Strands Agents SDK
Use the Strands Agents
Install dependencies
pip install bedrock-agentcore pip install strands-agents
Add short-term memory
from datetime import datetime from strands import Agent from bedrock_agentcore.memory import MemoryClient from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager client = MemoryClient(region_name="us-east-1") basic_memory = client.create_memory( name="BasicTestMemory", description="Basic memory for testing short-term functionality" ) MEM_ID = basic_memory.get('id') ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") # Configure memory agentcore_memory_config = AgentCoreMemoryConfig( memory_id=MEM_ID, session_id=SESSION_ID, actor_id=ACTOR_ID ) # Create session manager session_manager = AgentCoreMemorySessionManager( agentcore_memory_config=agentcore_memory_config, region_name="us-east-1" ) # Create agent agent = Agent( system_prompt="You are a helpful assistant. Use all you know about the user to provide helpful responses.", session_manager=session_manager, ) agent("I like sushi with tuna") # Agent remembers this preference agent("I like pizza") # Agent acknowledges both preferences agent("What should I buy for lunch today?") # Agent suggests options based on remembered preferences
Add long-term memory with strategies
from bedrock_agentcore.memory import MemoryClient from strands import Agent from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager from datetime import datetime # Create comprehensive memory with all built-in strategies client = MemoryClient(region_name="us-east-1") comprehensive_memory = client.create_memory_and_wait( name="ComprehensiveAgentMemory", description="Full-featured memory with all built-in strategies", strategies=[ { "summaryMemoryStrategy": { "name": "SessionSummarizer", "namespaces": ["/summaries/{actorId}/{sessionId}"] } }, { "userPreferenceMemoryStrategy": { "name": "PreferenceLearner", "namespaces": ["/preferences/{actorId}"] } }, { "semanticMemoryStrategy": { "name": "FactExtractor", "namespaces": ["/facts/{actorId}"] } } ] ) MEM_ID = comprehensive_memory.get('id') ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") # Configure memory agentcore_memory_config = AgentCoreMemoryConfig( memory_id=MEM_ID, session_id=SESSION_ID, actor_id=ACTOR_ID ) # Create session manager session_manager = AgentCoreMemorySessionManager( agentcore_memory_config=agentcore_memory_config, region_name="us-east-1" ) # Create agent agent = Agent( system_prompt="You are a helpful assistant. Use all you know about the user to provide helpful responses.", session_manager=session_manager, ) agent("I like sushi with tuna") # Agent remembers this preference agent("I like pizza") # Agent acknowledges both preferences agent("What should I buy for lunch today?") # Agent suggests options based on remembered preferences
More examples are available on GitHub: https://github.com/aws/bedrock-agentcore-sdk-python/tree/main/src/bedrock_agentcore/memory/integrations/strands