CfnKnowledgeBasePropsMixin
- class aws_cdk.mixins_preview.aws_bedrock.mixins.CfnKnowledgeBasePropsMixin(props, *, strategy=None)
Bases:
MixinSpecifies a knowledge base as a resource in a top-level template. Minimally, you must specify the following properties:.
Name – Specify a name for the knowledge base.
RoleArn – Specify the Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base. For more information, see Create a service role for Knowledge base for Amazon Bedrock .
KnowledgeBaseConfiguration – Specify the embeddings configuration of the knowledge base. The following sub-properties are required:
Type – Specify the value
VECTOR.StorageConfiguration – Specify information about the vector store in which the data source is stored. The following sub-properties are required:
Type – Specify the vector store service that you are using.
Redis Enterprise Cloud vector stores are currently unsupported in CloudFormation .
For more information about using knowledge bases in Amazon Bedrock , see Knowledge base for Amazon Bedrock .
See the Properties section below for descriptions of both the required and optional properties.
- See:
- CloudformationResource:
AWS::Bedrock::KnowledgeBase
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins cfn_knowledge_base_props_mixin = bedrock_mixins.CfnKnowledgeBasePropsMixin(bedrock_mixins.CfnKnowledgeBaseMixinProps( description="description", knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.KnowledgeBaseConfigurationProperty( kendra_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.KendraKnowledgeBaseConfigurationProperty( kendra_index_arn="kendraIndexArn" ), sql_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.SqlKnowledgeBaseConfigurationProperty( redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftConfigurationProperty( query_engine_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty( provisioned_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" ), serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" ), type="type" ), query_generation_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty( execution_timeout_seconds=123, generation_context=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty( curated_queries=[bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )], tables=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )] ) ), storage_configurations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty( aws_data_catalog_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] ), redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" ), type="type" )] ), type="type" ), type="type", vector_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.VectorKnowledgeBaseConfigurationProperty( embedding_model_arn="embeddingModelArn", embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.EmbeddingModelConfigurationProperty( bedrock_embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty( dimensions=123, embedding_data_type="embeddingDataType" ) ), supplemental_data_storage_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageConfigurationProperty( supplemental_data_storage_locations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty( s3_location=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" ), supplemental_data_storage_location_type="supplementalDataStorageLocationType" )] ) ) ), name="name", role_arn="roleArn", storage_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.StorageConfigurationProperty( mongo_db_atlas_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasConfigurationProperty( collection_name="collectionName", credentials_secret_arn="credentialsSecretArn", database_name="databaseName", endpoint="endpoint", endpoint_service_name="endpointServiceName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), text_index_name="textIndexName", vector_index_name="vectorIndexName" ), neptune_analytics_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsConfigurationProperty( field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), graph_arn="graphArn" ), opensearch_managed_cluster_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterConfigurationProperty( domain_arn="domainArn", domain_endpoint="domainEndpoint", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" ), opensearch_serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessConfigurationProperty( collection_arn="collectionArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" ), pinecone_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeConfigurationProperty( connection_string="connectionString", credentials_secret_arn="credentialsSecretArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), namespace="namespace" ), rds_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsConfigurationProperty( credentials_secret_arn="credentialsSecretArn", database_name="databaseName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsFieldMappingProperty( custom_metadata_field="customMetadataField", metadata_field="metadataField", primary_key_field="primaryKeyField", text_field="textField", vector_field="vectorField" ), resource_arn="resourceArn", table_name="tableName" ), s3_vectors_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3VectorsConfigurationProperty( index_arn="indexArn", index_name="indexName", vector_bucket_arn="vectorBucketArn" ), type="type" ), tags={ "tags_key": "tags" } ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::Bedrock::KnowledgeBase.- Parameters:
props (
Union[CfnKnowledgeBaseMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['description', 'knowledgeBaseConfiguration', 'name', 'roleArn', 'storageConfiguration', 'tags']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
BedrockEmbeddingModelConfigurationProperty
- class CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty(*, dimensions=None, embedding_data_type=None)
Bases:
objectThe vector configuration details for the Bedrock embeddings model.
- Parameters:
dimensions (
Union[int,float,None]) – The dimensions details for the vector configuration used on the Bedrock embeddings model.embedding_data_type (
Optional[str]) – The data type for the vectors when using a model to convert text into vector embeddings. The model must support the specified data type for vector embeddings. Floating-point (float32) is the default data type, and is supported by most models for vector embeddings. See Supported embeddings models for information on the available models and their vector data types.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins bedrock_embedding_model_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty( dimensions=123, embedding_data_type="embeddingDataType" )
Attributes
- dimensions
The dimensions details for the vector configuration used on the Bedrock embeddings model.
- embedding_data_type
The data type for the vectors when using a model to convert text into vector embeddings.
The model must support the specified data type for vector embeddings. Floating-point (float32) is the default data type, and is supported by most models for vector embeddings. See Supported embeddings models for information on the available models and their vector data types.
CuratedQueryProperty
- class CfnKnowledgeBasePropsMixin.CuratedQueryProperty(*, natural_language=None, sql=None)
Bases:
objectContains configurations for a query, each of which defines information about example queries to help the query engine generate appropriate SQL queries.
- Parameters:
natural_language (
Optional[str]) – An example natural language query.sql (
Optional[str]) – The SQL equivalent of the natural language query.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins curated_query_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )
Attributes
- natural_language
An example natural language query.
- sql
The SQL equivalent of the natural language query.
EmbeddingModelConfigurationProperty
- class CfnKnowledgeBasePropsMixin.EmbeddingModelConfigurationProperty(*, bedrock_embedding_model_configuration=None)
Bases:
objectThe configuration details for the embeddings model.
- Parameters:
bedrock_embedding_model_configuration (
Union[IResolvable,BedrockEmbeddingModelConfigurationProperty,Dict[str,Any],None]) – The vector configuration details on the Bedrock embeddings model.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins embedding_model_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.EmbeddingModelConfigurationProperty( bedrock_embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty( dimensions=123, embedding_data_type="embeddingDataType" ) )
Attributes
- bedrock_embedding_model_configuration
The vector configuration details on the Bedrock embeddings model.
KendraKnowledgeBaseConfigurationProperty
- class CfnKnowledgeBasePropsMixin.KendraKnowledgeBaseConfigurationProperty(*, kendra_index_arn=None)
Bases:
objectSettings for an Amazon Kendra knowledge base.
- Parameters:
kendra_index_arn (
Optional[str]) – The ARN of the Amazon Kendra index.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins kendra_knowledge_base_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.KendraKnowledgeBaseConfigurationProperty( kendra_index_arn="kendraIndexArn" )
Attributes
- kendra_index_arn
The ARN of the Amazon Kendra index.
KnowledgeBaseConfigurationProperty
- class CfnKnowledgeBasePropsMixin.KnowledgeBaseConfigurationProperty(*, kendra_knowledge_base_configuration=None, sql_knowledge_base_configuration=None, type=None, vector_knowledge_base_configuration=None)
Bases:
objectConfigurations to apply to a knowledge base attached to the agent during query.
For more information, see Knowledge base retrieval configurations .
- Parameters:
kendra_knowledge_base_configuration (
Union[IResolvable,KendraKnowledgeBaseConfigurationProperty,Dict[str,Any],None]) – Settings for an Amazon Kendra knowledge base.sql_knowledge_base_configuration (
Union[IResolvable,SqlKnowledgeBaseConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for a knowledge base connected to an SQL database.type (
Optional[str]) – The type of data that the data source is converted into for the knowledge base.vector_knowledge_base_configuration (
Union[IResolvable,VectorKnowledgeBaseConfigurationProperty,Dict[str,Any],None]) – Contains details about the model that’s used to convert the data source into vector embeddings.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins knowledge_base_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.KnowledgeBaseConfigurationProperty( kendra_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.KendraKnowledgeBaseConfigurationProperty( kendra_index_arn="kendraIndexArn" ), sql_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.SqlKnowledgeBaseConfigurationProperty( redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftConfigurationProperty( query_engine_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty( provisioned_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" ), serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" ), type="type" ), query_generation_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty( execution_timeout_seconds=123, generation_context=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty( curated_queries=[bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )], tables=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )] ) ), storage_configurations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty( aws_data_catalog_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] ), redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" ), type="type" )] ), type="type" ), type="type", vector_knowledge_base_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.VectorKnowledgeBaseConfigurationProperty( embedding_model_arn="embeddingModelArn", embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.EmbeddingModelConfigurationProperty( bedrock_embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty( dimensions=123, embedding_data_type="embeddingDataType" ) ), supplemental_data_storage_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageConfigurationProperty( supplemental_data_storage_locations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty( s3_location=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" ), supplemental_data_storage_location_type="supplementalDataStorageLocationType" )] ) ) )
Attributes
- kendra_knowledge_base_configuration
Settings for an Amazon Kendra knowledge base.
- sql_knowledge_base_configuration
Specifies configurations for a knowledge base connected to an SQL database.
- type
The type of data that the data source is converted into for the knowledge base.
- vector_knowledge_base_configuration
Contains details about the model that’s used to convert the data source into vector embeddings.
MongoDbAtlasConfigurationProperty
- class CfnKnowledgeBasePropsMixin.MongoDbAtlasConfigurationProperty(*, collection_name=None, credentials_secret_arn=None, database_name=None, endpoint=None, endpoint_service_name=None, field_mapping=None, text_index_name=None, vector_index_name=None)
Bases:
objectContains details about the storage configuration of the knowledge base in MongoDB Atlas.
- Parameters:
collection_name (
Optional[str]) – The collection name of the knowledge base in MongoDB Atlas.credentials_secret_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that contains user credentials for your MongoDB Atlas cluster.database_name (
Optional[str]) – The database name in your MongoDB Atlas cluster for your knowledge base.endpoint (
Optional[str]) – The endpoint URL of your MongoDB Atlas cluster for your knowledge base.endpoint_service_name (
Optional[str]) – The name of the VPC endpoint service in your account that is connected to your MongoDB Atlas cluster.field_mapping (
Union[IResolvable,MongoDbAtlasFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.text_index_name (
Optional[str]) – The name of the text search index in the MongoDB collection. This is required for using the hybrid search feature.vector_index_name (
Optional[str]) – The name of the MongoDB Atlas vector search index.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins mongo_db_atlas_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasConfigurationProperty( collection_name="collectionName", credentials_secret_arn="credentialsSecretArn", database_name="databaseName", endpoint="endpoint", endpoint_service_name="endpointServiceName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), text_index_name="textIndexName", vector_index_name="vectorIndexName" )
Attributes
- collection_name
The collection name of the knowledge base in MongoDB Atlas.
- credentials_secret_arn
The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that contains user credentials for your MongoDB Atlas cluster.
- database_name
The database name in your MongoDB Atlas cluster for your knowledge base.
- endpoint
The endpoint URL of your MongoDB Atlas cluster for your knowledge base.
- endpoint_service_name
The name of the VPC endpoint service in your account that is connected to your MongoDB Atlas cluster.
- field_mapping
Contains the names of the fields to which to map information about the vector store.
- text_index_name
The name of the text search index in the MongoDB collection.
This is required for using the hybrid search feature.
- vector_index_name
The name of the MongoDB Atlas vector search index.
MongoDbAtlasFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.MongoDbAtlasFieldMappingProperty(*, metadata_field=None, text_field=None, vector_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.vector_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins mongo_db_atlas_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" )
Attributes
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
- vector_field
The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
NeptuneAnalyticsConfigurationProperty
- class CfnKnowledgeBasePropsMixin.NeptuneAnalyticsConfigurationProperty(*, field_mapping=None, graph_arn=None)
Bases:
objectContains details about the storage configuration of the knowledge base in Amazon Neptune Analytics.
For more information, see Create a vector index in Amazon Neptune Analytics .
- Parameters:
field_mapping (
Union[IResolvable,NeptuneAnalyticsFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.graph_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the Neptune Analytics vector store.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins neptune_analytics_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsConfigurationProperty( field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), graph_arn="graphArn" )
Attributes
- field_mapping
Contains the names of the fields to which to map information about the vector store.
- graph_arn
The Amazon Resource Name (ARN) of the Neptune Analytics vector store.
NeptuneAnalyticsFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.NeptuneAnalyticsFieldMappingProperty(*, metadata_field=None, text_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins neptune_analytics_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsFieldMappingProperty( metadata_field="metadataField", text_field="textField" )
Attributes
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
OpenSearchManagedClusterConfigurationProperty
- class CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterConfigurationProperty(*, domain_arn=None, domain_endpoint=None, field_mapping=None, vector_index_name=None)
Bases:
objectContains details about the Managed Cluster configuration of the knowledge base in Amazon OpenSearch Service.
For more information, see Create a vector index in OpenSearch Managed Cluster .
- Parameters:
domain_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the OpenSearch domain.domain_endpoint (
Optional[str]) – The endpoint URL the OpenSearch domain.field_mapping (
Union[IResolvable,OpenSearchManagedClusterFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.vector_index_name (
Optional[str]) – The name of the vector store.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins open_search_managed_cluster_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterConfigurationProperty( domain_arn="domainArn", domain_endpoint="domainEndpoint", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" )
Attributes
- domain_arn
The Amazon Resource Name (ARN) of the OpenSearch domain.
- domain_endpoint
The endpoint URL the OpenSearch domain.
- field_mapping
Contains the names of the fields to which to map information about the vector store.
OpenSearchManagedClusterFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterFieldMappingProperty(*, metadata_field=None, text_field=None, vector_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.vector_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins open_search_managed_cluster_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" )
Attributes
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
- vector_field
The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
OpenSearchServerlessConfigurationProperty
- class CfnKnowledgeBasePropsMixin.OpenSearchServerlessConfigurationProperty(*, collection_arn=None, field_mapping=None, vector_index_name=None)
Bases:
objectContains details about the storage configuration of the knowledge base in Amazon OpenSearch Service.
For more information, see Create a vector index in Amazon OpenSearch Service .
- Parameters:
collection_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the OpenSearch Service vector store.field_mapping (
Union[IResolvable,OpenSearchServerlessFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.vector_index_name (
Optional[str]) – The name of the vector store.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins open_search_serverless_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessConfigurationProperty( collection_arn="collectionArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" )
Attributes
- collection_arn
The Amazon Resource Name (ARN) of the OpenSearch Service vector store.
- field_mapping
Contains the names of the fields to which to map information about the vector store.
OpenSearchServerlessFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.OpenSearchServerlessFieldMappingProperty(*, metadata_field=None, text_field=None, vector_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.vector_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins open_search_serverless_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" )
Attributes
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
- vector_field
The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
PineconeConfigurationProperty
- class CfnKnowledgeBasePropsMixin.PineconeConfigurationProperty(*, connection_string=None, credentials_secret_arn=None, field_mapping=None, namespace=None)
Bases:
objectContains details about the storage configuration of the knowledge base in Pinecone.
For more information, see Create a vector index in Pinecone .
- Parameters:
connection_string (
Optional[str]) – The endpoint URL for your index management page.credentials_secret_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.field_mapping (
Union[IResolvable,PineconeFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.namespace (
Optional[str]) – The namespace to be used to write new data to your database.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins pinecone_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeConfigurationProperty( connection_string="connectionString", credentials_secret_arn="credentialsSecretArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), namespace="namespace" )
Attributes
- connection_string
The endpoint URL for your index management page.
- credentials_secret_arn
The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that is linked to your Pinecone API key.
- field_mapping
Contains the names of the fields to which to map information about the vector store.
- namespace
The namespace to be used to write new data to your database.
PineconeFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.PineconeFieldMappingProperty(*, metadata_field=None, text_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins pinecone_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeFieldMappingProperty( metadata_field="metadataField", text_field="textField" )
Attributes
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
QueryGenerationColumnProperty
- class CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty(*, description=None, inclusion=None, name=None)
Bases:
objectContains information about a column in the current table for the query engine to consider.
- Parameters:
description (
Optional[str]) – A description of the column that helps the query engine understand the contents of the column.inclusion (
Optional[str]) – Specifies whether to include or exclude the column during query generation. If you specifyEXCLUDE, the column will be ignored. If you specifyINCLUDE, all other columns in the table will be ignored.name (
Optional[str]) – The name of the column for which the other fields in this object apply.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins query_generation_column_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )
Attributes
- description
A description of the column that helps the query engine understand the contents of the column.
- inclusion
Specifies whether to include or exclude the column during query generation.
If you specify
EXCLUDE, the column will be ignored. If you specifyINCLUDE, all other columns in the table will be ignored.
- name
The name of the column for which the other fields in this object apply.
QueryGenerationConfigurationProperty
- class CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty(*, execution_timeout_seconds=None, generation_context=None)
Bases:
objectContains configurations for query generation.
For more information, see Build a knowledge base by connecting to a structured data source in the Amazon Bedrock User Guide..
- Parameters:
execution_timeout_seconds (
Union[int,float,None]) – The time after which query generation will time out.generation_context (
Union[IResolvable,QueryGenerationContextProperty,Dict[str,Any],None]) – Specifies configurations for context to use during query generation.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins query_generation_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty( execution_timeout_seconds=123, generation_context=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty( curated_queries=[bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )], tables=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )] ) )
Attributes
- execution_timeout_seconds
The time after which query generation will time out.
- generation_context
Specifies configurations for context to use during query generation.
QueryGenerationContextProperty
- class CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty(*, curated_queries=None, tables=None)
Bases:
objectContains configurations for context to use during query generation.
Attributes
- curated_queries
An array of objects, each of which defines information about example queries to help the query engine generate appropriate SQL queries.
- tables
An array of objects, each of which defines information about a table in the database.
QueryGenerationTableProperty
- class CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty(*, columns=None, description=None, inclusion=None, name=None)
Bases:
objectContains information about a table for the query engine to consider.
- Parameters:
columns (
Union[IResolvable,Sequence[Union[IResolvable,QueryGenerationColumnProperty,Dict[str,Any]]],None]) – An array of objects, each of which defines information about a column in the table.description (
Optional[str]) – A description of the table that helps the query engine understand the contents of the table.inclusion (
Optional[str]) – Specifies whether to include or exclude the table during query generation. If you specifyEXCLUDE, the table will be ignored. If you specifyINCLUDE, all other tables will be ignored.name (
Optional[str]) – The name of the table for which the other fields in this object apply.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins query_generation_table_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )
Attributes
- columns
An array of objects, each of which defines information about a column in the table.
- description
A description of the table that helps the query engine understand the contents of the table.
- inclusion
Specifies whether to include or exclude the table during query generation.
If you specify
EXCLUDE, the table will be ignored. If you specifyINCLUDE, all other tables will be ignored.
- name
The name of the table for which the other fields in this object apply.
RdsConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RdsConfigurationProperty(*, credentials_secret_arn=None, database_name=None, field_mapping=None, resource_arn=None, table_name=None)
Bases:
objectContains details about the storage configuration of the knowledge base in Amazon RDS.
For more information, see Create a vector index in Amazon RDS .
- Parameters:
credentials_secret_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.database_name (
Optional[str]) – The name of your Amazon RDS database.field_mapping (
Union[IResolvable,RdsFieldMappingProperty,Dict[str,Any],None]) – Contains the names of the fields to which to map information about the vector store.resource_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the vector store.table_name (
Optional[str]) – The name of the table in the database.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins rds_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsConfigurationProperty( credentials_secret_arn="credentialsSecretArn", database_name="databaseName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsFieldMappingProperty( custom_metadata_field="customMetadataField", metadata_field="metadataField", primary_key_field="primaryKeyField", text_field="textField", vector_field="vectorField" ), resource_arn="resourceArn", table_name="tableName" )
Attributes
- credentials_secret_arn
The Amazon Resource Name (ARN) of the secret that you created in AWS Secrets Manager that is linked to your Amazon RDS database.
- database_name
The name of your Amazon RDS database.
- field_mapping
Contains the names of the fields to which to map information about the vector store.
- resource_arn
The Amazon Resource Name (ARN) of the vector store.
- table_name
The name of the table in the database.
RdsFieldMappingProperty
- class CfnKnowledgeBasePropsMixin.RdsFieldMappingProperty(*, custom_metadata_field=None, metadata_field=None, primary_key_field=None, text_field=None, vector_field=None)
Bases:
objectContains the names of the fields to which to map information about the vector store.
- Parameters:
custom_metadata_field (
Optional[str]) – Provide a name for the universal metadata field where Amazon Bedrock will store any custom metadata from your data source.metadata_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores metadata about the vector store.primary_key_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the ID for each entry.text_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.vector_field (
Optional[str]) – The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins rds_field_mapping_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsFieldMappingProperty( custom_metadata_field="customMetadataField", metadata_field="metadataField", primary_key_field="primaryKeyField", text_field="textField", vector_field="vectorField" )
Attributes
- custom_metadata_field
Provide a name for the universal metadata field where Amazon Bedrock will store any custom metadata from your data source.
- metadata_field
The name of the field in which Amazon Bedrock stores metadata about the vector store.
- primary_key_field
The name of the field in which Amazon Bedrock stores the ID for each entry.
- text_field
The name of the field in which Amazon Bedrock stores the raw text from your data.
The text is split according to the chunking strategy you choose.
- vector_field
The name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
RedshiftConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftConfigurationProperty(*, query_engine_configuration=None, query_generation_configuration=None, storage_configurations=None)
Bases:
objectContains configurations for an Amazon Redshift database.
For more information, see Build a knowledge base by connecting to a structured data source in the Amazon Bedrock User Guide.
- Parameters:
query_engine_configuration (
Union[IResolvable,RedshiftQueryEngineConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for an Amazon Redshift query engine.query_generation_configuration (
Union[IResolvable,QueryGenerationConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for generating queries.storage_configurations (
Union[IResolvable,Sequence[Union[IResolvable,RedshiftQueryEngineStorageConfigurationProperty,Dict[str,Any]]],None]) – Specifies configurations for Amazon Redshift database storage.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftConfigurationProperty( query_engine_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty( provisioned_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" ), serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" ), type="type" ), query_generation_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty( execution_timeout_seconds=123, generation_context=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty( curated_queries=[bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )], tables=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )] ) ), storage_configurations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty( aws_data_catalog_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] ), redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" ), type="type" )] )
Attributes
- query_engine_configuration
Specifies configurations for an Amazon Redshift query engine.
- query_generation_configuration
Specifies configurations for generating queries.
- storage_configurations
Specifies configurations for Amazon Redshift database storage.
RedshiftProvisionedAuthConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty(*, database_user=None, type=None, username_password_secret_arn=None)
Bases:
objectContains configurations for authentication to an Amazon Redshift provisioned data warehouse.
Specify the type of authentication to use in the
typefield and include the corresponding field. If you specify IAM authentication, you don’t need to include another field.- Parameters:
database_user (
Optional[str]) – The database username for authentication to an Amazon Redshift provisioned data warehouse.type (
Optional[str]) – The type of authentication to use.username_password_secret_arn (
Optional[str]) – The ARN of an Secrets Manager secret for authentication.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_provisioned_auth_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" )
Attributes
- database_user
The database username for authentication to an Amazon Redshift provisioned data warehouse.
- type
The type of authentication to use.
- username_password_secret_arn
The ARN of an Secrets Manager secret for authentication.
RedshiftProvisionedConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty(*, auth_configuration=None, cluster_identifier=None)
Bases:
objectContains configurations for a provisioned Amazon Redshift query engine.
- Parameters:
auth_configuration (
Union[IResolvable,RedshiftProvisionedAuthConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for authentication to Amazon Redshift.cluster_identifier (
Optional[str]) – The ID of the Amazon Redshift cluster.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_provisioned_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" )
Attributes
- auth_configuration
Specifies configurations for authentication to Amazon Redshift.
- cluster_identifier
The ID of the Amazon Redshift cluster.
RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty(*, table_names=None)
Bases:
objectContains configurations for storage in AWS Glue Data Catalog.
- Parameters:
table_names (
Optional[Sequence[str]]) – A list of names of the tables to use.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_query_engine_aws_data_catalog_storage_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] )
Attributes
- table_names
A list of names of the tables to use.
RedshiftQueryEngineConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty(*, provisioned_configuration=None, serverless_configuration=None, type=None)
Bases:
objectContains configurations for an Amazon Redshift query engine.
Specify the type of query engine in
typeand include the corresponding field. For more information, see Build a knowledge base by connecting to a structured data source in the Amazon Bedrock User Guide.- Parameters:
provisioned_configuration (
Union[IResolvable,RedshiftProvisionedConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for a provisioned Amazon Redshift query engine.serverless_configuration (
Union[IResolvable,RedshiftServerlessConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for a serverless Amazon Redshift query engine.type (
Optional[str]) – The type of query engine.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_query_engine_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty( provisioned_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" ), serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" ), type="type" )
Attributes
- provisioned_configuration
Specifies configurations for a provisioned Amazon Redshift query engine.
- serverless_configuration
Specifies configurations for a serverless Amazon Redshift query engine.
RedshiftQueryEngineRedshiftStorageConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty(*, database_name=None)
Bases:
objectContains configurations for storage in Amazon Redshift.
- Parameters:
database_name (
Optional[str]) – The name of the Amazon Redshift database.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_query_engine_redshift_storage_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" )
Attributes
- database_name
The name of the Amazon Redshift database.
RedshiftQueryEngineStorageConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty(*, aws_data_catalog_configuration=None, redshift_configuration=None, type=None)
Bases:
objectContains configurations for Amazon Redshift data storage.
Specify the data storage service to use in the
typefield and include the corresponding field. For more information, see Build a knowledge base by connecting to a structured data source in the Amazon Bedrock User Guide.- Parameters:
aws_data_catalog_configuration (
Union[IResolvable,RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for storage in AWS Glue Data Catalog.redshift_configuration (
Union[IResolvable,RedshiftQueryEngineRedshiftStorageConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for storage in Amazon Redshift.type (
Optional[str]) – The data storage service to use.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_query_engine_storage_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty( aws_data_catalog_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] ), redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" ), type="type" )
Attributes
- aws_data_catalog_configuration
Specifies configurations for storage in AWS Glue Data Catalog.
- redshift_configuration
Specifies configurations for storage in Amazon Redshift.
RedshiftServerlessAuthConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty(*, type=None, username_password_secret_arn=None)
Bases:
objectSpecifies configurations for authentication to a Redshift Serverless.
Specify the type of authentication to use in the
typefield and include the corresponding field. If you specify IAM authentication, you don’t need to include another field.- Parameters:
type (
Optional[str]) – The type of authentication to use.username_password_secret_arn (
Optional[str]) – The ARN of an Secrets Manager secret for authentication.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_serverless_auth_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" )
Attributes
- type
The type of authentication to use.
- username_password_secret_arn
The ARN of an Secrets Manager secret for authentication.
RedshiftServerlessConfigurationProperty
- class CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty(*, auth_configuration=None, workgroup_arn=None)
Bases:
objectContains configurations for authentication to Amazon Redshift Serverless.
- Parameters:
auth_configuration (
Union[IResolvable,RedshiftServerlessAuthConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for authentication to an Amazon Redshift provisioned data warehouse.workgroup_arn (
Optional[str]) – The ARN of the Amazon Redshift workgroup.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins redshift_serverless_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" )
Attributes
- auth_configuration
Specifies configurations for authentication to an Amazon Redshift provisioned data warehouse.
- workgroup_arn
The ARN of the Amazon Redshift workgroup.
S3LocationProperty
- class CfnKnowledgeBasePropsMixin.S3LocationProperty(*, uri=None)
Bases:
objectA storage location in an Amazon S3 bucket.
- Parameters:
uri (
Optional[str]) – An object URI starting withs3://.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins s3_location_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" )
Attributes
- uri
An object URI starting with
s3://.
S3VectorsConfigurationProperty
- class CfnKnowledgeBasePropsMixin.S3VectorsConfigurationProperty(*, index_arn=None, index_name=None, vector_bucket_arn=None)
Bases:
objectContains the storage configuration of the knowledge base for S3 vectors.
- Parameters:
index_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the vector index used for the knowledge base. This ARN identifies the specific vector index resource within Amazon Bedrock.index_name (
Optional[str]) – The name of the vector index used for the knowledge base. This name identifies the vector index within the Amazon Bedrock service.vector_bucket_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the S3 bucket where vector embeddings are stored. This bucket contains the vector data used by the knowledge base.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins s3_vectors_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.S3VectorsConfigurationProperty( index_arn="indexArn", index_name="indexName", vector_bucket_arn="vectorBucketArn" )
Attributes
- index_arn
The Amazon Resource Name (ARN) of the vector index used for the knowledge base.
This ARN identifies the specific vector index resource within Amazon Bedrock.
- index_name
The name of the vector index used for the knowledge base.
This name identifies the vector index within the Amazon Bedrock service.
- vector_bucket_arn
The Amazon Resource Name (ARN) of the S3 bucket where vector embeddings are stored.
This bucket contains the vector data used by the knowledge base.
SqlKnowledgeBaseConfigurationProperty
- class CfnKnowledgeBasePropsMixin.SqlKnowledgeBaseConfigurationProperty(*, redshift_configuration=None, type=None)
Bases:
objectContains configurations for a knowledge base connected to an SQL database.
Specify the SQL database type in the
typefield and include the corresponding field. For more information, see Build a knowledge base by connecting to a structured data source in the Amazon Bedrock User Guide.- Parameters:
redshift_configuration (
Union[IResolvable,RedshiftConfigurationProperty,Dict[str,Any],None]) – Specifies configurations for a knowledge base connected to an Amazon Redshift database.type (
Optional[str]) – The type of SQL database to connect to the knowledge base.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins sql_knowledge_base_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.SqlKnowledgeBaseConfigurationProperty( redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftConfigurationProperty( query_engine_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineConfigurationProperty( provisioned_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftProvisionedAuthConfigurationProperty( database_user="databaseUser", type="type", username_password_secret_arn="usernamePasswordSecretArn" ), cluster_identifier="clusterIdentifier" ), serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessConfigurationProperty( auth_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftServerlessAuthConfigurationProperty( type="type", username_password_secret_arn="usernamePasswordSecretArn" ), workgroup_arn="workgroupArn" ), type="type" ), query_generation_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationConfigurationProperty( execution_timeout_seconds=123, generation_context=bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationContextProperty( curated_queries=[bedrock_mixins.CfnKnowledgeBasePropsMixin.CuratedQueryProperty( natural_language="naturalLanguage", sql="sql" )], tables=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationTableProperty( columns=[bedrock_mixins.CfnKnowledgeBasePropsMixin.QueryGenerationColumnProperty( description="description", inclusion="inclusion", name="name" )], description="description", inclusion="inclusion", name="name" )] ) ), storage_configurations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineStorageConfigurationProperty( aws_data_catalog_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineAwsDataCatalogStorageConfigurationProperty( table_names=["tableNames"] ), redshift_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RedshiftQueryEngineRedshiftStorageConfigurationProperty( database_name="databaseName" ), type="type" )] ), type="type" )
Attributes
- redshift_configuration
Specifies configurations for a knowledge base connected to an Amazon Redshift database.
- type
The type of SQL database to connect to the knowledge base.
StorageConfigurationProperty
- class CfnKnowledgeBasePropsMixin.StorageConfigurationProperty(*, mongo_db_atlas_configuration=None, neptune_analytics_configuration=None, opensearch_managed_cluster_configuration=None, opensearch_serverless_configuration=None, pinecone_configuration=None, rds_configuration=None, s3_vectors_configuration=None, type=None)
Bases:
objectContains the storage configuration of the knowledge base.
- Parameters:
mongo_db_atlas_configuration (
Union[IResolvable,MongoDbAtlasConfigurationProperty,Dict[str,Any],None]) – Contains the storage configuration of the knowledge base in MongoDB Atlas.neptune_analytics_configuration (
Union[IResolvable,NeptuneAnalyticsConfigurationProperty,Dict[str,Any],None]) – Contains details about the Neptune Analytics configuration of the knowledge base in Amazon Neptune. For more information, see Create a vector index in Amazon Neptune Analytics. .opensearch_managed_cluster_configuration (
Union[IResolvable,OpenSearchManagedClusterConfigurationProperty,Dict[str,Any],None]) –Contains details about the storage configuration of the knowledge base in OpenSearch Managed Cluster. For more information, see Create a vector index in Amazon OpenSearch Service .
opensearch_serverless_configuration (
Union[IResolvable,OpenSearchServerlessConfigurationProperty,Dict[str,Any],None]) – Contains the storage configuration of the knowledge base in Amazon OpenSearch Service.pinecone_configuration (
Union[IResolvable,PineconeConfigurationProperty,Dict[str,Any],None]) – Contains the storage configuration of the knowledge base in Pinecone.rds_configuration (
Union[IResolvable,RdsConfigurationProperty,Dict[str,Any],None]) –Contains details about the storage configuration of the knowledge base in Amazon RDS. For more information, see Create a vector index in Amazon RDS .
s3_vectors_configuration (
Union[IResolvable,S3VectorsConfigurationProperty,Dict[str,Any],None]) – The configuration settings for storing knowledge base data using S3 vectors. This includes vector index information and S3 bucket details for vector storage.type (
Optional[str]) – The vector store service in which the knowledge base is stored.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins storage_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.StorageConfigurationProperty( mongo_db_atlas_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasConfigurationProperty( collection_name="collectionName", credentials_secret_arn="credentialsSecretArn", database_name="databaseName", endpoint="endpoint", endpoint_service_name="endpointServiceName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.MongoDbAtlasFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), text_index_name="textIndexName", vector_index_name="vectorIndexName" ), neptune_analytics_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsConfigurationProperty( field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.NeptuneAnalyticsFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), graph_arn="graphArn" ), opensearch_managed_cluster_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterConfigurationProperty( domain_arn="domainArn", domain_endpoint="domainEndpoint", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchManagedClusterFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" ), opensearch_serverless_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessConfigurationProperty( collection_arn="collectionArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.OpenSearchServerlessFieldMappingProperty( metadata_field="metadataField", text_field="textField", vector_field="vectorField" ), vector_index_name="vectorIndexName" ), pinecone_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeConfigurationProperty( connection_string="connectionString", credentials_secret_arn="credentialsSecretArn", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.PineconeFieldMappingProperty( metadata_field="metadataField", text_field="textField" ), namespace="namespace" ), rds_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsConfigurationProperty( credentials_secret_arn="credentialsSecretArn", database_name="databaseName", field_mapping=bedrock_mixins.CfnKnowledgeBasePropsMixin.RdsFieldMappingProperty( custom_metadata_field="customMetadataField", metadata_field="metadataField", primary_key_field="primaryKeyField", text_field="textField", vector_field="vectorField" ), resource_arn="resourceArn", table_name="tableName" ), s3_vectors_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3VectorsConfigurationProperty( index_arn="indexArn", index_name="indexName", vector_bucket_arn="vectorBucketArn" ), type="type" )
Attributes
- mongo_db_atlas_configuration
Contains the storage configuration of the knowledge base in MongoDB Atlas.
- neptune_analytics_configuration
Contains details about the Neptune Analytics configuration of the knowledge base in Amazon Neptune.
For more information, see Create a vector index in Amazon Neptune Analytics. .
- opensearch_managed_cluster_configuration
Contains details about the storage configuration of the knowledge base in OpenSearch Managed Cluster.
For more information, see Create a vector index in Amazon OpenSearch Service .
- opensearch_serverless_configuration
Contains the storage configuration of the knowledge base in Amazon OpenSearch Service.
- pinecone_configuration
Contains the storage configuration of the knowledge base in Pinecone.
- rds_configuration
Contains details about the storage configuration of the knowledge base in Amazon RDS.
For more information, see Create a vector index in Amazon RDS .
- s3_vectors_configuration
The configuration settings for storing knowledge base data using S3 vectors.
This includes vector index information and S3 bucket details for vector storage.
- type
The vector store service in which the knowledge base is stored.
SupplementalDataStorageConfigurationProperty
- class CfnKnowledgeBasePropsMixin.SupplementalDataStorageConfigurationProperty(*, supplemental_data_storage_locations=None)
Bases:
objectSpecifies configurations for the storage location of the images extracted from multimodal documents in your data source.
These images can be retrieved and returned to the end user.
- Parameters:
supplemental_data_storage_locations (
Union[IResolvable,Sequence[Union[IResolvable,SupplementalDataStorageLocationProperty,Dict[str,Any]]],None]) – List of supplemental data storage locations.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins supplemental_data_storage_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageConfigurationProperty( supplemental_data_storage_locations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty( s3_location=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" ), supplemental_data_storage_location_type="supplementalDataStorageLocationType" )] )
Attributes
- supplemental_data_storage_locations
List of supplemental data storage locations.
SupplementalDataStorageLocationProperty
- class CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty(*, s3_location=None, supplemental_data_storage_location_type=None)
Bases:
objectContains information about a storage location for images extracted from multimodal documents in your data source.
- Parameters:
s3_location (
Union[IResolvable,S3LocationProperty,Dict[str,Any],None]) – Contains information about the Amazon S3 location for the extracted images.supplemental_data_storage_location_type (
Optional[str]) – Supplemental data storage location type.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins supplemental_data_storage_location_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty( s3_location=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" ), supplemental_data_storage_location_type="supplementalDataStorageLocationType" )
Attributes
- s3_location
Contains information about the Amazon S3 location for the extracted images.
- supplemental_data_storage_location_type
Supplemental data storage location type.
VectorKnowledgeBaseConfigurationProperty
- class CfnKnowledgeBasePropsMixin.VectorKnowledgeBaseConfigurationProperty(*, embedding_model_arn=None, embedding_model_configuration=None, supplemental_data_storage_configuration=None)
Bases:
objectContains details about the model used to create vector embeddings for the knowledge base.
- Parameters:
embedding_model_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the model used to create vector embeddings for the knowledge base.embedding_model_configuration (
Union[IResolvable,EmbeddingModelConfigurationProperty,Dict[str,Any],None]) – The embeddings model configuration details for the vector model used in Knowledge Base.supplemental_data_storage_configuration (
Union[IResolvable,SupplementalDataStorageConfigurationProperty,Dict[str,Any],None]) – If you include multimodal data from your data source, use this object to specify configurations for the storage location of the images extracted from your documents. These images can be retrieved and returned to the end user. They can also be used in generation when using RetrieveAndGenerate .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_bedrock import mixins as bedrock_mixins vector_knowledge_base_configuration_property = bedrock_mixins.CfnKnowledgeBasePropsMixin.VectorKnowledgeBaseConfigurationProperty( embedding_model_arn="embeddingModelArn", embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.EmbeddingModelConfigurationProperty( bedrock_embedding_model_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.BedrockEmbeddingModelConfigurationProperty( dimensions=123, embedding_data_type="embeddingDataType" ) ), supplemental_data_storage_configuration=bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageConfigurationProperty( supplemental_data_storage_locations=[bedrock_mixins.CfnKnowledgeBasePropsMixin.SupplementalDataStorageLocationProperty( s3_location=bedrock_mixins.CfnKnowledgeBasePropsMixin.S3LocationProperty( uri="uri" ), supplemental_data_storage_location_type="supplementalDataStorageLocationType" )] ) )
Attributes
- embedding_model_arn
The Amazon Resource Name (ARN) of the model used to create vector embeddings for the knowledge base.
- embedding_model_configuration
The embeddings model configuration details for the vector model used in Knowledge Base.
- supplemental_data_storage_configuration
If you include multimodal data from your data source, use this object to specify configurations for the storage location of the images extracted from your documents.
These images can be retrieved and returned to the end user. They can also be used in generation when using RetrieveAndGenerate .