Table Of Contents

Feedback

User Guide

First time using the AWS CLI? See the User Guide for help getting started.

Note: You are viewing the documentation for an older major version of the AWS CLI (version 1).

AWS CLI version 2, the latest major version of AWS CLI, is now stable and recommended for general use. To view this page for the AWS CLI version 2, click here. For more information see the AWS CLI version 2 installation instructions and migration guide.

[ aws . sagemaker ]

create-edge-packaging-job

Description

Starts a SageMaker Edge Manager model packaging job. Edge Manager will use the model artifacts from the Amazon Simple Storage Service bucket that you specify. After the model has been packaged, Amazon SageMaker saves the resulting artifacts to an S3 bucket that you specify.

See also: AWS API Documentation

See 'aws help' for descriptions of global parameters.

Synopsis

  create-edge-packaging-job
--edge-packaging-job-name <value>
--compilation-job-name <value>
--model-name <value>
--model-version <value>
--role-arn <value>
--output-config <value>
[--resource-key <value>]
[--tags <value>]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]

Options

--edge-packaging-job-name (string)

The name of the edge packaging job.

--compilation-job-name (string)

The name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.

--model-name (string)

The name of the model.

--model-version (string)

The version of the model.

--role-arn (string)

The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.

--output-config (structure)

Provides information about the output location for the packaged model.

S3OutputLocation -> (string)

The Amazon Simple Storage (S3) bucker URI.

KmsKeyId -> (string)

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.

PresetDeploymentType -> (string)

The deployment type SageMaker Edge Manager will create. Currently only supports AWS IoT Greengrass Version 2 components.

PresetDeploymentConfig -> (string)

The configuration used to create deployment artifacts. Specify configuration options with a JSON string. The available configuration options for each type are:

  • ComponentName (optional) - Name of the GreenGrass V2 component. If not specified, the default name generated consists of "SagemakerEdgeManager" and the name of your SageMaker Edge Manager packaging job.
  • ComponentDescription (optional) - Description of the component.
  • ComponentVersion (optional) - The version of the component.

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow a*major.minor.patch* number system. For example, version 1.0.0 represents the first major release for a component. For more information, see the semantic version specification .

  • PlatformOS (optional) - The name of the operating system for the platform. Supported platforms include Windows and Linux.
  • PlatformArchitecture (optional) - The processor architecture for the platform. Supported architectures Windows include: Windows32_x86, Windows64_x64. Supported architectures for Linux include: Linux x86_64, Linux ARMV8.

Shorthand Syntax:

S3OutputLocation=string,KmsKeyId=string,PresetDeploymentType=string,PresetDeploymentConfig=string

JSON Syntax:

{
  "S3OutputLocation": "string",
  "KmsKeyId": "string",
  "PresetDeploymentType": "GreengrassV2Component",
  "PresetDeploymentConfig": "string"
}

--resource-key (string)

The CMK to use when encrypting the EBS volume the edge packaging job runs on.

--tags (list)

Creates tags for the packaging job.

(structure)

A tag object that consists of a key and an optional value, used to manage metadata for Amazon SageMaker AWS resources.

You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to Amazon SageMaker resources, see AddTags .

For more information on adding metadata to your AWS resources with tagging, see Tagging AWS resources . For advice on best practices for managing AWS resources with tagging, see Tagging Best Practices: Implement an Effective AWS Resource Tagging Strategy .

Key -> (string)

The tag key. Tag keys must be unique per resource.

Value -> (string)

The tag value.

Shorthand Syntax:

Key=string,Value=string ...

JSON Syntax:

[
  {
    "Key": "string",
    "Value": "string"
  }
  ...
]

--cli-input-json (string) Performs service operation based on the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton. If other arguments are provided on the command line, the CLI values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally.

--generate-cli-skeleton (string) Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input, prints a sample input JSON that can be used as an argument for --cli-input-json. If provided with the value output, it validates the command inputs and returns a sample output JSON for that command.

See 'aws help' for descriptions of global parameters.

Output

None