Note: You are viewing the documentation for an older major version of the AWS CLI (version 1).

AWS CLI version 2, the latest major version of AWS CLI, is now stable and recommended for general use. To view this page for the AWS CLI version 2, click here. For more information see the AWS CLI version 2 installation instructions and migration guide.

[ aws . sagemaker ]



Creates a configuration for running a SageMaker image as a KernelGateway app. The configuration specifies the Amazon Elastic File System (EFS) storage volume on the image, and a list of the kernels in the image.

See also: AWS API Documentation

See 'aws help' for descriptions of global parameters.


--app-image-config-name <value>
[--tags <value>]
[--kernel-gateway-image-config <value>]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]


--app-image-config-name (string)

The name of the AppImageConfig. Must be unique to your account.

--tags (list)

A list of tags to apply to the AppImageConfig.


A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.

You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags .

For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources . For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy .

Key -> (string)

The tag key. Tag keys must be unique per resource.

Value -> (string)

The tag value.

Shorthand Syntax:

Key=string,Value=string ...

JSON Syntax:

    "Key": "string",
    "Value": "string"

--kernel-gateway-image-config (structure)

The KernelGatewayImageConfig.

KernelSpecs -> (list)

The specification of the Jupyter kernels in the image.


The specification of a Jupyter kernel.

Name -> (string)

The name of the Jupyter kernel in the image. This value is case sensitive.

DisplayName -> (string)

The display name of the kernel.

FileSystemConfig -> (structure)

The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.

MountPath -> (string)

The path within the image to mount the user's EFS home directory. The directory should be empty. If not specified, defaults to /home/sagemaker-user .

DefaultUid -> (integer)

The default POSIX user ID (UID). If not specified, defaults to 1000 .

DefaultGid -> (integer)

The default POSIX group ID (GID). If not specified, defaults to 100 .

Shorthand Syntax:


JSON Syntax:

  "KernelSpecs": [
      "Name": "string",
      "DisplayName": "string"
  "FileSystemConfig": {
    "MountPath": "string",
    "DefaultUid": integer,
    "DefaultGid": integer

--cli-input-json (string) Performs service operation based on the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton. If other arguments are provided on the command line, the CLI values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally.

--generate-cli-skeleton (string) Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input, prints a sample input JSON that can be used as an argument for --cli-input-json. If provided with the value output, it validates the command inputs and returns a sample output JSON for that command.

See 'aws help' for descriptions of global parameters.


AppImageConfigArn -> (string)

The Amazon Resource Name (ARN) of the AppImageConfig.