List of Supported Geospatial Functions
Geospatial functions in Athena have these characteristics:

The functions follow the general principles of Spatial Query.

The functions are implemented as a Presto plugin that uses the ESRI Java Geometry Library. This library has an Apache 2 license.

The functions rely on the ESRI Geometry API.

Not all of the ESRIsupported functions are available in Athena. This topic lists only the ESRI geospatial functions that are supported in Athena.

You cannot use views with geospatial functions.
Athena supports four types of geospatial functions:
Before You Begin
Create two tables, earthquakes
and counties
, as follows:
CREATE external TABLE earthquakes ( earthquake_date STRING, latitude DOUBLE, longitude DOUBLE, depth DOUBLE, magnitude DOUBLE, magtype string, mbstations string, gap string, distance string, rms string, source string, eventid string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION 's3://myquerylog/csv'
CREATE external TABLE IF NOT EXISTS counties ( Name string, BoundaryShape binary ) ROW FORMAT SERDE 'com.esri.hadoop.hive.serde.JsonSerde' STORED AS INPUTFORMAT 'com.esri.json.hadoop.EnclosedJsonInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION 's3://myquerylog/json'
Some of the subsequent examples are based on these tables and rely on two sample files stored in the Amazon S3 location. These files are not inlcuded with Athena and are used for illustration purposes only:

An
earthquakes.csv
file, which lists earthquakes that occurred in California. This file has fields that correspond to the fields in the tableearthquakes
. 
A
californiacounties.json
file, which lists JSONencoded county data in the ESRIcompliant format, and includes many fields, such as AREA, PERIMETER, STATE, COUNTY, and NAME. Thecounties
table is based on this file and has two fields only:Name
(string), andBoundaryShape
(binary).
Constructor Functions
Use constructor geospatial functions to obtain binary representations of a point
, `line
, or polygon
. You can also convert a particular geometry data type to text, and obtain a binary
representation of a geometry data type from text (WKT).
ST_POINT(double, double)
Returns a value in the point
data type, which is a binary representation of the geometry data type point
.
For the geometry data type point
in ST_POINT
, Athena uses
the map units from the Cartesian Coordinates System, and an angular unit from the
spatial reference, specified in linear units, based on the Global Positioning System
(GPS) World Geodetic System (also known as WGS1984, or WGS84) format. For example,
in
this notation: ST_BUFFER(ST_POINT(40.705220,74.006801), 15.0)
, the map
coordinates are specified in Cartesian Coordinates System units, and the angular value
of 15 is specified in linear units based on WGS84.
Syntax:
SELECT ST_POINT(longitude, latitude) FROM earthquakes LIMIT 1;
In the alternative syntax, you can also specify the coordinates as a point
data type with two values:
SELECT ST_POINT('point (0 0)') FROM earthquakes LIMIT 1;
Example. This example uses specific longitude and latitude coordinates from earthquakes.csv
:
SELECT ST_POINT(61.56, 158.54) FROM earthquakes LIMIT 1;
It returns this binary representation of a geometry data type point
:
00 00 00 00 01 01 00 00 00 48 e1 7a 14 ae c7 4e 40 e1 7a 14 ae 47 d1 63 c0
ST_LINE(varchar)
Returns a value in the line
data type, which is a binary representation of the geometry data type line
. Example:
SELECT ST_Line('linestring(1 1, 2 2, 3 3)')
ST_POLYGON(varchar)
Returns a value in the polygon
data type, which is a binary representation of the geometry data type polygon
. Example:
SELECT ST_Polygon('polygon ((1 1, 4 1, 1 4))')
ST_GEOMETRY_TO_TEXT (varbinary)
Converts each of the specified geometry data types to text. Returns a value in a geometry data type, which is a WKT representation of the geometry data type. Example:
SELECT ST_GEOMETRY_TO_TEXT(ST_POINT(61.56, 158.54))
ST_GEOMETRY_FROM_TEXT (varchar)
Converts text into a geometry data type. Returns a value in a geometry data type, which is a binary representation of the geometry data type. Example:
SELECT ST_GEOMETRY_FROM_TEXT(ST_GEOMETRY_TO_TEXT(ST_Point(1, 2)))
Geospatial Relationship Functions
The following functions express relationships between two different geometries that
you specify as input. They return results of type boolean
.
The order in which you specify the pair of geometries matters: the first geometry
value is called the left geometry, the second geometry value is called the right geometry.
These functions return:

TRUE
if and only if the relationship described by the function is satisfied. 
FALSE
if and only if the relationship described by the function is not satisfied.
ST_CONTAINS (geometry, geometry)
Returns TRUE
if and only if the left geometry contains the right geometry.
Examples:
SELECT ST_CONTAINS('POLYGON((0 2,1 1,0 1,0 2))', 'POLYGON((1 3,2 1,0 3,1 3))')
SELECT ST_CONTAINS('POLYGON((0 2,1 1,0 1,0 2))', ST_Point(0, 0));
SELECT ST_CONTAINS(ST_GEOMETRY_FROM_TEXT('POLYGON((0 2,1 1,0 1,0 2))'), ST_GEOMETRY_FROM_TEXT('POLYGON((1 3,2 1,0 3,1 3))'))
ST_CROSSES (geometry, geometry)
Returns TRUE
if and only if the left geometry crosses the right geometry. Example:
SELECT ST_CROSSES(ST_LINE('linestring(1 1, 2 2 )'), ST_LINE('linestring(0 1, 2 2)'))
ST_DISJOINT (geometry, geometry)
Returns TRUE
if and only if the intersection of the left geometry and the right geometry is empty.
Example:
SELECT ST_DISJOINT(ST_LINE('linestring(0 0, 0 1)'), ST_LINE('linestring(1 1, 1 0)'))
ST_EQUALS (geometry, geometry)
Returns TRUE
if and only if the left geometry equals the right geometry. Example:
SELECT ST_EQUALS(ST_LINE('linestring( 0 0, 1 1)'), ST_LINE('linestring(1 3, 2 2)'))
ST_INTERSECTS (geometry, geometry)
Returns TRUE
if and only if the left geometry intersects the right geometry. Example:
SELECT ST_INTERSECTS(ST_LINE('linestring(8 7, 7 8)'), ST_POLYGON('polygon((1 1, 4 1, 4 4, 1 4))'))
ST_OVERLAPS (geometry, geometry)
Returns TRUE
if and only if the left geometry overlaps the right geometry.
Example:
SELECT ST_OVERLAPS(ST_POLYGON('polygon((2 0, 2 1, 3 1))'), ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
ST_RELATE (geometry, geometry)
Returns TRUE
if and only if the left geometry has the specified Dimensionally Extended nineIntersection
Model (DE9IM) relationship with the right geometry. For more information, see the
Wikipedia topic DE9IM.
Example:
SELECT ST_RELATE(ST_LINE('linestring(0 0, 3 3)'), ST_LINE('linestring(1 1, 4 4)'), 'T********')
ST_TOUCHES (geometry, geometry)
Returns TRUE
if and only if the left geometry touches the right geometry.
Example:
SELECT ST_TOUCHES(ST_POINT(8, 8), ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
ST_WITHIN (geometry, geometry)
Returns TRUE
if and only if the left geometry is within the right geometry.
Example:
SELECT ST_WITHIN(ST_POINT(8, 8), ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
Operation Functions
Use operation functions to perform operations on geometry data type values. For example, you can obtain the boundaries of a single geometry data type; intersections between two geometry data types; difference between left and right geometries, where each is of the same geometry data type; or an exterior buffer or ring around a particular geometry data type.
All operation functions take as an input one of the geometry data types and return their binary representations.
ST_BOUNDARY (geometry)
Takes as an input one of the geometry data types, and returns a binary representation
of the boundary
geometry data type.
Examples:
SELECT ST_BOUNDARY(ST_LINE('linestring(0 1, 1 0)')))
SELECT ST_BOUNDARY(ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
ST_BUFFER (geometry, double)
Takes as an input one of the geometry data types, such as point, line, polygon,
multiline, or multipolygon, and a distance as type double
). Returns a
binary representation of the geometry data type buffered by the specified distance
(or
radius).
Example:
SELECT ST_BUFFER(ST_Point(1, 2), 2.0)
ST_DIFFERENCE (geometry, geometry)
Returns a binary representation of a difference between the left geometry and right geometry. Example:
SELECT ST_GEOMETRY_TO_TEXT(ST_DIFFERENCE(ST_POLYGON('polygon((0 0, 0 10, 10 10, 10 0))'), ST_POLYGON('polygon((0 0, 0 5, 5 5, 5 0))')))
ST_ENVELOPE (geometry)
Takes as an input one of the geometry data types and returns a binary representation of an envelope, where an envelope is a rectangle around the specified geometry data type. Examples:
SELECT ST_ENVELOPE(ST_LINE('linestring(0 1, 1 0)'))
SELECT ST_ENVELOPE(ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
ST_EXTERIOR_RING (geometry)
Returns a binary representation of the exterior ring of the input type polygon
.
Examples:
SELECT ST_EXTERIOR_RING(ST_POLYGON(1,1, 1,4, 4,1))
SELECT ST_EXTERIOR_RING(ST_POLYGON('polygon ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'))
ST_INTERSECTION (geometry, geometry)
Returns a binary representation of the intersection of the left geometry and right geometry. Examples:
SELECT ST_INTERSECTION(ST_POINT(1,1), ST_POINT(1,1))
SELECT ST_INTERSECTION(ST_LINE('linestring(0 1, 1 0)'), ST_POLYGON('polygon((1 1, 1 4, 4 4, 4 1))'))
SELECT ST_GEOMETRY_TO_TEXT(ST_INTERSECTION(ST_POLYGON('polygon((2 0, 2 3, 3 0))'), ST_POLYGON('polygon((1 1, 4 1, 4 4, 1 4))')))
ST_SYMMETRIC_DIFFERENCE (geometry, geometry)
Returns a binary representation of the geometrically symmetric difference between left geometry and right geometry. Example:
SELECT ST_GEOMETRY_TO_TEXT(ST_SYMMETRIC_DIFFERENCE(ST_LINE('linestring(0 2, 2 2)'), ST_LINE('linestring(1 2, 3 2)')))
Accessor Functions
Accessor functions are useful to obtain values in types varchar
, bigint
, or double
from different geometry
data types, where geometry
is any of the geometry data types supported in Athena: point
, line
, polygon
, multiline
, and multipolygon
. For example, you can obtain an area of a polygon
geometry data type, maximum and minimum X and Y values for a specified geometry data
type, obtain the length of a line
, or receive the number of points in a specified geometry data type.
ST_AREA (geometry)
Takes as an input a geometry data type polygon
and returns an area in type double
.
Example:
SELECT ST_AREA(ST_POLYGON('polygon((1 1, 4 1, 4 4, 1 4))'))
ST_CENTROID (geometry)
Takes as an input a geometry data type polygon
, and returns a point
that is the center of the polygon's envelope in type varchar
.
Example:
SELECT ST_CENTROID(ST_GEOMETRY_FROM_TEXT('polygon ((0 0, 3 6, 6 0, 0 0))'))
ST_COORDINATE_DIMENSION (geometry)
Takes as input one of the supported geometry types, and returns the count of coordinate
components in type bigint
.
Example:
SELECT ST_COORDINATE_DIMENSION(ST_POINT(1.5,2.5))
ST_DIMENSION (geometry)
Takes as an input one of the supported geometry types, and returns the spatial dimension
of a geometry in type bigint
.
Example:
SELECT ST_DIMENSION(ST_POLYGON('polygon((1 1, 4 1, 4 4, 1 4))'))
ST_DISTANCE (geometry, geometry)
Returns the distance in type double
between the left geometry and the right geometry.
Example:
SELECT ST_DISTANCE(ST_POINT(0.0,0.0), ST_POINT(3.0,4.0))
ST_IS_CLOSED (geometry)
Returns TRUE
(type boolean
) if and only if the line is closed.
Example:
SELECT ST_IS_CLOSED(ST_LINE('linestring(0 2, 2 2)'))
ST_IS_EMPTY (geometry)
Returns TRUE
(type boolean
) if and only if the specified geometry is empty.
Example:
SELECT ST_IS_EMPTY(ST_POINT(1.5, 2.5))
ST_IS_RING (geometry)
Returns TRUE
(type boolean
) if and only if the line
type is closed and simple.
Example:
SELECT ST_IS_RING(ST_LINE('linestring(0 2, 2 2)'))
ST_LENGTH (geometry)
Returns the length of line
in type double
.
Example:
SELECT ST_LENGTH(ST_LINE('linestring(0 2, 2 2)'))
ST_MAX_X (geometry)
Returns the maximum X coordinate of a geometry in type double
.
Example:
SELECT ST_MAX_X(ST_LINE('linestring(0 2, 2 2)'))
ST_MAX_Y (geometry)
Returns the maximum Y coordinate of a geometry in type double
.
Example:
SELECT ST_MAX_Y(ST_LINE('linestring(0 2, 2 2)'))
ST_MIN_X (geometry)
Returns the minimum X coordinate of a geometry in type double
.
Example:
SELECT ST_MIN_X(ST_LINE('linestring(0 2, 2 2)'))
ST_MIN_Y (geometry)
Returns the minimum Y coordinate of a geometry in type double
.
Example:
SELECT ST_MAX_Y(ST_LINE('linestring(0 2, 2 2)'))
ST_START_POINT (geometry)
Returns the first point of a line
geometry data type in type point
.
Example:
SELECT ST_START_POINT(ST_LINE('linestring(0 2, 2 2)'))
ST_END_POINT (geometry)
Returns the last point of a line
geometry data type in type point
.
Example:
SELECT ST_END_POINT(ST_LINE('linestring(0 2, 2 2)'))
ST_X (point)
Returns the X coordinate of a point in type double
.
Example:
SELECT ST_X(ST_POINT(1.5, 2.5))
ST_Y (point)
Returns the Y coordinate of a point in type double
.
Example:
SELECT ST_Y(ST_POINT(1.5, 2.5))
ST_POINT_NUMBER (geometry)
Returns the number of points in the geometry in type bigint
.
Example:
SELECT ST_POINT_NUMBER(ST_POINT(1.5, 2.5))
ST_INTERIOR_RING_NUMBER (geometry)
Returns the number of interior rings in the polygon
geometry in type bigint
.
Example:
SELECT ST_INTERIOR_RING_NUMBER(ST_POLYGON('polygon ((0 0, 8 0, 0 8, 0 0), (1 1, 1 5, 5 1, 1 1))'))