AcceleratorType
- class aws_cdk.aws_ec2.AcceleratorType(*values)
Bases:
EnumHardware accelerator categories available for EC2 instances.
Defines the general type of hardware accelerator that can be attached to an instance, typically used in instance requirement specifications (e.g., GPUs for compute-intensive tasks, FPGAs for custom logic, or inference chips for ML workloads).
- ExampleMetadata:
infused
Example:
# infrastructure_role: iam.Role # instance_profile: iam.InstanceProfile # vpc: ec2.Vpc mi_capacity_provider = ecs.ManagedInstancesCapacityProvider(self, "MICapacityProvider", infrastructure_role=infrastructure_role, ec2_instance_profile=instance_profile, subnets=vpc.private_subnets, instance_requirements=ec2.InstanceRequirementsConfig( # Required: CPU and memory constraints v_cpu_count_min=2, v_cpu_count_max=8, memory_min=Size.gibibytes(4), memory_max=Size.gibibytes(32), # CPU preferences cpu_manufacturers=[ec2.CpuManufacturer.INTEL, ec2.CpuManufacturer.AMD], instance_generations=[ec2.InstanceGeneration.CURRENT], # Instance type filtering allowed_instance_types=["m5.*", "c5.*"], # Performance characteristics burstable_performance=ec2.BurstablePerformance.EXCLUDED, bare_metal=ec2.BareMetal.EXCLUDED, # Accelerator requirements (for ML/AI workloads) accelerator_types=[ec2.AcceleratorType.GPU], accelerator_manufacturers=[ec2.AcceleratorManufacturer.NVIDIA], accelerator_names=[ec2.AcceleratorName.T4, ec2.AcceleratorName.V100], accelerator_count_min=1, # Storage requirements local_storage=ec2.LocalStorage.REQUIRED, local_storage_types=[ec2.LocalStorageType.SSD], total_local_storage_gBMin=100, # Network requirements network_interface_count_min=2, network_bandwidth_gbps_min=10, # Cost optimization on_demand_max_price_percentage_over_lowest_price=10 ) )
Attributes
- FPGA
Field Programmable Gate Array accelerators, such as Xilinx FPGAs.
Used for hardware-level customization and specialized workloads.
- GPU
Graphics Processing Unit accelerators, such as NVIDIA GPUs.
Commonly used for machine learning training, graphics rendering, or high-performance parallel computing.
- INFERENCE
Inference accelerators, such as AWS Inferentia.
Purpose-built for efficient machine learning inference.