Strands Agents SDK - Amazon Bedrock AgentCore

Strands Agents SDK

Use the Strands Agents SDK for seamless integration with agent frameworks, providing automatic memory management and retrieval within conversational agents.

Install dependencies

pip install bedrock-agentcore pip install strands-agents

Add short-term memory

from datetime import datetime from strands import Agent from bedrock_agentcore.memory import MemoryClient from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager client = MemoryClient(region_name="us-east-1") basic_memory = client.create_memory( name="BasicTestMemory", description="Basic memory for testing short-term functionality" ) MEM_ID = basic_memory.get('id') ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") # Configure memory agentcore_memory_config = AgentCoreMemoryConfig( memory_id=MEM_ID, session_id=SESSION_ID, actor_id=ACTOR_ID ) # Create session manager session_manager = AgentCoreMemorySessionManager( agentcore_memory_config=agentcore_memory_config, region_name="us-east-1" ) # Create agent agent = Agent( system_prompt="You are a helpful assistant. Use all you know about the user to provide helpful responses.", session_manager=session_manager, ) agent("I like sushi with tuna") # Agent remembers this preference agent("I like pizza") # Agent acknowledges both preferences agent("What should I buy for lunch today?") # Agent suggests options based on remembered preferences

Add long-term memory with strategies

from bedrock_agentcore.memory import MemoryClient from strands import Agent from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager from datetime import datetime # Create comprehensive memory with all built-in strategies client = MemoryClient(region_name="us-east-1") comprehensive_memory = client.create_memory_and_wait( name="ComprehensiveAgentMemory", description="Full-featured memory with all built-in strategies", strategies=[ { "summaryMemoryStrategy": { "name": "SessionSummarizer", "namespaces": ["/summaries/{actorId}/{sessionId}"] } }, { "userPreferenceMemoryStrategy": { "name": "PreferenceLearner", "namespaces": ["/preferences/{actorId}"] } }, { "semanticMemoryStrategy": { "name": "FactExtractor", "namespaces": ["/facts/{actorId}"] } } ] ) MEM_ID = comprehensive_memory.get('id') ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") # Configure memory agentcore_memory_config = AgentCoreMemoryConfig( memory_id=MEM_ID, session_id=SESSION_ID, actor_id=ACTOR_ID ) # Create session manager session_manager = AgentCoreMemorySessionManager( agentcore_memory_config=agentcore_memory_config, region_name="us-east-1" ) # Create agent agent = Agent( system_prompt="You are a helpful assistant. Use all you know about the user to provide helpful responses.", session_manager=session_manager, ) agent("I like sushi with tuna") # Agent remembers this preference agent("I like pizza") # Agent acknowledges both preferences agent("What should I buy for lunch today?") # Agent suggests options based on remembered preferences

More examples are available on GitHub: https://github.com/aws/bedrock-agentcore-sdk-python/tree/main/src/bedrock_agentcore/memory/integrations/strands