>
<td>totalRAM</td>
<td>Total amount of RAM available on VM in MB</td>
</tr>
</tbody>
</table>
Download the Discovery Connector

To download the Discovery Connector OVA file and verify its checksum.

1. Sign in to vCenter as a VMware administrator and switch to the directory where you want to download the Discovery Connector OVA file.
2. Download the Discovery Connector OVA.
3. Depending on which hashing algorithm you use in your system environment, download either the MD5 or SHA256 to get the file containing the checksum value. Use this value to verify the AWSDiscoveryConnector.ova file downloaded in the preceding step.
4. Depending on your variation of Linux, run the version appropriate MD5 command or SHA256 command to verify the cryptographic signature of the AWSDiscoveryConnector.ova file as shown following:

```
md5sum AWSDiscoveryConnector.ova
MD5 (AWSDiscoveryConnector.ova) = a5590986af27d8eabadf604cb1d6c13b
sha256sum AWSDiscoveryConnector.ova
SHA256(AWSDiscoveryConnector.ova)=
7cebe800a57ae863cab225abe6b454d0e6ca998ef1defa00331a6c40d74d969
```

Verify that the checksum value returned from the command you ran is equal to the respective value displayed in the example above.

Deploy the Discovery Connector

Deploy the downloaded OVA file of the Discovery Connector in your VMware environment.
**To deploy the Discovery Connector**

1. Sign in to vCenter as a VMware administrator.
2. Choose **File**, **Deploy OVF Template** and select the ova file you downloaded in the previous section. Complete the wizard.
3. On the **Disk Format** page, select one of the thick provision disk types. We recommend that you choose **Thick Provision Eager Zerod**, because it has the best performance and reliability. However, it requires several hours to zero out the disk. Do not choose **Thin Provision**. This option makes deployment faster but significantly reduces disk performance. For more information, see **Types of supported virtual disks** in the VMware documentation.
4. Locate and open the context (right-click) menu for the newly deployed template in the vSphere client inventory tree and choose **Power**, **Power On**.
5. Open the context (right-click) menu for the template again and choose **Open Console**. The console displays the IP address of the connector console. Make note of the IP address as you'll need it in order to complete the connector setup process.

**Configure the AWS Discovery Connector**

To finish the setup process, open a web browser and complete the following procedure and optional tasks within this section.

**To configure the connector using the VMWare console**

1. In a web browser, type the following URL in the address bar: `https://<ip_address>/`, where `<ip_address>` is the IP address of the connector console that you saved earlier.
2. Choose **Get started now** and follow the wizard steps.
3. In Step 5: **Discovery Connector Set Up** of the wizard steps, choose **Configure vCenter credentials**:
   a. For **vCenter Host**, type the hostname or IP address of your VMware vCenter Server host.
   b. For **vCenter Username**, type the name of a local or domain user that the connector uses to communicate with vCenter. For domain users, use the form `domain\username` or `username@domain`.
   c. For **vCenter Password**, type the local or domain user password.
   d. Choose **Ignore security certificate** to bypass SSL certificate validation with vCenter.
4. Choose **Configure AWS credentials** and type the credentials for the IAM user who is assigned the `AWSAgentlessDiscoveryService` IAM policy that you created in **Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies (p. 5)**, and then choose **Next**.
5. Choose **Configure where to publish data** and select suitable publishing options. Choose **Next** and you should see the AWS Agentless Discovery Connector console.

**Topics**

- Configure a static IP address for the connector (p. 20)
- Control the Scope of Data Collection (p. 21)
- Disabling Auto-Upgrades on AWS Discovery Connector (p. 22)
- Troubleshooting the Discovery Connector (p. 22)

**Configure a static IP address for the connector**

This optional procedure is required if your environment requires that you use a static IP address.
To Configure a static IP address for the connector

1. Open the connector's virtual machine console and log in as `ec2-user` with the password `ec2pass`. Supply a new password if prompted.
2. Run the command `sudo setup.rb` and enter the password for `ec2-user` when prompted to display the configuration menu.
3. Enter 2 to select Reconfigure network settings. This displays current network information and a submenu for making changes to the network settings.
4. In the submenu generated from the previous step, enter 2 to select Set up a static IP. This will display a form to supply network settings:

- For each field, provide an appropriate value and press Enter. You should see output similar to the following where `nnn.nnn.nnn.nnn` is populated with the address numbers you entered for each field:

```
Setting up static IP:
 1. Enter IP address: <nnn.nnn.nnn.nnn>
 2. Enter netmask: <nnn.nnn.nnn.nnn>
 3. Enter gateway: <nnn.nnn.nnn.nnn>
 4. Enter DNS 1: <nnn.nnn.nnn.nnn>
 5. Enter DNS 2: <nnn.nnn.nnn.nnn>

Static IP address configured.
```

Control the Scope of Data Collection

The vCenter user requires read-only permissions on each ESX host or VM to inventory using Application Discovery Service. Using the permission settings, you can control which hosts and VMs are included in the data collection. You can either allow all hosts and VMs under the current vCenter to be inventoried, or grant permissions on a case-by-case basis.

**Note**
As a security best practice, we recommend against granting additional, unneeded permissions to the vCenter user of the Discovery Connector.

The following procedures describe configuration scenarios ordered from least granular to most granular.

**To discover data about all ESX hosts and VMs under the current vCenter**

1. In your VMware vSphere client, choose vCenter and then choose either Hosts and Clusters or VMs and Templates.
2. Choose Manage, Permissions.
3. Select the vCenter user, open the context (right-click) menu, and choose Change Role.
4. In the Assigned Role pane, choose Read-only.
5. Choose Propagate to children, OK.

**To discover data about a specific ESX host and all of its child objects**

1. In your VMware vSphere client, choose vCenter and then choose either Hosts and Clusters or VMs and Templates.
2. Choose Related Objects, Hosts.
3. Open the context (right-click) menu for the host name and choose All vCenter Actions, Add Permission.
4. Under Add Permission, add the vCenter user to the host. For Assigned Role, choose Read-only.
5. Choose **Propagate to children**, **OK**.

**Discover data about a specific ESX host or child VM**

1. In your VMware vSphere client, choose **vCenter** and then choose either **Hosts and Clusters** or **VMs and Templates**.
2. Choose **Related Objects**.
3. Choose **Hosts** (showing a list of ESX hosts known to vCenter) or **Virtual Machines** (showing a list of VMs across all ESX hosts).
4. Open the context (right-click) menu for the host or VM name and choose **All vCenter Actions, Add Permission**.
5. Under **Add Permission**, add the vCenter user to the host or VM. For **Assigned Role**, choose **Read-only**.
6. Choose **OK**.

**Note**
If you chose **Propagate to children**, you can still remove the read-only permission from ESX hosts and VMs on a case-by-case basis. This option has no effect on inherited permissions applying to other ESX hosts and VMs.

**Disabling Auto-Upgrades on AWS Discovery Connector**

To ensure that you are running the latest version of AWS Discovery Connector, the auto-upgrade feature is enabled by default upon installation. However, you may disable the auto-upgrade feature as shown below.

**To disable auto-upgrades**

1. In a web browser, type the following URL in the address bar: `https://<ip_address>/`, where
   
   `ip_address` is the IP address of the AWS Discovery Connector.
2. In the Discovery Connector console, under **Actions**, choose **Disable Auto-Upgrade**.

**Warning**
Disabling auto-upgrades will prevent the latest security patches from being installed.

**Troubleshooting the Discovery Connector**

- The Discovery Connector does not support a standalone ESX host. The ESX host must be part of the vCenter Server instance.
- If you encounter problems and need help, contact **AWS Support**. You will be contacted and may be asked to send the connector logs. To obtain the logs, do the following:
  - Log back in to the AWS Agentless Discovery Connector console (as you did during configuration (p. 20)) and choose **Download log bundle**.
  - Once the log bundle has finished downloading, send it as instructed by AWS Support.

**Start Discovery Connector Data Collection**

Now that you have deployed and configured the Discovery Connector in your VMware environment, you must complete the final step of actually turning on its data collection process. There are two ways to do this, through the console or by making API calls through the AWS CLI. Instructions are provided below for both ways.
Start Data Collection Using the Migration Hub Console

You start the Discovery Connector data collection process on the Data Collectors page of the Migration Hub console.

To start data collection

1. In the navigation pane, choose Data Collectors.
2. Choose the Connectors tab.
3. Select the check box of the connector you want to start.

Note
If you don’t see inventory information after starting data collection with the connector, confirm that you have registered the connector with your vCenter Server.

Start Data Collection Using the AWS CLI

To start the Discovery Connector data collection process from the AWS CLI, the AWS CLI must first be installed in your environment.

To install the AWS CLI and start data collection

1. Install the AWS CLI for your operating system (Linux, macOS, or Windows). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (Linux or macOS).
   a. Type `aws configure` and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter `us-west-2` for the Default Region Name.
   d. Enter `text` for Default Output Format.
3. Type the following command:
   ```bash
 aws discovery start-data-collection-by-agent-ids --agent-ids <connector ID>
   ```
   - If you don’t know the ID of the connector you want to start, enter the following command exactly as shown to see the connector’s ID:
     ```bash
 aws discovery describe-agents --filters condition=EQUALS,name=hostName,values=connector
     ```

Note
If you don’t see inventory information after starting data collection with the connector, confirm that you have registered the connector with your vCenter Server.

AWS Application Discovery Agent

The AWS Discovery Agent is AWS software that you install on on-premises servers and VMs targeted for discovery and migration. Agents capture system configuration, system performance, running processes, and details of the network connections between systems. Agents support most Linux and Windows operating systems, and you can deploy them on physical on-premises servers, Amazon EC2 instances, and virtual machines.
The Discovery Agent runs in your local environment and requires root privileges. When you start the Discovery Agent, it registers with the Application Discovery Service endpoint, arsenal.aws.com, and pings the service at 15 minute intervals for configuration information. When you send a command that tells an agent to start data collection, it starts collecting data for the host or VM where it resides. Collection includes system specifications, times series utilization or performance data, network connections, and process data. You can use this information to map your IT assets and their network dependencies. All of these data points can help you determine the cost of running these servers in AWS and also plan for migration.

Data is transmitted securely by the Discovery Agents to Application Discovery Service using Transport Layer Security (TLS) encryption. Agents are configured to upgrade automatically when new versions become available. You can change this configuration setting if desired.

**Tip**
Before downloading and beginning Discovery Agent installation, be sure to read through all of the required prerequisites in Prerequisites for Agent Installation (p. 26)

**Topics**
- Data Collected by the Discovery Agent (p. 24)
- Prerequisites for Agent Installation (p. 26)
- Agent Installation on Linux (p. 27)
- Agent Installation on Windows (p. 30)
- Start Discovery Agent Data Collection (p. 33)

**Data Collected by the Discovery Agent**

Following, you can find an inventory of the information collected by the Discovery Agent.

**Table legend for Discovery Agent collected data:**
- The term host refers to either a physical server or a VM.
- Collected data is in measurements of kilobytes (KB) unless stated otherwise.
- Equivalent data in the Migration Hub console is reported in megabytes (MB).
- Data fields denoted with an asterisk (*) are only available in the .csv files produced from the agent's API export function.
- The polling period is in intervals of approximately 15 minutes.

<table>
<thead>
<tr>
<th>Data field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agentAssignedProcessId</td>
<td>Unique process ID of agent</td>
</tr>
<tr>
<td>agentId</td>
<td>Unique ID of agent</td>
</tr>
<tr>
<td>agentProvidedTimeStamp</td>
<td>Date and time of agent observation (mm/dd/yyyy hh:mm:ss am/pm)</td>
</tr>
<tr>
<td>cmdLine</td>
<td>Process entered at the command line</td>
</tr>
<tr>
<td>cpuType</td>
<td>Type of CPU (central processing unit) used in host</td>
</tr>
<tr>
<td>destinationIp</td>
<td>IP address of device to which packet is being sent</td>
</tr>
<tr>
<td>destinationPort</td>
<td>Port number to which the data/request is to be sent</td>
</tr>
<tr>
<td>Data field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>family</td>
<td>Protocol of routing family</td>
</tr>
<tr>
<td>freeRAM (MB)</td>
<td>Free RAM expressed in MB</td>
</tr>
<tr>
<td>gateway</td>
<td>Node address of network</td>
</tr>
<tr>
<td>hostName</td>
<td>Name of host data was collected on</td>
</tr>
<tr>
<td>hypervisor</td>
<td>Type of hypervisor</td>
</tr>
<tr>
<td>ipAddress</td>
<td>IP address of the host</td>
</tr>
<tr>
<td>ipVersion</td>
<td>IP version number</td>
</tr>
<tr>
<td>isSystem</td>
<td>Boolean attribute to indicate if a process is owned by the OS</td>
</tr>
<tr>
<td>macAddress</td>
<td>MAC address of the host</td>
</tr>
<tr>
<td>name</td>
<td>Name of the host, network, metrics, etc. data is being collected for</td>
</tr>
<tr>
<td>netMask</td>
<td>IP address prefix that a network host belongs to</td>
</tr>
<tr>
<td>osName</td>
<td>Operating system name on host</td>
</tr>
<tr>
<td>osVersion</td>
<td>Operating system version on host</td>
</tr>
<tr>
<td>path</td>
<td>Path of the command sourced from the command line</td>
</tr>
<tr>
<td>sourceIp</td>
<td>IP address of the device sending the IP packet</td>
</tr>
<tr>
<td>sourcePort</td>
<td>Port number from which the data/request originates from</td>
</tr>
<tr>
<td>timestamp</td>
<td>Date and time of reported attribute logged by agent</td>
</tr>
<tr>
<td>totalCpuUsagePct</td>
<td>Percentage of CPU usage on host during polling period</td>
</tr>
<tr>
<td>totalDiskBytesReadPerSecond (Kbps)</td>
<td>Total amount of disk free space on host</td>
</tr>
<tr>
<td>totalDiskBytesWrittenPerSecond (Kbps)</td>
<td>Total size of disk on host</td>
</tr>
<tr>
<td>totalDiskFreeSize (GB)</td>
<td>Free disk space expressed in GB</td>
</tr>
<tr>
<td>totalDiskReadOpsPerSecond</td>
<td>Total number of read I/O operations per second</td>
</tr>
<tr>
<td>totalDiskSize (GB)</td>
<td>Total capacity of disk expressed in GB</td>
</tr>
<tr>
<td>totalDiskWriteOpsPerSecond</td>
<td>Total number of write I/O operations per second</td>
</tr>
<tr>
<td>totalNetworkBytesReadPerSecond (Kbps)</td>
<td>Total amount of throughput of bytes read per second</td>
</tr>
<tr>
<td>totalNetworkBytesWrittenPerSecond (Kbps)</td>
<td>Total amount of throughput of bytes written per second</td>
</tr>
</tbody>
</table>
Prerequisites for Agent Installation

These are the pre-installation tasks that should be performed to prevent errors from occurring during the actual installation of the agent. If you have a 1.x version of the agent installed, it needs to be removed before installing the latest version. Instructions for removing older versions are provided in the tasks below:

- Verify your OS environment is supported:
  
  **Linux**
  - Amazon Linux 2012.03, 2015.03
  - Ubuntu 12.04, 14.04, 16.04
  - Red Hat Enterprise Linux 5.11, 6.9, 7.3
  - CentOS 5.11, 6.9, 7.3
  - SUSE 11 SP4, 12 SP2

  **Windows**
  - Windows Server 2003 R2 SP2
  - Windows Server 2008 R1 SP2, 2008 R2 SP1
  - Windows Server 2012 R1, 2012 R2
  - Windows Server 2016

- If outbound connections from your network are restricted, you'll need to update your firewall settings. Agents require access to arsenal over TCP port 443 as in https://arsenal.us-west-2.amazonaws.com:443. They don't require any inbound ports to be open.

- Access to AWS S3 in us-west-2 is required for auto-upgrade to function.

- Create an IAM user with a policy providing agent access to Application Discovery Service. For information, see Step 2: Create an IAM User (p. 3).

- Check the time skew from your Network Time Protocol (NTP) servers and correct if necessary. Incorrect time skew causes the agent registration call to fail.

- Remove any previous-generation agents. If you previously installed Application Discovery Agent 1.0 for either Windows or Linux, you must uninstall it before continuing with the installation of the current agent.
Operating System | Command
--- | ---
Ubuntu Server | `apt-get remove awsagent`
Windows Server | Use **Add/Remove Programs** to uninstall **AWS Agent**.

**Note**
The Discovery Agent has a 32-bit agent executable, which works on both 32-bit and 64-bit operating systems. Having a single executable reduces the number of installation packages needed for deployment. This applies for both Linux and Windows OS and is addressed in their respective installation sections below.

## Agent Installation on Linux

Complete the following procedure on Linux.

**Note**
If you are using a non-current Linux version, see Requirements on Older Linux Platforms (p. 28).

To install AWS Application Discovery Agent in your data center

1. Log in to your Linux-based server or VM and create a new directory to contain your agent components.
2. Switch to the new directory and download the installation script from either the command line or the console.
   a. To download from the command line, run the following command.

```
```
   b. To download from the Migration Hub console, do the following:
      i. Open the console and go to the Discovery Tools page.
      ii. In the Discovery Agent box, choose Download agent, then choose Linux in the resultant list box. Your download begins immediately.
3. Verify the cryptographic signature of the installation package as shown following.

```
gpg --no-default-keyring --keyring ./discovery.gpg --verify agent.sig aws-discovery-agent.tar.gz
```

The agent public key (discovery.gpg) fingerprint is 7638 F24C 6717 F97C 4F1B 3BC0 5133 255E 4DF4 2DA2.

4. Extract from the tarball as shown following.

```
tar -xzf aws-discovery-agent.tar.gz
```
5. Run the following command to install the agent in the us-west-2 Region.

```
sudo bash install -r us-west-2 -k <aws key id> -s <aws key secret>
```
Note
Agents automatically download and apply updates as they become available. We recommend using this default configuration. However, if you don't want agents to download and apply updates automatically, include the `-u false` parameter when running the installation script.

6. If outbound connections from your network are restricted, update your firewall settings. Agents require access to `arsenal` over TCP port 443 as in `us-west-2.amazonaws.com:443` They don't require any inbound ports to be open.

Note
Agents also work with transparent web proxies. However, if you need to configure a non-transparent proxy, proceed to the next step.

7. Optional: To Configure a Non-Transparent Proxy:

   a. Find the configuration file as described in Agent Troubleshooting on Linux (p. 30) and edit the file by adding the required configuration data as follows:

   ```json
 "proxyHost" : "<myproxy.mycompany.com>",
 "proxyPort" : <1234>,
 "proxyUser" : "<myusername>",
 "proxyPassword" : "<mypassword>",
 ``

 b. Save the edited configuration file ensuring that you still have valid json (taking care with the quotes and the commas). If your proxy doesn't require authentication, then leave out `proxyUser` and `proxyPassword`. While most proxies use http, if yours uses https, specify the following in the configuration file:

   ```json
   "proxyScheme" : "https"
   ``

   c. Restart the agent.

   Note
   If you encounter problems, add the following to the configuration file:

   ```json
 "enableAWSSDKLogging" : true
 ``

 Then, restart the agent again, let it run for at least 15 minutes, and contact AWS Support. They will help you troubleshoot and may ask you to send them the generated log files which can be found as described in Agent Troubleshooting on Linux (p. 30).

Topics
- Requirements on Older Linux Platforms (p. 28)
- Manage the Discovery Agent Process on Linux (p. 29)
- Agent Troubleshooting on Linux (p. 30)

Requirements on Older Linux Platforms

Some older Linux platforms such as SUSE 10, CentOS 5, and RHEL 5 are either at end of life or only minimally supported. These platforms can suffer from out-of-date cipher suites that prevent the agent installation script from downloading installation packages. They might also have a limited ability to find and download the platform libraries required by the agent from deprecated Linux repositories.
32-bit libc

One of the dependencies needed for the Application Discovery agent is 32-bit libc. This library must be installed on 64-bit systems that run the agent. If the installation script exits because it fails to find a suitable repository or otherwise fails to install 32-bit libc, you must manually find and install 32-bit libc before you can complete agent installation. Because 32-bit libc is a core Linux library, you must take great care in identifying a package that is compatible with your system. We recommend contacting AWS Support for assistance. After 32-bit libc is installed, run the installation script with the \(-p\) false parameter to skip the automated search of Linux repositories for prerequisites.

Curl

The Application Discovery agent requires curl for secure communications with the AWS server. Some old versions of curl are not able to communicate securely with a modern web service. To use the version of curl included with the Application Discovery agent for all operations, run the installation script with the \(-c\) true parameter.

Certificate Authority Bundle

Older Linux systems might have an out-of-date Certificate Authority (CA) bundle, which is critical to secure internet communication. To use the CA bundle included with the Application Discovery agent for all operations, run the installation script with the \(-b\) true parameter.

These three installation script options can be used in any combination. In the following example command, all three have been passed to the installation script:

```
sudo bash install -r us-west-2 -k <aws key id> -s <aws key secret> -p false -c true -b true
```

Manage the Discovery Agent Process on Linux

You can manage the behavior of the Discovery Agent at the system level using the following commands. For the correct command for each Linux distribution, see the following legend:

(a) Amazon, Red Hat, or CentOS
(b) Ubuntu
(c) SUSE

Linux Commands for Application Discovery Agent

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that an agent is running</td>
<td><code>sudo systemctl status aws-discovery-daemon.service</code>(^a)</td>
</tr>
<tr>
<td></td>
<td><code>sudo initctl status aws-discovery-daemon</code>(^b)</td>
</tr>
<tr>
<td></td>
<td><code>sudo /etc/init.d/aws-discovery-daemon status</code>(^c)</td>
</tr>
<tr>
<td>Start an agent</td>
<td><code>sudo systemctl start aws-discovery-daemon.service</code>(^g)</td>
</tr>
<tr>
<td></td>
<td><code>sudo initctl start aws-discovery-daemon</code>(^b)</td>
</tr>
<tr>
<td>Task</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Start an agent</td>
<td><code>sudo /etc/init.d/aws-discovery-daemon start</code></td>
</tr>
<tr>
<td>Stop an agent</td>
<td><code>sudo systemctl stop aws-discovery-daemon.service</code></td>
</tr>
<tr>
<td></td>
<td><code>sudo initctl stop aws-discovery-daemon</code></td>
</tr>
<tr>
<td></td>
<td><code>sudo /etc/init.d/aws-discovery-daemon stop</code></td>
</tr>
<tr>
<td>Restart an agent</td>
<td><code>sudo systemctl restart aws-discovery-daemon.service</code></td>
</tr>
<tr>
<td></td>
<td><code>sudo initctl restart aws-discovery-daemon</code></td>
</tr>
<tr>
<td></td>
<td><code>sudo /etc/init.d/aws-discovery-daemon restart</code></td>
</tr>
<tr>
<td>Uninstall an agent</td>
<td><code>yum remove aws-discovery-agent</code></td>
</tr>
<tr>
<td></td>
<td><code>apt-get remove aws-discovery-agent</code></td>
</tr>
<tr>
<td></td>
<td><code>zypper remove aws-discovery-agent</code></td>
</tr>
</tbody>
</table>

Agent Troubleshooting on Linux

If you encounter problems while installing or using the Application Discovery Agent on Linux, consult the following guidance about logging and configuration. When helping to troubleshoot potential issues with the agent or its connection to the Application Discovery Service, AWS Support often requests these files.

- **Log files**

 Agent log files can be found under the following directory.

 `/var/log/aws/discovery/`

 Log files are named to indicate whether they are generated by the main daemon, the automatic upgrader, or installer.

- **Configuration files**

 Agent configuration files can be found under the following directory.

 `/var/opt/aws/discovery/`

- For instructions on how to remove older versions of the Discovery Agent, see [Prerequisites for Agent Installation (p. 26)](#).

Agent Installation on Windows

Complete the following procedure on Windows.
To install AWS Application Discovery Agent in your data center

1. Navigate to the Microsoft Download Center and choose Download to be taken to the download selection page, then on this page, select only `vc_redist.x86.exe` (do not select the "x64" version) regardless of the architecture of the machine you are installing on, then choose Next. Your download begins immediately.

2. Download the Windows agent installer but do not double-click and execute the installer within Windows.

 Important
 Do not double-click and execute the installer within Windows as it will fail to install. *Agent installation only works from the command prompt.* (If you already double-clicked on the installer, you must go to Add/Remove Programs and uninstall the agent before continuing on with the remaining installation steps.)

3. Open a command prompt as an administrator and navigate to the location where you saved the installation package.

4. To install the agent, run the following command.

   ```msiexec.exe /i AWSDiscoveryAgentInstaller.msi REGION="us-west-2" KEY_ID="<aws key id>" KEY_SECRET="<aws key secret>" /q```

   **Note**
   Agents automatically download and apply updates as they become available. We recommend this default configuration. To avoid downloading agents and applying updates automatically, include the following parameter when running the installation:
   `AUTO_UPDATE=false`

   **Warning**
   Disabling auto-upgrades will prevent the latest security patches from being installed.

5. If outbound connections from your network are restricted, update your firewall settings. Agents require access to arsenal over TCP port 443 as in `us-west-2.amazonaws.com:443`. They do not require any inbound ports to be open.

   **Note**
   Agents also work with transparent web proxies. However, if you need to configure a non-transparent proxy, continue on with the following steps.

6. Optional: To Configure a Non-Transparent Proxy:

   a. Find the configuration file as described in *Agent Troubleshooting on Windows* (p. 33), and edit the file by adding the required configuration data as follows:

   ```json
 "proxyHost" : "<myproxy.mycompany.com>",
 "proxyPort" : <1234>,
 "proxyUser" : "<myusername>",
 "proxyPassword" : "<mypassword>",
 ``

 b. Save the edited configuration file ensuring that you still have valid json (taking care with the quotes and the commas). If your proxy doesn't require authentication, then leave out `proxyUser` and `proxyPassword`. While most proxies use http, if yours uses https, specify the following in the configuration file:

   ```json
   "proxyScheme" : "https"
   ``

   c. Restart the agent.

   **Note**
   If you encounter problems, add the following to the configuration file:
"enableAWSSDKLogging" : true

Then, restart the agent again, let it run for 15 minutes, and troubleshoot what the issue may be by reading through the generated log files which can be found as described in Agent Troubleshooting on Windows (p. 33).

Topics
• Package Signing on Windows 2003 (p. 32)
• Manage the Discovery Agent Process on Windows (p. 32)
• Agent Troubleshooting on Windows (p. 33)

Package Signing on Windows 2003

For Windows Server 2008 and later, Amazon cryptographically signs the Application Discovery Service agent installation package with an SHA256 certificate. However, because the SHA2 certificate family is not supported by Windows Server 2003, the installation package for that platform is signed with an SHA1 certificate. Microsoft has published hotfixes that might allow your Windows 2003 systems to read an SHA256 certificate. If you require SHA256 in your Windows 2003 environment, contact AWS Support for assistance.

Manage the Discovery Agent Process on Windows

You can manage the behavior of the Discovery Agent at the system level through the Windows Server Manager Services console. The following table describes how.

<table>
<thead>
<tr>
<th>Task</th>
<th>Service Name</th>
<th>Service Status/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that an agent is running</td>
<td>AWS Discovery Agent</td>
<td>Started</td>
</tr>
<tr>
<td></td>
<td>AWS Discovery Updater</td>
<td></td>
</tr>
<tr>
<td>Start an agent</td>
<td>AWS Discovery Agent</td>
<td>Choose Start</td>
</tr>
<tr>
<td></td>
<td>AWS Discovery Updater</td>
<td></td>
</tr>
<tr>
<td>Stop an agent</td>
<td>AWS Discovery Agent</td>
<td>Choose Stop</td>
</tr>
<tr>
<td></td>
<td>AWS Discovery Updater</td>
<td></td>
</tr>
<tr>
<td>Restart an agent</td>
<td>AWS Discovery Agent</td>
<td>Choose Restart</td>
</tr>
<tr>
<td></td>
<td>AWS Discovery Updater</td>
<td></td>
</tr>
</tbody>
</table>

To uninstall a discovery agent on Windows

2. Choose Programs.
3. Choose Programs and Features.
4. Select AWS Discovery Agent.
5. Choose Uninstall.
Agent Troubleshooting on Windows

If you encounter problems while installing or using the Application Discovery Agent on Windows, consult the following guidance about logging and configuration. When helping to troubleshoot potential issues with the agent or its connection to the Application Discovery Service, AWS Support often requests these files.

- **Installation logging**

  In some cases, the `msiexec` command described preceding appears to fail. For example, a failure can appear with the Windows Services Manager showing that the discovery services are not being created. In this case, add `/L*V install.log` to the command to generate a verbose installation log.

- **Operational logging**

  On Windows Server 2008 and later, agent log files can be found under the following directory.

  C:\ProgramData\AWS\AWS Discovery\Logs

  On Windows Server 2003, agent log files can be found under the following directory.

  C:\Documents and Settings\All Users\Application Data\AWS\AWSDiscovery\Logs

  Logs files are named to indicate whether generated by the main service, automatic upgrader, or installer.

- **Configuration file**

  On Windows Server 2008 and later, the agent configuration file can be found at the following location.

  C:\ProgramData\AWS\AWS Discovery\config

  On Windows Server 2003, the agent configuration file can be found at the following location.

  C:\Documents and Settings\All Users\Application Data\AWS\AWS Discovery\config

  • For instructions on how to remove older versions of the Discovery Agent, see Prerequisites for Agent Installation (p. 26).

Start Discovery Agent Data Collection

Now that you have deployed and configured the Discovery Agent, you must complete the final step of actually turning on its data collection process. There are two ways to do this, through the console or by making API calls through the AWS CLI. Instructions are provided below for both ways by expanding your method of choice:

**Start Data Collection Using the Migration Hub Console**

You start the Discovery Agent data collection process on the Data Collectors page of the Migration Hub console.
To start data collection

1. In the navigation pane, choose **Data Collectors**.
2. Choose the **Agents** tab.
3. Select the check box of the agent you want to start.
   
   **Tip**
   
   If you installed multiple agents but only want to start data collection on certain hosts, the **Hostname** column in the agent’s row identifies the host the agent is installed on.

4. Choose **Start data collection**.

**Start Data Collection Using the AWS CLI**

To start the Discovery Agent data collection process from the AWS CLI the AWS CLI must first be installed in your environment.

**To install the AWS CLI and start data collection**

1. If you have not already done so, install the AWS CLI appropriate to your OS type (Windows or Mac/Linux). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (MAC/Linux).
   
   a. Type `aws configure` and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter `us-west-2` for the Default Region Name.
   d. Enter `text` for Default Output Format.
3. Type the following command:

   ```bash
 aws discovery start-data-collection-by-agent-ids --agent-ids <agent ID>
   ```

   • If you don't know the ID of the agent you want to start, enter the following command to see the agent's ID:

   ```bash
 aws discovery describe-agents
   ```
View, Export, and Explore Discovered Data

The AWS Discovery Connector and AWS Discovery Agent both provide system performance data based on average and peak utilization. You can use the system performance data collected to perform a high-level TCO (total cost of ownership). Discovery Agents collect more detailed data including time series data for system performance information, inbound and outbound network connections, and processes running on the server. You can use this data to understand network dependencies between servers and group the related servers as applications for migration planning.

In this section you’ll find instructions on how to view and work with data discovered by Discovery Connectors and Discovery Agents from both the console and the AWS CLI.

Topics
• View Collected Data Using the Console (p. 35)
• Export Collected Data (p. 35)
• Data Exploration in Amazon Athena (p. 37)

View Collected Data Using the Console

After starting the data collection process of your Discovery Connector or Discovery Agent, you can use the console to view their collected data about your servers and VMs. Data appears in the console approximately 15 minutes after turning on data collection. This data can also be viewed in a csv format by exporting the collected data by making API calls through the AWS CLI. Exporting collected data is covered in the next section Export Collected Data (p. 35).

To view collected data about discovered servers

1. In the console’s navigation pane, choose Servers. The discovered servers appear in the servers list.
2. For details comprised of the collected data, choose the server name link in the Server info column. Doing so displays a screen that describes detail information such as system information, performance metrics, and more.

To learn more about using the console to view, sort, and tag servers discovered by your Discovery Connectors or Discovery Agents, see AWS Application Discovery Service Console Walkthroughs (p. 41).

Export Collected Data

After starting the data collection process of your Discovery Connector or Discovery Agent, you can export their collected data about your servers and VMs. This data can be exported either by interacting with the console or by making API calls through the AWS CLI depending on which discovery tool you used to collect data.

• Discovery Agent, you can export the collected data either from the console or from the AWS CLI.
• **Discovery Connector**, you can only export the collected data from the AWS CLI.

Instructions are provided below for both ways by expanding your method of choice:

**Export System Performance Data for All Servers**

Collected data from all the Discovery Connectors and Discovery Agents running on your hosts and VMs can be bulk exported from the AWS CLI. If not already installed, the AWS CLI must first be installed in your environment.

**To install the AWS CLI and export collected data**

1. If you have not already done so, install the AWS CLI appropriate to your OS type (Windows or Mac/Linux). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (MAC/Linux).
   a. Type `aws configure` and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter `us-west-2` for the Default Region Name.
   d. Enter `text` for Default Output Format.
3. Type the following command to generate an export ID:

   ```
 aws discovery start-export-task
   ```
4. Using the export ID generated in the previous step, type the following command to generate an S3 URL as a value for the parameter "configurationsDownloadUrl":

   ```
 aws discovery describe-export-tasks --export-ids <export ID>
   ```
5. Copy the URL generated in the previous step and paste it in a browser to download the zip file with collected data of the discovered servers.

**Export Agent Collected Data Using the Console**

Exporting agent collected data from the console is limited to one agent when you are on the detail page for a specific server. There, you can find the server’s export jobs listed at the bottom of the screen, underneath Exports. If no export jobs yet exist, the table is empty. You can execute up to five exports of server data at a time.

**To export collected data about a discovered server**

1. In the navigation pane, choose Servers.
2. In the Server info column, choose the link for the server that you want to export data for.
3. In the Exports section at the bottom of the screen, choose Export server details.
4. For Export server details, fill in Start date and Time.
   **Note**
   The start time can't be more than 72 hours prior from the current time.
5. Choose Export to start the job. The initial status is In-progress; to update the status, click the refresh icon for the Exports section.
6. When the export job is complete, choose Download and save the .zip file.
7. Unzip the saved file. A set of .csv files contains the export data, similar to the following:

   • `<AWS account ID>_destinationProcessConnection.csv`
Data Exploration in Amazon Athena

Data Exploration in Amazon Athena allows you to analyze the data collected from all the discovered on-premises servers by Discovery Agents at one single place. Once Data Exploration in Amazon Athena is enabled from the Migration Hub console (or by using the StartContinuousExport API) and the data collection for agents is turned on, data collected by agents will automatically get stored in your S3 bucket at regular intervals.

You can then visit Amazon Athena to run pre-defined queries to analyze the time-series system performance for each server, the type of processes that are running on each server and the network dependencies between different servers. In addition, you can write your own custom queries using Amazon Athena, upload additional existing data sources such as configuration management database (CMDB) exports, and associate the discovered servers with the actual business applications. You can also integrate the Athena database with Amazon QuickSight to visualize the query outputs and perform additional analysis.

Topics

• Enabling Data Exploration in Amazon Athena (p. 37)
• Working with Discovered Data in Amazon Athena (p. 38)

Enabling Data Exploration in Amazon Athena

Before you can actually see and start exploring your discovered data in Amazon Athena, Data Exploration in Amazon Athena must first be enabled by Continuous Export implicitly being turned on when you choose "Start data collection", or click the toggle labeled, "Data exploration in Amazon Athena" on the Data Collectors page of the Migration Hub console. Data Exploration in Amazon Athena can also be enabled by Continuous Export explicitly being turned on through an API call from the AWS CLI. Instructions are provided below for both ways by expanding your method of choice:

Enable Data Exploration in Amazon Athena Using the Migration Hub Console

In the navigation pane, choose Data Collectors. Click the Agents tab. Choose Start data collection, or if you already have data collection turned on, click the Data exploration in Amazon Athena toggle.
4. In the dialog box generated from the previous step, click the checkbox agreeing to associated costs and choose Continue or Enable.

**Note**
Your agents are now running in "continuous export" mode which will enable you to see and work with your discovered data in Amazon Athena. The first time this is enable it may take up to 30 minutes for your data to appear in Amazon Athena.

**Enable Data Exploration in Amazon Athena Using the AWS CLI**

Data Exploration in Amazon Athena is enabled by Continuous Export explicitly being turned on through an API call from the AWS CLI. To do this, the AWS CLI must first be installed in your environment.

**To install the AWS CLI and enable Data Exploration in Amazon Athena**

1. Install the AWS CLI for your operating system (Linux, macOS, or Windows). See the AWS Command Line Interface User Guide for instructions.
2. Open the Command prompt (Windows) or Terminal (Linux or macOS).
   a. Type `aws configure` and press Enter.
   b. Enter your AWS Access Key Id and AWS Secret Access Key.
   c. Enter `us-west-2` for the Default Region Name.
   d. Enter `text` for Default Output Format.
3. Type the following command:

   ```bash
 aws discovery start-continuous-export
   ```

**Note**
Your agents are now running in "continuous export" mode which will enable you to see and work with your discovered data in Amazon Athena. The first time this is enable it may take up to 30 minutes for your data to appear in Amazon Athena.

**Working with Discovered Data in Amazon Athena**

Once you have enabled Data Exploration in Amazon Athena, you can begin exploring and working with current, detailed data discovered by your agents in Amazon Athena. You can query this data directly in Athena to do such things as generate spreadsheets, run a cost analysis, port the query to a visualization program to diagram network dependencies, and more.

In this section the following topics will be covered providing instructions on the various ways you can work with your data in Amazon Athena to assess and plan for migrating your local environment to AWS:

**Topics**
- Explore Data Directly in Amazon Athena (p. 38)
- Predefined Queries to use in Athena (p. 39)
- Visualize Amazon Athena Data (p. 40)

**Explore Data Directly in Amazon Athena**

These instructions will guide you to all of your agent data directly in the Athena console. If you don’t have any data in Athena or have not enabled Data Exploration in Amazon Athena, you will be prompted by a dialog box to enable Data Exploration in Amazon Athena as explained here (p. 37).
To explore agent discovered data directly in Athena

1. In the navigation pane, choose Servers.
2. Choose the Explore data in Amazon Athena link.

You will be taken to the Amazon Athena console where you will see:

- The Query Editor window
- In the navigation pane:
  - Database listbox which will have the default database pre-listed as application_discovery_service_database
  - Tables list consisting of seven tables representing the data sets grouped by the agents:
    - os_info_agent
    - network_interface_agent
    - sys_performance_agent
    - processes_agent
    - inbound_connection_agent
    - outbound_connection_agent
    - id_mapping_agent

3. You are now ready to query the data in the Amazon Athena console by writing and running your own SQL queries in the Athena Query Editor to analyze details about your on-premises servers.

Predefined Queries to use in Athena

Here you will find a set of predefined queries of typical use cases, such as TCO analysis and network visualization. You can use these queries as is or modify them to suit your needs. Simply expand the query you want to use and follow these instructions:

To use a predefined query

1. In the navigation pane, choose Servers.
2. Choose the Explore data in Amazon Athena link to be taken to your data in the Athena console.
3. Expand one of the predefined queries listed below and copy it.
4. Place your cursor in Athena's Query Editor window and paste the query.
5. Choose Run Query.

Network Communication Between Servers Based On Port Number

To obtain the network communication between servers based on a given port number, run the following query in the Amazon Athena Console:

```sql
WITH valid_ips AS
(SELECT DISTINCT source_ip
FROM outbound_connection_agent), outer_query AS
(SELECT agent_id,
source_ip,
destination_ip,
destination_port,
count(*) AS frequency
FROM outbound_connection_agent
WHERE ip_version = 'IPv4'
AND destination_ip IN
(SELECT *
FROM valid_ips))
```
FROM valid_ips)
GROUP BY agent_id, source_ip, destination_ip, destination_port )
SELECT source_ip AS Source,
'Port ' || cast(destination_port AS varchar(20)) AS Edge, destination_ip AS Target,
Frequency
FROM outer_query;

Cost Analysis Based On System Performance

To obtain the system performance data for cost analysis, run the following query in the Amazon Athena Console:

SELECT DISTINCT SP.AGENT_ID,
OS.OS_NAME,
OS.OS_VERSION,
MAX(SP.total_num_cores) AS Cores,
MAX(SP.total_num_cpus) AS CPU,
MAX(SP.total_disk_size_in_gb) AS StorageTotal,
MAX(SP.total_disk_free_size_in_gb) AS StorageFree,
MAX(SP.total_ram_in_mb) AS RAM,
MAX(SP.total_disk_read_ops_per_sec) AS IOPS_Read,
MAX(SP.total_disk_bytes_written_per_sec_in_kbps) AS IOPS_Write
FROM sys_performance_agent AS SP, OS_INFO_AGENT AS OS
WHERE SP.AGENT_ID = OS.AGENT_ID
GROUP BY SP.AGENT_ID, OS.OS_NAME, OS.OS_VERSION;

Visualize Amazon Athena Data

To visualize your data, a query can be ported to a visualization program such as Amazon QuickSight or other open-source visualization tools such as Cytoscape, yEd, or Gelphi to render network diagrams, summary charts, and other graphical representations. When this method is used, you connect to Athena through the visualization program so that it can access your collected data as a source to produce the visualization.

To visualize your Amazon Athena data using Amazon QuickSight

1. Sign-in to Amazon QuickSight.
2. Choose Connect to another data source or upload a file.
3. Choose Athena which will produce the New Athena data source dialog box.
4. Enter a name in the Data source name field.
5. Choose Create data source.
6. Select the Agents-servers-os table in the Choose your table dialog box and choose Select.
7. In the Finish data set creation dialog box, select Import to SPICE for quicker analytics and choose Visualize.
   Your visualization will be rendered.

Removing your data from AWS Application Discovery Service

If you’d like to have all your data removed from Application Discovery Service, please contact AWS Support and request full data deletion from Application Discovery Service.
AWS Application Discovery Service is integrated with AWS Migration Hub and customers can view and manage their data collectors, servers, and applications within Migration Hub. When you use the Application Discovery Service console, you are redirected to the Migration Hub console. Working with the Migration Hub console requires no extra steps or setup on your part.

In this section, you can find how to manage and monitor your Discovery Connectors and Discovery Agents using the console.

Topics
- Main Dashboard (p. 41)
- Data Collection Tools (p. 43)
- View, Export, and Explore Server Data (p. 45)
- Applications (p. 50)

Main Dashboard

The main dashboard is selected by default on the homepage of the AWS Migration Hub console, or, by choosing Dashboard in the navigation pane. In Migration Hub's main dashboard, you can view high-level statistics about servers, applications, and data collectors such as Discovery Connectors and Discovery Agents.

Topics
- Main Dashboard (p. 41)
- Navigating from the Dashboard and the Navigation Pane (p. 42)

Main Dashboard

The main dashboard gathers data from the Discover and Migrate dashboards in a central location. It has four status and information panes and a list of links for quick access. Using the panes, you can see a summary status of your most recently updated applications. You can also get quick access to any of your applications, get an overview of applications in different states, and track the migration progress over time.

To reach the main dashboard, choose Dashboard from the navigation pane, which is on the left side of the Migration Hub homepage.
Navigating from the Dashboard and the Navigation Pane

After you view dashboard data summaries, you might want to retrieve more detail. To do this, navigate directly from the relevant status or information box on the main dashboard.

In the table following, you can find instructions on how to navigate from a dashboard to the information you want to see. You can also find instructions on how to get to this information by using the navigation pane, which is on the left side of the Migration Hub homepage.

<table>
<thead>
<tr>
<th>To See</th>
<th>Do This in the Dashboard</th>
<th>Do This in the Navigation Pane</th>
</tr>
</thead>
<tbody>
<tr>
<td>All servers</td>
<td>In the main dashboard, in the <strong>Discovery summary</strong> box, choose <strong>Servers</strong>.</td>
<td>1. In the navigation pane, choose <strong>Servers</strong>.</td>
</tr>
</tbody>
</table>
| All agents | In the main dashboard, in the **Discovery summary** box, choose **Agents**.                | 1. In the navigation pane, choose **Data Collectors**.  
                                         |                                                                            | 2. Choose the **Agents** tab. |
## Data Collection Tools

The Discovery Connector and Discovery Agent are the data collection tools that Application Discovery Service uses to help you discover your existing infrastructure. You can download and deploy discovery connectors and discovery agents as explained in [AWS Agentless Discovery Connector](p. 16) and [AWS Application Discovery Agent](p. 23).

These data collection tools store their data in the Application Discovery Service's repository, providing details about each server and the processes running on them. When either of these tools is deployed, you can start, stop, and view the collected data from the Migration Hub console.

### Topics
- Starting and Stopping Data Collectors (p. 43)
- Viewing and Sorting Data Collectors (p. 44)

## Starting and Stopping Data Collectors

Whether you deployed a Discovery Connector or a Discovery Agent, you can start or stop their data collection process on the Data Collectors page of the Migration Hub console.

### To start or stop data collection tools

1. In the navigation pane, choose Data Collectors.
2. Choose either the Connectors or Agents tab.
3. Select the check box of the collection tool you want to start or stop.
4. Choose **Start data collection** or **Stop data collection**.

### Viewing and Sorting Data Collectors

If you deployed many data collectors, you can sort the Discovery Connectors or Discovery Agents that are returned to the **Data Collectors** page of the console. You can do this by applying filters in the search bar. You can search and filter on most of the criteria specified in the **Data Collectors** list.

The following table shows the search criteria that you can use, including operators, values, and a definition of the values.

<table>
<thead>
<tr>
<th>Search Criterion</th>
<th>Operator</th>
<th>Value: Definition</th>
</tr>
</thead>
</table>
| Collection status|          | Started: Data is being collected and sent to Application Discovery Service.  
|                  |          | Start scheduled: Data collection is scheduled to start. Data will be sent to Application Discovery Service on next ping, and status will change to **Started**.  
|                  |          | Stopped: Data is not being collected or sent to Application Discovery Service.  
|                  |          | Stop scheduled: Data collection is scheduled to stop. Data will stop being sent to Application Discovery Service on next ping, and status will change to **Stopped**.  
| Health           | ==       | Healthy: Data collection isn't turned on. The tool is functioning normally.  
|                  | !=       | Unhealthy: The tool is in an error state. Data isn't being collected or reported.  
|                  |          | Unknown: No connection established in over an hour.  
|                  |          | Shutdown: The tool last communicated "shutting down" due to a system, service, or daemon shutdown. If a reboot or tool upgrade occurred, status will change to another state at the first reporting cycle.  
|                  |          | Running: Data collection is turned on. The tool is functioning normally.  
| Hostname         |          | For agents, any host name selected from the pre-populated list of hosts.  
| IP address       | ==       | For connectors, not applicable.  
| Connector/Agent ID|          | Any IP address selected from the pre-populated list where a collection tool is installed.  

**To sort data collectors by applying search filters**

1. In the navigation pane, choose **Data Collectors**.
2. Choose either the **Connectors** or **Agents** tab.
3. Click inside the search bar and choose a search criterion from the list.
4. Choose an operator from the next list.
5. Choose a value from the last list.
View, Export, and Explore Server Data

The Servers page provides system configuration and performance data about each server instance known to the data collection tools. You can view server information, sort servers with filters, tag servers with key-value pairs, and export detailed server and system information.

Topics
- Viewing and Sorting Servers (p. 45)
- Tagging Servers (p. 45)
- Exporting Server Data (p. 46)
- Data Exploration in Athena (p. 47)

Viewing and Sorting Servers

You can view information about the servers discovered by the data collection tools, and you can sort through the servers using filters.

Viewing Servers

You can get a general view and a detailed view of the servers discovered by the data collection tools.

To view discovered servers

1. In the navigation pane, choose Servers. The discovered servers appear in the servers list.
2. For more detail about a server, choose its server link in the Server info column. Doing so displays a screen that describes the server.

The server's detail screen displays system information and performance metrics. You can also find a button to export network dependencies and processes information. To export detailed server information, see Exporting Server Data (p. 46).

Sorting Servers with Search Filters

To easily find specific servers, apply search filters to sort through all the servers discovered by the collection tools. You can search and filter on numerous criteria.

To sort servers by applying search filters

1. In the navigation pane, choose Servers.
2. Click inside the search bar, and choose a search criterion from the list.
3. Choose an operator from the next list.
4. Type in a case-sensitive value for the search criterion you selected, and press Enter.
5. Multiple filters can be applied by repeating steps 2 - 4.

Tagging Servers

To assist migration planning and help stay organized, you can create multiple tags for each server. Tags are user-defined key-value pairs that can store any custom data or metadata about servers. You can tag an individual server or multiple servers in a single operation. Application Discovery Service tags are similar to AWS tags, but the two types of tag cannot be used interchangeably.
You can add or remove multiple tags for one or more servers from the main Servers page. On a server's detail page, you can add or remove one or more tags for the selected server. You can do any type of tagging task involving multiple servers or tags in a single operation. You can also remove tags.

**To add tags to one or more servers**

1. In the navigation pane, choose Servers.
2. In the Server info column, choose the server link for the server that you want to add tags for. To add tags to more than one server at a time, click inside the check boxes of multiple servers.
3. Choose Add tag.
4. In the dialog box, type a value in the Key field, and optionally a value in the Value field.
   Add more tags by choosing Additional tag and adding more information.
5. Choose Add Tags. A green confirmation message will be displayed at the top of the screen.
6. Optionally, tags can be added for an individual server from its detail page by choosing Actions, and then Add tag and repeating the above steps.

**To remove tags from one or more servers**

1. In the navigation pane, choose Servers.
2. In the Server info column, choose the server link for the server that you want to remove tags from. Click inside the check boxes of multiple servers to remove tags from more than one server at a time.
3. For Actions, choose Remove tag.
4. Select each tag you want to remove, or choose select all.
5. Choose Remove. A green confirmation message appears at the top of the screen.
6. Optionally, tags can be removed for an individual server from its detail page by choosing Actions, and then Remove tag and repeating the above steps.

**Exporting Server Data**

To export network dependencies and process information for one server at a time, you can use a server's detail screen. You can find the export jobs for a server in a table located in the Exports section of the server's detail screen. If no export jobs yet exist, the table is empty. You can simultaneously export up to five collections of data.

**Note**

Exporting server data from the console is only available for data collected by an agent running on that server. If you want to download data collected by a connector, see Export System Performance Data for All Servers (p. 36). Or, if you want to bulk export data for all servers where agents have been installed, see Data Exploration in Amazon Athena (p. 37).

**To export detailed server data**

1. In the navigation pane, choose Servers.
2. In the Server info column, choose the ID of the server for which you want to export data.
3. In the Exports section at the bottom of the screen, choose Export server details.
4. For Export server details, fill in Start date and Time.
   **Note**
   The start time can't be more than 72 hours before the current time.
5. Choose Export to start the job. The initial status is In-progress; to update the status, click the refresh icon for the Exports section.
6. When the export job is complete, choose **Download** and save the .zip file.
7. Unzip the saved file. A set of .csv files contains the export data, similar to the following:
   - `<AWS account ID>_destinationProcessConnection.csv`
   - `<AWS account ID>_networkInterface.csv`
   - `<AWS account ID>_osinfo.csv`
   - `<AWS account ID>_process.csv`
   - `<AWS account ID>_sourceProcessConnection.csv`
   - `<AWS account ID>_systemPerformance.csv`

You can open the .csv files in Microsoft Excel and review the exported server data.

Among the files, you can find a JSON file containing data about the export task and its results.

**Data Exploration in Athena**

Data Exploration in Amazon Athena is enabled by continuous export implicitly being turned on when you confirm options in its dialog box presented from the Data Collectors page after you choose “Start data collection”, or click the slider labeled, “Data exploration in Athena”.

After you’ve started Continuous Export and you’re ready to begin exploring data discovered by all your agents, you choose the “Explore data in Athena” link on the Servers page to go directly to Amazon Athena.

**Topics**
- Prerequisite for Data Exploration in Amazon Athena (p. 47)
- Working with Discovered Data in Amazon Athena (p. 38)

**Prerequisite for Data Exploration in Amazon Athena**

Before you can actually start exploring your discovered data in Athena, you first have to put your discovery agents in "continuous export" mode as a prerequisite by starting Continuous Export. There are two ways to do this, through the console or by making API calls through the AWS CLI. Instructions are provided below for both ways by expanding your method of choice:

Continuous Export is turned on when you choose "Start data collection", or click the slider labeled, "Data exploration in Athena" on the **Data Collectors** page of the Migration Hub console.

**To start Continuous Export from your agents**

1. In the navigation pane, choose **Data Collectors**.
2. Choose the **Agents** tab.
3. Choose **Start data collection**, or if you already have data collection turned on, click the **Data exploration in Athena** slider.
4. In the dialog box generated from the previous step, click the checkbox agreeing to associated costs and choose **Continue** or **Enable**.

**Working with Discovered Data in Amazon Athena**

Once you have enabled Data Exploration in Amazon Athena, you can begin exploring and working with current, detailed data discovered by your agents in Amazon Athena. You can query this data directly in
Athena to do such things as generate spreadsheets, run a cost analysis, port the query to a visualization program to diagram network dependencies, and more.

In this section the following topics will be covered providing instructions on the various ways you can work with your data in Amazon Athena to assess and plan for migrating your local environment to AWS:

Topics
- Explore Data Directly in Amazon Athena (p. 38)
- Predefined Queries to use in Athena (p. 39)
- Visualize Amazon Athena Data (p. 40)

Explore Data Directly in Amazon Athena

These instructions will guide you to all of your agent data directly in the Athena console. If you don’t have any data in Athena or have not enabled Data Exploration in Amazon Athena, you will be prompted by a dialog box to enable Data Exploration in Amazon Athena as explained here (p. 37).

To explore agent discovered data directly in Athena

1. In the navigation pane, choose Servers.
2. Choose the Explore data in Amazon Athena link.

   You will be taken to the Amazon Athena console where you will see:
   - The Query Editor window
   - In the navigation pane:
     - Database listbox which will have the default database pre-listed as application_discovery_service_database
     - Tables list consisting of seven tables representing the data sets grouped by the agents:
       - os_info_agent
       - network_interface_agent
       - sys_performance_agent
       - processes_agent
       - inbound_connection_agent
       - outbound_connection_agent
       - id_mapping_agent
3. You are now ready to query the data in the Amazon Athena console by writing and running your own SQL queries in the Athena Query Editor to analyze details about your on-premises servers.

Predefined Queries to use in Athena

Here you will find a set of predefined queries of typical use cases, such as TCO analysis and network visualization. You can use these queries as is or modify them to suit your needs. Simply expand the query you want to use and follow these instructions:

To use a predefined query

1. In the navigation pane, choose Servers.
2. Choose the Explore data in Amazon Athena link to be taken to your data in the Athena console.
3. Expand one of the predefined queries listed below and copy it.
4. Place your cursor in Athena’s Query Editor window and paste the query.
5. Choose Run Query.
Network Communication Between Servers Based On Port Number

To obtain the network communication between servers based on a given port number, run the following query in the Amazon Athena Console:

```
WITH valid_ips AS
 (SELECT DISTINCT source_ip
 FROM outbound_connection_agent), outer_query AS
 (SELECT agent_id, source_ip, destination_ip, destination_port, count(*) AS frequency
 FROM outbound_connection_agent
 WHERE ip_version = 'IPv4'
 AND destination_ip IN
 (SELECT *
 FROM valid_ips)
 GROUP BY agent_id, source_ip, destination_ip, destination_port)
SELECT source_ip AS Source, 'Port ' || cast(destination_port AS varchar(20)) AS Edge, destination_ip AS Target, Frequency
FROM outer_query;
```

Cost Analysis Based On System Performance

To obtain the system performance data for cost analysis, run the following query in the Amazon Athena Console:

```
SELECT DISTINCT SP.AGENT_ID, OS.OS_NAME, OS.OS_VERSION, MAX(SP.total_num_cores) AS Cores, MAX(SP.total_num_cpus) AS CPU, MAX(SP.total_disk_size_in_gb) AS StorageTotal, MAX(SP.total_disk_free_size_in_gb) AS StorageFree, MAX(SP.total_ram_in_mb) AS RAM, MAX(SP.total_disk_read_ops_per_sec) AS IOPS_Read, MAX(SP.total_disk_bytes_written_per_sec_in_kbps) AS IOPS_Write
FROM sys_performance_agent AS SP, OS_INFO_AGENT AS OS
WHERE SP.AGENT_ID = OS.AGENT_ID
GROUP BY SP.AGENT_ID, OS.OS_NAME, OS.OS_VERSION;
```

Visualize Amazon Athena Data

To visualize your data, a query can be ported to a visualization program such as Amazon QuickSight or other open-source visualization tools such as Cytoscape, yEd, or Gelphi to render network diagrams, summary charts, and other graphical representations. When this method is used, you connect to Athena through the visualization program so that it can access your collected data as a source to produce the visualization.

To visualize your Amazon Athena data using Amazon QuickSight

1. Sign-in to Amazon QuickSight.
2. Choose Connect to another data source or upload a file.
3. Choose Athena which will produce the New Athena data source dialog box.
4. Enter a name in the Data source name field.
5. Choose Create data source.
6. Select the Agents-servers-os table in the Choose your table dialog box and choose Select.
7. In the Finish data set creation dialog box, select Import to SPICE for quicker analytics and choose Visualize.

Your visualization will be rendered.

Applications

Some of your discovered servers might need to be migrated together to remain functional. In this case, you can logically define and group discovered servers into applications.

As part of the grouping process, you can search, filter, and add tags.

To group servers into a new or existing application

1. In the navigation pane, choose Servers.
2. In the servers list, select each server that you want to group into a new or existing application.

   To help choose servers for your group, you can search and filter on any criteria that you specify in the server list. Click inside the search bar and choose an item from the list, choose an operator from the next list, and then type in your criteria.
3. Optional: For each selected server, choose Add tag, type a value for Key, and then optionally type a value for Value.
4. Choose Group as application to create your application, or add to an existing one.
5. In the Group as application dialog box, choose Group as a new application or Add to an existing application.
   a. If you chose Group as a new application, type a name for Application name. Optionally, you can type a description for Application description.
   b. If you chose Add to an existing application, select the name of the application to add to in the list.
6. Choose Save.
Troubleshooting Data Exploration in Amazon Athena

In this section, you can find information about how to fix common issues with your AWS Application Discovery Service.

**Topics**
- Stop Data Collection by Data Exploration (p. 51)
- Remove data collected by Data Exploration (p. 52)
- Fix Common Issues with Data Exploration in Amazon Athena (p. 52)

## Stop Data Collection by Data Exploration

To stop Data Exploration, you can either switch off the toggle switch in the Migration Hub console under Discover > Data Collectors > Agents tab, or invoke the `StopContinuousExport` API. It can take up to 30 minutes to stop the data collection, and during this stage, the toggle switch on the console and the `DescribeContinuousExport` API invocation will show the Data Exploration state as “Stop In Progress”.

**Note**
If after refreshing the console page, the toggle does not switch off and an error message is thrown or the `DescribeContinuousExport` API returns "Stop_Failed" state, you can try again by switching the toggle switch off or calling the `StopContinuousExport` API. If the "Data Exploration" still shows error and fails to successfully stop, please reach out to AWS support.

Alternatively, you can manually stop data collection as described in the following steps.

### Option 1: Stop Agent Data collection

If you have already completed your discovery using ADS agents and no longer want to collect additional data in the ADS database repository:

1. From the Migration Hub console choose Discover > Data Collectors > Agents tab.
2. Select all existing running agents and choose **Stop Data Collection**.

   This will ensure that no new data is being collected by the agents in both the ADS data repository and your S3 bucket. Your existing data remains accessible.

### Option 2: Delete Data Exploration's Amazon Kinesis Data Streams

If you want to continue collecting data by agents in ADS data repository, but don't want to collect data in your Amazon S3 bucket using Data Exploration, you can manually delete the Amazon Kinesis Data Firehose streams created by Data Exploration:

1. Log in to Amazon Kinesis from the AWS console and choose **Data Firehose** from the navigation pane.
2. Delete the following streams created by the Data Exploration feature:
   - `aws-application-discovery-service-id_mapping_agent`
   - `aws-application-discovery-service-inbound_connection_agent`
   - `aws-application-discovery-service-network_interface_agent`
Remove data collected by Data Exploration

To remove data collected by Data Exploration

1. Remove the discovery agent data stored in Amazon S3.

   Data collected by Application Discovery Service (ADS) will be stored in an S3 bucket named `aws-application-discovery-service-uniqueid`.

   Note
   Deleting the Amazon S3 bucket or any of the objects in it while Data Exploration in Amazon Athena is enabled will cause an error. It will continuing to send new discovery agent data to S3. The deleted data will no longer be accessible in Athena as well.

2. Remove AWS Glue Data Catalog.

   When Data Exploration in Amazon Athena is turned on, it creates an Amazon S3 bucket in your account to store the data collected by ADS agents at regular time intervals. In addition, it also creates an AWS Glue Data Catalog to allow you to query the data stored in a Amazon S3 bucket from Amazon Athena. When you turn off Data Exploration in Amazon Athena, no new data is stored in your Amazon S3 bucket, but data that was collected previously will persist. If you no longer need this data and want to return your account to the state before Data Exploration in Amazon Athena was turned on

   a. Visit Amazon S3 from the AWS console and manually delete the bucket with the name "aws-application-discover-discovery-service-uniqueid"

   b. You can manually remove the Data Exploration AWS Glue Data Catalog by deleting the `application-discovery-service-database` database and all of these tables:

      • `os_info_agent`
      • `network_interface_agent`
      • `sys_performance_agent`
      • `processes_agent`
      • `inbound_connection_agent`
      • `outbound_connection_agent`
      • `id_mapping_agent`

Fix Common Issues with Data Exploration in Amazon Athena

In this section, you can find information about how to fix common issues with Data Exploration in Amazon Athena.

Topics

• Data Exploration in Amazon Athena Fails to Initiate Because Service-Linked Roles and Required AWS Resources Can't be Created (p. 53)
Data Exploration in Amazon Athena Fails to Initiate Because Service-Linked Roles and Required AWS Resources Can't be Created

When you turn on Data Exploration in Amazon Athena, it creates a service-linked-role, AWSServiceRoleForApplicationDiscoveryServiceContinuousExport, in your account that allows it to create the required AWS resources for making the agent collected data accessible in Amazon Athena including an Amazon S3 bucket, Amazon Kinesis streams, and AWS Glue Data Catalog. If your account does not have the right permissions for Data Exploration in Amazon Athena to create this role, it will fail to initialize. Refer to Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies (p. 5).

New Agent Data Doesn't show Up in Amazon Athena

If new data does not flow into Athena, it has been more than 30 minutes since an agent started, and Data Exploration status is Active, check the solutions listed below:

• AWS Discovery Agents
  Ensure that your agent's Collection status is marked as Started and the Health status is marked as Running.

• Kinesis Role
  Ensure that you have the AWSApplicationDiscoveryServiceFirehose role in your account.

• Kinesis Data Firehose Status
  Ensure that the following Kinesis Data Firehose delivery streams are working correctly:
  • aws-application-discovery-service/os_info_agent
  • aws-application-discovery-service-network_interface_agent
  • aws-application-discovery-service-sys_performance_agent
  • aws-application-discovery-service-processes_agent
  • aws-application-discovery-service-inbound_connection_agent
  • aws-application-discovery-service-outbound_connection_agent
  • aws-application-discovery-service-id_mapping_agent

• AWS Glue Data Catalog
  Ensure that the application-discovery-service-database database is in AWS Glue. Make sure that the following tables are present in AWS Glue:
  • os_info_agent
  • network_interface_agent
  • sys_performance_agent
  • processes_agent
• inbound_connection_agent
• outbound_connection_agent
• id_mapping_agent

• Amazon S3 Bucket
  
  Ensure that you have an Amazon S3 bucket named `aws-application-discovery-service-uniqueid` in your account. If objects in the bucket have been moved or deleted, they will not show up properly in Athena.

• Your on-premises servers
  
  Ensure that your servers are running so that your agents can collect and send data to AWS Application Discovery Service.

You have Insufficient Permissions to Access Amazon S3, Amazon Kinesis Data Firehose, or AWS Glue

If you are using AWS Organizations, and initialization for Data Exploration in Amazon Athena fails, it can be because you don’t have permissions to access Amazon S3, Amazon Kinesis Data Firehose, Athena or AWS Glue.

You will need an IAM user with administrator permissions to grant you access to these services. An administrator can use their account to grant this access. See Step 3: Provide Application Discovery Service Access to Non-Administrator Users by Attaching Policies (p. 5).

To ensure that Data Exploration in Amazon Athena works correctly, do not modify or delete the AWS resources created by Data Exploration in Amazon Athena including the Amazon S3 bucket, Amazon Kinesis Data Firehose Streams, and AWS Glue Data Catalog. If you accidentally delete or modify these resources, please stop and start Data Exploration and it will automatically create these resources again. If you delete the Amazon S3 bucket created by Data Exploration, you may lose the data that was collected in the bucket.
AWS Application Discovery Service

Service Limits

Application Discovery Service has the following limitations for agentless and agent-based discovery.

**Agentless discovery**

The service limits you to 10 GB of data per day. If you reach this limit, the service doesn't process any more data for that day. If you frequently reach this limit, contact AWS Support about extending the limit.

**Agent-based discovery**

Agent-based discovery currently enforces the following limits:

- 1,000 active agents — agents that are collecting and sending data to Application Discovery Service in the cloud.
- 10,000 inactive agents — agents that are responsive but not collecting data.
- 10 GB of data per day — collected by all agents associated with a given AWS account.
- 90 days of data storage — after which the data is purged.
Document History for AWS Application Discovery Service

The following table describes the important changes to the documentation since the last release of Application Discovery Service.

**Latest documentation update:** August 09, 2018

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Feature</td>
<td>Updated docs to support Data Exploration in Amazon Athena and added Troubleshooting chapter.</td>
<td>August 09, 2018</td>
</tr>
<tr>
<td>Major revision</td>
<td>Rewrites to usage &amp; output details; entire document restructured.</td>
<td>May 25, 2018</td>
</tr>
<tr>
<td>Discovery Agent 2.0</td>
<td>A new and improved Application Discovery agent was released.</td>
<td>October 19, 2017</td>
</tr>
<tr>
<td>Console</td>
<td>The AWS Management Console was added.</td>
<td>December 19, 2016</td>
</tr>
<tr>
<td>Agentless discovery</td>
<td>This release describes how to set up and configure agentless discovery.</td>
<td>July 28, 2016</td>
</tr>
<tr>
<td>New details for Microsoft Windows Server and command issue fixes</td>
<td>This update adds details about Microsoft Windows Server. It also documents fixes to various command issues.</td>
<td>May 20, 2016</td>
</tr>
<tr>
<td>Initial publication</td>
<td>This is the first release of the Application Discovery Service User Guide.</td>
<td>May 12, 2016</td>
</tr>
</tbody>
</table>
AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.