AWS Batch
User Guide
Table of Contents

What Is AWS Batch? ... 1
Components of AWS Batch .. 1
Jobs .. 1
Job Definitions .. 1
Job Queues ... 1
Compute Environment ... 2
Getting Started ... 2
Setting Up .. 3
Sign Up for AWS ... 3
Create an IAM User .. 3
Create IAM Roles for your Compute Environments and Container Instances 5
Create a Key Pair ... 5
Create a Virtual Private Cloud ... 7
Create a Security Group .. 7
Install the AWS CLI .. 8
Jobs ... 13
Submitting a Job ... 13
Job States .. 14
Automated Job Retries .. 16
Job Dependencies .. 16
Array Jobs ... 17
Example Array Job Workflow ... 19
Job Definitions ... 22
Creating a Job Definition ... 22
Job Definition Template ... 24
Job Definition Parameters .. 25
Job Definition Name ... 25
Type .. 25
Parameters ... 26
Retry Strategy .. 26
Container Properties ... 27
Example Job Definitions ... 31
Use Environment Variables .. 31
Using Parameter Substitution ... 32
Test GPU Functionality .. 32
Job Queues ... 34
Creating a Job Queue ... 34
Job Queue Template ... 34
Job Queue Parameters .. 35
Job Queue Name .. 35
State .. 35
Priority ... 35
Compute Environment Order ... 36
Job Scheduling ... 37
Compute Environments ... 38
Managed Compute Environments .. 38
Unmanaged Compute Environments ... 38
Compute Resource AMIs ... 39
Compute Resource AMI Specification ... 39
Creating a Compute Resource AMI ... 40
Creating a GPU Workload AMI .. 41
What Is AWS Batch?

AWS Batch enables you to run batch computing workloads on the AWS Cloud. Batch computing is a common way for developers, scientists, and engineers to access large amounts of compute resources, and AWS Batch removes the undifferentiated heavy lifting of configuring and managing the required infrastructure. AWS Batch is similar to traditional batch computing software. This service can efficiently provision resources in response to jobs submitted in order to eliminate capacity constraints, reduce compute costs, and deliver results quickly.

As a fully managed service, AWS Batch enables developers, scientists, and engineers to run batch computing workloads of any scale. AWS Batch automatically provisions compute resources and optimizes the workload distribution based on the quantity and scale of the workloads. With AWS Batch, there is no need to install or manage batch computing software, which allows you to focus on analyzing results and solving problems. AWS Batch reduces operational complexities, saves time, and reduces costs, which makes it easy for developers, scientists, and engineers to run their batch jobs in the AWS Cloud.

Components of AWS Batch

AWS Batch is a regional service that simplifies running batch jobs across multiple Availability Zones within a region. You can create AWS Batch compute environments within a new or existing VPC. After a compute environment is up and associated with a job queue, you can define job definitions that specify which Docker container images to run your jobs. Container images are stored in and pulled from container registries, which may exist within or outside of your AWS infrastructure.

Jobs

A unit of work (such as a shell script, a Linux executable, or a Docker container image) that you submit to AWS Batch. It has a name, and runs as a containerized application on an Amazon EC2 instance in your compute environment, using parameters that you specify in a job definition. Jobs can reference other jobs by name or by ID, and can be dependent on the successful completion of other jobs. For more information, see Jobs (p. 13).

Job Definitions

A job definition specifies how jobs are to be run; you can think of it as a blueprint for the resources in your job. You can supply your job with an IAM role to provide programmatic access to other AWS resources, and you specify both memory and CPU requirements. The job definition can also control container properties, environment variables, and mount points for persistent storage. Many of the specifications in a job definition can be overridden by specifying new values when submitting individual Jobs. For more information, see Job Definitions (p. 22)

Job Queues

When you submit an AWS Batch job, you submit it to a particular job queue, where it resides until it is scheduled onto a compute environment. You associate one or more compute environments with a job queue, and you can assign priority values for these compute environments and even across job queues themselves. For example, you could have a high priority queue that you submit time-sensitive jobs to, and a low priority queue for jobs that can run anytime when compute resources are cheaper.
Compute Environment

A compute environment is a set of managed or unmanaged compute resources that are used to run jobs. Managed compute environments allow you to specify desired instance types at several levels of detail. You can set up compute environments that use a particular type of instance, a particular model such as c4.2xlarge or m4.10xlarge, or simply specify that you want to use the newest instance types. You can also specify the minimum, desired, and maximum number of vCPUs for the environment, along with a percentage value for bids on the Spot Market and a target set of VPC subnets. AWS Batch will efficiently launch, manage, and terminate EC2 instances as needed. You can also manage your own compute environments. In this case you are responsible for setting up and scaling the instances in an Amazon ECS cluster that AWS Batch creates for you. For more information, see Compute Environments (p. 38).

Getting Started

Get started with AWS Batch by creating a job definition, compute environment, and a job queue in the AWS Batch console.

The AWS Batch first-run wizard gives you the option of creating a compute environment and a job queue and submitting a sample hello world job. If you already have a Docker image you would like to launch in AWS Batch, you can create a job definition with that image and submit that to your queue instead. For more information, see Getting Started with AWS Batch (p. 9).
Setting Up with AWS Batch

If you've already signed up for Amazon Web Services (AWS) and have been using Amazon Elastic Compute Cloud (Amazon EC2) or Amazon Elastic Container Service (Amazon ECS), you are close to being able to use AWS Batch. The setup process for these services is very similar, as AWS Batch uses Amazon ECS container instances in its compute environments. To use the AWS CLI with AWS Batch, you must use a version of the AWS CLI that supports the latest AWS Batch features. If you do not see support for an AWS Batch feature in the AWS CLI, you should upgrade to the latest version. For more information, see http://aws.amazon.com/cli/.

Note
Because AWS Batch uses components of Amazon EC2, you use the Amazon EC2 console for many of these steps.

Complete the following tasks to get set up for AWS Batch. If you have already completed any of these steps, you may skip them and move on to installing the AWS CLI.

1. Sign Up for AWS (p. 3)
2. Create an IAM User (p. 3)
3. Create IAM Roles for your Compute Environments and Container Instances (p. 5)
4. Create a Key Pair (p. 5)
5. Create a Virtual Private Cloud (p. 7)
6. Create a Security Group (p. 7)
7. Install the AWS CLI (p. 8)

Sign Up for AWS

When you sign up for AWS, your AWS account is automatically signed up for all services, including Amazon EC2 and AWS Batch. You are charged only for the services that you use.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the following procedure to create one.

To create an AWS account

1. Open https://aws.amazon.com/, and then choose Create an AWS Account.

 Note
 This might be unavailable in your browser if you previously signed into the AWS Management Console. In that case, choose Sign in to a different account, and then choose Create a new AWS account.

2. Follow the online instructions.

 Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone keypad.

 Note your AWS account number, because you'll need it for the next task.

Create an IAM User

Services in AWS, such as Amazon EC2 and AWS Batch, require that you provide credentials when you access them, so that the service can determine whether you have permission to access its resources. The
console requires your password. You can create access keys for your AWS account to access the command line interface or API. However, we don't recommend that you access AWS using the credentials for your AWS account; we recommend that you use AWS Identity and Access Management (IAM) instead. Create an IAM user, and then add the user to an IAM group with administrative permissions or and grant this user administrative permissions. You can then access AWS using a special URL and the credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM console.

To create an IAM user for yourself and add the user to an Administrators group

1. Use your AWS account email address and password to sign in as the AWS account root user to the IAM console at https://console.aws.amazon.com/iam/.

 Note

 We strongly recommend that you adhere to the best practice of using the **Administrator** user below and securely lock away the root user credentials. Sign in as the root user only to perform a few account and service management tasks.

2. In the navigation pane of the console, choose **Users**, and then choose **Add user**.

3. For **User name**, type **Administrator**.

4. Select the check box next to **AWS Management Console access**, select **Custom password**, and then type the new user's password in the text box. You can optionally select **Require password reset** to force the user to select a new password the next time the user signs in.

5. Choose **Next: Permissions**.

6. On the **Set permissions for user** page, choose **Add user to group**.

7. Choose **Create group**.

8. In the **Create group** dialog box, type **Administrators**.

9. For **Filter**, choose **Job function**.

10. In the policy list, select the check box for **AdministratorAccess**. Then choose **Create group**.

11. Back in the list of groups, select the check box for your new group. Choose **Refresh** if necessary to see the group in the list.

12. Choose **Next: Review** to see the list of group memberships to be added to the new user. When you are ready to proceed, choose **Create user**.

You can use this same process to create more groups and users, and to give your users access to your AWS account resources. To learn about using policies to restrict users' permissions to specific AWS resources, go to [Access Management and Example Policies](https://docs.aws.amazon.com/IAM/latest/UserGuide/).

To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where `your_aws_account_id` is your AWS account number without the hyphens (for example, if your AWS account number is 1234-5678-9012, your AWS account ID is 123456789012):

```
https://your_aws_account_id.signin.aws.amazon.com/console/
```

Enter the IAM user name and password that you just created. When you're signed in, the navigation bar displays "your_user_name @ your_aws_account_id".

If you don't want the URL for your sign-in page to contain your AWS account ID, you can create an account alias. From the IAM dashboard, choose **Create Account Alias** and enter an alias, such as your company name. To sign in after you create an account alias, use the following URL:

```
https://your_account_alias.signin.aws.amazon.com/console/
```
To verify the sign-in link for IAM users for your account, open the IAM console and check under IAM users sign-in link on the dashboard.

For more information about IAM, see the AWS Identity and Access Management User Guide.

Create IAM Roles for your Compute Environments and Container Instances

Your AWS Batch compute environments and container instances require AWS account credentials to make calls to other AWS APIs on your behalf. You must create IAM roles that provides these credentials to your compute environments and container instances and then associate that role with your compute environments.

Note
The AWS Batch compute environment and container instance roles are automatically created for you in the console first-run experience, so if you intend to use the AWS Batch console, you can move ahead to the next section. If you plan to use the AWS CLI instead, complete the procedures in AWS Batch Service IAM Role (p. 54) and Amazon ECS Instance Role (p. 56) before creating your first compute environment.

Create a Key Pair

AWS uses public-key cryptography to secure the login information for your instance. A Linux instance, such as an AWS Batch compute environment container instance, has no password to use for SSH access; you use a key pair to log in to your instance securely. You specify the name of the key pair when you create your compute environment, then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console. Note that if you plan to launch instances in multiple regions, you'll need to create a key pair in each region. For more information about regions, see Regions and Availability Zones in the Amazon EC2 User Guide for Linux Instances.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select a region for the key pair. You can select any region that's available to you, regardless of your location: however, key pairs are specific to a region. For example, if you plan to launch an instance in the US West (Oregon) region, you must create a key pair for the instance in the same region.

Note
AWS Batch is available in the following regions:

<table>
<thead>
<tr>
<th>Region Name</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>US West (Oregon)</td>
<td>us-west-2</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>us-east-2</td>
</tr>
<tr>
<td>US East (N. Virginia)</td>
<td>us-east-1</td>
</tr>
<tr>
<td>EU (London)</td>
<td>eu-west-2</td>
</tr>
<tr>
<td>EU (Ireland)</td>
<td>eu-west-1</td>
</tr>
</tbody>
</table>
In the navigation pane, choose **Key Pairs, Create Key Pair**.

In the **Create Key Pair** dialog box, for **Key pair name**, enter a name for the new key pair, and choose **Create**. Choose a name that is easy for you to remember, such as your IAM user name, followed by `key-pair`, plus the region name. For example, `me-key-pair-uswest2`.

The private key file is automatically downloaded by your browser. The base file name is the name you specified as the name of your key pair, and the file name extension is `.pem`. Save the private key file in a safe place.

Important

This is the only chance for you to save the private key file. You'll need to provide the name of your key pair when you launch an instance and the corresponding private key each time you connect to the instance.

If you will use an SSH client on a Mac or Linux computer to connect to your Linux instance, use the following command to set the permissions of your private key file so that only you can read it.

```
$ chmod 400 your_user_name-key-pair-region_name.pem
```

For more information, see **Amazon EC2 Key Pairs** in the **Amazon EC2 User Guide for Linux Instances**.

To connect to your instance using your key pair

To connect to your Linux instance from a computer running Mac or Linux, specify the `.pem` file to your SSH client with the `-i` option and the path to your private key. To connect to your Linux instance from a computer running Windows, you can use either MindTerm or PuTTY. If you plan to use PuTTY, you'll need to install it and use the following procedure to convert the `.pem` file to a `.ppk` file.

(Optional) To prepare to connect to a Linux instance from Windows using PuTTY

2. Start PuTTYgen (for example, from the **Start** menu, choose **All Programs, PuTTY, and PuTTYgen**).
3. Under **Type of key to generate**, choose **SSH-2 RSA**.
4. Choose **Load**. By default, PuTTYgen displays only files with the extension `.ppk`. To locate your `.pem` file, choose the option to display files of all types.
5. Select the private key file that you created in the previous procedure and choose **Open**. Choose **OK** to dismiss the confirmation dialog box.
6. Choose **Save private key**. PuTTYgen displays a warning about saving the key without a passphrase. Choose **Yes**.
7. Specify the same name for the key that you used for the key pair. PuTTY automatically adds the `.ppk` file extension.
Create a Virtual Private Cloud

Amazon Virtual Private Cloud (Amazon VPC) enables you to launch AWS resources into a virtual network that you’ve defined. We strongly suggest that you launch your container instances in a VPC.

If you have a default VPC, you also can skip this section and move to the next task, Create a Security Group (p. 7). To determine whether you have a default VPC, see Supported Platforms in the Amazon EC2 Console in the Amazon EC2 User Guide for Linux Instances. Otherwise, you can create a nondefault VPC in your account using the steps below.

Important
If your account supports EC2-Classic in a region, then you do not have a default VPC in that region.

To create a nondefault VPC
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. From the navigation bar, select a region for the VPC. VPCs are specific to a region, so you should select the same region in which you created your key pair.
3. On the VPC dashboard, choose **Start VPC Wizard**.
4. On the **Step 1: Select a VPC Configuration** page, ensure that **VPC with a Single Public Subnet** is selected, and choose **Select**.
5. On the **Step 2: VPC with a Single Public Subnet** page, enter a friendly name for your VPC for **VPC name**. Leave the other default configuration settings, and choose **Create VPC**. On the confirmation page, choose **OK**.

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Create a Security Group

Security groups act as a firewall for associated compute environment container instances, controlling both inbound and outbound traffic at the container instance level. You can add rules to a security group that enable you to connect to your container instance from your IP address using SSH. You can also add rules that allow inbound and outbound HTTP and HTTPS access from anywhere. Add any rules to open ports that are required by your tasks.

Note that if you plan to launch container instances in multiple regions, you need to create a security group in each region. For more information, see Regions and Availability Zones in the Amazon EC2 User Guide for Linux Instances.

Important
You need the public IP address of your local computer, which you can get using a service. For example, we provide the following service: http://checkip.amazonaws.com/. To locate another service that provides your IP address, use the search phrase “what is my IP address.” If you are connecting through an Internet service provider (ISP) or from behind a firewall without a static IP address, you need to find out the range of IP addresses used by client computers.

To create a security group with least privilege
1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. From the navigation bar, select a region for the security group. Security groups are specific to a region, so you should select the same region in which you created your key pair.
3. In the navigation pane, choose **Security Groups, Create Security Group**.
4. Enter a name for the new security group and a description. Choose a name that is easy for you to remember, such as your IAM user name, followed by _SG_, plus the region name. For example, me_SG_useast1.

5. In the VPC list, ensure that your default VPC is selected; it's marked with an asterisk (*).

 Note
 If your account supports EC2-Classic, select the VPC that you created in the previous task.

6. AWS Batch container instances do not require any inbound ports to be open. However, you might want to add an SSH rule so you can log into the container instance and examine the containers in jobs with Docker commands. You can also add rules for HTTP if you want your container instance to host a job that runs a web server. Complete the following steps to add these optional security group rules.

 On the Inbound tab, create the following rules and choose Create:

 • Choose Add Rule. For Type, choose HTTP. For Source, choose Anywhere (0.0.0.0/0).
 • Choose Add Rule. For Type, choose SSH. For Source, ensure that Custom IP is selected, and specify the public IP address of your computer or network in CIDR notation. To specify an individual IP address in CIDR notation, add the routing prefix /32. For example, if your IP address is 203.0.113.25, specify 203.0.113.25/32. If your company allocates addresses from a range, specify the entire range, such as 203.0.113.0/24.

 Note
 For security reasons, we don't recommend that you allow SSH access from all IP addresses (0.0.0.0/0) to your instance, except for testing purposes and only for a short time.

Install the AWS CLI

To use the AWS CLI with AWS Batch, install the latest AWS CLI, version. For information about installing the AWS CLI or upgrading it to the latest version, see *Installing the AWS Command Line Interface* in the *AWS Command Line Interface User Guide*.
Getting Started with AWS Batch

Get started with AWS Batch by creating a job definition, compute environment, and a job queue in the AWS Batch console.

The AWS Batch first-run wizard gives you the option of creating a compute environment and a job queue and submitting a sample hello world job. If you already have a Docker image you would like to launch in AWS Batch, you can create a job definition with that image and submit that to your queue instead.

Important
Before you begin, be sure that you've completed the steps in Setting Up with AWS Batch (p. 3) and that your AWS user has the required permissions (admin users do not need to worry about permissions issues). For more information, see Creating Your First IAM Admin User and Group in the IAM User Guide.

Step 1: Define a Job

In this section, you choose to define your job definition or move ahead to creating a compute environment and job queue without a job definition.

To configure job options

2. To create an AWS Batch job definition, compute environment, and job queue and then submit your job, choose Using Amazon EC2. To only create the compute environment and job queue without submitting a job, choose No job submission.
3. If you chose to create a job definition, then complete the next four sections of the first-run wizard, Job run-time, Environment, Parameters, and Environment variables and then choose Next. If you are not creating a job definition, choose Next and move on to Step 2: Configure the Compute Environment and Job Queue (p. 10).

To specify job run time

1. If you are creating a new job definition, for **Job definition name**, specify a name for your job definition.
2. (Optional) For **Job role**, you can specify an IAM role that provides the container in your job with permissions to use the AWS APIs. This feature uses Amazon ECS IAM roles for task functionality. For more information about this feature, including configuration prerequisites, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

 Note
 Only roles that have the Amazon Elastic Container Service Task Role trust relationship are shown here. For more information about creating an IAM role for your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in the Amazon Elastic Container Service Developer Guide.

3. For **Container image**, choose the Docker image to use for your job. Images in the Docker Hub registry are available by default. You can also specify other repositories with repository-url/image:tag. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to Image in the Create a container section of the Docker Remote API and the IMAGE parameter of docker run.

 - Images in Amazon ECR repositories use the full registry/repository:tag naming convention. For example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest
Step 2: Configure the Compute Environment and Job Queue

A compute environment is a way to reference your compute resources (Amazon EC2 instances): the settings and constraints that tell AWS Batch how instances should be configured and automatically

To specify resources for your environment

1. For **Command**, specify the command to pass to the container. This parameter maps to `Cmd` in the Create a container section of the Docker Remote API and the `COMMAND` parameter to `docker run`. For more information about the Docker `CMD` parameter, go to https://docs.docker.com/engine/reference/builder/#cmd.

 Note
 You can use parameter substitution default values and placeholders in your command. For more information, see Parameters (p. 26).

2. For **vCPUs**, specify the number of vCPUs to reserve for the container. This parameter maps to `CpuShares` in the Create a container section of the Docker Remote API and the `--cpu-shares` option to `docker run`. Each vCPU is equivalent to 1,024 CPU shares.

3. For **Memory**, specify the hard limit (in MiB) of memory to present to the job's container. If your container attempts to exceed the memory specified here, the container is killed. This parameter maps to `Memory` in the Create a container section of the Docker Remote API and the `--memory` option to `docker run`.

4. For **Job attempts**, specify the maximum number of times to attempt your job (in case it fails). For more information, see Automated Job Retries (p. 16).

Parameters

You can optionally specify parameter substitution default values and placeholders in your command. For more information, see Parameters (p. 26).

1. For **Key**, specify the key for your parameter.
2. For **Value**, specify the value for your parameter.

To specify environment variables

You can optionally specify environment variables to pass to your job's container. This parameter maps to `Env` in the Create a container section of the Docker Remote API and the `--env` option to `docker run`.

Important
We do not recommend using plaintext environment variables for sensitive information, such as credential data.

1. For **Key**, specify the key for your environment variable.
2. For **Value**, specify the value for your environment variable.
launched. You submit your jobs to a job queue that stores jobs until the AWS Batch scheduler runs the job on a compute resource within your compute environment.

Note
At this time, you can only create a managed compute environment in the first run wizard. To create an unmanaged compute environment, see Creating a Compute Environment (p. 43).

To configure your compute environment type

1. **For Compute environment name**, specify a unique name for your compute environment.
2. **For Service role**, choose to create a new role or use an existing role that allows the AWS Batch service to make calls to the required AWS APIs on your behalf. For more information, see AWS Batch Service IAM Role (p. 54). If you choose to create a new role, the required role (AWSBatchServiceRole) is created for you.
3. **For EC2 instance role**, choose to create a new role or use an existing role that allows the Amazon ECS container instances that are created for your compute environment to make calls to the required AWS APIs on your behalf. For more information, see Amazon ECS Instance Role (p. 56). If you choose to create a new role, the required role (ecsInstanceRole) is created for you.

To configure your instances

1. **For Provisioning model**, choose On-Demand to launch Amazon EC2 On-Demand instances or Spot to use Amazon EC2 Spot Instances.
2. If you chose to use Amazon EC2 Spot Instances:
 a. **For Maximum bid price**, choose the maximum percentage that a Spot Instance price must be when compared with the On-Demand price for that instance type before instances are launched. For example, if your bid percentage is 20%, then the Spot price must be below 20% of the current On-Demand price for that EC2 instance. You always pay the lowest (market) price and never more than your maximum percentage.
 b. **For Spot fleet role**, choose to create a new role or use an existing Amazon EC2 Spot Fleet IAM role to apply to your Spot compute environment. If you choose to create a new role, the required role (aws-ec2-spot-fleet-role) is created for you. For more information, see Amazon EC2 Spot Fleet Role (p. 57).
3. **For Allowed instance types**, choose the Amazon EC2 instance types that may launched. You can specify instance families to launch any instance type within those families (for example, c4 or p3), or you can specify specific sizes within a family (such as c4.8xlarge). You can also choose optimal to pick instance types (from the latest C, M, and R instance families) on the fly that match the demand of your job queues.
4. **For Minimum vCPUs**, choose the minimum number of EC2 vCPUs that your compute environment should maintain, regardless of job queue demand.
5. **For Desired vCPUs**, choose the number of EC2 vCPUs with which your compute environment should launch. As your job queue demand increases, AWS Batch can increase the desired number of vCPUs in your compute environment and add EC2 instances, up to the maximum vCPUs, and as demand decreases, AWS Batch can decrease the desired number of vCPUs in your compute environment and remove instances, down to the minimum vCPUs.
6. **For Maximum vCPUs**, choose the maximum number of EC2 vCPUs that your compute environment can scale out to, regardless of job queue demand.

To set up your networking

Compute resources are launched into the VPC and subnets that you specify here. This allows you to control the network isolation of AWS Batch compute resources.
Important
Compute resources need external network access to communicate with the Amazon ECS service endpoint, so if your compute resources do not have public IP addresses, then they must use network address translation (NAT) to provide this access. For more information, see NAT Gateways in the Amazon VPC User Guide. For help creating a VPC, see Tutorial: Creating a VPC with Public and Private Subnets for Your Compute Environments (p. 68)

1. For **VPC Id**, choose a VPC into which to launch your instances.
2. For **Subnets**, choose which subnets in the selected VPC should host your instances. By default, all subnets within the selected VPC are chosen.
3. For **Security groups**, choose a security group to attach to your instances. By default, the default security group for your VPC is chosen.

To tag your instances
You can optionally apply key-value pair tags to instances that are launched in your compute environment. For example, you can specify "Name": "AWS Batch Instance - C4OnDemand" as a tag so that each instance in your compute environment has that name (this is helpful for recognizing your AWS Batch instances in the Amazon EC2 console). By default, the compute environment name is used to tag your instances.

1. For **Key**, specify the key for your tag.
2. For **Value**, specify the value for your tag.

To set up your job queue
You submit your jobs to a job queue which stores jobs until the AWS Batch scheduler runs the job on a compute resource within your compute environment.

- For **Job queue name**, choose a unique name for your job queue.

To review and create
The **Connected compute environments for this job queue** section shows that your new compute environment is associated with your new job queue and its order. Later, you can associate other compute environments with the job queue. The job scheduler uses the compute environment order to determine which compute environment should execute a given job. Compute environments must be in the VALID state before you can associate them with a job queue. You can associate up to three compute environments with a job queue.

- Review the compute environment and job queue configuration and choose **Create** to create your compute environment.
Jobs

Jobs are the unit of work executed by AWS Batch. Jobs can be executed as containerized applications running on Amazon ECS container instances in an ECS cluster.

Containerized jobs can reference a container image, command, and parameters. For more information, see Job Definition Parameters (p. 25).

You can submit a large number of independent, simple jobs.

Topics
- Submitting a Job (p. 13)
- Job States (p. 14)
- Automated Job Retries (p. 16)
- Job Dependencies (p. 16)
- Array Jobs (p. 17)

Submitting a Job

After you have registered a job definition, you can submit it as a job to an AWS Batch job queue. Many of the parameters that are specified in the job definition can be overridden at run time.

To submit a job

2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Jobs, Submit job.
4. For Job name, choose a unique name for your job.
5. For Job definition, choose a previously created job definition for your job. For more information, see Creating a Job Definition (p. 22).
6. For Job queue, choose a previously created job queue. For more information, see Creating a Job Queue (p. 34).
7. For Job type, choose Single for a single job or Array to submit an array job. For more information, see Array Jobs (p. 17).
8. (Array jobs only) For Array size, specify an array size between 2 and 10,000.
9. (Optional) Declare any job dependencies. A job may have up to 20 dependencies. For more information, see Job Dependencies (p. 16).
 a. For Job depends on, enter the job IDs for any jobs that must finish before this job starts.
 b. (Array jobs only) For N-To-N job dependencies, specify one or more job IDs for any array jobs for which each child job index of this job should depend on the corresponding child index job of the dependency. For example, JobB:1 depends on JobA:1, and so on.
 c. (Array jobs only) Select Run children sequentially to create a SEQUENTIAL dependency for the current array job. This ensures that each child index job waits for its earlier sibling to finish. For example, JobA:1 depends on JobA:0 and so on.
10. For Command, specify the command to pass to the container. For simple commands, you can type the command as you would at a command prompt in the Space delimited tab. Verify that the JSON result (which is passed to the Docker daemon) is correct. For more complicated commands (for example, with special characters), you can switch to the JSON tab and enter the string array equivalent there.
This parameter maps to `Cmd` in the Create a container section of the Docker Remote API and the `COMMAND` parameter to `docker run`. For more information about the Docker `CMD` parameter, go to https://docs.docker.com/engine/reference/builder/#cmd.

Note
You can use parameter substitution default values and placeholders in your command. For more information, see Parameters (p. 26).

11. For **vCPUs**, specify the number of vCPUs to reserve for the container. This parameter maps to `CpuShares` in the Create a container section of the Docker Remote API and the `--cpu-shares` option to `docker run`. Each vCPU is equivalent to 1,024 CPU shares. You must specify at least one vCPU.

12. For **Memory**, specify the hard limit (in MiB) of memory to present to the job's container. If your container attempts to exceed the memory specified here, the container is killed. This parameter maps to `Memory` in the Create a container section of the Docker Remote API and the `--memory` option to `docker run`. You must specify at least 4 MiB of memory for a job.

13. For **Job attempts**, specify the maximum number of times to attempt your job (in case it fails). For more information, see Automated Job Retries (p. 16).

14. (Optional) You can specify parameter substitution default values and placeholders to use in the command that your job's container runs when it starts. For more information, see Parameters (p. 26).
 a. For **Key**, specify the key for your parameter.
 b. For **Value**, specify the value for your parameter.

15. (Optional) You can specify environment variables to pass to your job's container. This parameter maps to `Env` in the Create a container section of the Docker Remote API and the `--env` option to `docker run`.

 Important
 We do not recommend using plaintext environment variables for sensitive information, such as credential data.

 a. For **Key**, specify the key for your environment variable.
 Note
 Environment variables must not start with `AWS_BATCH`; this naming convention is reserved for variables that are set by the AWS Batch service.

 b. For **Value**, specify the value for your environment variable.

16. Choose **Submit job**.

 Note
 Logs for **RUNNING**, **SUCCEEDED**, and **FAILED** jobs are available in CloudWatch Logs; the log group is `/aws/batch/job`, and the log stream name format is `jobDefinitionName/default/ecs_task_id` (this format may change in the future).

 After a job reaches the **RUNNING** status, you can programmatically retrieve its log stream name with the DescribeJobs API operation. For more information, see View Log Data Sent to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By default, these logs are set to never expire, but you can modify the retention period. For more information, see Change Log Data Retention in CloudWatch Logs in the Amazon CloudWatch Logs User Guide.

Job States

When you submit a job to an AWS Batch job queue, the job enters the **SUBMITTED** state. It then passes through the following states until it succeeds (exits with code 0) or fails (exits with a non-zero code). AWS Batch jobs can have the following states:
SUBMITTED

A job that has been submitted to the queue, and has yet been evaluated by the scheduler. The
scheduler evaluates the job to determine if it has any outstanding dependencies on the successful
completion of any other jobs. If there are dependencies, the job is moved to PENDING. If there are no
dependencies, the job is moved to RUNNABLE.

PENDING

A job that resides in the queue and is not yet able to run due to a dependency on another job or
resource. After the dependencies are satisfied, the job is moved to RUNNABLE.

RUNNABLE

A job that resides in the queue, has no outstanding dependencies, and is therefore ready to be
scheduled to a host. Jobs in this state are started as soon as sufficient resources are available in one
of the compute environments that are mapped to the job's queue. However, jobs can remain in this
state indefinitely when sufficient resources are unavailable.

STARTING

These jobs have been scheduled to a host and the relevant container initiation operations are
underway. After the container image is pulled and the container is up and running, the job
transitions to RUNNING.

RUNNING

The job is running as a container job on an Amazon ECS container instance within a compute
environment. When the job's container exits, the process exit code determines whether the job
succeeded or failed. An exit code of 0 indicates success, and any non-zero exit code indicates failure.
If the job associated with a failed attempt has any remaining attempts left in its optional retry
strategy configuration, the job is moved to RUNNABLE again. For more information, see Automated
Job Retries (p. 16).

Note

Logs for RUNNING jobs are available in CloudWatch Logs; the log group is /aws/batch/
job, and the log stream name format is jobDefinitionName/default/ecs_task_id
(this format may change in the future).
After a job reaches the RUNNING status, you can programatically retrieve its log stream
name with the DescribeJobs API operation. For more information, see View Log Data Sent
to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By default, these logs are
set to never expire, but you can modify the retention period. For more information, see
Change Log Data Retention in CloudWatch Logs in the Amazon CloudWatch Logs User Guide.

SUCCEEDED

The job has successfully completed with an exit code of 0. The job state for SUCCEEDED jobs is
persisted in AWS Batch for 24 hours.

Note

Logs for SUCCEEDED jobs are available in CloudWatch Logs; the log group is /aws/batch/
job, and the log stream name format is jobDefinitionName/default/ecs_task_id
(this format may change in the future).
After a job reaches the RUNNING status, you can programatically retrieve its log stream
name with the DescribeJobs API operation. For more information, see View Log Data Sent
to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By default, these logs are
set to never expire, but you can modify the retention period. For more information, see
Change Log Data Retention in CloudWatch Logs in the Amazon CloudWatch Logs User Guide.

FAILED

The job has failed all available attempts. The job state for FAILED jobs is persisted in AWS Batch for
24 hours.
Automated Job Retries

You can apply a retry strategy to your jobs and job definitions that allows your jobs to be automatically retried if they fail. Possible failure scenarios include:

- Any non-zero exit code from a container job
- Amazon EC2 instance failure or termination
- Internal AWS service error or outage

When a job is submitted to a job queue and placed into the RUNNING state, that is considered an attempt. By default, each job is given one attempt to move to either the SUCCEEDED or FAILED job state. However, both the job definition and the job submission workflows allow you to specify a retry strategy with between 1 and 10 attempts. For more information, see Retry Strategy (p. 26).

At runtime, the AWS_BATCH_JOB_ATTEMPT environment variable is set to the container's corresponding job attempt number. The first attempt is numbered 1, and subsequent attempts are in ascending order (2, 3, 4, and so on).

If a job attempt fails for any reason, and the number of attempts specified in the retry configuration is greater than the AWS_BATCH_JOB_ATTEMPT number, then the job is placed back in the RUNNABLE state again. For more information about the various job states, see Job States (p. 14).

Note
Jobs that have been cancelled or terminated are not retried. Also, jobs that fail due to an invalid job definition are not retried.

For more information, see Creating a Job Definition (p. 22) and Submitting a Job (p. 13).

Job Dependencies

When you submit an AWS Batch job, you can specify the job IDs on which the job will depend. When you do so, the AWS Batch scheduler ensures that your job is run only after the specified dependencies have successfully completed. After they succeed, the dependent job transitions from PENDING to RUNNABLE and then to STARTING and RUNNING. If any of the job dependencies fail, the dependent job automatically transitions from PENDING to FAILED.

For example, Job A can express a dependency on up to 20 other jobs that must succeed before it can run. You can then submit additional jobs that have a dependency on Job A and up to 19 other jobs.

For array jobs, you can specify a SEQUENTIAL type dependency without specifying a job ID so that each child array job completes sequentially, starting at index 0. You can also specify an N_TO_N type dependency with a job ID so that each index child of this job must wait for the corresponding index child of each dependency to complete before it can begin. For more information, see Array Jobs (p. 17).
To submit an AWS Batch job with dependencies, see Submitting a Job (p. 13).

Array Jobs

An array job is a job that shares common parameters, such as the job definition, vCPUs, and memory. It runs as a collection of related, yet separate, basic jobs that may be distributed across multiple hosts and may run concurrently. Array jobs are the most efficient way to execute embarrassingly parallel jobs such as Monte Carlo simulations, parametric sweeps, or large rendering jobs.

AWS Batch array jobs are submitted just like regular jobs. However, you specify an array size (between 2 and 10,000) to define how many child jobs should run in the array. If you submit a job with an array size of 1000, a single job runs and spawns 1000 child jobs. The array job is a reference or pointer to manage all the child jobs. This allows you to submit large workloads with a single query.

When you submit an array job, the parent array job gets a normal AWS Batch job ID. Each child job has the same base ID, but the array index for the child job is appended to the end of the parent ID, such as example_job_ID:0 for the first child job of the array.

At runtime, the AWS_BATCH_JOB_ARRAY_INDEX environment variable is set to the container's corresponding job array index number. The first array job index is numbered 0, and subsequent attempts are in ascending order (1, 2, 3, and so on).

For array job dependencies, you can specify a type for a dependency, such as SEQUENTIAL or N_TO_N. You can specify a SEQUENTIAL type dependency (without specifying a job ID) so that each child array job completes sequentially, starting at index 0. For example, if you submit an array job with an array size of 100, and specify a dependency with type SEQUENTIAL, 100 child jobs are spawned sequentially, where the first child job must succeed before the next child job starts. The figure below shows Job A, an array job with an array size of 10. Each job in Job A's child index is dependent on the previous child job. Job A:1 can't start until job A:0 finishes.
You can also specify an N_TO_N type dependency with a job ID for array jobs so that each index child of this job must wait for the corresponding index child of each dependency to complete before it can begin. The figure below shows Job A and Job B, two array jobs with an array size of 4 each. Each job in Job B's child index is dependent on the corresponding index in Job A. Job B:1 can't start until job A:1 finishes.
If you cancel or terminate a parent array job, all of the child jobs are cancelled or terminated with it. You can cancel or terminate individual child jobs (which moves them to the FAILED status) without affecting the other child jobs. However, if a child array job fails (on its own or by cancelling/terminating manually), the parent job also fails.

Example Array Job Workflow

A common workflow for AWS Batch customers is to run a prerequisite setup job, run a series of commands against a large number of input tasks, and then conclude with a job that aggregates results and writes summary data to Amazon S3, DynamoDB, Amazon Redshift, or Aurora.

For example:

- JobA: A standard, non-array job that performs a quick listing and metadata validation of objects in an Amazon S3 bucket, BucketA. The SubmitJob JSON syntax is shown below.
Example Array Job Workflow

- **JobA**: An array job with 1 job that is dependent upon the previously defined JobA, that runs CPU-intensive commands against each object in BucketA and uploads results to BucketB. The SubmitJob JSON syntax is shown below.

```json
{
    "jobName": "JobA",
    "jobQueue": "ProdQueue",
    "jobDefinition": "JobA-list-and-validate:1"
}
```

- **JobB**: An array job with 10,000 copies that is dependent upon JobA, that runs CPU-intensive commands against each object in BucketA and uploads results to BucketB. The SubmitJob JSON syntax is shown below.

```json
{
    "jobName": "JobB",
    "jobQueue": "ProdQueue",
    "jobDefinition": "JobB-CPU-Intensive-Processing:1",
    "containerOverrides": {
        "vcpus": 32,
        "memory": 4096
    }
    "arrayProperties": {
        "size": 10000
    },
    "dependsOn": [
        {
            "jobId": "JobA Job_ID"
        }
    ]
}
```

- **JobC**: Another 10,000 copy array job that is dependent upon JobB with an N_TO_N dependency model, that runs memory-intensive commands against each item in BucketB, writes metadata to DynamoDB, and uploads the resulting output to BucketC. The SubmitJob JSON syntax is shown below.

```json
{
    "jobName": "JobC",
    "jobQueue": "ProdQueue",
    "jobDefinition": "JobC-Memory-Intensive-Processing:1",
    "containerOverrides": {
        "vcpus": 1,
        "memory": 32768
    }
    "arrayProperties": {
        "size": 10000
    },
    "dependsOn": [
        {
            "jobId": "JobB Job_ID",
            "type": "N_TO_N"
        }
    ]
}
```

- **JobD**: An array job that performs 10 validation steps that each need to query DynamoDB and may interact with any of the above Amazon S3 buckets. Each of the steps in JobD run the same command, but the behavior is different based on the value of the AWS_BATCH_JOB_ARRAY_INDEX environment variable within the job's container. These validation steps run sequentially (for example, JobD:0, then JobD:1, and so on. The SubmitJob JSON syntax is shown below.

```json
{
    "jobName": "JobD",
    "jobQueue": "ProdQueue",
    "jobDefinition": "JobD-validation:1",
    "containerOverrides": {
        "command": "/bin/bash -c "for i in {0..9}; do echo $i; done;""
    }
    "arrayProperties": {
        "size": 10
    },
    "dependsOn": [
        {
            "jobId": "JobD Job_ID",
            "type": "SEQUENTIAL"
        }
    ]
}
```
Example Array Job Workflow

- **JobD**: Example array job with the following properties:
 - **jobDefinition**: "JobD-Sequential-Validation:1"
 - **containerOverrides**: contains vcpus: 1 and memory: 32768
 - **arrayProperties**: size: 10
 - **dependsOn**: a job with the same job ID and a sequential dependency

- **JobE**: A final, non-array job that performs some simple cleanup operations and sends an Amazon SNS notification with a message that the pipeline has completed and a link to the output URL. The SubmitJob JSON syntax is shown below.

```json
{
  "jobName": "JobE",
  "jobQueue": "ProdQueue",
  "jobDefinition": "JobE-Cleanup-and-Notification:1",
  "parameters": {
    "SourceBucket": "s3://JobD-Output-Bucket",
    "Recipient": "pipeline-notifications@mycompany.com"
  },
  "dependsOn": [
    {
      "jobId": "JobD_job_ID"
    }
  ]
}
```
Job Definitions

AWS Batch job definitions specify how jobs are to be run. While each job must reference a job definition, many of the parameters that are specified in the job definition can be overridden at run time.

Contents

- Creating a Job Definition (p. 22)
- Job Definition Parameters (p. 25)
- Example Job Definitions (p. 31)

Some of the attributes specified in a job definition include:

- Which Docker image to use with the container in your job
- How many vCPUs and how much memory to use with the container
- The command the container should run when it is started
- What (if any) environment variables should be passed to the container when it starts
- Any data volumes that should be used with the container
- What (if any) IAM role your job should use for AWS permissions

For a complete description of the parameters available in a job definition, see Job Definition Parameters (p. 25).

Creating a Job Definition

Before you can run jobs in AWS Batch, you must create a job definition.

To create a new job definition

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/
2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Job definitions, Create.
4. For Job definition name, enter a unique name for your job definition. Up to 128 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.
5. (Optional) For Job role, you can specify an IAM role that provides the container in your job with permissions to use the AWS APIs. This feature uses Amazon ECS IAM roles for task functionality. For more information, including configuration prerequisites, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

 Note
 Only roles that have the Amazon Elastic Container Service Task Role trust relationship are shown here. For more information about creating an IAM role for your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in the Amazon Elastic Container Service Developer Guide.

6. For Container image, choose the Docker image to use for your job. Images in the Docker Hub registry are available by default. You can also specify other repositories with repository-url/image:tag. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to Image in the Create a container section of the Docker Remote API and the IMAGE parameter of docker run.
Creating a Job Definition

- Images in Amazon ECR repositories use the full `registry/repository:tag` naming convention. For example, `aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest`
- Images in official repositories on Docker Hub use a single name (for example, `ubuntu` or `mongo`).
- Images in other repositories on Docker Hub are qualified with an organization name (for example, `amazon/amazon-ecs-agent`).
- Images in other online repositories are qualified further by a domain name (for example, `quay.io/assemblyline/ubuntu`).

7. For **Command**, specify the command to pass to the container. For simple commands, you can type the command as you would at a command prompt in the **Space delimited** tab. Then, verify that the JSON result (which is passed to the Docker daemon) is correct. For more complicated commands (for example, with special characters), you can switch to the **JSON** tab and enter the string array equivalent there.

 This parameter maps to `Cmd` in the **Create a container** section of the Docker Remote API and the `COMMAND` parameter to `docker run`. For more information about the Docker `CMD` parameter, go to https://docs.docker.com/engine/reference/builder/#cmd.

 Note
 You can use default values for parameter substitution as well as placeholders in your command. For more information, see Parameters (p. 26).

8. For **vCPUs**, specify the number of vCPUs to reserve for the container. This parameter maps to `CpuShares` in the **Create a container** section of the Docker Remote API and the `--cpu-shares` option to `docker run`. Each vCPU is equivalent to 1,024 CPU shares. You must specify at least 1 vCPU.

9. For **Memory**, specify the hard limit (in MiB) of memory to present to the job's container. If your container attempts to exceed the memory specified here, the container is killed. This parameter maps to `Memory` in the **Create a container** section of the Docker Remote API and the `--memory` option to `docker run`. You must specify at least 4 MiB of memory for a job.

10. For **Job attempts**, specify the maximum number of times to attempt your job (in case it fails). For more information, see Automated Job Retries (p. 16).

11. For **Ulimits**, configure any ulimit values to use for your job's container.

 a. For **Limit name**, choose a ulimit to apply.
 b. For **Soft limit**, choose the soft limit to apply for the ulimit type.
 c. For **Hard limit**, choose the hard limit to apply for the ulimit type.

12. (Optional) You can specify default values for parameter substitution as well as placeholders to use in the command that your job's container runs when it starts. For more information, see Parameters (p. 26).

 a. For **Key**, specify the key for your parameter.
 b. For **Value**, specify the value for your parameter.

13. (Optional) You can specify environment variables to pass to your job's container. This parameter maps to `Env` in the **Create a container** section of the Docker Remote API and the `--env` option to `docker run`.

 Important
 We do not recommend using plaintext environment variables for sensitive information, such as credential data.

 a. For **Key**, specify the key for your environment variable.

 Note
 Environment variables must not start with `AWS_BATCH`; this naming convention is reserved for variables that are set by the AWS Batch service.

 b. For **Value**, specify the value for your environment variable.
14. (Optional) In the **Security** section, you can configure security options for your job's container.

a. To give your job's container elevated privileges on the host instance (similar to the root user), select **Privileged**. This parameter maps to `Privileged` in the **Create a container** section of the Docker Remote API and the `--privileged` option to `docker run`.

 b. For **User**, enter the user name to use inside the container. This parameter maps to `User` in the **Create a container** section of the Docker Remote API and the `--user` option to `docker run`.

15. (Optional) You can specify data volumes for your job to pass to your job's container.

a. For **Name**, enter a name for your volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed.

 b. (Optional) For **Source Path**, enter the path on the host instance to present to the container. If you leave this field empty, then the Docker daemon assigns a host path for you. If you specify a source path, then the data volume persists at the specified location on the host container instance until you delete it manually. If the source path does not exist on the host container instance, the Docker daemon creates it. If the location does exist, the contents of the source path folder are exported to the container.

16. (Optional) Specify mount points for your job's container to access.

a. For **Container path**, enter the path on the container at which to mount the host volume.

 b. For **Source volume**, enter the name of the volume to mount.

 c. To make the volume read-only for the container, choose **Read-only**.

17. Choose **Create job definition**.

Job Definition Template

An empty job definition template is shown below. You can use this template to create your task definition, which can then be saved to a file and used with the AWS CLI `--cli-input-json` option. For more information about these parameters, see Job Definition Parameters (p. 25).

```json
{
    "jobDefinitionName": "",
    "type": "",
    "parameters": {"KeyName": ""},
    "containerProperties": {
        "image": "",
        "vcpus": 0,
        "memory": 0,
        "command": [""],
        "jobRoleArn": "",
        "volumes": [{
            "host": {"sourcePath": ""},
            "name": ""
        }],
        "environment": [{
            "name": "",
            "value": ""
        }],
        "mountPoints": [{
            "containerPath": "",
            "readOnly": true,
            "sourceVolume": ""
        }],
        "readonlyRootFilesystem": true,
        "privileged": true,
        "ulimits": [{
            "hardLimit": 0,
            "name": ""
        }]
    }
}
```
Job Definition Parameters

Job definitions are split into four basic parts: the job definition name, the type of the job definition, parameter substitution placeholder defaults, and the container properties for the job.

Contents
- Job Definition Name (p. 25)
- Type (p. 25)
- Parameters (p. 26)
- Retry Strategy (p. 26)
- Container Properties (p. 27)

Job Definition Name

jobDefinitionName

When you register a job definition, you specify a name. Up to 128 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed. The first job definition that is registered with that name is given a revision of 1. Any subsequent job definitions that are registered with that name are given an incremental revision number.

Type: String
Required: Yes

Type

type

When you register a job definition, you specify the type of job. At this time, only container jobs are supported.

Type: String
Valid values: container
Required: Yes
Parameters

parameters

When you submit a job, you can specify parameters that should replace the placeholders or override the default job definition parameters. Parameters in job submission requests take precedence over the defaults in a job definition. This allows you to use the same job definition for multiple jobs that use the same format, and programmatically change values in the command at submission time.

Type: String to string map

Required: No

When you register a job definition, you can use parameter substitution placeholders in the command field of a job's container properties. For example:

```
"command": [ "ffmpeg", "-i", "Ref::inputfile", "-c", "Ref::codec", "-o", "Ref::outputfile" ]
```

In the above example, there are Ref::inputfile, Ref::codec, and Ref::outputfile parameter substitution placeholders in the command. The parameters object in the job definition allows you to set default values for these placeholders. For example, to set a default for the Ref::codec placeholder, you specify the following in the job definition:

```
"parameters" : { "codec" : "mp4" }
```

When this job definition is submitted to run, the Ref::codec argument in the container's command is replaced with the default value, mp4.

Retry Strategy

retryStrategy

When you register a job definition, you can optionally specify a retry strategy to use for failed jobs that are submitted with this job definition. By default, each job is attempted one time. If you specify more than one attempt, the job is retried if it fails (for example, if it returns a non-zero exit code or the container instance is terminated). For more information, see Automated Job Retries (p. 16).

Type: RetryStrategy object

Required: No

attempts

The number of times to move a job to the RUNNABLE status. You may specify between 1 and 10 attempts. If attempts is greater than one, the job is retried that many times if it fails, until it has moved to RUNNABLE.

```
"attempts": integer
```

Type: Integer

Required: No
Container Properties

When you register a job definition, you must specify a list of container properties that are passed to the Docker daemon on a container instance when the job is placed. The following container properties are allowed in a job definition.

command

The command that is passed to the container. This parameter maps to `Cmd` in the Create a container section of the Docker Remote API and the `COMMAND` parameter to `docker run`. For more information about the Docker `CMD` parameter, see https://docs.docker.com/engine/reference/builder/#cmd.

```
"command": ["string", ...]
```

Type: String array

Required: No

environment

The environment variables to pass to a container. This parameter maps to `Env` in the Create a container section of the Docker Remote API and the `--env` option to `docker run`.

Important

We do not recommend using plaintext environment variables for sensitive information, such as credential data.

Type: Array of key-value pairs

Required: No

name

The name of the environment variable.

Type: String

Required: Yes, when environment is used.

value

The value of the environment variable.

Type: String

Required: Yes, when environment is used.

```
"environment" : [ 
    { "name" : "string", "value" : "string" },
    { "name" : "string", "value" : "string" }
]
```

image

The image used to start a container. This string is passed directly to the Docker daemon. Images in the Docker Hub registry are available by default. You can also specify other repositories with `repository-url/image:tag`. Up to 255 letters (uppercase and lowercase), numbers, hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This parameter maps to `Image` in the Create a container section of the Docker Remote API and the `IMAGE` parameter of `docker run`.
• Images in Amazon ECR repositories use the full `registry/repository:tag` naming convention. For example, `aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest`.
• Images in official repositories on Docker Hub use a single name (for example, `ubuntu` or `mongo`).
• Images in other repositories on Docker Hub are qualified with an organization name (for example, `amazon/amazon-ecs-agent`).
• Images in other online repositories are qualified further by a domain name (for example, `quay.io/assemblyline/ubuntu`).

Type: String
Required: Yes

`jobRoleArn`

When you register a job definition, you can specify an IAM role. The role provides the job container with permissions to call the API actions that are specified in its associated policies on your behalf. For more information, see `IAM Roles for Tasks` in the `Amazon Elastic Container Service Developer Guide`.

Type: String
Required: No

`memory`

The hard limit (in MiB) of memory to present to the container. If your container attempts to exceed the memory specified here, the container is killed. This parameter maps to `Memory` in the `Create a container` section of the `Docker Remote API` and the `--memory` option to `docker run`. You must specify at least 4 MiB of memory for a job.

Type: Integer
Required: Yes

`mountPoints`

The mount points for data volumes in your container. This parameter maps to `Volumes` in the `Create a container` section of the `Docker Remote API` and the `--volume` option to `docker run`.

```
"mountPoints": [
    {
      "sourceVolume": "string",
      "containerPath": "string",
      "readOnly": true|false
    }
  ]
```

Type: Object array
Required: No

`sourceVolume`

The name of the volume to mount.

Type: String
Required: Yes, when `mountPoints` is used.

`containerPath`

The path on the container at which to mount the host volume.
Type: String

Required: Yes, when mountPoints is used.

readOnly

If this value is true, the container has read-only access to the volume. If this value is false, then the container can write to the volume. The default value is false.

Type: Boolean

Required: No

privileged

When this parameter is true, the container is given elevated privileges on the host container instance (similar to the root user). This parameter maps to Privileged in the Create a container section of the Docker Remote API and the --privileged option to docker run.

"privileged": true|false

Type: Boolean

Required: No

readonlyRootFilesystem

When this parameter is true, the container is given read-only access to its root file system. This parameter maps to ReadonlyRootfs in the Create a container section of the Docker Remote API and the --read-only option to docker run.

"readonlyRootFilesystem": true|false

Type: Boolean

Required: No

ulimits

A list of ulimits values to set in the container. This parameter maps to Ulimits in the Create a container section of the Docker Remote API and the --ulimit option to docker run.

"ulimits": [
 {
 "name": string,
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

Type: Object array

Required: No

name

The type of the ulimit.

Type: String

Required: Yes, when ulimits is used.
hardLimit

The hard limit for the ulimit type.
Type: Integer
Required: Yes, when ulimits is used.

softLimit

The soft limit for the ulimit type.
Type: Integer
Required: Yes, when ulimits is used.

user

The user name to use inside the container. This parameter maps to User in the Create a container section of the Docker Remote API and the --user option to docker run.

"user": "string"

Type: String
Required: No

vcpus

The number of vCPUs reserved for the container. This parameter maps to CpuShares in the Create a container section of the Docker Remote API and the --cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. You must specify at least 1 vCPU.
Type: Integer
Required: Yes

volumes

When you register a job definition, you can optionally specify a list of volumes that are passed to the Docker daemon on a container instance. The following parameters are allowed in the container properties:

name

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens, and underscores are allowed. This name is referenced in the sourceVolume parameter of container definition mountPoints.

Type: String
Required: Yes

host

The contents of the host parameter determine whether your data volume persists on the host container instance and where it is stored. If the host parameter is empty, then the Docker daemon assigns a host path for your data volume. However, the data is not guaranteed to persist after the container associated with it stops running.

[
 {
 "name": "string",
 "host": {
 ""}
Example Job Definitions

The following example job definitions illustrate how to use common patterns such as environment variables, parameter substitution, and volume mounts.

Use Environment Variables

The following example job definition uses environment variables to specify a file type and Amazon S3 URL. This particular example is from the Creating a Simple "Fetch & Run" AWS Batch Job compute blog post. The `fetch_and_run.sh` script that is described in the blog post uses these environment variables to download the `myjob.sh` script from S3 and declare its file type.

Although the command and environment variables are hard coded into the job definition in this example, you can submit a job with this definition and specify command and environment variable overrides to make the job definition more versatile.

```json
{
  "jobDefinitionName": "fetch_and_run",
  "type": "container",
  "containerProperties": {
    "image": "012345678910.dkr.ecr.us-east-1.amazonaws.com/fetch_and_run",
    "vcpus": 2,
    "memory": 2000,
    "command": [
      "myjob.sh",
      "60"
    ],
    "jobRoleArn": "arn:aws:iam::012345678910:role/AWSBatchS3ReadOnly",
    "environment": [
      {
        "name": "BATCH_FILE_S3_URL",
        "value": "s3://my-batch-scripts/myjob.sh"
      },
      {
        "name": "BATCH_FILE_TYPE",
        "value": "script"
      }
    ]
}
```
Using Parameter Substitution

The following example job definition illustrates how to allow for parameter substitution and to set default values.

The Ref:: declarations in the command section are used to set placeholders for parameter substitution. When you submit a job with this job definition, you specify the parameter overrides to fill in those values, such as the inputfile and outputfile. The parameters section below sets a default for the codec, but you can override that parameter as well if you need to.

For more information, see Parameters (p. 26).

```
{
    "jobDefinitionName": "ffmpeg_parameters",
    "type": "container",
    "containerProperties": {
        "image": "my_repo/ffmpeg",
        "vcpus": 2,
        "memory": 2000,
        "command": [
            "ffmpeg",
            "-i",
            "Ref::inputfile",
            "-c",
            "Ref::codec",
            "-o",
            "Ref::outputfile"
        ],
        "jobRoleArn": "arn:aws:iam::012345678910:role/ECSTask-S3FullAccess",
        "parameters": {"codec": "mp4"},
        "user": "nobody"
    }
}
```

Test GPU Functionality

The following example job definition tests if the GPU workload AMI described in Creating a GPU Workload AMI (p. 41) is configured properly. The volumes and mountPoints sections must be configured to create a Docker volume that mounts the host path /var/lib/nvidia-docker/volumes/nvidia_driver/latest at /usr/local/nvidia on the container. The container must also be privileged to access the GPU hardware.

```
{
    "containerProperties": {
        "mountPoints": [{
            "sourceVolume": "nvidia",
            "readOnly": false,
            "containerPath": "/usr/local/nvidia"
        }],
        "image": "nvidia/cuda:9.0-cudnn7-devel",
        "vcpus": 2,
        "command": ["nvidia-smi"],
        "volumes": [{
            "host": {"sourcePath": "/var/lib/nvidia-docker/volumes/nvidia_driver/latest"},
```
You can create a file with the JSON text above called `nvidia-smi.json` and then register an AWS Batch job definition with the following command:

```
aws batch register-job-definition --cli-input-json file://nvidia-smi.json
```

The image below shows what the volume and mount points should look like in the AWS Management Console.

Volumes

<table>
<thead>
<tr>
<th>Name</th>
<th>Source path</th>
</tr>
</thead>
<tbody>
<tr>
<td>nvidia</td>
<td>/var/lib/nvidia-docker/volumes/nvidia</td>
</tr>
</tbody>
</table>

Mount points

Read only filesystem

<table>
<thead>
<tr>
<th>Container path</th>
<th>Source volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/local/nvidia</td>
<td>nvidia</td>
</tr>
</tbody>
</table>
Job Queues

Jobs are submitted to a job queue, where they reside until they are able to be scheduled to run in a compute environment. An AWS account can have multiple job queues. For example, you might create a queue that uses Amazon EC2 On-Demand instances for high priority jobs and another queue that uses Amazon EC2 Spot Instances for low-priority jobs. Job queues have a priority that is used by the scheduler to determine which jobs in which queue should be evaluated for execution first.

Creating a Job Queue

Before you can submit jobs in AWS Batch, you must create a job queue. When you create a job queue, you associate one or more compute environments to the queue and assign an order of preference for the compute environments.

You also set a priority to the job queue that determines the order in which the AWS Batch scheduler places jobs onto its associated compute environments. For example, if a compute environment is associated with more than one job queue, the job queue with a higher priority is given preference for scheduling jobs to that compute environment.

To create a job queue

2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Job queues, Create queue.
4. For Queue name, enter a unique name for your job queue.
5. Ensure that Enable job queue is selected so that your job queue can accept job submissions.
6. For Priority, enter an integer value for the job queue's priority. Job queues with a higher priority (or a higher integer value for the priority parameter) are evaluated first when associated with the same compute environment. Priority is determined in descending order, for example, a job queue with a priority value of 10 is given scheduling preference over a job queue with a priority value of 1.
7. In the Connected compute environments for this queue section, select one or more compute environments from the list to associate with the job queue, in the order that the queue should attempt placement. The job scheduler uses compute environment order to determine which compute environment should execute a given job. Compute environments must be in the VALID state before you can associate them with a job queue. You can associate up to three compute environments with a job queue.

You can change the order of compute environments by choosing the up and down arrows next to the Order column in the table.
8. Choose Create to finish and create your job queue.

Job Queue Template

An empty job queue template is shown below. You can use this template to create your job queue which can then be saved to a file and used with the AWS CLI --cli-input-json option. For more information about these parameters, see CreateJobQueue in the AWS Batch API Reference.

```json
{

}
Job Queue Parameters

Job queues are split into four basic components: the name, state, and priority of the job queue, and the compute environment order.

Job Queue Name

jobQueueName

The name for your compute environment. Up to 128 letters (uppercase and lowercase), numbers, and underscores are allowed.

Type: String

Required: Yes

State

state

The state of the job queue. If the job queue state is ENABLED (the default value), it is able to accept jobs.

Type: String

Valid values: ENABLED | DISABLED

Required: No

Priority

priority

The priority of the job queue. Job queues with a higher priority (or a higher integer value for the priority parameter) are evaluated first when associated with same compute environment. Priority is determined in descending order, for example, a job queue with a priority value of 10 is given scheduling preference over a job queue with a priority value of 1.

Type: Integer
Compute Environment Order

computeEnvironmentOrder

The set of compute environments mapped to a job queue and their order relative to each other. The job scheduler uses this parameter to determine which compute environment should execute a given job. Compute environments must be in the VALID state before you can associate them with a job queue. You can associate up to three compute environments with a job queue.

Type: Array of ComputeEnvironmentOrder objects

Required: Yes

computeEnvironment

The Amazon Resource Name (ARN) of the compute environment.

Type: String

Required: Yes

order

The order of the compute environment. Compute environments are tried in ascending order. For example, if two compute environments are associated with a job queue, the compute environment with a lower order integer value is tried for job placement first.
Job Scheduling

The AWS Batch scheduler evaluates when, where, and how to run jobs that have been submitted to a job queue. Jobs run in approximately the order in which they are submitted as long as all dependencies on other jobs have been met.
Compute Environments

Job queues are mapped to one or more compute environments. Compute environments contain the Amazon ECS container instances that are used to run containerized batch jobs. A given compute environment can also be mapped to one or many job queues. Within a job queue, the associated compute environments each have an order that is used by the scheduler to determine where to place jobs that are ready to be executed. If the first compute environment has free resources, the job is scheduled to a container instance within that compute environment. If the compute environment is unable to provide a suitable compute resource, the scheduler attempts to run the job on the next compute environment.

Topics
- Managed Compute Environments (p. 38)
- Unmanaged Compute Environments (p. 38)
- Compute Resource AMIs (p. 39)
- Creating a Compute Environment (p. 43)
- Compute Environment Parameters (p. 46)

Managed Compute Environments

Managed compute environments enable you to describe your business requirements. In a managed compute environment, AWS Batch manages the compute resources within the environment, based on the compute resources that you specify. Instances launched into a managed compute environment use a recent, approved version of the Amazon ECS-optimized AMI. You can choose to use Amazon EC2 On-Demand Instances or Spot Instances in your managed compute environment. Spot Instances only launch when the Spot bid price is below a specified percentage of the On-Demand price.

Managed compute environments launch Amazon ECS container instances into the VPC and subnets that you specify when you create the compute environment. Amazon ECS container instances need external network access to communicate with the Amazon ECS service endpoint. If your container instances do not have public IP addresses (because the subnets you’ve chosen do not provide them by default), then they must use network address translation (NAT) to provide this access. For more information, see NAT Gateways in the Amazon VPC User Guide. For help creating a VPC, see Tutorial: Creating a VPC with Public and Private Subnets for Your Compute Environments (p. 68).

By default, AWS Batch managed compute environments use a recent, approved version of the Amazon ECS-optimized AMI for compute resources. However, you may want to create your own AMI to use for your managed compute environments for various reasons. For more information, see Compute Resource AMIs (p. 39).

Unmanaged Compute Environments

In an unmanaged compute environment, you manage your own compute resources. You must ensure that the AMI you use for your compute resources meets the Amazon ECS container instance AMI specification. For more information, see Compute Resource AMI Specification (p. 39) and Creating a Compute Resource AMI (p. 40).
After you have created your unmanaged compute environment, use the DescribeComputeEnvironments API operation to view the compute environment details. Find the Amazon ECS cluster that is associated with the environment and then manually launch your container instances into that Amazon ECS cluster.

The following AWS CLI command also provides the Amazon ECS cluster ARN:

```bash
aws batch describe-compute-environments --compute-environments unmanagedCE --query computeEnvironments[].ecsClusterArn
```

For more information, see Launching an Amazon ECS Container Instance in the Amazon Elastic Container Service Developer Guide. When you launch your compute resources, specify the Amazon ECS cluster ARN that the resources should register with the following Amazon EC2 user data. Replace `ecsClusterArn` with the cluster ARN you obtained with the previous command.

```bash
#!/bin/bash
echo "ECS_CLUSTER=ecsClusterArn" >> /etc/ecs/ecs.config
```

## Compute Resource AMIs

By default, AWS Batch managed compute environments use a recent, approved version of the Amazon ECS-optimized AMI for compute resources. However, you may want to create your own AMI to use for your managed and unmanaged compute environments for the following reasons:

- Increase the storage size of your AMI root or data volumes
- Add instance storage volumes for supported Amazon EC2 instance types
- Configure the Amazon ECS container agent with custom options
- Configure Docker to use custom options
- Configure a GPU workload AMI that allows containers to access GPU hardware on supported Amazon EC2 instance types

### Topics

- Compute Resource AMI Specification (p. 39)
- Creating a Compute Resource AMI (p. 40)
- Creating a GPU Workload AMI (p. 41)

## Compute Resource AMI Specification

The basic AWS Batch compute resource AMI specification consists of the following:

**Required**

- A modern Linux distribution running at least version 3.10 of the Linux kernel on an HVM virtualization type AMI.
- The Amazon ECS container agent (preferably the latest version). For more information, see Installing the Amazon ECS Container Agent in the Amazon Elastic Container Service Developer Guide.
- The `awslogs` log driver must be specified as an available log driver with the `ECS_AVAILABLE_LOGGING_DRIVERS` environment variable when the Amazon ECS container agent is started. For more information, see Amazon ECS Container Agent Configuration in the Amazon Elastic Container Service Developer Guide.
A Docker daemon running at least version 1.9, and any Docker runtime dependencies. For more information, see Check runtime dependencies in the Docker documentation.

Note
For the best experience, we recommend the Docker version that ships with and is tested with the corresponding Amazon ECS agent version that you are using. For more information, see Amazon ECS Container Agent Versions in the Amazon Elastic Container Service Developer Guide.

Recommended
- An initialization and nanny process to run and monitor the Amazon ECS agent. The Amazon ECS-optimized AMI uses the `ecs-init` upstart process, and other operating systems may use `systemd`. To view several example user data configuration scripts that use `systemd` to start and monitor the Amazon ECS container agent, see Example Container Instance User Data Configuration Scripts in the Amazon Elastic Container Service Developer Guide. For more information about `ecs-init`, see the `ecs-init` project on GitHub. At a minimum, managed compute environments require the Amazon ECS agent to start at boot. If the Amazon ECS agent is not running on your compute resource, then it cannot accept jobs from AWS Batch.

Creating a Compute Resource AMI

You can create your own custom compute resource AMI to use for your managed and unmanaged compute environments, provided that you follow the Compute Resource AMI Specification (p. 39). After you have created your custom AMI, you can create a compute environment that uses that AMI, associate it with a job queue, and then start submitting jobs to that queue.

To create a custom compute resource AMI

1. Choose a base AMI to start from. The base AMI must use HVM virtualization, and it cannot be a Windows AMI.

   The Amazon ECS-optimized AMI is the default AMI for compute resources in managed compute environments. The Amazon ECS-optimized AMI is preconfigured and tested on AWS Batch by AWS engineers. It is the simplest AMI for you to get started and to get your compute resources running on AWS quickly. For more information, see Amazon ECS-Optimized AMI in the Amazon Elastic Container Service Developer Guide.

   Alternatively, you can choose another Amazon Linux variant and install the `ecs-init` package with the following command:

   ```sh
 sudo yum install -y ecs-init
   ```

   For example, if you want to run GPU workloads on your AWS Batch compute resources, you could start with the Amazon Linux Deep Learning AMI and configure it to be able to run AWS Batch jobs. For more information, see Creating a GPU Workload AMI (p. 41).

   Important
   If you choose a base AMI that does not support the `ecs-init` package, you must configure a way to start the Amazon ECS agent at boot and keep it running. To view several example
Creating a GPU Workload AMI

To run GPU workloads on your AWS Batch compute resources, you can start with the Deep Learning AMI CUDA 9 Amazon Linux Version as a base AMI and configure it to be able to run AWS Batch jobs.

This deep learning AMI is based on Amazon Linux, so you can install the `ecs-init` package and make it compatible as a compute resource AMI. The `nvidia-docker` RPM installs the required components for copying the NVIDIA drivers to the correct location for Docker containers in AWS Batch jobs, to be able to access the GPUs on supported instance types.

**Note**

Your associated GPU job definitions must use privileged containers that mount the host path `/var/lib/nvidia-docker/volumes/nvidia_driver/latest` at `/usr/local/nvidia`. For more information, see Test GPU Functionality (p. 32).

**To configure the Deep Learning AMI for AWS Batch**

1. Launch a GPU instance type (for example, P3) with the Deep Learning AMI CUDA 9 Amazon Linux Version in a region that AWS Batch supports.
2. Connect to your instance with SSH. For more information, see Connecting to Your Linux Instance Using SSH in the Amazon EC2 User Guide for Linux Instances.

3. With your favorite text editor, create a file called `configure-gpu.sh` with the following contents:

```bash
#!/bin/bash
Install ecs-init, start docker, and install nvidia-docker
sudo yum install -y ecs-init
sudo service docker start
wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm
sudo rpm -ivh --nodeps nvidia-docker-1.0.1-1.x86_64.rpm

Validate installation
rpm -ql nvidia-docker
rm nvidia-docker-1.0.1-1.x86_64.rpm

Make sure the NVIDIA kernel modules and driver files are bootstraped
Otherwise running a GPU job inside a container will fail with "cuda: unknown exception"
echo '#!/bin/bash' | sudo tee /var/lib/cloud/scripts/per-boot/00_nvidia-modprobe > /dev/null
echo 'nvidia-modprobe -u -c=0' | sudo tee --append /var/lib/cloud/scripts/per-boot/00_nvidia-modprobe > /dev/null
sudo chmod +x /var/lib/cloud/scripts/per-boot/00_nvidia-modprobe
sudo /var/lib/cloud/scripts/per-boot/00_nvidia-modprobe

Start the nvidia-docker-plugin and run a container with
nvidia-docker (retry up to 4 times if it fails initially)
sudo -b nohup nvidia-docker-plugin > /tmp/nvidia-docker.log
sudo docker pull nvidia/cuda:9.0-cudnn7-devel
COMMAND="sudo nvidia-docker run nvidia/cuda:9.0-cudnn7-devel nvidia-smi"
for i in {1..5}; do $COMMAND && break || sleep 15; done

Create symlink to latest nvidia-driver version
nvidia_base=/var/lib/nvidia-docker/volumes/nvidia_driver
sudo ln -s $nvidia_base/$(ls $nvidia_base | sort -n | tail -1) $nvidia_base/latest
```

4. Run the script.

```bash
csh ./configure-gpu.sh
```

5. Validate that you can run a Docker container and access the installed drivers with the following command.

```bash
sudo docker run --privileged -v /var/lib/nvidia-docker/volumes/nvidia_driver/latest:/usr/local/nvidia nvidia/cuda:9.0-cudnn7-devel nvidia-smi
```

You should see something similar to the following output.

```
+---+
| NVIDIA-SMI 384.81 Driver Version: 384.81 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... Off | 00000000:00:17.0 Off | 0 |
| N/A 43C P0 42W / 300W | 10MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

Processes:

<table>
<thead>
<tr>
<th>GPU</th>
<th>PID</th>
<th>Type</th>
<th>Process name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

42
6. Remove any Docker containers and images on the instance to reduce the size of your AMI.
   a. Remove containers.
      
      ```
 sudo docker rm $(sudo docker ps -aq)
      ```
   b. Remove images.
      
      ```
 sudo docker rmi $(sudo docker images -q)
      ```

7. If you started the Amazon ECS container agent on your instance, you must stop it and remove the persistent data checkpoint file before creating your AMI; otherwise, the agent will not start on instances that are launched from your AMI.
   a. Stop the Amazon ECS container agent.
      
      ```
 sudo stop ecs
      ```
   b. Remove the persistent data checkpoint file. By default, this file is located at `/var/lib/ecs/data/ecs_agent_data.json`. Use the following command to remove the file.
      
      ```
 sudo rm -rf /var/lib/ecs/data/ecs_agent_data.json
      ```

8. Create a new AMI from your running instance. For more information, see Creating an Amazon EBS-Backed Linux AMI in the Amazon EC2 User Guide for Linux Instances guide.

---

## Creating a Compute Environment

Before you can run jobs in AWS Batch, you need to create a compute environment. You can create a managed compute environment, where AWS Batch manages the instances within the environment based on your specifications, or you can create an unmanaged compute environment where you handle the instance configuration within the environment.

### To create a managed compute environment

2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Compute environments, Create environment.
4. Configure the environment.
   a. For **Compute environment type**, choose Managed.
   b. For **Compute environment name**, specify a unique name for your compute environment. You can use up to 128 letters (uppercase and lowercase), numbers, hyphens, and underscores.
   c. For **Service role**, choose to create a new role or use an existing role. The role allows the AWS Batch service to make calls to the required AWS APIs on your behalf. For more information, see AWS Batch Service IAM Role (p. 54). If you choose to create a new role, the required role (AWSBatchServiceRole) is created for you.
   d. For **EC2 instance role**, choose to create a new instance profile or use an existing instance profile that has the required IAM permissions attached. This instance profile allows the Amazon ECS container instances that are created for your compute environment to make calls to the required AWS APIs on your behalf. For more information, see Amazon ECS Instance Role (p. 56). If you
choose to create a new instance profile, the required role (ecsInstanceRole) is created for you.

e. For **EC2 key pair** choose an existing Amazon EC2 key pair to associate with the instance at launch. This key pair allows you to connect to your instances with SSH (ensure that your security group allows ingress on port 22).

f. Ensure that **Enable compute environment** is selected so that your compute environment can accept jobs from the AWS Batch job scheduler.

5. Configure your instances.

a. For **Provisioning model**, choose **On-Demand** to launch Amazon EC2 On-Demand Instances or **Spot** to use Amazon EC2 Spot Instances.

b. If you chose to use Spot Instances:

   i. For **Maximum bid price**, choose the maximum percentage that a Spot Instance price must be when compared with the On-Demand price for that instance type before instances are launched. For example, if your bid percentage is 20%, then the Spot price must be below 20% of the current On-Demand price for that EC2 instance. You always pay the lowest (market) price and never more than your maximum percentage.

   ii. For **Spot fleet role**, choose an existing Amazon EC2 Spot Fleet IAM role to apply to your Spot compute environment. If you do not already have an existing Amazon EC2 Spot Fleet IAM role, you must create one first. For more information, see Amazon EC2 Spot Fleet Role (p. 57).

   Important
   To tag your Spot Instances on creation (see Step 7 (p. 45)), your Amazon EC2 Spot Fleet IAM role must use the newer AmazonEC2SpotFleetTaggingRole managed policy. The AmazonEC2SpotFleetRole managed policy does not have the required permissions to tag Spot Instances. For more information, see Spot Instances Not Tagged on Creation (p. 74).

c. For **Allowed instance types**, choose the Amazon EC2 instance types that may be launched. You can specify instance families to launch any instance type within those families (for example, c4 or p3), or you can specify specific sizes within a family (such as c4.8xlarge). You can also choose optimal to pick instance types (from the latest C, M, and R instance families) on the fly that match the demand of your job queues.

d. For **Minimum vCPUs**, choose the minimum number of EC2 vCPUs that your compute environment should maintain, regardless of job queue demand.

e. For **Desired vCPUs**, choose the number of EC2 vCPUs that your compute environment should launch with. As your job queue demand increases, AWS Batch can increase the desired number of vCPUs in your compute environment and add EC2 instances, up to the maximum vCPUs. As demand decreases, AWS Batch can decrease the desired number of vCPUs in your compute environment and remove instances, down to the minimum vCPUs.

f. For **Maximum vCPUs**, choose the maximum number of EC2 vCPUs that your compute environment can scale out to, regardless of job queue demand.

g. *(Optional)* Check **Enable user-specified AMI ID** to use your own custom AMI. By default, AWS Batch managed compute environments use a recent, approved version of the Amazon ECS-optimized AMI for compute resources. You can create and use your own AMI in your compute environment by following the compute resource AMI specification. For more information, see Compute Resource AMIs (p. 39).

   - For **AMI ID**, paste your custom AMI ID and choose **Validate AMI**.

6. Configure networking.

   Important
   Compute resources need external network access to communicate with the Amazon ECS service endpoint, so if your compute resources do not have public IP addresses, then they must use network address translation (NAT) to provide this access. For more information,
see NAT Gateways in the Amazon VPC User Guide. For help creating a VPC, see Tutorial: Creating a VPC with Public and Private Subnets for Your Compute Environments (p. 68)

a. For VPC ID, choose a VPC into which to launch your instances.

b. For Subnets, choose which subnets in the selected VPC should host your instances. By default, all subnets within the selected VPC are chosen.

c. For Security groups, choose a security group to attach to your instances. By default, the default security group for your VPC is chosen.

7. (Optional) Tag your instances. For example, you can specify "Name": "AWS Batch Instance - C4OnDemand" as a tag so that each instance in your compute environment has that name. This is helpful for recognizing your AWS Batch instances in the Amazon EC2 console.

8. Choose Create to finish.

To create an unmanaged compute environment
2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Compute environments, Create environment.
4. For Compute environment type, choose Unmanaged.
5. For Compute environment name, specify a unique name for your compute environment. You can use up to 128 letters (uppercase and lowercase), numbers, hyphens, and underscores.
6. For Service role, choose to create a new role or use an existing role that allows the AWS Batch service to make calls to the required AWS APIs on your behalf. For more information, see AWS Batch Service IAM Role (p. 54). If you choose to create a new role, the required role (AWSBatchServiceRole) is created for you.

7. Ensure that Enable compute environment is selected so that your compute environment can accept jobs from the AWS Batch job scheduler.

8. Choose Create to finish.

9. (Optional) Retrieve the Amazon ECS cluster ARN for the associated cluster. The following AWS CLI command provides the Amazon ECS cluster ARN for a compute environment:

```bash
aws batch describe-compute-environments --compute-environments unmanagedCE --query computeEnvironments[].ecsClusterArn
```

10. (Optional) Launch container instances into the associated Amazon ECS cluster. For more information, see Launching an Amazon ECS Container Instance in the Amazon Elastic Container Service Developer Guide. When you launch your compute resources, specify the Amazon ECS cluster ARN that the resources should register with the following Amazon EC2 user data. Replace ecsClusterArn with the cluster ARN you obtained with the previous command.

```bash
#!/bin/bash
echo "ECS_CLUSTER=ecsClusterArn" >> /etc/ecs/ecs.config
```

Note
Your unmanaged compute environment does not have any compute resources until you launch them manually.

Compute Environment Template

An empty compute environment template is shown below. You can use this template to create your compute environment that can then be saved to a file and used with the AWS CLI --cli-input-json
option. For more information about these parameters, see CreateComputeEnvironment in the AWS Batch API Reference.

```json
{
 "computeEnvironmentName": "",
 "type": "",
 "state": "",
 "computeResources": {
 "type": "",
 "minvCpus": 0,
 "maxvCpus": 0,
 "desiredvCpus": 0,
 "instanceTypes": [""],
 "imageId": "",
 "subnets": [""],
 "securityGroupIds": [""],
 "instanceRole": "",
 "tags": {"KeyName": ""},
 "bidPercentage": 0,
 "spotIamFleetRole": ""
 },
 "serviceRole": ""
}
```

**Note**
You can generate the above task definition template with the following AWS CLI command.

```
$ aws batch create-compute-environment --generate-cli-skeleton
```

---

### Compute Environment Parameters

Compute environments are split into five basic components: the name, type, and state of the compute environment, the compute resource definition (if it is a managed compute environment), and the service role to use to provide IAM permissions to AWS Batch.

**Topics**

- Compute Environment Name (p. 46)
- Type (p. 47)
- State (p. 47)
- Compute Resources (p. 47)
- Service Role (p. 50)

### Compute Environment Name

**computeEnvironmentName**

The name for your compute environment. You can use up to 128 letters (uppercase and lowercase), numbers, hyphens, and underscores.

- **Type:** String
- **Required:** Yes
**Type**

*type*

The type of the compute environment. Choose **MANAGED** to have AWS Batch manage the compute resources that you define. For more information, see [Compute Resources (p. 47)](#). Choose **UNMANAGED** to manage your own compute resources.

Type: String

Valid values: **MANAGED** | **UNMANAGED**

Required: Yes

**State**

*state*

The state of the compute environment.

If the state is **ENABLED**, then the AWS Batch scheduler can attempt to place jobs from an associated job queue on the compute resources within the environment. If the compute environment is managed, then it can scale its instances out or in automatically, based on job queue demand.

If the state is **DISABLED**, then the AWS Batch scheduler does not attempt to place jobs within the environment. Jobs in a **STARTING** or **RUNNING** state continue to progress normally. Managed compute environments in the **DISABLED** state do not scale out; however, they scale in when instances are idle and nearing the end of an Amazon EC2 billing hour.

Type: String

Valid values: **ENABLED** | **DISABLED**

Required: No

**Compute Resources**

*computeResources*

Details of the compute resources managed by the compute environment.

Type: [ComputeResource](#) object

Required: this parameter is required for managed compute environments

**type**

The type of compute environment. Use this parameter to specify whether to use Amazon EC2 On-Demand Instances or Amazon EC2 Spot Instances in your compute environment. If you choose **SPOT**, you must also specify an Amazon EC2 Spot Fleet role with the **spotIamFleetRole** parameter. For more information, see [Amazon EC2 Spot Fleet Role (p. 57)](#).

Valid values: **EC2** | **SPOT**

Required: Yes
minvCpus

The minimum number of EC2 vCPUs that an environment should maintain.

Type: Integer

Required: Yes

maxvCpus

The maximum number of EC2 vCPUs that an environment can reach.

Type: Integer

Required: Yes

desiredvCpus

The desired number of EC2 vCPUs in the compute environment. AWS Batch modifies this value between the minimum and maximum values, based on job queue demand.

Type: Integer

Required: No

instanceTypes

The instance types that may be launched. You can specify instance families to launch any instance type within those families (for example, c4 or p3), or you can specify specific sizes within a family (such as c4.8xlarge). You can also choose optimal to pick instance types (from the latest C, M, and R instance families) on the fly that match the demand of your job queues.

Type: Array of strings

Valid values: "optimal", "m3", "m4", "c3", "c4", "r3", "r4", "i2", "i3", "d2", "g2", "g3", "p2", "p3", "x1", "f1", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m4.16xlarge", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "i2.large", "i2.xlarge", "i2.2xlarge", "i2.4xlarge", "i2.8xlarge", "i3.large", "i3.xlarge", "i3.2xlarge", "i3.4xlarge", "i3.8xlarge", "i3.16xlarge", "d2.xlarge", "d2.4xlarge", "d2.8xlarge", "g2.2xlarge", "g2.8xlarge", "g3.4xlarge", "g3.8xlarge", "g3.16xlarge", "p2.xlarge", "p2.8xlarge", "p2.16xlarge", "p3.2xlarge", "p3.8xlarge", "p3.16xlarge", "x1.16xlarge", "x1.32xlarge", "f1.2xlarge", "f1.16xlarge"

Required: yes

imageId

The Amazon Machine Image (AMI) ID used for instances launched in the compute environment.

Type: String

Required: No

subnets

The VPC subnets into which the compute resources are launched. These subnets must be within the same VPC.
Compute Resources

- **securityGroupIds**
  
  The EC2 security groups to associate with the instances launched in the compute environment.
  
  Type: Array of strings
  
  Required: Yes

- **ec2KeyPair**
  
  The EC2 key pair that is used for instances launched in the compute environment. You can use this key pair to log in to your instances with SSH.
  
  Type: String
  
  Required: No

- **instanceRole**
  
  The Amazon ECS instance profile to attach to Amazon EC2 instances in a compute environment. You can specify the short name or full Amazon Resource Name (ARN) of an instance profile. For example, `ecsInstanceRole` or `arn:aws:iam::aws_account_id:instance-profile/ecsInstanceRole`. For more information, see Amazon ECS Instance Role (p. 56).
  
  Type: String
  
  Required: Yes

- **tags**
  
  Key-value pair tags to be applied to instances that are launched in the compute environment. For example, you can specify "Name": "AWS Batch Instance - C4OnDemand" as a tag so that each instance in your compute environment has that name. This is helpful for recognizing your AWS Batch instances in the Amazon EC2 console.
  
  Type: String to string map
  
  Required: No

- **bidPercentage**
  
  The maximum percentage that a Spot Instance price must be when compared with the On-Demand price for that instance type before instances are launched. For example, if your bid percentage is 20%, then the Spot price must be below 20% of the current On-Demand price for that EC2 instance.
  
  Required: This parameter is required for SPOT compute environments.

- **spotIamFleetRole**
  
  The Amazon Resource Name (ARN) of the Amazon EC2 Spot Fleet IAM role applied to a SPOT compute environment. For more information, see Amazon EC2 Spot Fleet Role (p. 57).
  
  **Important**
  
  To tag your Spot Instances on creation, the Spot Fleet IAM role specified here must use the newer `AmazonEC2SpotFleetTaggingRole` managed policy. The previously recommended `AmazonEC2SpotFleetRole` managed policy does not have the required permissions to tag Spot Instances. For more information, see Spot Instances Not Tagged on Creation (p. 74).

  Type: String
Required: This parameter is required for SPOT compute environments.

**Service Role**

`serviceRole`

The full Amazon Resource Name (ARN) of the IAM role that allows AWS Batch to make calls to other AWS services on your behalf. For more information, see [AWS Batch Service IAM Role](p. 54).

Type: String

Required: Yes
AWS Batch IAM Policies, Roles, and Permissions

By default, IAM users don't have permission to create or modify AWS Batch resources, or perform tasks using the AWS Batch API. (This means that they also can't do so using the AWS Batch console or the AWS CLI.) To allow IAM users to create or modify resources and submit jobs, you must create IAM policies that grant IAM users permission to use the specific resources and API actions they'll need, and then attach those policies to the IAM users or groups that require those permissions.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform the specified tasks on the specified resources. For more information, see Permissions and Policies in the IAM User Guide. For more information about managing and creating custom IAM policies, see Managing IAM Policies.

Likewise, AWS Batch makes calls to other AWS services on your behalf, so the service must authenticate with your credentials. This authentication is accomplished by creating an IAM role and policy that can provide these permissions and then associating that role with your compute environments when you create them. For more information, see Amazon ECS Instance Role (p. 56) and also IAM Roles in the IAM User Guide.

Getting Started

An IAM policy must grant or deny permissions to use one or more AWS Batch actions.

Topics

- Policy Structure (p. 51)
- AWS Batch Managed Policy (p. 53)
- Creating AWS Batch IAM Policies (p. 54)
- AWS Batch Service IAM Role (p. 54)
- Amazon ECS Instance Role (p. 56)
- Amazon EC2 Spot Fleet Role (p. 57)

Policy Structure

The following topics explain the structure of an IAM policy.

Topics

- Policy Syntax (p. 51)
- Actions for AWS Batch (p. 52)
- Amazon Resource Names for AWS Batch (p. 52)
- Checking That Users Have the Required Permissions (p. 53)

Policy Syntax

An IAM policy is a JSON document that consists of one or more statements. Each statement is structured as follows:
There are various elements that make up a statement:

- **Effect**: The **Effect** can be *Allow* or *Deny*. By default, IAM users don't have permission to use resources and API actions, so all requests are denied. An explicit allow overrides the default. An explicit deny overrides any allows.

- **Action**: The *Action* is the specific API action for which you are granting or denying permission. To learn about specifying *Action*, see Actions for AWS Batch (p. 52).

- **Resource**: The resource that's affected by the action. AWS Batch API operations currently do not support resource level permissions, so you must use the * wildcard to specify that all resources can be affected by the action.

- **Condition**: Conditions are optional. They can be used to control when your policy is in effect. For more information about example IAM policy statements for AWS Batch, see Creating AWS Batch IAM Policies (p. 54).

### Actions for AWS Batch

In an IAM policy statement, you can specify any API action from any service that supports IAM. For AWS Batch, use the following prefix with the name of the API action: `batch:`. For example: `batch:SubmitJob` and `batch:CreateComputeEnvironment`.

To specify multiple actions in a single statement, separate them with commas as follows:

```
"Action": ["batch:action1", "batch:action2"]
```

You can also specify multiple actions using wildcards. For example, you can specify all actions whose name begins with the word "Describe" as follows:

```
"Action": "batch:Describe*"
```

To specify all AWS Batch API actions, use the * wildcard as follows:

```
"Action": "batch:*"
```

For a list of AWS Batch actions, see Actions in the AWS Batch API Reference.

### Amazon Resource Names for AWS Batch

Each IAM policy statement applies to the resources that you specify using their ARNs.

An ARN has the following general syntax:
Testing Permissions

**arn:**aws:{service}:{region}:{account}:{resourceType}/{resourcePath}

**service**
- The service (for example, batch).

**region**
- The region for the resource (for example, us-east-1).

**account**
- The AWS account ID, with no hyphens (for example, 123456789012).

**resourceType**
- The type of resource (for example, compute-environment).

**resourcePath**
- A path that identifies the resource. You can use the * wildcard in your paths.

AWS Batch API operations currently do not support resource level permissions. To specify all resources, use the * wildcard in the Resource element as follows:

"Resource": "*

**Checking That Users Have the Required Permissions**

After you've created an IAM policy, we recommend that you check whether it grants users the permissions to use the particular API actions and resources they need before you put the policy into production.

First, create an IAM user for testing purposes, and then attach the IAM policy that you created to the test user. Then, make a request as the test user. You can make test requests in the console or with the AWS CLI.

- **Note**
  You can also test your policies with the IAM Policy Simulator. For more information on the policy simulator, see Working with the IAM Policy Simulator in the IAM User Guide.

If the policy doesn't grant the user the permissions that you expected, or is overly permissive, you can adjust the policy as needed and retest until you get the desired results.

- **Important**
  It can take several minutes for policy changes to propagate before they take effect. Therefore, we recommend that you allow five minutes to pass before you test your policy updates.

If an authorization check fails, the request returns an encoded message with diagnostic information. You can decode the message using the DecodeAuthorizationMessage action. For more information, see DecodeAuthorizationMessage in the AWS Security Token Service API Reference, and decode-authorization-message in the AWS CLI Command Reference.

**AWS Batch Managed Policy**

AWS Batch provides a managed policy that you can attach to IAM users that provides permission to use AWS Batch resources and API operations. You can apply this policy directly, or you can use it as a starting point for creating your own policies. For more information about each API operation mentioned in these policies, see Actions in the AWS Batch API Reference.
This policy allows full administrator access to AWS Batch.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:*",
 "cloudwatch:GetMetricStatistics",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ecs:DescribeClusters",
 "ecs:Describe*",
 "ecs:List*",
 "logs:Describe*",
 "logs:Get*",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents",
 "iam:ListInstanceProfiles",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": [
 "arn:aws:iam::*:role/AWSBatchServiceRole",
 "arn:aws:iam::*:role/ecsInstanceRole",
 "arn:aws:iam::*:role/iaws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/aws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/AWSBatchJobRole"
]
 }
]
}
```

Creating AWS Batch IAM Policies

You can create specific IAM policies to restrict the calls and resources that users in your account have access to, and then attach those policies to IAM users.

When you attach a policy to a user or group of users, it allows or denies the users permission to perform the specified tasks on the specified resources. For more information, see Permissions and Policies in the IAM User Guide. For more information about managing and creating custom IAM policies, see Managing IAM Policies.

AWS Batch Service IAM Role

AWS Batch makes calls to other AWS services on your behalf to manage the resources that you use with the service; therefore, before you can use the service, you must have an IAM policy and role that provides the necessary permissions to AWS Batch.
In most cases, the AWS Batch service role is created for you automatically in the console first-run experience. You can use the following procedure to check if your account already has the AWS Batch service role.

The `AWSBatchServiceRole` policy is shown below.

```
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeInstances",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeImages",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeSpotFleetInstances",
 "ec2:DescribeSpotFleetRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:RequestSpotFleet",
 "ec2:CancelSpotFleetRequests",
 "ec2:ModifySpotFleetRequest",
 "ec2:TerminateInstances",
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:CreateOrUpdateTags",
 "autoscaling:SuspendProcesses",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "ecs:DescribeClusters",
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTaskDefinitions",
 "ecs:DescribeTasks",
 "ecs:ListClusters",
 "ecs:ListContainerInstances",
 "ecs:ListTaskDefinitionFamilies",
 "ecs:ListTaskDefinitions",
 "ecs:ListTasks",
 "ecs:CreateCluster",
 "ecs:DeleteCluster",
 "ecs:RegisterTaskDefinition",
 "ecs:DeregisterTaskDefinition",
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:UpdateContainerAgent",
 "ecs:DeregisterContainerInstance",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "iam:GetInstanceProfile",
 "iam:PassRole"
],
 "Resource": "*"
 }]
}
```
You can use the following procedure to check and see if your account already has the AWS Batch service role and to attach the managed IAM policy if needed.

**To check for the AWSBatchServiceRole in the IAM console**

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Roles.
3. Search the list of roles for AWSBatchServiceRole. If the role does not exist, use the procedure below to create the role. If the role does exist, select the role to view the attached policies.
4. Choose Permissions.
5. Ensure that the AWSBatchServiceRole managed policy is attached to the role. If the policy is attached, your AWS Batch service role is properly configured. If not, follow the substeps below to attach the policy.
   a. Choose Attach Policy.
   b. For Filter, type AWSBatchServiceRole to narrow the list of available policies to attach.
   c. Select the AWSBatchServiceRole policy and choose Attach Policy.
7. Verify that the trust relationship contains the following policy. If the trust relationship matches the policy below, choose Cancel. If the trust relationship does not match, copy the policy into the Policy Document window and choose Update Trust Policy.

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"Service": "batch.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }]
}
```

**To create the AWSBatchServiceRole IAM role**

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Roles, Create New Role.
3. On the Select type of trusted entity page, choose the AWS service tab, then choose Batch, and then choose Next: Permissions.
4. Choose Next: Review.
5. For Role Name, type AWSBatchServiceRole and then choose Create Role to finish.

---

**Amazon ECS Instance Role**

AWS Batch compute environments are populated with Amazon ECS container instances, and they run the Amazon ECS container agent locally. The Amazon ECS container agent makes calls to various AWS APIs on your behalf; so container instances that run the agent require an IAM policy and role for these services to know that the agent belongs to you. Before you can create a compute environment and launch container instances into it, you must create an IAM role and an instance profile for those container instances.
instances to use when they are launched. This requirement applies to container instances launched with or without the Amazon ECS-optimized AMI provided by Amazon.

The Amazon ECS instance role and instance profile are automatically created for you in the console first-run experience; however, you can follow the following procedure to check if your account already has the Amazon ECS instance role and instance profile and to attach the managed IAM policy if needed.

**To check for the `ecsInstanceRole` in the IAM console**

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Roles.
3. Search the list of roles for `ecsInstanceRole`. If the role does not exist, use the steps below to create the role.
5. In the Select type of trusted entity section, choose the AWS service tab, then choose Elastic Container Service.
6. Choose Next: Review and then choose Next: Permissions.
7. For Role Name, type `ecsInstanceRole` and choose Create Role to finish.

### Amazon EC2 Spot Fleet Role

If you create a managed compute environment that uses Amazon EC2 Spot Fleet Instances, you must create a role that grants the Spot Fleet permission to bid on, launch, tag, and terminate instances on your behalf, and specify it in your Spot Fleet request. You must also have the `AWSServiceRoleForEC2Spot` and `AWSServiceRoleForEC2SpotFleet` service-linked roles for Amazon EC2 Spot and Spot Fleet. Use the procedures below to create all of these roles.

**Topics**

- Create Amazon EC2 Spot Fleet Roles in the AWS Management Console (p. 57)
- Create Amazon EC2 Spot Fleet Roles with the AWS CLI (p. 58)

### Create Amazon EC2 Spot Fleet Roles in the AWS Management Console

**To create the `AmazonEC2SpotFleetRole` IAM role for your Spot Fleet compute environments**

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Roles, Create role.
3. Choose AWS service as the trusted entity type, and then EC2 as the service to use the role.
4. In the Select your use case section, choose EC2 Spot Fleet Role and then Next: Permissions.
5. Choose Next: Review.

**Note**

Historically, there have been two managed policies for the Amazon EC2 Spot Fleet role.

- `AmazonEC2SpotFleetRole`: This was the original managed policy for the Spot Fleet role. It has tighter IAM permissions, but it does not support Spot Instance tagging in compute environments. If you've previously created a Spot Fleet role with this policy, see Spot
Create Amazon EC2 Spot Fleet Roles with the AWS CLI

To create the AmazonEC2SpotFleetRole IAM role for your Spot Fleet compute environments

1. Run the following command with the AWS CLI to create the AmazonEC2SpotFleetRole role.

```
aws iam create-role --role-name AmazonEC2SpotFleetRole --assume-role-policy-document "{
"Version":"2012-10-17","Statement":[
{"Sid":"","Effect":"Allow","Principal":
{"Service":"spotfleet.amazonaws.com"},"Action":"sts:AssumeRole"}
]}
```

2. Run the following command with the AWS CLI to attach the AmazonEC2SpotFleetTaggingRole managed IAM policy to your AmazonEC2SpotFleetRole role.

```
aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2SpotFleetTaggingRole --role-name AmazonEC2SpotFleetRole
```

To create the AWSServiceRoleForEC2Spot IAM service-linked role for Amazon EC2 Spot

- Run the following command with the AWS CLI to create the AWSServiceRoleForEC2Spot role.

```
aws iam create-service-linked-role --aws-service-name spot.amazonaws.com
```
To create the AWSServiceRoleForEC2SpotFleet IAM service-linked role for Amazon EC2 Spot Fleet

- Run the following command with the AWS CLI to create the AWSServiceRoleForEC2SpotFleet role.

```bash
aws iam create-service-linked-role --aws-service-name spotfleet.amazonaws.com
```
AWS Batch Event Stream for CloudWatch Events

You can use the AWS Batch event stream for CloudWatch Events to receive near real-time notifications regarding the current state of jobs that have been submitted to your job queues.

Using CloudWatch Events, you can monitor the progress of jobs, build AWS Batch custom workflows with complex dependencies, generate usage reports and/or metrics around job execution, or build your own custom dashboards. With AWS Batch CloudWatch events, you can eliminate scheduling and monitoring code that continuously polls the AWS Batch service for job status changes, and instead handle AWS Batch job state changes asynchronously using any CloudWatch Events target, such as AWS Lambda, Amazon Simple Queue Service, Amazon Simple Notification Service, and Amazon Kinesis Data Streams.

Events from AWS Batch event stream are ensured to be delivered at least one time. In the event that duplicate events are sent, the event provides enough information to identify duplicates (you can compare the time stamp of the event and the job status).

Topics
- AWS Batch Events (p. 60)
- Tutorial: Listening for AWS Batch CloudWatch Events (p. 61)
- Tutorial: Sending Amazon Simple Notification Service Alerts for Failed Job Events (p. 63)

AWS Batch Events

AWS Batch sends job status change events to CloudWatch Events. AWS Batch tracks the state of your jobs. If a previously submitted job's status changes, an event is triggered, for example, if a job in the RUNNING status moves to the FAILED status. These events are classified as job state change events.

Note
AWS Batch may add other event types, sources, and details in the future. If you are programmatically deserializing event JSON data, make sure that your application is prepared to handle unknown properties to avoid issues if and when these additional properties are added.

Job State Change Events

Any time that an existing (previously submitted) job changes states, an event is created. For more information about AWS Batch job states, see Job States (p. 14).

Note
Events are not created for the initial job submission.

Example Job State Change Event

Job state change events are delivered in the following format (the detail section below resembles the Job object that is returned from a DescribeJobs API operation in the AWS Batch API Reference). For more information about CloudWatch Events parameters, see Events and Event Patterns in the Amazon CloudWatch Events User Guide.

```json
{
}
```
Tutorial: Listening for AWS Batch CloudWatch Events

In this tutorial, you set up a simple AWS Lambda function that listens for AWS Batch job events and writes them out to a CloudWatch Logs log stream.

Prerequisites

This tutorial assumes that you have a working compute environment and job queue that are ready to accept jobs. If you do not have a running compute environment and job queue to capture events from, follow the steps in Getting Started with AWS Batch (p. 9) to create one. At the end of this tutorial, you can submit a job to this job queue to test that you have configured your Lambda function correctly.

Step 1: Create the Lambda Function

In this procedure, you create a simple Lambda function to serve as a target for AWS Batch event stream messages.
To create a target Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.
2. Choose Create a Lambda function, Author from scratch.
3. For Name, enter batch-event-stream-handler.
4. For Role, choose Create a custom role, Allow.
5. Choose Create function.
6. In the Function code section, choose Python 2.7 for the runtime and edit the sample code to match the following example:

   ```python
 import json

 def handler(event, context):
 if event["source"] != "aws.batch":
 raise ValueError("Function only supports input from events with a source type of: aws.batch")
 print(json.dumps(event))
   ```

   This is a simple Python 2.7 function that prints the events sent by AWS Batch. If everything is configured correctly, at the end of this tutorial, you see the event details appear in the CloudWatch Logs log stream associated with this Lambda function.
7. Choose Save.

Step 2: Register Event Rule

Next, you create a CloudWatch Events event rule that captures job events coming from your AWS Batch resources. This rule captures all events coming from AWS Batch within the account where it is defined. The job messages themselves contain information about the event source, including the job queue to which it was submitted, that you can use to filter and sort events programmatically.

**Note**

When you use the AWS Management Console to create an event rule, the console automatically adds the IAM permissions necessary to grant CloudWatch Events permissions to call your Lambda function. If you are creating an event rule using the AWS CLI, you must grant this permission explicitly. For more information, see Events and Event Patterns in the Amazon CloudWatch User Guide.

To create your CloudWatch Events rule

2. On the navigation pane, choose Events, Create rule.
3. For Event source, select Event Pattern as the event source, and then select Build custom event pattern.
4. Paste the following event pattern into the text area.

   ```json
 {
 "source": [
 "aws.batch"
]
 }
   ```

   This rule applies to all AWS Batch events for all of your AWS Batch groups. Alternatively, you can create a more specific rule to filter out some results.
5. For Targets, choose Add target. For Target type, choose Lambda function, and select your Lambda function.
6. Choose Configure details.
7. For Rule definition, type a name and description for your rule and choose Create rule.

Step 3: Test Your Configuration

Finally, you can test your CloudWatch Events configuration by submitting a job to your job queue. If everything is configured properly, your Lambda function is triggered and it writes the event data to a CloudWatch Logs log stream for the function.

To test your configuration
2. Submit a new AWS Batch job. For more information, see Submitting a Job (p. 13).
4. On the navigation pane, choose Logs and select the log group for your Lambda function (for example, /aws/lambda/my-function).
5. Select a log stream to view the event data.

Tutorial: Sending Amazon Simple Notification Service Alerts for Failed Job Events

In this tutorial, you configure a CloudWatch Events event rule that only captures job events where the job has moved to a FAILED status.

Prerequisites

This tutorial assumes that you have a working compute environment and job queue that are ready to accept jobs. If you do not have a running compute environment and job queue to capture events from, follow the steps in Getting Started with AWS Batch (p. 9) to create one. At the end of this tutorial, you can submit a job to this job queue to test that you have configured your Amazon SNS alerts correctly.

Step 1: Create and Subscribe to an Amazon SNS Topic

For this tutorial, you configure an Amazon SNS topic to serve as an event target for your new event rule.

To create an Amazon SNS topic
1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v2/home.
2. Choose Topics, Create new topic.
3. For Topic name, enter JobFailedAlert and choose Create topic.
4. Select the topic that you just created. On the Topic details: JobFailedAlert screen, choose Create subscription.
5. For Protocol, choose Email. For Endpoint, enter an email address to which you currently have access and choose Create subscription.
6. Check your email account, and wait to receive a subscription confirmation email message. When you receive it, choose Confirm subscription.
Step 2: Register Event Rule

Next, register an event rule that captures only job-failed events.

To create an event rule

2. In the navigation pane, choose Events, Create rule.
3. Choose Show advanced options, edit.
4. For Build a pattern that selects events for processing by your targets, replace the existing text with the following text:

```json
{
 "detail-type": [
 "Batch Job State Change"
],
 "source": [
 "aws.batch"
],
 "detail": {
 "status": [
 "FAILED"
]
 }
}
```

This code defines a CloudWatch Events event rule that matches any event where the job status is FAILED. For more information about event patterns, see Events and Event Patterns in the Amazon CloudWatch User Guide.

5. For Targets, choose Add target. For Target type, choose SNS topic, JobFailedAlert.
6. Choose Configure details.
7. For Rule definition, type a name and description for your rule and then choose Create rule.

Step 3: Test Your Rule

To test your rule, submit a job that exits shortly after it starts with a non-zero exit code. If your event rule is configured correctly, you receive an email message within a few minutes with the event text.

To test a rule

2. Submit a new AWS Batch job. For more information, see Submitting a Job (p. 13). For the job's command, substitute this command to exit the container with an exit code of 1.

   `/bin/sh, -c, 'exit 1'`

3. Check your email to confirm that you have received an email alert for the failed job notification.
Logging AWS Batch API Calls with AWS CloudTrail

AWS Batch is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in AWS Batch. If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, Amazon CloudWatch Logs, and Amazon CloudWatch Events. Using the information collected by CloudTrail, you can determine the request that was made to AWS Batch, the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

AWS Batch Information in CloudTrail

All AWS Batch actions are logged by CloudTrail and are documented in the AWS Batch API Reference. For example, calls to the SubmitJob, ListJobs and DescribeJobs sections generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:

- Whether the request was made with root or IAM user credentials.
- Whether the request was made with temporary security credentials for a role or federated user.
- Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

You can also create a trail and store your log files in your Amazon S3 bucket for as long as you want, and define Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted with Amazon S3 server-side encryption (SSE).

To be notified of log file delivery, configure CloudTrail to publish Amazon SNS notifications when new log files are delivered. For more information, see Configuring Amazon SNS Notifications for CloudTrail.

You can also aggregate AWS Batch log files from multiple AWS regions and multiple AWS accounts into a single Amazon S3 bucket.

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple Accounts.

Understanding AWS Batch Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files are not an ordered stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the `CreateComputeEnvironment` action.

```json
{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:admin",
 "arn": "arn:aws:sts::012345678910:assumed-role/Admin/admin",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2017-12-20T00:48:46Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/Admin",
 "accountId": "012345678910",
 "userName": "Admin"
 }
 },
 "eventTime": "2017-12-20T00:48:46Z",
 "eventSource": "batch.amazonaws.com",
 "eventName": "CreateComputeEnvironment",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.1",
 "userAgent": "aws-cli/1.11.167 Python/2.7.10 Darwin/16.7.0 botocore/1.7.25",
 "requestParameters": {
 "computeResources": {
 "subnets": [
 "subnet-5eda8e04"
],
 "tags": {
 "testBatchTags": "CLI testing CE"
 },
 "desiredvCpus": 0,
 "minvCpus": 0,
 "instanceTypes": [
 "optimal"
],
 "securityGroupIds": [
 "sg-aba9e8db"
],
 "instanceRole": "ecsInstanceRole",
 "maxvCpus": 128,
 "type": "EC2"
 },
 "state": "ENABLED",
 "type": "MANAGED",
 "serviceRole": "service-role/AWSBatchServiceRole",
 "computeEnvironmentName": "Test"
 },
 "responseElements": {
 "computeEnvironmentName": "Test",
 "computeEnvironmentArn": "arn:aws:batch:us-east-1:012345678910:compute-environment/Test"
 },
 "requestID": "890b8639-e51f-11e7-b038-EXAMPLE"
}
```
"eventID": "874f89fa-70fc-4798-bc00-EXAMPLE",
"readOnly": false,
"eventType": "AwsApiCall",
"recipientAccountId": "012345678910"
Tutorial: Creating a VPC with Public and Private Subnets for Your Compute Environments

Compute resources in your compute environments need external network access to communicate with the Amazon ECS service endpoint. However, you might have jobs that you would like to run in private subnets. Creating a VPC with both public and private subnets provides you the flexibility to run jobs in either a public or private subnet. Jobs in the private subnets can access the internet through a NAT gateway.

This tutorial guides you through creating a VPC with two public subnets and two private subnets, which are provided with internet access through a NAT gateway.

Topics
- Step 1: Create an Elastic IP Address for Your NAT Gateway (p. 68)
- Step 2: Run the VPC Wizard (p. 68)
- Step 3: Create Additional Subnets (p. 69)
- Next Steps (p. 69)

Step 1: Create an Elastic IP Address for Your NAT Gateway

A NAT gateway requires an Elastic IP address in your public subnet, but the VPC wizard does not create one for you. Create the Elastic IP address before running the VPC wizard.

To create an Elastic IP address
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the left navigation pane, choose Elastic IPs.
3. Choose Allocate new address, Allocate, Close.
4. Note the Allocation ID for your newly created Elastic IP address; you enter this later in the VPC wizard.

Step 2: Run the VPC Wizard

The VPC wizard automatically creates and configures most of your VPC resources for you.

To run the VPC wizard
1. In the left navigation pane, choose VPC Dashboard.
2. Choose Start VPC Wizard, VPC with Public and Private Subnets, Select.
3. For VPC name, give your VPC a unique name.
4. For Elastic IP Allocation ID, choose the ID of the Elastic IP address that you created earlier.
5. Choose Create VPC.
6. When the wizard is finished, choose OK. Note the Availability Zone in which your VPC subnets were created. Your additional subnets should be created in a different Availability Zone.

**Step 3: Create Additional Subnets**

The wizard creates a VPC with a single public and a single private subnet in a single Availability Zone. For greater availability, you should create at least one more of each subnet type in a different Availability Zone so that your VPC has both public and private subnets across two Availability Zones.

**To create an additional private subnet**

1. In the left navigation pane, choose Subnets.
2. Choose Create Subnet.
3. For Name tag, enter a name for your subnet, such as Private subnet.
4. For VPC, choose the VPC that you created earlier.
5. For Availability Zone, choose a different Availability Zone than your original subnets in the VPC.
6. For IPv4 CIDR block, enter a valid CIDR block. For example, the wizard creates CIDR blocks in 10.0.0.0/24 and 10.0.1.0/24 by default. You could use **10.0.3.0/24** for your second private subnet.
7. Choose Yes, Create.

**To create an additional public subnet**

1. In the left navigation pane, choose Subnets and then Create Subnet.
2. For Name tag, enter a name for your subnet, such as Public subnet.
3. For VPC, choose the VPC that you created earlier.
4. For Availability Zone, choose the same Availability Zone as the additional private subnet that you created in the previous procedure.
5. For IPv4 CIDR block, enter a valid CIDR block. For example, the wizard creates CIDR blocks in 10.0.0.0/24 and 10.0.1.0/24 by default. You could use **10.0.2.0/24** for your second public subnet.
6. Choose Yes, Create.
7. Select the public subnet that you just created and choose Route Table, Edit.
8. By default, the private route table is selected. Choose the other available route table so that the 0.0.0.0/0 destination is routed to the internet gateway (igw-xxxxxxxxx) and choose Save.
10. Select Enable auto-assign public IPv4 address and choose Save, Close.

**Next Steps**

After you have created your VPC, you should consider the following next steps:

- Create security groups for your public and private resources if they require inbound network access. For more information, see Working with Security Groups in the Amazon VPC User Guide.
- Create an AWS Batch managed compute environment that launches compute resources into your new VPC. For more information, see Creating a Compute Environment (p. 43). If you use the compute environment creation wizard in the AWS Batch console, you can specify the VPC that you just created and the public or private subnets into which to launch your instances, depending on your use case.
• Create an AWS Batch job queue that is mapped to your new compute environment. For more information, see Creating a Job Queue (p. 34).

• Create a job definition to run your jobs with. For more information, see Creating a Job Definition (p. 22).

• Submit a job with your job definition to your new job queue. This job will land in the compute environment you created with your new VPC and subnets. For more information, see Submitting a Job (p. 13).
AWS Batch Service Limits

The following table provides the default limits for AWS Batch for an AWS account; default limits can be changed on request. For more information, see AWS Service Limits in the Amazon Web Services General Reference.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of compute environments</td>
<td>18</td>
</tr>
<tr>
<td>Maximum number of job queues</td>
<td>20</td>
</tr>
<tr>
<td>Maximum number of compute environments per job queue</td>
<td>3</td>
</tr>
</tbody>
</table>

The following table provides limits for AWS Batch that cannot be changed.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of job dependencies</td>
<td>20</td>
</tr>
<tr>
<td>Maximum job definition size (for RegisterJobDefinition API operations)</td>
<td>20 KiB</td>
</tr>
<tr>
<td>Maximum job payload size (for SubmitJob API operations)</td>
<td>50 KiB</td>
</tr>
<tr>
<td>Maximum array size for array jobs</td>
<td>10,000</td>
</tr>
<tr>
<td>Maximum number of jobs in SUBMITTED state</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>
Troubleshooting AWS Batch

You may find the need to troubleshoot issues with your compute environments, job queues, job definitions, or jobs. This chapter helps you troubleshoot and repair issues with your AWS Batch environment.

Invalid Compute Environment

It is possible to incorrectly configure a managed compute environment so that it enters an INVALID state and cannot accept jobs for placement. These sections describe the possible causes and how to fix them.

Incorrect Role Name or ARN

The most common cause for invalid compute environments is an incorrect name or ARN for the AWS Batch service role or the Amazon EC2 Spot Fleet role. This is more of an issue for compute environments that are created with the AWS CLI or the AWS SDKs; when you create a compute environment in the AWS Management Console, AWS Batch can help you choose the correct service or Spot Fleet roles and you cannot misspell the name or deform the ARN.

Important
Do not attempt to delete a compute environment that is in an INVALID state due to a misconfigured AWS Batch service role. This could cause your environment to get stuck in a DELETING state for up to an hour, and you cannot update the compute environment until the operation times out and fails back to INVALID. Instead, see Repairing an INVALID Compute Environment (p. 73).

However, if you manually type the name or ARN for an IAM in an AWS CLI command or your SDK code, AWS Batch is unable to validate the string and it accepts the bad value and attempts to create the environment. After failing to create the environment, the environment moves to an INVALID state, and you see the following errors.

For an invalid service role:

```
CLIENT_ERROR - Not authorized to perform sts:AssumeRole (Service: AWSSecurityTokenService; Status Code: 403; Error Code: AccessDenied; Request ID: dc0e2d28-2e99-11e7-b372-7fccc666e5fe7)
```

For an invalid Spot Fleet role:

```
CLIENT_ERROR - Parameter: SpotFleetRequestConfig.IamFleetRole is invalid. (Service: AmazonEC2; Status Code: 400; Error Code: InvalidSpotFleetRequestConfig; Request ID: 331205f0-5ae3-4cea-bac4-897769639f8d) Parameter: SpotFleetRequestConfig.IamFleetRole is invalid
```

One common cause for this issue is if you only specify the name of an IAM role when using the AWS CLI or the AWS SDKs, instead of the full ARN. This is because depending on how you created the role, the ARN may contain a service-role path prefix. For example, if you manually create the AWS Batch service role using the procedures in AWS Batch Service IAM Role (p. 54), your service role ARN would look like this:
However, if you created the service role as part of the console first run wizard today, your service role ARN would look like this:

```
arn:aws:iam::123456789012:role/service-role/AWSBatchServiceRole
```

When you only specify the name of an IAM role when using the AWS CLI or the AWS SDKs, AWS Batch assumes that your ARN does not use the `service-role` path prefix. Because of this, we recommend that you specify the full ARN for your IAM roles when you create compute environments.

To repair a compute environment that is misconfigured this way, see Repairing an INVALID Compute Environment (p. 73).

### Repairing an INVALID Compute Environment

When you have a compute environment in an INVALID state, you should update it to repair the invalid parameter. For the case of an Incorrect Role Name or ARN (p. 72), you can update the compute environment with the correct service role.

**Important**

Do not attempt to delete a compute environment that is in an INVALID state due to a misconfigured AWS Batch service role. This could cause your environment to get stuck in a DELETING state for up to an hour, and you cannot update the compute environment until the operation times out and fails back to INVALID.

**To repair a misconfigured compute environment**

2. From the navigation bar, select the region to use.
3. In the navigation pane, choose Compute environments.
4. On the Compute environments page, select the radio button next to the compute environment to edit, and then choose Edit.
5. On the Update compute environment page, for Service role, choose the IAM role to use with your compute environment. The AWS Batch console only displays roles that have the correct trust relationship for compute environments.
6. Choose Save to update your compute environment.

### Jobs Stuck in RUNNABLE Status

If your compute environment contains compute resources, but your jobs do not progress beyond the RUNNABLE status, then there is something preventing the jobs from actually being placed on a compute resource. Here are some common causes for this issue:

The awslogs log driver is not configured on your compute resources

AWS Batch jobs send their log information to CloudWatch Logs. To enable this, you must configure your compute resources to use the awslogs log driver. If you base your compute resource AMI off of the Amazon ECS-optimized AMI (or Amazon Linux), then this driver is registered by default with the ecs-init package. If you use a different base AMI, then you must ensure that the awslogs log driver is specified as an available log driver with the `ECS_AVAILABLE_LOGGING_DRIVERS` environment variable when the Amazon ECS container agent is started. For more information, see Compute Resource AMI Specification (p. 39) and Creating a Compute Resource AMI (p. 40).
Insufficient resources

If your job definitions specify more CPU or memory resources than your compute resources can allocate, then your jobs will never be placed. For example, if your job specifies 4 GiB of memory, and your compute resources have less than that, then the job cannot be placed on those compute resources. In this case, you must reduce the specified memory in your job definition or add larger compute resources to your environment.

Spot Instances Not Tagged on Creation

Spot Instance tagging for AWS Batch compute resources is supported as of October 25, 2017. Prior to that support, the recommended IAM managed policy (AmazonEC2SpotFleetRole) for the Amazon EC2 Spot Fleet role did not contain permissions to tag Spot Instances at launch. The new recommended IAM managed policy is called AmazonEC2SpotFleetTaggingRole.

To fix Spot Instance tagging on creation, follow the procedure below to apply the current recommended IAM managed policy to your Amazon EC2 Spot Fleet role, and then any future Spot Instances that are created with that role have permissions to apply instance tags on creation.

To apply the current IAM managed policy to your Amazon EC2 Spot Fleet role

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Roles, and choose your Amazon EC2 Spot Fleet role.
3. Choose Attach policy.
4. Select the AmazonEC2SpotFleetTaggingRole and choose Attach policy.
5. Choose your Amazon EC2 Spot Fleet role again to remove the previous policy.
6. Select the x to the right of the AmazonEC2SpotFleetRole policy, and choose Detach.
Document History

The following table describes the important changes to the documentation since the last release of AWS Batch. We also update the documentation frequently to address the feedback that you send us.

- **Current API version:** 2016-08-10
- **Latest documentation update:** January 10, 2018

<table>
<thead>
<tr>
<th>Feature</th>
<th>API Version</th>
<th>Description</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CloudTrail Auditing for AWS Batch</td>
<td>2016-08-10</td>
<td>CloudTrail can audit calls made to AWS Batch APIs For more information, see Logging AWS Batch API Calls with AWS CloudTrail (p. 65).</td>
<td>January 10, 2018</td>
</tr>
<tr>
<td>Array Jobs</td>
<td>2016-08-10</td>
<td>AWS Batch supports array jobs, which are useful for parameter sweep and Monte Carlo workloads. For more information, see Array Jobs (p. 17).</td>
<td>November 28, 2017</td>
</tr>
<tr>
<td>Expanded AWS Batch Tagging</td>
<td>2016-08-10</td>
<td>AWS Batch enables you to specify tags for the EC2 Spot instances launched within managed compute environments. For more information, see Creating a Compute Environment (p. 43).</td>
<td>October 26, 2017</td>
</tr>
<tr>
<td>AWS Batch Event Stream for CloudWatch Events</td>
<td>2016-08-10</td>
<td>Use the AWS Batch event stream for CloudWatch Events to receive near real-time notifications regarding the current state of jobs that have been submitted to your job queues. For more information, see AWS Batch Event Stream for CloudWatch Events (p. 60).</td>
<td>October 24, 2017</td>
</tr>
<tr>
<td>Automated Job Retries</td>
<td>2016-08-10</td>
<td>You can apply a retry strategy to your jobs and job definitions that allows your jobs to be automatically retried if they fail. For more information, see Automated Job Retries (p. 16).</td>
<td>March 28, 2017</td>
</tr>
<tr>
<td>AWS Batch General Availability</td>
<td>2016-08-10</td>
<td>AWS Batch enables you to run batch computing workloads on the AWS Cloud.</td>
<td>January 5, 2017</td>
</tr>
</tbody>
</table>
AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.