Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
Table of Contents

What Is AWS Cloud9? .. 1
How Do I Get Started? .. 1
What Can I Do with AWS Cloud9? .. 1
 Topics in This Guide .. 1
 Related Videos ... 2
How Does AWS Cloud9 Work? .. 2
Pricing ... 4
About Cloud9 Versions ... 4
I Have Additional Questions or Need Help ... 4
Getting Started .. 5
 Express Setup .. 5
 Step 1: Create an AWS Account .. 6
 Step 2: Sign in to the AWS Cloud9 Console with an AWS Account Root User 6
 Next Steps .. 7
 Team Setup .. 7
 Step 1: Create an AWS Account .. 8
 Step 2: Create an IAM Group and User, and Add the User to the Group 8
 Step 3: Add AWS Cloud9 Access Permissions to the Group ... 11
 Step 4: Sign in to the AWS Cloud9 Console .. 13
 Next Steps .. 14
Advanced Team Setup .. 14
 Step 1: Create a Customer-Managed Policy .. 15
 Step 2: Add Customer-Managed Policies to a Group ... 16
 Customer-Managed Policy Examples for Teams Using AWS Cloud9 16
 Next Steps .. 20
IDE Tutorial ... 20
 Prerequisites ... 21
 Step 1: Create an Environment ... 21
 Step 2: Tour the IDE ... 26
 Step 3: Clean Up .. 46
 Next Steps .. 47
AWS Lambda Tutorial .. 47
 Prerequisites ... 48
 Step 1: Create and Open the environment .. 48
 Step 2: Create the Lambda Function and API ... 50
 Step 3: Add Code to the Function .. 52
 Step 4: Run the Function Locally ... 54
 Step 5: Debug the Function Locally .. 56
 Step 6: Run the API Locally .. 57
 Step 7: Debug the API Locally ... 58
 Step 8: Run the Function in Production ... 59
 Step 9: Run the API in Production .. 59
 Step 10: Change the Function Locally .. 60
 Step 11: Deploy the Changed Function into Production .. 60
 Step 12: Clean Up ... 61
 Next Steps .. 62
Advanced AWS Lambda Tutorial ... 62
 Prerequisites ... 63
 Step 1: Create the Lambda Function and API ... 63
 Step 2: Set up Amazon SNS .. 65
 Step 3: Run the Function Locally ... 66
 Step 4: Debug the Function Locally .. 67
 Step 5: Run the API Locally .. 68
 Step 6: Debug the API Locally ... 68

Related Videos .. 2
Topics in This Guide ... 1
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working with the IDE</td>
</tr>
<tr>
<td>Working with Environments</td>
</tr>
<tr>
<td>Creating an Environment</td>
</tr>
<tr>
<td>Creating an EC2 Environment</td>
</tr>
<tr>
<td>Creating an SSH Environment</td>
</tr>
<tr>
<td>Opening an Environment</td>
</tr>
<tr>
<td>Call AWS Services from an Environment</td>
</tr>
<tr>
<td>Create and Use an Instance Profile to Manage Temporary Credentials</td>
</tr>
<tr>
<td>Create and Store Permanent Access Credentials in an Environment</td>
</tr>
<tr>
<td>Changing Environment Settings</td>
</tr>
<tr>
<td>Change Environment Preferences</td>
</tr>
<tr>
<td>Change Environment Settings with the Console</td>
</tr>
<tr>
<td>Change Environment Settings with Code</td>
</tr>
<tr>
<td>Working with Shared Environments</td>
</tr>
<tr>
<td>Contents</td>
</tr>
<tr>
<td>Shared Environment Usage Scenarios</td>
</tr>
<tr>
<td>About Environment Member Access Roles</td>
</tr>
<tr>
<td>Invite a User in the Same Account as the Environment</td>
</tr>
<tr>
<td>Have an AWS Cloud9 Administrator in the Same Account as the Environment Invite Themselves or Others</td>
</tr>
<tr>
<td>Invite a User in a Different Account Than the Environment</td>
</tr>
<tr>
<td>Open a Shared Environment</td>
</tr>
<tr>
<td>See a List of Environment Members</td>
</tr>
<tr>
<td>Open the Active File of an Environment Member</td>
</tr>
<tr>
<td>Open the Open File of an Environment Member</td>
</tr>
<tr>
<td>Go to the Active Cursor of an Environment Member</td>
</tr>
<tr>
<td>Chat with Other Environment Members</td>
</tr>
<tr>
<td>View Chat Messages in a Shared Environment</td>
</tr>
<tr>
<td>Delete a Chat Message from a Shared Environment</td>
</tr>
<tr>
<td>Delete All Chat Messages from a Shared Environment</td>
</tr>
<tr>
<td>Change the Access Role of an Environment Member</td>
</tr>
<tr>
<td>Remove Your User From a Shared Environment</td>
</tr>
<tr>
<td>Remove Another Environment Member</td>
</tr>
<tr>
<td>Environment Sharing Best Practices</td>
</tr>
<tr>
<td>Moving or Resizing an Environment</td>
</tr>
<tr>
<td>To move or resize an environment</td>
</tr>
<tr>
<td>Deleting an Environment</td>
</tr>
<tr>
<td>Deleting an Environment with the Console</td>
</tr>
<tr>
<td>Deleting an Environment with Code</td>
</tr>
<tr>
<td>Working with the IDE</td>
</tr>
<tr>
<td>Language Support</td>
</tr>
<tr>
<td>Menu Commands Reference</td>
</tr>
<tr>
<td>AWS Cloud9 Menu</td>
</tr>
<tr>
<td>File Menu</td>
</tr>
<tr>
<td>Edit Menu</td>
</tr>
<tr>
<td>Find Menu</td>
</tr>
<tr>
<td>View Menu</td>
</tr>
<tr>
<td>Goto Menu</td>
</tr>
<tr>
<td>Run Menu</td>
</tr>
<tr>
<td>Tools Menu</td>
</tr>
<tr>
<td>Window Menu</td>
</tr>
<tr>
<td>Support Menu</td>
</tr>
<tr>
<td>Preview Menu</td>
</tr>
<tr>
<td>Other Menu Bar Commands</td>
</tr>
<tr>
<td>Finding and Replacing Text</td>
</tr>
</tbody>
</table>
Delete the Remote Version of the Lambda Function .. 321
Working with AWS CodePipeline .. 324
Step 1: Create or Identify Your Source Code Repository ... 324
Step 2: Create an AWS Cloud9 Development Environment, Connect It to the Code Repository, and Upload Your Code .. 325
Step 3: Prepare to Work with AWS CodePipeline ... 326
Step 4: Create a Pipeline in AWS CodePipeline .. 326
Samples ... 327
AWS CLI and aws-shell Sample .. 327
Prerequisites ... 328
Step 1: Install the AWS CLI, the aws-shell, or Both in Your Environment 328
Step 2: Set up Credentials Management in Your Environment 329
Step 3: Run Some Basic Commands with the AWS CLI or the aws-shell in Your Environment ... 329
Step 4: Clean Up .. 330
AWS CodeCommit Sample .. 330
Prerequisites ... 331
Step 1: Set Up Your IAM Group with Required Access Permissions 331
Step 2: Create a Repository in AWS CodeCommit .. 332
Step 3: Connect Your Environment to the Remote Repository 333
Step 4: Clone the Remote Repository into Your Environment 334
Step 5: Add Files to the Repository .. 334
Step 6: Clean Up .. 335
GitHub Sample ... 336
Prerequisites ... 336
Step 1: Create a GitHub Account .. 337
Step 2: Create a GitHub Repository .. 337
Step 3: Install Git in Your Environment ... 337
Step 4: Clone the Remote Repository into Your Environment 338
Step 5: Add Files to the Repository .. 338
Step 6: Keep Working with the IDE and GitHub .. 339
Step 7: Clean Up .. 340
Amazon DynamoDB sample ... 340
Prerequisites ... 341
Step 1: Install and Configure the AWS CLI, the aws-shell, or Both in Your Environment ... 341
Step 2: Create a Table ... 342
Step 3: Add an Item to the Table .. 342
Step 4: Add Multiple Items to the Table ... 343
Step 5: Create a Global Secondary Index ... 344
Step 6: Get Items from the Table ... 345
Step 7: Clean Up .. 346
Java Sample .. 351
Prerequisites ... 352
Step 1: Install Required Tools ... 352
Step 2: Add Code ... 353
Step 3: Build and Run the Code .. 353
Step 4: Set Up to Use the AWS SDK for Java ... 354
Step 5: Set Up AWS Credentials Management in Your Environment 358
Step 6: Add AWS SDK Code .. 358
Step 7: Build and Run the AWS SDK Code ... 360
Step 8: Clean Up .. 360
C++ Sample .. 360
Prerequisites ... 361
Step 1: Install Required Tools ... 361
Step 2: Add Code ... 361
Step 3: Run the Code ... 362
Step 4: Install and Configure the AWS SDK for C++ ... 363
Step 5: Add AWS SDK Code .. 364
<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>374</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>374</td>
</tr>
<tr>
<td>3</td>
<td>Run the Code</td>
<td>374</td>
</tr>
<tr>
<td>4</td>
<td>Install and Configure the AWS SDK for Ruby</td>
<td>375</td>
</tr>
<tr>
<td>5</td>
<td>Add AWS SDK Code</td>
<td>375</td>
</tr>
<tr>
<td>6</td>
<td>Run the AWS SDK Code</td>
<td>375</td>
</tr>
<tr>
<td>7</td>
<td>Clean Up</td>
<td>375</td>
</tr>
</tbody>
</table>

.NET Core Sample

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>376</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>376</td>
</tr>
<tr>
<td>3</td>
<td>Create a .NET Core Console Application Project</td>
<td>376</td>
</tr>
<tr>
<td>4</td>
<td>Build and Run the Code</td>
<td>377</td>
</tr>
<tr>
<td>5</td>
<td>Create and Set Up a .NET Core Console Application Project That Uses the AWS SDK for .NET</td>
<td>378</td>
</tr>
<tr>
<td>6</td>
<td>Add AWS SDK Code</td>
<td>379</td>
</tr>
<tr>
<td>7</td>
<td>Build and Run the AWS SDK Code</td>
<td>380</td>
</tr>
<tr>
<td>8</td>
<td>Clean Up</td>
<td>381</td>
</tr>
</tbody>
</table>

Node.js Sample

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>382</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>382</td>
</tr>
<tr>
<td>3</td>
<td>Run the Code</td>
<td>382</td>
</tr>
<tr>
<td>4</td>
<td>Install and Configure the AWS SDK for JavaScript</td>
<td>383</td>
</tr>
<tr>
<td>5</td>
<td>Add AWS SDK Code</td>
<td>384</td>
</tr>
<tr>
<td>6</td>
<td>Run the AWS SDK Code</td>
<td>385</td>
</tr>
<tr>
<td>7</td>
<td>Clean Up</td>
<td>385</td>
</tr>
</tbody>
</table>

Python Sample

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>386</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>386</td>
</tr>
<tr>
<td>3</td>
<td>Run the Code</td>
<td>387</td>
</tr>
<tr>
<td>4</td>
<td>Install and Configure the AWS SDK for PHP</td>
<td>388</td>
</tr>
<tr>
<td>5</td>
<td>Add AWS SDK Code</td>
<td>388</td>
</tr>
<tr>
<td>6</td>
<td>Run the AWS SDK Code</td>
<td>389</td>
</tr>
<tr>
<td>7</td>
<td>Clean Up</td>
<td>390</td>
</tr>
</tbody>
</table>

Ruby Sample

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>390</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>391</td>
</tr>
<tr>
<td>3</td>
<td>Run the Code</td>
<td>391</td>
</tr>
<tr>
<td>4</td>
<td>Install and Configure the AWS SDK for Ruby</td>
<td>392</td>
</tr>
<tr>
<td>5</td>
<td>Add AWS SDK Code</td>
<td>393</td>
</tr>
<tr>
<td>6</td>
<td>Run the AWS SDK Code</td>
<td>394</td>
</tr>
<tr>
<td>7</td>
<td>Clean Up</td>
<td>394</td>
</tr>
</tbody>
</table>

Go Sample

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install Required Tools</td>
<td>395</td>
</tr>
<tr>
<td>2</td>
<td>Add Code</td>
<td>395</td>
</tr>
<tr>
<td>3</td>
<td>Run the Code</td>
<td>396</td>
</tr>
<tr>
<td>4</td>
<td>Install and Configure the AWS SDK for Go</td>
<td>397</td>
</tr>
<tr>
<td>5</td>
<td>Add AWS SDK Code</td>
<td>398</td>
</tr>
<tr>
<td>6</td>
<td>Run the AWS SDK Code</td>
<td>399</td>
</tr>
</tbody>
</table>
What Is AWS Cloud9?

AWS Cloud9 contains a collection of tools that you use to code, build, run, test, debug, and release software in the cloud. To work with these tools, you use the AWS Cloud9 integrated development environment, or IDE.

You access the AWS Cloud9 IDE through a web browser. The IDE offers a rich code-editing experience with support for several programming languages and runtime debuggers, as well as a built-in terminal.

You can configure the IDE to your preferences. You can switch color themes, bind shortcut keys, enable programming language-specific syntax coloring and code formatting, and more.

- How Do I Get Started? (p. 1)
- What Can I Do with AWS Cloud9? (p. 1)
- How Does AWS Cloud9 Work? (p. 2)
- Pricing (p. 4)
- About Cloud9 Versions (p. 4)
- I Have Additional Questions or Need Help (p. 4)

How Do I Get Started?

Start using AWS Cloud9 by following the steps in Getting Started (p. 5).

What Can I Do with AWS Cloud9?

Explore the following resources to learn about using AWS Cloud9 for some common scenarios.

Topics in This Guide

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create, run, and debug code in AWS Lambda functions, APIs in Amazon API Gateway, and serverless applications.</td>
<td>AWS Lambda Tutorial (p. 47), Advanced AWS Lambda Tutorial (p. 62), and Working with AWS Lambda Functions (p. 290)</td>
</tr>
<tr>
<td>Work with Amazon Lightsail instances preconfigured with popular apps and frameworks such as WordPress, LAMP (Linux, Apache, MySQL, and PHP), Node.js, Nginx, Drupal, and Joomla, as well as Linux distributions such as Amazon Linux, Ubuntu, Debian, FreeBSD, and openSUSE.</td>
<td>Working with Amazon Lightsail Instances (p. 281)</td>
</tr>
<tr>
<td>Work with code in continuous delivery solutions in AWS CodePipeline.</td>
<td>Working with AWS CodePipeline (p. 324)</td>
</tr>
</tbody>
</table>
Scenario | Resources
--- | ---
Automate AWS services by using the AWS CLI and the aws-shell. | AWS CLI and aws-shell Sample (p. 327)
Work with source code repositories in AWS CodeCommit. | AWS CodeCommit Sample (p. 330)
Work with source code repositories in GitHub. | GitHub Sample (p. 336)
Work with NoSQL databases in Amazon DynamoDB. | Amazon DynamoDB Sample (p. 340)
Work with code for Java and the AWS SDK for Java. | Java Sample (p. 351)
Work with code for C++ and the AWS SDK for C++. | C++ Sample (p. 360)
Work with code for Python and the AWS SDK for Python (Boto). | Python Sample (p. 368)
Work with code for .NET Core and the AWS SDK for .NET. | .NET Core Sample (p. 373)
Work with code for Node.js and the AWS SDK for JavaScript. | Node.js Sample (p. 381)
Work with code for PHP and the AWS SDK for PHP. | PHP Sample (p. 386)
Work with code for Ruby and the AWS SDK for Ruby. | Ruby Sample (p. 390)
Work with code for Go and the AWS SDK for Go. | Go Sample (p. 394)
Work with code for TypeScript and the AWS SDK for JavaScript. | TypeScript Sample (p. 400)
Work with code in a running Docker container. | Docker Sample (p. 406)
Invite others to use an environment along with you, in real time and with text chat support. | Working with Shared Environments (p. 93)

Related Videos
- **AWS re:Invent 2017 - Introducing AWS Cloud9: Werner Vogels Keynote** (9 minutes, YouTube website)
- **AWS re:Invent Launchpad 2017 - AWS Cloud9**, (15 minutes, YouTube website)
- **Introducing AWS Cloud9 - AWS Online Tech Talks** (33 minutes, YouTube website)
- **AWS re:Invent 2017 - Introducing AWS Cloud9, a cloud IDE to write, run & debug your code** (1 hour, 4 minutes; AWS re:Invent website)

How Does AWS Cloud9 Work?

The following diagram shows a high-level overview of how AWS Cloud9 works.
You use the AWS Cloud9 IDE, running in a web browser on your local computer, to interact with your environment. A cloud compute instance (for example an Amazon EC2 instance) or your own server connects to the environment. An environment is a place where you store your project's files and where you run the tools to develop your apps.

You use the AWS Cloud9 IDE to work with files in the environment. You can:

- Store these files locally on the instance or server.
- Clone a remote code repository—such as a repo in AWS CodeCommit—into your environment.
- Work with a combination of local and cloned files in the environment.

In the background, you can instruct AWS Cloud9 to have Amazon EC2 create an Amazon EC2 instance and then connect the environment to the newly-created instance. We call this type of setup an EC2 environment. You can also instruct AWS Cloud9 to connect an environment to an existing cloud compute instance or your own server. We call this type of setup an SSH environment.

Here are the key similarities and differences between EC2 environments and SSH environments.

<table>
<thead>
<tr>
<th>EC2 environments</th>
<th>SSH environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Cloud9 creates an associated Amazon EC2 instance and manages that instance's lifecycle (for example, start, stop, and terminate).</td>
<td>You use an existing cloud compute instance or your own server. You manage that instance's or server's lifecycle.</td>
</tr>
<tr>
<td>The instance runs on Amazon Linux.</td>
<td>You can use any cloud compute instance that runs Linux, or your own server running Linux.</td>
</tr>
<tr>
<td>AWS Cloud9 automatically sets up the instance to start working with AWS Cloud9.</td>
<td>You must manually configure the instance or your own server to work with AWS Cloud9.</td>
</tr>
<tr>
<td>AWS Cloud9 automatically sets up the AWS Command Line Interface (AWS CLI) on the instance for you to start using.</td>
<td>If you want to use the AWS CLI on the instance or your own server, you must set it up yourself.</td>
</tr>
<tr>
<td>The instance has access to hundreds of useful packages, with some common packages already installed and configured, such as Git, Docker, Node.js, and Python.</td>
<td>You might need to download, install, and configure additional packages to complete common tasks.</td>
</tr>
<tr>
<td>You maintain the instance, for example by periodically applying system updates.</td>
<td>You maintain the instance or your own server.</td>
</tr>
<tr>
<td>When you delete the environment, AWS Cloud9 automatically terminates the associated instance.</td>
<td>When you delete the environment, the instance or your own server remains.</td>
</tr>
</tbody>
</table>

You can create and switch between multiple environments, with each environment set up for a specific development project. By storing the environment in the cloud, your projects no longer need to be tied to a single computer or server setup. This enables you to do things such as easily switch between computers and more quickly onboard developers to your team.
Pricing

For information, see AWS Cloud9 Pricing.

For education options, explore the AWS Educate program.

About Cloud9 Versions

c9.io is available only to existing c9.io users. For more information, see Cloud9 now runs on and integrates with AWS on the c9.io website.

c9.io and AWS Cloud9 are not interoperable. You can't use an account or workspace in c9.io with an account or environment in AWS Cloud9.

I Have Additional Questions or Need Help

To ask questions or seek help from the AWS Cloud9 community, see the AWS Cloud9 Discussion Forum. (When you enter this forum, AWS might require you to sign in.)

See also our frequently asked questions (FAQs), or contact us directly.
Getting Started with AWS Cloud9

To start using AWS Cloud9, follow one of these sets of procedures, depending on how you plan to use AWS Cloud9.

<table>
<thead>
<tr>
<th>Usage pattern</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to start using AWS Cloud9 quickly.</td>
<td>Express Setup (p. 5)</td>
</tr>
<tr>
<td>—Or—</td>
<td></td>
</tr>
<tr>
<td>I will be the only one using AWS Cloud9 in my AWS account.</td>
<td></td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9.</td>
<td>Team Setup (p. 7)</td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9, and I want to restrict their usage to control costs.</td>
<td>Advanced Setup for Teams (p. 14)</td>
</tr>
</tbody>
</table>

For general information about AWS Cloud9, see What Is AWS Cloud9? (p. 1).

Topics
- Express Setup for AWS Cloud9 (p. 5)
- Team Setup for AWS Cloud9 (p. 7)
- Advanced Team Setup for AWS Cloud9 (p. 14)
- IDE Tutorial for AWS Cloud9 (p. 20)
- AWS Lambda Tutorial for AWS Cloud9 (p. 47)
- Advanced AWS Lambda Tutorial for AWS Cloud9 (p. 62)

Express Setup for AWS Cloud9

To start using AWS Cloud9, follow one of these sets of procedures, depending on how you plan to use AWS Cloud9.

<table>
<thead>
<tr>
<th>Usage pattern</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to start using AWS Cloud9 quickly.</td>
<td>This topic</td>
</tr>
<tr>
<td>—Or—</td>
<td></td>
</tr>
<tr>
<td>I will be the only one using AWS Cloud9 in my AWS account.</td>
<td></td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9.</td>
<td>Team Setup (p. 7)</td>
</tr>
</tbody>
</table>
Step 1: Create an AWS Account

To begin using AWS Cloud9 quickly, or to use AWS Cloud9 as the only one in your AWS account, simply create an AWS account if you don’t already have one, and then sign in to the AWS Cloud9 console with the credentials of the AWS account root user.

Important
Although it’s possible to use AWS Cloud9 as an AWS account root user, this isn’t an AWS security best practice. We recommend you use AWS Cloud9 as an IAM user instead. For more information, see Team Setup (p. 7). See also Create Individual IAM Users in the IAM User Guide.

<table>
<thead>
<tr>
<th>Usage pattern</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9, and I want to restrict their usage to control costs.</td>
<td>Advanced Team Setup (p. 14)</td>
</tr>
</tbody>
</table>

To create an AWS account

2. Choose Sign In to the Console.
3. Choose Create a new AWS account.
4. Complete the process by following the on-screen directions. This includes giving AWS your email address and credit card information. You must also use your phone to enter a code that AWS gives you.

After you finish creating the account, AWS will send you a confirmation email. Do not go to the next step until you get this confirmation.

Step 2: Sign in to the AWS Cloud9 Console with an AWS Account Root User

After you complete the previous step, you’re ready to sign in to the AWS Cloud9 console with an AWS account root user and start using it.

Important
Although it’s possible to sign in to the AWS Cloud9 console with an AWS account root user, this isn’t an AWS security best practice. We recommend you sign in as an IAM user instead. For more information, see Team Setup (p. 7). See also Create Individual IAM Users in the IAM User Guide.

2. If prompted, type the email address for the AWS account root user, and then choose Next.
3. If prompted, type the password for the AWS account root user, and then choose Sign In.

You have now successfully signed in, and the AWS Cloud9 console is displayed.
Next Steps

<table>
<thead>
<tr>
<th>Task</th>
<th>See this topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an AWS Cloud9 development environment,</td>
<td>Creating an Environment (p. 74)</td>
</tr>
<tr>
<td>and then use the AWS Cloud9 IDE to work with code in your new</td>
<td></td>
</tr>
<tr>
<td>environment.</td>
<td></td>
</tr>
<tr>
<td>Learn how to use the AWS Cloud9 IDE.</td>
<td>IDE Tutorial (p. 20)</td>
</tr>
<tr>
<td>Enable others in your AWS account to start using AWS Cloud9.</td>
<td>Team Setup (p. 7)</td>
</tr>
<tr>
<td>Invite others to use your new environment along with you, in real</td>
<td>Working with Shared Environments (p. 93)</td>
</tr>
<tr>
<td>time and with text chat support.</td>
<td></td>
</tr>
<tr>
<td>Restrict AWS Cloud9 usage for others in your AWS account, to control</td>
<td>Advanced Team Setup (p. 14)</td>
</tr>
<tr>
<td>costs.</td>
<td></td>
</tr>
</tbody>
</table>

Team Setup for AWS Cloud9

To start using AWS Cloud9, follow one of these sets of procedures, depending on how you plan to use AWS Cloud9.

<table>
<thead>
<tr>
<th>Usage pattern</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to start using AWS Cloud9 quickly.</td>
<td>Express Setup (p. 5)</td>
</tr>
<tr>
<td>—Or—</td>
<td></td>
</tr>
<tr>
<td>I will be the only one using AWS Cloud9 in my AWS account.</td>
<td>This topic</td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9.</td>
<td>Advanced Setup for Teams (p. 14)</td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9, and I want to</td>
<td></td>
</tr>
<tr>
<td>restrict their usage to control costs.</td>
<td></td>
</tr>
</tbody>
</table>

To enable multiple users in your AWS account to start using AWS Cloud9, start with one of the following steps, depending on which AWS resources you already have.

<table>
<thead>
<tr>
<th>Do you have an AWS account?</th>
<th>Do you have an IAM group and user in that account?</th>
<th>Start with this step</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>—</td>
<td>Step 1: Create an AWS Account (p. 8)</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Step 2: Create an IAM Group and User, and Add the User to the Group (p. 8)</td>
</tr>
</tbody>
</table>
Do you have an AWS account? | Do you have an IAM group and user in that account? | Start with this step
--- | --- | ---
Yes | Yes | Step 3: Add AWS Cloud9 Access Permissions to the Group (p. 11)

Step 1: Create an AWS Account

Note
Your organization might already have an AWS account set up for you. If your organization has an AWS account administrator, check with that person before starting the following procedure. If you already have an AWS account, skip ahead to *Step 2: Create an IAM Group and User, and Add the User to the Group* (p. 8).

To watch a 4-minute video related to the following procedure, see *Creating an Amazon Web Services Account* on the YouTube website.

To create an AWS account

2. Choose *Sign In to the Console*.
3. Choose *Create a new AWS account*.
4. Complete the process by following the on-screen directions. This includes giving AWS your email address and credit card information. You must also use your phone to enter a code that AWS gives you.

After you finish creating the account, AWS will send you a confirmation email. Do not go to the next step until you get this confirmation.

Step 2: Create an IAM Group and User, and Add the User to the Group

In this step, you will create a group and a user in AWS Identity and Access Management (IAM), add the user to the group, and then use the user to access AWS Cloud9. This is an AWS security best practice. For more information, see *IAM Best Practices* in the *IAM User Guide*.

If you already have an IAM group and user, skip ahead to *Step 3: Add AWS Cloud9 Access Permissions to the Group* (p. 11).

Note
Your organization might already have an IAM group and user set up for you. If your organization has an AWS account administrator, check with that person before starting the following procedures.

You can complete these tasks using the *AWS Management Console* (p. 8) or the *AWS Command Line Interface (AWS CLI)* (p. 9).

To watch a 9-minute video related to the following console procedures, see *How do I set up an IAM user and sign in to the AWS Management Console using IAM credentials* on the YouTube website.

Step 2.1: Create an IAM Group with the Console

1. Sign in to the AWS Management Console, if you are not already signed in, at https://console.aws.amazon.com.
Note
Although it’s possible to sign in to the AWS Management Console using the credentials for an AWS account root user, this isn’t an AWS security best practice. Instead, we recommend you sign in using credentials for an IAM administrator user in your AWS account. An IAM administrator user has similar AWS access permissions to an AWS account root user and avoids some of the associated security risks. If you cannot sign in as an IAM administrator user, check with your AWS account administrator. For more information, see the following in the IAM User Guide.
- Creating Your First IAM Admin User and Group
- The IAM User Sign-in Page

2. Open the IAM console. To do this, in the AWS navigation bar, choose Services. Then choose IAM.
3. In the IAM console’s navigation pane, choose Groups.
5. On the Set Group Name page, for Group Name, type a name for the new group.
6. Choose Next Step.
7. On the Attach Policy page, choose Next Step without attaching any policies. (You will attach a policy in Step 3: Add AWS Cloud9 Access Permissions to the Group (p. 11).)
8. Choose Create Group.

Note
We recommend that you repeat this procedure to create 2 groups: one group for AWS Cloud9 users, and another group for AWS Cloud9 administrators. This AWS security best practice can help you better control, track, and troubleshoot issues with AWS resource access.

Skip ahead to Step 2.2: Create an IAM User and Add the User to the Group with the Console (p. 10).

Step 2.1: Create an IAM Group with the AWS CLI

1. Install and configure the AWS CLI on your computer, if you have not done so already. To do this, see the following in the AWS CLI User Guide.
 - Installing the AWS Command Line Interface
 - Quick Configuration

 Note
 Although it’s possible to configure the AWS CLI using the credentials for an AWS account root user, this isn’t an AWS security best practice. Instead, we recommend you configure the AWS CLI using credentials for an IAM administrator user in your AWS account. An IAM administrator user has similar AWS access permissions to an AWS account root user and avoids some of the associated security risks. If you cannot configure the AWS CLI as an IAM administrator user, check with your AWS account administrator. For more information, see Creating Your First IAM Admin User and Group in the IAM User Guide.

 2. Run the IAM create-group command, specifying the new group’s name (for example, MyCloud9Group).

 aws iam create-group --group-name MyCloud9Group

 Note
 We recommend that you repeat this procedure to create 2 groups: one group for AWS Cloud9 users, and another group for AWS Cloud9 administrators. This AWS security best practice can help you better control, track, and troubleshoot issues with AWS resource access.

 Skip ahead to Step 2.2: Create an IAM User and Add the User to the Group with the AWS CLI (p. 10).
Step 2: Create an IAM Group and User, and Add the User to the Group

Step 2.2: Create an IAM User and Add the User to the Group with the Console

1. With the IAM console open from the previous procedure, in the navigation pane, choose Users.
2. Choose Add user.
3. For User name, type a name for the new user.

 Note
 You can create multiple users at the same time by choosing Add another user. The other settings in this procedure apply to each of these new users.
4. Select the Programmatic access and AWS Management Console access check boxes. This allows the new user to use various AWS developer tools and service consoles.
5. Leave the default choice of Autogenerated password, which creates a random password for the new user to sign in to the console. Or choose Custom password and type a specific password for the new user.
6. Leave the default choice of Require password reset, which prompts the new user to change their password after they sign in to the console for the first time.
7. Choose Next: Permissions.
8. Leave the default choice of Add user to group (or Add users to group for multiple users).
9. In the list of groups, select the check box (not the name) next to the group you want to add the user to.
10. Choose Next: Review.
11. Choose Create user (or Create users for multiple users).
12. On the last page of the wizard, do one of the following.
 - Next to each new user, choose Send email, and follow the on-screen directions to email the new user their console sign in URL and user name. Then communicate to each new user their console sign in password, AWS access key ID, and AWS secret access key separately.
 - Choose Download .csv. Then communicate to each new user their console sign in URL, console sign in password, AWS access key ID, and AWS secret access key that is in the downloaded file.
 - Next to each new user, choose Show for both Secret access key and Password. Then communicate to each new user their console sign in URL, console sign in password, AWS access key ID, and AWS secret access key.

 Note
 If you do not choose Download .csv, this is the only time you can view the new user’s AWS secret access key and console sign in password. To generate a new AWS secret access key or console sign in password for the new user, see the following in the IAM User Guide.
 - Creating, Modifying, and Viewing Access Keys (Console)
 - Creating, Changing, or Deleting an IAM User Password (Console)

Skip ahead to Step 3: Add AWS Cloud9 Access Permissions to the Group (p. 11).

Step 2.2: Create an IAM User and Add the User to the Group with the AWS CLI

1. Run the IAM create-user command to create the user, specifying the new user's name (for example, MyCloud9User).

   ```bash
   aws iam create-user --user-name MyCloud9User
   ```
Step 3: Add AWS Cloud9 Access Permissions to the Group

By default, most IAM groups and users do not have access to AWS Cloud9. (An exception is IAM administrator groups and IAM administrator users, which have access to all AWS services in their AWS account by default.) In this step, you use IAM to add AWS Cloud9 access permissions directly to an IAM group to which one or more users belong, so that you can ensure those users can access AWS Cloud9.

If you already have an IAM user you want to use, and that user belongs to an IAM administrator group, skip ahead to Step 4: Sign in to the AWS Cloud9 Console (p. 13).

Note

Your organization might already have a group set up for you with the appropriate access permissions. If your organization has an AWS account administrator, check with that person before starting the following procedure.

You can complete this task using the AWS Management Console (p. 11) or the AWS CLI (p. 12).

Add AWS Cloud9 Access Permissions to the Group with the Console

1. Sign in to the AWS Management Console, if you are not already signed in, at https://console.aws.amazon.com/.

 Note
 Although it's possible to sign in to the AWS Management Console using the credentials for an AWS account root user, this isn't an AWS security best practice. Instead, we recommend you
sign in using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

2. Open the IAM console. To do this, in the AWS navigation bar, choose Services. Then choose IAM.

3. Choose Groups.

4. Choose the group's name.

5. Decide whether you want to add AWS Cloud9 user or AWS Cloud9 administrator access permissions to the group. These permissions will apply to each user in the group.

AWS Cloud9 user access permissions allow each user in the group to do the following things within their AWS account:

• Create their own AWS Cloud9 development environments.
• Get information about their own environments.
• Change the settings for their own environments.

AWS Cloud9 administrator access permissions allow each user in the group to do additional things within their AWS account, such as:

• Create environments for themselves or others.
• Get information about environments for themselves or others.
• Delete environments for themselves or others.
• Change the settings of environments for themselves or others.

Note
We recommend that you add only a limited number of users to the AWS Cloud9 administrators group. This AWS security best practice can help you better control, track, and troubleshoot issues with AWS resource access.

6. On the Permissions tab, for Managed Policies, choose Attach Policy.

7. In the list of policy names, choose the box next to AWSCloud9User for AWS Cloud9 user access permissions or AWSCloud9Administrator for AWS Cloud9 administrator access permissions. (If you don't see either of these policy names in the list, type the policy name in the Filter box to display it.)

8. Choose Attach Policy.

Note
If you have more than one group you want to add AWS Cloud9 access permissions to, repeat this procedure for each of those groups.

To see the list of access permissions that these AWS managed policies give to a group, see AWS Managed (Predefined) Policies (p. 435).

Skip ahead to Step 4: Sign in to the AWS Cloud9 Console (p. 13).

Add AWS Cloud9 Access Permissions to the Group with the AWS CLI

1. Install and configure the AWS CLI on your computer, if you have not done so already. To do this, see the following in the AWS CLI User Guide.

• Installing the AWS Command Line Interface
• Quick Configuration

Note
Although it's possible to configure the AWS CLI using the credentials for an AWS account root user, this isn't an AWS security best practice. Instead, we recommend you configure the AWS CLI using credentials for an IAM administrator user in your AWS account. An IAM administrator user has similar AWS access permissions to an AWS account root user and
avoids some of the associated security risks. If you cannot configure the AWS CLI as an IAM administrator user, check with your AWS account administrator. For more information, see Creating Your First IAM Admin User and Group in the IAM User Guide.

2. Decide whether you want to add AWS Cloud9 user or AWS Cloud9 administrator access permissions to the group. These permissions will apply to each user in the group.

AWS Cloud9 user access permissions allow each user in the group to do the following things within their AWS account.

- Create their own AWS Cloud9 development environments.
- Get information about their own environments.
- Change the settings for their own environments.

AWS Cloud9 administrator access permissions allow each user in the group to do additional things within their AWS account, such as the following.

- Create environments for themselves or others.
- Get information about environments for themselves or others.
- Delete environments for themselves or others.
- Change the settings of environments for themselves or others.

Note

We recommend that you add only a limited number of users to the AWS Cloud9 administrators group. This AWS security best practice can help you better control, track, and troubleshoot issues with AWS resource access.

3. Run the `iam attach-group-policy` command, specifying the group's name and the Amazon Resource Name (ARN) for the AWS Cloud9 access permissions policy to add.

For AWS Cloud9 user access permissions, specify the following ARN.

```bash
aws iam attach-group-policy --group-name MyCloud9Group --policy-arn arn:aws:iam::aws:policy/AWSCloud9User
```

For AWS Cloud9 administrator access permissions, specify the following ARN.

```bash
aws iam attach-group-policy --group-name MyCloud9Group --policy-arn arn:aws:iam::aws:policy/AWSCloud9Administrator
```

Note

If you have more than one group you want to add AWS Cloud9 access permissions to, repeat this procedure for each of those groups.

To see the list of access permissions that these AWS managed policies give to a group, see AWS Managed (Predefined) Policies (p. 435).

Step 4: Sign in to the AWS Cloud9 Console

After you complete the previous steps in this topic, you and your users are ready to sign in to the AWS Cloud9 console and start using it.

1. If you are already signed in to the AWS Management Console as an AWS account root user, sign out of the console.
3. If prompted, type the AWS account number for the IAM user you created or identified earlier, and then choose Next.
Note
If you do not see an option for typing the AWS account number, choose Sign in to a different account. Type the AWS account number on the next page, and then choose Next.

4. If prompted, type the user name and password of the IAM user you created or identified earlier, and then choose Sign In.
5. If prompted, follow the on-screen directions to change your user's initial sign-in password. Save your new sign-in password in a secure location.

You have now successfully signed in, and the AWS Cloud9 console is displayed.

Next Steps

<table>
<thead>
<tr>
<th>Task</th>
<th>See this topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrict AWS Cloud9 usage for others in your AWS account, to control costs.</td>
<td>Advanced Team Setup (p. 14)</td>
</tr>
<tr>
<td>Create an AWS Cloud9 development environment, and then use the AWS Cloud9 IDE to work with code in your new environment.</td>
<td>Creating an Environment (p. 74)</td>
</tr>
<tr>
<td>Learn how to use the AWS Cloud9 IDE.</td>
<td>IDE Tutorial (p. 20)</td>
</tr>
<tr>
<td>Invite others to use your new environment along with you, in real time and with text chat support.</td>
<td>Working with Shared Environments (p. 93)</td>
</tr>
</tbody>
</table>

Advanced Team Setup for AWS Cloud9

To start using AWS Cloud9, follow one of these sets of procedures, depending on how you plan to use AWS Cloud9.

<table>
<thead>
<tr>
<th>Usage pattern</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to start using AWS Cloud9 quickly.</td>
<td>Express Setup (p. 5)</td>
</tr>
<tr>
<td>—Or—</td>
<td></td>
</tr>
<tr>
<td>I will be the only one using AWS Cloud9 in my AWS account.</td>
<td></td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9.</td>
<td>Team Setup (p. 7)</td>
</tr>
<tr>
<td>I want multiple users in my AWS account to use AWS Cloud9, and I want to restrict their usage to control costs.</td>
<td>This topic</td>
</tr>
</tbody>
</table>

This topic assumes you have already completed the setup steps in Team Setup (p. 7).

In Team Setup (p. 7), you created IAM groups and added AWS Cloud9 access permissions directly to those groups, to ensure that users in those groups can access AWS Cloud9. In this topic, you will add
more access permissions to restrict the kinds of environments that users in those groups can create. This

To add these access permissions, you create your own set of policies in IAM that define the AWS access
permissions you want to enforce. (We call each of these a customer-managed policy.) Then you attach
those customer-managed policies to the IAM groups that the users belong to. (In some scenarios, you
must also detach existing AWS managed policies that are already attached to those IAM groups.) To set
this up, follow the procedures in this topic.

Note
The following procedures cover attaching and detaching policies for AWS Cloud9 users groups
only. These procedures assume you already have a separate AWS Cloud9 users group and AWS
Cloud9 administrators group and that you have only a limited number of users in the AWS
Cloud9 administrators group. This AWS security best practice can help you better control, track,
and troubleshoot issues with AWS resource access.

- Step 1: Create a Customer-Managed Policy (p. 15)
- Step 2: Add Customer-Managed Policies to a Group (p. 16)
- Customer-Managed Policy Examples for Teams Using AWS Cloud9 (p. 16)

Step 1: Create a Customer-Managed Policy

You can create a customer-managed policy using the [AWS Management Console](p. 15) or the [AWS
Command Line Interface](p. 15).

Create a Customer-Managed Policy Using the Console

1. Sign in to the AWS Management Console, if you are not already signed in.

 We recommend you sign in using credentials for an IAM administrator user in your AWS account. If you
cannot do this, check with your AWS account administrator.

2. Open the IAM console. To do this, in the console’s navigation bar, choose **Services**. Then choose **IAM**.

3. In the service’s navigation pane, choose **Policies**.

4. Choose **Create policy**.

5. In the **JSON** tab, paste one of our suggested Customer-Managed Policy Examples (p. 16).

 Note
 You can also create your own customer-managed policies. For more information, see the [IAM
 JSON Policy Reference](p. 16) in the [IAM User Guide](p. 16) and the AWS services’ documentation.

6. Choose **Review policy**.

7. On the **Review policy** page, type a **Name** and an optional **Description** for the policy, and then choose **Create policy**.

Repeat this step for each additional customer-managed policy that you want to create, then skip ahead
to Add Customer-Managed Policies to a Group Using the Console (p. 16).

Create a Customer-Managed Policy Using the AWS CLI

1. On the computer where you run the AWS CLI, create a file to describe the policy (for example,
 policy.json).

 If you create the file with a different file name, substitute it throughout this procedure.

2. Paste one of our suggested Customer-Managed Policy Examples (p. 16) into the policy.json file.
Step 2: Add Customer-Managed Policies to a Group

You can add customer-managed policies to a group using the AWS Management Console (p. 16) or the AWS Command Line Interface (AWS CLI) (p. 16).

Add Customer-Managed Policies to a Group Using the Console

1. With the IAM console open from the previous procedure, in the service's navigation pane, choose Groups.
2. Choose the group's name.
3. On the Permissions tab, for Managed Policies, choose Attach Policy.
4. In the list of policy names, choose the box next to each customer-managed policy you want to attach to the group. (If you don't see a specific policy name in the list, type the policy name in the Filter box to display it.)
5. Choose Attach Policy.

Add Customer-Managed Policies to a Group Using the AWS CLI

Run the IAM attach-group-policy command, specifying the group's name and the Amazon Resource Name (ARN) of the policy.

```
aws iam attach-group-policy --group-name MyGroup --policy-arn arn:aws:iam::123456789012:policy/MyPolicy
```

In the preceding command, replace MyGroup with the name of the group. Replace 123456789012 with the AWS account ID, and replace MyPolicy with the name of the customer-managed policy.

Customer-Managed Policy Examples for Teams Using AWS Cloud9

Following are some examples of policies you can use to restrict the kinds of environments that users in a group can create in an AWS account.

- Prevent Users in a Group from Creating Environments (p. 17)
- Prevent Users in a Group from Creating EC2 Environments (p. 17)
- Allow Users in a Group to Create EC2 Environments Only with Specific Amazon EC2 Instance Types (p. 17)
• Allow Users in a Group to Create Only a Single EC2 Environment Per AWS Region (p. 19)

Prevent Users in a Group from Creating Environments

The following customer-managed policy, when attached to an AWS Cloud9 users group, prevents those users from creating environments in an AWS account. This is useful if you want an IAM administrator user in your AWS account to manage creating environments instead of users in an AWS Cloud9 users group.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": [
        "cloud9:CreateEnvironmentEC2",
        "cloud9:CreateEnvironmentSSH"
      ],
      "Resource": "*"
    }
  ]
}
```

Note that the preceding customer-managed policy explicitly overrides "Effect": "Allow" for "Action": "cloud9:CreateEnvironmentEC2" and "cloud9:CreateEnvironmentSSH" on "Resource": "*" in the AWSCloud9User managed policy that is already attached to the AWS Cloud9 users group.

Prevent Users in a Group from Creating EC2 Environments

The following customer-managed policy, when attached to an AWS Cloud9 users group, prevents those users from creating EC2 environments in an AWS account. This is useful if you want an IAM administrator user in your AWS account to manage creating EC2 environments instead of users in an AWS Cloud9 users group. This assumes you haven't also attached a policy that prevents users in that group from creating SSH environments. Otherwise, those users won't be able to create environments at all.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": "cloud9:CreateEnvironmentEC2",
      "Resource": "*"
    }
  ]
}
```

Note that the preceding customer-managed policy explicitly overrides "Effect": "Allow" for "Action": "cloud9:CreateEnvironmentEC2" on "Resource": "*" in the AWSCloud9User managed policy that is already attached to the AWS Cloud9 users group.

Allow Users in a Group to Create EC2 Environments Only with Specific Amazon EC2 Instance Types

The following customer-managed policy, when attached to an AWS Cloud9 users group, allows those users to create EC2 environments that only use instance types starting with t2 in an AWS account. This policy assumes you haven't also attached a policy that prevents users in that group from creating EC2 environments. Otherwise, those users won't be able to create EC2 environments at all.
You can replace "t2.*" in the following policy with a different instance class (for example, "m3.*"). Or you can restrict it to multiple instance classes or instance types (for example, ["t2.*", "m3.*"] or ["t2.nano", t2.micro"]).

For an AWS Cloud9 users group, detach the AWSCloud9User managed policy from the group, and then add the following customer-managed policy in its place. (If you do not detach the AWSCloud9User managed policy, the following customer-managed policy will have no effect.)

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "cloud9:CreateEnvironmentSSH",
        "cloud9:ValidateEnvironmentName",
        "cloud9:GetUserPublicKey",
        "cloud9:UpdateUserSettings",
        "cloud9:GetUserSettings",
        "iam:GetUser",
        "iam:ListUsers",
        "ec2:DescribeVpcs",
        "ec2:DescribeSubnets"
      ],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": "cloud9:CreateEnvironmentEC2",
      "Resource": "*",
      "Condition": {
        "StringLike": {
          "cloud9:InstanceType": "t2.*"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": ["cloud9:DescribeEnvironmentMemberships"
      ],
      "Resource": ["*"]
    },
    {
      "Effect": "Allow",
      "Action": ["iam:CreateServiceLinkedRole"
      ],
      "Resource": "*",
      "Condition": {
        "StringLike": {
          "iam:AWSServiceName": "cloud9.amazonaws.com"
        }
      }
    }
  ]
}```
Note that the preceding customer-managed policy also allows those users to create SSH environments. To prevent those users from creating SSH environments altogether, remove "cloud9:CreateEnvironmentSSH", from the preceding customer-managed policy.

**Allow Users in a Group to Create Only a Single EC2 Environment Per AWS Region**

The following customer-managed policy, when attached to an AWS Cloud9 users group, allows each of those users to create a maximum of one EC2 environment per AWS Region that AWS Cloud9 is available in. This is done by restricting the name of the environment to one specific name in that AWS Region (in this example, my-demo-environment).

**Note**

AWS Cloud9 doesn't enable restricting the creation of environments to specific AWS Regions. Nor does it enable restricting the overall number of environments that can be created (other than the published service limits (p. 463)).

For an AWS Cloud9 users group, detach the AWSCloud9User managed policy from the group, and then add the following customer-managed policy in its place. (If you do not detach the AWSCloud9User managed policy, the following customer-managed policy will have no effect.)

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloud9:CreateEnvironmentSSH",
 "cloud9:ValidateEnvironmentName",
 "cloud9:GetUserPublicKey",
 "cloud9:UpdateUserSettings",
 "cloud9:GetUserSettings",
 "iam:GetUser",
 "iam:ListUsers",
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets"
],
 "Resource": "*",
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloud9:CreateEnvironmentEC2"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloud9:EnvironmentName": "my-demo-environment"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloud9:DescribeEnvironmentMemberships"
],
 "Resource": ["*"]
 }
]
}
```
Note that the preceding customer-managed policy allows those users to create SSH environments. To prevent those users from creating SSH environments altogether, remove `cloud9:CreateEnvironmentSSH`, from the preceding customer-managed policy.

For additional examples, see the Customer-Managed Policy Examples (p. 438) in Authentication and Access Control (p. 431).

## Next Steps

<table>
<thead>
<tr>
<th>Task</th>
<th>See this topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an AWS Cloud9 development environment, and then use the AWS Cloud9 IDE to work with code in your new environment.</td>
<td>Creating an Environment (p. 74)</td>
</tr>
<tr>
<td>Learn how to use the AWS Cloud9 IDE.</td>
<td>IDE Tutorial (p. 20)</td>
</tr>
<tr>
<td>Invite others to use your new environment along with you, in real time and with text chat support.</td>
<td>Working with Shared Environments (p. 93)</td>
</tr>
</tbody>
</table>

## IDE Tutorial for AWS Cloud9

In this tutorial, you set up an AWS Cloud9 development environment and then tour the AWS Cloud9 integrated development environment (IDE). Along the way, you use the IDE to code, run, and debug your first app.

**Note**

Completing this tutorial might result in charges to your AWS account. These include possible charges for Amazon EC2. For more information, see Amazon EC2 Pricing.

- Prerequisites (p. 21)
- Step 1: Create an Environment (p. 21)
- Step 2: Tour the IDE (p. 26)
- Step 3: Clean Up (p. 46)
- Next Steps (p. 47)
Prerequisites

To successfully complete this tutorial, you must first complete the steps in Express Setup (p. 5) or Team Setup (p. 7).

Step 1: Create an Environment

In this step, you use AWS Cloud9 console to create and then open an AWS Cloud9 development environment.

If you already have an environment, open it, and then skip ahead to Step 2: Tour the IDE (p. 26).

In AWS Cloud9, a development environment (or just environment) is a place where you store your development project's files and where you run the tools to develop your apps. In this tutorial, you create a special kind of environment called an EC2 environment. For this kind of environment, AWS Cloud9 creates and manages a new Amazon EC2 instance running Amazon Linux, creates the environment, and then connects the environment to the newly-created instance. When you open the environment, AWS Cloud9 displays the AWS Cloud9 IDE that enables you to work with the files and tools in that environment.

You can create a blank EC2 environment with the AWS Management Console (p. 21) or the AWS Command Line Interface (AWS CLI) (p. 25).

Note
When you create an EC2 environment, the environment doesn't contain any sample code by default. To create an environment along with sample code, see one of the following topics instead.

- Working with Amazon Lightsail Instances (p. 281)
- Working with AWS CodeStar Projects (p. 288)

After you create the environment, skip ahead to Step 2: Tour the IDE (p. 26).

Create an EC2 Environment with the Console

2. After you sign in to the AWS Cloud9 console, in the top navigation bar, choose an AWS Region to create the environment in. For a list of available AWS Regions, see AWS Cloud9 in the Amazon Web Services General Reference.
3. If a welcome page is displayed, for **New AWS Cloud9 environment**, choose **Create environment**. Otherwise, choose **Create environment**.

Or:

4. On the **Name environment** page, for **Name**, type a name for your environment.

   In this tutorial, we use the name `my-demo-environment`. If you use a different environment name, substitute it throughout this tutorial.

5. For **Description**, type something about your environment. For example, **This environment is for the AWS Cloud9 tutorial**.

6. Choose **Next step**.

7. On the **Configure settings** page, for **Environment type**, leave the default choice of **Create a new instance for environment (EC2)**.

   Choosing **Create a new instance for environment (EC2)** means you want AWS Cloud9 to create a new Amazon EC2 instance and then connect the environment to the newly-created instance. To use an
existing cloud compute instance or your own server instead (which we call an *SSH environment*), see Creating an Environment (p. 74).

**Note**
Choosing **Create a new instance for environment (EC2)** might result in possible charges to your AWS account for Amazon EC2.

8. For **Instance type**, leave the default choice. This choice has relatively low RAM and vCPUs, which is sufficient for this tutorial.

**Note**
Choosing instance types with more RAM and vCPUs might result in additional charges to your AWS account for Amazon EC2.

9. Expand **Network settings (advanced)**.

AWS Cloud9 uses Amazon Virtual Private Cloud (Amazon VPC) in your AWS account to communicate with the newly-created Amazon EC2 instance. Depending on how Amazon VPC is set up in your AWS account, do one of the following.

<table>
<thead>
<tr>
<th>Does the account have a VPC with at least one subnet in that VPC?</th>
<th>Is the VPC you want AWS Cloud9 to use the default VPC in the account?</th>
<th>Does the VPC have a single subnet?</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>—</td>
<td>—</td>
<td>If no VPC exists, create one. To do this, choose <strong>Create new VPC</strong>, and then follow the on-screen directions. For more information, see Create an Amazon VPC for AWS Cloud9 (p. 423).</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Skip ahead to the step 11 in this procedure.</td>
</tr>
</tbody>
</table>

When you skip past **Network settings (advanced)** and leave the preselected default settings, AWS Cloud9 attempts to automatically use the default VPC in your account with its single subnet.
Does the account have a VPC with at least one subnet in that VPC?	Is the VPC you want AWS Cloud9 to use the default VPC in the account?	Does the VPC have a single subnet?	Do this
Yes | Yes | No | Cloud9 attempts to automatically use the default VPC in your account with its single subnet.
Yes | No | — | Expand Network settings (advanced). For Subnet, choose the subnet you want AWS Cloud9 to use in the preselected default VPC.

For more information, see Amazon VPC Settings (p. 414).

11 For Cost-saving setting, choose the amount of time until AWS Cloud9 shuts down the Amazon EC2 instance for the environment after all web browser instances that are connect to the IDE for the environment have been closed. Or leave the default choice.

**Note**
Choosing a shorter time period might result in fewer charges to your AWS account. Likewise, choosing a longer time might result in more charges.

12 Choose Next step.

13 On the Review choices page, choose Create environment. Wait while AWS Cloud9 creates your environment. This can take several minutes. Please be patient.

After your environment is created, the AWS Cloud9 IDE is displayed. You'll learn about the AWS Cloud9 IDE in the next step.

If AWS Cloud9 doesn't display the IDE after at least five minutes, there might be a problem with your web browser, your AWS access permissions, the instance, or the associated virtual private cloud (VPC). For possible fixes, see Cannot Open an Environment (p. 453) in Troubleshooting.

To learn more about what you can do with an environment after you finish this tutorial, see Working with Environments (p. 73).

Skip ahead to Step 2: Tour the IDE (p. 26).
Create an EC2 Environment with the AWS CLI

1. Install and configure the AWS CLI, if you have not done so already. To do this, see the following in the AWS CLI User Guide.
   - Installing the AWS Command Line Interface
   - Quick Configuration

   We recommend you configure the AWS CLI using credentials for one of the following.
   - The IAM user you created in Team Setup (p. 7).
   - An IAM administrator user in your AWS account, if you will be working regularly with AWS Cloud9 resources for multiple users across the account. If you cannot configure the AWS CLI as an IAM administrator user, check with your AWS account administrator. For more information, see Creating Your First IAM Admin User and Group in the IAM User Guide.
   - An AWS account root user, but only if you will always be the only one using your own AWS account, and you don't need to share your environments with anyone else. For more information, see Creating, Disabling, and Deleting Access Keys for Your AWS Account in the Amazon Web Services General Reference.

2. Run the AWS Cloud9 create-environment-ec2 command.

```bash
aws cloud9 create-environment-ec2 --name my-demo-environment --description "This environment is for the AWS Cloud9 tutorial." --instance-type t2.micro --region us-east-1 --subnet-id subnet-12a3456b
```

In the preceding command:
- `--name` represents the name of the environment. In this tutorial, we use the name `my-demo-environment`. If you use a different environment name, substitute it throughout this tutorial.
- `--description` represents an optional description for the environment.
- `--instance-type` represents the type of Amazon EC2 instance AWS Cloud9 will launch and connect to the new environment. This example specifies `t2.micro`, which has relatively low RAM and vCPUs and is sufficient for this tutorial. Specifying instance types with more RAM and vCPUs might result in additional charges to your AWS account for Amazon EC2. For a list of available instance types, see the create environment wizard in the AWS Cloud9 console.
- `--region` represents the ID of the AWS Region for AWS Cloud9 to create the environment in. For a list of available AWS Regions, see AWS Cloud9 in the Amazon Web Services General Reference.
- `--subnet-id` represents the subnet you want AWS Cloud9 to use. Replace `subnet-12a3456b` with the ID of the subnet, which must be compatible with AWS Cloud9. For more information, see Amazon VPC Settings (p. 414).
- By default, AWS Cloud9 shuts down the Amazon EC2 instance for the environment 30 minutes after all web browser instances that are connect to the IDE for the environment have been closed. To change this, add `--automatic-stop-time-minutes` along with the number of minutes. A shorter time period might result in fewer charges to your AWS account. Likewise, a longer time might result in more charges.
- By default, the entity that calls this command owns the environment. To change this, add `--owner-id` along with the Amazon Resource Name (ARN) of the owning entity.

After you successfully run this command, open the AWS Cloud9 IDE for the newly-created environment. To do this, see Opening an Environment (p. 81). Then return to this topic and continue on with Step 2: Tour the IDE (p. 26) to learn how to use the AWS Cloud9 IDE to work with your new environment.

If you try to open the environment, but AWS Cloud9 doesn't display the IDE after at least five minutes, there might be a problem with your web browser, your AWS access permissions, the instance, or the associated virtual private cloud (VPC). For possible fixes, see Cannot Open an Environment (p. 453) in Troubleshooting.
Step 2: Tour the IDE

In the previous step, you created an environment, and the AWS Cloud9 IDE is now displayed. In this step, you'll learn how to use the IDE.

The AWS Cloud9 IDE is a collection of tools you use to code, build, run, test, debug, and release software in the cloud. In this step, you experiment with the most common of these tools. Toward the end of this tour, you use these tools to code, run, and debug your first app.

- Step 2.1: Menu Bar (p. 26)
- Step 2.2: Dashboard (p. 28)
- Step 2.3: Environment Window (p. 28)
- Step 2.4: Editor, Tabs, and Panes (p. 29)
- Step 2.5: Console (p. 30)
- Step 2.6: Open Files Section (p. 31)
- Step 2.7: Gutter (p. 32)
- Step 2.8: Status Bar (p. 32)
- Step 2.9: Navigate Window (p. 34)
- Step 2.10: Commands Window (p. 34)
- Step 2.11: Outline Window (p. 36)
- Step 2.12: Immediate Tab (p. 37)
- Step 2.13: Process List (p. 38)
- Step 2.14: Preferences (p. 39)
- Step 2.15: Terminal (p. 40)
- Step 2.16: Debugger Window (p. 41)

Step 2.1: Menu Bar

The menu bar, at the top edge of the IDE, contains common commands for working with files and code and changing IDE settings. You can also preview and run code from the menu bar.
You can hide the menu bar by choosing the arrow at its edge, as follows.

![AWS Cloud9 menu bar hidden]

You can show the menu bar again by choosing the arrow in the middle of where the menu bar was earlier, as follows.

![AWS Cloud9 menu bar shown]

You can use the IDE to work with a set of files in the next several sections in this tutorial. To set up these files, choose File, New File.

Next, copy the following text into the Untitled1 editor tab.

```text
fish.txt

A fish is any member of a group of organisms that consist of all gill-bearing aquatic craniate animals that lack limbs with digits. They form a sister group to the tunicates, together forming the olfactores. Included in this definition are lampreys and cartilaginous and bony fish as well as various extinct related groups.
```

To save the file, choose File, Save. Name the file `fish.txt`, and then choose Save.

Repeat these instructions, saving the second file as `cat.txt`, with the following contents.
Step 2: Tour the IDE

---

The domestic cat is a small, typically furry, carnivorous mammal. They are often called house cats when kept as indoor pets or simply cats when there is no need to distinguish them from other felids and felines. Cats are often valued by humans for companionship and for their ability to hunt.

There are often several ways to do things in the IDE. For example, to hide the menu bar, instead of choosing the arrow at its edge, you can choose **View, Menu Bar**. To create a new file, instead of choosing **File, New File** you can press Alt-N (for Windows/Linux) or Control-N (for Apple OSX). To reduce this tutorial's length, we only describe one way to do things. As you get more comfortable with the IDE, feel free to experiment and figure out the way that works best for you.

### Step 2.2: Dashboard

The **dashboard** gives you quick access to each of your environments. From the dashboard, you can create, open, and change the setting for an environment.

To open the dashboard, on the menu bar, choose **AWS Cloud9, Go To Your Dashboard**, as follows.

![AWS Cloud9, Go To Your Dashboard](image)

To view the settings for your environment, choose the title inside of the **my-demo-environment** card.

To return to the IDE for your environment, do one of the following.

- Choose your web browser's back button, and then choose **Open IDE** inside of the **my-demo-environment** card.
- In the navigation breadcrumb, choose **Your environments**, and then choose **Open IDE** inside of the **my-demo-environment** card.

*Note*

It can take a few moments for the IDE to display again. Please be patient.

### Step 2.3: Environment Window

The **Environment** window shows a list of your folders and files in the environment. You can also show different types of files, such as hidden files.

To hide the **Environment** window and the **Environment** button, choose **Window, Environment** on the menu bar.
To show the **Environment** button again, choose **Window, Environment** again.

To show the **Environment** window, choose the **Environment** button.

To show hidden files, in the **Environment** window, choose the gear icon, and then choose **Show Hidden Files**, as follows.

![Environment Window](image)

To hide hidden files, choose the gear icon again, and then choose **Show Hidden Files** again.

**Step 2.4: Editor, Tabs, and Panes**

The editor is where you can do things such as write code, run a terminal session, and change IDE settings. Each instance of an open file, terminal session, and so on is represented by a tab. Tabs can be grouped into panes. Tabs are shown at the edge of their pane, as follows.

![Editor Interface](image)

To hide tabs, choose **View, Tab Buttons** on the menu bar.

To show tabs again, choose **View, Tab Buttons** again.

To open a new tab, choose the + icon at the edge of the row of tabs. Then choose one of the available commands, for example, **New File**, as follows.

![New File](image)

To display two panes, choose the icon that looks like a drop-down menu, which is at the edge of the row of tabs. Then choose **Split Pane in Two Rows**, as follows.
Step 2: Tour the IDE

To return to a single pane, choose the drop-down menu icon again, and then choose the single square icon, as follows.

Step 2.5: Console

The console is an alternate place for creating and managing tabs, as follows.
You can also change the console's display so that it takes over the entire IDE.

To hide the console, choose View, Console on the menu bar.

To show the console again, choose View, Console again.

To expand the console, choose the resize icon, which is at the edge of the console, as follows.

To shrink the console, choose the resize icon again.

**Step 2.6: Open Files Section**

The Open Files section shows a list of all files that are currently open in the editor. Open Files is part of the Environment window, as follows.
To open the Open Files section, choose View, Open Files on the menu bar.

To switch between open files, choose fish.txt and then cat.txt in the Open Files section.

To hide the Open Files section, choose View, Open Files again.

**Step 2.7: Gutter**

The gutter, at the edge of each file in the editor, shows things like line numbers and contextual symbols as you work with files, as follows.

To hide the gutter, choose View, Gutter on the menu bar.

To show the gutter again, choose View, Gutter again.

**Step 2.8: Status Bar**

The status bar, at the edge of each file in the editor, shows things like line and character numbers, file type preference, space and tab settings, and related editor settings, as follows.
To hide the status bar, choose View, Status Bar on the menu bar.

To show the status bar, choose View, Status Bar again.

To go to a specific line number, choose a tab such as cat.txt if it's not already selected. Then in the status bar, choose the line and character number (it should be something like 7:45). Type a line number (like 4), and then press Enter, as follows.

To change the file type preference, in the status bar, choose a different file type. For example, for cat.txt, choose Ruby to see the syntax colors change. To go back to plain text colors, choose Plain Text, as follows.
Step 2.9: Navigate Window

The Navigate window enables you to go to a different file. To use this window, begin typing the file's name. When you see the file you want, choose it.

To hide the Navigate button, choose Window, Navigate on the menu bar.

To show the Navigate button again, choose Window, Navigate again.

To show the Navigate window, choose the Navigate button.

To go to a file, in the Navigate window, start typing the file name. For example, type fish. When fish.txt is highlighted, press Enter. You can repeat this to go to a different file. For example, try going to the cat.txt file.

Step 2.10: Commands Window

The Commands window enables you to find and run IDE commands. To use this window, begin typing something about the command. When you see the command you want, choose it.

To hide the Commands window and Commands button, choose Window, Commands on the menu bar.

To show the Commands button again, choose Window, Commands again.

To show the Commands window, choose the Commands button.

For example, you can use a command to show two vertical panes in the editor. To do this, in the Commands window, type split. In the list of commands, choose twovsplit, as follows.
To go back to a single pane, in the Commands window, in the list of commands, choose nosplit.

**Step 2.11: Outline Window**

You can use the Outline window to quickly go to a specific file location.

To hide the Outline window and Outline button, choose Window, Outline on the menu bar.

To show the Outline button again, choose Window, Outline again.

To show the Outline window, choose the Outline button.

To see how the Outline window works, create a file named hello.rb. Copy the following code into the file.
Step 2: Tour the IDE

def say_hello(i)
  puts "Hello!"
  puts "i is #{i}"
end

def say_goodbye(i)
  puts "i is now #{i}"
  puts "Goodbye!"
end

i = 1
say_hello(i)
i += 1
say_goodbye(i)

Then, in the **Outline** window, choose `say_hello(i)`, and then choose `say_goodbye(i)`, as follows.

---

**Step 2.12: Immediate Tab**

The **Immediate** tab enables you to test small snippets of JavaScript code. To see how the **Immediate** tab works, do the following.

1. Open an **Immediate** tab by choosing **Window, New Immediate Window** on the menu bar.
2. Run some code in the **Immediate** tab. To try this, type the following code into the window, pressing Shift-Enter after typing line 1 and again after line 2. Press Enter after line 3. (If you press Enter instead of Shift-Enter after you type line 1 or line 2, the code will run earlier than you want it to.)

```javascript
for (i = 0; i <= 10; i++) { // Press Shift-Enter after typing this line.
 console.log(i) // Press Shift-Enter after typing this line.
} // Press Enter after typing this line. The numbers 0 to 10
will be printed.
```

---

**Step 2.13: Process List**

The **Process List** shows all of the running processes. You can stop or even forcibly stop processes that you don't want to run anymore. To see how the **Process List** window works, do the following.

1. Show the **Process List** by choosing **Tools**, **Process List** on the menu bar.
2. Find a process. In the **Process List**, type the name of the process.
3. Stop or forcibly stop a process. In the list of processes, choose the process, and then choose **Kill** or **Force Kill**, as follows.
Step 2.14: Preferences

Preferences include the following settings.

- Settings for the current environment only, such as whether to use soft tabs in the editor, the file types to ignore, and code completion behaviors for languages such as PHP and Python.
- Your user settings across each of your environments, such as colors, fonts, and editor behaviors.
- Your keybindings, such as which shortcut key combinations you prefer to use to work with files and the editor.
- The IDE’s overall theme.

To show preferences, choose AWS Cloud9, Preferences on the menu bar. The following is displayed.
Step 2.15: Terminal

You can run one or more terminal sessions in the IDE. To start a terminal session, choose Window, New Terminal on the menu bar.

You can try running a command in the terminal. For example, in the terminal, type `echo $PATH` (to print the value of the PATH environment variable), and then press Enter.

You can also try running additional commands. For example, try commands such as the following.

- `pwd` to print the path to the current directory.
- `aws --version` to print version information about the AWS CLI.
- `ls -1` to print information about the current directory.
Step 2.16: Debugger Window

You can use the Debugger window to debug your code. For example, you can step through running code a portion at a time, watch the values of variables over time, and explore the call stack.

To hide the Debugger window and Debugger button, choose Window, Debugger on the menu bar.

To show the Debugger button again, choose Window, Debugger again.

To show the Debugger window, choose the Debugger button.

You can experiment with using the Debugger window and some JavaScript code. To try this, do the following.

1. Prepare to use the Debugger window to debug JavaScript code by installing Node.js into your environment, if it isn’t already installed. To confirm whether your environment has Node.js installed, run the node --version command. If Node.js is installed, the Node.js version number is output, and you can skip ahead to step 3 in this procedure to write some JavaScript code.

2. To install Node.js, do the following.
   a. Run the following two commands, one at a time, to be sure your environment has the latest updates, and then download Node Version Manager (nvm). (nvm is a simple Bash shell script that is useful for installing and managing Node.js versions. For more information, see Node Version Manager on GitHub.)
AWS Cloud9 User Guide
Step 2: Tour the IDE

```
sudo yum -y update
curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.0/install.sh | bash
```

b. Use a text editor to update your ~/.bashrc file to enable nvm to load. For example, in the Environment window of the IDE, choose the gear icon, and then choose Show Home in Favorites. Repeat this step and choose Show Hidden Files as well.

c. Open the ~/.bashrc file.

d. Type or paste the following code at the end of the file to enable nvm to load.

```
export NVM_DIR="/home/ec2-user/.nvm"
[-s ""$NVM_DIR/nvm.sh"] & & "."$NVM_DIR/nvm.sh" # This loads nvm.
```

e. Save the file.

f. Start a new terminal session, and then run this command to install the latest version of Node.js.

```
nvm install node
```

3. Write some JavaScript code to debug. For example, create a file, add the following code to the file, and save it as hello.js.

```javascript
var i;
i = 10;
console.log("Hello!");
console.log("i is " + i);
i += 1;
console.log("i is now " + i);
console.log("Goodbye!");
```

4. Add some breakpoints to the code. For example, in the gutter, choose the margin next to lines 6 and 10. A red circle is displayed next to each of these line numbers, as follows.

5. Now you're ready to debug the JavaScript code. To try this, do the following.

a. Show the Debugger window, if it's not already displayed.

b. Watch the value of the variable named i while the code is running. In the Debugger window, for Watch Expressions, choose Type an expression here. Type the letter i, and then press Enter, as follows.
c. Begin running the code. Choose Run, Run With, Node.js, as follows.

d. The code pauses running on line 6. The Debugger window shows the value of `i` in Watch Expressions, which is currently 10, as follows.
e. In the **Debugger** window, choose **Resume**, which is the blue arrow icon, as follows.

f. The code pauses running on line 10. The **Debugger** window now shows the new value of `i`, which is currently 11.

g. Choose **Resume** again. The code runs to the end. The output is printed to the console's `hello.js` tab, as follows.
Compare your results to the following.
Step 3: Clean Up

To prevent ongoing charges to your AWS account related to this tutorial, you should delete the environment.

Warning
Deleting an environment cannot be undone.

You can delete the environment with the AWS Cloud9 console (p. 46) or the AWS CLI (p. 47).

Delete the Environment with the AWS Cloud9 Console

1. Open the dashboard. To do this, on the menu bar in the IDE, choose AWS Cloud9, Go To Your Dashboard.
2. Do one of the following.
   - Choose the title inside of the my-demo-environment card, and then choose Delete.

   ![Delete Environment](image)

   - Select the my-demo-environment card, and then choose Delete.

   ![Delete Environment from List](image)

3. In the Delete dialog box, type Delete, and then choose Delete.

Note
If the environment was an EC2 environment, AWS Cloud9 also terminates the Amazon EC2 instance that was connected to that environment.
However, if the environment was an SSH environment, and that environment was connected to an Amazon EC2 instance, AWS Cloud9 doesn't terminate that instance. If you don't terminate that instance later, your AWS account might continue to have ongoing charges for Amazon EC2 related to that instance.

Skip ahead to Next Steps (p. 47).

**Delete the Environment with the AWS CLI**

Run the AWS Cloud9 delete-environment command, specifying the ID of the environment to delete.

```bash
aws cloud9 delete-environment --environment-id 12a34567b8cd9012345ef67abcd890e1
```

In the preceding command, replace `12a34567b8cd9012345ef67abcd890e1` with the ID of the environment to delete.

**Next Steps**

Explore any or all of the following topics to continue getting familiar with AWS Cloud9.

<table>
<thead>
<tr>
<th>Learn more about the AWS Cloud9 IDE.</th>
<th>Working with the IDE (p. 112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invite others to use your new environment along with you, in real time and with text chat support.</td>
<td>Working with Shared Environments (p. 93)</td>
</tr>
<tr>
<td>Create SSH environments (environments that use cloud compute instances or servers that you create, instead of an Amazon EC2 instances that AWS Cloud9 creates for you).</td>
<td>Creating an Environment (p. 74) and SSH Environment Host Requirements (p. 426)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with Lambda.</td>
<td>AWS Lambda Tutorial (p. 47), Advanced AWS Lambda Tutorial (p. 62), and Working with AWS Lambda Functions (p. 290)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with Amazon Lightsail.</td>
<td>Working with Amazon Lightsail Instances (p. 281)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with AWS CodePipeline.</td>
<td>Working with AWS CodePipeline (p. 324)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with the AWS CLI, the aws-shell, AWS CodeCommit, GitHub, or Amazon DynamoDB, as well as Node.js, Python, or other programming languages.</td>
<td>Samples (p. 327)</td>
</tr>
</tbody>
</table>

To get help with AWS Cloud9 from the community, see the AWS Cloud9 Discussion Forum. (When you enter this forum, AWS might require you to sign in.)

To get help with AWS Cloud9 directly from AWS, see the support options on the AWS Support page.

**AWS Lambda Tutorial for AWS Cloud9**

In this tutorial, you use the AWS Cloud9 IDE to create a function in AWS Lambda and an accompanying API in Amazon API Gateway. After you create the function and its API, you run and debug them locally. Then you run the function and API in Lambda and API Gateway in production.
Note
Completing this tutorial might result in charges to your AWS account. These include possible charges for Amazon EC2, Lambda, and API Gateway. For more information, see Amazon EC2 Pricing, AWS Lambda Pricing, and Amazon API Gateway Pricing.

- Prerequisites (p. 48)
- Step 1: Create and Open the environment (p. 48)
- Step 2: Create the Lambda Function and API (p. 50)
- Step 3: Add Code to the Function (p. 52)
- Step 4: Run the Function Locally (p. 54)
- Step 5: Debug the Function Locally (p. 56)
- Step 6: Run the API Locally (p. 57)
- Step 7: Debug the API Locally (p. 58)
- Step 8: Run the Function in Production (p. 59)
- Step 9: Run the API in Production (p. 59)
- Step 10: Change the Function Locally (p. 60)
- Step 11: Deploy the Changed Function into Production (p. 60)
- Step 12: Clean Up (p. 61)
- Next Steps (p. 62)

Prerequisites
To successfully complete this tutorial, you must first complete the steps in Express Setup (p. 5) or Team Setup (p. 7).

Step 1: Create and Open the environment

In this step, you use the AWS Cloud9 console to create and then open an AWS Cloud9 development environment.

If you already have an environment, open it, and then skip ahead to Step 2: Create the Lambda Function and API (p. 50).

In AWS Cloud9, a development environment (or just environment) is a place where you store your development project's files and where you run the tools to develop your apps. In this tutorial, you create a special kind of environment called an EC2 environment. For this kind of environment, AWS Cloud9 launches and manages a new Amazon EC2 instance running Amazon Linux, creates the environment, and then connects the environment to the newly-launched instance. When you open the environment, AWS Cloud9 displays the AWS Cloud9 IDE that enables you to work with the files and tools in that environment.

2. In the top navigation bar, choose the AWS Region to create the environment in.
3. If a welcome page is displayed, for **New AWS Cloud9 environment**, choose **Create environment**. Otherwise, choose **Create environment**.

4. On the **Name environment** page, for **Name**, type a name for your environment (for example, my-lambda-environment).

5. For **Description**, type something about your environment (for example, This environment is for the AWS Cloud9 tutorial for Lambda.).

6. Choose **Next step**.

7. On the **Configure settings** page, for **Environment type**, leave the default choice of **Create a new instance for environment (EC2)**.

8. For **Instance type**, leave the default choice of **t2.micro**. This choice has relatively low RAM and vCPUs, which is sufficient for this tutorial.
Step 2: Create the Lambda Function and API

In this step, you use the AWS Cloud9 IDE to create the Lambda function and its accompanying API at the same time. AWS Cloud9 stores the new function on the Amazon EC2 instance and deploys a copy of the function to Lambda. AWS Cloud9 also stores the new accompanying API on the instance and deploys a copy of the API to API Gateway.

The Lambda function returns information about the day or time you specify, for example, the day, month, and year, or the current hour, minute, and second.

Currently, you can use the IDE to automatically create functions that use only Node.js or Python. This function uses Node.js.

1. With the IDE open from the previous step, set the AWS Region that you want to create the function in. To do this, on the menu bar, choose AWS Cloud9, Preferences.
2. In the navigation pane of the Preferences tab, choose AWS Settings.
3. For AWS Region, select the AWS Region you want to create the function in.
4. On the edge of the IDE, choose AWS Resources.
5. Expand the Lambda, if it isn’t already expanded. On the toolbar, choose the Create a new Lambda function icon.

6. In the Create serverless application dialog box, for Function name, type a name for the function (for example, myDateTimeFunction).

7. For Application name, type a name for the function’s containing serverless application (for example, MyDateTimeApplication).

8. Choose Next.


10. For Select blueprint, choose empty-nodejs. This creates some starter code that you work with in the next step.

11. Choose Next.

12. For Function trigger, choose API Gateway. This creates an API in API Gateway that you use to run and debug the function in a later step.

13. For Resource Path, type / (a forward slash). The Resource Path defines a portion of the URL that you use to run and debug the API in a later step. For more information, see Set up API Methods in API Gateway in the API Gateway Developer Guide.

14. For Security, choose NONE, and then choose Next. This specifies that you don’t need any special credentials to run and debug this API.

15. For Memory (MB), leave the default value of 128 MB, which is sufficient for this tutorial.

16. For Role, leave the default value of Automatically generate role, and then choose Next. This specifies the access permissions that the function needs to work properly.

17. Review your choices, and then choose Finish.

AWS Cloud9 creates the function and its related API on the instance. Then it deploys a copy of the function and API to Lambda and API Gateway. The serverless application and function are displayed in the Local Functions and Remote Functions lists in the Lambda pane of the AWS Resources window. The serverless application’s and function’s component files are displayed in the Environment window. The editor opens the function’s code file, index.js.
Note
In addition to the function's code file, AWS Cloud9 creates the following helper files.

- **.application.json**: A hidden file that contains JSON-formatted settings that are specific to the serverless application. AWS Cloud9 uses these settings for its internal use. Do not edit this file.
- **.gitignore**: A hidden file that contains a list of files Git ignores, if you want to use Git to manage your source code for this function.
- **template.yaml**: An AWS Serverless Application Model (AWS SAM) template file that contains information about the Lambda function, the related API in API Gateway, and any other related, supported AWS resources. Whenever you update the local version of your function and then upload it to Lambda, AWS Cloud9 calls AWS SAM to use this template file to do the upload. For more information, see Using the AWS Serverless Application Model (AWS SAM) in the AWS Lambda Developer Guide.

The .application.json and .gitignore files are hidden. To show hidden files or hide them if they're shown, in the Environment window, choose the gear icon. Then choose Show Hidden Files.

Step 3: Add Code to the Function

In this step, you replace the starter code for the generated function with specific code that returns information about the day or time you specify.

With the index.js file already open in the editor, completely replace the file's contents with the following code, and then save the file.

```javascript
'use strict';
exports.handler = function(event, context, callback) {
 if (event.body) {
```
event = JSON.parse(event.body);
}

var sc; // Status code
var result = ""; // Response payload

switch(event.option) {
  case "date":
    switch(event.period) {
      case "yesterday":
        result = setDateResult("yesterday");
        sc = 200;
        break;
      case "today":
        result = setDateResult();
        sc = 200;
        break;
      case "tomorrow":
        result = setDateResult("tomorrow");
        sc = 200;
        break;
      default:
        result = {
          "error": "Must specify 'yesterday', 'today', or 'tomorrow'."
        };
        sc = 400;
        break;
    }
    break;
  case "time":
    var d = new Date();
    var h = d.getHours();
    var mi = d.getMinutes();
    var s = d.getSeconds();

    result = {
      "hour": h,
      "minute": mi,
      "second": s
    };
    sc = 200;
    break;
  default:
    result = {
      "error": "Must specify 'date' or 'time'."
    };
    sc = 400;
    break;
}

const response = {
  statusCode: sc,
  headers: { "Content-type": "application/json" },
  body: JSON.stringify( result )
};

callback(null, response);

function setDateResult(option) {
  var d = new Date(); // Today
  var mo; // Month
  var da; // Day
  var y; // Year

  switch(option) {

case "yesterday":
    d.setDate(d.getDate() - 1);
    break;
case "tomorrow":
    d.setDate(d.getDate() + 1);
default:
    break;
}

mo = d.getMonth() + 1; // Months are zero offset (0-11)
da = d.getDate();
y = d.getFullYear();

result = {
    "month": mo,
    "day": da,
    "year": y
};

return result;
}

This function takes an incoming payload with an option value of date or time. If date is specified, you must also specify a period value of yesterday, today, or tomorrow. The function then returns the corresponding month, day, and year. If, however, an option value of time is specified, the function returns the current hour, minute, and second.

**Step 4: Run the Function Locally**

In this step, you use the IDE to run the function on the instance. Currently, you can use the IDE to run functions that use only Node.js or Python.

1. In the **Lambda** pane of the **AWS Resources** window, expand the **MyDateTimeApplication** Lambda folder, and then right-click the **myDateTimeFunction** Lambda icon.
2. Choose **Run, Run Local**.
3. In the **Payload** pane of the run tab, replace {} with the following, which sends this data as input to the function for processing.

```json
{
 "option": "date",
 "period": "today"
}
```

4. Choose **Run**.

5. The **Response** pane displays the following.

```json
{
 "statusCode": 200,
 "headers": {
 "Content-type": "application/json"
 },
 "body": "{"month":4,"day":12,"year":2018}"
}
```

**Note**

If the **Response** pane displays **null**, be sure to save the `index.js`, and then choose **Run** again.

6. Run the function several times with the following payloads to see what the **Response** pane displays.

```json
{
 "option": "date",
 "period": "yesterday"
}
{
 "option": "date",
 "period": "tomorrow"
}
{
}
Step 5: Debug the Function Locally

In this step, you use the IDE to debug the function on the instance. Currently, you can use the IDE to debug functions that use only Node.js or Python. Also, you can use the IDE to debug functions locally only. You cannot use the IDE to debug functions in Lambda itself.

1. In the index.js file, create a breakpoint for the debugger. To do this, in the editor, next to the line of code `callback(null, response)`, click the gutter just to the left of line 62. A red circle is displayed, representing the breakpoint.

2. On the right edge of the IDE, choose Debugger.

3. Add four expressions for the debugger to watch. To do this, in the Watch Expressions area, for Type an expression here, type `event.option`, and then press Enter. Do this three more times, typing `event.period`, `sc`, and `response.body`.

4. On the run tab that AWS Cloud9 opened in Step 4: Run the Function Locally (p. 54), choose the icon that looks like a bug. (It switches from grey to green.)

5. In the Payload pane on the run tab, be sure the following payload is still visible.

Code execution pauses at the breakpoint. The current values of event.option, event.period, sc, and response.body are displayed in the Watch Expressions area of the Debugger window.

You can also see these values in the code by hovering your mouse over option in line 12 in the code, period in line 14, sc in line 21, and response in line 56. For response in line 56, expand Object {}, and then see the body value.

Compare your results to the following.

7. In the Debugger window, choose the blue Resume arrow to finish running the code. (It looks like a triangular play button.)

Step 6: Run the API Locally

In this step, you use the IDE to have API Gateway run the Lambda function on the instance.

1. In the Lambda pane of the AWS Resources window, right-click the myDateTimeFunction Lambda icon, and then choose Run, Run APIGateway Local.

 Note

 You can also do this by choosing the Lambda (local) list on the run tab from the previous step, and then choosing API Gateway (local).

2. On the run tab, for Path, type / (a forward slash).

3. For Method, choose POST.

4. For Body, replace {} with the following, which sends this data as input to the API for processing.

   ```
   {
     "option": "date",
     "period": "today"
   }
   ```

5. If the bug icon is green, choose it to turn it off. (It switches back to grey.)

7. The Response pane displays the following response.

   ```
   {
     "month": 4,
     "day": 12,
   }
   ```
8. Run the function several times with the following payloads to see what the Response pane displays.

```json
{
  "option": "date",
  "period": "yesterday"
}
{
  "option": "date",
  "period": "tomorrow"
}
{
  "option": "time"
}
```

Displays an error. Must also specify a 'period' of 'yesterday', 'today', or 'tomorrow'.

```json
{
  "option": "date"
}
```

Displays an error. Must specify an 'option' of 'date' or 'time'.

```json
{
  "option": "dates"
}
```

Compare your results to the following.

Step 7: Debug the API Locally

In this step, you use the IDE to have API Gateway debug the Lambda function on the instance.

1. Ensure that the `index.js` file still has a breakpoint set on the line of code `callback(null, response)`.
2. Ensure that the Watch Expressions area of the Debugger window is still watching `event.option`, `event.period`, `sc`, and `response.body`.

3. On the run tab from the previous step, choose the icon that looks like a bug. (It switches from grey to green.)

4. In the **Body** pane on the run tab, ensure the following is still visible.

   ```json
   {
   "option": "date",
   "period": "today"
   }
   ``

5. Choose **Run**.

   Code execution pauses at the breakpoint, and the current values of `event.option`, `event.period`, `sc`, and `response.body` are displayed in the **Watch Expressions** area of the **Debugger** window.

   You can also see these values in the code by hovering your mouse over `option`, `period`, `sc`, and `response` in the code. For `response`, expand `Object {}`, and then see the `body` value.

6. In the **Debugger** window, choose the blue **Resume** arrow to finish running the code.

---

**Step 8: Run the Function in Production**

In this step, you use the IDE to run the function in Lambda itself.

AWS Cloud9 deployed the function to Lambda during **Step 2: Create the Lambda Function and API** (p. 50). However, AWS Cloud9 deployed the function before you made the changes in **Step 3: Add Code to the Function** (p. 52). That original function was very basic, taking no payload and returning no response. So, you must first deploy your changes to Lambda, and then you can run the deployed function there.

1. In the **Lambda** pane of the **AWS Resources** window, expand **Local Functions**, expand the **MyDateTimeApplication** Lambda folder, right-click the **myDateTimeFunction** Lambda icon, and then choose **Deploy**.

2. After the deployment finishes, right-click the **myDateTimeFunction** Lambda icon, and then choose **Run, Run Remote**.

   **Note**
   You can also do this by choosing the **API Gateway (local)** list on the run tab from the previous step, and then choosing **Lambda (remote)**.

3. In the **Payload** pane on the run tab, be sure one of the payloads from **Step 4: Run the Function Locally** (p. 54) is visible. If it isn’t there, add it.

4. Choose **Run**, and see the results in the **Response** area. These should be the same results as in **Step 4: Run the Function Locally** (p. 54).

---

**Step 9: Run the API in Production**

In this step, you use the IDE to run the API in API Gateway itself.

**Note**
AWS Cloud9 deployed the API to API Gateway during **Step 2: Create the Lambda Function and API** (p. 50). Because you haven't made any changes to the API since AWS Cloud9 first deployed it, you don’t need to deploy the API again before you can run it in API Gateway itself.

1. In the **Lambda** pane of the **AWS Resources** window, right-click the **myDateTimeFunction** Lambda icon, and then choose **Run, Run APIGateway Remote**.
Step 10: Change the Function Locally

In this step, you use the IDE to make a small change to the Lambda function. You then test the changed function locally and the original function in production to see the differences.

1. In the `index.js` file, on line 41, add a `time` value to the `result` variable, as follows.

   ```javascript
 result = {
 "time": d.toTimeString(),
 "hour": h,
 "minute": mi,
 "second": s
 };

 2. On line 86, add a `date` value to the `result` variable, as follows.

   ```javascript
   result = {
     "date": d.toDateString(),
     "month": mo,
     "day": da,
     "year": y
   };
   
   3. Save your changes to the `index.js` file.

   4. Run the changed function locally by following the instructions in Step 4: Run the Function Locally (p. 54). Notice that the `time` or `date` value is now displayed in the response.

   5. Run the original function in production by following the instructions in Step 8: Run the Function in Production (p. 59). Notice that the `time` or `date` value doesn't display in the response yet. This is because you have not deployed the changed function into production. You do this in the next step.

Step 11: Deploy the Changed Function into Production

In this step, you deploy the changed function again to Lambda itself. You then test the changed function in production to confirm the deployment.

1. In the Lambda pane of the AWS Resources window, right-click the `myDateTimeFunction` Lambda icon, and then choose Deploy.

2. After the deployment succeeds, run the changed function in production by following the instructions in Step 8: Run the Function in Production (p. 59). Notice that the `time` or `date` value now appears in the response.

Remember, whenever you make a change to the local function and you want to deploy those changes to Lambda (and API Gateway, if an accompanying API exists), be sure to follow this step.
Step 12: Clean Up

To prevent ongoing charges to your AWS account that are related to this tutorial after you're finished, you can delete the function from Lambda, the API from API Gateway, and the environment from AWS Cloud9.

Step 12.1: Delete the Function and the API from Lambda and API Gateway

For AWS Cloud9 to create the function and its associated API, behind the scenes AWS Cloud9 uses the AWS Serverless Application Model (AWS SAM) to create a stack in AWS CloudFormation. This stack then creates the function and its associated API. In this procedure, you use the IDE to have AWS CloudFormation delete the stack, which also deletes the function and the API. (You could use the Lambda and API Gateway consoles instead of AWS CloudFormation to delete the function and its associated API. However, that approach takes longer and still leaves the stack in AWS CloudFormation when it's no longer needed.)

**Warning**

Deleting a stack cannot be undone. When you delete this stack, the associated function and its API are deleted from Lambda and API Gateway and cannot be recovered.

1. From the IDE, use the AWS Command Line Interface (AWS CLI) in the terminal to run the AWS CloudFormation `delete-stack` command, specifying the name and the AWS Region ID for the stack. (To display the terminal, on the menu bar, choose Window, New Terminal). This stack's name follows the format `cloud9-APPLICATION_NAME`, so you would specify `cloud9-MyDateTimeApplication` for this tutorial. To get the AWS Region ID (represented in the following command as `us-east-2`), see the corner of the Lambda pane in the AWS Resources window.

   ```
 aws cloudformation delete-stack --stack-name cloud9-MyDateTimeApplication --region us-east-2
   ```

   If the command ran successfully, no output and no error message are displayed.

   **Note**

   If you use an IAM user to run this command for this tutorial, instead of an AWS account root user or an IAM administrator, the IAM user must have the following additional AWS access permissions.
   - `cloudformation:ListStacks`
   - `cloudformation:DeleteStack`

   If you cannot add these permissions to the IAM user, see your organization's AWS account administrator.

2. To verify that the stack is deleted, use the AWS CLI to run the AWS CloudFormation `describe-stacks` command. If the function is deleted, a message is displayed that the stack doesn't exist. (You might need to run this command multiple times until that message is displayed.)

   ```
 aws cloudformation describe-stacks --query 'Stacks[0].StackStatus' --output text --stack-name cloud9-MyDateTimeApplication --region us-east-2
   ```

3. If you no longer want to keep the local function in the IDE, delete the `~/environment/MyDateTimeApplication` folder (for example, by running the command `rm -rf ~/environment/MyDateTimeApplication`).

   **Note**

   In the IDE, `~/environment` is the same as specifying the root directory in the Environment window.
Step 12.2: Delete the Environment from AWS Cloud9

Warning
Deleting an environment cannot be undone. Also, when you delete an EC2 environment, AWS Cloud9 also terminates the Amazon EC2 instance that it previously launched and connected to the environment. Once terminated in Amazon EC2, the instance cannot be reactivated or recovered.

1. From the IDE, open the dashboard in the AWS Cloud9 console. To do this, on the menu bar, choose AWS Cloud9, Go To Your Dashboard.
2. Do one of the following:
   - Choose the title inside of the `my-demo-lambda-environment` card, and then choose Delete.
   - Select the `my-demo-lambda-environment` card, and then choose Delete.
3. In the Delete dialog box, type Delete, and then choose Delete.

Next Steps
Explore any or all of the following topics to continue getting familiar with AWS Cloud9.

Learn more about how to use AWS Cloud9 with Lambda	Advanced AWS Lambda Tutorial (p. 62) and Working with AWS Lambda Functions (p. 290)
Learn more about the AWS Cloud9 IDE	IDE Tutorial (p. 20) and Working with the IDE (p. 112)
Invite others to use your environment with you, in real time and with text chat support	Working with Shared Environments (p. 93)
Create SSH environments (environments that use cloud compute instances or servers that you create, instead of an Amazon EC2 instances that AWS Cloud9 creates for you).	Creating an Environment (p. 74) and SSH Environment Host Requirements (p. 426)
Use AWS Cloud9 with Amazon Lightsail	Working with Amazon Lightsail Instances (p. 281)
Use AWS Cloud9 with AWS CodePipeline	Working with AWS CodePipeline (p. 324)
Use AWS Cloud9 with the AWS CLI, the aws-shell, AWS CodeCommit, GitHub, or Amazon DynamoDB, as well as Node.js, Python, or other programming languages	Samples (p. 327)

To get help with AWS Cloud9 from the community, see the AWS Cloud9 Discussion Forum. (When you enter this forum, AWS might require you to sign in.)
To get help with AWS Cloud9 directly from AWS, see the support options on the AWS Support page.

Advanced AWS Lambda Tutorial for AWS Cloud9

In this tutorial, you use the AWS Cloud9 IDE to create a function in AWS Lambda and an accompanying API in Amazon API Gateway. After you create the function and its API, you run and debug them locally.
Then you run the function and API in Lambda and API Gateway in production. The function and its API call Amazon Simple Notification Service (Amazon SNS) to send messages to an email address that you specify.

**Note**
Completing this tutorial might result in charges to your AWS account. These include possible charges for Amazon EC2, Lambda, API Gateway, and Amazon SNS. For more information, see Amazon EC2 Pricing, AWS Lambda Pricing, Amazon API Gateway Pricing, and Amazon SNS Pricing.

- Prerequisites (p. 63)
- Step 1: Create the Lambda Function and API (p. 63)
- Step 2: Set up Amazon SNS (p. 65)
- Step 3: Run the Function Locally (p. 66)
- Step 4: Debug the Function Locally (p. 67)
- Step 5: Run the API Locally (p. 68)
- Step 6: Debug the API Locally (p. 68)
- Step 7: Deploy and Run the Changed Function in Production (p. 69)
- Step 8: Clean Up (p. 70)
- Next Steps (p. 71)

## Prerequisites

Before you start this tutorial, we recommend that you first complete the companion AWS Lambda Tutorial for AWS Cloud9 (p. 47). This tutorial builds on the prerequisites and concepts that are presented there.

**Note**
If you don't want to complete that entire tutorial first, you must at least complete the following steps in that tutorial or else create the equivalent AWS resources.

- Prerequisites (p. 48): This includes creating an AWS account if you don't already have one, and deciding which IAM entity in the account you'll use to complete this tutorial.
- Step 1: Create and Open the environment (p. 48): This includes creating an AWS Cloud9 EC2 development environment and opening the AWS Cloud9 IDE for that environment.

## Step 1: Create the Lambda Function and API

In this step, you use the AWS Cloud9 IDE to create the Lambda function and its accompanying API at the same time. AWS Cloud9 stores the new function on the Amazon EC2 instance and deploys a copy of the function to Lambda. AWS Cloud9 also stores the new accompanying API on the instance and deploys a copy of the API to API Gateway.

The function uses Amazon Simple Notification Service (Amazon SNS) to send messages to your email address. In a later step, you create the Amazon SNS resources that this function needs.

Currently, you can use the IDE to create functions that use only Node.js or Python. This function uses Node.js.

1. With the IDE displayed for the environment, on the menu bar, choose **AWS Cloud9, Preferences**.
2. In the navigation pane of the **Preferences** tab, choose **AWS Settings**.
3. For **AWS Region**, select the AWS Region you want to create the function in.
4. On the edge of the IDE, choose **AWS Resources**.
5. Expand the **Lambda** pane, if it's not already expanded. On the toolbar, choose **Create a new Lambda function**.

6. In the **Create serverless application** dialog box, for **Function name**, type a name for the function (for example, *mySNSFunction*).
7. For **Application name**, type a name for the function’s containing serverless application (for example, *MySNSApplication*).
8. Choose **Next**.
9. For **Select runtime**, choose **Node.js 6.10**.
10. For **Select blueprint**, choose **sns-send-message**. (You might need to scroll through the list of blueprints to see it.)
11. Choose **Next**.
12. For **Function trigger**, choose **API Gateway**.
14. For **Security**, choose **NONE**, and then choose **Next**.
15. For **Memory (MB)**, leave the default value of **128 MB**, which is sufficient for this tutorial.
16. For **Role**, leave the default value of **Automatically generate role**, and then choose **Next**. (You change this role in the next step.)
17. Review your choices, and then choose **Finish**.
AWS Cloud9 User Guide

Step 2: Set up Amazon SNS

AWS Cloud9 creates the function and its related API on the instance and then deploys a copy of the function and API to Lambda and API Gateway. The serverless application and function are displayed in the **Local Functions** and **Remote Functions** lists in the **Lambda** pane of the **AWS Resources** window. The serverless application's and function's component files (for example, a AWS CloudFormation template that you use later to create Amazon SNS resources) are displayed in the **Environment** window. The editor opens the function's code file, `index.js`.

If you run this function or API now, it won't work. This is because the Amazon SNS resources that this function needs are not set up yet. Also, the function doesn't have permission to call Amazon SNS. In the next step, you set up these resources and provide this permission.

**Step 2: Set up Amazon SNS**

In this tutorial, the Lambda function uses Amazon SNS to send messages to your email address. In this step, you run an AWS CloudFormation stack that quickly creates a topic in Amazon SNS and then subscribes your email address to the topic. The stack also creates an execution role in IAM to allow the Lambda function permission to use Amazon SNS. (You could do all of this setup in Amazon SNS and IAM manually, but AWS CloudFormation makes this setup easier and faster.) After AWS CloudFormation creates the stack, you attach the execution role to the function, and then give Amazon SNS permission to start sending messages to your email address.

1. In the terminal, change to the directory that contains the AWS CloudFormation template file named `sns-create-topic-subscription.yaml`.

   ```
cd ~/environment/MySNSApplication
   ```

   **Note**
   In the IDE, `~/environment` is the same as specifying the root directory in the Environment window.

2. Use the AWS CLI to run the following command, which creates and runs a AWS CloudFormation stack based on this template file.

   ```
aws cloudformation create-stack --template-body file://sns-create-topic-subscription.yaml --capabilities CAPABILITY_NAMED_IAM --parameters ParameterKey=SNSTopicName,ParameterValue=MySNSTopic ParameterKey=EmailAddress,ParameterValue=me@example.com --stack-name MySNSStack --region us-east-2
   ```

   In the preceding command, do the following.
   - Replace `MySNSTopic` with whatever you want to name the Amazon SNS topic to send messages to.
   - Replace `me@example.com` with your email address for Amazon SNS to send messages to.
   - Replace `MySNSStack` with whatever you want to name the stack.
   - Replace `us-east-2` with the ID of the AWS Region where you created the function (see the corner of the **Lambda** pane in the **AWS Resources** window).

   **Note**
   If you use an IAM user to call AWS CloudFormation for this tutorial, instead of an AWS account root user or an IAM administrator user, the IAM user must have the following additional AWS access permissions.
   - `cloudformation:CreateUploadBucket`
   - `cloudformation:GetTemplateSummary`
   - `cloudformation:ListStacks`
   - `iam:CreateRole`
   - `iam:PutRolePolicy`
Step 3: Run the Function Locally

In this step, you use the IDE to run the newly created function on the instance, which sends messages to your email address. Currently, you can use the IDE to run functions that use only Node.js or Python.

1. With the IDE still displayed for the environment, in the Lambda pane of the AWS Resources window, expand Local Functions, expand the MySNSApplication Lambda folder, right-click the mySNSFunction Lambda icon, and then choose Run, Run Local.

2. In the Payload pane on the run tab, replace the pane's contents with the following, which sends the specified data to the function for processing.

```json
{
 "region": "us-east-2",
 "message": "You just sent an email by using Amazon SNS.",
 "subject": "Hello from Amazon SNS",
 "topicARN": "arn:aws:sns:us-east-2:123456789012:MySNSTopic"
}
```
Step 4: Debug the Function Locally

In this step, you use the IDE to debug the function on the instance. Currently, you can use the IDE to debug functions that use only Node.js or Python. Also, you can use the IDE to debug functions locally only. You cannot use the IDE to debug functions in Lambda itself.

1. With the IDE still displayed for the environment, open the index.js file.
2. Create a breakpoint for the debugger. To do this, in the editor, click inside the gutter next to the line of code that starts with sns.publish on line 45. A red circle is displayed, representing the breakpoint.
3. On the edge of the IDE, choose Debugger.
4. Add four expressions for the debugger to watch. To do this, in the Watch Expressions area, for Type an expression here, type event['subject'], and then press Enter. Do this two more times, typing context['memoryLimitInMB'] and sns.endpoint.hostname.

   **Note**
   If you completed the previous Lambda tutorial, you can delete any of those watch expressions that might still be there. To do this, simply right-click an expression, and then choose Remove Watch Expression.

5. On the run tab from the previous step, choose the icon that looks like a bug. (It will switch from grey to green.)

   Code execution pauses at the breakpoint and displays the current values of the message's subject line, the function's memory limit in megabytes, and the Amazon SNS service's hostname.
Step 5: Run the API Locally

In this step, you use the IDE to have API Gateway run the Lambda function on the instance.

1. In the Lambda pane of the AWS Resources window, right-click the mySNSFunction Lambda icon, and then choose Run, Run APIGateway Local.
   
   **Note**
   
   You can also do this by choosing the Lambda (local) list on the run tab from the previous step, and then choosing API Gateway (local).

2. On the run tab, for Path, type /.

3. For Method, choose POST.

4. For Body, replace the pane's contents with the following, which sends this data as input to the API for processing.

   ```json
 {
 "region": "us-east-2",
 "message": "You just sent an email by using Amazon SNS.",
 "subject": "Hello from Amazon SNS",
 "topicARN": "arn:aws:sns:us-east-2:123456789012:MyDemoSNSTopic"
 }
   ```

5. If the bug icon is green, choose it to turn it off. (It switches back to grey.)


7. If the response shows success, then in a few minutes, check your email for the message that was sent.

Step 6: Debug the API Locally

In this step, you use the IDE to have API Gateway debug the Lambda function on the instance.

1. Ensure that the index.js file still has a breakpoint set on the line of code sns.publish.

2. Ensure that the Watch Expressions area of the Debugger window is still watching event['subject'], context['memoryLimitInMB'], and sns.endpoint.hostname.

3. On the run tab from the previous step, choose the icon that looks like a bug. (It switches from grey to green.)


   Code execution pauses at the breakpoint and displays the current values of the message's subject line, the function's memory limit in megabytes, the Amazon SNS service's hostname, and the caller's AWS access key ID.

   You can also see these values by hovering your mouse over event, context, and sns followed by expanding the screen tip that is displayed.

5. In the Debugger window, choose the blue Resume button to finish running the code.
6. If the response shows success, then in a few minutes, check your email for the message that was sent.

**Step 7: Deploy and Run the Changed Function in Production**

In this step, you deploy the function that you changed in Step 5: Run the API Locally (p. 68) to Lambda and API Gateway. You then test the changes in production to confirm the deployment.

1. In the Lambda pane of the AWS Resources window, right-click the mySNSFunction Lambda icon, and then choose Deploy.
2. After the deployment succeeds, run the changed function in production. To do this, in the Lambda pane of the AWS Resources window, right-click the mySNSFunction Lambda icon, and then choose Run, Run Remote.
   
   **Note**
   You can also do this by choosing the API Gateway (local) list on the run tab from the previous step, and then choosing Lambda (remote).
3. Ensure that the Payload pane on the run tab still contains the following data.

   ```json
 {
 "region": "us-east-2",
 "message": "You just sent an email by using Amazon SNS.",
 "subject": "Hello from Amazon SNS",
 "topicARN": "arn:aws:sns:us-east-2:123456789012:MyDemoSNSTopic"
 }
   ```
5. If the response shows a statusCode of 200, then in a few minutes, check your email for the message that was sent.
6. Run the API in production. To do this, in the Lambda pane of the AWS Resources window, right-click the mySNSFunction Lambda icon, and then choose Run, Run APIGateway Remote.
   
   **Note**
   You can also do this by choosing the Lambda (remote) list on the run tab, and then choosing API Gateway (remote).
7. On the run tab, for Path, type `/`.  
8. For Method, choose POST.  
9. For Body, be sure the following data is still displayed.

   ```json
 {
 "region": "us-east-2",
 "message": "You just sent an email by using Amazon SNS.",
 "subject": "Hello from Amazon SNS",
 "topicARN": "arn:aws:sns:us-east-2:123456789012:MyDemoSNSTopic"
 }
   ```
11. If the response shows success, then in a few minutes, check your email for the message that was sent.
Step 8: Clean Up

To prevent ongoing charges to your AWS account related to this tutorial, you can delete the function from Lambda, the API from API Gateway, the topic and subscription from Amazon SNS, the Lambda execution role from IAM, and the environment from AWS Cloud9.

Step 8.1: Delete the Function and the API from Lambda and API Gateway

For AWS Cloud9 to create the function and its associated API, behind the scenes AWS Cloud9 uses the AWS Serverless Application Model (AWS SAM) to create a stack in AWS CloudFormation. This stack then creates the function and its associated API. In this procedure, you use the IDE to have AWS CloudFormation delete the stack, which also deletes the function and the API. (You could use the Lambda and API Gateway consoles instead of AWS CloudFormation to delete the function and its associated API. However, that approach takes longer and still leaves the stack in AWS CloudFormation when it's no longer needed.)

Warning
Deleting a stack cannot be undone. When you delete this stack, the associated function and its API are deleted from Lambda and API Gateway and cannot be recovered.

1. From the IDE, use the AWS CLI in the terminal to run the AWS CloudFormation delete-stack command, specifying the name of the stack. This stack's name follows the format cloud9-APPLICATION_NAME, so you would specify cloud9-MySNSApplication for this tutorial.

   ```bash
 aws cloudformation delete-stack --stack-name cloud9-MySNSApplication --region us-east-2
   ```

   If the command ran successfully, no output and no error message are displayed.

   Note
   If you use an IAM user to run this command for this tutorial, instead of an AWS account root user or an IAM administrator user, the IAM user must have the following additional AWS access permissions:
   - cloudformation:ListStacks
   - cloudformation:DeleteStack
   If you cannot add these permissions to the IAM user, see your organization's AWS account administrator.

2. To verify that the stack is deleted, use the AWS CLI to run the AWS CloudFormation describe-stacks command. If the function is deleted, a message is displayed that the stack doesn't exist.

   ```bash
 aws cloudformation describe-stacks --query 'Stacks[0].StackStatus' --output text --stack-name cloud9-MySNSApplication --region us-east-2
   ```

3. If you no longer want to keep the local function in the IDE, delete the ~/environment/MySNSApplication folder (for example, by running the command `rm -rf ~/environment/MySNSApplication`).

Step 8.2: Delete the Topic and Subscription from Amazon SNS and the Lambda Execution Role from IAM

When you delete the AWS CloudFormation stack that you created in Step 2: Set up Amazon SNS (p. 65), the Amazon SNS topic and subscription are deleted, as well as the execution role for the Lambda function.
Warning
Deleting a stack cannot be undone. When you delete this stack, the associated topic, subscription, and execution role are deleted from Amazon SNS and IAM and cannot be recovered.

1. With the IDE still displayed for the environment, use the AWS CLI in the terminal to run the AWS CloudFormation delete-stack command, specifying the name of the stack.

```
aws cloudformation delete-stack --stack-name MySNSStack --region us-east-2
```

Note
If you use an IAM user to run this command, instead of an AWS account root user or an IAM administrator user, the IAM user must have the following additional AWS access permissions.

- cloudFormation:DeleteStack
- iam:DeleteRole
- iam:DeleteRolePolicy
- sns:DeleteTopic
- sns:Unsubscribe

If you cannot add these permissions to the IAM user, see your organization's AWS account administrator.

If the command ran successfully, no output and no error message are displayed.

2. To verify that the stack is deleted, use the AWS CLI to run the following command.

```
aws cloudformation describe-stacks --query 'Stacks[0].StackStatus' --output text --stack-name MySNSStack --region us-east-2
```

Keep running the preceding command until the output states that the stack doesn't exist.

Step 8.3: Delete the Environment from AWS Cloud9

Warning
Deleting an environment cannot be undone. Also, when you delete an EC2 environment, AWS Cloud9 also terminates the Amazon EC2 instance that it previously launched and connected to the environment. Once terminated in Amazon EC2, the instance cannot be reactivated or recovered.

1. With the IDE still displayed for the environment, open the dashboard in the AWS Cloud9 console. To do this, on the menu bar in the IDE, choose AWS Cloud9, Go To Your Dashboard.

2. Do one of the following.
   - Choose the title that matches the name of the environment, and then choose Delete.
   - Select the card that contains the name of the environment, and then choose Delete.

3. In the Delete dialog box, type Delete, and then choose Delete.

Next Steps
Explore any or all of the following topics to continue getting familiar with AWS Cloud9.

Learn more about how to use AWS Cloud9 with Lambda
Working with AWS Lambda Functions (p. 290)
### Next Steps

<table>
<thead>
<tr>
<th>Learn more about the AWS Cloud9 IDE</th>
<th>IDE Tutorial (p. 20) and Working with the IDE (p. 112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invite others to use your environment with you, in real time and with text chat support</td>
<td>Working with Shared Environments (p. 93)</td>
</tr>
<tr>
<td>Create SSH environments (environments that use cloud compute instances or servers that you create, instead of an Amazon EC2 instances that AWS Cloud9 creates for you)</td>
<td>Creating an Environment (p. 74) and SSH Environment Host Requirements (p. 426)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with Amazon Lightsail</td>
<td>Working with Amazon Lightsail Instances (p. 281)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with AWS CodePipeline</td>
<td>Working with AWS CodePipeline (p. 324)</td>
</tr>
<tr>
<td>Use AWS Cloud9 with the AWS CLI, the aws-shell, AWS CodeCommit, GitHub, or Amazon DynamoDB, as well as Node.js, Python, or other programming languages</td>
<td>Samples (p. 327)</td>
</tr>
</tbody>
</table>

To get help with AWS Cloud9 from the community, see the [AWS Cloud9 Discussion Forum](https://aws.amazon.com/community/discussions). (When you enter this forum, AWS might require you to sign in.)

To get help with AWS Cloud9 directly from AWS, see the support options on the [AWS Support](https://aws.amazon.com/support/) page.
Working with Environments in AWS Cloud9

A development environment is a place in AWS Cloud9 where you store your project's files and where you run the tools to develop your apps.

AWS Cloud9 provides two types of development environments: EC2 environments and SSH environments. Here are the key similarities and differences between them.

<table>
<thead>
<tr>
<th>EC2 environments</th>
<th>SSH environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Cloud9 creates an associated Amazon EC2 instance and manages that instance's lifecycle (for example, start, stop, and terminate).</td>
<td>You use an existing cloud compute instance or your own server. You manage that instance's or server's lifecycle.</td>
</tr>
<tr>
<td>The instance runs on Amazon Linux.</td>
<td>You can use any cloud compute instance that runs Linux, or your own server running Linux.</td>
</tr>
<tr>
<td>AWS Cloud9 automatically sets up the instance to start working with AWS Cloud9.</td>
<td>You must manually configure the instance or your own server to work with AWS Cloud9.</td>
</tr>
<tr>
<td>AWS Cloud9 automatically sets up the AWS Command Line Interface (AWS CLI) on the instance for you to start using.</td>
<td>If you want to use the AWS CLI on the instance or your own server, you must set it up yourself.</td>
</tr>
<tr>
<td>The instance has access to hundreds of useful packages, with some common packages already installed and configured, such as Git, Docker, Node.js, and Python.</td>
<td>You might need to download, install, and configure additional packages to complete common tasks.</td>
</tr>
<tr>
<td>You maintain the instance, for example by periodically applying system updates.</td>
<td>You maintain the instance or your own server.</td>
</tr>
<tr>
<td>When you delete the environment, AWS Cloud9 automatically terminates the associated instance.</td>
<td>When you delete the environment, the instance or your own server remains.</td>
</tr>
</tbody>
</table>

Learn how to work with an environment in AWS Cloud9 by reading one or more of these topics.

Topics
- Creating an Environment in AWS Cloud9 (p. 74)
- Opening an Environment in AWS Cloud9 (p. 81)
- Calling AWS Services from an Environment in AWS Cloud9 (p. 83)
- Changing Environment Settings in AWS Cloud9 (p. 89)
- Working with Shared Environments in AWS Cloud9 (p. 93)
- Moving or Resizing an Environment in AWS Cloud9 (p. 107)
- Deleting an Environment in AWS Cloud9 (p. 108)
Creating an Environment in AWS Cloud9

To create an AWS Cloud9 development environment, follow one of these sets of procedures, depending on how you plan to use AWS Cloud9.

<table>
<thead>
<tr>
<th>Source code provided by</th>
<th>Development environment host provided by</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>You</td>
<td>AWS Cloud9</td>
<td>This topic (create an EC2 environment (p. 74))</td>
</tr>
<tr>
<td>You</td>
<td>You</td>
<td>This topic (create an SSH environment (p. 78))</td>
</tr>
<tr>
<td>Amazon Lightsail or you</td>
<td>You, by using Lightsail</td>
<td>Working with Amazon Lightsail Instances (p. 281)</td>
</tr>
<tr>
<td>AWS CodeStar or you</td>
<td>AWS Cloud9, by using AWS CodeStar</td>
<td>Working with AWS CodeStar Projects (p. 288)</td>
</tr>
<tr>
<td>You, by using AWS CodePipeline</td>
<td>AWS Cloud9 or you</td>
<td>This topic (create an EC2 (p. 74) or SSH (p. 78) environment), and then see Working with AWS CodePipeline (p. 324)</td>
</tr>
<tr>
<td>You, by using AWS CodeCommit</td>
<td>AWS Cloud9 or you</td>
<td>AWS CodeCommit Sample (p. 330)</td>
</tr>
<tr>
<td>You, by using GitHub</td>
<td>AWS Cloud9 or you</td>
<td>This topic (create an EC2 (p. 74) or SSH (p. 78) environment), and then see the GitHub Sample (p. 336)</td>
</tr>
</tbody>
</table>

Creating an EC2 Environment

**Note**
Completing this procedure might result in charges to your AWS account. These include possible charges for Amazon EC2. For more information, see Amazon EC2 Pricing.

In this procedure, AWS Cloud9 creates an EC2 environment, creates a new Amazon EC2 instance, and then connects the environment to this newly-created instance. AWS Cloud9 manages this instance's lifecycle, including starting, stopping, and restarting the instance as needed. If you ever delete this environment, AWS Cloud9 automatically terminates this instance.

You can create an AWS Cloud9 EC2 development environment with the AWS Cloud9 console (p. 75) or with code (p. 77).
Creating an EC2 Environment with the Console

1. Make sure you completed the steps in Express Setup (p. 5) or Team Setup (p. 7) first, so that you can sign in to the AWS Cloud9 console and create environments.


3. After you sign in to the AWS Cloud9 console, in the top navigation bar, choose an AWS Region to create the environment in. For a list of available AWS Regions, see AWS Cloud9 in the Amazon Web Services General Reference.

4. If a welcome page is displayed, for New AWS Cloud9 environment, choose Create environment. Otherwise, choose Create environment.

5. On the Name environment page, for Name, type a name for your environment.

6. To add a description to your environment, type it in Description.
7. Choose **Next step**.

8. On the **Configure settings** page, for **Environment type**, choose **Create a new instance for environment (EC2)**.

9. For **Instance type**, choose an instance type with the amount of RAM and vCPUs you think you need for the kinds of tasks you want to do. Or leave the default choice.

   **Note**
   Choosing instance types with more RAM and vCPUs might result in additional charges to your AWS account for Amazon EC2.

10. For **Cost-saving setting**, choose the amount of time until AWS Cloud9 shuts down the Amazon EC2 instance for the environment after all web browser instances that are connect to the IDE for the environment have been closed. Or leave the default choice.

   **Note**
   Choosing a shorter time period might result in fewer charges to your AWS account. Likewise, choosing a longer time might result in more charges.

11. Expand **Network settings (advanced)**.

12. AWS Cloud9 uses Amazon Virtual Private Cloud (Amazon VPC) in your AWS account to communicate with the Amazon EC2 instance that AWS Cloud9 creates for this environment. Depending on how Amazon VPC is set up in your AWS account, do one of the following.

   If you're not sure what to choose, we recommend that you skip ahead to step 13 in this procedure.

   When you skip past **Network settings (advanced)** and leave the preselected default settings, AWS Cloud9 attempts to automatically use the default VPC in your account with its single subnet.

<table>
<thead>
<tr>
<th>Does your AWS account have a VPC with at least one subnet in that VPC?</th>
<th>Is the VPC you want AWS Cloud9 to use the default VPC in your account?</th>
<th>Does the VPC have a single subnet?</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>—</td>
<td>—</td>
<td>If no VPC exists, create one. To do this, choose <strong>Create new VPC</strong>, and then follow the on-screen directions. For more information, see [Create an Amazon VPC for AWS Cloud9](p. 423).</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Skip ahead to the step 13 in this procedure.</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

76
Creating an EC2 Environment

<table>
<thead>
<tr>
<th>Does your AWS account have a VPC with at least one subnet in that VPC?</th>
<th>Is the VPC you want AWS Cloud9 to use the default VPC in your account?</th>
<th>Does the VPC have a single subnet?</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>When you skip past Network settings (advanced) and leave the preselected default settings, AWS Cloud9 attempts to automatically use the default VPC in your account with its single subnet.</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>For Subnet, choose the subnet you want AWS Cloud9 to use in the preselected default VPC.</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>—</td>
<td>For Network (VPC), choose the VPC that you want AWS Cloud9 to use. For Subnet, choose the subnet you want AWS Cloud9 to use in that VPC.</td>
</tr>
</tbody>
</table>

For more information about these choices, see Amazon VPC Settings (p. 414).

13 Choose Next step.

14 On the Review page, choose Create environment. Wait while AWS Cloud9 creates your environment. This can take several minutes.

After AWS Cloud9 creates your environment, it displays the AWS Cloud9 IDE for the environment.

If AWS Cloud9 doesn’t display the IDE after at least five minutes, there might be a problem with your web browser, your AWS access permissions, the instance, or the associated virtual private cloud (VPC). For possible fixes, see Cannot Open an Environment (p. 453) in Troubleshooting.

Creating an EC2 Environment with Code

To use code to create an EC2 environment in AWS Cloud9, call the AWS Cloud9 create EC2 environment operation, as follows.

**Note**

Make sure you completed the steps in Express Setup (p. 5) or Team Setup (p. 7) first, so that you can create environments.

| AWS CLI | create-environment-ec2 |
| AWS SDK for C++ | CreateEnvironmentEC2Request, CreateEnvironmentEC2Result |
Creating an SSH Environment

You create an AWS Cloud9 SSH development environment with the AWS Cloud9 console. (You cannot create an SSH environment with code.)

Prerequisites

- Make sure you completed the steps in Express Setup (p. 5) or Team Setup (p. 7), so that you can sign in to the AWS Cloud9 console and create environments.
- Identify an existing cloud compute instance (for example an Amazon EC2 instance in your AWS account), or your own server, that you want AWS Cloud9 to connect to the environment.
- The existing instance or your own server must be running Linux. AWS Cloud9 doesn't support Windows.
- You must be able to reach the existing instance or your own server over the public Internet by using SSH. You cannot use this procedure if you can only reach the instance or your own server through a virtual private cloud (VPC) or virtual private network (VPN) and that VPC or VPN doesn't have access to the public internet.
- If the existing AWS instance is part of an Amazon Virtual Private Cloud (Amazon VPC), the VPC must meet AWS Cloud9 requirements. For details, see Amazon VPC Settings (p. 414).
- The existing instance or server must have Python installed, and the version must be 2.7. To check your version, from your instance's or server's terminal, run the command `python --version`. To install Python 2.7 on your server, see one of the following:
  - Step 1: Install Required Tools (p. 369) in the Python Sample.
  - Download Python from the Python website and see Installing Packages in the Python Packaging User Guide.
- The existing instance or server must have Node.js installed, and the version must be 0.6.16 or later. To check your version, from your instance's or server's terminal, run the command `node --version`. To install Node.js on your server, see one of the following:
  - Step 1: Install Required Tools (p. 382) in the Node.js Sample.
  - Installing Node.js via package manager on the Node.js website.
  - Node Version Manager on GitHub.
• The directory that you want AWS Cloud9 to start from after login on the existing instance or server must have its access permissions set to `rwxr-xr-x`. This means read-write-execute permissions for the owner, read-execute permissions for the group, and read-execute permissions for others. For example, if the directory's path is `~`, you can set these permissions on the directory by running the `chmod` command on the instance or server, as follows.

```
sudo chmod u=rwx,g=rx,o=rx ~
```

Create the SSH Environment

1. Make sure you completed the preceding prerequisites.
3. After you sign in to the AWS Cloud9 console, in the top navigation bar, choose an AWS Region to create the environment in. For a list of available AWS Regions, see AWS Cloud9 in the Amazon Web Services General Reference.

4. If a welcome page is displayed, for New AWS Cloud9 environment, choose Create environment. Otherwise, choose Create environment.
Or:

5. On the **Name environment** page, for **Name**, type a name for your environment.
6. To add a description to your environment, type it in **Description**.
7. Choose **Next step**.
8. For **Environment type**, choose **Connect and run in remote server (SSH)**.
9. Choose **Copy key to clipboard**. (This is between **View public SSH key** and **Advanced settings**.) Paste the public SSH key value that was copied into the ~/.ssh/authorized_keys file on the existing instance or server.

**Note**
To see the public SSH key value that was copied, expand **View public SSH key**.
10. After you paste the public SSH key value, back on the **Configure settings** page in the AWS Cloud9 console, for **User**, type the login name you use for the instance or server. For example, for an Amazon EC2 instance running Amazon Linux, it might be **ec2-user**. For another type of server, it might be **root**.
11. For **Host**, type the public IP address (preferred) or the hostname of the instance or server.
12. For **Port**, type the port that you want AWS Cloud9 to use to try to connect to the instance or server, or leave the default port.
13. To specify the path to the directory on the instance or server that you want AWS Cloud9 to start from after login, which you identified earlier in this procedure's prerequisites, expand **Advanced settings**, and then type the path in **Environment path**. If you leave this blank, AWS Cloud9 uses the directory that your instance or server typically starts with after login. This is usually a home or default directory.
14. To specify the path to the Node.js binary on the instance or server, expand **Advanced settings**, and then type the path in **Node.js binary path**. To get the path, you can run the command **which node** (or **nvm which node** if you're using nvm) on your instance or server. For example, the path might be **/usr/bin/node**. If you leave this blank, AWS Cloud9 will try to guess where the Node.js binary is when it tries to connect.
15. To specify a jump host that the instance or server uses, expand **Advanced settings**, and then type information about the jump host in **SSH jump host**, using the format **USER_NAME@HOSTNAME:PORT_NUMBER** (for example, **ec2-user@ip-192-0-2-0:22**)

The jump host must meet the following requirements.
- It must be reachable over the public Internet using SSH.
- It must allow inbound access by any IP address over the specified port.
- The public SSH key value that was copied into the ~/.ssh/authorized_keys file on the existing instance or server must also be copied into the ~/.ssh/authorized_keys file on the jump host.
16. Choose **Next step**.
17. On the **Review** page, choose **Create environment**. Wait while AWS Cloud9 creates your environment. This can take several minutes.

After AWS Cloud9 creates the environment, it displays the AWS Cloud9 IDE for the environment, and the **AWS Cloud9 installer** dialog box displays. Choose **Next** on each of these confirmation pages to complete the environment setup process.

If AWS Cloud9 doesn't display the IDE after at least five minutes, there might be a problem with your web browser, your AWS access permissions, the instance, or the associated network. For possible fixes, see **Cannot Open an Environment (p. 453)** in **Troubleshooting**.
Opening an Environment in AWS Cloud9

This procedure describes how to open an environment in AWS Cloud9.

**Note**
This procedure assumes you have already created an AWS Cloud9 development environment. To create an environment, see Creating an Environment (p. 74).

2. In the top navigation bar, choose the AWS Region where the environment is located.
3. In the list of environments, for the environment you want to open, do one of the following.
   - Inside of the card, choose the **Open IDE** link.
   - Select the card, and then choose the **Open IDE** button.
If your environment is not displayed in the console, try doing one or more of the following actions to try to display it.

- In the side navigation bar, choose one or more of the following.
  - Choose **Your environments** to display all environments that your AWS entity owns within the selected AWS Region and AWS account.
  - Choose **Shared with you** to display all environments your AWS entity has been invited to within the selected AWS Region and AWS account.
  - Choose **Account environments** to display all environments within the selected AWS Region and AWS account that your AWS entity has permissions to display.

- Choose the previous arrow, next arrow, or page number button to display more environments in the current scope.

- If you think you should be a member of an environment, but the environment is not displayed in the **Shared with you** list, check with the environment owner.
- In the top navigation bar, choose a different AWS Region.
Calling AWS Services from an Environment in AWS Cloud9

You can call AWS services from an AWS Cloud9 development environment. For example, you can:

- Upload and download data in Amazon Simple Storage Service (Amazon S3) buckets.
- Send broadcast notifications through Amazon Simple Notification Service (Amazon SNS) topics.
- Read and write data in Amazon DynamoDB (DynamoDB) databases.

You can call AWS services from your environment in several ways. For example, you can use the AWS Command Line Interface (AWS CLI) or the aws-shell to run commands from a terminal session. You can also call AWS services from code you run within your environment, using AWS SDKs for programming languages such as JavaScript, Python, Ruby, PHP, Go, and C++. For more information, see the AWS CLI and aws-shell Sample (p. 327), the AWS CLI User Guide, and the AWS SDKs.

Each time the AWS CLI, the aws-shell, or your code calls an AWS service, the AWS CLI, the aws-shell, or your code must provide a set of AWS access credentials along with the call. These credentials determine whether the caller has the appropriate permissions to make the call. If the credentials don't cover the appropriate permissions, the call will fail.

There are several ways to provide credentials to your environment. The following table describes some approaches.

<table>
<thead>
<tr>
<th>Environment type</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2</td>
<td>Use AWS managed temporary credentials. We recommend this approach for an EC2 environment. AWS managed temporary credentials manage AWS access credentials in an EC2 environment on your behalf, while also following AWS security best practices.</td>
</tr>
</tbody>
</table>
Create and Use an Instance Profile to Manage Temporary Credentials

Note
You cannot use this procedure for an AWS Cloud9 SSH development environment. Instead, skip ahead to Create and Store Permanent Access Credentials in an Environment (p. 88).
We recommend using AWS managed temporary credentials instead of an instance profile.
Follow these instructions only if for some reason you cannot use AWS managed temporary credentials. For more information, see AWS Managed Temporary Credentials (p. 446).

In this procedure, you will use IAM and Amazon EC2 to create and attach an IAM instance profile to the Amazon EC2 instance that connects to your environment. This instance profile will manage temporary credentials on your behalf. This procedure assumes you have already created a environment in AWS Cloud9. To create a environment, see Create an Environment (p. 74).
You can complete these tasks with the IAM and Amazon EC2 consoles (p. 85) or the AWS Command Line Interface (AWS CLI) (p. 85).

Create an Instance Profile with the IAM Console

Note
If you already have an IAM role that contains an instance profile, skip ahead to Attach an Instance Profile to an Instance with the Amazon EC2 Console (p. 86).


   For this step, we recommend you sign in using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

2. In the navigation bar, choose Roles.

   Note
   You cannot use the IAM console to create an instance profile by itself. You must create an IAM role, which contains an instance profile.

3. Choose Create role.

4. On the Select type of trusted entity page, with AWS service already chosen, for Choose the service that will use this role, choose EC2.

5. For Select your use case, choose EC2.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, in the list of policies, select the box next to AdministratorAccess, and then choose Next: Review.

   Note
   The AdministratorAccess policy allows unrestricted access to all AWS actions and resources across your AWS account. It should be used only for experimentation purposes. For more information, see IAM Policies in the IAM User Guide.

8. On the Review page, for Role Name, type a name for the role (for example my-demo-cloud9-instance-profile).

9. Choose Create Role.

Skip ahead to Attach an Instance Profile to an Instance with the Amazon EC2 Console (p. 86).

Create an Instance Profile with the AWS CLI

Note
If you already have an IAM role that contains an instance profile, skip ahead to Attach an Instance Profile to an Instance with the AWS CLI (p. 87).

For this topic, we recommend you configure the AWS CLI using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

1. Define a trust relationship in AWS for the instance profile's required IAM role. To do this, create and then save a file with the following contents (for example, as my-demo-cloud9-instance-profile-role-trust.json).

   ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 }
]
 }
   ```
2. Using the terminal or command prompt, switch to the directory where you just saved this file.

3. Create an IAM role for the instance profile. To do this, run the IAM create-role command, specifying a name for the new IAM role (for example, my-demo-cloud9-instance-profile-role), and the name of the file you just saved.

   ```bash
   ```

4. Attach AWS access permissions to the instance profile's IAM role. To do this, run the IAM attach-role-policy command, specifying the name of the existing IAM role and the Amazon Resource Name (ARN) of the AWS managed policy named AdministratorAccess.

   ```bash
 aws iam attach-role-policy --role-name my-demo-cloud9-instance-profile-role --policy-arn arn:aws:iam::aws:policy/AdministratorAccess
   ```

   **Note**
   The **AdministratorAccess** policy allows unrestricted access to all AWS actions and resources across your AWS account. It should be used only for experimentation purposes. For more information, see IAM Policies in the **IAM User Guide**.

5. Create the instance profile. To do this, run the IAM create-instance-profile command, specifying a name for the new instance profile (for example, my-demo-cloud9-instance-profile).

   ```bash
 aws iam create-instance-profile --instance-profile-name my-demo-cloud9-instance-profile
   ```

6. Attach the IAM role to the instance profile. To do this, run the IAM add-role-to-instance-profile command, specifying the names of the existing IAM role and instance profile.

   ```bash
 aws iam add-role-to-instance-profile --role-name my-demo-cloud9-instance-profile-role --instance-profile-name my-demo-cloud9-instance-profile
   ```

   **Note**
   Do not use other IAM roles as the instance profile role. For more information, see Instance Profiles in the **EC2 User Guide**.

Skip ahead to **Create an Instance Profile with the AWS CLI (p. 85)**.

**Attach an Instance Profile to an Instance with the Amazon EC2 Console**


   For this step, we recommend you sign in using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

2. In the navigation bar, be sure the region selector displays the AWS Region that matches the one for your environment. For example, if you created your environment in the US East (Ohio) region, choose **US East (Ohio)** in the region selector here as well.

3. Choose the **Running Instances** link or, in the navigation pane, expand **Instances**, and then choose **Instances**.

4. In the list of instances, choose the instance with the **Name** that includes your environment name. For example, if your environment name is `my-demo-environment`, choose the instance with the **Name** that includes `my-demo-environment`. 

   **Note**
   Do not use other IAM roles as the instance profile role. For more information, see Instance Profiles in the **EC2 User Guide**.
5. Choose **Actions, Instance Settings, Attach/Replace IAM Role**.

   **Note**
   Although you are attaching a role to the instance, the role contains an instance profile.

6. On the **Attach/Replace IAM Role** page, for **IAM role**, choose the name of the role you identified or that you created in the previous procedure, and then choose **Apply**.

7. Back in the environment, use the AWS CLI to run the `aws configure` command or the aws-shell to run the `configure` command. Do not specify any values for **AWS Access Key ID** or **AWS Secret Access Key** (press Enter after each of these prompts). For **Default region name**, specify the AWS Region closest to you or the region where your AWS resources are located. For example, `us-east-2` for the US East (Ohio) Region. For a list of regions, see **AWS Regions and Endpoints** in the *Amazon Web Services General Reference*. Optionally, specify a value for **Default output format** (for example, `json`).

You can now start calling AWS services from your environment. To use the AWS CLI, the aws-shell, or both to call AWS services, see the AWS CLI and aws-shell Sample (p. 327). To call AWS services from your code, see our other samples (p. 327).

### Attach an Instance Profile to an Instance with the AWS CLI

1. Run the Amazon EC2 `associate-iam-instance-profile` command, specifying the name of the instance profile and the ID and AWS Region ID of the Amazon EC2 instance for the environment.

   ```bash
 aws ec2 associate-iam-instance-profile --iam-instance-profile Name=my-demo-cloud9-instance-profile --region us-east-2 --instance-id i-12a3b45678cdef9a0
   ```

   In the preceding command, replace `us-east-2` with the AWS Region ID for the instance and `i-12a3b45678cdef9a0` with the instance's ID.

   To get the instance's ID, you could for example run the Amazon EC2 `describe-instances` command, specifying the name and AWS Region ID of the environment.

   ```bash
 aws ec2 describe-instances --region us-east-2 --filters Name=tag:Name,Values=*my-environment* --query "Reservations[0].Instances[*].InstanceId" --output text
   ```

   In the preceding command, replace `us-east-2` with the AWS Region ID for the instance and `my-environment` with the name of the environment.

2. Back in the environment, use the AWS CLI to run the `aws configure` command or the aws-shell to run the `configure` command. Do not specify any values for **AWS Access Key ID** or **AWS Secret Access Key** (press Enter after each of these prompts). For **Default region name**, specify the AWS Region closest to you or the region where your AWS resources are located. For example, `us-east-2` for the US East (Ohio) Region. For a list of regions, see **AWS Regions and Endpoints** in the *Amazon Web Services General Reference*. Optionally, specify a value for **Default output format** (for example, `json`).

You can now start calling AWS services from your environment. To use the AWS CLI, the aws-shell, or both to call AWS services, see the AWS CLI and aws-shell Sample (p. 327). To call AWS services from your code, see our other samples (p. 327).
Create and Store Permanent Access Credentials in an Environment

Note
If you are using an AWS Cloud9 EC2 development environment, we recommend you use AWS managed temporary credentials instead of AWS permanent access credentials. To work with AWS managed temporary credentials, see AWS Managed Temporary Credentials (p. 446).

In this section, you use AWS Identity and Access Management (IAM) to generate a set of permanent credentials that the AWS CLI, the aws-shell, or your code can use when calling AWS services. This set includes an AWS access key ID and an AWS secret access key, which are unique to your user in your AWS account. If you already have an AWS access key ID and an AWS secret access key, note those credentials, and then skip ahead to Store Permanent Access Credentials in an Environment (p. 88).

You can create a set of permanent credentials with the IAM console (p. 88) or the AWS CLI (p. 88).

Create Permanent Access Credentials with the Console

   
   For this step, we recommend you sign in using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

2. In the navigation bar, choose Users.

3. In the list of users, choose the name of the user you created or identified in Team Setup (p. 7).


5. For Access keys, choose Create access key.

6. In the Create access key page, choose Show, and make a note of the Access key ID and Secret access key values. We recommend you also choose Download .csv file and save these credentials in a secure location.

Skip ahead to Store Permanent Access Credentials in an Environment (p. 88).

Create Permanent Access Credentials with the AWS CLI

Note
For this section, we recommend you configure the AWS CLI using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

Run the IAM create-access-key command to create a new AWS access key and corresponding AWS secret access key for the user.

```bash
aws iam create-access-key --user-name MyUser
```

In the preceding command, replace MyUser with the name of the user.

In a secure location, save the AccessKeyId and SecretAccessKey values that are displayed. After you run the IAM create-access-key command, this is the only time you can use the AWS CLI to view the user's AWS secret access key. To generate a new AWS secret access key for the user later if needed, see Creating, Modifying, and Viewing Access Keys (API, CLI, PowerShell) in the IAM User Guide.

Store Permanent Access Credentials in an Environment

In this procedure, you use the AWS Cloud9 IDE to store your permanent AWS access credentials in your environment. This procedure assumes you have already created an environment in AWS Cloud9, opened
the environment, and are displaying the AWS Cloud9 IDE in your web browser. For more information, see
Creating an Environment (p. 74) and Opening an Environment (p. 81).

Note
The following procedure shows how to store your permanent access credentials by using
environment variables. If you have the AWS CLI or the aws-shell installed in your environment,
you can use the `aws configure` command for the AWS CLI or the `configure` command
for the aws-shell to store your permanent access credentials instead. For instructions, see Quick
Configuration in the AWS CLI User Guide.

1. With your environment open, in the AWS Cloud9 IDE, start a new terminal session, if one is not
already started. To start a new terminal session, on the menu bar, choose Window, New Terminal.

2. Run each of the following commands, one command at a time, to set local environment variables
representing your permanent access credentials. In these commands, after `AWS_ACCESS_KEY_ID:`,
type your AWS access key ID. After `AWS_SECRET_ACCESS_KEY`, type your AWS secret access key. After
`AWS_DEFAULT_REGION_ID`, type the AWS Region identifier associated with the AWS Region closest to
you (or your preferred AWS Region). For a list of available identifiers, see AWS Regions and Endpoints
in the Amazon Web Services General Reference. For example, for the US East (Ohio) Region, you would
use `us-east-2`.

   ```
 export AWS_ACCESS_KEY_ID=
 export AWS_SECRET_ACCESS_KEY=
 export AWS_DEFAULT_REGION=
   ```

3. Note that the preceding environment variables are valid only for the current terminal session. To
make these environment variables available across terminal sessions, you must add them to your shell
profile file as user environment variables, as follows.

   a. In the Environment window of the IDE, choose the gear icon, and then choose Show Home in
      Favorites. Repeat this step and choose Show Hidden Files as well.

   b. Open the `~/.bashrc` file.

   c. Type or paste the following code at the end of the file. In these commands, after
      `AWS_ACCESS_KEY_ID:`, type your AWS access key ID. After `AWS_SECRET_ACCESS_KEY`, type
      your AWS secret access key. After `AWS_DEFAULT_REGION_ID`, type the AWS Region identifier
      associated with the AWS Region closest to you (or your preferred AWS Region). For a list of
      available identifiers, see AWS Regions and Endpoints in the Amazon Web Services General Reference.
      For example, for the US East (Ohio) Region, you would use `us-east-2`.

      ```
 export AWS_ACCESS_KEY_ID=
 export AWS_SECRET_ACCESS_KEY=
 export AWS_DEFAULT_REGION=
      ```

   d. Save the file.

   e. Source the `~/.bashrc` file to load these new environment variables.

      ```
 . ~/.bashrc
      ```

You can now start calling AWS services from your environment. To use the AWS CLI or the aws-shell to
call AWS services, see the AWS CLI and aws-shell Sample (p. 327). To call AWS services from your code,
see our other samples (p. 327).

Changing Environment Settings in AWS Cloud9

You can change the preferences or settings for an AWS Cloud9 development environment.
Change Environment Preferences

1. Open the environment you want to change settings for. To open an environment, see Opening an Environment (p. 81).
2. In the AWS Cloud9 IDE, on the menu bar, choose AWS Cloud9, Preferences.
3. In the Preferences window, choose Project Settings.
4. Change any of the available project settings as you want. These include settings such as Code Editor (Ace) and Find in Files.

Note
For more information, see Project Setting Changes You Can Make (p. 148).

Change Environment Settings with the Console

2. In the top navigation bar, choose the AWS Region where the environment is located.
3. In the list of environments, for the environment whose settings you want to change, do one of the following.
   - Choose the title of the card for the environment. Then choose Edit on the next page.
Change Environment Settings with the Console

• Select the card for the environment, and then choose the Edit button.

4. Make your changes, and then choose Save changes.

   You can use the AWS Cloud9 console to change the following settings.
   • For EC2 environments, Name and Description.
   • For SSH environments: Name, Description, User, Host, Port, Environment path, Node.js binary path, and SSH jump host.

   To change other settings, do the following.
   • For EC2 environments, do the following.
     • You cannot change Type, Security groups, VPC, Subnet, Environment path, or Environment ARN.
     • For Permissions or Number of members, see Change the Access Role of an Environment Member (p. 104), Remove Your User (p. 104), Invite an IAM User (p. 96), and Remove Another Environment Member (p. 106).
     • For EC2 instance type, Memory, or vCPU, see Moving or Resizing an Environment (p. 107).
   • For SSH environments, do the following.
     • You cannot change Type or Environment ARN.
     • For Permissions or Number of members, see Change the Access Role of an Environment Member (p. 104), Remove Your User (p. 104), Invite an IAM User (p. 96), and Remove Another Environment Member (p. 106).
If your environment is not displayed in the console, try doing one or more of the following actions to try to display it.

- In the side navigation bar, choose one or more of the following.
  - Choose **Your environments** to display all environments that your AWS entity owns within the selected AWS Region and AWS account.
  - Choose **Shared with you** to display all environments your AWS entity has been invited to within the selected AWS Region and AWS account.
  - Choose **Account environments** to display all environments within the selected AWS Region and AWS account that your AWS entity has permissions to display.

- Choose the previous arrow, next arrow, or page number button to display more environments in the current scope.

- If you think you should be a member of an environment, but the environment is not displayed in the **Shared with you** list, check with the environment owner.

- In the top navigation bar, choose a different AWS Region.
Change Environment Settings with Code

To use code to change the settings of an environment in AWS Cloud9, call the AWS Cloud9 update environment operation, as follows.

<table>
<thead>
<tr>
<th>AWS Service</th>
<th>Method/Request/Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS CLI</td>
<td>update-environment</td>
</tr>
<tr>
<td>AWS SDK for C++</td>
<td>UpdateEnvironmentRequest, UpdateEnvironmentResult</td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td>UpdateEnvironment, UpdateEnvironmentRequest, UpdateEnvironmentWithContext</td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td>UpdateEnvironmentRequest, UpdateEnvironmentResult</td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td>updateEnvironment</td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td>UpdateEnvironmentRequest, UpdateEnvironmentResponse</td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td>updateEnvironment</td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td>update_environment</td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td>update_environment</td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td>Update-C9Environment</td>
</tr>
<tr>
<td>AWS Cloud9 API</td>
<td>UpdateEnvironment</td>
</tr>
</tbody>
</table>

Working with Shared Environments in AWS Cloud9

A *shared environment* is an AWS Cloud9 development environment that multiple users have been invited to participate in. This topic provides instructions for sharing an environment in AWS Cloud9 and how to participate in a shared environment.

To invite a user to participate in an environment you own, follow one of these sets of procedures, depending on the type of user you want to invite.

<table>
<thead>
<tr>
<th>User type</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A user in the same AWS account as the environment.</td>
<td>Invite a User in the Same Account as the Environment (p. 96)</td>
</tr>
<tr>
<td>An AWS Cloud9 administrator in the same AWS account as the environment, specifically:</td>
<td>To invite the AWS Cloud9 administrator yourself, see Invite a User in the Same Account as the Environment (p. 96). To have the AWS Cloud9 administrator invite themself (or others in the same AWS account), see Have an AWS Cloud9 Administrator in the Same Account as the Environment Invite Themselves or Others (p. 97).</td>
</tr>
<tr>
<td>• The AWS account root user.</td>
<td></td>
</tr>
<tr>
<td>• An IAM administrator user.</td>
<td></td>
</tr>
<tr>
<td>• A user with the AWS managed policy AWSCloud9Administrator attached.</td>
<td></td>
</tr>
<tr>
<td>A user in a different AWS account than the environment.</td>
<td>Invite a User in a Different Account Than the Environment (p. 98)</td>
</tr>
</tbody>
</table>
Contents

- Shared Environment Usage Scenarios (p. 94)
- About Environment Member Access Roles (p. 94)
- Invite a User in the Same Account as the Environment (p. 96)
- Have an AWS Cloud9 Administrator in the Same Account as the Environment Invite Themself or Others (p. 97)
- Invite a User in a Different Account Than the Environment (p. 98)
- Open a Shared Environment (p. 101)
- See a List of Environment Members (p. 101)
- Open the Active File of an Environment Member (p. 102)
- Open the Open File of an Environment Member (p. 103)
- Go to the Active Cursor of an Environment Member (p. 103)
- Chat with Other Environment Members (p. 103)
- View Chat Messages in a Shared Environment (p. 104)
- Delete a Chat Message from a Shared Environment (p. 104)
- Delete All Chat Messages from a Shared Environment (p. 104)
- Change the Access Role of an Environment Member (p. 104)
- Remove Your User From a Shared Environment (p. 105)
- Remove Another Environment Member (p. 106)
- Environment Sharing Best Practices (p. 107)

Shared Environment Usage Scenarios

A shared environment is good for the following.

- Pair programming (also know as peer programming). This is where two users work together on the same code in a single environment. In pair programming, typically one user writes code while the other user observes the code being written. The observer gives immediate input and feedback to the code writer. These positions frequently switch during a project. Without a shared environment, teams of pair programmers typically sit in front of a single machine, and only one user at a time can write code. With a shared environment, both users can sit in front of their own machine and can write code at the same time, even if they are in different physical offices.

- Computer science classes. This is useful when teachers or teaching assistants want to access a student's environment to review their homework or fix issues with their environment in real time. Students can also work together with their classmates on shared homework projects, writing code together in a single environment in real time. They can do this even though they might be in different locations using different computer operating systems and web browser types.

- Any other situation where multiple users need to collaborate on the same code in real time.

About Environment Member Access Roles

Before you share an environment or participate in a shared environment in AWS Cloud9, you should understand the access permission levels for a shared environment. We call these permission levels environment member access roles.

A shared environment in AWS Cloud9 offers three environment member access roles: owner, read/write, and read-only.
• An owner has full control over an environment. Each environment has one and only one owner, who is
the environment creator. An owner can do the following.
• Add, change, and remove members for the environment
• Open, view, and edit files
• Run code
• Change environment settings
• Chat with other members
• Delete existing chat messages

In the AWS Cloud9 IDE, an environment owner is displayed with Read+Write access.

• A read/write member can do the following.
• Open, view, and edit files
• Run code
• Change various environment settings from within the AWS Cloud9 IDE
• Chat with other members
• Delete existing chat messages

In the AWS Cloud9 IDE, read/write members are displayed with Read+Write access.

• A read-only member can do the following.
• Open and view files
• Chat with other members
• Delete existing chat messages

In the AWS Cloud9 IDE, read-only members are displayed with Read Only access.

Before a user can become an environment owner or member, that user must meet one of the following
criteria.

• The user is an AWS account root user.
• The user is an IAM administrator user. For more information, see Creating Your First IAM Admin User
and Group in the IAM User Guide.
• The user is a user who belongs to an IAM group, a user who assumes a role, or a federated user who
assumes a role, and that group or role has the AWS managed policy AWSCloud9Administrator or
AWSCloud9User (or AWSCloud9EnvironmentMember, to be a member only) attached. For more
information, see AWS Managed (Predefined) Policies (p. 435).
• To attach one of the preceding managed policies to an IAM group, you can use the AWS
Management Console (p. 95) or the AWS Command Line Interface (AWS CLI) (p. 96) as
described in the following procedures.
• To create a role in IAM with one of the preceding managed policies for a user or a federated user to
assume, see Creating Roles in the IAM User Guide. To have a user or a federated user assume the role,
see coverage of assuming roles in Using IAM Roles in the IAM User Guide.

### Attach an AWS Managed Policy for AWS Cloud9 to a Group

#### Using the Console

1. Sign in to the AWS Management Console, if you are not already signed in.

   For this step, we recommend you sign in using credentials for an IAM administrator user in your AWS
account. If you cannot do this, check with your AWS account administrator.

2. Open the IAM console. To do this, in the console's navigation bar, choose Services. Then choose IAM.
3. Choose Groups.
4. Choose the group's name.
5. On the Permissions tab, for Managed Policies, choose Attach Policy.
6. In the list of policy names, choose one of the following boxes.
   - AWSCloud9User (preferred) or AWSCloud9Administrator to enable each user in the group to be an environment owner
   - AWSCloud9EnvironmentMember to enable each user in the group to be a member only
   (If you don't see one of these policy names in the list, type the policy name in the Search box to display it.)
7. Choose Attach policy.

**Attach an AWS Managed Policy for AWS Cloud9 to a Group Using the AWS CLI**

Run the IAM attach-group-policy command to attach the AWS managed policy for AWS Cloud9 to the group, specifying the group's name and the Amazon Resource Name (ARN) of the policy, for example:

```bash
aws iam attach-group-policy --group-name MyGroup --policy-arn arn:aws:iam::aws:policy/POLICY_NAME
```

In the preceding command, replace MyGroup with the name of the group. Replace POLICY_NAME with the name of one of the following AWS managed policies.

- AWSCloud9User (preferred) or AWSCloud9Administrator to enable each user in the group to be an environment owner
- AWSCloud9EnvironmentMember to enable each user in the group to be a member only

**Invite a User in the Same Account as the Environment**

Use the instructions in this section to share an AWS Cloud9 development environment that you own in your AWS account with a user in that same account.

1. If the user you want to invite is not one of the following types of users, be sure the user you want to invite already has the corresponding environment member access role. For instructions, see About Environment Member Access Roles (p. 94).
   - The AWS account root user.
   - An IAM administrator user.
   - A user who belongs to an IAM group, a user who assumes a role, or a federated user who assumes a role, and that group or role has the AWS managed policy AWSCloud9Administrator attached.
2. Open the environment that you own and want to invite the user to, if the environment is not already open.
3. In the menu bar in the AWS Cloud9 IDE, do one of the following.
   - Choose Window, Share.
   - Choose Share (located next to the Preferences gear icon).
4. In the **Share this environment** dialog box, for **Invite Members**, type one of the following.

- To invite an **IAM user**, type the user's name.
- To invite the **AWS account root user**, type `arn:aws:iam::123456789012:root`, replacing `123456789012` with your AWS account ID.
- To invite a **user with an assumed role** or a **federated user with an assumed role**, type `arn:aws:sts::123456789012:assumed-role/MyAssumedRole/MyAssumedRoleSession`, replacing `123456789012` with your AWS account ID, `MyAssumedRole` with the name of the assumed role, and `MyAssumedRoleSession` with the session name for the assumed role.

5. To make this user a read-only member, choose **R**. To make this user read/write, choose **RW**.

6. Choose **Invite**.

**Note**

If you make this user a read/write member, a dialog box is displayed, containing information about possibly putting your AWS security credentials at risk. The following information provides more background about this issue.

You should share an environment only with those you trust.

A read/write member may be able to use the AWS CLI, the aws-shell, or AWS SDK code in your environment to take actions in AWS on your behalf. Furthermore, if you store your permanent AWS access credentials within the environment, that member could potentially copy those credentials and use them outside of the environment.

Removing your permanent AWS access credentials from your environment and using temporary AWS access credentials instead does not fully address this issue. It lessens the opportunity of the member to copy those temporary credentials and use them outside of the environment (as those temporary credentials will work only for a limited time). However, temporary credentials still enable a read/write member to take actions in AWS from the environment on your behalf.

7. Contact the user to let them know they can open this environment and begin using it.

---

**Have an AWS Cloud9 Administrator in the Same Account as the Environment Invite Themself or Others**

The following types of users can invite themselves (or other users in the same AWS account) to any environment in the same account.

- The **AWS account root user**.
- An **IAM administrator user**.
- A **user who belongs to an IAM group**, a **user who assumes a role**, or a **federated user who assumes a role**, *and* that group or role has the AWS managed policy `AWSCloud9Administrator` attached.
Invite a User in a Different Account Than the Environment

If the invited user is not one of the preceding types of users, be sure that user already has the corresponding environment member access role. For instructions, see About Environment Member Access Roles (p. 94).

To invite the user, use the AWS CLI or the aws-shell to run the AWS Cloud9 create-environment-membership command, as follows.

```
aws cloud9 create-environment-membership --environment-id 12a34567b8cd9012345ef67abcd890e1 --user-arn USER_ARN --permissions PERMISSION_LEVEL
```

In the preceding command, replace 12a34567b8cd9012345ef67abcd890e1 with the ID of the environment, and PERMISSION_LEVEL with read-write or read-only. Replace USER_ARN with one of the following:

- To invite an IAM user, type `arn:aws:iam::123456789012:user/MyUser`, replacing 123456789012 with your AWS account ID and MyUser with the user's name.
- To invite the AWS account root user, type `arn:aws:iam::123456789012:root`, replacing 123456789012 with your AWS account ID.
- To invite a user with an assumed role or a federated user with an assumed role, type `arn:aws:sts::123456789012:assumed-role/MyAssumedRole/MyAssumedRoleSession`, replacing 123456789012 with your AWS account ID, MyAssumedRole with the name of the assumed role, and MyAssumedRoleSession with the session name for the assumed role.

For example, to invite the AWS account root user for account ID 123456789012 to an environment with ID 12a34567b8cd9012345ef67abcd890e1 as a read/write member, run the following command.

```
aws cloud9 create-environment-membership --environment-id 12a34567b8cd9012345ef67abcd890e1 --user-arn arn:aws:iam::123456789012:root --permissions read-write
```

**Note**
If you're using the aws-shell, omit the aws prefix from the preceding commands.

### Invite a User in a Different Account Than the Environment

Use the instructions in this section to share an AWS Cloud9 development environment that you own in your AWS account with a user in a different account.

**Prerequisites**

Before you complete the steps in the section, be sure you have the following.

- Two AWS accounts. One account contains the environment you want to share. To reduce confusion, we refer to this account as "your account" and as "account 111111111111" in this section's examples. A separate account contains the user you want to share the environment with. To reduce confusion, we refer to this account as "the other account" and as "account 999999999999" in this section's examples.
- An IAM group in the other account 999999999999, which we refer to as AWSCloud9CrossAccountGroup in this section's examples. (To use a different group in that account, substitute its name throughout this section's examples).
- A user in the other account 999999999999, which we refer to as AWSCloud9CrossAccountUser in this section's examples. This user is a member of the AWSCloud9CrossAccountGroup group in the other account. (To use a different user in that account, substitute its name throughout this section's examples).
Invite a User in a Different Account Than the Environment

- An environment in your account 111111111111 that you want to allow the user in the other account 999999999999 to access.

**Step 1: Create an IAM Role in Your Account to Allow Access from the Other Account**

In this step, you create an IAM role in your account 111111111111. This role allows users in the other account 999999999999 to access your account using the permissions you specify.

1. Sign in to the AWS Management Console using your AWS account 111111111111.

   We recommend you sign in using credentials for an IAM administrator user in your AWS account. If you can't do this, check with your AWS account administrator.

2. Open the IAM console. To do this, on the global navigation bar, choose **Services**, and then choose **IAM**.

3. In the service navigation pane, choose **Roles**.

4. On the **Roles** page, choose **Create role**.

5. On the **Select type of trusted entity** page, choose the **Another AWS account** tile.

6. In **Specify accounts that can use this role**, for **Account ID**, type the ID of the other AWS account: 999999999999. (Leave the **Options** boxes cleared.)

7. Choose **Next: Permissions**.

8. On the **Attach permissions policies** page, select the box next to the policy (or policies) that contain the permissions you want the other AWS account to have in your account. For this example, choose **AWSCloud9EnvironmentMember**. (If you can't find it, type **AWSCloud9EnvironmentMember** in the **Search** box to display it.) This particular policy allows users in the other account to become read-only or read/write members in shared environments in your account after you invite them.

9. Choose **Review**.

10. On the **Review** page, for **Role name**, type a name for the role. For this example, type **AWSCloud9EnvironmentMemberCrossAccountRole**. (To use a different name for the role, substitute it throughout this section's examples).

11. Choose **Review**.

12. In the list of roles that is displayed, choose **AWSCloud9EnvironmentMemberCrossAccountRole**.

13. On the **Summary** page, copy the value of **Role ARN**, for example, **arn:aws:iam::111111111111:role/AWSCloud9EnvironmentMemberCrossAccountRole**. You need this value for Step 3 in this section.

**Step 2: Add the User in the Other Account as a Member of Your Environment**

Now that you have an IAM role in your account 111111111111, and know the name of the user in other account 999999999999, you can add the user as a member of the environment.

1. If you're not already signed in to the AWS Management Console as the owner of the environment in your account 111111111111, sign in now.

2. Open the IDE for the environment. (If you're not sure how to do this, see **Opening an Environment** (p. 81).)

3. On the menu bar, choose **Share**.

4. In the **Share this environment** dialog box, for **Invite Members**, type **arn:aws:sts::111111111111:assumed-role/AWSCloud9EnvironmentMemberCrossAccountRole/AWSCloud9CrossAccountUser**, where:

   - 111111111111 is the actual ID of your AWS account.
• **AWSCloud9EnvironmentMemberCrossAccountRole** is the name of the IAM role in your account 111111111111, as specified earlier in Step 1 of this section.
• **AWSCloud9CrossAccountUser** is the name of the user in the other account 999999999999.

5. Choose Invite, and follow the onscreen instructions to complete the invitation process.

### Step 3: Grant Access in the Other Account to Use the IAM Role in Your Account

In this step, you allow the user in the other account 999999999999 to use the IAM role you created in your account 111111111111.

1. If you're still signed in to the AWS Management Console using your AWS account 111111111111, sign out now.
2. Sign in to the AWS Management Console using the other AWS account 999999999999.
   
   We recommend you sign in using credentials for an IAM administrator user in the other account. If you can't do this, check with your AWS account administrator.
3. Open the IAM console. To do this, on the global navigation bar, choose Services, and then choose IAM.
4. In the service navigation pane, choose Groups.
5. In the list of groups that is displayed, choose **AWSCloud9CrossAccountGroup**.
6. On the Permissions tab, expand Inline Policies, and then choose the link at the end of "To create one, click here."
7. On the Set Permissions page, choose Custom Policy, and then choose Select.
8. On the Review Policy page, for Policy Name, type a name for the policy. For this example, we suggest typing **AWSCloud9CrossAccountGroupPolicy**. (You can use a different name for the policy).
9. For Policy Document, type the following, substituting 111111111111 for the actual ID of your AWS account.

```
{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::111111111111:role/AWSCloud9EnvironmentMemberCrossAccountRole"
 }
}
```

10. Choose Apply Policy.

### Step 4: Use the Other Account to Open the Shared Environment in Your Account

In this step, the user in the other account 999999999999 uses the IAM role in your account 111111111111 to open the shared environment that's also in your account.

1. If you're not already signed in to the AWS Management Console as the user named **AWSCloud9CrossAccountUser** in the other AWS account 999999999999, sign in now.
2. On the global navigation bar, choose **AWSCloud9CrossAccountUser**, and then choose Switch Role.
3. On the Switch role page, choose Switch Role.
4. For Account, type your AWS account ID: 111111111111.
5. For **Role**, type `AWSCloud9EnvironmentMemberCrossAccountRole`.
6. For **Display Name**, type a name that helps you more easily identify this role for later use, or leave the suggested display name.
7. Choose **Switch Role**. In the global navigation bar, `AWSCloud9CrossAccountUser` is replaced with the **Display Name** value and also changes its background color.
8. On the global navigation bar, choose **Services**, and then choose **Cloud9**.
9. On the global navigation bar, choose the AWS Region that contains the environment.
10. In the service navigation pane, choose **Shared with you**.
11. In the card for the environment that you want to open, choose **Open IDE**.

You can switch back to using the original user identity `AWSCloud9CrossAccountUser`. With the AWS Management Console still open for this step, on the global navigation bar choose the **Display Name** value from earlier in this step. Then choose **Back to AWSCloud9CrossAccountUser**.

To use the `AWSCloud9EnvironmentMemberCrossAccountRole` role again, with the AWS Management Console still open for this step, on the global navigation bar choose `AWSCloud9CrossAccountUser`. For **Role History**, choose the **Display Name** value from earlier in this step.

### Open a Shared Environment

To open a shared environment, you use your AWS Cloud9 dashboard. You then use the AWS Cloud9 IDE to do things in a shared environment such as work with files and chat with other members.

1. Be sure the corresponding access policy is attached to the group or role for your user. For more information, see About Environment Member Access Roles (p. 94).
2. Sign in to AWS Cloud9, if you are not already signed in. For more information, see Step 4: Sign in to the AWS Cloud9 Console (p. 13) in Team Setup.
3. Open the shared environment from your AWS Cloud9 dashboard. For more information, see Opening an Environment in AWS Cloud9 (p. 81).

You use the **Collaborate** window to interact with other members, as described in the rest of this topic.

**Note**

If the **Collaborate** window is not visible, choose the **Collaborate** button. If the **Collaborate** button is not visible, on the menu bar, choose **Window, Collaborate**.

### See a List of Environment Members

With the shared environment open, in the **Collaborate** window, expand **Environment Members**, if the list of members is not visible.
AWS Cloud9 User Guide
Open the Active File of an Environment Member

A circle next to each member indicates their online status, as follows.

- Active members have a green circle.
- Offline members have a gray circle.
- Idle members have an orange circle.

To use code to get a list of environment members, call the AWS Cloud9 describe environment memberships operation, as follows.

<table>
<thead>
<tr>
<th>AWS CLI</th>
<th>describe-environment-memberships</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS SDK for C++</td>
<td>DescribeEnvironmentMembershipsRequest, DescribeEnvironmentMembershipsResult</td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td>DescribeEnvironmentMemberships, DescribeEnvironmentMembershipsRequest, DescribeEnvironmentMembershipsWithContext</td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td>DescribeEnvironmentMembershipsRequest, DescribeEnvironmentMembershipsResult</td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td>describeEnvironmentMemberships</td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td>DescribeEnvironmentMembershipsRequest, DescribeEnvironmentMembershipsResponse</td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td>describeEnvironmentMemberships</td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td>describe_environment_memberships</td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td>describe_environment_memberships</td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td>Get-C9EnvironmentMembershipList</td>
</tr>
<tr>
<td>AWS Cloud9 API</td>
<td>DescribeEnvironmentMemberships</td>
</tr>
</tbody>
</table>

Open the Active File of an Environment Member

With the shared environment open, in the menu bar, choose the member name. Then choose Open Active File.
Open the Open File of an Environment Member

1. With the shared environment open, in the Collaborate window, expand Environment Members, if the list of members is not visible.
2. Expand the name of the user whose open file you want to open in your environment.
3. Double-click the name of the file you want to open.

Go to the Active Cursor of an Environment Member

1. With the shared environment open, in the Collaborate window, expand Environment Members, if the list of members is not visible.
2. Right-click the member name, and then choose Show Location.

Chat with Other Environment Members

With the shared environment open, at the bottom of the Collaborate window, for Enter your message here, type your chat message, and then press Enter.
View Chat Messages in a Shared Environment

With the shared environment open, in the Collaborate window, expand Group Chat, if the list of chat messages is not visible.

Delete a Chat Message from a Shared Environment

With the shared environment open, in the Collaborate window, right-click the chat message in Group Chat, and then choose Delete Message.

Note
When you delete a chat message, it is deleted from the environment for all members.

Delete All Chat Messages from a Shared Environment

With the shared environment open, in the Collaborate window, right-click anywhere in Group Chat, and then choose Clear history.

Note
When you delete all chat messages, they are deleted from the environment for all members.

Change the Access Role of an Environment Member

1. Open the environment that you own and that contains the member whose access role you want to change, if the environment is not already open. For more information, see Opening an Environment in AWS Cloud9 (p. 81).

2. In the Collaborate window, expand Environment Members, if the list of members is not visible.

3. Do one of the following:
   - Next to the member name whose access role you want to change, choose R or RW to make this member owner or read/write, respectively.
   - To change a read/write member to read-only, right-click the member name, and then choose Revoke Write Access.
   - To change a read-only member to read/write, right-click the member name, and then choose Grant Read+Write Access.
Remove Your User From a Shared Environment

Note
If you make this user a read/write member, a dialog box is displayed, containing information about possibly putting your AWS security credentials at risk. Do not make a user a read/write member unless you trust that user to take actions in AWS on your behalf. For more information, see the related note in Invite a User in the Same Account as the Environment (p. 96).

To use code to change the access role of a environment member, call the AWS Cloud9 update environment membership operation, as follows.

<table>
<thead>
<tr>
<th>AWS CLI</th>
<th>update-environment-membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS SDK for C++</td>
<td>UpdateEnvironmentMembershipRequest, UpdateEnvironmentMembershipResult</td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td>UpdateEnvironmentMembership, UpdateEnvironmentMembershipRequest, UpdateEnvironmentMembershipWithContext</td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td>UpdateEnvironmentMembershipRequest, UpdateEnvironmentMembershipResult</td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td>updateEnvironmentMembership</td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td>UpdateEnvironmentMembershipRequest, UpdateEnvironmentMembershipResponse</td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td>updateEnvironmentMembership</td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td>update_environment_membership</td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td>update_environment_membership</td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td>Update-C9EnvironmentMembership</td>
</tr>
<tr>
<td>AWS Cloud9 API</td>
<td>UpdateEnvironmentMembership</td>
</tr>
</tbody>
</table>

Remove Your User From a Shared Environment

Note
You cannot remove your user from an environment if you are the environment owner. Removing your user from an environment does not remove your user from IAM.

1. With the shared environment open, in the Collaborate window, expand Environment Members, if the list of members is not visible.
2. Do one of the following.
   • Next to You, choose the trash can icon.
   • Right-click You, and then choose Leave environment.
3. When prompted, choose Leave.

To use code to remove your user from a shared environment, call the AWS Cloud9 delete environment membership operation, as follows.

<table>
<thead>
<tr>
<th>AWS CLI</th>
<th>delete-environment-membership</th>
</tr>
</thead>
</table>
Remove Another Environment Member

**Note**
To remove any member other than your user from an environment, you must be signed in to AWS Cloud9 using the credentials of the environment owner. Removing a member does not remove the user from IAM.

1. Open the environment that contains the member you want to remove, if the environment is not already open. For more information, see Opening an Environment in AWS Cloud9 (p. 81).
2. In the **Collaborate** window, expand **Environment Members**, if the list of members is not visible.
3. Do one of the following.
   - Next to the name of the member you want to delete, choose the trash can icon.
   - Right-click the name of the member you want to delete, and then choose **Revoke Access**.
4. When prompted, choose **Remove Member**.

To use code to remove a member from an environment, call the AWS Cloud9 delete environment membership operation, as follows.
Environment Sharing Best Practices

We recommend the following practices when sharing environments.

- Only invite read/write members you trust to your environments.
- For EC2 environments, read/write members can use the environment owner’s AWS access credentials, instead of their own credentials, to make calls from the environment to AWS services. To prevent this, the environment owner can disable AWS managed temporary credentials for the environment. However, this also prevents the environment owner from making calls. For more information, see AWS Managed Temporary Credentials (p. 446).
- Turn on AWS CloudTrail to track activity in your environments. For more information, see the AWS CloudTrail User Guide.
- Do not use your AWS account root user to create and share environments. Use IAM users in the account instead. For more information, see First-Time Access Only: Your Root User Credentials and IAM Users in the IAM User Guide.

Moving or Resizing an Environment in AWS Cloud9

You can move an AWS Cloud9 development environment from one Amazon EC2 instance to another. Or you can change an Amazon EC2 instance that connects to an AWS Cloud9 development environment from one instance type to another. For example, you might want to do one of the following.

- Transfer an environment from an instance that is broken, or behaving in unexpected ways, to a healthy instance.
- Transfer an environment from an older instance to an instance that has the latest system updates.
- Increase an instance’s compute resources, because the environment is over-utilized on the instance.
- Decrease an instance’s compute resources, because the environment is under-utilized on the instance.

Note
This topic only covers moving an AWS Cloud9 development environment or resizing an Amazon EC2 instance. To move an SSH environment from one of your own servers to another, or to resize one of your own servers, refer to your server’s documentation. You cannot move or resize an environment to an instance of the same type. When you move or resize, you must choose a different instance type for the new instance.

To move or resize an environment

See the Resizing an Amazon EBS-backed Instance procedure in the Amazon EC2 User Guide for Linux Instances, noting the following details.
• Following this procedure might result in charges to your AWS account for Amazon EC2 and Amazon EBS. For more information, see Amazon EC2 Pricing and Amazon EBS Pricing.

• Skip the steps in this procedure that start with [EC2-Classic]. Both the original and new instances run in EC2-VPC. The original or new instances do not run in EC2-Classic.

• Skip the details in this procedure about Auto Scaling. The original or new instances do not run in an Auto Scaling group.

• The Amazon EC2 instance name starts with `aws-cloud9-` followed by the AWS Cloud9 development environment name. For example, if the environment is named `my-demo-environment`, the Amazon EC2 instance name will start with `aws-cloud9-my-demo-environment`.

• You don't need to restart the instance after you resize it. When you open an AWS Cloud9 development environment, AWS Cloud9 starts the instance automatically.

• We do not support using any of the other procedures in the topic, such as migrating the instance. This is because the Amazon Machine Image (AMI) that AWS Cloud9 uses is constantly changing. Therefore, we don't guarantee any individual AMI will be maintained for use with a migrated instance.

Deleting an Environment in AWS Cloud9

To prevent any ongoing charges to your AWS account related to an AWS Cloud9 development environment that you're no longer using, you should delete the environment.

• Deleting an Environment with the Console (p. 108)
• Deleting an Environment with Code (p. 110)

Deleting an Environment with the Console

Warning
When you delete an environment, AWS Cloud9 deletes the environment permanently. This includes permanently deleting all related settings, user data, and uncommitted code. Deleted environments cannot be recovered.

2. In the top navigation bar, choose the AWS Region where the environment is located.

![Select a Region](image)
3. In the list of environments, for the environment you want to delete, do one of the following.
   • Choose the title of the card for the environment. Then choose **Delete** on the next page.

   ![AWS Cloud9 User Guide](image)

   ![AWS Cloud9 User Guide](image)

   • Select the card for the environment, and then choose the **Delete** button.

   ![AWS Cloud9 User Guide](image)

   ![AWS Cloud9 User Guide](image)

4. In the **Delete** dialog box, type **Delete**, and then choose **Delete**.

   If the environment was an EC2 environment, AWS Cloud9 also terminates the Amazon EC2 instance that was connected to that environment.

   However, if the environment was an SSH environment, and that environment was connected to an Amazon EC2 instance, AWS Cloud9 doesn't terminate that instance. If you don't terminate that instance later, your AWS account might continue to have ongoing charges for Amazon EC2 related to that instance.

5. If the environment was an SSH environment, AWS Cloud9 leaves behind a hidden subdirectory on the cloud compute instance or your own server that was connected to that environment. You can now safely delete that subdirectory if you want to. The subdirectory is named `.c9`. It is located in the **Environment path** directory that you specified when you created the environment.

   If your environment is not displayed in the console, try doing one or more of the following actions to try to display it.
   • In the side navigation bar, choose one or more of the following.
   • Choose **Your environments** to display all environments that your AWS entity owns within the selected AWS Region and AWS account.
• Choose **Shared with you** to display all environments your AWS entity has been invited to within the selected AWS Region and AWS account.

• Choose **Account environments** to display all environments within the selected AWS Region and AWS account that your AWS entity has permissions to display.

• Choose the previous arrow, next arrow, or page number button to display more environments in the current scope.

• If you think you should be a member of an environment, but the environment is not displayed in the **Shared with you** list, check with the environment owner.

• In the top navigation bar, choose a different AWS Region.

---

**Deleting an Environment with Code**

**Warning**

When you delete an environment, AWS Cloud9 deletes the environment permanently. This includes permanently deleting all related settings, user data, and uncommitted code. Deleted environments cannot be recovered.
To use code to delete an environment in AWS Cloud9, call the AWS Cloud9 delete environment operation, as follows.

<table>
<thead>
<tr>
<th>AWS CLI</th>
<th>delete-environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS SDK for C++</td>
<td>DeleteEnvironmentRequest,</td>
</tr>
<tr>
<td></td>
<td>DeleteEnvironmentResult</td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td>DeleteEnvironment,</td>
</tr>
<tr>
<td></td>
<td>DeleteEnvironmentRequest,</td>
</tr>
<tr>
<td></td>
<td>DeleteEnvironmentWithContext</td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td>DeleteEnvironmentRequest,</td>
</tr>
<tr>
<td></td>
<td>DeleteEnvironmentResult</td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td>deleteEnvironment</td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td>DeleteEnvironmentRequest,</td>
</tr>
<tr>
<td></td>
<td>DeleteEnvironmentResponse</td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td>deleteEnvironment</td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td>delete_environment</td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td>delete_environment</td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td>Remove-C9Environment</td>
</tr>
<tr>
<td>AWS Cloud9 API</td>
<td>DeleteEnvironment</td>
</tr>
</tbody>
</table>
Working with the AWS Cloud9
Integrated Development Environment (IDE)

An integrated development environment (IDE) provides a set of coding productivity tools such as a source code editor, a debugger, and build tools.

Learn how to work with the AWS Cloud9 IDE by reading one or more of these topics.

Topics
- Language Support in the AWS Cloud9 Integrated Development Environment (IDE) (p. 113)
- Menu Bar Commands Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 114)
- Finding and Replacing Text in the AWS Cloud9 Integrated Development Environment (IDE) (p. 124)
- Previewing Files in the AWS Cloud9 Integrated Development Environment (IDE) (p. 127)
- Previewing Running Applications in the AWS Cloud9 Integrated Development Environment (IDE) (p. 128)
- Working with File Revisions in the AWS Cloud9 Integrated Development Environment (IDE) (p. 135)
- Working with Images Files in the AWS Cloud9 Integrated Development Environment (IDE) (p. 136)
- Working with Builders, Runners, and Debuggers in the AWS Cloud9 Integrated Development Environment (IDE) (p. 138)
- Working with Custom Environment Variables in the AWS Cloud9 Integrated Development Environment (IDE) (p. 146)
- Working with Project Settings in the AWS Cloud9 Integrated Development Environment (IDE) (p. 148)
- Working with User Settings in the AWS Cloud9 Integrated Development Environment (IDE) (p. 153)
- Working with AWS Project and User Settings in the AWS Cloud9 Integrated Development Environment (IDE) (p. 161)
- Working with Keybindings in the AWS Cloud9 Integrated Development Environment (IDE) (p. 162)
- Working with Themes in the AWS Cloud9 Integrated Development Environment (IDE) (p. 164)
- Working with Initialization Scripts in the AWS Cloud9 Integrated Development Environment (IDE) (p. 166)
- Apple OSX Default Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 185)
- Apple OSX Vim Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 196)
- Apple OSX Emacs Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 206)
- Apple OSX Sublime Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 217)
- Windows / Linux Default Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 228)
- Windows / Linux Vim Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 238)
- Windows / Linux Emacs Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE) (p. 249)
Language Support in the AWS Cloud9 Integrated Development Environment (IDE)

The AWS Cloud9 IDE supports many programming languages. The following table lists the languages that are supported and to what level.

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax highlighting</th>
<th>Run UI</th>
<th>Outline view</th>
<th>Code hints and linting</th>
<th>Code completion</th>
<th>Debugging</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^5</td>
<td>X ^4</td>
</tr>
<tr>
<td>C#</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X ^5</td>
<td></td>
</tr>
<tr>
<td>CoffeeScript</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^4</td>
<td>X ^4</td>
</tr>
<tr>
<td>Haskell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTML</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X ^5</td>
<td></td>
</tr>
<tr>
<td>JavaScript</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node.js</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^6</td>
<td></td>
</tr>
<tr>
<td>PHP</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^7</td>
<td>X</td>
</tr>
<tr>
<td>Python</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^8</td>
<td>X</td>
</tr>
<tr>
<td>Ruby</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X ^5</td>
<td></td>
</tr>
<tr>
<td>Shell script</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X ^5</td>
</tr>
</tbody>
</table>

1 The AWS Cloud9 IDE provides syntax highlighting for many more languages. For a complete list, in the menu bar of the IDE, choose View, Syntax.

2 You can run programs or scripts at the click of a button for languages marked with an X, without using the command line. For languages not marked with an X or not displayed on the Run, Run With menu bar in the IDE, you can create a runner for that language. For instructions, see Create a Builder or Runner (p. 143).

3 You can use the IDE's built-in tools to debug programs or scripts for languages marked with an X. For instructions, see Debug Your Code (p. 139).

4 This feature is in an experimental state for this language. It is not fully implemented and is not documented or supported.
Menu Bar Commands Reference for the AWS Cloud9 Integrated Development Environment (IDE)

The following lists describe the default menu bar commands in the AWS Cloud9 IDE. If the menu bar isn’t visible, choose the thin bar along the top edge of the IDE to show it.

- AWS Cloud9 Menu (p. 114)
- File Menu (p. 115)
- Edit Menu (p. 116)
- Find Menu (p. 118)
- View Menu (p. 119)
- Goto Menu (p. 119)
- Run Menu (p. 120)
- Tools Menu (p. 121)
- Window Menu (p. 121)
- Support Menu (p. 123)
- Preview Menu (p. 123)
- Other Menu Bar Commands (p. 123)

AWS Cloud9 Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Open the Preferences tab if it isn’t open.</td>
</tr>
<tr>
<td></td>
<td>• Make the Preferences tab active if it is open but not active.</td>
</tr>
<tr>
<td></td>
<td>• Hide the Preferences tab if it is active.</td>
</tr>
</tbody>
</table>

See Working with Project Settings (p. 148), Working with User Settings (p. 153), Working with Keybindings (p. 162), Working with Themes (p. 164), and Working with Initialization Scripts (p. 166).

Go To Your Dashboard

Open the AWS Cloud9 console in a separate web browser tab. See Creating an Environment (p. 74),
### File Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New File</td>
<td>Create a new file.</td>
</tr>
<tr>
<td>New From Template</td>
<td>Create a new file, based on the chosen file template.</td>
</tr>
<tr>
<td>Open</td>
<td>Show and go to the Navigate window.</td>
</tr>
<tr>
<td>Open Recent</td>
<td>Open the chosen file.</td>
</tr>
<tr>
<td>Save</td>
<td>Save the current file.</td>
</tr>
<tr>
<td>Save As</td>
<td>Save the current file with a different file name, location, or both.</td>
</tr>
<tr>
<td>Save All</td>
<td>Save all unsaved files.</td>
</tr>
<tr>
<td>Revert to Saved</td>
<td>Discard changes for current file since it was last saved.</td>
</tr>
<tr>
<td>Revert All to Saved</td>
<td>Discard changes for all unsaved files since they were last saved.</td>
</tr>
<tr>
<td>Upload Local Files</td>
<td>Show the Upload Files dialog box, which enables you to drag files from your local computer into the environment.</td>
</tr>
<tr>
<td>Download Project</td>
<td>Combine the files in the environment into a .zip file, which you can download to your local computer.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Line Endings</td>
<td>Use Windows (carriage return plus line feed) or Unix (line feed only) line endings.</td>
</tr>
<tr>
<td>Close File</td>
<td>Close the current file.</td>
</tr>
<tr>
<td>Close All Files</td>
<td>Close all open files.</td>
</tr>
</tbody>
</table>

## Edit Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>Undo the last action.</td>
</tr>
<tr>
<td>Redo</td>
<td>Redo the last undone action.</td>
</tr>
<tr>
<td>Cut</td>
<td>Move the selection to the clipboard.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copy the selection to the clipboard.</td>
</tr>
<tr>
<td>Paste</td>
<td>Copy the clipboard's contents to the selection point.</td>
</tr>
<tr>
<td>Keyboard Mode</td>
<td>The set of keybindings to use, such as Default, Vim, Emacs, or Sublime. See Working with Keybindings (p. 162).</td>
</tr>
<tr>
<td>Selection, Select All</td>
<td>Select all selectable content.</td>
</tr>
<tr>
<td>Selection, Split Into Lines</td>
<td>Add a cursor at the end of the current line.</td>
</tr>
<tr>
<td>Selection, Single Selection</td>
<td>Clear all previous selections.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Add Cursor Up</td>
<td>Add a cursor one line above the active cursor. If a cursor is already added, add another cursor above that one.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Add Cursor Down</td>
<td>Add a cursor one line below the active cursor. If a cursor is already added, add another cursor below that one.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Move Active Cursor Up</td>
<td>Add a second cursor one line above the active cursor. If a second cursor is already added, move the second cursor up one line.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Move Active Cursor Down</td>
<td>Add a second cursor one line below the active cursor. If a second cursor is already added, move the second cursor down one line.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Add Next Selection Match</td>
<td>Include more matching selections that are after the selection.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Add Previous Selection Match</td>
<td>Include more matching selections that are before the selection.</td>
</tr>
<tr>
<td>Selection, Multiple Selections, Merge Selection Range</td>
<td>Add a cursor at the end of the current line.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Selection, Select Word Right</td>
<td>Include the next word to the right of the cursor in the selection.</td>
</tr>
<tr>
<td>Selection, Select Word Left</td>
<td>Include the next word to the left of the cursor in the selection.</td>
</tr>
<tr>
<td>Selection, Select to Line End</td>
<td>Include from the cursor to the end of the current line in the selection.</td>
</tr>
<tr>
<td>Selection, Select to Line Start</td>
<td>Include from the beginning of the current line to the cursor in the selection.</td>
</tr>
<tr>
<td>Selection, Select to Document End</td>
<td>Include from the cursor down to the end of the current file in the selection.</td>
</tr>
<tr>
<td>Selection, Select to Document Start</td>
<td>Include from the cursor up to the beginning of the current file in the selection.</td>
</tr>
<tr>
<td>Line, Indent</td>
<td>Indent the selection one tab.</td>
</tr>
<tr>
<td>Line, Outdent</td>
<td>Outdent the selection one tab.</td>
</tr>
<tr>
<td>Line, Move Line Up</td>
<td>Move the selection up one line.</td>
</tr>
<tr>
<td>Line, Move Line Down</td>
<td>Move the selection down one line.</td>
</tr>
<tr>
<td>Line, Copy Lines Up</td>
<td>Copy the contents of the line, and paste the copied contents one line up.</td>
</tr>
<tr>
<td>Line, Copy Lines Down</td>
<td>Copy the contents of the line, and paste the copied contents one line down.</td>
</tr>
<tr>
<td>Line, Remove Line</td>
<td>Delete the contents of the current line.</td>
</tr>
<tr>
<td>Line, Remove to Line End</td>
<td>Delete from the cursor to the end of the current line.</td>
</tr>
<tr>
<td>Line, Remove to Line Start</td>
<td>Delete from the beginning of the current line up to the cursor.</td>
</tr>
<tr>
<td>Line, Split Line</td>
<td>Move the contents of the cursor to the end of the line, to its own line.</td>
</tr>
<tr>
<td>Text, Remove Word Right</td>
<td>Delete the word to the right of the cursor.</td>
</tr>
<tr>
<td>Text, Remove Word Left</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td>Text, Align</td>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned.</td>
</tr>
<tr>
<td>Text, Transpose Letters</td>
<td>Transpose the selection.</td>
</tr>
<tr>
<td>Text, To Upper Case</td>
<td>Change the selection to all uppercase.</td>
</tr>
<tr>
<td>Text, To Lower Case</td>
<td>Change the selection to all lowercase.</td>
</tr>
<tr>
<td>Comment, Toggle Comment</td>
<td>Add line comment characters at the start of each selected line, or remove them if they are there.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Code Folding, Toggle Fold</td>
<td>Fold code, or remove code folding if it is there.</td>
</tr>
<tr>
<td>Code Folding, Unfold</td>
<td>Unfold the selected code.</td>
</tr>
<tr>
<td>Code Folding, Fold Other</td>
<td>Fold all possibly foldable elements, except for the current selection scope.</td>
</tr>
<tr>
<td>Code Folding, Fold All</td>
<td>Fold all possibly foldable elements.</td>
</tr>
<tr>
<td>Code Folding, Unfold All</td>
<td>Unfold code folding for the entire file.</td>
</tr>
<tr>
<td>Code Formatting, Apply Code Formatting</td>
<td>Reformat the selected JavaScript code.</td>
</tr>
<tr>
<td>Code Formatting, Open Language &amp; Formatting Preferences</td>
<td>Open the Project Settings section of the Preferences tab to programming language settings.</td>
</tr>
</tbody>
</table>

**Find Menu**

For more information, see Finding and Replacing Text (p. 124).

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>Show the find and replace bar for the current document, with focus on the Find expression.</td>
</tr>
<tr>
<td>Find Next</td>
<td>Go to the next match in the current document for the find query you entered last.</td>
</tr>
<tr>
<td>Find Previous</td>
<td>Go to the previous match in the current document for the find query you entered last.</td>
</tr>
<tr>
<td>Replace</td>
<td>Show the find and replace bar for the current document, with focus on the Replace With expression.</td>
</tr>
<tr>
<td>Replace Next</td>
<td>Replace the next match for Find with Replace With in the find and replace bar for the current document.</td>
</tr>
<tr>
<td>Replace Previous</td>
<td>Replace the previous match for Find with Replace With in the find and replace bar for the current document.</td>
</tr>
<tr>
<td>Replace All</td>
<td>Replace all matches for Find with Replace With in the find and replace bar for the current document.</td>
</tr>
<tr>
<td>Find in Files</td>
<td>Show the find and replace bar for multiple files.</td>
</tr>
</tbody>
</table>
## View Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editors</td>
<td>Show the chosen editor.</td>
</tr>
<tr>
<td>Open Files</td>
<td>Show the Open Files list in the Environment window, or hide if shown.</td>
</tr>
<tr>
<td>Menu Bar</td>
<td>Show the menu bar, or hide if shown.</td>
</tr>
<tr>
<td>Tab Buttons</td>
<td>Show tabs, or hide if shown.</td>
</tr>
<tr>
<td>Gutter</td>
<td>Show the gutter, or hide if shown.</td>
</tr>
<tr>
<td>Status Bar</td>
<td>Show the status bar, or hide if shown.</td>
</tr>
<tr>
<td>Console</td>
<td>Show the Console window, or hide if shown.</td>
</tr>
<tr>
<td>Layout, Single</td>
<td>Show a single pane.</td>
</tr>
<tr>
<td>Layout, Vertical Split</td>
<td>Show two panes, top and bottom.</td>
</tr>
<tr>
<td>Layout, Horizontal Split</td>
<td>Show two panes, side by side.</td>
</tr>
<tr>
<td>Layout, Cross Split</td>
<td>Show four panes of equal size.</td>
</tr>
<tr>
<td>Layout, Split 1:2</td>
<td>Show one pane on the left and two panes on the right.</td>
</tr>
<tr>
<td>Layout, Split 2:1</td>
<td>Show two panes on the left and one pane on the right.</td>
</tr>
<tr>
<td>Font Size, Increase Font Size</td>
<td>Increase the font size.</td>
</tr>
<tr>
<td>Font Size, Decrease Font Size</td>
<td>Decrease the font size.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Show the syntax type for the current document.</td>
</tr>
<tr>
<td>Themes</td>
<td>Show the IDE theme type.</td>
</tr>
<tr>
<td>Wrap Lines</td>
<td>Wrap words to the edge of the current pane, or stop wrapping words if they are already wrapping.</td>
</tr>
<tr>
<td>Wrap To Print Margin</td>
<td>Wrap words to the edge of the current print margin, or stop wrapping words if they are already wrapping.</td>
</tr>
</tbody>
</table>

## Goto Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goto Anything</td>
<td>Show the Navigate window.</td>
</tr>
<tr>
<td>Goto Symbol</td>
<td>Show the Outline window.</td>
</tr>
<tr>
<td>Goto Line</td>
<td>Show the go to line box for the current document.</td>
</tr>
</tbody>
</table>
### Command Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goto Command</td>
<td>Show the <strong>Commands</strong> window.</td>
</tr>
<tr>
<td>Next Error</td>
<td>Go to the next error.</td>
</tr>
<tr>
<td>Previous Error</td>
<td>Go to the previous error.</td>
</tr>
<tr>
<td>Word Right</td>
<td>Go one word to the right.</td>
</tr>
<tr>
<td>Word Left</td>
<td>Go one word to the left.</td>
</tr>
<tr>
<td>Line End</td>
<td>Go to the end of the current line.</td>
</tr>
<tr>
<td>Line Start</td>
<td>Go to the start of the current line.</td>
</tr>
<tr>
<td>Jump to Definition</td>
<td>Go to the definition of the variable or function at the cursor.</td>
</tr>
<tr>
<td>Jump to Matching Brace</td>
<td>Go to the matching symbol in the current scope.</td>
</tr>
<tr>
<td>Scroll to Selection</td>
<td>Scroll the selection into better view.</td>
</tr>
</tbody>
</table>

## Run Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>Run or debug the current application.</td>
</tr>
<tr>
<td>Run Last</td>
<td>Run or debug the last run file.</td>
</tr>
<tr>
<td>Run With</td>
<td>Run or debug using the chosen runner. See <em>Working with Builders, Runners, and Debuggers</em> (p. 138).</td>
</tr>
<tr>
<td>Run History</td>
<td>View run history.</td>
</tr>
<tr>
<td>Run Configurations</td>
<td>Choose a run configuration to run or debug with, or create or manage run configurations. See <em>Working with Builders, Runners, and Debuggers</em> (p. 138).</td>
</tr>
<tr>
<td>Show Debugger at Break</td>
<td>When running code reaches a breakpoint, show the <strong>Debugger</strong> window.</td>
</tr>
<tr>
<td>Build</td>
<td>Build the current file.</td>
</tr>
<tr>
<td>Cancel Build</td>
<td>Stop building the current file.</td>
</tr>
<tr>
<td>Build System</td>
<td>Build using the chosen build system.</td>
</tr>
<tr>
<td>Show Build Result</td>
<td>Show the related build result.</td>
</tr>
<tr>
<td>Automatically Build Supported Files</td>
<td>Automatically build supported files.</td>
</tr>
<tr>
<td>Save All on Build</td>
<td>When building, save all related unsaved files.</td>
</tr>
</tbody>
</table>
# Tools Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip Trailing Space</td>
<td>Trim whitespace at the ends of lines.</td>
</tr>
<tr>
<td>Preview, Preview File FILE-NAME</td>
<td>Preview the current document in a preview tab.</td>
</tr>
<tr>
<td>Preview, Preview Running Application</td>
<td>Preview the current application in a separate web browser tab.</td>
</tr>
<tr>
<td>Preview, Configure Preview URL</td>
<td>Open the Project Settings section of the Preferences tab to the Run &amp; Debug, Preview URL box.</td>
</tr>
<tr>
<td>Preview, Show Active Servers</td>
<td>Show a list of available active server addresses in the Process List dialog box.</td>
</tr>
<tr>
<td>Process List</td>
<td>Show the Process List dialog box.</td>
</tr>
<tr>
<td>Show Autocomplete</td>
<td>Show the code completion context menu.</td>
</tr>
<tr>
<td>Rename Variable</td>
<td>Start a rename refactor for the selection.</td>
</tr>
<tr>
<td>Toggle Macro Recording</td>
<td>Start keystroke recording, of stop if it is already recording.</td>
</tr>
<tr>
<td>Play Macro</td>
<td>Play previously recorded keystrokes.</td>
</tr>
<tr>
<td>Developer, Start in Debug Mode</td>
<td>Reload the IDE in debug mode.</td>
</tr>
</tbody>
</table>

# Window Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Terminal</td>
<td>Open a new Terminal tab.</td>
</tr>
<tr>
<td>New Immediate Window</td>
<td>Open a new Immediate tab.</td>
</tr>
<tr>
<td>Share</td>
<td>Show the Share this environment dialog box.</td>
</tr>
<tr>
<td>Installer</td>
<td>Show the AWS Cloud9 Installer dialog box.</td>
</tr>
<tr>
<td>Collaborate</td>
<td>Show the Collaborate window, or hide if shown.</td>
</tr>
<tr>
<td>Outline</td>
<td>Show the Outline window, or hide if shown.</td>
</tr>
<tr>
<td>AWS Resources</td>
<td>Show the AWS Resources window, or hide if shown.</td>
</tr>
<tr>
<td>Environment</td>
<td>Show the Environment window, or hide if shown.</td>
</tr>
<tr>
<td>Debugger</td>
<td>Show the Debugger window, or hide if shown.</td>
</tr>
<tr>
<td>Navigate</td>
<td>Show the Navigate window, or hide if shown.</td>
</tr>
<tr>
<td>Commands</td>
<td>Show the Commands window, or hide if shown.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Navigation, Tab to the Right</td>
<td>Go one tab right.</td>
</tr>
<tr>
<td>Navigation, Tab to the Left</td>
<td>Go one tab left.</td>
</tr>
<tr>
<td>Navigation, Next Tab in History</td>
<td>Go to the next tab.</td>
</tr>
<tr>
<td>Navigation, Previous Tab in History</td>
<td>Go to the previous tab.</td>
</tr>
<tr>
<td>Navigation, Move Tab to Right</td>
<td>Move the current tab right. If the tab is already at the far right, create a split tab there.</td>
</tr>
<tr>
<td>Navigation, Move Tab to Left</td>
<td>Move the current tab left. If the tab is already at the far left, create a split tab there.</td>
</tr>
<tr>
<td>Navigation, Move Tab to Up</td>
<td>Move the current tab up one pane. If the tab is already at very top, create a split tab there.</td>
</tr>
<tr>
<td>Navigation, Move Tab to Down</td>
<td>Move the current tab down one pane. If the tab is already at the very bottom, create a split tab there.</td>
</tr>
<tr>
<td>Navigation, Go to Pane to Right</td>
<td>Go one pane right.</td>
</tr>
<tr>
<td>Navigation, Go to Pane to Left</td>
<td>Go one pane left.</td>
</tr>
<tr>
<td>Navigation, Go to Pane to Up</td>
<td>Go one pane up.</td>
</tr>
<tr>
<td>Navigation, Go to Pane to Down</td>
<td>Go one pane down.</td>
</tr>
<tr>
<td>Navigation, Switch Between Editor and Terminal</td>
<td>Switch between the editor and the Terminal tab.</td>
</tr>
<tr>
<td>Navigation, Next Pane in History</td>
<td>Go to the next pane.</td>
</tr>
<tr>
<td>Navigation, Previous Pane in History</td>
<td>Go to the previous pane.</td>
</tr>
<tr>
<td>Saved Layouts, LAYOUT-ID</td>
<td>Switch to the chosen layout.</td>
</tr>
<tr>
<td>Saved Layouts, Save</td>
<td>Save the current layout. To switch to this layout later, choose Saved Layouts, LAYOUT-ID.</td>
</tr>
<tr>
<td>Saved Layouts, Save and Close All</td>
<td>Save the current layout, and then close all tabs and panes.</td>
</tr>
<tr>
<td>Saved Layouts, Show Saved Layouts in File Tree</td>
<td>Show all saved layouts in the Environment window.</td>
</tr>
<tr>
<td>Tabs, Close Pane</td>
<td>Close the current pane.</td>
</tr>
<tr>
<td>Tabs, Close All Tabs In All Panes</td>
<td>Close all open tabs in all panes.</td>
</tr>
<tr>
<td>Tabs, Close All But Current Tab</td>
<td>Close all open tabs in the current pane, except the current tab.</td>
</tr>
<tr>
<td>Tabs, TAB-NAME</td>
<td>Go to the chosen tab.</td>
</tr>
<tr>
<td>Tabs, Split Pane in Two Rows</td>
<td>Split the current pane into two panes, top and bottom.</td>
</tr>
<tr>
<td>Tabs, Split Pane in Two Columns</td>
<td>Split the current pane into two panes, left and right.</td>
</tr>
</tbody>
</table>
Support Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome Page</td>
<td>Open the Welcome tab.</td>
</tr>
<tr>
<td>Get Help (Community)</td>
<td>Opens the AWS Cloud9 online community website in a separate web browser tab.</td>
</tr>
<tr>
<td>Read Documentation</td>
<td>Opens the AWS Cloud9 User Guide in a separate web browser tab.</td>
</tr>
</tbody>
</table>

Preview Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preview File FILE-NAME</td>
<td>Preview the current document in a preview tab.</td>
</tr>
<tr>
<td>Preview Running Application</td>
<td>Preview the current application in a separate web browser tab.</td>
</tr>
<tr>
<td>Configure Preview URL</td>
<td>Open the Project Settings section of the Preferences tab to the Run &amp; Debug, Preview URL box.</td>
</tr>
<tr>
<td>Show Active Servers</td>
<td>Show a list of available active server addresses in the Process List dialog box.</td>
</tr>
</tbody>
</table>

Other Menu Bar Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>Run or debug the current application.</td>
</tr>
<tr>
<td>Share</td>
<td>Opens the Share this environment dialog box.</td>
</tr>
<tr>
<td>Preferences (gear icon)</td>
<td>Open the Preferences tab.</td>
</tr>
</tbody>
</table>
Finding and Replacing Text in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the find and replace bar in the AWS Cloud9 IDE to find and replace text in a single file or multiple files.

- Find Text in a Single File (p. 124)
- Replace Text in a Single File (p. 124)
- Find Text in Multiple Files (p. 124)
- Replace Text in Multiple Files (p. 125)
- Find and Replace Options (p. 126)

Find Text in a Single File

1. Open the file you want to find text in. If the file is already open, choose the file's tab to make the file active.
2. On the menu bar, choose Find, Find.
3. In the find and replace bar, for Find, type the text you want to find.
4. To specify additional find options, see Find and Replace Options (p. 126).
5. If there are any matches, 0 of 0 in the Find box changes to non-zero numbers. If there are any matches, the editor goes to the first match. If there is more than one match, to go to the next match, choose the right arrow in the Find box or choose Find, Find Next on the menu bar. To go to the previous match, choose the left arrow in the Find box or choose Find, Find Previous on the menu bar.

Replace Text in a Single File

1. Open the file you want to replace text in. If the file is already open, choose the file's tab to make the file active.
2. On the menu bar, choose Find, Replace.
3. In the find and replace bar, for Find, type the text you want to find.
4. For Replace With, type the text you want to replace the text in Find with.
5. To specify additional find and replace options, see Find and Replace Options (p. 126).
6. If there are any matches, 0 of 0 in the Find box changes to non-zero numbers. If there are any matches, the editor goes to the first match. If there is more than one match, to go to the next match, choose the right arrow in the Find box or choose Find, Find Next on the menu bar. To go to the previous match, choose the left arrow in the Find box or choose Find, Find Previous on the menu bar.
7. To replace the current match with the text in Replace With and then go to the next match, choose Replace. To replace all matches with the text in Replace With, choose Replace All.

Find Text in Multiple Files

1. On the menu bar, choose Find, Find in Files.
2. In the find and replace bar, for Find, type the text you want to find.
3. To specify additional find options, see Find and Replace Options (p. 126).
4. In the box to the right of the Find button (the box with *.*), type any set of files to include or exclude in the find. For example:
   • Blank, *, or *.*: Find all files.
   • my-file.txt: Find only the file named my-file.txt.
   • my*: Find only files with file names starting with my.
   • my*.txt: Find only files with file names starting with my and that have the file extension .txt.
   • my*.htm*: Find all files with file names starting with my and a file extension starting with .htm.
   • my*.htm, my*.html: Find all files with file names starting with my and the file extension .htm or .html.
   • -my-file.txt: Do not search the file named my-file.txt.
   • -my*: Do not search any files starting with my.
   • -my*.htm*: Do not search any files with file names starting with my and a file extension starting with .htm.
   • my*.htm*, -my*.html: Search all files with file names starting with my and a file extension starting with .htm. However, do not search any files with file names starting with my and a file extension of .html.

5. In the drop-down list next to the preceding box, choose one of the following to further restrict the find to only specific locations:
   • Environment: Find only files in the Environment window.
   • Project (excludes .gitignore'd): Find any file in the environment, except for files or file types listed in the .gitignore file in the environment, if a .gitignore file exists.
   • Selection: Find only files that are currently selected in the Environment window.
     Note
     To further restrict the find to only a single folder, choose a folder in the Environment window and then choose Selection. Alternatively, you can right-click the folder in the Environment window, and then choose Search In This Folder on the context menu.
   • Favorites: Find only files in the Favorites list in the Environment window.
   • Active File: Find only the active file.
   • Open Files: Find only files in the Open Files list in the Environment window.

6. Choose Find.

7. To go to a file containing matches, double-click the file name on the Search Results tab. To go to a specific match, double-click the match in the Search Results tab.

Replace Text in Multiple Files

1. On the menu bar, choose Find, Find in Files.

2. In the find and replace bar, for Find, type the text you want to find.

3. To specify additional find options, see Find and Replace Options (p. 126).

4. In the box to the right of the Find button (the box with *.*), type any set of files to include or exclude in the find. For example:
   • Blank, *, or *.*: All files.
   • my-file.txt: Only the file named my-file.txt.
   • my*: Only files with file names staring with my.
   • my*.txt: Only files with file names starting with my and that have the file extension .txt.
   • my*.htm*: All files with file names starting with my and a file extension starting with .htm.
   • my*.htm, my*.html: All files with file names starting with my and the file extension .htm or .html.
   • -my-file.txt: Do not search the file named my-file.txt.
• `-my*`: Do not search any files starting with `my`.
• `-my*.htm*`: Do not search any files with file names starting with `my` and a file extension starting with `.htm`.
• `my*.htm*, -my*.html`: Search all files with file names starting with `my` and a file extension starting with `.htm`. However, do not search any files with file names starting with `my` and a file extension of `.html`.

5. In the drop-down list next to the preceding box, choose one of the following to further restrict the find to only specific locations:

• Environment: Only files in the Environment window.
• Project (excludes .gitignore’d): Any file in the environment, except for files or file types listed in the .gitignore file in the environment, if a .gitignore file exists.
• Selection: `/`: Only files that are currently selected.
• Favorites: Only files in the Favorites list in the Environment window.
• Active File: Only the active file.
• Open Files: Only files in the Open Files list in the Environment window.

6. For Replace With, type the text you want to replace Find with.

7. Choose Replace.

Note
The replace operation happens immediately across all files in scope. This operation cannot be easily undone. If you want to see what will be changed before you start the replace operation, choose Find instead.

8. To go to a file containing replacements, double-click the file name in the Search Results tab. To go to a specific replacement, double-click the replacement in the Search Results pane.

Find and Replace Options

Choose any of the following buttons on the find and replace bar to modify find and replace operations.

• **Regular Expressions**: Find text matching the specified regular expression in Find or Find in Files. See Writing a regular expression pattern in the JavaScript Regular Expressions topic on the Mozilla Developer Network.
• **Match Case**: Find text matching the specified casing in Find or Find in Files.
• **Whole Words**: Use standard word character rules to find text in Find or Find in Files.
• **Wrap Around**: For a single file only, do not stop at the end or beginning of the file when going to the next or previous match.
• **Search Selection**: For a single file only, find only in the selection.
Previewing Files in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to preview the files in a AWS Cloud9 development environment from within the IDE.

- Open a File for Preview (p. 127)
- Reload a File Preview (p. 128)
- Change the File Preview Type (p. 128)
- Open a File Preview in a Separate Web Browser Tab (p. 128)
- Switch to a Different File Preview (p. 128)

Open a File for Preview

Do one of the following in the AWS Cloud9 IDE to open a file preview tab within the environment:

- In the Environment window, right-click the file you want to preview, and then choose Preview.
  
  Note
  Although you can use this approach to preview any file, preview works best with files that have the following file extensions:
  - .htm
  - .html
  - .pdf
  - .svg
  - .xhtml
  - Any file containing content in Markdown format.

- Open a file with one of the following file extensions:
  - .pdf
  - .svg

- With the file you want to preview already open and active, on the menu bar, choose Preview, Preview File FILE_NAME. Or choose Tools, Preview, Preview File FILE_NAME, where FILE_NAME is the name of the file you want to preview.
  
  Note
  These commands work only with the following file types:
  - .htm
  - .html
  - .markdown
  - .md
  - .pdf
  - .svg
  - .txt: Preview works best if the file's content is in Markdown format.
• .xhtml: Preview works best if the file contains or references content presentation information.

Note
The Preview Settings menu in the file preview tab is currently not functional and choosing any of its menu commands will have no effect.

Reload a File Preview

On the file preview tab, choose the Refresh button (the circular arrow).

Change the File Preview Type

On the file preview tab, choose one of the following in the preview type list:

• Browser: Previews the file in a web browser format, for the following file types only:
  • .htm
  • .html
  • .pdf
  • .svg
  • .xhtml: Preview works best if the file contains or references content presentation information.

• Raw Content (UTF-8): Previews the file's original contents in Unicode Transformation Format 8-bit (UTF-8) format. This might display unexpected content for some file types.

• Markdown: Previews any file containing Markdown format. Attempts to preview any other file type, but might display unexpected content.

Open a File Preview in a Separate Web Browser Tab

On the file preview tab, choose Pop Out Into New Window.

Switch to a Different File Preview

On the file preview tab, type the path to a different file path in the address bar. The address bar is located between the Refresh button and the preview type list.

Previewing Running Applications in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to preview a running application from within the IDE.

• Run an Application (p. 129)
• Preview a Running Application (p. 130)
• Reload an Application Preview (p. 131)
• Change the Application Preview Type (p. 131)
• Open an Application Preview in a Separate Web Browser Tab (p. 131)
• Switch to a Different Preview URL (p. 131)
Run an Application

Before you can preview your application from within the IDE, it must be running in the AWS Cloud9 development environment using HTTP over port 8080, 8081, or 8082 with the IP of 127.0.0.1, localhost, or 0.0.0.0.

Note
You don't have to run using HTTP over port 8080, 8081, or 8082 with the IP of 127.0.0.1, localhost, or 0.0.0.0. However, you won't be able to preview your running application from within the IDE.

If you run with the IP of 0.0.0.0, anyone can potentially access your running application. For approaches to address this issue, see the following:

- Step 2: Set Up the Security Group for the Instance (p. 132) in Share a Running Application over the Internet
- Step 3: Set Up the Subnet for the Instance (p. 133) in Share a Running Application over the Internet

To write the code to run your application on a specific port and IP, see your application's documentation.

To run your application, see Run Your Code (p. 139).

To test this behavior, for example you could add the following JavaScript code to a file with a name such as server.js in the root of your environment. This code runs a server using Node.js, as follows.

```javascript
var http = require('http');
var fs = require('fs');
var url = require('url');

http.createServer(function (request, response) {
 var pathname = url.parse(request.url).pathname;
 console.log("Trying to find " + pathname.substr(1) + "+"...);

 fs.readFile(pathname.substr(1), function (err, data) {
 if (err) {
 response.writeHead(404, {'Content-Type': 'text/html'});
 response.write("ERROR: Cannot find " + pathname.substr(1) + ".");
 console.log("ERROR: Cannot find " + pathname.substr(1) + ".");
 } else {
 console.log("Found " + pathname.substr(1) + ".");
 response.writeHead(200, {'Content-Type': 'text/html'});
 response.write(data.toString());
 }
 response.end();
});
}).listen(8080, 'localhost'); // Or 8081 or 8082 instead of 8080. Or '127.0.0.1' instead of 'localhost'.
```

Or you could add the following Python code to a file with a name such as server.py in the root of your environment. This code runs a server using Python, as follows.

```python
import os
import SimpleHTTPServer
import SocketServer

ip = 'localhost' # Or '127.0.0.1' instead of 'localhost'.
port = '8080' # Or '8081' or '8082' instead of '8080'.
```
Next, add the following HTML code to a file with a name such as index.html in the root of your environment.

```html
<html>
<head>
 <title>Hello Home Page</title>
</head>
<body>
 <p style="font-family:Arial;color:blue">Hello, World!</p>
</body>
</html>
```

To see this file's HTML output on the application preview tab, run server.js with Node.js or server.py file with Python. Then follow the instructions in the next procedure to preview it. On the application preview tab, add /index.html to the end of the URL, and then press Enter.

### Preview a Running Application

With your application already running using HTTP over port 8080, 8081, or 8082 with the IP of 127.0.0.1, localhost, or 0.0.0.0 in the environment, and with the corresponding application code file open and active in the AWS Cloud9 IDE, choose one of the following on the menu bar:

- Preview, Preview Running Application
- Tools, Preview, Preview Running Application

This opens an application preview tab within the environment, and then displays the application's output on the tab.

If the application preview tab displays an error or is blank, try following the troubleshooting steps in Application Preview Tab Displays an Error or is Blank (p. 456).

To enable others to preview the running application outside of the IDE, see Share a Running Application over the Internet (p. 131).

**Note**

If the application is not already running, you will see an error on the application preview tab. Run or restart the application, and then choose the menu bar command again.

If your application cannot run on any of the preceding ports or IPs, or if your application must run on more than one of these ports at the same time (for example, your application must run on ports 8080 and 3000 at the same time), the application preview tab might display an error or might be blank. This is because the application preview tab within the environment works only with the preceding ports and IPs, and it works with only a single port at a time.

We don't recommend sharing the URL in the application preview tab with others. (The URL displays using the format https://12a34567b8cd9012345ef67abcd890e1.vfs.clound9.us-east-2.amazonaws.com/, where 12a34567b8cd9012345ef67abcd890e1 is the ID that AWS Cloud9 assigns to the environment, and us-east-2 is the ID of the AWS Region for the environment.) This URL works only when the IDE for the environment is open and the application is running in the same web browser.

If you try to go to the IP of 127.0.0.1, localhost, or 0.0.0.0 by using the application preview tab in the IDE or in a separate web browser tab outside of the IDE, the default built-in behavior of the AWS Cloud9 IDE is that this will attempt to go to your local computer, instead of attempting to go to the instance or your own server that is connected to the environment.
Reload an Application Preview

On the application preview tab, choose the **Refresh** button (the circular arrow).

**Note**
This command does not restart the server. It just refreshes the contents of the application preview tab.

Change the Application Preview Type

On the application preview tab, choose one of the following in the preview type list:

- **Browser**: Previews the output in a web browser format.
- **Raw Content (UTF-8)**: Attempts to preview the output in Unicode Transformation Format 8-bit (UTF-8) format, if applicable.
- **Markdown**: Attempts to preview the output in Markdown format, if applicable.

Open an Application Preview in a Separate Web Browser Tab

On the application preview tab, choose **Pop Out Into New Window**.

**Note**
The application preview will not be displayed in a separate web browser tab unless the AWS Cloud9 IDE is also running in at least one other tab in the same web browser.

Switch to a Different Preview URL

On the application preview tab, type the path to a different URL in the address bar. The address bar is located between the **Refresh** button and the preview type list.

Share a Running Application over the Internet

After you preview your running application, you can make it available to others over the internet.

To do this, if an Amazon EC2 instance is connected to your environment, follow these steps. Otherwise, see your server's documentation.

- **Step 1: Get the ID and the IP Address of the Instance** (p. 131)
- **Step 2: Set Up the Security Group for the Instance** (p. 132)
- **Step 3: Set Up the Subnet for the Instance** (p. 133)
- **Step 4: Change the Running Application IP** (p. 134)
- **Step 5: Share the Running Application URL** (p. 134)

**Step 1: Get the ID and the IP Address of the Instance**

In this step, you note the instance ID and public IP address for the Amazon EC2 instance that is connected to the environment. You need the instance ID in a later step to allow incoming application requests. Then you give the public IP address to others so that they can access the running application.
1. Get the Amazon EC2 instance's ID. To get this, do one of the following:
   - In a terminal session in the AWS Cloud9 IDE for the environment, run the following command to get the Amazon EC2 instance's ID.
     
     ```
     ```
     
     The instance ID will look similar to this: i-12a3b456c789d0123. Make a note of this instance ID.
   - In the IDE for the environment, on the menu bar, choose your user icon, and then choose Manage EC2 Instance.

     ![Image of the Manage EC2 Instance option](image)

     In the Amazon EC2 console that displays, make a note of the instance ID that displays in the Instance ID column. The instance ID will look similar to this: i-12a3b456c789d0123.

2. Get the Amazon EC2 instance's public IP address. To get this, do one of the following:
   - In the IDE for the environment, on the menu bar, choose Share. In the Share this environment dialog box, make a note of the public IP address in the Application box. The public IP address will look similar to this: 192.0.2.0.
   - In a terminal session in the IDE for the environment, run the following command to get the Amazon EC2 instance's public IP address.
     
     ```
     ```
     
     The public IP address will look similar to this: 192.0.2.0. Make a note of this public IP address.
   - In the IDE for the environment, on the menu bar, choose your user icon, and then choose Manage EC2 Instance. In the Amazon EC2 console that displays, on the Description tab, make a note of the public IP address for the IPv4 Public IP field. The public IP address will look similar to this: 192.0.2.0.

     **Note**
     The instance's public IP address might change anytime the instance restarts. To prevent this IP address from changing, one solution is to allocate an Elastic IP address and then assign that address to the running instance. For instructions, see Allocating an Elastic IP Address and Associating an Elastic IP Address with a Running Instance in the Amazon EC2 User Guide for Linux Instances. Note also that allocating an Elastic IP address might result in charges to your AWS account. For more information, see Amazon EC2 Pricing.

**Step 2: Set Up the Security Group for the Instance**

In this step, you use the Amazon EC2 console to set up the Amazon EC2 security group for the instance that is connected to the environment, to allow incoming HTTP requests over port 8080, 8081, or 8082.

**Note**
You don't have to run using HTTP over port 8080, 8081, or 8082. If you are running on a different protocol or port, substitute it throughout this step. You won't be able to preview your running application from within the IDE until you switch back to running using HTTP over one of the ports and IPs as described in Preview a Running Application (p. 130).

For an additional layer of security, you can also set up a network access control list (ACL) for a subnet in a virtual private cloud (VPC) that the instance can use. For more information about security groups and network ACLs, see the following:
Step 3: Set Up the Subnet for the Instance (p. 133)

• Security in the Amazon VPC User Guide
• Security Groups for Your VPC in the Amazon VPC User Guide
• Network ACLs in the Amazon VPC User Guide

1. In the IDE for the environment, on the menu bar, choose your user icon, and then choose Manage EC2 Instance. Then skip ahead to step 3 in this procedure.

2. If choosing Manage EC2 Instance or other steps in this procedure display errors, we recommend you sign in to the Amazon EC2 console using credentials for an IAM administrator user in your AWS account, and then complete the following instructions. If you cannot do this, check with your AWS account administrator.
   a. Sign in to the AWS Management Console, if you are not already signed in, at https://console.aws.amazon.com.
   b. Open the Amazon EC2 console. To do this, in the AWS navigation bar, choose Services. Then choose EC2.
   c. In the AWS navigation bar, choose the AWS Region where the environment is located.
   d. If the EC2 Dashboard is displayed, choose Running Instances. Otherwise, in the service navigation pane, expand Instances if it is not already expanded, and then choose Instances.
   e. In the list of instances, select the instance where the Instance ID matches the instance ID you noted earlier.

3. In the Description tab for the instance, choose the security group link next to Security groups.

4. With the security group displayed, look on the Inbound tab. If a rule already exists where Type is set to Custom TCP Rule and Port Range is set to 8080, 8081, or 8082, choose Cancel, and skip ahead to Step 3: Set Up the Subnet for the Instance (p. 133). Otherwise, choose Edit.

5. In the Edit inbound rules dialog box, choose Add Rule.

6. For Type, choose Custom TCP Rule.

7. For Port Range, type 8080, 8081, or 8082.

8. For Source, choose Anywhere.

   Note
   Choosing Anywhere for Source allows incoming requests from any IP address. To restrict this to specific IP addresses, choose Custom and then type the IP address range, or choose My IP to restrict this to requests from your IP address only.

9. Choose Save.

Step 3: Set Up the Subnet for the Instance

In this step, you use the consoles for Amazon EC2 and Amazon Virtual Private Cloud (Amazon VPC) to set up the subnet for the Amazon EC2 instance that is connected to the environment, to also allow incoming HTTP requests over port 8080, 8081, or 8082.

Note
You don't have to run using HTTP over port 8080, 8081, or 8082. If you are running on a different protocol or port, substitute it throughout this step. You won't be able to preview your running application from within the IDE until you switch back to running using HTTP over the ports and IPs as described in Preview a Running Application (p. 130).

This step describes how to set up a network ACL for a subnet in an Amazon VPC that the instance can use. This step is not required. However, it adds an additional layer of security when compared to just using security groups. For more information about network ACLs, see the following:

• Security in the Amazon VPC User Guide
Share a Running Application over the Internet

• Network ACLs in the Amazon VPC User Guide

1. With the Amazon EC2 console already open from the previous step, in the service navigation pane, expand Instances if it is not already expanded, and then choose Instances.
2. In the list of instances, select the instance where the Instance ID matches the instance ID you noted earlier.
3. In the Description tab for the instance, note the value of Subnet ID. It should look similar to this: subnet-1fab8aEX.
4. Open the Amazon VPC console. To do this, in the AWS navigation bar, choose Services. Then choose VPC.

   For this step, we recommend you sign in to the Amazon VPC console using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.
5. If the VPC Dashboard is displayed, choose Subnets. Otherwise, in the service navigation pane, choose Subnets.
6. In the list of subnets, select the subnet where the Subnet ID value matches the one you noted earlier.
7. On the Summary tab, choose the network ACL link next to Network ACL.
8. In the list of network ACLs, select the network ACL. (There is only one network ACL.)
9. Look on the Inbound Rules tab for the network ACL. If a rule already exists where Type is set to HTTP* (8080), HTTP* (8081), or HTTP* (8082), skip ahead to Step 4: Change the Running Application IP (p. 134). Otherwise, choose Edit.
10. Choose Add another rule.
11. For Rule #, type a number for the rule (for example, 200).
12. For Type, choose Custom TCP Rule.
13. For Port Range, type 8080, 8081, or 8082.
14. For Source, type the range of IP addresses to allow incoming requests from. For example, to allow incoming requests from any IP address, type 0.0.0.0/0.
15. With Allow / Deny set to ALLOW, choose Save.

Step 4: Change the Running Application IP

In your code, switch from using IP 127.0.0.1, localhost, or 0.0.0.0 to using the IP address or addresses you specified in the previous steps in this section. To use these new IPs, stop the application if is already running, and then run the application again.

   Note
   You won’t be able to preview your running application from within the IDE until you switch back to running using HTTP over one of the ports and IPs as described in Preview a Running Application (p. 130).

Step 5: Share the Running Application URL

With the application running, give to others the public IP address you noted earlier. Be sure to start the URL with the correct protocol, and add the port number if it is not the default for that protocol (for example, http://192.0.2.0:8080/index.html using HTTP over port 8080).

If the resulting web browser tab displays an error, or the tab is blank, try following the troubleshooting steps in Cannot Display Your Running Application Outside of the IDE (p. 457).

   Note
   The instance's public IP address might change anytime the instance restarts. To prevent this IP address from changing, one solution is to allocate an Elastic IP address and then assign that address to the running instance. For instructions, see Allocating an Elastic IP Address and
Working with File Revisions in the AWS Cloud9 IDE

You can use the File Revision History pane in the AWS Cloud9 IDE to view and manage changes to a file in an AWS Cloud9 EC2 development environment. The File Revision History pane is not available for files in an AWS Cloud9 SSH development environment.
To show the File Revision History pane for a file, open the file in the editor. Then, on the menu bar, choose File, Show File Revision History.

The File Revision History pane begins tracking a file's revision history in the IDE after you first open the file in the editor in an environment, and only for that environment. The File Revision History pane tracks a file's revisions only from the editor itself. It does not track a file's revisions made in any other way (for example by the terminal, Git, or other file revision tools).

You cannot edit a file while the File Revision History pane is displayed. To hide the pane, choose File, Show Revision History again, or choose the X (Close timeslider) in the corner of the pane.

To jump to a version of the file that is associated with a file save action, choose a File Saved on dot above the revision slider.

To go forward or backward one version from the currently selected version of the file on the revision slider, choose one of the step arrows (Step revision forward or Step revision backward).

To go forward automatically one version of the file at a time from the beginning to end of the revision history, choose the play button (Playback file history).

To make the currently selected version of the file the latest version in the revision history, choose Revert.

Working with Images Files in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to view and edit image files.

- View or Edit an Image (p. 136)
- Resize an Image (p. 137)
- Crop an Image (p. 137)
- Rotate an Image (p. 137)
- Flip an Image (p. 137)
- Zoom an Image (p. 138)
- Smooth an Image (p. 138)

View or Edit an Image

In the AWS Cloud9 IDE, open the file for the image you want to view or edit. Supported image file types include the following:

- .bmp
- .gif (view only)
Resize an Image

1. Open the image file in the IDE.
2. On the image editing bar, choose Resize.
3. To change the image width, type a new Width in pixels. Or choose "-" or "+" next to Width to change the current width one pixel at a time.
4. To change the image height, type a new Height in pixels. Or choose "-" or "+" next to Height to change the current height one pixel at a time.
5. To maintain the image ratio of width to height, leave Maintain Aspect Ratio checked.
6. To confirm the image's new size, on the image editing bar, see the width (W) and height (H) measurements in pixels.
7. Choose Resize.
8. To discard the resizing, on the menu bar, choose Edit, Undo. To keep the new size, choose File, Save.

Crop an Image

1. Open the image file in the IDE.
2. Drag the mouse pointer over the portion of the image that you want to keep.
3. To confirm the selection's dimensions, on the image editing bar, see the Selection dimensions, as follows:
   • The distance in pixels from the original image's left edge to the left edge of the selection (L)
   • The distance in pixels from the original image's top edge to the top edge of the selection (T)
   • The selection's width in pixels (W)
   • The selection's height in pixels (H)
4. On the image editing bar, choose Crop.
5. To discard the crop, on the menu bar, choose Edit, Undo. To keep the new cropped image, choose File, Save.

Rotate an Image

1. Open the image file in the IDE.
2. To rotate the image counterclockwise, on the image editing bar, choose Rotate 90 Degrees Left.
3. To rotate the image clockwise, on the image editing bar, choose Rotate 90 Degrees Right.
4. To discard the rotation, on the menu bar, choose Edit, Undo. To keep the new rotated image, choose File, Save.

Flip an Image

1. Open the image file in the IDE.
2. To flip the image horizontally, on the image editing bar, choose \textit{FlipH}.
3. To flip the image vertically, on the image editing bar, choose \textit{FlipV}.
4. To discard the flip, on the menu bar, choose \textit{Edit, Undo}. To keep the new flipped image, choose \textit{File, Save}.

### Zoom an Image

1. Open the image file in the IDE.
2. On the image editing bar, choose one of the available zoom factors (for example, 75\%, 100\%, or 200\%).

### Smooth an Image

1. Open the image file in the IDE.
2. On the image editing bar, select \textit{Smooth} to reduce the amount of pixelation in the image. To discard the smoothing, deselect \textit{Smooth}.
3. On the menu bar, choose \textit{File, Save}.

### Working with Builders, Runners, and Debuggers in the AWS Cloud9 Integrated Development Environment (IDE)

A \textit{builder} instructs the AWS Cloud9 IDE how to build a project's files. A \textit{runner} instructs the AWS Cloud9 IDE how to run files of a specific type. A runner can use a \textit{debugger} to help find any problems in the source code of the files.

You can use the AWS Cloud9 IDE to build, run, and debug your code in the following ways:

- Use a builder to build your project's files. See Build Your Project's Files (p. 139).
- Use a runner to run (and optionally, to debug) your code. See Built-In Build, Run, and Debug Support (p. 138) and Run Your Code (p. 139).
- Change a built-in runner to run (and optionally, to debug) your code in a different way from how it was originally defined. See Change a Built-In Runner (p. 142).
- Use a runner to run (and optionally, to debug) your code with a custom combination of file name, command line options, debug mode, current working directory, and environment variables. See Create a Run Configuration (p. 142).
- Create your own builder or runner. See Create a Builder or Runner (p. 143).

### Built-In Build, Run, and Debug Support

The AWS Cloud9 IDE provides built-in support for building, running, and debugging code for several languages. For a complete list, see Language Support (p. 113).

Built-in build support is available on the menu bar with the \textit{Run, Build System} and \textit{Run, Build} menu commands. To add support for a programming language or tool that isn't listed, see Create a Builder or Runner (p. 143).
Built-in run support is available with the Run button, and on the menu bar with the Run, Run With and Run, Run Configurations menu commands. To add support for a programming language or tool that isn't listed, see Create a Builder or Runner (p. 143) and Create a Run Configuration (p. 142).

Built-in debug support is available through the Debugger window. To display the Debugger window, choose the Debugger button. If the Debugger button is not visible, choose Window, Debugger on the menu bar.

Build Your Project's Files

1. Open a file that corresponds to the code you want to build.
2. On the menu bar, choose Run, Build System, and then choose the name of the builder to use, if it isn't already chosen. If the builder you want to use isn't listed, stop this procedure, complete the steps in Create a Builder or Runner (p. 143), and then return to this procedure.
3. Choose Run, Build.

Run Your Code

1. Open a file that corresponds to the code you want to run, if the file isn't already open and selected.
2. On the menu bar, choose one of the following:
   - To run the code with the closest matching built-in runner, choose Run, Run. If AWS Cloud9 cannot find one, this command is disabled.
   - To run the code with the run configuration that AWS Cloud9 last used, choose Run, Run Last.
   - To run the code with a specific runner, choose Run, Run With, and then choose the name of the runner. If the runner you want to use isn't listed, stop this procedure, complete the steps in Create a Builder or Runner (p. 143), and then return to this procedure.
   - To run the code with a specific runner with a custom combination of file name, command line options, debug mode, current working directory, and environment variables, choose Run, Run Configurations, and then choose the run configuration's name. In the run configuration tab that is displayed, choose Runner: Auto, choose the runner you want to use, and then choose Run. If the runner you want to use isn't listed, stop this procedure, complete the steps in Create a Builder or Runner (p. 143), and then return to this procedure.

Debug Your Code

1. On the run configuration tab for your code, choose Run in Debug Mode. The bug icon turns to green on a white background. For more information, see Run Your Code (p. 139) and Create a Run Configuration (p. 142).
2. Set any breakpoints in your code you want to pause at during the run, as follows:
   a. Open each file that you want to set a breakpoint in.
   b. At each point in a file where you want to set a breakpoint, choose the blank area in the gutter to the left of the line number. A red circle appears.

To remove a breakpoint, choose the existing breakpoint in the gutter.

To disable a breakpoint instead of removing it, in the Debugger window, in Breakpoints, clear the box that corresponds to the breakpoint you want to disable. To enable the breakpoint again, select the box you cleared.

To disable all breakpoints at once, in the Debugger window, choose Deactivate All Breakpoints. To enable all breakpoints again, choose Activate All Breakpoints.
If the Debugger window isn't visible, choose the Debugger button. If the Debugger button isn't visible, on the menu bar choose Window, Debugger.

3. Set any watch expressions for which you want to get the value at the point where a run pauses, as follows:
   a. In the Debugger window, in Watch Expressions, choose Type an expression here.
   b. Type the expression you want to watch, and then press Enter.

   To change an existing watch expression, right-click the watch expression, and then choose Edit Watch Expression. Type the change, and then press Enter.

   To remove an existing watch expression, right-click the watch expression, and then choose Remove Watch Expression.

4. Run your code as described in Run Your Code (p. 139).

Whenever a run pauses, you can do the following in the Debugger window, as shown.
- **Run your code to the next breakpoint** (or to the next logical stopping point if there are no more breakpoints): Choose **Resume**.

- **Skip over running statement by statement through the next method or function call**: Choose **Step Over**.

- **Run your code to the next statement and then pause again**: Choose **Step Into**.

- **Stop running statement by statement in the current method or function call**: Choose **Step Out**.

- **Disable all existing breakpoints**: Choose **Deactivate All Breakpoints**. **Re-enable all breakpoints**: Choose **Activate All Breakpoints**.

- **Don't pause whenever the code throws an exception**: Keep choosing the exceptions behavior button until the tooltip reads **Don't pause on exceptions** (gray).
• **Pause whenever the code throws an exception**: Keep choosing the exceptions behavior button until the tooltip reads **Pause on all exceptions** (red).

• **Pause only when the code throws an uncaught exception**: Keep choosing the exceptions behavior button until the tooltip reads **Pause on uncaught exceptions** (blue).

• **Open an available script**: Choose **Available internal and external scripts**, and then choose the script.

• **View the list of current watch expressions**: See the **Watch Expressions** area.

• **View the execution path that brought the code to the current breakpoint**: See the **Call Stack** area.

• **View the list of local variables**: See the **Local Variables** area.

• **Disable individual breakpoints**: In **Breakpoints**, clear the boxes that correspond to the breakpoints you want to disable. To enable the breakpoints again, select the boxes you cleared earlier.

Whenever a run pauses, you can also pause your mouse pointer on any displayed piece of code (for example, a variable) to show any available information about it in a tooltip.

### Change a Built-In Runner

1. On the menu bar, choose **Run, Run With**, and then choose the built-in runner you want to change.

2. Stop the runner from trying to run your code by choosing, **Stop** on the run configuration tab that displays.

3. Choose **Runner: My Runner**, where **My Runner** is the name of the runner you want to change, and then choose **Edit Runner**.

4. On the **My Runner.run** tab that is displayed, change the runner's current definition. See **Define a Builder or Runner (p. 143)**.

5. Choose **File, Save As**. Save the file with the same name (**My Runner.run**) in the **my-environment/.c9/runners** directory, where **my-environment** is the name of your AWS Cloud9 development environment.

**Note**

Any changes you make to a built-in runner apply only to the environment you made those changes in. To apply your changes to a separate environment, open the other environment, and then follow the preceding steps to open, edit, and save those same changes to that built-in runner.

### Create a Run Configuration

On the menu bar, choose **Run, Run Configurations, New Run Configuration**. On the run configuration tab that is displayed, do the following:

1. In the box next to **Run** and **Restart**, type the name that will display on the **Run, Run Configurations** menu for this run configuration.

2. In the **Command** box, type any custom command line options you want to use.

3. To have this run configuration use the runner's predefined debugging settings, choose **Run in Debug Mode**. The bug icon will turn to green on a white background.

4. To have this run configuration use a specific working directory, choose **CWD**, choose the directory to use, and then choose **Select**.

5. To have this run configuration use specific environment variables, choose **ENV**, and then type the name and value of each environment variable.

To use this run configuration, open the file the corresponds to the code you want to run. Choose **Run, Run Configurations** on the menu bar, and then choose this run configuration's name. In the run
configuration tab that displays, choose **Runner: Auto**, choose the runner you want to use, and then choose **Run**.

**Note**
Any run configuration you create applies only to the environment you created that run configuration in. To add that run configuration to a separate environment, open the other environment, and then follow the preceding steps to create the same run configuration in that environment.

### Create a Builder or Runner

1. To create a builder, on the menu bar, choose **Run, Build System, New Build System**. To create a runner, on the menu bar, choose **Run, Run With, New Runner**.

2. On the builder tab (labeled **My Builder.build**) or runner tab (labeled **My Runner.run**) that is displayed, define the builder or runner. See Define a Builder or Runner (p. 143).

3. After you define the builder or runner, choose **File, Save As**. For a builder, save the file with the .build extension in the my-environment/.c9/builders directory, where my-environment is the name of your environment. For a runner, save the file with the .run file extension in the my-environment/.c9/runners directory, where my-environment is the name of your environment. The file name you specify will be the name that is displayed on the **Run, Build System** menu (for a builder) or the **Run, Run With** menu (for a runner). Therefore, unless you specify a different file name, by default the display name will be **My Builder** (for a builder) or **My Runner** (for a runner).

To use this builder or runner, see Build Your Project’s Files (p. 139) or Run Your Code (p. 139).

**Note**
Any builder or runner you create applies only to the environment you created that builder or runner in. To add that run builder or runner to a separate environment, open the other environment, and then follow the preceding steps to create the same builder or runner in that environment.

### Define a Builder or Runner

This procedure assumes you have already begun to create a builder or runner by choosing **Run, Build System, New Build System** (for a builder) or **Run, Run With, New Runner** (for a runner).

On the builder or runner tab that is displayed, use JSON to define the runner or builder. Start with the following code as a template.

For a builder, start with this code.

```json
{
 "cmd": [],
 "info": "",
 "env": {},
 "selector": ""
}
```

For a runner, start with this code.

```json
{
 "cmd": [],
 "script": "",
 "working_dir": "",
 "info": "",
 "env": {}
}
```
Define a Builder or Runner

```
"selector":
"debugger":
"debugport":
}
```

In the preceding code:

- **cmd**: Represents a comma-separated list of strings for AWS Cloud9 to run as a single command.

  When AWS Cloud9 runs this command, each string in the list will be separated by a single space. For example, AWS Cloud9 will run `cmd`: [ "ls", "$file", "$args"] as `ls $file $args`, where AWS Cloud9 will replace `$file` with the full path to the current file and `$args` with any arguments entered after the file name. For more information, see the list of supported variables later in this section.

- **script**: Represents a bash script (which can also be specified as an array of lines as needed for readability) that the runner executes in the terminal.

- **working_dir**: Represents the directory that the runner will run from.

- **info**: Represents any string of text you want to display to the user at the beginning of the run. This string can contain variables, for example Running $project_path$file_name..., where AWS Cloud9 will replace `$project_path` with the directory path of the current file and `$file_name` with the name portion of the current file. See the list of supported variables later in this section.

- **env**: Represents any array of command line arguments for AWS Cloud9 to use, for example:

  ```json
 "env": {
 "LANG": "en_US.UTF-8",
 "SHLVL": "1"
 }
  ```

- **selector**: Represents any regular expression that you want AWS Cloud9 to use to identify the file names that apply to this runner. For example, you could specify `source.py` for Python files.

- **debugger**: Represents the name of any available debugger you want AWS Cloud9 to use that is compatible with this runner. For example, you could specify `v8` for the V8 debugger.

- **debugport**: Represents the port number you want AWS Cloud9 to use during debugging. For example, you could specify `15454` for the port number to use.

The following table shows the variables you can use.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$file_path</td>
<td>The directory of the current file, for example, /home/ec2-user/environment.</td>
</tr>
<tr>
<td>$file</td>
<td>The full path to the current file, for example, /home/ec2-user/environment/Hello.py.</td>
</tr>
<tr>
<td>$args</td>
<td>Any arguments entered after the file name, for example, &quot;5&quot; &quot;9&quot;.</td>
</tr>
<tr>
<td>$file_name</td>
<td>The name portion of the current file, for example, Hello.py.</td>
</tr>
<tr>
<td>$file_extension</td>
<td>The extension of the current file, for example, py.</td>
</tr>
<tr>
<td>$file_base_name</td>
<td>The name of the current file without the file extension, for example, Hello.</td>
</tr>
</tbody>
</table>
As an example, the following builder file named G++.build defines a builder for GCC that runs the `g++` command with the `-o` option to compile the current file (for example, hello.cpp) into an object module. Then it links the object module into a program with the same name as the current file (for example, hello). Here the equivalent command is `g++ -o hello hello.cpp`.

```json
{
 "cmd": ["g++", "-o", "$file_base_name", "$file_name"],
 "info": "Compiling $file_name and linking to $file_base_name...",
 "selector": "source.cpp"
}
```

As another example, the following runner file named Python.run defines a runner that uses Python to run the current file with any arguments that were provided. For example, if the current file is named hello.py and the arguments 5 and 9 were provided, the equivalent command is `python hello.py 5 9`.

```json
{
 "cmd": ["python", "$file_name", "$args"],
 "info": "Running $file_name...",
 "selector": "source.py"
}
```

Finally, the following runner file named Print Run Variables.run defines a runner that simply outputs the value of each available variable and then stops.

As an example, the following table summarizes the available variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$packages</td>
<td>The full path to the packages folder.</td>
</tr>
<tr>
<td>$project</td>
<td>The full path to the current project folder.</td>
</tr>
<tr>
<td>$project_path</td>
<td>The directory of the current project file, for example, /home/ec2-user/environment/.</td>
</tr>
<tr>
<td>$project_name</td>
<td>The name of the current project file without the file extension, for example, my-demo-environment.</td>
</tr>
<tr>
<td>$project_extension</td>
<td>The extension of the current project file.</td>
</tr>
<tr>
<td>$project_base_name</td>
<td>The name of the current project file without the extension.</td>
</tr>
<tr>
<td>$hostname</td>
<td>The hostname of the environment, for example, 192.0.2.0.</td>
</tr>
<tr>
<td>$hostname_path</td>
<td>The hostname of the environment with the relative path to the project file, for example, <a href="https://192.0.2.0/hello.js">https://192.0.2.0/hello.js</a>.</td>
</tr>
<tr>
<td>$url</td>
<td>The full URL to access the environment, for example, <a href="https://192.0.2.0">https://192.0.2.0</a>.</td>
</tr>
<tr>
<td>$port</td>
<td>The port assigned to the environment, for example, 8080.</td>
</tr>
<tr>
<td>$ip</td>
<td>The IP address to run a process against the environment, for example, 0.0.0.0.</td>
</tr>
</tbody>
</table>
Working with Custom Environment Variables in the AWS Cloud9 Integrated Development Environment (IDE)

The AWS Cloud9 IDE supports getting and setting custom environment variables. You can get and set custom environment variables in the AWS Cloud9 IDE in the following ways.

- Set Command-Level Custom Environment Variables (p. 146)
- Set Custom User Environment Variables in ~/.bash_profile (p. 146)
- Set Local Custom Environment Variables (p. 147)
- Set Custom User Environment Variables in ~/.bashrc (p. 147)
- Set Custom Environment Variables in the ENV List (p. 147)

Set Command-Level Custom Environment Variables

You can set command-level custom environment variables as you run a command in your AWS Cloud9 development environment. To test this behavior, create a file named script.sh with the following code:

```bash
#!/bin/bash
echo $MY_ENV_VAR
```

If you run the following command, the terminal displays Terminal session:

```
MY_ENV_VAR='Terminal session' sh ./script.sh
```

If you set the custom environment variable by using multiple approaches described in this topic, then when you try to get the custom environment variable's value, this setting takes priority over all of the others.

Set Custom User Environment Variables in ~/.bash_profile

You can set custom user environment variables in the ~/.bash_profile file in your environment. To test this behavior, add the following code to the ~/.bash_profile file in your environment:

```
export MY_ENV_VAR='.bash_profile file'
```
If you then choose the Run, Run With, Shell script command on the menu bar, type ./script.sh in the Command box of the runner tab, and then choose Run, the runner tab displays .bash_profile file. (This assumes you created the script.sh file as described earlier.)

Set Local Custom Environment Variables

You can set local custom environment variables in a terminal session by running the export command. To test this behavior, run the following command in a terminal session:

```bash
export MY_ENV_VAR='Command line export'
```

If you then choose the Run, Run With, Shell script command on the menu bar, type ./script.sh in the Command box of the runner tab, and then choose Run, the runner tab displays Command line export. (This assumes you created the script.sh file as described earlier.)

If you set the same custom environment variable in your ~/.bash_profile file and with the export command, then when you try to get the custom environment variable's value, the ~/.bash_profile file setting takes priority.

Set Custom User Environment Variables in ~/.bashrc

You can set custom user environment variables in ~/.bashrc file in your environment. To test this behavior, add the following code to the ~/.bashrc file in your environment:

```bash
export MY_ENV_VAR='.bashrc file'
```

If you then choose the Run, Run With, Shell script command on the menu bar, type ./script.sh in the Command box of the runner tab, and then choose Run, the runner tab displays .bashrc file. (This assumes you created the script.sh file as described earlier.)

If you set the same custom environment variable with the export command and in your ~/.bashrc file, then when you try to get the custom environment variable's value, the export command setting takes priority.

Set Custom Environment Variables in the ENV List

You can set custom environment variables in the ENV list on the Run tab.

To test this behavior, do the following:

1. On the menu bar, choose Run, Run Configurations, New Run Configuration.
3. Choose ENV, and then type MY_ENV_VAR for Name and ENV list for Value.
4. For Command, type ./script.sh.
5. Choose the Run button. the runner tab displays ENV list. (This assumes you created the script.sh file as described earlier.)

If you set the same custom environment variable in your ~/.bash_profile file, with the export command, in your ~/.bashrc file, and in the ENV list, then when you try to get the custom environment variable's value, the ~/.bash_profile file setting takes first priority, followed by the export command setting, the ~/.bashrc file setting, and the ENV list setting.

Note
The ENV list is the only approach for getting and setting custom environment variables by using code, separate from a shell script.
Working with Project Settings in the AWS Cloud9 Integrated Development Environment (IDE)

*Project settings,* which apply only to the current AWS Cloud9 development environment, include the following kinds of settings:

- Code editor behaviors, such as whether to use soft tabs and new file line ending behavior
- File types to ignore
- The types of hints and warnings to display or suppress
- Code and formatting behaviors for programming languages such as JavaScript, PHP, Python, and Go
- The types of configurations to use when running and building code

Although project settings apply to only a single environment, you can apply the project settings for one environment to any other environment.

- View or Change Project Settings (p. 148)
- Apply the Current Project Settings for an Environment to Another Environment (p. 148)
- Project Setting Changes You Can Make (p. 148)

View or Change Project Settings

1. On the menu bar, choose AWS Cloud9, Preferences.
2. To view the project settings for the current environment, on the Preferences tab, in the side navigation pane, choose Project Settings.
3. To change the current project settings for the environment, change the settings you want in the Project Settings pane.

See Project Setting Changes You Can Make (p. 148).

Apply the Current Project Settings for an Environment to Another Environment

1. In both the source and target environment, on the menu bar of the AWS Cloud9 IDE, choose AWS Cloud9, Open Your Project Settings.
2. In the source environment, copy the contents of the project.settings tab that is displayed.
3. In the target environment, overwrite the contents of the project.settings tab with the copied contents from the source environment.
4. In the target environment, save the project.settings tab.

Project Setting Changes You Can Make

These sections describe the kinds of project settings that you can change on the Preferences tab’s Project Settings pane.

- Code Editor (Ace) (p. 149)
- Find in Files (p. 149)
• Hints & Warnings (p. 149)
• JavaScript Support (p. 150)
• Build (p. 150)
• Run & Debug (p. 150)
• Run Configurations (p. 151)
• Code Formatters (p. 151)
• PHP Support (p. 152)
• Python Support (p. 153)
• Go Support (p. 153)

**Code Editor (Ace)**

**Soft Tabs**

If selected, inserts the specified number of spaces instead of a tab character each time you press Tab.

**Autodetect Tab Size on Load**

If selected, AWS Cloud9 attempts to guess the tab size.

**New File Line Endings**

The type of line endings to use for new files.

Valid options include:

• **Windows (CRLF)** to end lines with a carriage return and then a line feed.
• **Unix (LF)** to end lines with just a line feed.

**On Save, Strip Whitespace**

If selected, AWS Cloud9 attempts to remove what it considers to be unnecessary spaces and tabs from a file each time that file is saved.

**Find in Files**

**Ignore these Files**

When finding in files, the types of files that AWS Cloud9 will ignore.

**Maximum number of files to search (in 1000)**

When finding in files, the maximum number of files, in multiples of 1,000, that AWS Cloud9 will find in the current scope.

**Hints & Warnings**

**Warning Level**

The minimum level of messages to enable.

Valid values include:

• **Info** to enable informational, warning, and error messages.
AWS Cloud9 User Guide
Project Setting Changes You Can Make

• **Warning** to enable just warning and error messages.
• **Error** to enable just error messages.

**Mark Missing Optional Semicolons**

If enabled, AWS Cloud9 flags in a file each time it notices a semicolon that could be used in code, but that isn't used.

**Mark Undeclared Variables**

If enabled, AWS Cloud9 flags in a file each time it notices an undeclared variable in code.

**Mark Unused Function Arguments**

If enabled, AWS Cloud9 flags in a file each time it notices an unused argument in a function.

**Ignore Messages Matching Regex**

AWS Cloud9 will not display any messages matching the specified regular expression. For more information, see Writing a regular expression pattern in the *JavaScript Regular Expressions* topic on the Mozilla Developer Network.

**JavaScript Support**

**Customize JavaScript Warnings With .eslintrc**

If enabled, AWS Cloud9 uses a `.eslintrc` file to determine which JavaScript warnings to enable or disable. For more information, see Configuration File Formats on the ESLint website.

**JavaScript Library Code Completion**

The JavaScript libraries AWS Cloud9 uses to attempt to suggest or do automatic code completion.

**Format Code on Save**

If enabled, AWS Cloud9 attempts to format the code in a JavaScript file every time that file is saved.

**Use Builtin JSBeautify as Code Formatter**

If enabled, AWS Cloud9 uses its internal implementation of JSBeautify to attempt to increase the readability of code in files.

**Custom Code Formatter**

The command for AWS Cloud9 to attempt to run when formatting code in a JavaScript file.

**Build**

**Builder Path in environment**

The path to any custom build configurations.

**Run & Debug**

**Runner Path in Environment**

The path to any custom run configurations.

**Preview URL**

The URL to use to preview applications for the environment.
Run Configurations

The custom run configurations for this environment.

Remove Selected Configs

Deletes the selected run configurations.

Add New Config

Creates a new run configuration.

Set As Default

Sets the selected run configuration as the default run configuration.

Code Formatters

JSBeautify settings

Settings for increasing the readability of code in files.

Format Code on Save

If enabled, AWS Cloud9 attempts to apply JSBeautify settings whenever code files are saved.

Use JSBeautify for JavaScript

If enabled, AWS Cloud9 attempts to apply JSBeautify settings whenever JavaScript files are saved.

Preserve Empty Lines

If enabled, AWS Cloud9 does not remove empty lines in code files.

Keep Array Indentation

If enabled, AWS Cloud9 preserves the indentation of element declarations in arrays in code files.

JSLint Strict Whitespace

If enabled, AWS Cloud9 attempts to apply JSLint whitespace rules in code files. For more information, see "Whitespace" in JSLint Help.

Braces

Specifies the alignment of braces in code.

Valid values include:

- Braces with control statement to move each beginning and end brace to align with its related control statement, as needed.

For example, this code:

```javascript
for (var i = 0; i < 10; i++) { if (i == 5) { console.log("Halfway done.") })
```

Turns into this code when the file is saved:

```javascript
for (var i = 0; i < 10; i++) {
 if (i == 5) {
 console.log("Halfway done.")
 }
}
```
- **Braces on own line** to move each brace to its own line, as needed.

  For example, this code:

  ```javascript
 for (var i = 0; i < 10; i++) { if (i == 5) { console.log("Halfway done.") }}
  ```

  Turns into this code when the file is saved:

  ```javascript
 for (var i = 0; i < 10; i++) {if (i == 5)
 {
 console.log("Halfway done.")
 }
 }
  ```

- **End braces on own line** to move each end brace to its own line, as needed.

  For example, this code:

  ```javascript
 for (var i = 0; i < 10; i++) {
 if (i == 5) { console.log("Halfway done.") }
 }
  ```

  Turns into this code when the file is saved:

  ```javascript
 for (var i = 0; i < 10; i++) {
 if (i == 5) {
 console.log("Halfway done.")
 }
 }
  ```

**Space Before Conditionals**

If enabled, AWS Cloud9 adds a space before each conditional declaration, as needed.

**Unescape Strings**

If enabled, AWS Cloud9 converts escaped strings to their unescaped equivalents. For example, converts \n to a newline character and converts \r to a carriage return character.

**Indent Inner Html**

If enabled, AWS Cloud9 indents `<head>` and `<body>` sections in HTML code.

**PHP Support**

**Enable PHP code Completion**

If enabled, AWS Cloud9 attempts to complete PHP code.

**PHP Completion Include Paths**

Locations that AWS Cloud9 uses to attempt to help complete PHP code. For example, if you have custom PHP files that you want AWS Cloud9 to use for completion, and those files are somewhere in the `~/environment` directory, add `~/environment` to this path.

**Format Code on Save**

If enabled, AWS Cloud9 attempts to format PHP code whenever PHP files are saved.
Custom Code Formatter

The path to any custom code formatting configuration for PHP code.

Python Support

Enable Python code completion

If enabled, AWS Cloud9 attempts to complete Python code. To set the paths for AWS Cloud9 to use to complete Python code, use the PYTHONPATH setting.

Python Version

Specifies the version of Python to use.

Pylint command-line options

Options for AWS Cloud9 to use for Pylint with Python code. For more information, see the Pylint User Manual on the Pylint website.

PYTHONPATH

The paths to Python libraries and packages for AWS Cloud9 to use. For example, if you have custom Python libraries and packages in the ~/environment directory, add ~/environment to this path.

Format Code on Save

If enabled, AWS Cloud9 attempts to format Python code whenever Python files are saved.

Custom Code Formatter

The path to any custom code formatting configuration for Python code.

Go Support

Enable Go code completion

If enabled, AWS Cloud9 attempts to complete Go code.

Format Code on Save

If enabled, AWS Cloud9 attempts to format Go code whenever Go files are saved.

Custom Code Formatter

The path to any custom code formatting configuration for Go code.

Working with User Settings in the AWS Cloud9 Integrated Development Environment (IDE)

User settings, which apply across each AWS Cloud9 development environment associated with your IAM user, include the following kinds of settings:

- General user interface behaviors, such as whether to enable animations
- File system navigation behaviors
- File find and search behaviors
- Color schemes for terminal sessions and output
- Additional code editor behaviors, such as code folding, full line selection, scrolling animations, and font sizes
As you make changes to your user settings, AWS Cloud9 pushes those changes to the cloud and associates them with your IAM user. AWS Cloud9 also continually scans the cloud for changes to user settings associated with your IAM user, and applies those settings to your current environment.

You can share your user settings with other users.

- View or Change Your User Settings (p. 154)
- Share Your User Settings with Another User (p. 154)
- User Setting Changes You Can Make (p. 154)

**View or Change Your User Settings**

1. On the menu bar, choose **AWS Cloud9, Preferences**.
2. To view your user settings across each environment of yours, on the **Preferences** tab, in the side navigation pane, choose **User Settings**.
3. To change your user settings across each environment of yours, in the **User Settings** pane, change the settings you want.
4. To apply your changes to any other environment of yours, simply open that environment. If that environment is already open, refresh the web browser tab for that environment.

For more information, see User Setting Changes You Can Make (p. 154).

**Share Your User Settings with Another User**

1. In both the source and target environment, on the menu bar of the AWS Cloud9 IDE, choose **AWS Cloud9, Open Your User Settings**.
2. In the source environment, copy the contents of the **user.settings** tab that is displayed.
3. In the target environment, overwrite the contents of the **user.settings** tab with the copied contents from the source environment.
4. In the target environment, save the **user.settings** tab.

**User Setting Changes You Can Make**

These sections describe the kinds of user settings on the **Preferences** tab's **User Settings** pane that you can change.

- General (p. 155)
- User Interface (p. 155)
- Collaboration (p. 155)
- Tree & Navigate (p. 156)
- Find in Files (p. 156)
- Meta Data (p. 157)
- Watchers (p. 157)
- Terminal (p. 157)
- Output (p. 157)
- Code Editor (Ace) (p. 158)
- Input (p. 160)
- Hints & Warnings (p. 160)
User Setting Changes You Can Make

- Run & Debug (p. 160)
- Preview (p. 160)
- Build (p. 161)

**General**

**Reset to Factory Settings**

If the **Reset to Default** button is chosen, AWS Cloud9 resets all of your user settings to the AWS Cloud9 default user settings. To confirm, choose **Reset settings**.

*Warning*

This action cannot be undone.

**Warn Before Exiting**

If enabled, whenever you attempt to close the IDE, AWS Cloud9 will prompt you about whether you really want to exit AWS Cloud9.

**User Interface**

**Enable UI Animations**

If enabled, AWS Cloud9 uses animations in the IDE.

**Use an Asterisk (*) to Mark Changed Tabs**

If enabled, AWS Cloud9 adds an asterisk (*) to tabs that have changes, but for which the contents have not yet been saved.

**Display Title of Active Tab as Browser Title**

If enabled, AWS Cloud9 changes the title of the associated web browser tab to the title of the active tab (for example, *Untitled1*, *hello.js*, *Terminal*, *Preferences*, and so on).

**Automatically Close Empty Panes**

If enabled, whenever you reload an environment, AWS Cloud9 automatically closes any panes it considers are empty.

**Environment Files Icon and Selection Style**

The icon AWS Cloud9 uses for environment files, and the file selection behaviors AWS Cloud9 uses.

Valid values include:

- **Default** for AWS Cloud9 to use default icons and default file selection behaviors.
- **Alternative** for AWS Cloud9 to use alternative icons and alternative file selection behaviors.

**Collaboration**

**Show Notification Bubbles**

If enabled, AWS Cloud9 displays notifications if the environment is a shared environment and multiple users are actively collaborating in that shared environment.

**Disable collaboration security warning**

If enabled, AWS Cloud9 does not display the security warning dialog box when a read/write member is added to an environment.
Show Authorship Info

If enabled, AWS Cloud9 underlines text entered by other environment members with related highlights in the gutter.

Tree & Navigate

Scope Navigate to Favorites

If enabled, the Navigate window only works with items in the Environment window's Favorites section.

Enable Preview on Navigation

If enabled, AWS Cloud9 displays the chosen file in the Navigate window with a single mouse click instead of a double mouse click.

Enable Preview on Tree Selection

If enabled, AWS Cloud9 displays the chosen file with a single mouse click instead of a double mouse click.

Hidden File Pattern

The types of files for AWS Cloud9 to treat as hidden.

Reveal Active File in Project Tree

If enabled, AWS Cloud9 highlights the active file in the Environment window.

Download Files As

The behavior for AWS Cloud9 to use when downloading files.

Valid values include:
- auto for AWS Cloud9 to download files without modification.
- tar.gz for AWS Cloud9 to download files as compressed TAR files.
- auto for AWS Cloud9 to download files as .zip files.

Find in Files

Search In This Path When 'Project' Is Selected

On the find in files bar, when Project is selected for the search scope, the path to find in.

Show Full Path in Results

If selected, displays the full path to each matching file in the Search Results tab.

Clear Results Before Each Search

If selected, clears the Search Results tab of the results of any previous searches before the current search begins.

Scroll Down as Search Results Come In

If selected, scrolls the Search Results tab to the bottom of the list of results as search results are identified.

Open Files when Navigating Results with (Up and Down)

If selected, as the up and down arrow keys are pressed in the Search Results tab within the list of results, opens each matching file.
**Meta Data**

**Maximum of Undo Stack Items in Meta Data**

The maximum number of items that AWS Cloud9 keeps in its list of action that can be undone.

**Watchers**

**Auto-Merge Files When a Conflict Occurs**

If enabled, AWS Cloud9 attempts to automatically merge files whenever a merge conflict happens.

**Terminal**

**Text Color**

The color of text in **Terminal** tabs.

**Background Color**

The background color in **Terminal** tabs.

**Selection Color**

The color of selected text in **Terminal** tabs.

**Font Family**

The text font style in **Terminal** tabs.

**Font Size**

The size of text in **Terminal** tabs.

**Antialiased Fonts**

If enabled, AWS Cloud9 attempts to smooth the display of text in **Terminal** tabs.

**Blinking Cursor**

If enabled, AWS Cloud9 continuously blinks the cursor in **Terminal** tabs.

**Scrollback**

The number of lines that you can scroll up or back through in **Terminal** tabs.

**Use Cloud9 as the Default Editor**

If selected, uses AWS Cloud9 as the default text editor.

**Output**

**Text Color**

The color of text in tabs that display output.

**Background Color**

The background color of text in tabs that display output.

**Selection Color**

The color of selected text in tabs that display output.
Warn Before Closing Unnamed Configuration

If enabled, AWS Cloud9 prompts you to save any unsaved configuration tab before it is closed.

Preserve log between runs

If enabled, AWS Cloud9 keeps a log of all attempted runs.

**Code Editor (Ace)**

**Auto-pair Brackets, Quotes, etc.**

If enabled, AWS Cloud9 attempts to add a matching closing character for each related starting character that is typed in editor tabs, such as for brackets, quotation marks, and braces.

**Wrap Selection with Brackets, Quote, etc.**

If enabled, AWS Cloud9 attempts to insert a matching closing character at the end of text in editor tabs after the text is selected and a related started character is typed, such as for brackets, quotation marks, and braces.

**Code Folding**

If enabled, AWS Cloud9 attempts to show, expand, hide, or collapse sections of code in editor tabs according to related code syntax rules.

**Fade Fold Widgets**

If enabled, AWS Cloud9 displays code folding controls in the gutter whenever you pause the mouse over those controls in editor tabs.

**Full Line Selection**

If enabled, AWS Cloud9 selects an entire line that is triple-clicked in editor tabs.

**Highlight Active Line**

If enabled, AWS Cloud9 highlights the entire active line in editor tabs.

**Highlight Gutter Line**

If enabled, AWS Cloud9 highlights the location in the gutter next to the active line in editor tabs.

**Show Invisible Characters**

If enabled, AWS Cloud9 displays what it considers to be invisible characters in editor tabs, for example carriage returns and line feeds, spaces, and tabs.

**Show Gutter**

If enabled, AWS Cloud9 displays the gutter.

**Show Line Numbers**

The behavior for displaying line numbers in the gutter.

Valid values include:

- **Normal** to display line numbers.
- **Relative** to display line numbers relative to the active line.
- **None** to hide line numbers.

**Show Indent Guides**

If enabled, AWS Cloud9 displays guides to more easily visualize indented text in editor tabs.
Highlight Selected Word

If enabled, AWS Cloud9 selects an entire word that is double-clicked in an editor tab.

Scroll Past the End of the Document

The behavior for allowing the user to scroll past the end of the current file in editor tabs.

Valid values include:
- **Off** to not allow any scrolling past the end of the current file.
- **Half Editor Height** to allow scrolling past the end of the current file to up to half the editor's screen height.
- **Full Editor Height** to allow scrolling past the end of the current file to up to the editor's full screen height.

Animate Scrolling

If enabled, AWS Cloud9 applies animation behaviors during scrolling actions in editor tabs.

Font Family

The style of font to use in editor tabs.

Font Size

The size of the font to use in editor tabs.

Antialiased Fonts

If enabled, AWS Cloud9 attempts to smooth the display of text in editor tabs.

Show Print Margin

Displays a vertical line in editor tabs after the specified character location.

Mouse Scroll Speed

The relative speed of mouse scrolling in editor tabs. Larger values result in faster scrolling.

Cursor Style

The style and behavior of the cursor in editor tabs.

Valid values include:
- **Ace** to display the cursor as a vertical bar that is relatively wider than **Slim**.
- **Slim** to display the cursor as a relatively slim vertical bar.
- **Smooth** to display the cursor as a vertical bar that is relatively wider than **Slim** and that blinks more smoothly than **Slim**.
- **Smooth and Slim** to display the cursor as a relatively slim vertical bar that blinks more smoothly than **Slim**.
- **Wide** to display the cursor as a relatively wide vertical bar.

Merge Undo Deltas

- **Always** to allow merge conflicts to be reverted.
- **Never** to never allow merge conflicts to be reverted.
- **Timed** to allow merge conflicts to be reverted after a specified time period.

Enable Wrapping For New Documents

If enabled, AWS Cloud9 wraps code in new files.
Input

Complete As You Type

If enabled, AWS Cloud9 attempts to display possible text completions as you type.

Complete On Enter

If enabled, AWS Cloud9 attempts to display possible text completions after you press Enter.

Highlight Variable Under Cursor

If enabled, AWS Cloud9 highlights all references in code to the selected variable.

Use Cmd-Click for Jump to Definition

If enabled, AWS Cloud9 goes to any original definition for code that is clicked while pressing and holding Command for Mac or Ctrl for Windows.

Hints & Warnings

Enable Hints and Warnings

If enabled, AWS Cloud9 displays applicable hint and warning messages.

Ignore Messages Matching Regex

AWS Cloud9 does not display any messages matching the specified regular expression. For more information, see Writing a regular expression pattern in the JavaScript Regular Expressions topic on the Mozilla Developer Network.

Run & Debug

Save All Unsaved Tabs Before Running

If enabled, before running the associated code, AWS Cloud9 attempts to save all unsaved files with open tabs.

Preview

Preview Running Apps

If enabled, AWS Cloud9 attempts to display a preview of the output for the code in the active tab whenever the Preview button is chosen.

Default Previewer

The format AWS Cloud9 uses to preview code output.

Valid values include:
- Raw to attempt to display code output in a plain format.
- Browser to attempt to display code output in a format that is preferred for web browsers.

When Saving Reload Previewer

The behavior AWS Cloud9 uses for previewing code output whenever a code file is saved.

Valid values include:
- Only on Ctrl-Enter to attempt to preview code output whenever Ctrl-Enter is pressed for the current code tab.
• **Always** to attempt to preview code output whenever a code file is saved.

**Build**

**Automatically Build Supported Files**

If enabled, AWS Cloud9 attempts to automatically build the current code if a build action is triggered and the code is in a supported format.

---

**Working with AWS Project and User Settings in the AWS Cloud9 Integrated Development Environment (IDE)**

AWS service settings, located in the **AWS Settings** pane of the **Preferences** tab, include the following kinds of settings:

- When to shut down an Amazon EC2 instance if the associated EC2 environment has not been used
- Which AWS Region to use for the **AWS Resources** window
- Whether to use AWS managed temporary credentials
- Whether to display the AWS Serverless Application Model (AWS SAM) template editor in plain text or visual mode

To view or change these settings, choose **AWS Cloud9, Preferences** in the menu bar of an IDE for an environment.

In the following lists, project-level settings apply only to the current AWS Cloud9 development environment, while user-level settings apply across each environment associated with your IAM user. For more information, see **Apply the Current Project Settings for an Environment to Another Environment (p. 148)** and **Share Your User Settings with Another User (p. 154)**.

- Project-Level Settings (p. 161)
- User-Level Settings (p. 162)

---

**Project-Level Settings**

**Stop my environment**

If the environment is an EC2 environment, after all web browser instances that are connected to the IDE for the environment are closed, the amount of time until AWS Cloud9 shuts down the Amazon EC2 instance for the environment.

**AWS Region**

Which AWS Region to use for the **Lambda** section of the **AWS Resources** window.

**AWS managed temporary credentials**

If turned on, uses AWS managed temporary credentials when calling AWS services from the AWS CLI, the aws-shell, or AWS SDK code from an environment. For more information, see **AWS Managed Temporary Credentials (p. 446)**.
User-Level Settings

Use AWS SAM visual editor

If turned on, displays the AWS Serverless Application Model (AWS SAM) template editor in visual mode when using the Lambda section of the AWS Resources window. If turned off, displays the editor in text mode.

Working with Keybindings in the AWS Cloud9 Integrated Development Environment (IDE)

Keybindings define your shortcut key combinations. Keybindings apply across each AWS Cloud9 development environment associated with your IAM user. As you make changes to your keybindings, AWS Cloud9 pushes those changes to the cloud, and associates them with your IAM user. AWS Cloud9 also continually scans the cloud for changes to keybindings associated with your IAM user, and applies those changes to your current environment.

You can share your keybindings with other users.

- View or Change Your Keybindings (p. 162)
- Share Your Keybindings with Another User (p. 163)
- Change Your Keyboard Mode (p. 163)
- Change Your Operating System Keybindings (p. 163)
- Change Specific Keybindings (p. 163)
- Remove All of Your Custom Keybindings (p. 164)

View or Change Your Keybindings

1. On the menu bar, choose AWS Cloud9, Preferences.
2. To view your keybindings across each environment of yours, on the Preferences tab, in the side navigation pane, choose Keybindings.
3. To change your keybindings across each environment of yours, in the Keybindings pane, change the settings you want.
4. To apply your changes to any environment, simply open that environment. If that environment is already open, refresh the web browser tab for that environment.

For more information, see the following:

- Apple OSX Default Keybindings Reference (p. 185)
- Apple OSX Vim Keybindings Reference (p. 196)
- Apple OSX Emacs Keybindings Reference (p. 206)
- Apple OSX Sublime Keybindings Reference (p. 217)
- Windows / Linux Default Keybindings Reference (p. 228)
- Windows / Linux Vim Keybindings Reference (p. 238)
- Windows / Linux Emacs Keybindings Reference (p. 249)
- Windows / Linux Sublime Keybindings Reference (p. 259)
Share Your Keybindings with Another User

1. In both the source and target environment, on the menu bar of the AWS Cloud9 IDE, choose AWS Cloud9, Open Your Keymap.
2. In the source environment, copy the contents of the `keybindings.settings` tab that is displayed.
3. In the target environment, overwrite the contents of the `keybindings.settings` tab with the copied contents from the source environment.
4. In the target environment, save the `keybindings.settings` tab.

Change Your Keyboard Mode

You can change the keyboard mode that the AWS Cloud9 IDE uses for interacting with text in the editor across each environment associated with your IAM user.

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, in the side navigation pane, choose Keybindings.
3. For Keyboard Mode, choose one of these keyboard modes:
   - Default to use a set of default keybindings.
   - Vim to use Vim mode. For more information, see the Vim help files website.
   - Emacs to use Emacs mode. For more information, see The Emacs Editor on the GNU Operating System website.
   - Sublime to use Sublime mode. For more information, see the Sublime Text Documentation website.

Change Your Operating System Keybindings

You can change the set of operating system keybindings the AWS Cloud9 IDE recognizes across each environment associated with your IAM user.

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, in the side navigation pane, choose Keybindings.
3. For Operating System, choose one of these operating systems:
   - Auto for the AWS Cloud9 IDE to attempt to detect which set of operating system keybindings to use.
   - Apple OSX for the AWS Cloud9 IDE to use the keybindings listed in Mac format.
   - Windows / Linux for the AWS Cloud9 IDE to use the keybindings listed in Windows and Linux formats.

Change Specific Keybindings

You can change individual keybindings across each environment associated with your IAM user.

To change one keybinding at a time

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, in the side navigation pane, choose Keybindings.
3. In the list of keybindings, double-click the keybinding in the Keystroke column you want to change.
4. Use the keyboard to specify the replacement key combination, and then press Enter.
Note
To completely remove the current key combination, press Backspace for Windows or Linux, or Delete for Mac.

To change multiple keybindings at once
1. On the menu bar, choose AWS Cloud9, Open Your Keymap.
2. In the keybindings.settings file, define each keybinding to be changed, for example:

```json
[
 {
 "command": "addfavorite",
 "keys": {
 "win": ["Ctrl-Alt-F"],
 "mac": ["Ctrl-Option-F"]
 }
 },
 {
 "command": "copyFilePath",
 "keys": {
 "win": ["Ctrl-Shift-F"],
 "mac": ["Alt-Shift-F"]
 }
 }
]
```

In the example, addFavorite and copyFilePath are the names of keybindings in the Keystroke column in the Keybindings pane on the Preferences tab. The keybindings you want are win and mac for Windows or Linux and Mac, respectively.

To apply your changes, save the keybindings.settings file. Your changes should appear in the Keybindings pane after a short delay.

Remove All of Your Custom Keybindings

You can remove all custom keybindings and restore all keybindings to their default values, across each environment associated with your IAM user.

Warning
You cannot undo this action.

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, in the side navigation pane, choose Keybindings.
3. Choose Reset to Defaults.

Working with Themes in the AWS Cloud9 Integrated Development Environment (IDE)

A theme defines your overall IDE colors. This applies across each AWS Cloud9 development environment associated with your IAM user. As you make changes to your theme, AWS Cloud9 pushes those changes to the cloud, and associates them with your IAM user. AWS Cloud9 also continually scans the cloud for changes to the theme associated with your IAM user, and applies those changes to your current environment.
You can share any custom theme overrides you define with other users.

- View or Change Your Theme (p. 165)
- Overall Theme Settings You Can Change (p. 165)
- Theme Overrides You Can Define with Code (p. 165)
- Share Your Theme Overrides with Another User (p. 166)

View or Change Your Theme

1. On the menu bar, choose AWS Cloud9, Preferences.
2. To view your theme across each environment of yours, on the Preferences tab, in the side navigation pane, choose Themes.
3. To change your theme across each environment of yours, in the Themes pane, change the settings you want. To change portions of your theme by using code, choose the your stylesheet link.
4. To apply your changes to any environment of yours, simply open that environment. If that environment is already open, refresh the web browser tab for that environment.

Overall Theme Settings You Can Change

You can change the following kinds of overall theme settings on the Preferences tab in the Themes pane.

Flat Theme

Applies the built-in flat theme across the AWS Cloud9 IDE.

Classic Theme

Applies the selected built-in classic theme across the AWS Cloud9 IDE.

Syntax Theme

Applies the selected theme to code files across the AWS Cloud9 IDE.

Theme Overrides You Can Define with Code

You can override portions of the overall theme in the AWS Cloud9 IDE. These overrides will persist even if you change the overall theme itself in the AWS Cloud9 IDE.

For example, let's say you want to change the background color of the titles on open tabs to yellow, regardless of the related setting for the current overall theme that is currently applied to the AWS Cloud9 IDE.

First, use your web browser's developer tools to determine the CSS class for the portion of the theme you want to change. For example, do the following for Google Chrome.

1. Choose Customize and control Google Chrome, More tools, Developer tools.
2. In the Developer tools pane, choose Select an element in the page to inspect it.
3. Pause your mouse over the portion of the IDE you want to change. In this example, pause your mouse over the title of an open tab.
4. Note the CSS class name. In this example, the CSS class name for the title of an open tab is sessiontab_title.
Next, add a corresponding CSS class selector to your styles.css file.

1. On the menu bar, choose AWS Cloud9, Preferences. In the side navigation pane, choose Themes. Then choose the your stylesheet link.
2. In the styles.css file, add the CSS class selector. In this example, you use the .sessiontab_title selector to set background-color to yellow.

```
.sessiontab_title {
 background-color: yellow;
}
```

Finally, save the styles.css file, and note the change to the theme. In this example, the background color of the titles of open tabs changes to yellow. Even if you change the overall theme in the AWS Cloud9 IDE, the CSS overrides in your styles.css file persist.

**Note**
To revert this theme override, remove the preceding code from the styles.css file, and then save the file again.

### Share Your Theme Overrides with Another User

1. In both the source and target environment, on the menu bar of the AWS Cloud9 IDE, choose AWS Cloud9, Open Your Stylesheet.
2. In the source environment, copy the contents of the styles.css tab that is displayed.
3. In the target environment, overwrite the contents of the styles.css tab with the copied contents from the source environment.
4. In the target environment, save the styles.css tab.

### Working with Initialization Scripts in the AWS Cloud9 Integrated Development Environment (IDE)

An initialization script defines custom initialization code to run in your IDE after all plugins are loaded. This applies across each AWS Cloud9 development environment associated with your IAM user. As you make changes to your initialization script, AWS Cloud9 pushes those changes to the cloud and associates them with your IAM user. AWS Cloud9 also continually scans the cloud for changes to the initialization script associated with your IAM user, and applies those changes to your current environment.

You can share your initialization script with other users.

- View or Change Your Initialization Script (p. 166)
- Share Your Initialization Script with Another User (p. 167)
- Working with Initialization Script Code (p. 167)

### View or Change Your Initialization Script

1. To view your initialization script, on the menu bar, choose AWS Cloud9, Open Your Init Script.
2. To change your initialization script, on the init.js tab, use code to change your initialization script's behavior. For more information, see Working with Initialization Script Code (p. 167).
3. To apply your changes to any other environment, simply open the environment you want to apply the changes to. If that environment is already open, refresh the web browser tab for that environment.
Share Your Initialization Script with Another User

1. In both the source and target environment, on the menu bar of the AWS Cloud9 IDE, choose **AWS Cloud9, Open Your Init Script**.
2. In the source environment, copy the contents of the `init.js` tab that is displayed.
3. In the target environment, overwrite the contents of the `init.js` tab with the copied contents from the source environment.
4. In the target environment, save the `init.js` tab.

Working with Initialization Script Code

You can add code to your initialization script (`init.js` file) in the AWS Cloud9 IDE to do common things when your environment starts or reloads, such as the following:

- Add custom commands and menus to the menu bar.
- Show built-in alert, question, and file dialog boxes, and create custom dialog boxes.
- Add and delete files in the file system.
- Set and get custom user preference settings.
- Add custom side panels.
- Add custom builders and runners.
- Add custom tabs.

To run your `init.js` file after you add code to it or change existing code in it, save your `init.js` file, then reload your environment. Do this by choosing your web browser’s reload button. For Windows or Linux, you can also press Ctrl+F5 or Ctrl+Shift+R. For Mac, you can also press Cmd+Shift+R.

- Declaring the Services Global Variable (p. 168)
- Discovering the Services APIs (p. 168)
- Working with Menus (p. 168)
  - Add a Custom Command to the Menu Bar (p. 168)
  - Add a Custom Menu to the Menu Bar (p. 169)
- Working with Dialogs (p. 170)
  - Show a Built-In Alert Dialog (p. 171)
  - Show a Built-In Question Dialog (p. 171)
  - Show a Built-In File Dialog (p. 172)
  - Create a Custom Dialog (p. 172)
- Working with the File System (p. 178)
  - Add a File (p. 178)
  - Delete a File (p. 179)
- Working with Preference Settings (p. 179)
  - Create Custom Preference Settings (p. 179)
  - Set Existing Preference Settings (p. 180)
  - Get Preference Settings (p. 181)
- Working with Side Panels (p. 181)
  - Show and Hide Side Panels (p. 181)
  - Create a Custom Side Panel (p. 182)
- Working with Builders (p. 182)
Declaring the Services Global Variable

In your initialization script, you access AWS Cloud9 IDE APIs from your code through the `services` global variable. At the beginning of your `init.js` file, you must add the `/*global*/` directive to specify that the `services` global variable is available to this file.

```javascript
/*global services*/
```

Discovering the Services APIs

To see what is available to you as part of the `services` global variable, you can log the global to your web browser's console. For example:

```javascript
console.log(services);
```

To display your web browser's console:

- For Google Chrome, choose Customize and control Google Chrome, More tools, Developer tools, Console.
- For Safari, choose Develop, Show JavaScript Console. (If the Develop menu isn't visible, choose Safari, Preferences, Advanced, Show Develop menu in menu bar.)
- For Mozilla Firefox, choose Open menu, Developer, Web console.
- For Internet Explorer, choose Tools, F12 Developer Tools, Console.
- For Microsoft Edge, choose More, F12 Developer Tools, Console.
- For other web browsers, consult the specific web browser documentation.

Working with Menus

Code in your `init.js` file starts running immediately after your environment starts or reloads. For example, you can use custom menus to delay the running of preloaded commands until you choose to run them.

You can add custom menus anywhere throughout the AWS Cloud9 IDE. For example, you can add your own menu command to an existing built-in menu on the menu bar. You can also add your own menu to the menu bar.

Add a Custom Command to the Menu Bar

The following code example adds a menu command named Current Time to the end of the built-in Tools menu. When you choose Current Time, an alert displays the current time.
// Add a custom menu command to an existing menu on the menu bar.
var menus = services['menus']; // Accesses the menu bar.
var MenuItem = services.MenuItem; // Use this to create a menu item.
var Divider = services.Divider; // Use this to create a menu divider.

// Add a Current Time command to the built-in Tools menu.
menus.addItemByPath("Tools/Current Time", new MenuItem({
onclick: chooseCurrentTime
}), 200001, plugin);

// Add a dividing line before the Current Time menu command on
// the Tools menu.
menus.addItemByPath("Tools/~", new Divider(), 200000, plugin);

// Run this when the user chooses the Current Time command.
function chooseCurrentTime() {
    var today = new Date();
    var h = today.getHours();
    var m = today.getMinutes();
    var s = today.getSeconds();

    // Add a zero in front of minutes or seconds, if less than 10.
    m = checkTime(m);
    s = checkTime(s);

    // Show a built-in alert dialog box displaying the current time.
    services['dialog.alert'].show("Time", "Current time",
        "The current time is " + h + ":" + m + ":" + s + ".");
}

// Add a zero in front of minutes or seconds, if less than 10.
function checkTime(i) {
    if (i < 10) {
        i = "0" + i;
    }
    return i;
}

To specify the menu to add the Current Time command to, in the addItemByPath method, provide the menu name (in this example, Tools), followed by a forward slash (/), followed by the name of the menu command (in this example, Current Time).

To separate the Current Time command from the menu's other commands, add a divider before the command. The divider appears as a horizontal rule. To specify the menu to add the divider to, in the addItemByPath method, provide the menu name (in this example, Tools), followed by a forward slash (/), followed by a tilde (~).

To add this command toward the end of the menu, you specify a sufficiently large index number (200000 for the divider and 200001 for the Current Time command). Menus and menu commands with larger index numbers are placed toward the ends of menus. To see the index number of each menu and menu command, add ?menus=1 to the end of your environment URL, then reload your environment. To hide these index numbers, remove ?menus=1 from the end of your environment URL, then reload your environment.

The show method of the dialog.alert service shows an alert dialog. For more information, see Show a Built-In Alert Dialog (p. 171).

Add a Custom Menu to the Menu Bar

The following code example adds a top-level menu named Weekends to the end of the menu bar. When you choose one of the menu's commands, an alert dialog box is displayed with various information.
Adding a custom menu to the menu bar is similar to adding a custom command to a built-in menu. Use the `setRootMenu` method to set where to put the menu at the top level on the menu bar.

Because this code uses the `plugin` global variable, you must add the `/*global services, plugin*/` directive at the beginning of your `init.js` file to specify that the `services` and `plugin` globals are available to this file.

```javascript
// Add a custom top-level menu to the menu bar.
// Add commands and dividers to this menu.
var menuCaption = "Weekends"; // Menu caption.
var menus = services["menus"]; // Access the menu bar.
var MenuItem = services.MenuItem; // Use this to create a menu item.
var Divider = services.Divider; // Use this to create a menu divider.

// Set the top-level menu caption.
menus.setRootMenu(menuCaption, 900, plugin);

// Add a Saturday menu command to the menu.
// When the user chooses this command, run the chooseWeekendDay function,
// passing in the string Saturday.
menus.addItemByPath(menuCaption + "/Saturday", new MenuItem({
onclick: chooseWeekendDay.bind(null, "Saturday")
}), 100, plugin);

// Add a Sunday menu command to the menu.
// When the user chooses this command, run the chooseWeekendDay function,
// passing in the string Sunday.
menus.addItemByPath(menuCaption + "/Sunday", new MenuItem({
onclick: chooseWeekendDay.bind(null, "Sunday")
}), 200, plugin);

// Add an About menu command to the menu.
// When the user chooses this command, run the chooseAbout function.
menus.addItemByPath(menuCaption + "/About", new MenuItem({
onclick: chooseAbout
}), 400, plugin);

// Add a dividing line before the About menu command.
menus.addItemByPath(menuCaption + "/~", new Divider(), 300, plugin);

// Show a built-in alert with the chosen day name.
function chooseWeekendDay(day) {
 services["dialog.alert"].show("Results", "Which day?",
 "You chose " + day + ".");
}

// Show a built-in alert with the menu caption.
function chooseAbout() {
 services["dialog.alert"].show("About", menuCaption + " menu",
 "This is the " + menuCaption + " menu. Enjoy your weekend.");
}
```

**Working with Dialogs**

You use dialogs to display information to users, and to get information from users. This section describes how to work with four types of dialog:

- A built-in alert dialog, which displays information but doesn't enable you to get information from users.
- A built-in question dialog, which enables you to capture "yes" or "no" responses from users.
- A built-in file dialog, which enables you to capture information from users about folders and files in the file system of the environment.
• A custom dialog, which enables you to display information and special controls to capture various information from users.

Show a Built-In Alert Dialog

An alert dialog contains a title, optional heading, optional text, and an OK button.

The following code example uses the `show` method of the `dialog.alert` service to display various information based on the current time of day.

```javascript
// Create an alert dialog.
var d = new Date(); // Get the current time.
var n = d.getHours(); // Get the current hour.
var greeting;
var meal;
if (n >= 0 && n <=11) {
 greeting = "Good morning";
 meal = "breakfast";
} else if (n >=12 && n <=16) {
 greeting = "Good afternoon";
 meal = "lunch";
} else if (n >= 17 && n <= 23) {
 greeting = "Good evening";
 meal = "dinner";
} else {
 greeting = "Hello";
 meal = "something";
}

// Show a built-in alert dialog with a message based on the current hour.
services["dialog.alert"].show(greeting, "Reminder", "Have you eaten " + meal + " yet?");
```

Show a Built-In Question Dialog

A question dialog contains a title, optional heading, optional text, and Yes and No buttons.

The following code example displays various information based on the current time of day. To do something that depends on whether you choose Yes or No, declare related functions within the `show` method.

The following code example uses the `show` method of the `dialog.question` service to display various information based on whether the user chooses Yes or No. In your own code, you can do something different if the user chooses Yes or No.

```javascript
// Create a question dialog.
var language = "Node.js"; // Programming language type displayed in dialog.

// Show a built-in question dialog with a message based on whether the
// user chooses Yes or No.
services["dialog.question"].show(
 "Survey",
 "Do you like " + language + "?",
 "Choose Yes or No.",
 function() {
 // User chose the Yes button.
 services["dialog.alert"].show("Results", "Language preference",
 "You seem to like " + language + ".");
 },
 function() {
```
// User chose the No button.
services["dialog.alert"].show("Results", "Language preference",
   "It seems that you don't like " + language + ".");
}
);

Show a Built-In File Dialog

A file dialog contains Save and Cancel buttons. It also contains file name, path, and folder boxes, a Create folder button, and a Show files in tree check box.

Use the file dialog's filename and directory properties to get the specified file name and directory name.

The following code example uses the show method of the dialog.file service to enable the user to select a file name and directory path. After the user chooses Save, information about the selected file name and directory path is displayed. In your own code, you can do something different if the user chooses Save or Cancel.

// Create a file dialog.
var fileDialog = services["dialog.file"]; // Show a built-in file dialog.
// After the user chooses Save, show a built-in alert with // information about the user's specified file name and directory path.
fileDialog.show(
   "Specify the file name and choose a path",
   "my-filename",
   function() {
      // User chose the Save button.
      services["dialog.alert"].show("Results", "File info",
         "Filename = " + fileDialog.filename + 
         "\nDirectory = " + fileDialog.directory);
      fileDialog.hide();
   },
   function() {
      // User chose the Cancel button.
      services["dialog.alert"].show("Results", "File info", "You chose Cancel.");
      fileDialog.hide();
   }
);

Create a Custom Dialog

A custom dialog provides a row across its bottom edge that you can put special controls into, as shown here.

This row, named the button bar, can contain the following items:

- button: Represents a button the user can choose. A button can have a name, caption, and function to run when the user chooses it.
• **checkbox**: Represents a box with checked and unchecked states. A checkbox can have a name, default value (checked or unchecked), and custom values you can associate with the checked and unchecked states.

• **divider**: Represents a dividing line.

• **dropdown**: Represents a list of choices for the user. A dropdown can have a name, list of items the user can choose from, default choice, and message to return if the user doesn't select any choice and no default choice is specified.

• **filler**: Represents an empty space to separate items.

• **image**: Represents a viewable picture. An image can have a name, source location, margin, and height.

• **label**: Represents a string of text. A label can have a name and a caption.

• **textbox**: Represents a box the user can type text into. A textbox can have a name, default value, and message if the user doesn't type anything into the box. It can be set to continuously determine a value as the user types or determine a value only after the user exits the box.

The following code demonstrates all of the available button bar items in a custom dialog. By default, the button bar displays items horizontally with no labels. When the user chooses the button, another dialog is displayed with the values of the checkbox, dropdown, and textbox.

```javascript
var Dialog = services.Dialog;
var myDialog = new Dialog("AWS Cloud9", [], {
 allowClose: true,
 title: "My Dialog",
 elements: [
 {
 name: "myButton",
 type: "button",
 caption: "My Button",
 onclick: myButtonOnClick
 },
 {
 name: "myCheckbox",
 type: "checkbox",
 defaultValue: "checked",
 values: ["checked", "unchecked"]
 },
 {
 name: "myDivider",
 type: "divider"
 },
 {
 name: "myDropdown",
 type: "dropdown",
 items: [
 { value: "item1", caption: "Item 1" },
 { value: "item2", caption: "Item 2" },
 { value: "item3", caption: "Item 3" }
],
 defaultValue: "item1",
 emptyMessage: "No item selected"
 },
 { type: "filler" },
 {
 name: "myImage",
 type: "image",
 src: ",",
 margin: "5 5 5 5",
 height: 20
 },
 {
 name: "myLabel",
 caption: "My Label"
 }
]
});
```
Custom dialogs can also contain a `Form` object, as shown here.
This Form object can contain the following items:

- **button**: Represents a button the user can choose. A button can have a title, name, caption, and function to run when the user chooses it.
- **checkbox**: Represents a sliding on (checked) and off (unchecked) switch. A check box can have a title, name, default value (checked or unchecked), and custom values you can associate with the checked and unchecked states.
- **checked-spinner**: Represents a box with checked and unchecked states, with a spinner next to it. A checked-spinner can have a title, name, default check box value (checked or unchecked), default spinner value, and minimum and maximum values. It can be set to continuously determine values as the user changes them, or determine them only after the user exits the checked-spinner.
- **colorbox**: Represents a chosen color. A colorbox can have a title, name, and default value. It can be set to continuously determine the value as the user picks different color values, or determine the value only after the user exits the colorbox.
- **divider**: Represents a dividing line.
- **dropdown**: Represents a list of choices for the user. A dropdown can have a title, name, list of items the user can choose from, default choice, and message that can be returned if the user doesn't select an item and no default choice is specified.
• **image**: Represents a viewable picture. An image can have a name, source location, margin, and height.

• **label**: Represents a text string. A label can have a name and a caption.

• **password**: Represents a box a user can type a password into. A password can have a title, name, default value, and message that can be returned if the user doesn't type a password. It can be set to continuously determine a value as the user changes the value, or determine the value only after the user exits the password.

• **spinner**: Represents a value that can be increased or decreased. A spinner can have a title, name, default value, and minimum and maximum values. It can be set to continuously determine a value as the user changes the value, or determine the value only after the user exits the spinner.

• **textarea**: Represents a box the user can type text into. A textarea can have a title, name, default value, and height. It can be set to continuously determine a value as the user types, or determine the value only after the user exits the box.

• **textbox**: Represents a box the user can type text into. A textbox can have a title, name, default value, and message if the user doesn't type anything into the box. It can be set to continuously determine the value as the user types, or determine the value only after the user exits the box.

• **submit**: Represents a button the user can choose. A submit button can have a name, caption, and function to run when the user chooses it. You can also specify whether the button is chosen if the user presses Enter.

The following code demonstrates all of the available items in a custom dialog. The dialog displays titles on the left and the items on the right, except for the image and submit button. When the user chooses the button, another dialog is displayed. When the user chooses submit, the item names and values in the dialog are displayed in JSON format.

```javascript
var Form = services.Form;
var myForm = new Form(
 title: "My Title",
 name: "myForm",
 form: [
 {
 title: "Button",
 name: "myButton",
 type: "button",
 caption: "My Button",
 onclick: myButtonOnClick
 },
 {
 title: "Checkbox",
 name: "myCheckbox",
 type: "checkbox",
 defaultValue: "checked",
 values: ["checked", "unchecked"]
 },
 {
 title: "Checked Spinner",
 name: "myCheckedspinner",
 type: "checked-spinner",
 defaultCheckboxValue: "checked",
 defaultValue: 0,
 min: 0,
 max: 10,
 realtime: false
 },
 {
 title: "Color Box",
 name: "myColorbox",
 type: "colorbox",
 defaultValue: "green",
 realtime: false
 }
]
);```
name: "myDivider",
type: "divider"
},

{
title: "Dropdown",
name: "myDropdown",
type: "dropdown",
items: [
 { value: "item1", caption: "Item 1" },
 { value: "item2", caption: "Item 2" },
 { value: "item3", caption: "Item 3" }
],
defaultValue: "item1",
emptyMessage: "No item selected"
},

{
name: "myImage",
type: "image",
src: "",
margin: "5 5 5 5",
height: 20
},

{
name: "myLabel",
type: "label",
caption: "My Label"
},

{
title: "Password",
name: "myPassword",
type: "password",
defaultValue: "No password typed",
realtime: false
},

{
title: "Spinner",
name: "mySpinner",
type: "spinner",
defaultValue: 0,
min: 0,
max: 10,
realtime: false
},

{
title: "Text Area",
name: "myTextarea",
type: "textarea",
height: 20,
defaultValue: "Type something here",
realtime: true
},

{
title: "Textbox",
name: "myTextbox",
type: "textbox",
message: "myTextbox is blank",
defaultValue: "Type something here",
realtime: true
},

{
name: "mySubmit",
type: "submit",
caption: "Submit",
onclick: mySubmitOnClick,
Working with the File System

You can use the `fs` service to work with the file system in an environment. You can use the file system to:

- Add, read, and delete files.
- Add, read, rename, and delete directories.
- Search through files and directories.
- Change file modes.

Add a File

To add a file, use the `writeFile` method. The following example adds a file named `my-file.txt` to the root directory of the environment.

```javascript
var fs = services['fs'];
var writeFilePath = '~/environment/my-file.txt';

fs.writeFile(writeFilePath, "Hello, World!", function(err, success) {
  if (err) {
    services['dialog.alert'].show("Error", "File Write Operation", "Could not write file " + writeFilePath + ": ".);
  } else {
    services['dialog.alert'].show("Success", "File Write Operation", "Wrote file " + writeFilePath + ": ".);
  }
});
```
Delete a File

To delete a file, use the `rmfile` method. The following example removes a file named `my-file.txt` from the root directory of the environment.

```javascript
var fs = services['fs'];
var fileDeletePath = '~/environment/my-file.txt';

fs.rmfile(fileDeletePath,
  function(err, success) {
    if (err) {
      services['dialog.alert'].show(
        "Error",
        "File Delete Operation",
        "Could not delete file '" + fileDeletePath + '".");
    } else {
      services['dialog.alert'].show(
        "Success",
        "File Delete Operation",
        "Deleted file '" + fileDeletePath + '".");
    }
  }
);  
```

Working with Preference Settings

Use preferences to customize the behavior of the AWS Cloud9 IDE for users. Common preferences include settings for code editors, code formatting, and terminal sessions. For more information about preference settings, see Working with Project Settings (p. 148) and Working with User Settings (p. 153).

You can create your own custom preference settings. You can also set and get the values of existing custom and built-in preference settings.

Create Custom Preference Settings

Use the add method of the preferences service to add custom preferences that users can set. For each collection of custom preference settings, specify information such as the collection's display name and location in the Preferences pane, and the collection's individual settings and display controls.

The following code example displays a collection of settings within a section named **My Custom Preferences**. It's displayed on the User Settings page in the Preferences pane.

```javascript
services['preferences'].add({
  "My Custom Preferences" : { // The title of the section to which
      // the following subsections will be added.
      // If this section doesn't already exist,
      // it will be added to the User Settings page.
      position: 500, // The index number of the section within the parent page.
      "Python Preferences": { // The title of this subsection.
        position: 100, // The index number of this subsection within the section.
        "I like Python" : { // The title of this setting, which
          type: "checkbox", // The type of control for this setting.
          position: 101, // The index number of this setting within the subsection.
          values: [ "yes", "no" ], // Values for checked and unchecked states.
          setting: "myCustomPrefs/myPythonPrefs/@likesPython" // Where the setting
                          // will be stored.
        },
        "Times per week (up to 10) I use Python" : {
          type: "spinner",
```
To display this section near the end of the User Settings page in the Preferences pane, you specify a relatively larger index number (500). Sections with larger index numbers are placed toward the ends of pages. Similarly, subsections with larger index numbers are placed toward the ends of sections, and settings with larger index numbers are placed toward the ends of subsections. To see the index numbers of sections, subsections, and settings in the Preferences pane, add ?menus=1 to the end of your environment URL and then reload your environment. To hide these index numbers, remove ?menus=1 from the end of your environment URL, and then reload your environment.

Set Existing Preference Settings

To set the value of an existing preference setting, use the `set` method of the `settings` service, and specify the path to the setting and the value to set.

To view your existing project settings, choose AWS Cloud9, Open Your Project Settings. To view your existing user settings, choose AWS Cloud9, Open Your User Settings on the menu bar.

The following code example displays the Open Files section in the Environment window.

```javascript
services["settings"].set("user/openfiles/@show", "true");
```

This is equivalent to manually choosing Show Open Files in the Environment window's settings context menu. To see this value, choose AWS Cloud9, Open Your User Settings on the menu bar. Then look in the settings JSON for the following value. For brevity, ellipses (…) represent omitted JSON.

```json
{
    "position": 102,
    "defaultValue": 0, // Default spinner value.
    "min": 0, // Lowest valid spinner value.
    "max": 10, // Highest valid spinner value.
    "setting": "myCustomPrefs/myPythonPrefs/@weeklyPythonTimesUsed"
}
```

```
},

"Favorite Food and Drink": {
    "position": 200,
    "My favorite type of food": {
        "type": "dropdown",
        "position": 201,
        "items": [
            { "value": "Grains", "caption": "Bread" },
            { "value": "Grains", "caption": "Cereal" },
            { "value": "Dairy", "caption": "Cheese" },
            { "value": "Fruits", "caption": "Fruits" },
            { "value": "Meat", "caption": "Meat" },
            { "value": "Dairy", "caption": "Milk" },
            { "value": "Grains", "caption": "Pasta" },
            { "value": "Grains", "caption": "Rice" },
            { "value": "Vegetables", "caption": "Vegetables" },
            { "value": "Dairy", "caption": "Yogurt" },
            { "value": "Other", "caption": "Other" },
            { "value": "None of the above", "caption": "None of the above" }
        ],
        "setting": "myCustomPrefs/myFoodPrefs/@myFavoriteFood"
    },
    "My favorite drink": {
        "type": "textbox",
        "position": 202,
        "setting": "myCustomPrefs/myFoodPrefs/@myFavoriteDrink"
    }
}
}, plugin);
```
Get Preference Settings

Use the `get` method of the `settings` service to get the value of a preference setting, specifying the path to the setting.

The following code example displays various custom preference settings in a dialog box.

```javascript
var settings = services["settings"]; services["dialog.alert"].show(
  "Custom Preferences",
  "Likes Python: " + settings.get("myCustomPrefs/myPythonPrefs/@likesPython") + "\n" +
  "Number of times using Python per week: " +
  settings.get("myCustomPrefs/myPythonPrefs/@weeklyPythonTimesUsed") + "\n" +
  "Favorite food category: " +
  settings.get("myCustomPrefs/myFoodPrefs/@myFavoriteFood") + "\n" +
  "Favorite drink: " +
  settings.get("myCustomPrefs/myFoodPrefs/@myFavoriteDrink")
);
```

Working with Side Panels

Built-in side panels include windows such as Environment, Navigate, Commands, Outline, and Debugger. You can also create your own custom side panels.

Show and Hide Side Panels

To access side panels, use the `panels` service.

To get the list of all available side panels, use the `panels` property.

To get the list of side panels that are currently showing, use the `activePanels` property.

To show or hide a side panel, use the `activate` or `deactivate` method.

Side panels have corresponding buttons. To show or hide these buttons, use the `enablePanel` or `disablePanel` method.

The following example demonstrates all of these properties and methods.

```javascript
var panels = services["panels"]; // Lists all side panels that are currently shown. console.log(panels.activePanels);
```
// Lists all available side panels.
console.log(panels.panels);

// Shows the Debugger side panel, if it isn't already shown.
panels.activate("debugger");

// Hides the Environment side panel, if it isn't already hidden.
panels.deactivate("tree");

// Removes the Outline side panel button, if it isn't already removed.
panels.disablePanel("outline");

// Displays the Navigate side panel button, if it isn't already displayed.
panels.enablePanel("navigate");

Create a Custom Side Panel

Use the Panel object to create a side panel, and specify settings such as the side panel's caption and side location.

To format the side panel, use the on method.

To load and then display the side panel, use the load and show methods.

The following example creates, loads, and displays a custom side panel.

```javascript
var Panel = services.Panel;
var zooPanel = new Panel("AWS Cloud9", [], {
  index: 100,
  caption: "Zoo",
  where: "right",
  autohide: true
});

zooPanel.on("draw", function(e) {
  e.html.style.padding = "10px";
  e.html.innerHTML = "<h1>Welcome</h1>" +
    "<p>Welcome to our zoo.</p>" +
    "<p>We have the following animals to visit:</p>" +
    "<ul>" +
    "<li>Bear</li>" +
    "<li>Lion</li>" +
    "<li>Monkey</li>" +
    "<li>Octopus</li>" +
    "</ul>" +
    "<h2>We want to hear from you!</h2>" +
    "<p>Please send us your feedback.</p>" +
    "<a href="mailto:the-zoo@example.com">the-zoo@example.com</a>";
});

zooPanel.load();
zooPanel.show();
```

Working with Builders

You use builders to build code. If AWS Cloud9 doesn't provide a built-in builder for your programming language, you can create one manually or programmatically. To create a builder manually, see Create a Builder or Runner (p. 143).
List All Available Builders

Use the build service to work with builders. The following code example uses the listBuilders method to list all builders that are available to your environment.

```javascript
var build = services["build"];

build.listBuilders(function (err, builders) {
  if (err) {
    services["dialog.alert"].show(
      "Error",
      "Builders Listing Error",
      "Cannot display the list of builders: " + err
    );
  } else {
    services["dialog.alert"].show(
      "Success",
      "Builders Listing",
      "The list of builders is:

      " + JSON.stringify(builders)
    );
  }
});
```

List Information about an Individual Builder

Use the build service to work with builders. The following code example uses the getBuilder method to list information about the built-in CoffeeScript builder.

```javascript
var build = services["build"];
var builderName = "CoffeeScript";

build.getBuilder(builderName, false, function(err, builder) {
  if (err) {
    services["dialog.alert"].show(
      "Error",
      "Builder Listing Error",
      "Cannot display information for '" + builderName + "': " + err
    );
  } else {
    services["dialog.alert"].show(
      "Success",
      "Builder Listing",
      "The builder definition for '" + builderName + "' is '" + builder.cmd + ","
    );
  }
});
```

Create a Custom Builder

Use the addBuilder method of the build service to create a builder. The following code example creates a builder that uses G++ to build C++ code. To learn how to specify what a builder does when it builds, see Define a Builder or Runner (p. 143).

```javascript
var build = services["build"];

build.addBuilder("G++", {
  "cmd": [ "g++", "-o", "$file_base_name", "$file_name" ],
  "info": "Compiling $file_name and linking to $file_base_name...",
  "selector": "source.cpp"
}, plugin);
```
Working with Runners

You use runners to run code. If AWS Cloud9 doesn't provide a built-in runner for your programming language, you can create one manually or programmatically. To create a runner manually, see Create a Builder or Runner (p. 143).

List All Available Runners

Use the run service to work with runners. The following code example uses the listRunners method to list all runners that are available to your environment.

```
var run = services["run"];
run.listRunners(function (err, runners) {
  if (err) {
    services["dialog.alert"].show(
      "Error",
      "Runners Listing Error",
      "Cannot display the list of runners: " + err
    );
  } else {
    services["dialog.alert"].show(
      "Success",
      "Runners Listing",
      "The list of runners is:
      " + JSON.stringify(runners)
    );
  }
});
```

List Information about an Individual Runner

Use the build service to work with runners. The following code example uses the getRunner method to list information about the built-in Ruby runner.

```
var run = services["run"];
var runnerName = "Ruby";
run.getRunner(runnerName, false, function(err, runner) {
  if (err) {
    services["dialog.alert"].show(
      "Error",
      "Runner Listing Error",
      "Cannot display information for " + runnerName + ": " + err
    );
  } else {
    services["dialog.alert"].show(
      "Success",
      "Runner Listing",
      "The runner definition for " + runnerName + ": " + runner.cmd + "."
    );
  }
});
```

Create a Custom Runner

Use the addRunner method of the run service to create a runner. The following code example creates a runner that runs Python code. To learn how to specify what a runner does when it runs, see Define a Builder or Runner (p. 143).

```
var run = services["run"];
run.addRunner("Python", {
    "cmd": [ "python", "$file_name", "$args" ],
    "info": "Running $file_name...",
    "selector": "source.py"
}, plugin);

**Working with Tabs**

The AWS Cloud9 IDE uses tabs to display files and some types of windows, for example, code files, terminal sessions, *Immediate* tabs, and run configurations. Tabs are contained within panes. Tabs can contain editors or documents, for example, the JavaScript code editor or the contents of a read-only file.

**List All Available Tabs**

Use the `tabManager` service to work with tabs. The following code example displays the titles of all the tabs that are currently displayed and the names of the panes that host these tabs.

```javascript
var tabManager = services["tabManager"];
var tabs = tabManager.getTabs();
var tabsList = "";

for (var i = 0; i < tabs.length; i++)
{
 tabsList += tabs[i].title + " (in " + tabs[i].pane.name + ")\n";
}

services["dialog.alert"].show(
 "Tab Manager",
 "Tabs",
 tabsList);
```

**Create a Custom Tab**

Use the `open` method of the `tabManager` service to create a custom tab. The following code example creates a text file and also creates a tab that displays the file's contents inside of a text editor.

```javascript
var tabManager = services["tabManager"];

tabManager.open({
 path: "~/hello.txt",
 pane: tabManager.findPane("pane0"),
 editorType: "ace",
 active: true,
 focus: true,
 value: "Hello, World!"
});
```

**Apple OSX Default Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)**

Following is a list of default keyboard mode keybindings for Apple OSX operating systems in the AWS Cloud9 IDE.
For more information, in the AWS Cloud9 IDE:

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Default.
4. For Operating System, choose Apple OSX.

See also Working with Keybindings (p. 162).

- General (p. 186)
- Tabs (p. 188)
- Panels (p. 189)
- Code Editor (p. 190)
- emmet (p. 195)
- Terminal (p. 195)
- Run and Debug (p. 195)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Command-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Control-Space</td>
<td>Option-Space</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Control-Shift-Space</td>
<td>Option-Shift-Space</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Command-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Command-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Command-F</td>
<td>find</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Control-Option-G</td>
<td>findAll</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Command-G</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Command-Shift-G</td>
<td>findprevious</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Command-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Command-L</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptodef</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Control-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Command-Option-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Command-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Command-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Command-Shift-Z</td>
<td>redo</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Command-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Option-Command-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Option-Command-F</td>
<td>replace</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Command-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Command-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Control-Shift-Q</td>
<td>reverttosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Option-Shift-Q</td>
<td>reverttosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Command-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Command-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the</td>
<td>Control-I</td>
<td><code>scrollPreviewElementIntoView</code></td>
</tr>
<tr>
<td>preview page to the location that matches the current element under the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cursor in the HTML file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Shift-Command-F</td>
<td><code>searchInFiles</code></td>
</tr>
<tr>
<td>Show the <strong>Process List</strong> dialog box</td>
<td>Command-Option-P</td>
<td><code>showProcessList</code></td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Command-Z</td>
<td><code>undo</code></td>
</tr>
</tbody>
</table>

### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Option-Control-W</td>
<td><code>closeAllButMe</code></td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Option-Shift-W</td>
<td><code>closeAllTabs</code></td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Command-Control-W</td>
<td><code>closePane</code></td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Option-W</td>
<td><code>closeTab</code></td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Control-Command-Down</td>
<td><code>goToPaneDown</code></td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Control-Command-Left</td>
<td><code>goToPaneLeft</code></td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Control-Command-Right</td>
<td><code>goToPaneRight</code></td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Control-Command-Up</td>
<td><code>goToPaneUp</code></td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Command-[</td>
<td><code>goToTableLeft</code></td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Command-]</td>
<td><code>goToTableRight</code></td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Command-Option-Shift-Down</td>
<td><code>moveTabDown</code></td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left,</td>
<td>Command-Option-Shift-Left</td>
<td><code>moveTabLeft</code></td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Command-Option-Shift-Right</td>
<td><code>moveTabRight</code></td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at</td>
<td>Command-Option-Shift-Up</td>
<td><code>moveTabUp</code></td>
</tr>
<tr>
<td>one pane, or if the tab is already at the far right, create a split tab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>there</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

188
## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>the very top, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Option-Esc</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Option-Tab</td>
<td>nexttab</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Option-Shift-Esc</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Option-Shift-Tab</td>
<td>previoustab</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Option-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Command-Shift-L</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Command-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Command-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Command-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Command-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Command-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Command-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Command-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Command-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Command-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Command</td>
<td>tab9</td>
</tr>
</tbody>
</table>

## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Command-.</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-E</td>
<td>Command-P</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Command-Shift-E</td>
<td>outline</td>
</tr>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>Control-Esc</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Command-U</td>
<td>toggletree</td>
</tr>
</tbody>
</table>
## Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already</td>
<td>Control-Option-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>added, add another cursor above that one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor</td>
<td>Control-Option-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>is already added, move the second cursor up one line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already</td>
<td>Control-Option-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>added, add another cursor below that one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor</td>
<td>Control-Option-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>is already added, move the second cursor down one line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their</td>
<td>Control-Option-A</td>
<td>alignCursors</td>
</tr>
<tr>
<td>lines, if they are misaligned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Control-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td></td>
<td>Shift-Backspace</td>
<td>Backspace</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Control-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Control-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in</td>
<td>Command-Z</td>
<td>Command-Shift-Z</td>
</tr>
<tr>
<td>the IDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center the selection</td>
<td>Control-L</td>
<td>centerselection</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Command-Option-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Command-Option-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>Control-Delete</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied</td>
<td>Command-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>contents immediately after the selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Command-Shift-L</td>
<td>expandtoline</td>
</tr>
<tr>
<td>Include up to next matching symbol in the selection</td>
<td>Control-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code, or if a folded unit is selected, unfold it</td>
<td>Command-Option-L</td>
<td>Command-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements</td>
<td>Control-Command-Option-0</td>
<td>foldall</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Command-Option-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>Control-N</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>Control-P</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Command-End</td>
<td>Command-Down</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>Control-B</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Command-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Command-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>F4</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>Control-V</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Shift-F4</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>Control-F</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Command-Home</td>
<td>Command-Up</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Option-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Option-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Control-P</td>
<td>jumpptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Command-+</td>
<td>Command-=</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move the selection down one line</td>
<td>Option-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move the selection up one line</td>
<td>Option-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or turn off if on</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Option-Page Down</td>
<td>pagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Option-Page Up</td>
<td>pageup</td>
</tr>
<tr>
<td>Remove the current line</td>
<td>Command-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Control-K</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Command-Backspace</td>
<td>removetolinesstart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Option-Backspace</td>
<td>Control-Option-Backspace</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Option-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Command-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Command-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line in the selection</td>
<td>Shift-Down</td>
<td>Control-Shift-N</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>Control-Shift-B</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td></td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td></td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Control-Option-Right</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Control-Option-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Control-Option-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Control-Option-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Control-G</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Control-Shift-G</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selecttright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Command-Shift-End</td>
<td>selecttoend</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Command-Shift-Right</td>
<td>selecttolineend</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Command-Shift-Left</td>
<td>selecttolinestart</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Control-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Command-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>selectup</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Option-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Option-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the <strong>Preferences</strong> tab</td>
<td>Command-,</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Command--</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Command-Option-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Control-Option-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Control-O</td>
<td>splitline</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Command-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Command-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Option-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Command-Option-E</td>
<td>togglerecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Control-W</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Control-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Control-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Control-T</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Command-Option-Shift-L</td>
<td>unfold</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Command-Option-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>
emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Command-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Control-Option-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Command-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Command-,</td>
<td>emmet_select_previous_item</td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Control-A</td>
<td>emmet_wrap_with_abbreviation</td>
</tr>
</tbody>
</table>

Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Option-T</td>
<td>openterminal</td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Option-S</td>
<td>switchterminal</td>
</tr>
</tbody>
</table>

Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Command-B</td>
<td>build</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>Command-\</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Option-F5</td>
<td>run</td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td>runlast</td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>Command-;</td>
</tr>
</tbody>
</table>
Apple OSX Vim Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Vim keyboard mode keybindings for Apple OSX operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Vim.
4. For Operating System, choose Apple OSX.

See also Working with Keybindings (p. 162).

- General (p. 196)
- Tabs (p. 198)
- Panels (p. 200)
- Code Editor (p. 200)
- emmet (p. 205)
- Terminal (p. 205)
- Run and Debug (p. 206)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Command-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Control-Space</td>
<td>Option-Space</td>
</tr>
</tbody>
</table>

---

196
<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code complete, and then overwrite</td>
<td>Control-Shift-Space</td>
<td>completeoverwrite</td>
</tr>
<tr>
<td></td>
<td>Option-Shift-Space</td>
<td></td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Command-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Command-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Command-F</td>
<td>find</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Control-Option-G</td>
<td>findAll</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Command-G</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Command-Shift-G</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Command-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Command-L</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptodef</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Control-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Command-Option-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Command-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Command-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Command-Shift-Z</td>
<td>redo</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Command-Enter</td>
<td>reloadpreview</td>
</tr>
</tbody>
</table>
### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Option-Control-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Option-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Command-Control-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Option-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Control-Command-Down</td>
<td>gotopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Control-Command-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Control-Command-Right</td>
<td>gotopaneright</td>
</tr>
</tbody>
</table>

### Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Option-Command-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Option-Command-F</td>
<td>replace</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Command-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Command-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Control-Shift-Q</td>
<td>reverttosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Option-Shift-Q</td>
<td>reverttosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Command-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Command-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
<td>Control-I</td>
<td>scrollPreviewElementIntoView</td>
</tr>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Shift-Command-F</td>
<td>searchinfiles</td>
</tr>
<tr>
<td>Show the <strong>Process List</strong> dialog box</td>
<td>Command-Option-P</td>
<td>showprocesslist</td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Command-Z</td>
<td>undo</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Control-Command-Up</td>
<td>gottopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Command-[</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Command-]</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Command-Option-Shift-</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left,</td>
<td>Command-Option-Shift-</td>
<td>movetableft</td>
</tr>
<tr>
<td>create a split tab there</td>
<td>Left</td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Command-Option-Shift-</td>
<td>movetabright</td>
</tr>
<tr>
<td>create a split tab there</td>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very</td>
<td>Command-Option-Shift-</td>
<td>movetabup</td>
</tr>
<tr>
<td>top, create a split tab there</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Option-Esc</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Option-Tab</td>
<td>nexttab</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Option-Shift-Esc</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Option-Shift-Tab</td>
<td>previousstab</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Option-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Command-Shift-L</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Command-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Command-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Command-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Command-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Command-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Command-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Command-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Command-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Command-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Command</td>
<td>tab9</td>
</tr>
</tbody>
</table>
## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Command-.</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-E</td>
<td>Command-P</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Command-Shift-E</td>
<td>outline</td>
</tr>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>Control-Esc</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Command-U</td>
<td>toggletree</td>
</tr>
</tbody>
</table>

## Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Control-Option-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Control-Option-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
<td>Control-Option-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Control-Option-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Control-Option-A</td>
<td>alignCursors</td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Control-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td>Indent selection one tab</td>
<td>Control-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent selection one tab</td>
<td>Control-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in</td>
<td>Command-Z</td>
<td>Command-Shift-Z</td>
</tr>
<tr>
<td>the IDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center the selection</td>
<td>Control-L</td>
<td>centerselection</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Command-Option-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Command-Option-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>Control-Delete</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents immediately</td>
<td>Command-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>inclusion the current line's contents in the selection</td>
<td>Command-Shift-L</td>
<td>expandtoline</td>
</tr>
<tr>
<td>Include up to the next matching symbol in selection</td>
<td>Control-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code, or if a folded unit is selected, unfold it</td>
<td>Command-Option-L</td>
<td>Command-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements</td>
<td>Control-Command-Option-0</td>
<td>foldall</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Command-Option-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>Control-N</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>Control-P</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Command-End</td>
<td>Command-Down</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>Control-B</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Command-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Command-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>F4</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>Control-V</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Shift-F4</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>Control-F</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Command-Home</td>
<td>Command-Up</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Option-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Option-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Control-P</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Command-+</td>
<td>Command-=</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move selection down one line</td>
<td>Option-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move selection up one line</td>
<td>Option-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or turn off if on</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Option-Page Down</td>
<td>pagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Option-Page Up</td>
<td>pageup</td>
</tr>
<tr>
<td>Remove the current line</td>
<td>Command-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Control-K</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Command-Backspace</td>
<td>removetolenestart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Option-Backspace</td>
<td>Control-Option-Backspace</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Option-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Command-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Command-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>Control-Shift-N</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>Control-Shift-B</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>cursor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>cursor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Control-Option-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Control-Option-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Control-Option-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Control-Option-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Control-G</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Control-Shift-G</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Command-Shift-End</td>
<td>Command-Shift-Down</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Command-Shift-Right</td>
<td>Shift-End</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Command-Shift-Left</td>
<td>Control-Shift-A</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Control-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Command-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>Control-Shift-P</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Option-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Option-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-,</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Command--</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Command-Option-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Control-Option-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Control-O</td>
<td>splitline</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Command-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Command-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Option-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Command-Option-E</td>
<td>togglerecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Control-W</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Control-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Control-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Control-T</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Command-Option-Shift-L</td>
<td>Command-Shift-F1</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Command-Option-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>

**emmet**

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Command-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Control-Option-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Command-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Command-,</td>
<td>emmet_select_previous_item</td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Control-A</td>
<td>emmet_wrap_with_abbreviation</td>
</tr>
</tbody>
</table>

**Terminal**

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Option-T</td>
<td>openterminal</td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Option-S</td>
<td>switchterminal</td>
</tr>
</tbody>
</table>
Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Command-B</td>
<td>build</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>Command-\</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Option-F5</td>
<td>run</td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td>runlast</td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>Command-;</td>
</tr>
<tr>
<td>Step out of the current function scope</td>
<td>Shift-F11</td>
<td>Command-Shift-'</td>
</tr>
<tr>
<td>Step over the current expression on the stack</td>
<td>F10</td>
<td>Command-'</td>
</tr>
<tr>
<td>Stop running or debugging the current application</td>
<td>Shift-F5</td>
<td>stop</td>
</tr>
<tr>
<td>Stop building the current file</td>
<td>Control-Shift-C</td>
<td>stopbuild</td>
</tr>
</tbody>
</table>

Apple OSX Emacs Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Emacs keyboard mode keybindings for Apple OSX operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Emacs.
4. For Operating System, choose Apple OSX.

See also Working with Keybindings (p. 162).

- General (p. 207)
- Tabs (p. 209)
- Panels (p. 210)
- Code Editor (p. 210)
- emmet (p. 215)
- Terminal (p. 216)
General

### Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Command-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Control-Space</td>
<td>Option-Space</td>
</tr>
<tr>
<td>Complete code, and then overwrite</td>
<td>Control-Shift-Space</td>
<td>Option-Shift-Space</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Command-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Command-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Command-F</td>
<td>find</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Control-Option-G</td>
<td>findAll</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Command-G</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Command-Shift-G</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Command-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Command-L</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if shown</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptodef</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Control-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-,</td>
<td>openpreferences</td>
</tr>
</tbody>
</table>

- **Run and Debug (p. 216)**
<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a <strong>Terminal</strong> tab, then switch to the parent folder of the selected file in the list of files</td>
<td>Command-Option-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Command-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Command-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Command-Shift-Z</td>
<td>Command-Y</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Command-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Option-Command-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the <em>replace with</em> expression</td>
<td>Option-Command-F</td>
<td>replace</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Command-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Command-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Control-Shift-Q</td>
<td>reverttosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Option-Shift-Q</td>
<td>reverttosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Command-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Command-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
<td>Control-I</td>
<td>scrollPreviewElementIntoView</td>
</tr>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Shift-Command-F</td>
<td>searchinfiles</td>
</tr>
<tr>
<td>Show the <strong>Process List</strong> dialog box</td>
<td>Command-Option-P</td>
<td>showprocesslist</td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Command-Z</td>
<td>undo</td>
</tr>
</tbody>
</table>
## Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Option-Control-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Option-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Command-Control-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Option-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Control-Command-Down</td>
<td>gotopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Control-Command-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Control-Command-Right</td>
<td>gotopaneright</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Control-Command-Up</td>
<td>gottopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Command-[]</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Command-[</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Command-Option-Shift-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left,</td>
<td>Command-Option-Shift-Left</td>
<td>movetableft</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Command-Option-Shift-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very top</td>
<td>Command-Option-Shift-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Option-Esc</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Option-Tab</td>
<td>nexttab</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Option-Shift-Esc</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Option-Shift-Tab</td>
<td>previousstab</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Option-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Command-Shift-L</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Command-0</td>
<td>tab0</td>
</tr>
</tbody>
</table>
### Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to the first tab</td>
<td>Command-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Command-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Command-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Command-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Command-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Command-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Command-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Command-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Command</td>
<td>tab9</td>
</tr>
</tbody>
</table>

### Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Control-Option-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Control-Option-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor</td>
<td>Control-Option-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>is already added, add another cursor below that one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Control-Option-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Control-Option-A</td>
<td>alignCursors</td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Control-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td></td>
<td>Shift-Backspace</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backspace</td>
<td></td>
</tr>
<tr>
<td>Indent selection one tab</td>
<td>Control-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent selection one tab</td>
<td>Control-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Command-Z</td>
<td>Command-Shift-Z</td>
</tr>
<tr>
<td>Center the selection</td>
<td>Control-L</td>
<td>centerselection</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Command-Option-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Command-Option-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>Control-Delete</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents immediately after the selection</td>
<td>Command-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Command-Shift-L</td>
<td>expandtoline</td>
</tr>
<tr>
<td>Include up to the next matching symbol in the selection</td>
<td>Control-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Command-Option-L</td>
<td>Command-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements</td>
<td>Control-Command-Option-0</td>
<td>foldall</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Command-Option-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>Control-N</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>Control-P</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Command-End</td>
<td>Command-Down</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>Control-B</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Command-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Command-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>F4</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>Control-V</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Shift-F4</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>Control-F</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Command-Home</td>
<td>Command-Up</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Option-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Option-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Control-P</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Command--</td>
<td>Command-- =</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move the selection down one line</td>
<td>Option-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move the selection up one line</td>
<td>Option-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Option-Page Down</td>
<td>pagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Option-Page Up</td>
<td>pageup</td>
</tr>
<tr>
<td>Remove the current line</td>
<td>Command-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Control-K</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Command-Backspace</td>
<td>removetolinestart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Option-Backspace</td>
<td>Control-Option-Backspace</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Option-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Command-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Command-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>Control-Shift-N</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>Control-Shift-B</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Control-Option-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Control-Option-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Control-Option-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Control-Option-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Control-G</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Control-Shift-G</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Command-Shift-End</td>
<td>Command-Shift-Down</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Command-Shift-Right</td>
<td>Shift-End</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Command-Shift-Left</td>
<td>Control-Shift-A</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Control-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Command-Shift-Home</td>
<td>Command-Shift-Up</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>Control-Shift-Up</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Option-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Option-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Command--</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Command-Option-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Control-Option-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Control-O</td>
<td>splitline</td>
</tr>
</tbody>
</table>
## Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Command-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Command-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Option-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Command-Option-E</td>
<td>togglererecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Control-W</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change selection to all lowercase</td>
<td>Control-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change selection to all uppercase</td>
<td>Control-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose selection</td>
<td>Control-T</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Command-Option-Shift-L</td>
<td>Command-Shift-F1</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Command-Option-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>

---

## emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Command-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Control-Option-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Command-.</td>
<td>emmet_select_next_item</td>
</tr>
</tbody>
</table>
## Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Command-`,</td>
<td><code>emmet_select_previous_item</code></td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Control-A</td>
<td><code>emmet_wrap_with_abbreviation</code></td>
</tr>
</tbody>
</table>

## Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Command-B</td>
<td><code>build</code></td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>Command-\</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Option-F5</td>
<td><code>run</code></td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td><code>runlast</code></td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>Command-`</td>
</tr>
<tr>
<td>Step out of the current function scope</td>
<td>Shift-F11</td>
<td>Command-<code>Shift-</code></td>
</tr>
<tr>
<td>Step over the current expression on the stack</td>
<td>F10</td>
<td>Command-`</td>
</tr>
<tr>
<td>Stop running or debugging the current application</td>
<td>Shift-F5</td>
<td><code>stop</code></td>
</tr>
<tr>
<td>Stop building the current file</td>
<td>Control-Shift-C</td>
<td><code>stopbuild</code></td>
</tr>
</tbody>
</table>
Apple OS X Sublime Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Sublime keyboard mode keybindings for Apple OS X operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:
1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Sublime.
4. For Operating System, choose Apple OS X.

See also Working with Keybindings (p. 162).

- General (p. 217)
- Tabs (p. 220)
- Panels (p. 221)
- Code Editor (p. 222)
- Emmet (p. 227)
- Terminal (p. 227)
- Run and Debug (p. 227)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Command-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Control-Space</td>
<td>Option-Space</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Control-Shift-Space</td>
<td>Option-Shift-Space</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Command-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Command-X</td>
<td>cut</td>
</tr>
<tr>
<td>Delete from the cursor to start of the line</td>
<td>Command-K</td>
<td>Command-Backspace</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Delete from the cursor to end of the line</td>
<td>Command-(K) Command-(K) \mid) Command-Delete \mid) Control-(K)</td>
<td>delete_to_hard_eol</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Command-(F)</td>
<td>find</td>
</tr>
<tr>
<td>Highlight all matches for the selection</td>
<td>Control-Command-(G)</td>
<td>find_all_under</td>
</tr>
<tr>
<td>Highlight next match for the selection</td>
<td>Option-Command-(G)</td>
<td>find_under</td>
</tr>
<tr>
<td>Highlight around the cursor and all matches for the highlight</td>
<td>Command-(D)</td>
<td>find_under_expand</td>
</tr>
<tr>
<td>Highlight around the cursor and outline all matches for the highlight</td>
<td>Command-(K) Command-(D)</td>
<td>find_under_expand_skip</td>
</tr>
<tr>
<td>Highlight the previous match for the selection</td>
<td>Shift-Option-Command-(G)</td>
<td>find_under_previous</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Control-Option-(G)</td>
<td>findAll</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Command-(G)</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Shift-Command-(G)</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the <strong>Environment</strong> window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Control-Option-(F)</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Control-(G)</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F12 \mid) Command-Option-Down \mid) Control-Option-Down</td>
<td>jumptodef</td>
</tr>
<tr>
<td>Go to the end of the current word</td>
<td>Option-Right</td>
<td>moveToWordEndRight</td>
</tr>
<tr>
<td>Go to the start of the current word</td>
<td>Option-Left</td>
<td>moveToWordStartLeft</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Control-(N)</td>
<td>newfile</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Show the <strong>Preferences</strong> tab</td>
<td>Command-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a <strong>Terminal</strong> tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Command-Option-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Command-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Command-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Command-Shift-Z</td>
<td>redo</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Command-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Option-Command-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Command-Option-F</td>
<td>replace</td>
</tr>
<tr>
<td>Replace all find expression matches with replace with expression in the find and replace bar</td>
<td>Control-Option-Enter</td>
<td>replaceall</td>
</tr>
<tr>
<td>Replace next find expression match with replace with expression in the find and replace bar</td>
<td>Command-Option-E</td>
<td>replacenext</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Command-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Command-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Control-Shift-Q</td>
<td>reverttosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Option-Shift-Q</td>
<td>reverttosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Command-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Command-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
<td>Control-I</td>
<td>scrollPreviewElementIntoView</td>
</tr>
</tbody>
</table>
### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Command-Shift-F</td>
<td>searchinfiles</td>
</tr>
<tr>
<td>Include from the cursor to the end of the word in the selection</td>
<td>Option-Shift-Right</td>
<td>selectToWordEndRight</td>
</tr>
<tr>
<td>Include from the cursor to the start of the word in the selection</td>
<td>Option-Shift-Left</td>
<td>selectToWordStartLeft</td>
</tr>
<tr>
<td>Show the <strong>Process List</strong> dialog box</td>
<td>Command-Option-P</td>
<td>showprocesslist</td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Command-Z</td>
<td>undo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Option-Control-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Option-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Command-Control-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Option-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Control-Command-Down</td>
<td>gotopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Control-Command-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Control-Command-Right</td>
<td>gotopaneright</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Control-Command-Up</td>
<td>gotopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Command-Shift-[</td>
<td>Command-Option-Left</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Command-Shift-]</td>
<td>Command-Option-Right</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Command-Option-Shift-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left, create</td>
<td>Command-Option-Shift-Left</td>
<td>movetableft</td>
</tr>
<tr>
<td>a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Command-Option-Shift-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at</td>
<td>Command-Option-Shift-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>the very top, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Control-Tab</td>
<td>nexttab</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Option-Shift-Esc</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Control-Shift-Tab</td>
<td>previoustab</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Command-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Command-E</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Command-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Command-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Command-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Command-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Command-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Command-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Command-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Command-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Command-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Command-K</td>
<td>tab9</td>
</tr>
</tbody>
</table>

### Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Command-Shift-P</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-T</td>
<td>Command-P</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Command-0</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Command-Shift-R</td>
<td>outline</td>
</tr>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>Control-`</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Command-K Command-B</td>
<td>toggletree</td>
</tr>
</tbody>
</table>
## Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already</td>
<td>Control-Shift-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>added, add another cursor above that one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor</td>
<td>Control-Option-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>is already added, move the second cursor up one line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already</td>
<td>Control-Shift-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>added, add another cursor below that one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor</td>
<td>Control-Option-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>is already added, move the second cursor down one line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their</td>
<td>Control-Option-A</td>
<td>alignCursors</td>
</tr>
<tr>
<td>lines, if they are misaligned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Control-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td></td>
<td>Shift-Backspace</td>
<td>Backspace</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Control-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Control-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in</td>
<td>Command-Z</td>
<td>Command-Shift-Z</td>
</tr>
<tr>
<td>the IDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center the selection</td>
<td>Command-K Command-C</td>
<td>Control-L</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line</td>
<td>Command-Option-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Command-Option-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>Control-Delete</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied</td>
<td>Command-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>selection, and paste the copied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>contents immediately after the selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Command-L</td>
<td>expandtolistline</td>
</tr>
<tr>
<td>Include up to the next matching symbol in the selection</td>
<td>Control-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Command-Option-L</td>
<td>fold</td>
</tr>
<tr>
<td>Fold all possibly foldable elements</td>
<td>Control-Command-Option-0</td>
<td>foldall</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Command-K Command-1</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>Control-N</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>Control-P</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Command-End</td>
<td>Command-Down</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>Control-B</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Command-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Command-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>Control-F6</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>Control-V</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Control-Shift-F6</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>Control-F</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Command-Home</td>
<td>Command-Up</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Option-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Option-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Combine selected lines into a single line</td>
<td>Command-J</td>
<td>joinlines</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Control-M</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Command-=</td>
<td>Command++</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>-----------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Option-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move selection down one line</td>
<td>Control-Command-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move selection up one line</td>
<td>Control-Command-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Option-Page Down</td>
<td>pagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Option-Page Up</td>
<td>pageup</td>
</tr>
<tr>
<td>Delete the contents of the current line</td>
<td>Control-Shift-K</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Control-K</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Command-Backspace</td>
<td>removetlinestart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Option-Backspace</td>
<td>Command-Option-Backspace</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Option-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Control-Shift-Q</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Command-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>Command-Option-Backspace</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>Command-Option-Backspace</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Control-Option-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Control-Option-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Control-Option-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Control-Option-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Control-G</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Control-Shift-G</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Command-Shift-End</td>
<td>Command-Shift-Down</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Command-Shift-Right</td>
<td>Shift-End</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Command-Shift-Left</td>
<td>Command-Shift-A</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Control-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Command-Shift-Home</td>
<td>Command-Shift-Up</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>Control-Shift-P</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Option-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Option-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Command-, showSettingsMenu</td>
<td></td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Command-- smallerfont</td>
<td></td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>F5</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Command-Shift-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Control-O splitline</td>
<td></td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Command-Option-/ toggleBlockComment</td>
<td></td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Command-/ togglecomment</td>
<td></td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>Command-Option-[ toggleFoldWidget</td>
<td></td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Option-F2 toggleParentFoldWidget</td>
<td></td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Control-Q togglererecording</td>
<td></td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Control-W toggleWordWrap</td>
<td></td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Command-K Command-L tolowercase</td>
<td></td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Command-K Command-U touppercase</td>
<td></td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Control-T transposeletters</td>
<td></td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Command-Option-] unfold</td>
<td></td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Command-K Command-0</td>
<td>unfoldall</td>
</tr>
<tr>
<td></td>
<td>Command-K Command-J</td>
<td></td>
</tr>
</tbody>
</table>
emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Command-Y</td>
<td><code>emmet_evaluate_math_expression</code></td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Control-Option-E</td>
<td><code>emmet_expand_abbreviation</code></td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td><code>emmet_expand_abbreviation_with_tab</code></td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Command-.</td>
<td><code>emmet_select_next_item</code></td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Command-,</td>
<td><code>emmet_select_previous_item</code></td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Control-A</td>
<td><code>emmet_wrap_with_abbreviation</code></td>
</tr>
</tbody>
</table>

Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Option-T</td>
<td><code>openterminal</code></td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Option-S</td>
<td><code>switchterminal</code></td>
</tr>
</tbody>
</table>

Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>F7</td>
<td>Command-B</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>Command-\</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Command-Shift-B</td>
<td><code>run</code></td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td><code>runlast</code></td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>Command-;</td>
</tr>
</tbody>
</table>
### Windows / Linux Default Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of default keyboard mode keybindings for Windows / Linux operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:

1. On the menu bar, **AWS Cloud9, Preferences**.
2. On the **Preferences** tab, choose **Keybindings**.
3. For **Keyboard Mode**, choose **Default**.
4. For **Operating System**, choose **Windows / Linux**.

See also Working with Keybindings (p. 162).

- General (p. 228)
- Tabs (p. 230)
- Panels (p. 232)
- Code Editor (p. 232)
- emmet (p. 237)
- Terminal (p. 238)
- Run and Debug (p. 238)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Ctrl-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Ctrl-Space</td>
<td>Alt-Space</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Ctrl-Shift-Space</td>
<td>completeoverwrite</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Ctrl-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Ctrl-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandsnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Ctrl-F</td>
<td>find</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Ctrl-Alt-K</td>
<td>findall</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Ctrl-K</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Ctrl-Shift-K</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Ctrl-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Ctrl-G</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptodf</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Alt-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Alt-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Ctrl-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Ctrl-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Ctrl-Shift-Z</td>
<td>Ctrl-Y</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Ctrl-Enter</td>
<td>reloadpreview</td>
</tr>
</tbody>
</table>
### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Ctrl-Alt-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Alt-Shift-F</td>
<td>Ctrl-H</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Ctrl-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Ctrl-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Ctrl-Shift-Q</td>
<td>reverttosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Alt-Shift-Q</td>
<td>reverttosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Ctrl-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Ctrl-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
<td>Ctrl-I</td>
<td>scrollPreviewElementIntoView</td>
</tr>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Ctrl-Shift-F</td>
<td>searchinfiles</td>
</tr>
<tr>
<td>Show the Process List dialog box</td>
<td>Ctrl-Alt-P</td>
<td>showprocesslist</td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Ctrl-Z</td>
<td>undo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Ctrl-Alt-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Alt-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Ctrl-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Alt-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Ctrl-Meta-Down</td>
<td>gotopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Ctrl-Meta-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Ctrl-Meta-Right</td>
<td>gotopaneright</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Ctrl-Meta-Up</td>
<td>gottopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Ctrl-[</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Ctrl-]</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Ctrl-Meta-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left,</td>
<td>Ctrl-Meta-Left</td>
<td>movetableft</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Ctrl-Meta-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very</td>
<td>Ctrl-Meta-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>top, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Ctrl-`</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Ctrl-Tab</td>
<td>Alt-`</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Ctrl-Shift-`</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Ctrl-Shift-Tab</td>
<td>Alt-Shift-`</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Alt-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Ctrl-Shift-L</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Ctrl-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Ctrl-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Ctrl-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Ctrl-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Ctrl-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Ctrl-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Ctrl-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Ctrl-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Ctrl-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Ctrl-9</td>
<td>tab9</td>
</tr>
</tbody>
</table>
## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Ctrl-.</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-E</td>
<td>navigate</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Ctrl-Shift-E</td>
<td>outline</td>
</tr>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>F6</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Ctrl-I</td>
<td>toggletree</td>
</tr>
</tbody>
</table>

## Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Ctrl-Alt-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Ctrl-Alt-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
<td>Ctrl-Alt-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Ctrl-Alt-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Ctrl-Alt-A</td>
<td>align Cursors</td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Shift-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Ctrl-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Ctrl-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in</td>
<td>Ctrl-Z</td>
<td>Ctrl-Shift-Z</td>
</tr>
<tr>
<td>the IDE</td>
<td>Ctrl-Y</td>
<td></td>
</tr>
<tr>
<td>Center the selection</td>
<td>Ctrl-L</td>
<td>centerselection</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Alt-Shift-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Alt-Shift-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Cut the selection, or if there is no selection, delete one space</td>
<td>Shift-Delete</td>
<td>cut_or_delete</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>del</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents</td>
<td>Ctrl-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>immediately after the selection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Ctrl-Shift-L</td>
<td>expandtoline</td>
</tr>
<tr>
<td>Include up to the next matching symbol in the selection</td>
<td>Ctrl-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Alt-L</td>
<td>Ctrl-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements</td>
<td>Ctrl-Command-Option-0</td>
<td>foldall</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection</td>
<td>Alt-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>selection scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>golinedown</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>golineup</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Ctrl-End</td>
<td>gotoend</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>gotoleft</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Alt-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Alt-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>Alt-E</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>gotopagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Alt-Shift-E</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>gotoright</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Ctrl-Home</td>
<td>gotostart</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Ctrl-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Ctrl-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Ctrl-P</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Ctrl-++</td>
<td>Ctrl-=</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move the selection down one line</td>
<td>Alt-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move the selection up one line</td>
<td>Alt-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Option-Page Down</td>
<td>pagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Option-Page Up</td>
<td>pageup</td>
</tr>
<tr>
<td>Delete the contents of the current line</td>
<td>Ctrl-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Alt-Delete</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Alt-Backspace</td>
<td>removetolinelast</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Ctrl-Backspace</td>
<td>removewordleft</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Ctrl-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Ctrl-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Scroll the current file down by one line</td>
<td>Ctrl-Down</td>
<td>scrolldown</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Scroll the current file up by one line</td>
<td>Ctrl-Up</td>
<td>scrollup</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Ctrl-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>selectdown</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>selectleft</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Ctrl-Alt-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Ctrl-Alt-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Ctrl-Alt-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Ctrl-Alt-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Alt-K</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Alt-Shift-K</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Ctrl-Shift-End</td>
<td>selecttoend</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Alt-Shift-Right</td>
<td>selecttolineend</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Alt-Shift-Left</td>
<td>selecttolinestart</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Ctrl-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Ctrl-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>selectup</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Ctrl-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Ctrl-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,,</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Ctrl--</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Ctrl-Alt-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Ctrl-Alt-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Ctrl-O</td>
<td>splitline</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Ctrl-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Ctrl-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Alt-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Ctrl-Alt-E</td>
<td>toggleRecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Ctrl-Q</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Ctrl-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Ctrl-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Alt-X</td>
<td>transposeLetters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Alt-Shift-L</td>
<td>Ctrl-Shift-F1</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Alt-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>

**emmet**

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Ctrl-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Ctrl-Alt-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Ctrl-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Ctrl-,</td>
<td>emmet_select_previous_item</td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Ctrl-A</td>
<td>emmet_wrap_with_abbreviation</td>
</tr>
</tbody>
</table>
Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Alt-T</td>
<td>openterminal</td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Alt-S</td>
<td>switchterminal</td>
</tr>
</tbody>
</table>

Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Ctrl-B</td>
<td>build</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>resume</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Alt-F5</td>
<td>run</td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td>runlast</td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>stepinto</td>
</tr>
<tr>
<td>Step out of the current function scope</td>
<td>Shift-F11</td>
<td>stepout</td>
</tr>
<tr>
<td>Step over the current expression on the stack</td>
<td>F10</td>
<td>stepover</td>
</tr>
<tr>
<td>Stop running or debugging the current application</td>
<td>Shift-F5</td>
<td>stop</td>
</tr>
<tr>
<td>Stop building the current file</td>
<td>Ctrl-Shift-C</td>
<td>stopbuild</td>
</tr>
</tbody>
</table>

Windows / Linux Vim Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Vim keyboard mode keybindings for Windows / Linux operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:

1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Vim.
4. For Operating System, choose Windows / Linux.
See also Working with Keybindings (p. 162).

- General (p. 239)
- Tabs (p. 241)
- Panels (p. 242)
- Code Editor (p. 242)
- emmet (p. 247)
- Terminal (p. 248)
- Run and Debug (p. 248)

## General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Ctrl-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Ctrl-Space</td>
<td>Alt-Space</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Ctrl-Shift-Space</td>
<td>Alt-Shift-Space</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Ctrl-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Ctrl-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Ctrl-F</td>
<td>find</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Ctrl-Alt-K</td>
<td>findall</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Ctrl-K</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Ctrl-Shift-K</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Ctrl-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Ctrl-G</td>
<td>gotoline</td>
</tr>
</tbody>
</table>
### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptododef</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Alt-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Alt-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard’s current contents at the cursor</td>
<td>Ctrl-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Ctrl-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Ctrl-Shift-Z</td>
<td>Ctrl-Y</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Ctrl-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Ctrl-Alt-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Alt-Shift-F</td>
<td>Ctrl-H</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Ctrl-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Ctrl-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Ctrl-Shift-Q</td>
<td>reverttotosaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Alt-Shift-Q</td>
<td>reverttotosavedall</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Ctrl-S</td>
<td>save</td>
</tr>
<tr>
<td>Save the current file to disk with a different file name</td>
<td>Ctrl-Shift-S</td>
<td>saveas</td>
</tr>
<tr>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
<td>Ctrl-I</td>
<td>scrollPreviewElementIntoView</td>
</tr>
<tr>
<td>Show the find and replace bar for multiple files</td>
<td>Ctrl-Shift-F</td>
<td>searchinfiles</td>
</tr>
</tbody>
</table>
### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Process List</strong> dialog box</td>
<td>Ctrl-Alt-P</td>
<td>showprocesslist</td>
</tr>
<tr>
<td>Undo the last action</td>
<td>Ctrl-Z</td>
<td>undo</td>
</tr>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Ctrl-Alt-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Alt-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Ctrl-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Alt-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Ctrl-Meta-Down</td>
<td>gotopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Ctrl-Meta-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Ctrl-Meta-Right</td>
<td>gotopaneright</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Ctrl-Meta-Up</td>
<td>gotopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Ctrl-[</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Ctrl-]</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Ctrl-Meta-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left,</td>
<td>Ctrl-Meta-Left</td>
<td>movetableft</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right,</td>
<td>Ctrl-Meta-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very top</td>
<td>Ctrl-Meta-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very top,</td>
<td>Ctrl-Meta-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Ctrl-`</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Ctrl-Tab</td>
<td>Alt-`</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Ctrl-Shift-`</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Ctrl-Shift-Tab</td>
<td>previoustab</td>
</tr>
</tbody>
</table>
### Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Ctrl-</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-E</td>
<td>navigate</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Ctrl-Shift-E</td>
<td>outline</td>
</tr>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>F6</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Ctrl-I</td>
<td>toggletree</td>
</tr>
</tbody>
</table>

### Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Ctrl-Alt-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Ctrl-Alt-Shift-Up</td>
<td><code>addCursorAboveSkipCurrent</code></td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
<td>Ctrl-Alt-Down</td>
<td><code>addCursorBelow</code></td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Ctrl-Alt-Shift-Down</td>
<td><code>addCursorBelowSkipCurrent</code></td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Ctrl-Alt-A</td>
<td><code>alignCursors</code></td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Shift-Backspace</td>
<td>Backspace</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Ctrl-[</td>
<td><code>blockindent</code></td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Ctrl-[</td>
<td><code>blockoutdent</code></td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Ctrl-Z</td>
<td>Ctrl-Shift-Z</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Alt-Shift-Down</td>
<td><code>copylinesdown</code></td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Alt-Shift-Up</td>
<td><code>copylinesup</code></td>
</tr>
<tr>
<td>Cut the selection. If there is no selection, delete one space</td>
<td>Shift-Delete</td>
<td><code>cut_or_delete</code></td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td><code>del</code></td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents immediately after the selection</td>
<td>Ctrl-Shift-D</td>
<td><code>duplicateSelection</code></td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Ctrl-Shift-L</td>
<td><code>expandtoline</code></td>
</tr>
<tr>
<td>Include up to the next matching symbol in the selection</td>
<td>Ctrl-Shift-M</td>
<td><code>expandoToMatching</code></td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Alt-L</td>
<td>Ctrl-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Alt-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>golinedown</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>golineup</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Ctrl-End</td>
<td>gotoend</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>gotoleft</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Alt-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Alt-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>Alt-E</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>gotoPageDown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotoPageUp</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Alt-Shift-E</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>gotoright</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Ctrl-Home</td>
<td>gotostart</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Ctrl-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Ctrl-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Ctrl-P</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Ctrl-+</td>
<td>Ctrl-=</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move the selection down one line</td>
<td>Alt-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move the selection up one line</td>
<td>Alt-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Delete the contents of the current line</td>
<td>Ctrl-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Alt-Delete</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Alt-Backspace</td>
<td>removetolinestart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Ctrl-Backspace</td>
<td>removewordleft</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Ctrl-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Ctrl-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Scroll the current file down by one line</td>
<td>Ctrl-Down</td>
<td>scrolldown</td>
</tr>
<tr>
<td>Scroll the current file up by one line</td>
<td>Ctrl-Up</td>
<td>scrollup</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Ctrl-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>selectdown</td>
</tr>
<tr>
<td>Include the next space to the left in the selection</td>
<td>Shift-Left</td>
<td>selectleft</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Ctrl-Alt-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Ctrl-Alt-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Ctrl-Alt-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Ctrl-Alt-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Alt-K</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Alt-Shift-K</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Ctrl-Shift-End</td>
<td>selecttoend</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Alt-Shift-Right</td>
<td>selecttolineend</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Alt-Shift-Left</td>
<td>selecttolinestart</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Ctrl-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Ctrl-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>selectup</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Ctrl-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Ctrl-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Ctrl--</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Ctrl-Alt-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Ctrl-Alt-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Ctrl-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Ctrl-/-</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Alt-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Ctrl-Alt-E</td>
<td>togglerecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Ctrl-Q</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Ctrl-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Ctrl-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Alt-X</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Alt-Shift-L</td>
<td>unfold</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Alt-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>

emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as $2 \times 4$ or $10/2$), and output its result</td>
<td>Shift-Ctrl-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Ctrl-Alt-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Ctrl-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Ctrl-[,]</td>
<td><code>emmet_select_previous_item</code></td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the</td>
<td>Shift-Ctrl-A</td>
<td><code>emmet_wrap_with_abbreviation</code></td>
</tr>
</tbody>
</table>

## Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Alt-T</td>
<td><code>openterminal</code></td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Alt-S</td>
<td><code>switchterminal</code></td>
</tr>
</tbody>
</table>

## Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Ctrl-B</td>
<td><code>build</code></td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td><code>resume</code></td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Alt-F5</td>
<td><code>run</code></td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td><code>runlast</code></td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td><code>stepinto</code></td>
</tr>
<tr>
<td>Step out of the current function scope</td>
<td>Shift-F11</td>
<td><code>stepout</code></td>
</tr>
<tr>
<td>Step over the current expression on the stack</td>
<td>F10</td>
<td><code>stepover</code></td>
</tr>
<tr>
<td>Stop running or debugging the current application</td>
<td>Shift-F5</td>
<td><code>stop</code></td>
</tr>
<tr>
<td>Stop building the current file</td>
<td>Ctrl-Shift-C</td>
<td><code>stopbuild</code></td>
</tr>
</tbody>
</table>
Windows / Linux Emacs Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Emacs keyboard mode keybindings for Windows / Linux operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:
1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Emacs.
4. For Operating System, choose Windows / Linux.

See also Working with Keybindings (p. 162).

- General (p. 249)
- Tabs (p. 251)
- Panels (p. 252)
- Code Editor (p. 253)
- emmet (p. 258)
- Terminal (p. 258)
- Run and Debug (p. 258)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Ctrl-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Ctrl-Space</td>
<td>Alt-Space</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Ctrl-Shift-Space</td>
<td>Alt-Shift-Space</td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Ctrl-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Ctrl-X</td>
<td>cut</td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Ctrl-F</td>
<td>find</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Ctrl-Alt-K</td>
<td>findall</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>Ctrl-K</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Ctrl-Shift-K</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Ctrl-Shift-B</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Ctrl-G</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F3</td>
<td>jumptodef</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Alt-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Alt-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Ctrl-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Ctrl-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Ctrl-Shift-Z</td>
<td>Ctrl-Y</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Ctrl-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Ctrl-Alt-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Alt-Shift-F</td>
<td>Ctrl-H</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Ctrl-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Ctrl-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Ctrl-Shift-Q</td>
<td>reverttosaved</td>
</tr>
</tbody>
</table>
## Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Ctrl-Alt-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Alt-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Ctrl-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Alt-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Ctrl-Meta-Down</td>
<td>gottopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Ctrl-Meta-Left</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Ctrl-Meta-Right</td>
<td>gotopaneleft</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Ctrl-Meta-Up</td>
<td>gotopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Ctrl-[</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Ctrl-]</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very bottom, create a split tab there</td>
<td>Ctrl-Meta-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>Move the current tab left, or if the tab is already at the far left, create a split tab there</td>
<td>Ctrl-Meta-Left</td>
<td>movetableft</td>
</tr>
</tbody>
</table>
## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move the current tab right, or if the tab is</td>
<td>Ctrl-Meta-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>already at the far right, create a split tab there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at the very top, create a split tab there</td>
<td>Ctrl-Meta-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>Go to the next pane</td>
<td>Ctrl-`</td>
<td>nextpane</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Ctrl-Tab</td>
<td>Alt-`</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Ctrl-Shift-`</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Ctrl-Shift-Tab</td>
<td>Alt-Shift-`</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Alt-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Ctrl-Shift-L</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Ctrl-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Ctrl-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Ctrl-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Ctrl-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Ctrl-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Ctrl-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Ctrl-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Ctrl-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Ctrl-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Ctrl-9</td>
<td>tab9</td>
</tr>
</tbody>
</table>

## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Ctrl-.</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-E</td>
<td>navigate</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Ctrl-Shift-E</td>
<td>outline</td>
</tr>
</tbody>
</table>
**AWS Cloud9 User Guide**

**Code Editor**

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
<td>F6</td>
<td>toggleconsole</td>
</tr>
<tr>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
<td>Ctrl-I</td>
<td>toggletree</td>
</tr>
</tbody>
</table>

### Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Ctrl-Alt-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Ctrl-Alt-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
<td>Ctrl-Alt-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Ctrl-Alt-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Ctrl-Alt-A</td>
<td>align Cursors</td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Shift-Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Ctrl-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Ctrl-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Ctrl-Z</td>
<td>cancelBrowserUndoInAce</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Ctrl-Shift-Z</td>
<td></td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Ctrl-Y</td>
<td></td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Alt-Shift-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Alt-Shift-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Cut the selection, or if there is no selection, delete one space</td>
<td>Shift-Delete</td>
<td>cut_or_delete</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>del</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents immediately after the selection</td>
<td>Ctrl-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Ctrl-Shift-L</td>
<td>expandtoLine</td>
</tr>
<tr>
<td>Include up to the next matching symbol in selection</td>
<td>Ctrl-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Alt-L</td>
<td>Ctrl-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Alt-0</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>golinedown</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>golineup</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Ctrl-End</td>
<td>gotoend</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>gotoleft</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Alt-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Alt-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>Alt-E</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>gotopagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Alt-Shift-E</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>gotoright</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Ctrl-Home</td>
<td>gotostart</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Ctrl-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Ctrl-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Ctrl-P</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Ctrl-+</td>
<td>Ctrl-=</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Ctrl-Shift-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move selection down one line</td>
<td>Alt-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move selection up one line</td>
<td>Alt-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Delete the contents of the current line</td>
<td>Ctrl-D</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Alt-Delete</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Alt-Backspace</td>
<td>removetolinestart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Ctrl-Backspace</td>
<td>removewordleft</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Ctrl-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Ctrl-Shift-E</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Scroll the current file down by one line</td>
<td>Ctrl-Down</td>
<td>scrolldown</td>
</tr>
<tr>
<td>Scroll the current file up by one line</td>
<td>Ctrl-Up</td>
<td>scrollup</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Ctrl-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>selectdown</td>
</tr>
<tr>
<td>Include the next space left in the selection</td>
<td>Shift-Left</td>
<td>selectleft</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Ctrl-Alt-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Ctrl-Alt-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Ctrl-Alt-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Ctrl-Alt-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Alt-K</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Alt-Shift-K</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Ctrl-Shift-End</td>
<td>selecttoend</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Alt-Shift-Right</td>
<td>selecttolineend</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Alt-Shift-Left</td>
<td>selecttolinestart</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Ctrl-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Ctrl-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>selectup</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Ctrl-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Ctrl-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-[,</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Ctrl---</td>
<td>smallerfont</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>Ctrl-Alt-S</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Ctrl-Alt-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
<td>Ctrl-O</td>
<td>splitline</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if</td>
<td>Ctrl-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>they are there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove</td>
<td>Ctrl-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>them if they are there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>F2</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Alt-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Ctrl-Alt-E</td>
<td>togglerecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Ctrl-Q</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Ctrl-Shift-U</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Ctrl-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Alt-X</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Alt-Shift-L</td>
<td>Ctrl-Shift-F1</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Alt-Shift-0</td>
<td>unfoldall</td>
</tr>
</tbody>
</table>
# emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Ctrl-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Ctrl-Alt-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Ctrl-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Ctrl-,</td>
<td>emmet_select_previous_item</td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Ctrl-A</td>
<td>emmet_wrap_with_abbreviation</td>
</tr>
</tbody>
</table>

## Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Alt-T</td>
<td>openterminal</td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Alt-S</td>
<td>switchterminal</td>
</tr>
</tbody>
</table>

## Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>Ctrl-B</td>
<td>build</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>resume</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Alt-F5</td>
<td>run</td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td>runlast</td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>stepinto</td>
</tr>
</tbody>
</table>
Windows / Linux Sublime Keybindings Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of Sublime keyboard mode keybindings for Windows / Linux operating systems in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE:
1. On the menu bar, choose AWS Cloud9, Preferences.
2. On the Preferences tab, choose Keybindings.
3. For Keyboard Mode, choose Sublime.
4. For Operating System, choose Windows / Linux.

See also Working with Keybindings (p. 162).

- General (p. 259)
- Tabs (p. 262)
- Panels (p. 263)
- Code Editor (p. 264)
- emmet (p. 269)
- Terminal (p. 269)
- Run and Debug (p. 269)

### General

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add the selection as a watch expression</td>
<td>Ctrl-Shift-C</td>
<td>addwatchfromselection</td>
</tr>
<tr>
<td>Remove the cut selection from the clipboard</td>
<td>Esc</td>
<td>clearcut</td>
</tr>
<tr>
<td>Show the code completion context menu</td>
<td>Ctrl-Space</td>
<td>complete</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>----------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Code complete, and then overwrite</td>
<td>Ctrl-Shift-Space</td>
<td>completeoverwrite</td>
</tr>
<tr>
<td></td>
<td>Alt-Shift-Space</td>
<td></td>
</tr>
<tr>
<td>Copy the selection to the clipboard</td>
<td>Ctrl-C</td>
<td>copy</td>
</tr>
<tr>
<td>Cut the selection to the clipboard</td>
<td>Ctrl-X</td>
<td>cut</td>
</tr>
<tr>
<td>Delete from the cursor to the start of the line</td>
<td>Ctrl-Shift-Backspace</td>
<td>delete_to_hard_bol</td>
</tr>
<tr>
<td></td>
<td>Ctrl-K Ctrl-Backspace</td>
<td></td>
</tr>
<tr>
<td>Delete from the cursor to the end of line</td>
<td>Ctrl-Shift-Delete</td>
<td>delete_to_hard_eol</td>
</tr>
<tr>
<td></td>
<td>Ctrl-K Ctrl-K</td>
<td></td>
</tr>
<tr>
<td>Expand code, where applicable</td>
<td>Tab</td>
<td>expandSnippet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show the find and replace bar for the current document</td>
<td>Ctrl-F</td>
<td>find</td>
</tr>
<tr>
<td>Highlight all matches for the selection</td>
<td>Alt-F3</td>
<td>find_all_under</td>
</tr>
<tr>
<td>Highlight next match for the selection</td>
<td>Ctrl-F3</td>
<td>find_under</td>
</tr>
<tr>
<td>Highlight around cursor and all matches for highlight</td>
<td>Ctrl-D</td>
<td>find_under_expand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highlight around cursor and outline all matches for highlight</td>
<td>Ctrl-K Ctrl-D</td>
<td>find_under_expand_skip</td>
</tr>
<tr>
<td>Highlight previous match for selection</td>
<td>Ctrl-Shift-F3</td>
<td>find_under_prev</td>
</tr>
<tr>
<td>Select all find matches in the current document</td>
<td>Ctrl-Alt-K</td>
<td>findAll</td>
</tr>
<tr>
<td>Go to the next match in the current document for the find query you entered last</td>
<td>F3</td>
<td>findnext</td>
</tr>
<tr>
<td>Go to the previous match in the current document for the find query you entered last</td>
<td>Shift-F3</td>
<td>findprevious</td>
</tr>
<tr>
<td>Open the Environment window, and then make the list of files active</td>
<td>Shift-Esc</td>
<td>focusTree</td>
</tr>
<tr>
<td>Reformat the selected JavaScript code</td>
<td>Ctrl-Alt-F</td>
<td>formatcode</td>
</tr>
<tr>
<td>Show the go to line box</td>
<td>Ctrl-G</td>
<td>gotoline</td>
</tr>
<tr>
<td>Hide the find and replace bar, if it is showing</td>
<td>Esc</td>
<td>hidesearchreplace</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Go to the definition of the variable or function at the cursor</td>
<td>F12</td>
<td>jumptoDef</td>
</tr>
<tr>
<td>Go to the end of the current word</td>
<td>Ctrl-Right</td>
<td>moveToWordEndRight</td>
</tr>
<tr>
<td>Go to the start of the current word</td>
<td>Ctrl-Left</td>
<td>moveToWordStartLeft</td>
</tr>
<tr>
<td>Create a new file</td>
<td>Alt-N</td>
<td>newfile</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,</td>
<td>openpreferences</td>
</tr>
<tr>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
<td>Alt-L</td>
<td>opentermhere</td>
</tr>
<tr>
<td>Paste the clipboard's current contents at the cursor</td>
<td>Ctrl-V</td>
<td>paste</td>
</tr>
<tr>
<td>Show suggestions for fixing errors</td>
<td>Ctrl-F3</td>
<td>quickfix</td>
</tr>
<tr>
<td>Redo the last action</td>
<td>Ctrl-Shift-Z</td>
<td>redo</td>
</tr>
<tr>
<td>Refresh the preview pane</td>
<td>Ctrl-Enter</td>
<td>reloadpreview</td>
</tr>
<tr>
<td>Start a rename refactor for the selection</td>
<td>Ctrl-Alt-R</td>
<td>renameVar</td>
</tr>
<tr>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
<td>Ctrl-H</td>
<td>replace</td>
</tr>
<tr>
<td>Replace all find expression matches with replace with expression in the find and replace bar</td>
<td>Ctrl-Alt-Enter</td>
<td>replaceall</td>
</tr>
<tr>
<td>Replace next find expression match with replace with expression in the find and replace bar</td>
<td>Ctrl-Shift-H</td>
<td>replacenext</td>
</tr>
<tr>
<td>Rerun your initialization script</td>
<td>Ctrl-Enter</td>
<td>rerunInitScript</td>
</tr>
<tr>
<td>Restart the environment</td>
<td>Ctrl-R</td>
<td>restartc9</td>
</tr>
<tr>
<td>Reset the current file to its last saved version</td>
<td>Ctrl-Shift-Q</td>
<td>reverttoSaved</td>
</tr>
<tr>
<td>Reset each open file to its saved version</td>
<td>Alt-Shift-Q</td>
<td>reverttoSavedAll</td>
</tr>
<tr>
<td>Save the current file to disk</td>
<td>Ctrl-S</td>
<td>save</td>
</tr>
</tbody>
</table>
### Tabs

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close all open tabs in the current pane, except the current tab</td>
<td>Ctrl-Alt-W</td>
<td>closeallbutme</td>
</tr>
<tr>
<td>Close all open tabs in all panes</td>
<td>Alt-Shift-W</td>
<td>closealltabs</td>
</tr>
<tr>
<td>Close the current pane</td>
<td>Ctrl-W</td>
<td>closepane</td>
</tr>
<tr>
<td>Close the current tab</td>
<td>Alt-W</td>
<td>closetab</td>
</tr>
<tr>
<td>Go one pane down</td>
<td>Ctrl-Meta-Down</td>
<td>gottopanedown</td>
</tr>
<tr>
<td>Go one pane left</td>
<td>Ctrl-Meta-Left</td>
<td>gottopaneleft</td>
</tr>
<tr>
<td>Go one pane right</td>
<td>Ctrl-Meta-Right</td>
<td>gottopaneright</td>
</tr>
<tr>
<td>Go one pane up</td>
<td>Ctrl-Meta-Up</td>
<td>gottopaneup</td>
</tr>
<tr>
<td>Go one tab left</td>
<td>Ctrl-Page Up</td>
<td>gototableft</td>
</tr>
<tr>
<td>Go one tab right</td>
<td>Ctrl-Page Down</td>
<td>gototabright</td>
</tr>
<tr>
<td>Move the current tab down one pane, or if the tab is already at the very</td>
<td>Ctrl-Meta-Down</td>
<td>movetabdown</td>
</tr>
<tr>
<td>bottom, create a split tab there</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move the current tab left, or if the tab is already at the far left, create a split tab there</td>
<td>Ctrl-Meta-Left</td>
<td>movetableft</td>
</tr>
<tr>
<td>Move the current tab right, or if the tab is already at the far right, create a split tab there</td>
<td>Ctrl-Meta-Right</td>
<td>movetabright</td>
</tr>
<tr>
<td>Move the current tab up one pane, or if the tab is already at very top, create a split tab there</td>
<td>Ctrl-Meta-Up</td>
<td>movetabup</td>
</tr>
<tr>
<td>Go to the next tab</td>
<td>Ctrl-Tab</td>
<td>nexttab</td>
</tr>
<tr>
<td>Go to the previous pane</td>
<td>Ctrl-Shift-`</td>
<td>previouspane</td>
</tr>
<tr>
<td>Go to the previous tab</td>
<td>Ctrl-Shift-Tab</td>
<td>previoussttab</td>
</tr>
<tr>
<td>Go back to the last tab</td>
<td>Esc</td>
<td>refocusTab</td>
</tr>
<tr>
<td>Open the last tab again</td>
<td>Ctrl-Shift-T</td>
<td>reopenLastTab</td>
</tr>
<tr>
<td>Show the current tab in the file tree</td>
<td>Ctrl-E</td>
<td>revealtab</td>
</tr>
<tr>
<td>Go to the tenth tab</td>
<td>Ctrl-0</td>
<td>tab0</td>
</tr>
<tr>
<td>Go to the first tab</td>
<td>Ctrl-1</td>
<td>tab1</td>
</tr>
<tr>
<td>Go to the second tab</td>
<td>Ctrl-2</td>
<td>tab2</td>
</tr>
<tr>
<td>Go to the third tab</td>
<td>Ctrl-3</td>
<td>tab3</td>
</tr>
<tr>
<td>Go to the fourth tab</td>
<td>Ctrl-4</td>
<td>tab4</td>
</tr>
<tr>
<td>Go to the fifth tab</td>
<td>Ctrl-5</td>
<td>tab5</td>
</tr>
<tr>
<td>Go to the sixth tab</td>
<td>Ctrl-6</td>
<td>tab6</td>
</tr>
<tr>
<td>Go to the seventh tab</td>
<td>Ctrl-7</td>
<td>tab7</td>
</tr>
<tr>
<td>Go to the eighth tab</td>
<td>Ctrl-8</td>
<td>tab8</td>
</tr>
<tr>
<td>Go to the ninth tab</td>
<td>Ctrl-9</td>
<td>tab9</td>
</tr>
</tbody>
</table>

### Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show the <strong>Commands</strong> window</td>
<td>Ctrl-Shift-P</td>
<td>commands</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-P</td>
<td>navigate</td>
</tr>
<tr>
<td>Show the <strong>Navigate</strong> window</td>
<td>Ctrl-O</td>
<td>navigate_altkey</td>
</tr>
<tr>
<td>Show the <strong>Outline</strong> window</td>
<td>Ctrl-Shift-R</td>
<td>outline</td>
</tr>
</tbody>
</table>
### Description | Keybinding | Command
--- | --- | ---
Show the **Console** window if hidden, or hide if shown | Ctrl-` | toggleconsole

Show the **Environment** window if hidden, or hide if shown | Ctrl-K Ctrl-B | toggletree

## Code Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
<td>Ctrl-Alt-Up</td>
<td>addCursorAbove</td>
</tr>
<tr>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
<td>Ctrl-Alt-Shift-Up</td>
<td>addCursorAboveSkipCurrent</td>
</tr>
<tr>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
<td>Ctrl-Alt-Down</td>
<td>addCursorBelow</td>
</tr>
<tr>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
<td>Ctrl-Alt-Shift-Down</td>
<td>addCursorBelowSkipCurrent</td>
</tr>
<tr>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
<td>Ctrl-Alt-A</td>
<td>alignCursors</td>
</tr>
<tr>
<td>Backspace one space</td>
<td>Shift-Backspace</td>
<td>backsapce</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Ctrl-]</td>
<td>blockindent</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Ctrl-[</td>
<td>blockoutdent</td>
</tr>
<tr>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
<td>Ctrl-Z</td>
<td>cancelBrowserUndoInAce</td>
</tr>
<tr>
<td>Center the selection</td>
<td>Ctrl-K Ctrl-C</td>
<td>centerselection</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
<td>Alt-Shift-Down</td>
<td>copylinesdown</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
<td>Alt-Shift-Up</td>
<td>copylinesup</td>
</tr>
<tr>
<td>Cut the selection, or if there is no selection, delete one space</td>
<td>Shift-Delete</td>
<td>cut_or_delete</td>
</tr>
<tr>
<td>Delete one space</td>
<td>Delete</td>
<td>del</td>
</tr>
<tr>
<td>Copy the contents of the selection, and paste the copied contents immediately after the selection</td>
<td>Ctrl-Shift-D</td>
<td>duplicateSelection</td>
</tr>
<tr>
<td>Include the current line's contents in the selection</td>
<td>Ctrl-Shift-L</td>
<td>expandtoline</td>
</tr>
<tr>
<td>Include up to the next matching symbol in the selection</td>
<td>Ctrl-Shift-M</td>
<td>expandToMatching</td>
</tr>
<tr>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
<td>Alt-L</td>
<td>Ctrl-F1</td>
</tr>
<tr>
<td>Fold all possibly foldable elements, except for the current selection scope</td>
<td>Ctrl-K Ctrl-1</td>
<td>foldOther</td>
</tr>
<tr>
<td>Go down one line</td>
<td>Down</td>
<td>golinedown</td>
</tr>
<tr>
<td>Go up one line</td>
<td>Up</td>
<td>golineup</td>
</tr>
<tr>
<td>Go to the end of the file</td>
<td>Ctrl-End</td>
<td>gotoend</td>
</tr>
<tr>
<td>Go left one space</td>
<td>Left</td>
<td>gotoleft</td>
</tr>
<tr>
<td>Go to the end of the current line</td>
<td>Alt-Right</td>
<td>End</td>
</tr>
<tr>
<td>Go to the start of the current line</td>
<td>Alt-Left</td>
<td>Home</td>
</tr>
<tr>
<td>Go to the next error</td>
<td>Ctrl-F6</td>
<td>goToNextError</td>
</tr>
<tr>
<td>Go down one page</td>
<td>Page Down</td>
<td>gotopagedown</td>
</tr>
<tr>
<td>Go up one page</td>
<td>Page Up</td>
<td>gotopageup</td>
</tr>
<tr>
<td>Go to the previous error</td>
<td>Ctrl-Shift-F6</td>
<td>goToPreviousError</td>
</tr>
<tr>
<td>Go right one space</td>
<td>Right</td>
<td>gotoright</td>
</tr>
<tr>
<td>Go to the start of the file</td>
<td>Ctrl-Home</td>
<td>gotostart</td>
</tr>
<tr>
<td>Go one word to the left</td>
<td>Ctrl-Left</td>
<td>gotowordleft</td>
</tr>
<tr>
<td>Go one word to the right</td>
<td>Ctrl-Right</td>
<td>gotowordright</td>
</tr>
<tr>
<td>Indent the selection one tab</td>
<td>Tab</td>
<td>indent</td>
</tr>
<tr>
<td>Include from the cursor to the start of the word in the selection</td>
<td>Ctrl-J</td>
<td>joinlines</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Go to the matching symbol in the current scope</td>
<td>Ctrl-M</td>
<td>jumptomatching</td>
</tr>
<tr>
<td>Increase the font size</td>
<td>Ctrl--</td>
<td>Ctrl-=</td>
</tr>
<tr>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
<td>Alt-Down</td>
<td>modifyNumberDown</td>
</tr>
<tr>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
<td>Alt-Up</td>
<td>modifyNumberUp</td>
</tr>
<tr>
<td>Move the selection down one line</td>
<td>Ctrl-Shift-Down</td>
<td>movelinesdown</td>
</tr>
<tr>
<td>Move the selection up one line</td>
<td>Ctrl-Shift-Up</td>
<td>movelinesup</td>
</tr>
<tr>
<td>Outdent the selection one tab</td>
<td>Shift-Tab</td>
<td>outdent</td>
</tr>
<tr>
<td>Turn on overwrite mode, or if on, turn off</td>
<td>Insert</td>
<td>overwrite</td>
</tr>
<tr>
<td>Delete the contents of the current line</td>
<td>Ctrl-Shift-K</td>
<td>removeline</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the current line</td>
<td>Alt-Delete</td>
<td>removetolineend</td>
</tr>
<tr>
<td>Delete from the beginning of the current line up to the cursor</td>
<td>Alt-Backspace</td>
<td>removetolinelastart</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor</td>
<td>Ctrl-Backspace</td>
<td>removewordleft</td>
</tr>
<tr>
<td>Delete the word to the right of the cursor</td>
<td>Ctrl-Delete</td>
<td>removewordright</td>
</tr>
<tr>
<td>Replay previously recorded keystrokes</td>
<td>Ctrl-Shift-Q</td>
<td>replaymacro</td>
</tr>
<tr>
<td>Scroll the current file down by one line</td>
<td>Ctrl-Down</td>
<td>scrolldown</td>
</tr>
<tr>
<td>Scroll the current file up by one line</td>
<td>Ctrl-Up</td>
<td>scrollup</td>
</tr>
<tr>
<td>Select all selectable content</td>
<td>Ctrl-A</td>
<td>selectall</td>
</tr>
<tr>
<td>Include the next line down in the selection</td>
<td>Shift-Down</td>
<td>selectdown</td>
</tr>
<tr>
<td>Include the next space left in the selection</td>
<td>Shift-Left</td>
<td>selectleft</td>
</tr>
<tr>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
<td>Shift-End</td>
<td>selectlineend</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
<td>Shift-Home</td>
<td>selectlinestart</td>
</tr>
<tr>
<td>Include more matching selections that are after the selection</td>
<td>Ctrl-Alt-Right</td>
<td>selectMoreAfter</td>
</tr>
<tr>
<td>Include more matching selections that are before the selection</td>
<td>Ctrl-Alt-Left</td>
<td>selectMoreBefore</td>
</tr>
<tr>
<td>Include the next matching selection that is after the selection</td>
<td>Ctrl-Alt-Shift-Right</td>
<td>selectNextAfter</td>
</tr>
<tr>
<td>Include the next matching selection that is before the selection</td>
<td>Ctrl-Alt-Shift-Left</td>
<td>selectNextBefore</td>
</tr>
<tr>
<td>Select or find the next matching selection</td>
<td>Alt-K</td>
<td>selectOrFindNext</td>
</tr>
<tr>
<td>Select or find the previous matching selection</td>
<td>Alt-Shift-K</td>
<td>selectOrFindPrevious</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current page in the selection</td>
<td>Shift-Page Down</td>
<td>selectpagedown</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
<td>Shift-Page Up</td>
<td>selectpageup</td>
</tr>
<tr>
<td>Include the next space to the right of the cursor in the selection</td>
<td>Shift-Right</td>
<td>selectright</td>
</tr>
<tr>
<td>Include from the cursor down to the end of the current file in the selection</td>
<td>Ctrl-Shift-End</td>
<td>selecttoend</td>
</tr>
<tr>
<td>Include from the cursor to the end of the current line in the selection</td>
<td>Alt-Shift-Right</td>
<td>selecttolineend</td>
</tr>
<tr>
<td>Include from the beginning of the current line to the cursor in the selection</td>
<td>Alt-Shift-Left</td>
<td>selecttolinestart</td>
</tr>
<tr>
<td>Include from the cursor to the next matching symbol in the current scope</td>
<td>Ctrl-Shift-P</td>
<td>selecttomatching</td>
</tr>
<tr>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
<td>Ctrl-Shift-Home</td>
<td>selecttostart</td>
</tr>
<tr>
<td>Description</td>
<td>Keybinding</td>
<td>Command</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Include the next line up in the selection</td>
<td>Shift-Up</td>
<td>selectup</td>
</tr>
<tr>
<td>Include the next word to the left of the cursor in the selection</td>
<td>Ctrl-Shift-Left</td>
<td>selectwordleft</td>
</tr>
<tr>
<td>Include the next word to the right of the cursor in the selection</td>
<td>Ctrl-Shift-Right</td>
<td>selectwordright</td>
</tr>
<tr>
<td>Show the Preferences tab</td>
<td>Ctrl-,</td>
<td>showSettingsMenu</td>
</tr>
<tr>
<td>Clear all previous selections</td>
<td>Esc</td>
<td>singleSelection</td>
</tr>
<tr>
<td>Decrease the font size</td>
<td>Ctrl--</td>
<td>Ctrl-Shift-=</td>
</tr>
<tr>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
<td>F9</td>
<td>sortlines</td>
</tr>
<tr>
<td>Add a cursor at the end of the current line</td>
<td>Ctrl-Shift-L</td>
<td>splitIntoLines</td>
</tr>
<tr>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
<td>Ctrl-Shift-/</td>
<td>toggleBlockComment</td>
</tr>
<tr>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
<td>Ctrl-/</td>
<td>togglecomment</td>
</tr>
<tr>
<td>Fold code, or remove code folding if it is there</td>
<td>Ctrl-Shift-[</td>
<td>toggleFoldWidget</td>
</tr>
<tr>
<td>Fold parent code, or remove folding if it is there</td>
<td>Alt-F2</td>
<td>toggleParentFoldWidget</td>
</tr>
<tr>
<td>Start keystroke recording, or stop if it is already recording</td>
<td>Ctrl-Q</td>
<td>togglerecording</td>
</tr>
<tr>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
<td>Ctrl-Q</td>
<td>toggleWordWrap</td>
</tr>
<tr>
<td>Change the selection to all lowercase</td>
<td>Ctrl-K Ctrl-L</td>
<td>tolowercase</td>
</tr>
<tr>
<td>Change the selection to all uppercase</td>
<td>Ctrl-K Ctrl-U</td>
<td>touppercase</td>
</tr>
<tr>
<td>Transpose the selection</td>
<td>Alt-X</td>
<td>transposeletters</td>
</tr>
<tr>
<td>Unfold the selected code</td>
<td>Ctrl-Shift-]</td>
<td>unfold</td>
</tr>
<tr>
<td>Unfold code folding for the entire file</td>
<td>Ctrl-K Ctrl-0</td>
<td>Ctrl-K Ctrl-J</td>
</tr>
</tbody>
</table>
emmet

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
<td>Shift-Ctrl-Y</td>
<td>emmet_evaluate_math_expression</td>
</tr>
<tr>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
<td>Ctrl-Alt-E</td>
<td>emmet_expand_abbreviation</td>
</tr>
<tr>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
<td>Tab</td>
<td>emmet_expand_abbreviation_with_tab</td>
</tr>
<tr>
<td>Go to the next editable code part</td>
<td>Shift-Ctrl-.</td>
<td>emmet_select_next_item</td>
</tr>
<tr>
<td>Go to the previous editable code part</td>
<td>Shift-Ctrl-,</td>
<td>emmet_select_previous_item</td>
</tr>
<tr>
<td>Expand an abbreviation, and then place the current selection within the last element of the generated snippet</td>
<td>Shift-Ctrl-A</td>
<td>emmet_wrap_with_abbreviation</td>
</tr>
</tbody>
</table>

Terminal

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a new Terminal tab</td>
<td>Alt-T</td>
<td>openterminal</td>
</tr>
<tr>
<td>Switch between the editor and the Terminal tab</td>
<td>Alt-S</td>
<td>switchterminal</td>
</tr>
</tbody>
</table>

Run and Debug

<table>
<thead>
<tr>
<th>Description</th>
<th>Keybinding</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build the current file</td>
<td>F7</td>
<td>Ctrl-B</td>
</tr>
<tr>
<td>Resume the current paused process</td>
<td>F8</td>
<td>resume</td>
</tr>
<tr>
<td>Run or debug the current application</td>
<td>Ctrl-Shift-B</td>
<td>run</td>
</tr>
<tr>
<td>Run or debug the last run file</td>
<td>F5</td>
<td>runlast</td>
</tr>
<tr>
<td>Step into the function that is next on the stack</td>
<td>F11</td>
<td>stepinto</td>
</tr>
</tbody>
</table>
## Commands Reference for the AWS Cloud9 Integrated Development Environment (IDE)

Following is a list of default commands in the AWS Cloud9 IDE.

For more information, in the AWS Cloud9 IDE, choose the **Commands** button to display the **Commands** window. If the **Commands** button is not visible, choose **Window, Commands** on the menu bar.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addCursorAbove</td>
<td>Add a cursor one line above the active cursor, or if a cursor is already added, add another cursor above that one</td>
</tr>
<tr>
<td>addCursorAboveSkipCurrent</td>
<td>Add a second cursor one line above the active cursor, or if a second cursor is already added, move the second cursor up one line</td>
</tr>
<tr>
<td>addCursorBelow</td>
<td>Add a cursor one line below the active cursor, or if a cursor is already added, add another cursor below that one</td>
</tr>
<tr>
<td>addCursorBelowSkipCurrent</td>
<td>Add a second cursor one line below the active cursor, or if a second cursor is already added, move the second cursor down one line</td>
</tr>
<tr>
<td>addfavorite</td>
<td>Add the selected file or folder to the <strong>Favorites</strong> list in the <strong>Environment</strong> window</td>
</tr>
<tr>
<td>addwatchfromselection</td>
<td>Add the selection as a watch expression</td>
</tr>
<tr>
<td>alignCursors</td>
<td>Move all cursors to the same space as the active cursor on each of their lines, if they are misaligned</td>
</tr>
<tr>
<td>backspace</td>
<td>Backspace one space</td>
</tr>
<tr>
<td>blockindent</td>
<td>Indent the selection one tab</td>
</tr>
<tr>
<td>blockoutdent</td>
<td>Outdent the selection one tab</td>
</tr>
<tr>
<td>build</td>
<td>Build the current file</td>
</tr>
<tr>
<td>cancelBrowserAction</td>
<td>Cancel various built-in web browser key bindings that can be annoying if triggered accidentally</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>cancelBrowserUndoInAce</td>
<td>Control whether focus can be switched from the editor to somewhere else in the IDE</td>
</tr>
<tr>
<td>centerselection</td>
<td>Center the selection</td>
</tr>
<tr>
<td>clearcut</td>
<td>Remove the cut selection from the clipboard</td>
</tr>
<tr>
<td>clearerterm</td>
<td>Clear the buffer in the <strong>Terminal</strong> pane</td>
</tr>
<tr>
<td>clonetab</td>
<td>Create a copy of the current tab in a new tab</td>
</tr>
<tr>
<td>closeallbutme</td>
<td>Close all open tabs in the current pane, except the current tab</td>
</tr>
<tr>
<td>closealltabs</td>
<td>Close all open tabs in all panes</td>
</tr>
<tr>
<td>closealltotheleft</td>
<td>Close all tabs to the left of the current tab</td>
</tr>
<tr>
<td>closealltotheright</td>
<td>Close all tabs to the right of the current tab</td>
</tr>
<tr>
<td>closepane</td>
<td>Close the current pane</td>
</tr>
<tr>
<td>closetab</td>
<td>Close the current tab</td>
</tr>
<tr>
<td>commands</td>
<td>Show the <strong>Commands</strong> window</td>
</tr>
<tr>
<td>complete</td>
<td>Show the code completion context menu</td>
</tr>
<tr>
<td>completeoverwrite</td>
<td>Code complete, and then overwrite</td>
</tr>
<tr>
<td>convertIndentation</td>
<td>Convert between tabs and spaces in the editor</td>
</tr>
<tr>
<td>copy</td>
<td>Copy the selection to the clipboard</td>
</tr>
<tr>
<td>copyFilePath</td>
<td>Copy the full path of the current file to the clipboard</td>
</tr>
<tr>
<td>copylinesdown</td>
<td>Copy the contents of the line, and paste the copied contents one line down</td>
</tr>
<tr>
<td>copylinesup</td>
<td>Copy the contents of the line, and paste the copied contents one line up</td>
</tr>
<tr>
<td>cut</td>
<td>Cut the selection to the clipboard</td>
</tr>
<tr>
<td>cut_or_delete</td>
<td>Cut the selection to the clipboard, or delete to the right if the selection is empty</td>
</tr>
<tr>
<td>del</td>
<td>Delete one space</td>
</tr>
<tr>
<td>detectIndentation</td>
<td>Detect the indentation type (spaces or tabs) and length, based on the document's contents</td>
</tr>
<tr>
<td>duplicateSelection</td>
<td>Copy the contents of the selection, and paste the copied contents immediately after the selection</td>
</tr>
<tr>
<td>emmet_decrement_number_by_01</td>
<td>Decrease the selected number by 0.1, if it is a number</td>
</tr>
<tr>
<td>emmet_decrement_number_by_1</td>
<td>Decrease the selected number by 1, if it is a number</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>emmet_decrement_number_by_10</code></td>
<td>Decrease the selected number by 10, if it is a number</td>
</tr>
<tr>
<td><code>emmet_evaluate_math_expression</code></td>
<td>Evaluate a simple math expression (such as 2*4 or 10/2), and output its result</td>
</tr>
<tr>
<td><code>emmet_expand_abbreviation</code></td>
<td>Expand CSS-like abbreviations into HTML, XML, or CSS code, depending on the current file's syntax</td>
</tr>
<tr>
<td><code>emmet_expand_abbreviation_with_tab</code></td>
<td>Traverse expanded CSS-like abbreviations, by tab stop</td>
</tr>
<tr>
<td><code>emmet_increment_number_by_01</code></td>
<td>Increase the selected number by 0.1, if it is a number</td>
</tr>
<tr>
<td><code>emmet_increment_number_by_1</code></td>
<td>Increase the selected number by 1, if it is a number</td>
</tr>
<tr>
<td><code>emmet_increment_number_by_10</code></td>
<td>Increase the selected number by 10, if it is a number</td>
</tr>
<tr>
<td><code>emmet_match_pair_inward</code></td>
<td>Shrink the selection to the next inner set of matching tags</td>
</tr>
<tr>
<td><code>emmet_match_pair_outward</code></td>
<td>Expand the selection to include the next outer set of matching tags</td>
</tr>
<tr>
<td><code>emmet_matching_pair</code></td>
<td>Go between the opening and closing tag, if the selection is a tag</td>
</tr>
<tr>
<td><code>emmet_next_edit_point</code></td>
<td>Go to the next tag, empty attribute, or newline with indentation</td>
</tr>
<tr>
<td><code>emmet_prev_edit_point</code></td>
<td>Go to the previous tag, empty attribute, or newline with indentation</td>
</tr>
<tr>
<td><code>emmet_reflect_css_value</code></td>
<td>Copy the selected CSS property into all matching variations, if the selection is a CSS property</td>
</tr>
<tr>
<td><code>emmet_remove_tag</code></td>
<td>Delete the selected tag, if the selection is a tag</td>
</tr>
<tr>
<td><code>emmet_select_next_item</code></td>
<td>Go to the next editable code part</td>
</tr>
<tr>
<td><code>emmet_select_previous_item</code></td>
<td>Go to the previous editable code part</td>
</tr>
<tr>
<td><code>emmet_split_join_tag</code></td>
<td>If the selection is an empty tag, replace it with an opening and closing tag pair; if the tag has an opening and closing tag pair, replace it with an empty tag</td>
</tr>
<tr>
<td><code>emmet_toggle_comment</code></td>
<td>Add comment characters to the current line, or remove them if they are there</td>
</tr>
<tr>
<td><code>emmet_wrap_with_abbreviation</code></td>
<td>Expand an abbreviation, and then place the selection within the last element of the generated snippet</td>
</tr>
<tr>
<td><code>expandSnippet</code></td>
<td>Expand code, where applicable</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>expandtoline</td>
<td>Include the current line's contents in the selection</td>
</tr>
<tr>
<td>expandToMatching</td>
<td>Include up to the next matching symbol in the selection</td>
</tr>
<tr>
<td>find</td>
<td>Show the find and replace bar for the current document</td>
</tr>
<tr>
<td>findAll</td>
<td>Select all find matches in the current document</td>
</tr>
<tr>
<td>findnext</td>
<td>Go to the next match in the current document for the find query you entered last</td>
</tr>
<tr>
<td>findprevious</td>
<td>Go to the previous match in the current document for the find query you entered last</td>
</tr>
<tr>
<td>focusTree</td>
<td>Open the Environment window, and then make the list of files active</td>
</tr>
<tr>
<td>fold</td>
<td>Fold the selected code; if a folded unit is selected, unfold it</td>
</tr>
<tr>
<td>foldall</td>
<td>Fold all possibly foldable elements</td>
</tr>
<tr>
<td>foldOther</td>
<td>Fold all possibly foldable elements, except for the selection scope</td>
</tr>
<tr>
<td>formatcode</td>
<td>Reformat the selected JavaScript code</td>
</tr>
<tr>
<td>formatprefs</td>
<td>Open the Project Settings section of the Preferences tab to programming language settings</td>
</tr>
<tr>
<td>foursplit</td>
<td>Display a four-pane layout</td>
</tr>
<tr>
<td>golinedown</td>
<td>Go down one line</td>
</tr>
<tr>
<td>golineup</td>
<td>Go up one line</td>
</tr>
<tr>
<td>gotoend</td>
<td>Go to the end of the file</td>
</tr>
<tr>
<td>gotoleft</td>
<td>Go left one space</td>
</tr>
<tr>
<td>gotoline</td>
<td>Show the go to line box</td>
</tr>
<tr>
<td>gotolineend</td>
<td>Go to the end of the current line</td>
</tr>
<tr>
<td>gotolinenstart</td>
<td>Go to the start of the current line</td>
</tr>
<tr>
<td>goToNextError</td>
<td>Go to the next error</td>
</tr>
<tr>
<td>gotopagedown</td>
<td>Go down one page</td>
</tr>
<tr>
<td>gotopageup</td>
<td>Go up one page</td>
</tr>
<tr>
<td>gotopanedown</td>
<td>Go one pane down</td>
</tr>
<tr>
<td>gotopaneleft</td>
<td>Go one pane left</td>
</tr>
<tr>
<td>gotopaneright</td>
<td>Go one pane right</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>gotopaneup</td>
<td>Go one pane up</td>
</tr>
<tr>
<td>goToPreviousError</td>
<td>Go to the previous error</td>
</tr>
<tr>
<td>gotoright</td>
<td>Go right one space</td>
</tr>
<tr>
<td>gotostart</td>
<td>Go to the start of the file</td>
</tr>
<tr>
<td>gototableft</td>
<td>Go one tab left</td>
</tr>
<tr>
<td>gototabright</td>
<td>Go one tab right</td>
</tr>
<tr>
<td>gotowordleft</td>
<td>Go one word to the left</td>
</tr>
<tr>
<td>gotowordright</td>
<td>Go one word to the right</td>
</tr>
<tr>
<td>hideGotoLine</td>
<td>Hide the go to line box, if it is showing</td>
</tr>
<tr>
<td>hidesearchreplace</td>
<td>Hide the find and replace bar, if it is showing</td>
</tr>
<tr>
<td>hsplit</td>
<td>Split the current pane into two columns, and then move the current tab to the new column</td>
</tr>
<tr>
<td>indent</td>
<td>Indent the selection one tab</td>
</tr>
<tr>
<td>insertstring</td>
<td>Insert a string of text while typing or pasting</td>
</tr>
<tr>
<td>inserttext</td>
<td>Insert text while typing or pasting</td>
</tr>
<tr>
<td>invertSelection</td>
<td>Select everything other than the selection</td>
</tr>
<tr>
<td>joinlines</td>
<td>Remove all line breaks from the current selection</td>
</tr>
<tr>
<td>jumptodef</td>
<td>Go to the definition of the variable or function at the cursor</td>
</tr>
<tr>
<td>jumptomatching</td>
<td>Go to the matching symbol in the current scope</td>
</tr>
<tr>
<td>largerfont</td>
<td>Increase the font size</td>
</tr>
<tr>
<td>maximizeconsole</td>
<td>Expand the console to cover the entire IDE</td>
</tr>
<tr>
<td>modifyNumberDown</td>
<td>Decrease the number to the left of the cursor by 1, if it is a number</td>
</tr>
<tr>
<td>modifyNumberUp</td>
<td>Increase the number to the left of the cursor by 1, if it is a number</td>
</tr>
<tr>
<td>movelinesdown</td>
<td>Move selection down one line</td>
</tr>
<tr>
<td>movelinesup</td>
<td>Move selection up one line</td>
</tr>
<tr>
<td>movetabdown</td>
<td>Move the current tab down one pane, or if the tab is already at the very bottom, create a split tab there</td>
</tr>
<tr>
<td>movetableft</td>
<td>Move the current tab left, or if the tab is already at the far left, create a split tab there</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>movetabright</td>
<td>Move the current tab right, or if the tab is already at the far right, create a split tab there</td>
</tr>
<tr>
<td>movetabup</td>
<td>Move the current tab up one pane, or if the tab is already at very top, create a split tab there</td>
</tr>
<tr>
<td>navigate</td>
<td>Show the Navigate window</td>
</tr>
<tr>
<td>navigate_altkey</td>
<td>Show the Navigate window</td>
</tr>
<tr>
<td>newEnvironment</td>
<td>Show the Create new environment wizard in the AWS Cloud9 console</td>
</tr>
<tr>
<td>newfile</td>
<td>Create a new file</td>
</tr>
<tr>
<td>newfolder</td>
<td>Create a new folder relative to the selection in the Environment window</td>
</tr>
<tr>
<td>nextpane</td>
<td>Go to the next pane</td>
</tr>
<tr>
<td>nexttab</td>
<td>Go to the next tab</td>
</tr>
<tr>
<td>nosplit</td>
<td>Combine all split panes into a single pane</td>
</tr>
<tr>
<td>opencoverageview</td>
<td>Show the Code Coverage tab</td>
</tr>
<tr>
<td>openpreferences</td>
<td>Show the Preferences tab</td>
</tr>
<tr>
<td>opentermhere</td>
<td>Open a Terminal tab, and then switch to the parent folder of the selected file in the list of files</td>
</tr>
<tr>
<td>openterminal</td>
<td>Open a new Terminal tab</td>
</tr>
<tr>
<td>outdent</td>
<td>Outdent the selection one tab</td>
</tr>
<tr>
<td>outline</td>
<td>Show the Outline window</td>
</tr>
<tr>
<td>overwrite</td>
<td>Turn on overwrite mode, or if on, turn off</td>
</tr>
<tr>
<td>pagedown</td>
<td>Go down one page</td>
</tr>
<tr>
<td>pageup</td>
<td>Go up one page</td>
</tr>
<tr>
<td>passKeysToBrowser</td>
<td>Enable keys to be handled by the web browser</td>
</tr>
<tr>
<td>paste</td>
<td>Paste the clipboard's current contents at the cursor</td>
</tr>
<tr>
<td>preview</td>
<td>Show the preview pane</td>
</tr>
<tr>
<td>previouspane</td>
<td>Go to the previous pane</td>
</tr>
<tr>
<td>previousustab</td>
<td>Go to the previous tab</td>
</tr>
<tr>
<td>quickfix</td>
<td>Show suggestions for fixing errors</td>
</tr>
<tr>
<td>redo</td>
<td>Redo the last action</td>
</tr>
<tr>
<td>refocusTab</td>
<td>Go back to the last tab</td>
</tr>
<tr>
<td>reloadpreview</td>
<td>Refresh the preview pane</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>removefavorite</td>
<td>Delete the item from the Favorites list, if the selection is a favorite</td>
</tr>
<tr>
<td>removeline</td>
<td>Delete the contents of the current line</td>
</tr>
<tr>
<td>removetolistend</td>
<td>Delete from the cursor to the end of the current line</td>
</tr>
<tr>
<td>removetoliststart</td>
<td>Delete from the beginning of the current line up to the cursor</td>
</tr>
<tr>
<td>removewordleft</td>
<td>Delete the word to the left of the cursor</td>
</tr>
<tr>
<td>removewordright</td>
<td>Delete the word to the right of the cursor</td>
</tr>
<tr>
<td>renameVar</td>
<td>Start a rename refactor for the selection</td>
</tr>
<tr>
<td>reopenLastTab</td>
<td>Open the last tab again</td>
</tr>
<tr>
<td>replace</td>
<td>Show the find and replace bar for the current document, with focus on the replace with expression</td>
</tr>
<tr>
<td>replaceall</td>
<td>Replace all matches for Find with Replace With in the find and replace bar for the current document</td>
</tr>
<tr>
<td>replacenext</td>
<td>Replace the next match for Find with Replace With in the find and replace bar for the current document</td>
</tr>
<tr>
<td>replaceprevious</td>
<td>Replace the previous match for Find with Replace With in the find and replace bar for the current document</td>
</tr>
<tr>
<td>replaymacro</td>
<td>Replay previously recorded keystrokes</td>
</tr>
<tr>
<td>rerunInitScript</td>
<td>Rerun your initialization script</td>
</tr>
<tr>
<td>restartc9</td>
<td>Restart the environment</td>
</tr>
<tr>
<td>restartc9vm</td>
<td>Restart the environment</td>
</tr>
<tr>
<td>resume</td>
<td>Resume the current paused process</td>
</tr>
<tr>
<td>revealtab</td>
<td>Show the current tab in the file tree</td>
</tr>
<tr>
<td>reverttosaved</td>
<td>Reset the current file to its last saved version</td>
</tr>
<tr>
<td>reverttosavedall</td>
<td>Reset each open file to its saved version</td>
</tr>
<tr>
<td>run</td>
<td>Run or debug the current application</td>
</tr>
<tr>
<td>runlast</td>
<td>Run or debug the last run file</td>
</tr>
<tr>
<td>save</td>
<td>Save the current file to disk</td>
</tr>
<tr>
<td>saveall</td>
<td>Save all unsaved files to disk</td>
</tr>
<tr>
<td>saveas</td>
<td>Save the current file to disk with a different file name</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>savePaneLayout</td>
<td>Save the current pane layout in the Window, Saved Layouts menu</td>
</tr>
<tr>
<td>savePaneLayoutAndCloseTabs</td>
<td>Save the current pane layout in the Window, Saved Layouts menu, and then close all open tabs</td>
</tr>
<tr>
<td>scrolldown</td>
<td>Scroll down in the current document</td>
</tr>
<tr>
<td>scrollPreviewElementIntoView</td>
<td>If a preview page and the related HTML file are both open, scroll the preview page to the location that matches the current element under the cursor in the HTML file</td>
</tr>
<tr>
<td>scrollup</td>
<td>Scroll up in the current document</td>
</tr>
<tr>
<td>searchinfiles</td>
<td>Show the find and replace bar for multiple files</td>
</tr>
<tr>
<td>selectall</td>
<td>Select all selectable content</td>
</tr>
<tr>
<td>selectdown</td>
<td>Include the next line down in the selection</td>
</tr>
<tr>
<td>selectleft</td>
<td>Include the next space to the left in the selection</td>
</tr>
<tr>
<td>selectlineend</td>
<td>Include the rest of the current line in the selection, starting from the cursor</td>
</tr>
<tr>
<td>selectlinestart</td>
<td>Include the beginning of the current line in the selection, up to the cursor</td>
</tr>
<tr>
<td>selectMoreAfter</td>
<td>Include more matching selections that are after the selection</td>
</tr>
<tr>
<td>selectMoreBefore</td>
<td>Include more matching selections that are before the selection</td>
</tr>
<tr>
<td>selectNextAfter</td>
<td>Include the next matching selection that is after the selection</td>
</tr>
<tr>
<td>selectNextBefore</td>
<td>Include the next matching selection that is before the selection</td>
</tr>
<tr>
<td>selectOrFindNext</td>
<td>Select or find the next matching selection</td>
</tr>
<tr>
<td>selectOrFindPrevious</td>
<td>Select or find the previous matching selection</td>
</tr>
<tr>
<td>selectpagedown</td>
<td>Include from the cursor down to the end of the current page in the selection</td>
</tr>
<tr>
<td>selectpageup</td>
<td>Include from the cursor up to the beginning of the current page in the selection</td>
</tr>
<tr>
<td>selectright</td>
<td>Include the next space to the right of the cursor in the selection</td>
</tr>
<tr>
<td>selecttoend</td>
<td>Include from the cursor down to the end of the current file in the selection</td>
</tr>
<tr>
<td>selecttolineend</td>
<td>Include from the cursor to the end of the current line in the selection</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>selecttolinestart</td>
<td>Include from the beginning of the current line to the cursor in the selection</td>
</tr>
<tr>
<td>selecttomatching</td>
<td>Include from the cursor to the next matching symbol in the current scope</td>
</tr>
<tr>
<td>selecttostart</td>
<td>Include from the cursor up to the beginning of the current file in the selection</td>
</tr>
<tr>
<td>selectup</td>
<td>Include the next line up in the selection</td>
</tr>
<tr>
<td>selectVar</td>
<td>Select all instances of the variable, if the selection is a variable</td>
</tr>
<tr>
<td>selectwordleft</td>
<td>Include the next word to the left of the cursor in the selection</td>
</tr>
<tr>
<td>selectwordright</td>
<td>Include the next word to the right of the cursor in the selection</td>
</tr>
<tr>
<td>setIndentation</td>
<td>Set the indentation type (spaces or tabs) and length</td>
</tr>
<tr>
<td>showimmediate</td>
<td>Show the Immediate tab</td>
</tr>
<tr>
<td>showinstaller</td>
<td>Show the AWS Cloud9 Installer dialog box</td>
</tr>
<tr>
<td>showoutput</td>
<td>Show the Output tab</td>
</tr>
<tr>
<td>showprocesslist</td>
<td>Show the Process List dialog box</td>
</tr>
<tr>
<td>showSettingsMenu</td>
<td>Show the Preferences tab</td>
</tr>
<tr>
<td>singleSelection</td>
<td>Clear all previous selections</td>
</tr>
<tr>
<td>smallerfont</td>
<td>Decrease the font size</td>
</tr>
<tr>
<td>sortlines</td>
<td>If multiple lines are selected, rearrange them into a sorted order</td>
</tr>
<tr>
<td>splitIntoLines</td>
<td>Add a cursor at the end of the current line</td>
</tr>
<tr>
<td>splitline</td>
<td>Move the contents of the cursor to the end of the line, to its own line</td>
</tr>
<tr>
<td>stepinto</td>
<td>Step into the function that is next on the stack</td>
</tr>
<tr>
<td>stepout</td>
<td>Step out of the current function scope</td>
</tr>
<tr>
<td>stepover</td>
<td>Step over the current expression on the stack</td>
</tr>
<tr>
<td>stop</td>
<td>Stop running or debugging the current application</td>
</tr>
<tr>
<td>stopbuild</td>
<td>Stop building the current file</td>
</tr>
<tr>
<td>stripws</td>
<td>Remove whitespace from the end of each line</td>
</tr>
<tr>
<td>suspend</td>
<td>Suspend running or debugging the current application</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>switchterminal</td>
<td>Switch between the editor and the <strong>Terminal</strong> tab</td>
</tr>
<tr>
<td>syntax</td>
<td>Set the syntax type</td>
</tr>
<tr>
<td>tab0</td>
<td>Go to the tenth tab</td>
</tr>
<tr>
<td>tab1</td>
<td>Go to the first tab</td>
</tr>
<tr>
<td>tab2</td>
<td>Go to the second tab</td>
</tr>
<tr>
<td>tab3</td>
<td>Go to the third tab</td>
</tr>
<tr>
<td>tab4</td>
<td>Go to the fourth tab</td>
</tr>
<tr>
<td>tab5</td>
<td>Go to the fifth tab</td>
</tr>
<tr>
<td>tab6</td>
<td>Go to the sixth tab</td>
</tr>
<tr>
<td>tab7</td>
<td>Go to the seventh tab</td>
</tr>
<tr>
<td>tab8</td>
<td>Go to the eighth tab</td>
</tr>
<tr>
<td>tab9</td>
<td>Go to the ninth tab</td>
</tr>
<tr>
<td>term_detach</td>
<td>Detach clients attached to the <strong>Terminal</strong> pane</td>
</tr>
<tr>
<td>term_help</td>
<td>Show help for the <strong>Terminal</strong> pane</td>
</tr>
<tr>
<td>term_restart</td>
<td>Restart the <strong>Terminal</strong> pane</td>
</tr>
<tr>
<td>threeleft</td>
<td>Create a three-pane layout with two panes on the left and one pane on the right</td>
</tr>
<tr>
<td>threeright</td>
<td>Create a three-pane layout with two panes on the right and one pane on the left</td>
</tr>
<tr>
<td>toggle_term_status</td>
<td>Show <strong>Terminal</strong> pane status, or hide if shown</td>
</tr>
<tr>
<td>toggleBlockComment</td>
<td>Surround the selection with block comment characters, or remove them if they are there</td>
</tr>
<tr>
<td>toggleButtons</td>
<td>Show tabs, or hide if shown</td>
</tr>
<tr>
<td>togglecomment</td>
<td>Add line comment characters at the start of each selected line, or remove them if they are there</td>
</tr>
<tr>
<td>toggleconsole</td>
<td>Show the <strong>Console</strong> window if hidden, or hide if shown</td>
</tr>
<tr>
<td>toggleddebugger</td>
<td>Show the <strong>Debugger</strong> window, or hide if shown</td>
</tr>
<tr>
<td>toggleFoldWidget</td>
<td>Fold code, or remove code folding if it is there</td>
</tr>
<tr>
<td>toggleMenubar</td>
<td>Show the menu bar, or hide if shown</td>
</tr>
<tr>
<td>toggleOpenfiles</td>
<td>Show the <strong>Open Files</strong> list in the <strong>Environment</strong> window, or hide if shown</td>
</tr>
<tr>
<td>toggleParentFoldWidget</td>
<td>Fold parent code, or remove folding if it is there</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>togglerecording</td>
<td>Start keystroke recording, or stop if it is already recording</td>
</tr>
<tr>
<td>toggletree</td>
<td>Show the <strong>Environment</strong> window if hidden, or hide if shown</td>
</tr>
<tr>
<td>toggleWordWrap</td>
<td>Wrap words, or stop wrapping words if they are already wrapping</td>
</tr>
<tr>
<td>tolowercase</td>
<td>Change the selection to all lowercase</td>
</tr>
<tr>
<td>touppercase</td>
<td>Change the selection to all uppercase</td>
</tr>
<tr>
<td>transposeletters</td>
<td>Transpose the selection</td>
</tr>
<tr>
<td>trimTrailingSpace</td>
<td>Trim whitespace at the ends of lines</td>
</tr>
<tr>
<td>twohsplit</td>
<td>Create a two-pane layout, with panes side by side</td>
</tr>
<tr>
<td>twovsplit</td>
<td>Create a two-pane layout, with panes top and bottom</td>
</tr>
<tr>
<td>undo</td>
<td>Undo the last action</td>
</tr>
<tr>
<td>unfold</td>
<td>Unfold selected code</td>
</tr>
<tr>
<td>unfoldall</td>
<td>Unfold code folding for the entire file</td>
</tr>
<tr>
<td>vsplit</td>
<td>Split the current pane into two panes, top and bottom, and move the current tab to the top pane</td>
</tr>
</tbody>
</table>
Working with Amazon Lightsail Instances in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to work with code on Amazon Lightsail instances preconfigured with popular apps and frameworks such as WordPress, LAMP (Linux, Apache, MySQL, and PHP), Node.js, Nginx, Drupal, and Joomla, as well as Linux distributions such as Amazon Linux, Ubuntu, Debian, FreeBSD, and openSUSE.

Lightsail is the easiest way to get started with AWS for developers, small businesses, students, and other users who need a simple virtual private server (VPS) solution. Lightsail provides developers compute, storage, and networking capacity and capabilities to deploy and manage websites and web applications in the cloud. Lightsail includes everything you need to launch your project quickly—a virtual machine, SSD-based storage, data transfer, DNS management, and a static IP—for a low, predictable monthly price. For more information, see Amazon Lightsail Features.

In this topic, you create and set up a Linux-based Lightsail instance that is compatible with AWS Cloud9. You then create and connect an AWS Cloud9 SSH development environment to the Lightsail instance.

Note
Completing these procedures might result in charges to your AWS account. These include possible charges for services such as Lightsail. For more information, see Amazon Lightsail Pricing.

To create and set up a more advanced solution that includes a toolchain with the AWS Cloud9 IDE, source control, build, deployment, virtual servers or serverless resources, and more, skip the rest of this topic, and see Working with AWS CodeStar Projects (p. 288) instead.

To use the AWS Cloud9 IDE to work with an Amazon EC2 instance running Amazon Linux that contains no sample code, skip the rest of this topic, and see the IDE Tutorial (p. 20) instead.

- Step 1: Create a Linux-Based Lightsail Instance (p. 281)
- Step 2: Set up the Instance to Use It with AWS Cloud9 (p. 283)
- Step 3: Create and Connect to an AWS Cloud9 SSH Development Environment (p. 284)
- Step 4: Use the AWS Cloud9 IDE to Change the Code on the Instance (p. 287)

Step 1: Create a Linux-Based Lightsail Instance

In this step, you use the Lightsail console to create an Amazon EC2 instance running an app in a Linux-based distribution. This instance automatically includes:

- A public and private IP address. (You can create a static public IP later.)
- Access to the instance using SSH over port 22, HTTP over port 80, and HTTPS over port 443. (You can change this.)
- A block storage disk. (You can attach additional disks later.)
- Built-in system reporting.

The Lightsail console enables you to back up, reboot, stop, or delete the instance later.

   We recommend you sign in using credentials for an IAM administrator user in your AWS account. If you cannot sign in as an IAM administrator user, check with your AWS account administrator.

2. If prompted, choose the language to use in the console, and then choose **Save**.

3. If prompted, choose **Let's get started**.

4. On the home page, with the **Instances** tab already selected, choose **Create instance**.

5. For **Instance location**, be sure the location matches an AWS Region where you want to create the instance and where AWS Cloud9 is available. For more information, see AWS Cloud9 in the Amazon Web Services General Reference. To change the AWS Region, Availability Zone, or both, choose **Change AWS Region and Availability Zone**, and then follow the onscreen instructions.

6. For **Pick your instance image**, with **Linux/Unix** already chosen for **Select a platform**, and **Apps + OS** already chosen for **Select a blueprint**, choose a blueprint.
Note
If you want to create an instance with no app, choose **OS Only** instead of **Apps + OS**, and then choose a distribution.
To learn about the available choices, see [Choosing an Amazon Lightsail instance image](#) on the Lightsail website.

7. For **Choose your instance plan**, choose a plan, or leave the selected default plan.
8. For **Name your instance**, type a name for the instance, or leave the suggested default name.
9. For the number of instances, type the number of instances you want to create, or leave the default of a single instance (**x 1**).
10. Choose **Create**.

---

**Step 2: Set up the Instance to Use It with AWS Cloud9**

In this step, you connect to the running instance and then set it up so that AWS Cloud9 can use it later.

Note
The following instructions assume you chose **Apps + OS** in the previous step. If you chose **OS Only** and a distribution other than **Ubuntu** instead, you might need to adapt the following instructions accordingly.

1. With the Lightsail console still open from the previous step, on the **Instances** tab, in the card for the instance, choose the instance's name.

2. On the **Connect** tab, for **Connect using your own SSH client**, note the **Public IP** and **User name** values, as you will need them later.
Step 3: Create and Connect to an AWS Cloud9 SSH Development Environment

In this step, you use the AWS Cloud9 console and the instance's terminal to create an SSH environment and then connect the environment to the running instance.

1. With the terminal session still open from the previous step, sign in to the AWS Cloud9 console, at https://console.aws.amazon.com/cloud9/.

2. Choose Connect using SSH.

3. Be sure that the instance has the latest system updates. To do this, in the terminal session that appears, run the command `sudo apt-get update`.

4. Check to see if Python is installed, and if it is, check to be sure the version is 2.7. To check the version, run the command `python --version`, and note the version number that appears. If no version number appears, or if the version is not 2.7, install Python 2.7 on the instance by running the command `sudo apt-get install python`.

5. Check to see if Node.js is installed, and if it is, check that the version is 0.6.16 or later. To check the version, run the command `node --version`, and note the version number that appears. If no version number appears, or the version is not 0.6.16 or later, we recommend you use Node Version Manager (nvm) to install Node.js on the instance.

   To do this, run the following commands one at a time, in the following order, to update the instance, install Node Version Manager (nvm) on the instance, activate nvm on the instance, and then install the latest version of Node.js on the instance.

   ```bash
 sudo apt-get update
curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.0/install.sh | bash
 . ~/.bashrc
 nvm install node
   ```

6. Run the command `which node`, and note the value that appears. You will need it later.

   **Note**
   If the output of the command `which node` is something like `/usr/sbin/node`, AWS Cloud9 won't be able to find Node.js in that path. Instead, use nvm to install Node.js, as described in the previous step in this procedure. Then run the command `which node` again and note the new value that appears.
Note
For this step, you will work with two different AWS services at the same time. If you signed in to the Lightsail console as an IAM administrator user, but you want a different entity to own the new SSH environment, we suggest opening a different web browser and signing in to the AWS Cloud9 console as that entity.

2. In the AWS Cloud9 console, choose the AWS Region that matches the one you created the instance in.

3. If a welcome page is displayed, for **New AWS Cloud9 environment**, choose **Create environment**. Otherwise, choose **Create environment**.

4. On the **Name environment** page, for **Name**, type a name for your environment.
5. To add a description to your environment, type it in **Description**.
6. Choose **Next step**.
7. On the Configure settings page, for Environment type, choose Connect and run in remote server (SSH).

8. For User, type the User name value you noted earlier.

9. For Host, type the Public IP value you noted earlier.

10. For Port, leave the default value of 22.

11. Expand Advanced settings.

12. For Environment path, type the path that AWS Cloud9 will start from after login, which is ~/ (the root of the user's home directory).

13. For Node.js binary path, type the value of the command which node you noted earlier.

14. Leave SSH jump host blank.

15. Store the public SSH key that AWS Cloud9 creates for this environment in your system clipboard. To do this, choose Copy key to clipboard.

   **Note**

   To see the public SSH key value that was copied, expand View public SSH key.

16. Save the public SSH key value you just copied to the instance. To do this, use vi, a popular text editor, which is already installed on the instance:

   a. In the terminal session for the instance, run the command `vi ~/.ssh/authorized_keys`.

   b. In the vi editor that appears, go to the end of the file, and switch to insert mode. To do this, press `G`, then `A`. (-- INSERT -- appears at the bottom of the vi editor.)

   c. Add two carriage returns to the end of the file by pressing `Enter` twice.

   d. Paste the contents of your system clipboard, which contains the public SSH key value you just copied, to the terminal session clipboard. To do this, in the bottom corner of the terminal session window, choose the clipboard button, then paste the contents of your system clipboard into the box.

   e. Paste the contents of the terminal session clipboard into the vi editor. To do this, at the insertion point in the vi editor, press `Ctrl + Shift + V`.

   f. Save the file. To do this, press `Esc` to enter command mode. (-- INSERT -- disappears from the bottom of the vi editor.) Type `:wq` (to write the file and then quit the vi editor), and then press `Enter`.


18. On the Review choices page, choose Create environment. Wait while AWS Cloud9 creates your environment and then displays the AWS Cloud9 IDE for the environment. This can take several minutes.

After AWS Cloud9 creates your environment, it displays the AWS Cloud9 IDE for the environment.

If AWS Cloud9 doesn't display the IDE after at least five minutes, there might be a problem with your web browser, your AWS access permissions, the instance, or the associated virtual private cloud (VPC). For possible fixes, see Cannot Open an Environment (p. 453) in Troubleshooting.
Step 4: Use the AWS Cloud9 IDE to Change the Code on the Instance

Now that the IDE appears for the new environment, you can use the terminal session in the IDE instead of the Lightsail terminal session. The IDE provides a rich code editing experience with support for several programming languages and runtime debuggers, as well as color themes, shortcut keybindings, programming language-specific syntax coloring and code formatting, and more.

To learn how to use the IDE, see Tour the IDE (p. 26) in the IDE Tutorial.

To learn how to change the code on your instance, we recommend the following resources.

- **All** Getting the application password for your 'powered by Bitnami' Lightsail image on the Lightsail website
- **Drupal**: Bitnami Drupal For AWS Cloud on the Bitnami website, and Tutorials and site recipes on the Drupal website
- **GitLab CE**: Bitnami GitLab CE for AWS Cloud on the Bitnami website, and GitLab Documentation on the GitLab website
- **Joomla**: Bitnami Joomla! For AWS Cloud on the Bitnami website, and Getting Started with Joomla! on the Joomla! website
- **LAMP Stack**: Bitnami LAMP for AWS Cloud on the Bitnami website
- **Magento**: Bitnami Magento For AWS Cloud on the Bitnami website, and the Magento User Guide on the Magento website
- **MEAN**: Bitnami MEAN For AWS Cloud on the Bitnami website
- **Nginx**: Bitnami Nginx For AWS Cloud on the Bitnami website, and the NGINX Wiki on the NGINX website
- **Node.js**: Bitnami Node.Js For AWS Cloud on the Bitnami website, and the Getting Started Guide on the Node.js website
- **Plesk Hosting Stack on Ubuntu**: Set up and configure Plesk on Lightsail on the Lightsail website
- **Redmine**: Bitnami Redmine For AWS Cloud on the Bitnami website, and Getting Started on the Redmine website
- **WordPress**: Getting started using WordPress from your Amazon Lightsail instance on the Lightsail website, and Bitnami WordPress For AWS Cloud on the Bitnami website
Working with AWS CodeStar Projects in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to work with code in AWS CodeStar projects.

AWS CodeStar is a cloud-based service for creating, managing, and working with software development projects on AWS. You can quickly develop, build, and deploy applications on AWS with an AWS CodeStar project. An AWS CodeStar project creates and integrates AWS services for your project development toolchain. Depending on your choice of AWS CodeStar project template, that toolchain might include source control, build, deployment, virtual servers or serverless resources, and more. For more information, see the AWS CodeStar User Guide.

Note
Completing these procedures might result in charges to your AWS account. These include possible charges for services such as Amazon EC2, AWS CodeStar, and AWS services supported by AWS CodeStar. For more information, see Amazon EC2 Pricing, AWS CodeStar Pricing, and Cloud Services Pricing.

To use the AWS Cloud9 IDE to work with a newly-launched Amazon EC2 instance preconfigured with a popular app or framework such as WordPress, MySQL, PHP, Node.js, Nginx, Drupal, or Joomla, or a Linux distribution such as Ubuntu, Debian, FreeBSD, or openSUSE, you can use Amazon Lightsail along with AWS Cloud9. To do this, skip the rest of this topic, and see Working with Amazon Lightsail Instances (p. 281) instead.

To use the AWS Cloud9 IDE to work with a newly-launched Amazon EC2 instance running Amazon Linux that contains no sample code, skip the rest of this topic, and see the IDE Tutorial (p. 20) instead.

- Step 1: Prepare to Work with AWS CodeStar Projects (p. 288)
- Step 2: Create a Project in AWS CodeStar (p. 288)
- Step 3: Create an AWS Cloud9 Development Environment and Connect It to the Project (p. 289)

Step 1: Prepare to Work with AWS CodeStar Projects

In this step, you create an AWS CodeStar service role and an Amazon EC2 key pair, so that you can begin creating and working with AWS CodeStar projects.

If you have used AWS CodeStar before, skip ahead to Step 2: Create a Project in AWS CodeStar (p. 288).

For this step, follow the instructions in Setting Up AWS CodeStar in the AWS CodeStar User Guide. Do not create a new AWS account, IAM user, or IAM group as part of those instructions. Use the ones you created or identified in Team Setup for AWS Cloud9 (p. 7). When you finish following those instructions, return to this topic.

Step 2: Create a Project in AWS CodeStar

In this step, you create a project in AWS CodeStar.
If you already have a project in AWS CodeStar you want to use, skip ahead to Step 3: Create an AWS Cloud9 Development Environment and Connect It to the Project (p. 289).

For this step, follow the instructions in Create a Project in AWS CodeStar in the AWS CodeStar User Guide. In the AWS CodeStar create project wizard, when you get to the Set up tools page or Connect to your source repository page, choose Skip, and then return to this topic.

Step 3: Create an AWS Cloud9 Development Environment and Connect It to the Project

In this step, you create an AWS Cloud9 development environment in the AWS CodeStar or AWS Cloud9 consoles. You then connect the new environment to an AWS CodeStar project.

For this step, follow one of the following sets of instructions, depending on the AWS Cloud9 development environment type you want to use and the type of repository where the AWS CodeStar project stores its code.

<table>
<thead>
<tr>
<th>Environment type</th>
<th>Repository type</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 environment</td>
<td>AWS CodeCommit</td>
<td>Create an AWS Cloud9 Environment for a Project in the AWS CodeStar User Guide</td>
</tr>
<tr>
<td>SSH environment</td>
<td>AWS CodeCommit</td>
<td>AWS CodeCommit Sample (p. 330)</td>
</tr>
<tr>
<td>EC2 or SSH environment</td>
<td>GitHub</td>
<td>Use GitHub with AWS Cloud9 in the AWS CodeStar User Guide</td>
</tr>
</tbody>
</table>
Working with AWS Lambda Functions in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to work with AWS Lambda functions and their related Amazon API Gateway APIs in an AWS Cloud9 development environment. For example, you can:

- Create a new function from within your environment, uploading the local version of the function to Lambda, and optionally creating additional AWS resources to support the new function at the same time.
- Run and debug a function and its related API in your environment, running the function and API completely within the environment.
- Run the remote version of a function and its related API within your environment, running the remote version completely within Lambda and API Gateway.
- Import an existing function in Lambda into your environment, so that you can run and debug the function and its related API, edit the code, or both.
- Upload changes you make to the local version of the function code to the remote version in Lambda.

This topic assumes you already know about Lambda. For more information, see the AWS Lambda Developer Guide.

**Note**
Completing these procedures might result in charges to your AWS account. These include possible charges for services such as Lambda, API Gateway, and AWS services supported by the AWS Serverless Application Model (SAM). For more information, see AWS Lambda Pricing, Amazon API Gateway Pricing, and Cloud Services Pricing.

- Prepare to Work with Lambda Functions (p. 291)
- Create a Lambda Function With the Create Serverless Application Wizard (p. 294)
- Create and Deploy Lambda Functions with the AWS Serverless Application Repository (p. 299)
- Import a Lambda Function (p. 300)
- Invoke a Lambda Function (p. 303)
- Invoke an API Gateway API for a Related Lambda Function (p. 305)
- Response Differences When Invoking a Lambda Function from API Gateway (p. 307)
- Add Dependent Code to a Lambda Function (p. 308)
- Debug the Local Version of a Lambda Function or Its Related API Gateway API (p. 311)
- Change Code in a Lambda Function (p. 313)
- Upload Code for a Lambda Function (p. 314)
- Convert a Lambda Function to a Serverless Application (p. 318)
- Update Configuration Settings for a Lambda Function (p. 320)
Prepare to Work with Lambda Functions

Before you can work with Lambda functions in the AWS Cloud9 IDE, you must complete the following steps:

- **Step 1: Set Up Your IAM Group with Required Access Permissions (p. 291)**
- **Step 2: Set Up Your Environment with Your AWS Access Credentials (p. 292)**
- **Step 3: Create an Execution Role for Your Lambda Functions (p. 293)**
- **Step 4: Set Your Environment to the Correct AWS Region (p. 293)**
- **Step 5: Open the Lambda Section of the AWS Resources Window (p. 293)**

**Step 1: Set Up Your IAM Group with Required Access Permissions**

If your AWS access credentials are associated with an IAM administrator user in your AWS account, and you want to use that user to work with Lambda functions, skip ahead to **Step 2: Set Up Your Environment with Your AWS Access Credentials (p. 292)**.

Otherwise, complete the following instructions to:

- Use the IAM console to attach the AWS managed policies named **AWSLambdaFullAccess**, **AmazonAPIGatewayAdministrator**, and **AmazonAPIGatewayInvokeFullAccess** to an IAM group to which your user belongs.
- Use the AWS CloudFormation console to attach an additional inline policy to that group.

1. Sign in to the AWS Management Console, if you're not already signed in.
   - For this step, we recommend you sign in using credentials for an IAM administrator in your AWS account. If you can't do this, check with your AWS account administrator.
2. Open the IAM console. To do this, in the console's navigation bar, choose **Services**. Then choose **IAM**.
3. Choose **Groups**.
4. Choose the group's name.
5. On the **Permissions** tab, for **Managed Policies**, choose **Attach Policy**.
6. In the list of policy names, choose the boxes next to **AWSLambdaFullAccess**, **AmazonAPIGatewayAdministrator**, and **AmazonAPIGatewayInvokeFullAccess**. (If you don't see any of these policy names in the list, type the policy name in the **Search** box to display it.)
7. Choose **Attach Policy**.
8. Open the AWS CloudFormation console. To do this, in the console's navigation bar, choose **Services**. Then choose **CloudFormation**.
9. Choose **Create Stack**.
10. On the **Select Template** page, for **Choose a template**, choose **Specify an Amazon S3 template URL**. In the box, type or paste one of the following URL to the AWS CloudFormation template.

   ```
   ```
11. Choose **Next**.

291
12. On the **Specify Details** page, for **Stack name**, type a name for the stack, for example `AWSCloud9LambdaAccessStack`. If you type a different name, replace it throughout this procedure.

13. For **Parameters**, for **GroupName**, type the name of the existing group in your AWS account you want to attach the access policy to.

14. Choose **Next**.

15. On the **Options** page, choose **Next**. (Do not change any of the default settings on the **Options** page.)

16. On the **Review** page, choose **I acknowledge that AWS CloudFormation might create IAM resources**.

17. Choose **Create**.

Wait until the **AWSCloud9LambdaAccessStack** stack shows **CREATE_COMPLETE**. This might take a few moments. Please be patient.

**Note**

The access policy that AWS CloudFormation attaches to the group is named `AWSCloud9LambdaGroupAccess` and has the following definition, where `ACCOUNT_ID` is your AWS account ID.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["cloudformation:CreateChangeSet",
 "cloudformation:CreateStack",
 "cloudformation:DescribeChangeSet",
 "cloudformation:DescribeStackEvents",
 "cloudformation:DescribeStacks",
 "cloudformation:ExecuteChangeSet",
 "cloudformation:ListStackResources",
 "cloudformation:UpdateStack",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy",
 "iam:GetRole",
 "iam:GetUser",
 "iam:PassRole"
],
 "Resource": "+",
 "Effect": "Allow"
 },
 {
 "Action": ["iam:CreateRole",
 "iam:DeleteRole"
],
 "Resource": "+arn:aws:iam::ACCOUNT_ID:role/cloud9-*",
 "Effect": "Allow"
 }
]}
```

---

**Step 2: Set Up Your Environment with Your AWS Access Credentials**

The AWS Cloud9 IDE uses the AWS Command Line Interface (AWS CLI) in your AWS Cloud9 development environment to interact with Lambda and other supporting AWS services. Therefore, the AWS CLI in your environment needs access to your AWS access credentials.

Do one of the following to set up the AWS CLI in your environment:
Step 3: Create an Execution Role for Your Lambda Functions

If you have an EC2 environment, AWS managed temporary credentials are already set up in your environment for the AWS CLI to use, and you can skip ahead to Step 3: Create an Execution Role for Your Lambda Functions (p. 293). AWS managed temporary credentials have permission to interact with most AWS services from your environment (provided the AWS entity that is using the environment also has those permissions). For more information, see AWS Managed Temporary Credentials (p. 446).

If you have an EC2 environment but AWS managed temporary credentials don't meet your needs, you can attach an IAM instance profile to the Amazon EC2 instance that connects to your environment. Or you can store your permanent AWS access credentials within the environment. For instructions, see Create and Use an Instance Profile to Manage Temporary Credentials (p. 84) or Create and Store Permanent Access Credentials in an Environment (p. 88).

If you have an SSH environment, you can store your permanent AWS access credentials within the environment. For instructions, see Create and Store Permanent Access Credentials in an Environment (p. 88).

Step 4: Set Your Environment to the Correct AWS Region

You must set your AWS Cloud9 development environment to use the AWS Region where you want to create new Lambda functions in your AWS account, or where you want to import existing Lambda functions from your AWS account into your AWS Cloud9 development environment.

To do this:

1. In the AWS Cloud9 IDE, on the menu bar, choose AWS Cloud9, Preferences.
2. In the navigation pane of the Preferences tab, choose AWS Settings.
3. For AWS Region, select the AWS Region you want to use.

Step 5: Open the Lambda Section of the AWS Resources Window

Now you're ready to begin using the AWS Cloud9 IDE to work with Lambda functions. To do this, expand the Lambda section of the AWS Resources window, if it isn't already expanded.
Create a Lambda Function With the Create Serverless Application Wizard

You can use the AWS Cloud9 IDE to create a new Lambda function. If you already have a Lambda function in your AWS account for the AWS Region you set earlier, skip ahead to Import a Lambda Function (p. 300).

**Note**
This procedure describes how to use the Create serverless application wizard to create a single Lambda function based on function blueprints that are owned by AWS. To create multiple Lambda functions at the same time, Lambda functions along with supporting components at the same time, or Lambda functions that are owned by entities other than AWS, skip ahead to Create and Deploy Lambda Functions with the AWS Serverless Application Repository (p. 299).

1. In the Lambda section of the AWS Resources window, choose where you want to create the function:
   - To create a single function by itself, choose the Local Functions heading.
   - To create a function and then add it to an existing group of one or more functions and related AWS resources (referred to as a serverless application), in the Local Functions list, choose the serverless application for the group (represented by the Lambda icon inside of a folder).

2. Do one of the following:
   - Choose Create a new Lambda function (the button with the Lambda icon).
   - Right-click the Local Functions heading or the serverless application folder you chose earlier, and then choose Create Here.
3. In the **Create serverless application** dialog box, specify the following settings for the function:
   - **Function Name**: A name for the function.
   - **Application Name**: The name of the new serverless application to be associated with the new function.

4. Choose **Next**.

5. Choose the function blueprint you want to start with. (Currently, only Node.js and Python function blueprints are available.)

   To show blueprints for a specific runtime, for **Select Runtime**, choose the runtime. For example, to use the hello-world function blueprint for Node.js 6.10, choose **Node.js 6.10** for **Select Runtime**, and then choose the hello-world blueprint for **Select Blueprint**.

6. Choose **Next**.

7. Do one of the following:
   - To skip having an AWS service automatically trigger this function, leave **Function Trigger** set to **none**, choose **Next**, and then skip ahead to step 9 in this procedure.
   - To have an AWS resource in your account automatically trigger your function, for **Function Trigger**, select the name of the AWS service that will contain the resource. (Currently, only **API Gateway** is available.)

8. If you chose **API Gateway** for **Function Trigger**, specify the following for **Trigger Settings**:
   - For **Resource Path**, type the URL portion of the API to use to invoke the function. For example, type `/` to specify the resource root.
   - For **Security**, choose the security mechanism for the API endpoint:
     - **AWS_IAM**: Require that callers provide IAM access credentials to be authenticated. See Control Access to API Gateway with IAM Permissions in the API Gateway Developer Guide.
     - **NONE**: Enable open access.
     - **NONE_KEY**: Require that callers provide an API key to be authenticated. See Set Up API Keys Using the API Gateway Console in the API Gateway Developer Guide.

9. Choose **Next**.

10. For **Memory (MB)**, choose the amount of memory, in megabytes, that this function will use.

11. Do one of the following:
   - To have AWS Cloud9 create a new, basic IAM role (execution role) for this function to use, for **Role**, choose **Automatically generate role**. Then choose **Next**.
• To have Lambda use an existing IAM role (execution role) in your AWS account, for **Role**, choose **Choose an existing role**. For **Existing Role**, choose the name of the role, and then choose **Next**.

12. Choose **Next**.

13. Choose **Finish**.

Compare your results to the following:

In the **Lambda** section of the **AWS Resources** window, AWS Cloud9 does the following:

• If you chose to create a single function by itself:
  1. AWS Cloud9 creates a serverless application with the name that you specified earlier. Then it adds a serverless application (represented by a Lambda icon inside of a folder) to the **Local Functions** list. Then it adds the Lambda function (represented by a Lambda icon by itself), to this serverless application.
  2. AWS Cloud9 creates a remote version of the function in Lambda and adds it to the **Remote Functions** list. AWS Cloud9 gives the remote version a different name. For example, if you named the serverless application `myDemoServerlessApplication` and the function `myDemoFunction`, the remote version name of your function would be `cloud9-myDemoServerlessApplication-myDemoFunction-RANDOM_ID`, where `RANDOM_ID` is a randomly determined ID.
3. If you chose to have API Gateway automatically trigger the function, AWS Cloud9 creates an API in API Gateway with a name that corresponds to the function. For example, if you named the function myDemoFunction, the API name would be cloud9-myDemoFunction. AWS Cloud9 uses the value you specified in Resource Path to map the function to the API using the ANY method.

- If you chose to create a single function and then add it to an existing serverless application:
  1. AWS Cloud9 adds the Lambda function (represented by a Lambda icon by itself), to the existing serverless application (represented by a Lambda icon inside of a folder).
  2. AWS Cloud9 creates a remote version of the function in Lambda and adds it to the Remote Functions list. AWS Cloud9 gives the remote version a different name. For example, if you named the function myDemoFunction and added it to a serverless application named myDemoServerlessApplication, the remote version name would be cloud9-myDemoServerlessApplication-myDemoFunction-RANDOM_ID, where RANDOM_ID is a randomly determined ID.
  3. If you chose to have API Gateway automatically trigger your function, AWS Cloud9 creates an API in API Gateway with a name that corresponds to the related serverless application, if it doesn't already exist. For example, if the serverless application is named myDemoServerlessApplication, the API name would be cloud9-myDemoServerlessApplication. AWS Cloud9 uses the value you specified in Resource Path to map the function to the API using the ANY method.

In the Environment window, AWS Cloud9 does the following:

- If you chose to create a single function by itself, AWS Cloud9 creates a folder with the same name as the serverless application and puts this folder in the root of the AWS Cloud9 development environment. AWS Cloud9 then adds the following files to the folder:
  - .application.json: A hidden file used by AWS Cloud9 that contains JSON-formatted settings specific to the serverless application.
  - .gitignore: A hidden file that contains a list of files Git ignores, if you want to use Git to manage your source code for this function.
  - template.yaml: An AWS SAM template file that contains information about the Lambda function and any other related supported AWS resources. Whenever you update the local version of your function and then upload it to Lambda, AWS Cloud9 calls AWS SAM to use this template file to do the upload. For more information, see Using the AWS Serverless Application Model (AWS SAM) in the AWS Lambda Developer Guide.
You can edit this file to create additional supporting AWS resources for your function. For more information, see the AWS Serverless Application Model (AWS SAM) repository on GitHub.

- A subfolder with the same name as the function, containing a code file representing the function logic.
- If the function uses Python, additional subfolders and files are added to the preceding subfolder to enable Python debugging:
  - .debug: A subfolder that contains Python modules and files for debugging purposes.
  - venv: A standard Python virtualenv folder. This includes a module named ikpdb, which AWS Cloud9 uses to debug Python applications.
  - requirements.txt: A standard file for installing Python modules.
- AWS Cloud9 also adds a CodeUri property to the template.yaml file and sets this property to reference the .debug/ folder.
- If you chose to create a single function and then add it to an existing serverless application, AWS Cloud9 does the following to the folder that represents the serverless application:
  - Updates the template.yaml file previously described to include information about the Lambda function and any other related supported AWS resources.
  - A subfolder with the same name as the function, containing a code file representing the function logic.
  - If the function uses Python, additional subfolders and files are added to the preceding subfolder to enable Python debugging:
    - .debug: A subfolder that contains Python modules and files for debugging purposes.
    - venv: A standard Python virtualenv folder. This includes a module named ikpdb, which AWS Cloud9 uses to debug Python applications.
    - requirements.txt: A standard file for installing Python modules.
- AWS Cloud9 also adds a CodeUri property to the template.yaml file and sets this property to reference the .debug/ folder.

The .application.json and .gitignore files (and the .debug folder for Python) are hidden. To show hidden files or hide them if they're shown, in the Environment window, choose the gear icon, and then choose Show Hidden Files.

To invoke the function, see Invoke a Lambda Function (p. 303). If the function has a related API in API Gateway, to invoke the API, see Invoke an API Gateway API for a Related Lambda Function (p. 305).
Create and Deploy Lambda Functions with the AWS Serverless Application Repository

You can use the AWS Cloud9 IDE and the AWS Serverless Application Repository to create multiple Lambda functions at the same time, Lambda functions along with supporting components at the same time, or Lambda functions that are owned by entities other than AWS. If you already have Lambda functions in your AWS account for the AWS Region you set earlier, skip ahead to Import a Lambda Function (p. 300).

1. In a separate web browser tab, open the AWS Serverless Application Repository.

2. Find the serverless application you want to create, and then choose the title of the serverless application that you want inside of its card. (If the card isn't visible, begin typing information about the serverless application that you want in the Search applications by name, description, or labels box to show it.)

3. On the Application details page that appears, if a URL for a Git-based repository is displayed, copy that URL (for example, https://github.com/USER_NAME/REPOSITORY_NAME).

   **Note**
   If a URL isn't displayed, try choosing the Deploy button on the Application details page, and then look for a Source code URL value.

4. Back in the AWS Cloud9 IDE, open a terminal, if one isn't already open. (To open a terminal, on the menu bar, choose Window, New Terminal.)

5. In the terminal, change to the directory in your environment where you want to copy the serverless application's starter files (for example, by running the command cd ~/environment).

6. Run the command `git clone`, followed by the Git URL you copied earlier (for example, git clone https://github.com/USER_NAME/REPOSITORY_NAME). The IDE then adds the serverless application's functions to the Lambda section of the AWS Resources window.

   **Note**
   Running the `git clone` command with some of the URLs in the Application details pages or Source code URL values might not work as expected or might produce unexpected results. Alternatively, you can manually download the files you want from the desired repository to your local workstation. Then manually upload those files to the IDE by running File, Upload Local Files on the menu bar.

   When you clone the GitHub repository, the IDE uses the AWS Serverless Application Model (AWS SAM) template file in the repository to determine which of the serverless application's functions to display in the Lambda section of the AWS Resources window. The AWS SAM template file must follow the AWS Serverless Application Model (AWS SAM) file format. If the repository doesn't contain an AWS SAM template file, or if the file doesn't follow the AWS SAM file format, the IDE won't display those functions. You also won't be able to run, debug, or deploy those functions or any of their associated API Gateway resources from the Lambda section of the AWS Resources window.

7. You might need to complete some setup before you can run, debug, or deploy the serverless application from the IDE as expected. For setup instructions, see the Application details page that you opened earlier. Or look for any setup instructions within the serverless application's files that you cloned to your IDE.

To invoke the functions, see Invoke a Lambda Function (p. 303). If the functions have related APIs in API Gateway, to invoke the APIs, see Invoke an API Gateway API for a Related Lambda Function (p. 305). When you invoke a function or API this way for the first time, AWS Cloud9 adds a hidden .application.json file to the serverless application's component files. This file is used by AWS Cloud9 and contains JSON-formatted settings that are specific to the serverless application.
If the serverless application requires parameters to be specified during deployment, you can deploy it from the IDE only by using the terminal. To see if parameters are required, on the Application details page you opened earlier, choose the Deploy button, and then see the Configure application parameters card for any parameters. If there are any parameters, deploy the serverless application from the terminal in the IDE by running the AWS CloudFormation deploy command, for example:

```
aws cloudformation deploy --template-file TEMPLATE_FILE_PATH --parameter-overrides
"PARAMETER_KEY_1=PARAMETER_VALUE_1" "PARAMETER_KEY_N=PARAMETER_VALUE_N" --region REGION_ID
```

In the preceding command:

- TEMPLATE_FILE_PATH represents the path to the AWS SAM template file.
- PARAMETER_KEY_1 represents the name of the first parameter.
- PARAMETER_VALUE_1 represents the value of the first parameter.
- PARAMETER_KEY_N represents the name of an additional parameter, and so on.
- PARAMETER_VALUE_N represents the value of an additional parameter, and so on.
- REGION_ID represents the ID of the AWS Region where you want to deploy the serverless application (for example, us-east-2).

Additional options might need to be specified, depending on the serverless application's requirements. For more information, see the Application details page that you opened earlier, or look for any setup instructions within the serverless application's files that you cloned to your IDE.

If you try to use the Lambda section of the AWS Resources window to deploy a serverless application that requires parameters, a message is displayed that required parameters are missing, and the serverless application is not deployed.

**Import a Lambda Function**

If you have an existing Lambda function in your AWS account but not in your AWS Cloud9 development environment, you must import it before you can work with it in your environment.

**Note**

If the Lambda function is part of an existing AWS CodeStar project, and the environment was created from within the project in the AWS CodeStar console, the function is already imported, so you do not need to import it again.

To confirm this behavior, look in the Local Functions list in the Lambda section of the AWS Resources window for a serverless application (represented by a Lambda icon inside of a folder) with the same name as the AWS CodeStar project, containing a Lambda function (represented by a Lambda icon by itself) with the function's base name. Look also in the Remote Functions list for a Lambda function with a name in the format awscodestar-PROJECT_NAME-lambda-BASE_FUNCTION_NAME-RANDOM_ID, where PROJECT_NAME is the AWS CodeStar project name, BASE_FUNCTION_NAME is the function's base name, and RANDOM_ID is a randomly determined ID.
Since the function is already imported, we do not recommend that you import the remote version of the function in the AWS CodeStar project. Otherwise, you will have two versions of the same function code in your Environment window but with different folder names, which could be confusing.

To import a Lambda function, do the following:

1. In the Environment window, choose where you want to import the function.
2. In the Lambda section of the AWS Resources window, choose the function's name in the Remote Functions list.

   **Note**
   If you don't see your function in the Remote Functions list, choose the Refresh functions List button (the button with the circular arrow icon).

3. Do one of the following:
   - Double-click the function you just chose.
   - On the menu bar in the Lambda section, choose the Import the selected Lambda function button (the button with the arrow that faces down).
   - Right-click the function you just chose, and then choose Import.
Note
You cannot import a Lambda function into a folder that represents either a serverless application or a Lambda function. If you try to do this, AWS Cloud9 will display a message that it will import the Lambda function into the environment's root location instead. To let AWS Cloud9 do this, choose Import. Otherwise, choose Cancel, choose a different folder to import the function (or create a new empty folder to import the function into), and then restart this procedure from the beginning.

4. When prompted to finish importing the function, choose OK.

AWS Cloud9 imports your function into a new folder in the root of your environment. (AWS Cloud9 also adds the function to the Local Functions list in the Lambda section of the AWS Resources window.) This folder has the same name as the function. AWS Cloud9 adds the following files to this folder:

- .application.json: A hidden file used by AWS Cloud9 that contains JSON-formatted settings specific to the function.
- .gitignore: A hidden file that contains a list of files Git ignores, if you want to use Git to manage your source code for this function.
- template.yaml: A file for AWS Cloud9 internal use.

Note
Although the template.yaml file is expressed in AWS SAM format, it isn't used by AWS SAM. Therefore, you cannot edit this file to create additional supporting AWS resources for your function. Do not modify this file.

- One or more code files containing the function logic.

The .application.json and .gitignore files are hidden. To display or hide hidden files, in the Environment window, choose the gear icon, and then choose Show Hidden Files.

To invoke the function, see Invoke a Lambda Function (p. 303).
Invoke a Lambda Function

To invoke an existing Lambda function, you must first import the remote version of the function into your AWS Cloud9 development environment, if the function isn't already there. To do this, see Import a Lambda Function (p. 300).

1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn't already expanded.

2. Expand the serverless application folder that contains the function that you want to invoke.

3. Choose the function that you want to invoke, right-click it, and then choose Run.

4. Do one of the following:
   - To run the local version of the function within your environment, choose Run Local.
   - To run the remote version of the function within Lambda, choose Run Remote.

5. In the Test payload pane of the invoke tab that is displayed, confirm any custom input data you want your function to use when you test it. For information about the input data format, see Step 2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics in the AWS Lambda Developer Guide.

6. In the invoke tab, choose the Run button.
Invoke a Lambda Function

**Note**
After you run the function for the first time, a `lambda-payloads.json` file is added to the function’s related serverless application folder in the *Environment* window. This file contains the contents of the custom input data.

If you invoke an existing Lambda function and then try to invoke the same function code for its related API in API Gateway with the same custom input data, you might get an error or the code might not run as expected. For more information, see Response Differences When Invoking a Lambda Function from API Gateway (p. 307).

The invoke tab contains two panes:

- The **Test payload** pane displays any custom input data that was supplied for the function.
- The **Execution results** pane displays any output from the function and some information from the related Amazon CloudWatch Logs for the function.

Compare your results to the following:
Invoke an API Gateway API for a Related Lambda Function

To invoke an API in API Gateway that is related to an existing Lambda function, you must first import the remote version of the function into your AWS Cloud9 development environment, if the function isn’t already there. To do this, see Import a Lambda Function (p. 300).

Note
You cannot debug the remote version of the API Gateway API in your environment. You can only invoke it. To debug the local version, see Debug the Local Version of a Lambda Function or Its Related API Gateway API (p. 311).

1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn’t already expanded.
2. Expand the serverless application folder that contains the function whose API you want to invoke.
3. Choose the function, right-click it, and then choose Run.
4. Do one of the following:
   - To run the local version of the API within your environment, choose Run API Gateway Local.
   - To run the remote version of the function within Lambda, choose Run API Gateway Remote.

Note
If nothing appears to happen, an invoke tab might already be open for the function. If so, choose API Gateway (local) or API Gateway (remote) in the open invoke tab.
5. In the Test payload pane of the invoke tab that is displayed, confirm the Function, Path, Method, Query String, and Body you want the API to use when you test it.

Note
Some APIs might not support settings such as Body. For more information, consult the owner of the API.
6. On the invoke tab, choose the Run button.

![A screenshot of AWS Cloud9 showing the invoke tab with a Run button highlighted.]

**Note**

If the API isn't connected to the function, a message appears that says an API Gateway trigger can't be found in the function's AWS SAM file. To use this AWS SAM file to connect an API in API Gateway to the function, see the AWS Serverless Application Model (AWS SAM) repository on GitHub.

If you invoke an API in API Gateway and then try to invoke the same code for its related function in Lambda with the same custom input data, you might get an error or the code might not run as expected. For more information, see *Response Differences When Invoking a Lambda Function from API Gateway* (p. 307).

The invoke tab contains two panes:

- The **Test payload** pane displays settings and any custom input data that was supplied for the API.
- The **Execution results** pane displays information such as the body, headers, and logs of the API response.

Compare your results to the following:
Response Differences When Invoking a Lambda Function from API Gateway

When you invoke a Lambda function from an API in API Gateway and then try to parse the response, you might get an error or the code might not run as expected. This is because Lambda and API Gateway use slightly different response formats. Specifically, API Gateway wraps its response in a parent body object. To address this issue, you can add code to a function that checks to see if a parent body exists in the response. If it does, you can then extract the data from that body object.

For example, given the following Node.js function code:

```javascript
'use strict';
exports.handler = function(event, context, callback) {
 if (event.body) {
 event = JSON.parse(event.body);
 }

 const message = "Your favorite fruit is " + event.fruit + ". " + "Your favorite vegetable is " + event.vegetable + ";

 const response = {
 statusCode: 200,
 headers: { "Content-type": "application/json" },
 body: JSON.stringify({ "message": message })
 };

 callback(null, response);
};
```

And given the following equivalent Python function code:

```python
import json

def lambda_handler(event, context):
```

307
if 'body' in event:
    event = json.loads(event["body"])  

message = ("Your favorite fruit is " + event["fruit"] + ", " + 
        "Your favorite vegetable is " + event["vegetable"] + ").") 

response = {
    "statusCode": "200",
    "headers": { "Content-type": "application/json" },
    "body": json.dumps({"message": message})
}  

return response

To invoke the preceding code, you use the following input payload (for Lambda) or input body (for API Gateway):

```json
{
 "fruit": "apple",
 "vegetable": "carrot"
}
```

Which returns the following response for Lambda:

```json
{
 "statusCode": 200,
 "headers": {
 "Content-type": "application/json"
 },
 "body": "{"message": "Your favorite fruit is apple. Your favorite vegetable is carrot."}"
}
```

And returns the following response for API Gateway (assuming a Path of / and a Method of POST):

```json
{
 "message": "Your favorite fruit is apple. Your favorite vegetable is carrot."
}
```

If you do not include the if (event.body) check for Node.js or the if 'body' in event check for Python, then calling this function from API Gateway might return an error or the API might not run as expected.

---

**Add Dependent Code to a Lambda Function**

For Node.js, we support using Node Package Manager (npm) to add dependent packages to Lambda functions in your environment. For Python, we support pip. For general information about npm and pip, see the npm and pip websites.

To depend on an npm package from a Node.js Lambda function, use for example the Node.js require statement. Then use npm to install the related npm package in the environment within the same directory as the function code. When you deploy the Lambda function as described in Upload Code for a Lambda Function (p. 314), AWS Cloud9 deploys both the function and its related packages to Lambda.

To demonstrate, the following example Node.js Lambda function code depends on the lodash package to sort the specified JSON input payload.
'use strict';

/*
Assume the following payload is input:

[  
  {  
    "firstName": "Shirley",
    "lastName": "Rodriguez"
  },  
  {  
    "firstName": "Jane",
    "lastName": "Doe"
  },  
  {  
    "firstName": "Arnav",
    "lastName": "Desai"
  }
]

The expected response is:

{
  "statusCode": 200,
  "headers": {
    "Content-type": "application/json"
  },
  "body": {
    "result": [
    {  
      "firstName": "Arnav",
      "lastName": "Desai"
    },
    {  
      "firstName": "Jane",
      "lastName": "Doe"
    },
    {  
      "firstName": "Shirley",
      "lastName": "Rodriguez"
    }
  ]
  }
}
*/

exports.handler = (event, context, callback) => {

  var lodash = require('lodash');
  var result = lodash.orderBy(event, ['firstName'], ['asc']);

  const response = {
    statusCode: 200,
    headers: { "Content-type": "application/json" },
    body: JSON.stringify( { "result": result } )
  };

  callback(null, response);
};

To install the lodash package in the environment, use a terminal session in the IDE to change to the directory containing the function code. Then run the following two commands, in the following order. The first command creates and configure a package.json file in that directory to make sure when you deploy the function to Lambda, the lodash package is also deployed. The second command installs the
Add Dependent Code to a Lambda Function

lodash package in the same directory in the environment as the function code and then updates the package.json file in that directory accordingly.

```bash
npm init
npm install lodash --save
```

For help with the npm init command and the package.json file, see Working with package.json on the npm website.

From the IDE, invoke the local version of the Lambda function, as described in Invoke a Lambda Function (p. 303). Deploy the function as described in Upload Code for a Lambda Function (p. 314), and then invoke the remote version of the function. The local and remote versions of the function should work as expected.

To depend on a pip package from a Python Lambda function, use for example the Python import statement. Then use pip to install the related pip package in the environment one directory above the directory that contains the function code. When you deploy the Lambda function as described in Upload Code for a Lambda Function (p. 314), AWS Cloud9 deploys both the function and its related packages to Lambda.

To demonstrate, the following example Python Lambda function code depends on the requests package to make an HTTP request and then return information about the related HTTP response.

```python
import requests
import json

def lambda_handler(event, context):
 result = requests.get(event["url"])

 response = {
 "statusCode": "200",
 "headers": { "Content-type": "application/json" },
 "body": json.dumps({ "statusCode": result.status_code, "date": result.headers["Date"], "lastModified": result.headers["Last-Modified"] })
 }

 return response
```
To install the `requests` package in the environment, use a terminal session in the IDE to change to the directory containing the function code. Then run the following command. This command installs the `requests` package in the directory in the environment that is one directory above the function code.

```
$ pip install requests --target ../
```

From the IDE, invoke the local version of the Lambda function, as described in Invoke a Lambda Function (p. 303). Deploy the function as described in Upload Code for a Lambda Function (p. 314), and then invoke the remote version of the function. The local and remote versions of the function should work as expected.

For a Python Lambda function, to depend on code in a separate Python code file that is in the same directory as the function, use the `from` and `import` statements. When you deploy the Lambda function as described in Upload Code for a Lambda Function (p. 314), AWS Cloud9 deploys to Lambda both the function and the separate Python code files in the same directory as the function.

To demonstrate, take for example the following directory structure in the AWS Cloud9 IDE for a Python Lambda function:

```
myDemoServerlessApplication
 `-- myDemoFunction
 `-- lambda-payloads.json
 `-- lambda_function.py
 `-- myClasses.py
```

If the `myClasses.py` file contains the definition of a class named `MyClass1`, for example:

```python
class MyClass1:
 # Class definition...
```

To reference the `MyClass1` class from the `lambda_function.py` file, add the following statement to the file:

```python
from myDemoFunction.myClasses import MyClass1
```

## Debug the Local Version of a Lambda Function or Its Related API Gateway API

You can debug local Lambda function code or its related API Gateway API in your environment using common debugging aids such as breakpoints, stepping through code, and setting watch expressions.

**Note**

You cannot debug the remote version of a Lambda function or its related API Gateway API in your environment. You can only invoke it.

To debug the local version of an existing Lambda function or its related API Gateway API, you must first import the remote version of the function into your AWS Cloud9 development environment, if the function isn't already there. See Import a Lambda Function (p. 300).

**Important**

If you import the remote version of a Python function into your environment, you must choose one of the following options before you can debug it:

**Option 1:** If the Python function doesn't use venv, use `pip` to install IKPdb into the same directory as the function's `template.yaml` file.
Use a terminal session in the IDE to change to the directory containing the function's `template.yaml` file. Then run one of the following commands. This command installs the Python debugger IKPdb in the same directory as the function's `template.yaml` file:

```
 pip install ikpdb --target . # For a function that uses Python 2.7.
 pip3.6 install ikp3db --target . # For a function that uses Python 3.6.
```

**Option 2:** If the Python function uses venv, use `pip` in `venv` to install IKPdb into the function's `venv` directory, and then add the `CodeUri` property to the function's `template.yaml` file.

1. Use a terminal session in the IDE to change to the directory containing the function's `template.yaml` file. From that folder, run one of the following commands. This command uses `pip` in the function's `venv/bin` directory to install the Python debugger IKPdb into the function's `venv/lib/pythonMAJOR.MINOR/dist-packages` directory:

```
 venv/bin/pip install ikpdb # For a function that uses Python 2.7.
 venv/bin/pip3.6 install ikp3db # For a function that uses Python 3.6.
```

2. In the **Environment** window, open the function's `template.yaml` file for editing. In the **Properties** section for the function, add the `CodeUri` property, set its value to `.debug/`, and then save the file. For example:

```
AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: An AWS Serverless Specification template describing your function.
Resources:
 myDemoFunction:
 Type: 'AWS::Serverless::Function'
 Properties:
 CodeUri: .debug/
 # ...
```

1. In the **Environment** window, open the file that contains the Lambda function's code you want to debug.
2. Set any breakpoints and watch expressions for your code. See Debug Your Code (p. 139).
3. In the **Lambda** section of the **AWS Resources** window, expand the **Local Functions** list, if it isn't already expanded.
4. Expand the serverless application folder that contains the function you want to debug.
5. Choose the function to debug, right-click it, and then choose **Run**, **Run Local** or **Run**, **Run API Gateway Local**.

   **Note**
   If nothing appears to happen, an invoke tab might already be open for the function. If so, go to the open invoke tab and choose **Lambda (local)** or **API Gateway (local)**.

6. For a Lambda function, in the **Test payload** pane of the invoke tab that is displayed, confirm any custom input data you want your function to use when you test it. For information about the input data format, see Step 2.2: Invoke the Lambda Function Manually and Verify Results, Logs, and Metrics in the **AWS Lambda Developer Guide**.

7. For an API Gateway API, in the **Test payload** pane of the invoke tab that is displayed, confirm the **Path**, **Method**, **Query String**, and **Body** you want the API to use when you test it.

   **Note**
   Some APIs might not support settings such as **Body**. For more information, consult the owner of the API.

8. Next to the **Run** button, choose **Run in Debug Mode** (the bug icon).
9. Choose the **Run** button.

10. Decide what to do whenever function execution pauses at a breakpoint. See Debug Your Code (p. 139).

**Change Code in a Lambda Function**

To use the AWS Cloud9 IDE to change the code in a function, you must first import the related remote version of the function into your AWS Cloud9 development environment, if the function isn't already there. To do this, see Import a Lambda Function (p. 300). Then do the following:
1. In the **Lambda** section of the **AWS Resources** window, expand the **Local Functions** list, if it isn't already expanded.

2. Expand the serverless application folder that contains the function whose code you want to change.

3. Right-click the function, and then choose **Edit Function**.

4. Make the changes you want to the code, and then save the file.

To upload the local version of the changed function code to the related remote version in Lambda, see [Upload Code for a Lambda Function](p. 314).

### Upload Code for a Lambda Function

To upload the local version of a Lambda function in your environment to the related remote version of the function in Lambda, follow one of these procedures, depending on how the function was created.

<table>
<thead>
<tr>
<th>How was the function created?</th>
<th>Follow this procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>By using the <strong>Create serverless application</strong> wizard in the IDE.</td>
<td>[Upload Code for a Lambda Function Created By the Create Serverless Application Wizard](p. 315)</td>
</tr>
<tr>
<td>As part of an <strong>AWS CodeStar</strong> project.</td>
<td>[Upload Code for a Lambda Function That is Part of an AWS CodeStar Project](p. 315)</td>
</tr>
<tr>
<td>By using the AWS Serverless Application Repository, and the serverless application requires parameters to be specified during deployment.</td>
<td>[Upload Code for a Lambda Function That is Part of an AWS Serverless Application Repository Project with Parameters](p. 316)</td>
</tr>
<tr>
<td>Any other way.</td>
<td>[Upload Code for a Lambda Function By Using a Specific AWS CloudFormation Stack, Function Name, or Both](p. 316)</td>
</tr>
</tbody>
</table>
Upload Code for a Lambda Function Created By the Create Serverless Application Wizard

After you create a Lambda function with the Create serverless application wizard (p. 294) in your environment, you can upload the local version of that function to the related remote version of the function in Lambda as follows.

1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn’t already expanded.

2. Expand the serverless application folder that contains the function you want to upload.

3. Do one of the following:
   - Right-click the serverless application folder that you just chose, and then choose Deploy.
   - Right-click the function you want to upload, and then choose Deploy.
   - Choose the function you want to upload, and then choose Deploy the selected Lambda function (the button with the arrow that faces up).

Upload Code for a Lambda Function That is Part of an AWS CodeStar Project

After you create a Lambda function as part of an AWS CodeStar project (p. 288), you can upload the local version of that function in your environment to the related remote version of the function in Lambda as follows.

Use a terminal session in the IDE to run the git push command to push committed code changes to the repository for the AWS CodeStar project. This instructs AWS CodeStar to upload the local version of the Lambda function in your environment to the related remote version of the function in Lambda.
If you do not follow this procedure, the error "Parameters: [ProjectId] must have values" will display, and the function will not deploy.

**Upload Code for a Lambda Function That is Part of an AWS Serverless Application Repository Project with Parameters**

If you create a Lambda function as part of an AWS Serverless Application Repository project (p. 299), and that project requires you to specify parameters during the upload, see coverage of the AWS CloudFormation `deploy` command in Create and Deploy Lambda Functions with the AWS Serverless Application Repository (p. 299) for upload instructions.

If you do not follow that procedure, an error will display that required parameters are missing, and the code will not upload.

**Upload Code for a Lambda Function By Using a Specific AWS CloudFormation Stack, Function Name, or Both**

To begin the upload process, AWS Cloud9 instructs AWS CloudFormation to create a stack with a specific name. AWS CloudFormation uses the information in this stack to complete the upload of the the local version of the Lambda function in your environment to a specific function in Lambda. By default, the name of this stack and the name of the Lambda function is one of the following, which you can change if needed.

- If a hidden `.application.json` file exists in the same folder as the local version of the Lambda function, and the file contains a `StackName` value, the stack's name is the same as the `StackName` value, and the Lambda function name is `cloud9-APPLICATION_NAME-FUNCTION_NAME`.
- If there is no hidden `.application.json` file in the same folder as the local version of the Lambda function, or if the `application.json` file exists but has no `StackName` value, the stack's name is `cloud9-FOLDER_NAME`, and the Lambda function name is `cloud9-APPLICATION_NAME-FUNCTION_NAME`.

In the preceding stack and function names, `FOLDER_NAME` is the name of the related folder in the Environment window, while `APPLICATION_NAME` and `FUNCTION_NAME` are the related values as displayed in the Lambda section of the AWS Resources window.

If you do not want to change the name of the default AWS CloudFormation stack or the default function name in Lambda, then skip ahead to the upload procedure at the end of this section.

To use or create a non-default AWS CloudFormation stack in your AWS account in the same AWS Region as displayed in the Lambda section of the AWS Resources window, do one of the following.

- If you want to use an existing AWS CloudFormation stack to upload the code, then in the Lambda section of the AWS Resources window, right-click the serverless application folder that contains the Lambda function you want to upload the code to, choose **Link to CloudFormation Stack**, and follow the on-screen instructions to choose the existing stack to use.

  **Note**
  
  You can only choose from existing stacks that are in the following AWS CloudFormation states.

  - CREATE_COMPLETE
  - CREATE_IN_PROGRESS
If you want to create a new AWS CloudFormation stack with a name that you specify, then do one of the following:

• If a hidden .application.json file exists in the same folder as the local version of the Lambda function, and the file contains a StackName value, change the StackName value in the .application.json file to the name of the AWS CloudFormation stack you want to use, and then save the .application.json file.

• If a hidden .application.json file exists in the same folder as the local version of the Lambda function, but the file does not contain a StackName value, add a StackName value to the beginning of the .application.json file with the name of the new AWS CloudFormation stack you want to use, and then save the .application.json file. For example, for a stack name of MyDemoStack, add the following value to the beginning of the file. (Do not type the ellipses. They are shown only to help you add the value to the correct location in the file.)

```
{
 "StackName": "MyDemoStack",
 ...
}
```

• If a hidden .application.json file does not exist in the same folder as the local version of the Lambda function, then create a new .application.json file in that folder, add a StackName value to the .application.json file with the name of the new AWS CloudFormation stack you want to use, and then save the .application.json file. For example, for a stack name of MyDemoStack, add the following value to the file.

```
{
 "StackName": "MyDemoStack"
}
```

To upload the code to a non-default Lambda function in your AWS account in the same AWS Region as displayed in the Lambda section of the AWS Resources window, add the function name as a FunctionName value to the Properties section of the Lambda function resource in the related AWS SAM template file (for example, template.yaml). For example, for a Lambda function resource named MyDemoFunction, add a FunctionName value of MyDemoFunction to upload the code to a Lambda function named MyDemoFunction instead of cloud9-APPLICATION_NAME-FUNCTION_NAME. (Do not type the ellipses. They are shown only to help you add the value to the correct location in the file.)

```
Resources:
 MyDemoFunction:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: MyDemoFunction
 ...
```

When you are ready to upload the code, do the following.
1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn't already expanded.

2. Expand the serverless application folder that contains the function you want to upload.

3. Do one of the following:
   - Right-click the serverless application folder that you just chose, and then choose Deploy.
   - Right-click the function you want to upload, and then choose Deploy.
   - Choose the function you want to upload, and then choose Deploy the selected Lambda function (the button with the arrow that faces up).

Convert a Lambda Function to a Serverless Application

If the local version of an existing Lambda function in your AWS Cloud9 development environment isn't already part of a serverless application, you can use the AWS Cloud9 IDE to convert that function into a serverless application. You can then use the AWS SAM template file for that serverless application to create additional supporting AWS resources for your function. For more information, see the AWS Serverless Application Model (AWS SAM) repository on GitHub.

To convert the local version of an existing Lambda function into a serverless application, you must first import the remote version of the function into your AWS Cloud9 development environment, if the function isn't already there. See Import a Lambda Function (p. 300).

1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn't already expanded.

2. Right-click the function you want to convert, and then choose Convert to SAM.
AWS Cloud9 User Guide
Convert a Lambda Function to a Serverless Application

AWS Cloud9 does the following:

- In the function's folder in the Environment window, the DeploymentMethod setting in the .application.json file changes from lambda to cloudformation. This means that now AWS Cloud9 will instruct AWS SAM to use AWS CloudFormation whenever you use the IDE to upload the function's code as part of the serverless application. (lambda means that AWS Cloud9 will instruct Lambda to deploy the function instead.) To upload the function code, see Upload Code for a Lambda Function (p. 314).

- In the Lambda section of the AWS Resources window, in the Local Functions list, AWS Cloud9 adds the existing Lambda function to a new serverless application (represented by a Lambda icon inside of a folder). The serverless application has the same name as the function.

When you upload the function's code as described in Upload Code for a Lambda Function (p. 314), because the function upload method is no longer Lambda but now AWS SAM using AWS CloudFormation, AWS Cloud9 creates a new remote version of the function in Lambda and adds it to the Remote Functions list. AWS Cloud9 gives the remote version a name that is different from the original Lambda function. For example, if the serverless application and the function are both named myDemoFunction, the remote version name of your function would be cloud9-myDemoFunction-myDemoFunction-RANDOM_ID, where RANDOM_ID is a randomly determined ID.

Important
After you do the conversion, if you then use the IDE to make any changes to the function code and then upload that code to Lambda, only the remote version of the new function (for example, cloud9-myDemoFunction-myDemoFunction-RANDOM_ID) will contain the change. The remote version of the original function (for example, myDemoFunction) will not change.

If you change your mind and want to enable the IDE to go back to uploading your code changes to the remote version of the original function (for example, myDemoFunction), do the following:

1. In the function's folder in the Environment window, change the DeploymentMethod setting in the .application.json file from cloudformation back to lambda, and then save the file. This removes the serverless application folder from the Local Functions list and causes AWS Cloud9 to go back to instructing Lambda to deploy the function.

2. Upload the function code as described in Upload Code for a Lambda Function (p. 314). Now, only the remote version of the original function (for example, myDemoFunction) will contain the change. The remote version of the new function (for example, cloud9-myDemoFunction-myDemoFunction-RANDOM_ID) will not change.

3. Because AWS Cloud9 will no longer upload code changes to the remote version of the new function (for example, cloud9-myDemoFunction-myDemoFunction-RANDOM_ID), if you want you can use the Lambda console to delete the new function (for example, cloud9-myDemoFunction-myDemoFunction-RANDOM_ID).
Update Configuration Settings for a Lambda Function

You can use the AWS Cloud9 IDE to change function settings such as the description, handler identifier, amount of memory the function will use, and existing execution role the function will use.

To change configuration settings, you must first import the related remote version of the function into your AWS Cloud9 development environment, if the function isn't already there. To do this, see Import a Lambda Function (p. 300). Then do the following.

1. In the Lambda section of the AWS Resources window, expand the Local Functions list, if it isn't already expanded.

2. Expand the serverless application folder that contains the function whose setting you want to change.

3. Right-click the function, and then choose Edit Config.

4. Make changes to the configuration settings, and then save the file.

   **Note**
   By default, configuration settings are displayed in plain text. To change this behavior to display configuration settings in a visual editor by default, choose AWS Cloud9, Preferences on the menu bar. Choose AWS Settings, and then turn on Use AWS SAM visual editor. To use the visual editor, close the function’s template.yaml file, and then right-click the function and choose Edit Config again. To switch back to using plain text by default, turn off the Use AWS SAM visual editor setting. To temporarily edit plain text, choose View with text editor (Ace) in the visual editor, and then choose View, Editors, Ace on the menu bar.

5. Do one of the following:
   - On the configuration settings tab, in the simplified settings view, choose the Upload Settings to Lambda button.
   - Follow the instructions in Upload Code for a Lambda Function (p. 314).
Delete a Lambda Function

You can delete the local version of a Lambda function from your environment, delete the remote version of the function from Lambda, or both, as follows.

- Delete the Local Version of a Lambda Function (p. 321)
- Delete the Remote Version of the Lambda Function (p. 321)

Delete the Local Version of a Lambda Function

Use the Environment window in the AWS Cloud9 IDE to delete the directory that contains the function. (You cannot use the Lambda section of the AWS Resources window in the AWS Cloud9 IDE to delete the local version of a Lambda function.)

Warning

If you accidentally delete the local version of a Lambda function, the only way to add it back to your environment is to import the remote version of the function into your environment, if the remote version still exists. For instructions, see Import a Lambda Function (p. 300).

Delete the Remote Version of the Lambda Function

To delete the remote version of the Lambda function, use the Lambda console, the AWS CloudFormation console, or code. (You cannot use the Lambda section of the AWS Resources window in the AWS Cloud9 IDE to delete the remote version of a Lambda function.)

To determine which approach to use to delete the remote version of a Lambda function, in the AWS Cloud9 IDE, open the .application.json file that is in the same directory as the local version of
the Lambda function. If the `DeploymentMethod` value is set to `lambda`, you use Lambda to delete the function. If the `DeploymentMethod` value is set to `cloudformation`, you should use AWS CloudFormation to delete the function.

**Note**

If the `DeploymentMethod` value is set to `cloudformation` in the `.application.json` file, we do not recommend using Lambda to delete the function. If you use Lambda instead of AWS CloudFormation to delete the function in this case, then you might leave some associated AWS resources still remaining. Those remaining resources could result in ongoing charges to your AWS account.

- Use Lambda to Delete the Remote Version of the Function (p. 322)
- Use AWS CloudFormation to Delete the Remote Version of the Function (p. 323)

**Use Lambda to Delete the Remote Version of the Function**

Use the Lambda console or code to delete the function that has the same name as the function in the Lambda section of the AWS Resources window or the PhysicalId value in the `.application.json` file, as follows.

**Warning**

When you delete the remote version of a function, it is permanently deleted from Lambda. If you accidentally delete the remote version of a function and need to recover it, you can upload the local version of the function to Lambda, if the local version still exists. For instructions, see Upload Code for a Lambda Function (p. 314).

- To delete the function by using the Lambda console, do the following.
  2. On the AWS navigation bar, if the AWS Region that contains the Lambda function is not displayed, then choose it.
  3. If the list of functions is not displayed, then choose Functions in the service navigation pane.
  4. Do one of the following.
     - Choose the radio button next to the name of the function that you want to delete. Then choose Actions, Delete. Confirm the deletion by choosing Delete.
     - Choose the name of the function that you want to delete. Then choose Actions, Delete Function. Confirm the deletion by choosing Delete.

- To delete the function by using code, call the Lambda delete function operation, as follows.

<table>
<thead>
<tr>
<th>AWS CLI</th>
<th>delete-function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS SDK for C++</td>
<td>DeleteFunctionRequest</td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td>DeleteFunction, DeleteFunctionRequest, DeleteFunctionWithContext</td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td>DeleteFunctionRequest, DeleteFunctionResult</td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td>deleteFunction</td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td>DeleteFunctionRequest, DeleteFunctionResponse</td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td>deleteFunction</td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td>delete_function</td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td>delete_function</td>
</tr>
</tbody>
</table>
Use AWS CloudFormation to Delete the Remote Version of the Function

Use the AWS CloudFormation console or code to delete the stack that has the same name as the `StackName` value in the `.application.json` file, as follows.

**Warning**
When you delete a stack, AWS CloudFormation deletes all AWS resources that are associated with that stack. This includes not only Lambda functions but could also include other related resources such as APIs in Amazon API Gateway. If you accidentally delete the remote version of a function and need to recover it, you can upload the local version of the function from the AWS Cloud9 IDE to Lambda, if the local version still exists. For instructions, see Upload Code for a Lambda Function (p. 314). All of the stack's other resources are permanently deleted and cannot be recovered.

- To delete the stack by using the AWS CloudFormation console, do the following.
  2. On the AWS navigation bar, if the AWS Region that contains the stack is not displayed, then choose it.
  3. In the list of stacks, do one of the following.
     - Select the check box next to the name of the stack that you want to delete. Then choose **Actions, Delete Stack**. Confirm the deletion by choosing **Yes, Delete**.
     - Choose the name of the stack that you want to delete. Then choose **Other Actions, Delete Stack**. Confirm the deletion by choosing **Yes, Delete**.

- To delete the stack by using code, call the AWS CloudFormation delete stack operation, as follows.

<table>
<thead>
<tr>
<th>AWS Tool</th>
<th>Command/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS CLI</td>
<td><code>delete-stack</code></td>
</tr>
<tr>
<td>AWS SDK for C++</td>
<td><code>DeleteStackRequest</code></td>
</tr>
<tr>
<td>AWS SDK for Go</td>
<td><code>DeleteStack, DeleteStackRequest, DeleteStackWithContext</code></td>
</tr>
<tr>
<td>AWS SDK for Java</td>
<td><code>DeleteStackRequest, DeleteStackResult</code></td>
</tr>
<tr>
<td>AWS SDK for JavaScript</td>
<td><code>deleteStack</code></td>
</tr>
<tr>
<td>AWS SDK for .NET</td>
<td><code>DeleteStackRequest, DeleteStackResponse</code></td>
</tr>
<tr>
<td>AWS SDK for PHP</td>
<td><code>deleteStack</code></td>
</tr>
<tr>
<td>AWS SDK for Python (Boto)</td>
<td><code>delete_stack</code></td>
</tr>
<tr>
<td>AWS SDK for Ruby</td>
<td><code>delete_stack</code></td>
</tr>
<tr>
<td>AWS Tools for Windows PowerShell</td>
<td><code>Remove-CFNStack</code></td>
</tr>
<tr>
<td>AWS CloudFormation API</td>
<td><code>DeleteStack</code></td>
</tr>
</tbody>
</table>
Working with AWS CodePipeline in the AWS Cloud9 Integrated Development Environment (IDE)

You can use the AWS Cloud9 IDE to work with source code in repositories that are compatible with AWS CodePipeline.

AWS CodePipeline is a continuous delivery service you can use to model, visualize, and automate the steps required to release your software and ongoing changes you make to it. You can use AWS CodePipeline to quickly model and configure the different stages of a software release process. For more information, see the AWS CodePipeline User Guide.

Note
Completing these procedures might result in charges to your AWS account. These include possible charges for services such as Amazon EC2, AWS CodePipeline, Amazon S3, and AWS services supported by AWS CodePipeline. For more information, see Amazon EC2 Pricing, AWS CodePipeline Pricing, Amazon S3 Pricing, and Cloud Services Pricing.

AWS CodeStar provides additional features along with pipelines, such as project templates, dashboards, and teams. To use AWS CodeStar instead of AWS CodePipeline, skip the rest of this topic, and see Working with AWS CodeStar Projects (p. 288) instead.

Step 1: Create or Identify Your Source Code Repository (p. 324)
Step 2: Create an AWS Cloud9 Development Environment, Connect It to the Code Repository, and Upload Your Code (p. 325)
Step 3: Prepare to Work with AWS CodePipeline (p. 326)
Step 4: Create a Pipeline in AWS CodePipeline (p. 326)

Step 1: Create or Identify Your Source Code Repository

In this step, you create or identify a source code repository that is compatible with AWS CodePipeline.

Later in this topic, you upload your software's source code to that repository. AWS CodePipeline will build, test, and deploy the uploaded source code in that repository by using related pipelines that you also create.

Your source code repository must be one of the following repository types that AWS CodePipeline supports:

- AWS CodeCommit. If you already have a repository in AWS CodeCommit that you want to use, skip ahead to Step 2: Create an AWS Cloud9 Development Environment, Connect It to the Code Repository, and Upload Your Code (p. 325). Otherwise, to use AWS CodeCommit, follow these instructions in the AWS CodeCommit Sample in this order, and then return to this topic:
  - Step 1: Set Up Your IAM Group with Required Access Permissions (p. 331)
Step 2: Create an AWS Cloud9 Development Environment, Connect It to the Code Repository, and Upload Your Code

In this step, you create an AWS Cloud9 development environment in the AWS Cloud9 console. You then connect the environment to the repository that AWS CodePipeline will use. Finally, you use the AWS Cloud9 IDE for the environment to upload your source code to the repository.

To create the environment, follow the instructions in Creating an Environment (p. 74), and then return to this topic. (If you already have an environment, you can use it. You don’t need to create a new one.)

To connect the environment to the repository, and then upload your source code to the repository if it isn't already there, use one of the following sets of instructions. The set you choose depends on the type of repository that stores the source code.

<table>
<thead>
<tr>
<th>Repository type</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS CodeCommit</td>
<td>Follow these instructions in the AWS CodeCommit Sample:</td>
</tr>
<tr>
<td></td>
<td>• Step 3: Connect Your Environment to the Remote Repository (p. 333)</td>
</tr>
<tr>
<td></td>
<td>• Step 4: Clone the Remote Repository into Your Environment (p. 334)</td>
</tr>
<tr>
<td></td>
<td>• Step 5: Add Files to the Repository (p. 334), substituting your own source code for this step</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>• Install and configure the AWS CLI or aws-shell in the environment, as described in the AWS CLI and aws-shell Sample (p. 527).</td>
</tr>
<tr>
<td></td>
<td>• To upload your source code to the bucket, use the AWS CLI or the aws-shell in the environment to run the aws s3 cp command. (For the aws-shell, you can remove aws from the command.)</td>
</tr>
</tbody>
</table>

325
Step 3: Prepare to Work with AWS CodePipeline

In this step, you attach a specific AWS managed policy to the IAM group you created or identified in Team Setup (p. 7). This enables the group’s users to begin creating and working with pipelines in AWS CodePipeline.

If you have used AWS CodePipeline before, skip ahead to Step 4: Create a Pipeline in AWS CodePipeline (p. 326).

For this step, follow these instructions in Step 3: Use an IAM Managed Policy to Assign AWS CodePipeline Permissions to the IAM User in the AWS CodePipeline User Guide, and then return to this topic.

Step 4: Create a Pipeline in AWS CodePipeline

In this step, you create a pipeline in AWS CodePipeline that uses the repository you created or identified earlier in this topic.

For this step, follow the instructions in Create a Pipeline in AWS CodePipeline in the AWS CodePipeline User Guide.

After you create the pipeline, AWS CodePipeline sends the current version of the source code in the repository through the pipeline to be built, tested, and deployed. Then, whenever you push source code changes from the AWS Cloud9 IDE to the repository, AWS CodePipeline automatically sends those changes through the pipeline to be built, tested, and deployed.

To view the pipeline, follow the instructions in View Pipeline Details and History in AWS CodePipeline in the AWS CodePipeline User Guide.
Samples for AWS Cloud9

Experiment with these samples to increase your knowledge and confidence using AWS Cloud9 with various programming languages and AWS services.

Topics
- AWS Command Line Interface and aws-shell Sample for AWS Cloud9 (p. 327)
- AWS CodeCommit Sample for AWS Cloud9 (p. 330)
- GitHub Sample for AWS Cloud9 (p. 336)
- Amazon DynamoDB Sample for AWS Cloud9 (p. 340)
- Java Sample for AWS Cloud9 (p. 351)
- C++ Sample for AWS Cloud9 (p. 360)
- Python Sample for AWS Cloud9 (p. 368)
- .NET Core Sample for AWS Cloud9 (p. 373)
- Node.js Sample for AWS Cloud9 (p. 381)
- PHP Sample for AWS Cloud9 (p. 386)
- Ruby Sample for AWS Cloud9 (p. 390)
- Go Sample for AWS Cloud9 (p. 394)
- TypeScript Sample for AWS Cloud9 (p. 400)
- Docker Sample for AWS Cloud9 (p. 406)

AWS Command Line Interface and aws-shell Sample for AWS Cloud9

This sample enables you to set up the AWS Command Line Interface (AWS CLI), the aws-shell, or both in an AWS Cloud9 development environment. The AWS CLI and the aws-shell are unified tools that provide a consistent interface for interacting with all parts of AWS. You can use the AWS CLI or the aws-shell instead of the AWS Management Console to quickly run commands to interact with AWS, and some of these commands can only be run with the AWS CLI or the aws-shell.

For more information about the AWS CLI, see the AWS CLI User Guide. For the aws-shell, see the following resources:

- aws-shell on the GitHub website
- aws-shell on the pip website

For a list of commands you can run with the AWS CLI to interact with AWS, see the AWS CLI Command Reference. You use the same commands with the aws-shell, except that you start commands without the aws prefix.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install the AWS CLI, the aws-shell, or Both in Your Environment

In this step, you use the AWS Cloud9 IDE to install the AWS CLI, the aws-shell, or both in your environment so you can run commands to interact with AWS.

If you are using an AWS Cloud9 EC2 development environment and you only want to use the AWS CLI, you can skip ahead to Step 3: Run Some Basic Commands with the AWS CLI or the aws-shell in Your Environment (p. 329). This is because the AWS CLI is already installed in an EC2 environment, and a set of AWS access credentials is already set up in the environment. For more information, see AWS Managed Temporary Credentials (p. 446).

If you are not using an EC2 environment, do the following to install the AWS CLI:

1. With your environment open, in the IDE, check whether the AWS CLI is already installed. In the terminal, run the `aws --version` command. (To start a new terminal session, on the menu bar, choose **Window, New Terminal**.) If the AWS CLI is installed, the version number is displayed, with information such as the version numbers of Python and the operating system version number of your Amazon EC2 instance or your own server. If the AWS CLI is installed, skip ahead to Step 2: Set up Credentials Management in Your Environment (p. 329).

2. To install the AWS CLI, see Installing the AWS Command Line Interface in the AWS CLI User Guide. For example, for an EC2 environment running Amazon Linux, run these three commands, one at a time, in the terminal to install the AWS CLI.

   ```
 sudo yum -y update # Install the latest system updates.
 sudo yum -y install aws-cli # Install the AWS CLI.
 aws --version # Confirm the AWS CLI was installed.
   ```

Do the following to install the aws-shell:

1. With your environment open, in the IDE, check whether the aws-shell is already installed. In the terminal, run the `aws-shell --version` command. (To start a new terminal session, on the menu bar, choose **Window, New Terminal**.) If the aws-shell is installed, the `aws>` prompt is
Step 2: Set up Credentials Management in Your Environment

Each time you use the AWS CLI or the aws-shell to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS CLI or the aws-shell has the appropriate permissions to make that call. If the credentials don’t cover the appropriate permissions, the call will fail.

If you are using an AWS Cloud9 EC2 development environment, you can skip ahead to Step 3: Run Some Basic Commands with the AWS CLI or the aws-shell in Your Environment (p. 329). This is because credentials are already set up in an EC2 environment. For more information, see AWS Managed Temporary Credentials (p. 446).

If you are not using an EC2 environment, you must manually store your credentials within the environment. To do this, follow the instructions in Calling AWS Services from an Environment in AWS Cloud9 (p. 83), and then return to this topic.

Step 3: Run Some Basic Commands with the AWS CLI or the aws-shell in Your Environment

In this step, you use the AWS CLI or the aws-shell in your environment to create a bucket in Amazon S3, list your available buckets, and then delete the bucket.

1. If you want to use the aws-shell but haven’t started it yet, start the aws-shell by running the aws-shell command. The aws> prompt is displayed.

2. Create a bucket. Run the aws s3 mb command with the AWS CLI or s3 mb command with the aws-shell, supplying the name of the bucket to create. In this example, we use a bucket named
Step 4: Clean Up

cloud9-123456789012-bucket, where 123456789012 is your AWS account ID. If you use a different name, substitute it throughout this step.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws s3 mb s3://cloud9-123456789012-bucket</td>
<td>For the AWS CLI.</td>
</tr>
<tr>
<td>s3 mb s3://cloud9-123456789012-bucket</td>
<td>For the aws-shell.</td>
</tr>
</tbody>
</table>

**Note**

Bucket names must be unique across all of AWS, not just your AWS account. The preceding suggested bucket name can help you come up with a unique bucket name. If you get a message that contains the error **BucketAlreadyExists**, you must run the command again with a different bucket name.

3. List your available buckets. Run the **aws s3 ls** command with the AWS CLI or the **s3 ls** command with the aws-shell. A list of your available buckets is displayed.

4. Delete the bucket. Run the **aws s3 rb** command with the AWS CLI or the **s3 rb** command with the aws-shell, supplying the name of the bucket to delete.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws s3 rb s3://cloud9-123456789012-bucket</td>
<td>For the AWS CLI.</td>
</tr>
<tr>
<td>s3 rb s3://cloud9-123456789012-bucket</td>
<td>For the aws-shell.</td>
</tr>
</tbody>
</table>

To confirm whether the bucket was deleted, run the **aws s3 ls** command again with the AWS CLI or the **s3 ls** command again with the aws-shell. The name of the bucket that was deleted should no longer appear in the list.

**Note**

You don’t have to delete the bucket if you want to keep using it. For more information, see Add an Object to a Bucket in the Amazon S3 Getting Started Guide. See also **s3 commands** in the AWS CLI Command Reference. (Remember, if you don’t delete the bucket, it might result in ongoing charges to your AWS account.)

To continue experimenting with the AWS CLI, see Working with Amazon Web Services in the AWS CLI User Guide as well as the AWS CLI Command Reference. To continue experimenting with the aws-shell, see the AWS CLI Command Reference, noting that you start commands without the **aws** prefix.

**Step 4: Clean Up**

If you’re using the aws-shell, you can stop using it by running the **.exit** or **.quit** command.

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

**AWS CodeCommit Sample for AWS Cloud9**

This sample enables you to set up an AWS Cloud9 development environment to interact with a remote code repository in AWS CodeCommit. AWS CodeCommit is a source code control service that enables you to privately store and manage Git repositories in the AWS Cloud. For more information about AWS CodeCommit, see the AWS CodeCommit User Guide.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and AWS CodeCommit. For more information, see Amazon EC2 Pricing and AWS CodeCommit Pricing.

- Prerequisites (p. 331)
- Step 1: Set Up Your IAM Group with Required Access Permissions (p. 331)
**Prerequisites**

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

**Step 1: Set Up Your IAM Group with Required Access Permissions**

If your AWS credentials are associated with an IAM administrator user in your AWS account, and you want to use that user to work with AWS CodeCommit, skip ahead to Step 2: Create a Repository in AWS CodeCommit (p. 332).

You can complete this step using the AWS Management Console (p. 331) or the AWS Command Line Interface (AWS CLI) (p. 332).

**Set Up Your IAM Group with Required Access Permissions Using the Console**

1. Sign in to the AWS Management Console, if you are not already signed in.

   For this step, we recommend you sign in using credentials for an IAM administrator user in your AWS account. If you cannot do this, check with your AWS account administrator.

2. Open the IAM console. To do this, in the console's navigation bar, choose **Services**. Then choose **IAM**.

3. Choose **Groups**.

4. Choose the group's name.

5. On the **Permissions** tab, for **Managed Policies**, choose **Attach Policy**.

6. In the list of policy names, select one of the following boxes:

   - Select **AWSCodeCommitPowerUser** for access to all of the functionality of AWS CodeCommit and repository-related resources, except it does not allow deletion of AWS CodeCommit repositories or create or delete repository-related resources in other AWS services, such as Amazon CloudWatch Events.

   - Select **AWSCodeCommitFullAccess** for full control over AWS CodeCommit repositories and related resources in the AWS account, including the ability to delete repositories.

(If you don't see either of these policy names in the list, type the policy name in the **Filter** box to display it.)
Step 2: Create a Repository in AWS CodeCommit

In this step, you create a remote code repository in AWS CodeCommit by using the AWS CodeCommit console.

If you already have an AWS CodeCommit repository, skip ahead to Step 3: Connect Your Environment to the Remote Repository (p. 333).

You can complete this step using the AWS Management Console (p. 332) or the AWS Command Line Interface (AWS CLI) (p. 333).

Create a Repository in AWS CodeCommit Using the Console

1. If you are signed in to the AWS Management Console as an IAM administrator user from the previous step, and you do not want to use the IAM administrator user to create the repository, sign out of the AWS Management Console.
3. In the console's navigation bar, use the region selector to choose the AWS Region you want to create the repository in (for example, US East (Ohio)).
4. If a welcome page is displayed, choose Get started. Otherwise, choose Create repository.
5. On the Create repository page, for Repository name, type a name for your new repository, for example MyDemoCloud9Repo. If you choose a different name, substitute it throughout this sample.
6. (Optional) For Description, type something about the repository, for example This is a demonstration repository for the AWS Cloud9 sample.
7. Choose **Create repository**. A **Connect to your repository** pane is displayed. Choose **Close**, as you will connect to your repository in a different way later in this topic.

Skip ahead to **Step 3: Connect Your Environment to the Remote Repository (p. 333)**.

**Create a Repository in AWS CodeCommit Using the AWS CLI**

Run the AWS CodeCommit `create-repository` command, specifying the repository's name, an optional description, and the AWS Region to create the repository in, for example:

```
aws codecommit create-repository --repository-name MyDemoCloud9Repo --repository-description "This is a demonstration repository for the AWS Cloud9 sample." --region us-east-2
```

In the preceding command, replace `us-east-2` with the ID of the AWS Region to create the repository in. For a list of supported regions, see **AWS CodeCommit** in the *Amazon Web Services General Reference*.

If you choose to use a different repository name, substitute it throughout this sample.

**Step 3: Connect Your Environment to the Remote Repository**

In this step, you use the AWS Cloud9 IDE to connect to the AWS CodeCommit repository you created or identified in the previous step.

Complete one of the following sets of procedures, depending on the type of AWS Cloud9 development environment you have.

<table>
<thead>
<tr>
<th>Environment type</th>
<th>Follow these procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2 environment</td>
<td>1. From a terminal session in the IDE, run the following 2 commands:</td>
</tr>
<tr>
<td></td>
<td><code>git config --global credential.helper '!aws codecommit credential-helper @'</code></td>
</tr>
<tr>
<td></td>
<td><code>git config --global credential.UseHttpPath true</code></td>
</tr>
<tr>
<td></td>
<td>For more information, see <strong>Step 2: Configure the AWS CLI Credential Helper On Your AWS Cloud9 EC2 Development Environment</strong> in <em>Integrate AWS Cloud9 with AWS CodeCommit</em> in the <strong>AWS CodeCommit User Guide</strong>.</td>
</tr>
<tr>
<td></td>
<td>2. Skip ahead to <strong>Step 4: Clone the Remote Repository into Your Environment (p. 334)</strong>, later in this topic.</td>
</tr>
<tr>
<td>SSH environment</td>
<td>1. If Git is not already installed in the environment, use a terminal session in the IDE to install it. For more information, see <strong>Step 2: Install Git</strong> in <em>Setup Steps for SSH Connections to AWS CodeCommit Repositories on Linux, macOS, or Unix</em> in the <strong>AWS CodeCommit User Guide</strong>.</td>
</tr>
</tbody>
</table>
Step 4: Clone the Remote Repository into Your Environment

In this step, you use the AWS Cloud9 IDE to clone the remote repository in AWS CodeCommit into your environment.

To clone the repository, run the `git clone` command, supplying the repository's clone URL, shown here as `CLONE_URL`.

```
git clone CLONE_URL
```

For an EC2 environment, you supply an HTTPS clone URL that starts with `https://`. For an SSH environment, you supply an SSH clone URL that starts with `ssh://`.

To get the repository's full clone URL, see Use the AWS CodeCommit Console to View Repository Details in the AWS CodeCommit User Guide.

If your repository doesn't have any files in it, a warning message is displayed, such as You appear to have cloned an empty repository. This is expected behavior, which you will address later.

Step 5: Add Files to the Repository

In this step, you create three simple files in the cloned repository in your environment. Then you add the files to the Git staging area in your cloned repository, commit the staged files, and push the commit to your remote repository in AWS CodeCommit.

If the cloned repository already has files in it, you're done and can skip the rest of this sample.

To add files to the repository

2. Type the following content into the file, and then choose File, Save to save the file as `bird.txt` in the `MyDemoCloud9Repo` directory in your environment.

```
bird.txt

Birds are a group of endothermic vertebrates, characterized by feathers,
```
toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a lightweight but strong skeleton.

**Note**
To confirm you are saving this file in the correct directory, in the **Save As** dialog box, choose the **MyDemoCloud9Repo** folder, and be sure **Folder** displays `/MyDemoCloud9Repo`.

3. Create two more files, named `insect.txt` and `reptile.txt`, with the following content, and saving them in the same **MyDemoCloud9Repo** directory.

```
insect.txt

Insects are a class of invertebrates within the arthropod phylum that have a chitinous exoskeleton, a three-part body (head, thorax, and abdomen), three pairs of jointed legs, compound eyes, and one pair of antennae.
```

```
reptile.txt

Reptiles are tetrapod (four-limbed vertebrate) animals in the class Reptilia, comprising today’s turtles, crocodilians, snakes, amphisbaenians, lizards, tuatara, and their extinct relatives.
```

4. In the terminal, run the `cd` command to switch to the **MyDemoCloud9Repo** directory.

```
cd MyDemoCloud9Repo
```

5. Confirm the files were successfully saved in the **MyDemoCloud9Repo** directory by running the `git status` command. All three files will be listed as untracked files.

```
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 bird.txt
 insect.txt
 reptile.txt
```

6. Add the files to the Git staging area by running the `git add` command.

```
git add --all
```

7. Confirm the files were successfully added to the Git staging area by running the `git status` command again. All three files are now listed as changes to commit.

```
Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: bird.txt
 new file: insect.txt
 new file: reptile.txt
```

8. Commit the staged files by running the `git commit` command.

```
git commit -m "Added information about birds, insects, and reptiles."
```

9. Push the commit to your remote repository in AWS CodeCommit by running the `git push` command.

```
git push -u origin master
```
10. Confirm whether the files were successfully pushed. Open the AWS CodeCommit console, if it isn't already open, at https://console.aws.amazon.com/codecommit.
11. In the top navigation bar, near the right edge, choose the AWS Region where you created the repository (for example, US East (Ohio)).

To continue experimenting with your AWS CodeCommit repository, see Browse the Contents of Your Repository in the AWS CodeCommit User Guide.

If you're new to Git and you don't want to mess up your AWS CodeCommit repository, experiment with a sample Git repository on the Try Git website.

**Step 6: Clean Up**

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the AWS CodeCommit repository. For instructions, see Delete an AWS CodeCommit Repository in the AWS CodeCommit User Guide.

You should also delete the environment. For instructions, see Deleting an Environment (p. 108).

**GitHub Sample for AWS Cloud9**

This sample enables you to set up an AWS Cloud9 development environment to interact with a remote code repository in GitHub. For more information about GitHub, see the GitHub and GitHub Help websites.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2. For more information, see Amazon EC2 Pricing.

- Prerequisites (p. 336)
- Step 1: Create a GitHub Account (p. 337)
- Step 2: Create a GitHub Repository (p. 337)
- Step 3: Install Git in Your Environment (p. 337)
- Step 4: Clone the Remote Repository into Your Environment (p. 338)
- Step 5: Add Files to the Repository (p. 338)
- Step 6: Keep Working with the IDE and GitHub (p. 340)
- Step 7: Clean Up (p. 340)

**Prerequisites**

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.
Start with the following step, depending on what you already have.

<table>
<thead>
<tr>
<th>Do you have a GitHub account?</th>
<th>Do you have a GitHub repository?</th>
<th>Do you have Git installed?</th>
<th>Start with this step</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>--</td>
<td>--</td>
<td>Step 1: Create a GitHub Account (p. 337)</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>--</td>
<td>Step 2: Create a GitHub Repository (p. 337)</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No (or Not Sure)</td>
<td>Step 3: Install Git in Your Environment (p. 337)</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Step 4: Clone the Remote Repository into Your Environment (p. 338)</td>
</tr>
</tbody>
</table>

**Step 1: Create a GitHub Account**

If you already have a GitHub account, skip ahead to Step 2: Create a GitHub Repository (p. 337).

To create a GitHub account, see Join GitHub on the GitHub website.

**Step 2: Create a GitHub Repository**

If you already have a GitHub repository, skip ahead to Step 3: Install Git in Your Environment (p. 337).

To create the repository, see Create A Repo on the GitHub Help website.

**Step 3: Install Git in Your Environment**

In this step, you use the AWS Cloud9 IDE to install Git in your environment so that you can clone your remote repository into the environment later.

If you already have Git installed in your environment, skip ahead to Step 4: Clone the Remote Repository into Your Environment (p. 338). To check whether you already have Git installed, run the `git --version` command as described in this step.

1. With your environment open, in the AWS Cloud9 IDE, start a new terminal session, if one isn’t already started. (To start a new terminal session, on the menu bar, choose Window, New Terminal.)
2. Check whether Git is already installed. In the terminal, run the `git --version` command. If Git is installed, the version number is displayed, for example, `git version N.N.N`. The installed version must be 1.7.9 or later. If it is, skip ahead to step 4 in this procedure to set your Git name and email address.
3. To install Git, see Git Downloads on the Git website. For example, for an EC2 environment running Amazon Linux, run these three commands in the terminal, one at a time, to install Git:

```bash
sudo yum -y update # Install the latest system updates.
sudo yum -y install git # Install Git.
git --version # Confirm Git was installed.
```
Step 4: Clone the Remote Repository into Your Environment

In this step, you use the AWS Cloud9 IDE to clone the remote repository in GitHub into your environment.

To clone the repository, see Cloning a Repository on the GitHub website.

Note
The rest of this sample assumes the current working directory that you clone the repository into is the environment root directory. If you clone it somewhere else, substitute that location wherever you see /YOUR_CLONED_REPO_NAME.

Step 5: Add Files to the Repository

In this step, you create three simple files in the cloned repository in your environment. Then you add the files to the Git staging area in your cloned repository, commit the staged files, and push the commit to your remote repository in GitHub.

If the cloned repository already has files in it, skip ahead to Step 6: Keep Working with the IDE and GitHub (p. 340).


2. Type the following content into the file, and then choose File, Save to save the file as bird.txt in the /YOUR_CLONED_REPO_NAME directory in your environment.

bird.txt
--------
Birds are a group of endothermic vertebrates, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a lightweight but strong skeleton.

Note
To confirm you are saving this file in the correct directory, in the Save As dialog box, choose the YOUR_CLONED_REPO_NAME folder, and be sure Folder displays /YOUR_CLONED_REPO_NAME.

3. Create two more files, named insect.txt and reptile.txt, with the following content, saving them also in the same /YOUR_CLONED_REPO_NAME directory.

insect.txt
----------
Insects are a class of invertebrates within the arthropod phylum that have a chitinous exoskeleton, a three-part body (head, thorax, and abdomen), three pairs of jointed legs, compound eyes, and one pair of antennae.

reptile.txt
----------

Note

338
Step 5: Add Files to the Repository

4. In the terminal, run the `cd` command to switch to the `/YOUR_CLONED_REPO_NAME` directory.

```
cd YOUR_CLONED_REPO_NAME
```

5. Confirm the files were successfully saved in the `/YOUR_CLONED_REPO_NAME` directory by running the `git status` command. All three files are listed as untracked files.

```
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 bird.txt
 insect.txt
 reptile.txt
```

6. Add the files to the Git staging area by running the `git add` command.

```
git add --all
```

7. Confirm the files were successfully added to the Git staging area by running the `git status` command again. All three files are now listed as changes to commit.

```
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: bird.txt
 new file: insect.txt
 new file: reptile.txt
```

8. Commit the staged files by running the `git commit` command.

```
git commit -m "Added information about birds, insects, and reptiles."
```

9. Push the commit to your remote repository in AWS CodeCommit by running the `git push` command.

```
git push
```

**Note**

You are prompted for your GitHub user name and password. As you continue to work with GitHub, you might be prompted again. To keep from being prompted each time you try to interact with the remote repository in the future, consider installing and configuring a Git credentials manager. For example, you can run this command in the terminal to be prompted no sooner than every 15 minutes: `git config credential.helper 'cache --timeout 900'`. Or you can run this command to never be prompted again, although Git stores your credentials in clear text in a plain file in your home directory: `git config credential.helper 'store --file ~/.git-credentials'`. For more information, see [Git Tools - Credential Storage](https://git-scm.com/docs/git-credential) on the Git website.

If you use GitHub two-factor authentication, you must enter a personal access token whenever you are prompted for a password. If you enter a password instead of a personal access token, an "invalid user name or password" message is displayed, and the operation fails. For more information, see [Creating a personal access token for the command line](https://help.github.com/en/github/setting-up-and-configuring-github-access-tokens) on the GitHub Help website.

You will not see your password or personal access token whenever you enter it in the terminal. This is by design.
To confirm whether the files were successfully pushed from your local copy of the repository to the remote repository, open your repository in the GitHub console, and look for the three files you just pushed.

**Step 6: Keep Working with the IDE and GitHub**

Use the AWS Cloud9 IDE and GitHub to keep working with your code. Here are some things to try.

- Use the **Environment** window and editor tabs in the IDE to view, change, and save code. For more information, see Step 2.3: Environment Window (p. 28) and Step 2.4: Editor, Tabs, and Panes (p. 29) in the **IDE Tutorial for AWS Cloud9**.
- Use the IDE to run, debug, and build your code. For more information, see Working with Builders, Runners, and Debuggers (p. 138).
- Use Git in the terminal session in the IDE to continue pushing more code changes to the GitHub repository, as well as periodically pull code changes from others from the repository. For more information, see Pushing to a Remote and Fetching a remote on the GitHub Help website.
- Use additional Git commands as you need them. For a list of these commands, see Git cheatsheet on the GitHub Help website.
- If you're new to Git and you don't want to mess up your GitHub repository, experiment with a sample Git repository on the Try Git website.
- Invite others to work on your code with you in the same environment, in real time and with text chat. For more information, see Sharing an Environment (p. 93).

**Step 7: Clean Up**

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

To delete the GitHub repository, see Deleting a Repository on the GitHub Help website.

**Amazon DynamoDB Sample for AWS Cloud9**

This sample enables you to set up an AWS Cloud9 development environment to work with Amazon DynamoDB.

DynamoDB is a fully managed NoSQL database service. You can use DynamoDB to create a database table that can store and retrieve any amount of data, and serve any level of request traffic. DynamoDB automatically spreads the data and traffic for the table over a sufficient number of servers to handle the request capacity specified and the amount of data stored, while maintaining consistent and fast performance. For more information, see Amazon DynamoDB on the AWS website.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and DynamoDB. For more information, see Amazon EC2 Pricing and Amazon DynamoDB Pricing.

For information about additional AWS database offerings, see Amazon Relational Database Service (RDS), Amazon ElastiCache, and Amazon Redshift on the AWS website. See also AWS Database Migration Service on the AWS website.

- Prerequisites (p. 341)
- Step 1: Install and Configure the AWS CLI, the aws-shell, or Both in Your Environment (p. 341)
- Step 2: Create a Table (p. 342)
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.
- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

**Step 1: Install and Configure the AWS CLI, the aws-shell, or Both in Your Environment**

In this step, you use the AWS Cloud9 IDE to install and configure the AWS CLI, the aws-shell, or both in your environment so you can run commands to interact with DynamoDB. Then you use the AWS CLI to run a basic DynamoDB command to test your installation and configuration.

1. To set up credentials management for the AWS CLI or the aws-shell and to install the AWS CLI, the aws-shell, or both in your environment, follow Steps 1 and 2 in the AWS CLI and aws-shell Sample (p. 327), and then return to this topic. If you already installed and configured the AWS CLI, the aws-shell, or both in your environment, you don't need to do it again.
2. Test the installation and configuration of the AWS CLI, the aws-shell, or both by running the DynamoDB `list-tables` command from a terminal session in your environment to list your existing DynamoDB tables, if there are any. To start a new terminal session, on the menu bar, choose **Windows, New Terminal**.

```bash
aws dynamodb list-tables # For the AWS CLI.
dynamodb list-tables # For the aws-shell.
```

**Note**
Throughout this sample, if you're using the aws-shell, omit aws from each command that starts with aws. To start the aws-shell, run the `aws-shell` command. To stop using the aws-shell, run the `.exit` or `.quit` command.

If this command succeeds, it outputs a `TableNames` array containing a list of existing DynamoDB tables that you might already have. If you have no DynamoDB tables yet, the `TableNames` array will be empty.

```json
{
 "TableNames": []
}
```

If you do have any DynamoDB tables, the `TableNames` array contains a list of the table names.
Step 2: Create a Table

In this step, you create a table in DynamoDB and specify the table's name, layout, simple primary key, and data throughput settings.

This sample table, named Weather, contains information about weather forecasts for a few cities in the United States. The table holds the following types of information (in DynamoDB, each piece of information is known as an attribute):

- Required unique city ID (CityID)
- Required forecast date (Date)
- City name (City)
- State name (State)
- Forecast weather conditions (Conditions)
- Forecast temperatures (Temperatures)
  - Forecast high, in degrees Fahrenheit (HighF)
  - Forecast low, in degrees Fahrenheit (LowF)

To create the table, in a terminal session in the AWS Cloud9 IDE, run the DynamoDB `create-table` command.

```
aws dynamodb create-table \
 --table-name Weather \
 --attribute-definitions \
 AttributeName=CityID,AttributeType=N AttributeName=Date,AttributeType=S \
 --key-schema \
 AttributeName=CityID,KeyType=HASH AttributeName=Date,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5
```

In this command:

- `--table-name` represents the table name (Weather in this sample). Table names must be unique within each AWS Region in your AWS account.
- `--attribute-definitions` represents the attributes that are used to uniquely identify the table items. Each of this table's items are uniquely identified by a combination of a numerical ID attribute and a Date attribute represented as an ISO-8601 formatted string.
- `--key-schema` represents the table's key schema. This table has a composite primary key of CityID and Date. This means that each of the table items must have a CityID attribute value and a Date attribute value, but no two items in the table can have both the same CityID attribute value and Date attribute value.
- `--provisioned-throughput` represents the table's read-write capacity. DynamoDB allows up to 5 strongly consistent reads per second for items up to 4 KB in size, or up to 5 eventually consistent reads per second for items up to 4 KB in size. DynamoDB also allows up to 5 writes per second for items up to 1 KB in size.

**Note**

Setting higher provisioned throughput might result in additional charges to your AWS account.
For more information about this and other DynamoDB commands, see [dynamodb](https://docs.aws.amazon.com/cli/latest/reference/dynamodb/) in the AWS CLI Command Reference.

If this command succeeds, it displays summary information about the new table that is being created. To confirm the table is successfully created, run the DynamoDB `describe-table` command, specifying the table's name (`--table-name`).
Step 3: Add an Item to the Table

In this step, you add an item to the table you just created.

1. Create a file named `weather-item.json` with the following content. To create a new file, on the menu bar, choose File, New File. To save the file, choose File, Save.

```json
{
 "CityID": { "N": "1" },
 "Date": { "S": "2017-04-12" },
 "City": { "S": "Seattle" },
 "State": { "S": "WA" },
 "Conditions": { "S": "Rain" },
 "Temperatures": { "M": {
 "HighF": { "N": "59" },
 "LowF": { "N": "46" }
 }
}
```

In this code, \( N \) represents an attribute value that is a number. \( S \) is a string attribute value. \( M \) is a map attribute, which is a set of attribute-value pairs. You must specify an attribute's data type whenever you work with items. For additional available attribute data types, see Data Types in the Amazon DynamoDB Developer Guide.

2. Run the DynamoDB `put-item` command, specifying the table’s name (``--table-name``) and the path to the JSON-formatted item (``--item``).

```bash
aws dynamodb put-item \
--table-name Weather \
--item file://weather-item.json
```

If the command succeeds, it runs without error, and no confirmation message is displayed.

3. To confirm the table’s current contents, run the DynamoDB `scan` command, specifying the table’s name (``--table-name``).

```bash
aws dynamodb scan --table-name Weather
```

If the command succeeds, summary information about the table and the item you just added is displayed.

Step 4: Add Multiple Items to the Table

In this step, you add several more items to the Customers table.

1. Create a file named `more-weather-items.json` with the following content.

```json
{
 "Weather": [
 { "PutRequest": {
 "PutRequest": {
```

```bash
aws dynamodb scan --table-name Weather
```

If the command succeeds, summary information about the table and the item you just added is displayed.
"PutRequest": {
  "Item": {
    "CityID": { "N": "1" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Seattle" },
    "State": { "S": "WA" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "52" },
      "LowF": { "N": "43" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "1" },
    "Date": { "S": "2017-04-14" },
    "City": { "S": "Seattle" },
    "State": { "S": "WA" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "49" },
      "LowF": { "N": "43" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-12" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Thunderstorms" },
    "Temperatures": { "M": {
      "HighF": { "N": "59" },
      "LowF": { "N": "43" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
},
"PutRequest": {
  "Item": {
    "CityID": { "N": "2" },
    "Date": { "S": "2017-04-13" },
    "City": { "S": "Portland" },
    "State": { "S": "OR" },
    "Conditions": { "S": "Rain" },
    "Temperatures": { "M": {
      "HighF": { "N": "51" },
      "LowF": { "N": "41" }
    }
  }
}
In this code, 8 Item objects define the 8 items to add to the table, similar to the single item defined in the previous step. However, when you run the DynamoDB `batch-write-item` command in the ...
next step, you must provide a JSON-formatted object that includes each Item object in a containing PutRequest object. Then you must include those PutRequest objects in a parent array that has the same name as the table.

2. Run the DynamoDB batch-write-item command, specifying the path to the JSON-formatted items to add (--request-items).

```bash
aws dynamodb batch-write-item \
 --request-items file://more-weather-items.json
```

If the command succeeds, it displays the following message, confirming that the items were successfully added.

```json
{
 "UnprocessedItems": {}
}
```

3. To confirm the table's current contents, run the DynamoDB scan command again.

```bash
aws dynamodb scan --table-name Weather
```

If the command succeeds, 9 items are now displayed.

### Step 5: Create a Global Secondary Index

Running the DynamoDB scan command to get information about items can be slow, especially as a table grows in size or if the type of information you want to get is complex. You can create one or more secondary indexes to speed things up and make getting information easier. In this step, you learn about two types of secondary indexes that DynamoDB supports to do just that. These are known as a local secondary index and a global secondary index. Then you create a global secondary index.

To understand these secondary index types, you first need to know about primary keys, which uniquely identify a table's items. DynamoDB supports a simple primary key or a composite primary key. A simple primary key has a single attribute, and that attribute value must be unique for each item in the table. This attribute is also known as a partition key (or a hash attribute), which DynamoDB can use to partition items for faster access. A table can also have a composite primary key, which contains two attributes. The first attribute is the partition key, and the second is a sort key (also known as a range attribute). In a table with a composite primary key, any two items can have the same partition key value, but they cannot also have the same sort key value. The Weather table has a composite primary key.

A local secondary index has the same partition key as the table itself, but this index type can have a different sort key. A global secondary index can have a partition key and a sort key that are both different from the table itself.

For example, you can already use the primary key to access Weather items by CityID. To access Weather items by State, you could create a local secondary index that has a partition key of CityID (it must be the same as the table itself) and a sort key of State. To access Weather items by City, you could create a global secondary index that has a partition key of City and a sort key of Date.

You can create local secondary indexes only while you are creating a table. Because the Weather table already exists, you cannot add any local secondary indexes to it. However, you can add global secondary indexes. Practice adding one now.

**Note**

Creating secondary indexes might result in additional charges to your AWS account.

1. Create a file named `weather-global-index.json` with the following content.
AWS Cloud9 User Guide
Step 5: Create a Global Secondary Index

```json

[
 "Create": {
 "IndexName": "weather-global-index",
 "KeySchema": [
 {
 "AttributeName": "City",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Date",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "State",
 "Conditions",
 "Temperatures"
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 }
 }
 }
]
```

In this code:
- The name of the global secondary index is `weather-global-index`.
- The `City` attribute is the partition key (hash attribute), and the `Date` attribute is the sort key (range attribute).
- Projection defines the attributes to retrieve by default (in addition to the hash attribute and any range attribute) for every item matching a table search that uses this index. In this sample, the `State`, `Conditions`, `HighF` (part of `Temperatures`), and `LowF` (also part of `Temperatures`) attributes (as well as the `City` and `Date` attributes) are retrieved for every matching item.
- Similar to tables, a global secondary index must define its provisioned throughput settings.
- The `IndexName`, `KeySchema`, `Projection`, and `ProvisionedThroughput` settings must be contained in a `Create` object, which defines the global secondary index to create when you run the DynamoDB `update-table` command in the next step.

2. Run the DynamoDB `update-table` command.

```
aws dynamodb update-table \
 --table-name Weather \
 --attribute-definitions \
 AttributeName=City,AttributeType=S AttributeName=Date,AttributeType=S \
 --global-secondary-index-updates file://weather-global-index.json
```

In this command:
- `--table-name` is the name of the table to update.
- `--attribute-definitions` are the attributes to include in the index. The partition key is always listed first, and any sort key is always listed second.
- `--global-secondary-index-updates` is the path to the file that defines the global secondary index.
If this command succeeds, it displays summary information about the new global secondary index that is being created. To confirm the global secondary index is successfully created, run the DynamoDB `describe-table` command, specifying the table's name (`--table-name`).

```
aws dynamodb describe-table --table-name Weather
```

When the global secondary index is successfully created, the `TableStatus` value changes from `UPDATING` to `ACTIVE`, and the `IndexStatus` value changes from `CREATING` to `ACTIVE`. Do not proceed past this step until the global secondary index is successfully created. This can take several minutes.

### Step 6: Get Items from the Table

There are many ways to get items from tables. In this step, you get items by using the table's primary key, by using the table's other attributes, and by using the global secondary index.

#### To get a single item from a table based on the item's primary key value

If you know an item's primary key value, you can get the matching item by running the DynamoDB command `get-item`, `scan`, or `query`. The following are the main differences in these commands:

- **get-item** returns a set of attributes for the item with the given primary key.
- **scan** returns one or more items and item attributes by accessing every item in a table or a secondary index.
- **query** finds items based on primary key values. You can query any table or secondary index that has a composite primary key (a partition key and a sort key).

In this sample, here's how to use each of these commands to get the item that contains the `CityID` attribute value of 1 and the `Date` attribute value of 2017-04-12.

1. To run the DynamoDB `get-item` command, specify the name of the table (`--table-name`), the primary key value (`--key`), and the attribute values for the item to display (`--projection-expression`). Because `Date` is a reserved keyword in DynamoDB, you must also provide an alias for the `Date` attribute value (`--expression-attribute-names`). (`State` is also a reserved keyword, and so you will see an alias provided for it in later steps.)

   ```
 aws dynamodb get-item
 --table-name Weather
 --key '{ "CityID": { "N": "1" }, "Date": { "S": "2017-04-12" } }'
 --projection-expression
 "City, #D, Conditions, Temperatures.HighF, Temperatures.LowF"
 --expression-attribute-names '{ "#D": "Date" }'
   ```

   In this and the other commands, to display all of the item's attributes, don't include `--projection-expression`. In this example, because you are not including `--projection-expression`, you also don't need to include `--expression-attribute-names`.

   ```
 aws dynamodb get-item
 --table-name Weather
 --key '{ "CityID": { "N": "1" }, "Date": { "S": "2017-04-12" } }'
   ```

2. To run the DynamoDB `scan` command, specify:
Step 6: Get Items from the Table

• The name of the table (--table-name).
• The search to run (--filter-expression).
• The search criteria to use (--expression-attribute-values).
• The kinds of attributes to display for the matching item (--select).
• The attribute values for the item to display (--projection-expression).
• If any of your attributes are using reserved keywords in DynamoDB, aliases for those attributes (--expression-attribute-names).

```bash
aws dynamodb scan
 --table-name Weather \
 --filter-expression "((CityID = :cityID) and (#D = :date))" \
 --expression-attribute-values \
 '{ ':cityID}: { "N": "1" }, #:date: { "S": "2017-04-12" } }' \
 --select SPECIFIC_ATTRIBUTES \
 --projection-expression \
 "City, #:D, Conditions, Temperatures.HighF, Temperatures.LowF" \
 --expression-attribute-names '{ ':D: "Date" }'
```

3. To run the DynamoDB query command, specify:

• The name of the table (--table-name).
• The search to run (--key-condition-expression).
• The attribute values to use in the search (--expression-attribute-values).
• The kinds of attributes to display for the matching item (--select).
• The attribute values for the item to display (--projection-expression).
• If any of your attributes are using reserved keywords in DynamoDB, aliases for those attributes (--expression-attribute-names).

```bash
aws dynamodb query
 --table-name Weather \
 --key-condition-expression "((CityID = :cityID) and (#D = :date))" \
 --expression-attribute-values \
 '{ ':cityID}: { "N": "1" }, #:date: { "S": "2017-04-12" } }' \
 --select SPECIFIC_ATTRIBUTES \
 --projection-expression \
 "City, #:D, Conditions, Temperatures.HighF, Temperatures.LowF" \
 --expression-attribute-names '{ ':D: "Date" }'
```

Notice that the scan command needed to scan all 9 items to get the result, while the query command only needed to scan for 1 item.

To get multiple items from a table based on the items' primary key values

If you know the items' primary key values, you can get the matching items by running the DynamoDB batch-get-item command. In this sample, here's how to get the items that contain the CityID attribute value of 3 and Date attribute values of 2017-04-13 or 2017-04-14.

Run the DynamoDB batch-get-item command, specifying the path to a file describing the items to get (--request-items).

```bash
aws dynamodb batch-get-item --request-items file://batch-get-item.json
```
For this sample, the code in the batch-get-item.json file specifies to search the Weather table for items with a CityID of 3 and a Date of 2017-04-13 or 2017-04-14. For each item found, the attribute values for City, State, Date, and HighF (part of Temperatures) are displayed, if they exist.

```json
{
 "Weather" : {
 "Keys": [
 {
 "CityID": { "N": "3" },
 "Date": { "S": "2017-04-13" }
 },
 {
 "CityID": { "N": "3" },
 "Date": { "S": "2017-04-14" }
 }
],
 "ProjectionExpression": "City, #S, #D, Temperatures.HighF",
 "ExpressionAttributeNames": { "#S": "State", "#D": "Date" }
 }
}
```

To get all matching items from a table

If you know something about the attributes' values in the table, you can get matching items by running the DynamoDB scan command. In this sample, here's how to get the dates when the Conditions attribute value contains Sunny and the HighF attribute value (part of Temperatures) is greater than 53.

Run the DynamoDB scan command, specifying:

- The name of the table (`--table-name`).
- The search to run (`--filter-expression`).
- The search criteria to use (`--expression-attribute-values`).
- The kinds of attributes to display for the matching item (`--select`).
- The attribute values for the item to display (`--projection-expression`).
- If any of your attributes are using reserved keywords in DynamoDB, aliases for those attributes (`--expression-attribute-names`).

```
aws dynamodb scan \
 --table-name Weather \
 --filter-expression \
 "(contains (Conditions, :sun)) and (Temperatures.HighF > :h)" \
 --expression-attribute-values \
 '{ "sun": { "S": "Sunny" }, "h": { "N": "53" } }' \
 --select SPECIFIC_ATTRIBUTES \
 --projection-expression "City, #S, #D, Conditions, Temperatures.HighF" \
 --expression-attribute-names '{ "#S": "State", "#D": "Date" }'
```

To get all matching items from a global secondary index

To search using a global secondary index, use the DynamoDB query command. In this sample, here’s how to use the weather-global-index secondary index to get the forecast conditions for cities named Portland for the dates of 2017-04-13 and 2017-04-14.

Run the DynamoDB query command, specifying:

- The name of the table (`--table-name`).
Step 7: Clean Up

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the table. Deleting the table deletes the global secondary index as well. You should also delete your environment.

To delete the table, run the DynamoDB `delete-table` command, specifying the table's name (`--table-name`).

```
aws dynamodb delete-table --table-name Weather
```

If the command succeeds, information about the table is displayed, including the `TableStatus` value of `DELETING`.

To confirm the table is successfully deleted, run the DynamoDB `describe-table` command, specifying the table's name (`--table-name`).

```
aws dynamodb describe-table --table-name Weather
```

If the table is successfully deleted, a message containing the phrase `Requested resource not found` is displayed.

To delete your environment, see Deleting an Environment (p. 108).

Java Sample for AWS Cloud9

This sample enables you to run some Java code in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 352)
- Step 1: Install Required Tools (p. 352)
- Step 2: Add Code (p. 353)
- Step 3: Build and Run the Code (p. 353)
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- You must have an existing AWS Cloud9 development environment. This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.
- You have the AWS Cloud IDE for the existing environment already open. When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install a set of Java development tools in your AWS Cloud9 development environment. If you already have a set of Java development tools such as the Oracle JDK or OpenJDK installed in your environment, you can skip ahead to Step 2: Add Code (p. 353). This sample was developed with OpenJDK 8, which you can install in your environment by completing the following procedure.

1. Confirm whether OpenJDK 8 is already installed. To do this, in a terminal session in the AWS Cloud9 IDE, run the command line version of the Java runner with the \texttt{-version} option. (To start a new terminal session, on the menu bar, choose Window, New Terminal.)

   ```
 java -version
   ```

   Based on the output of the preceding command, do one of the following:
   - If the output states that the \texttt{java} command isn't found, continue with step 2 in this procedure to install Open JDK 8.
   - If the output contains values starting with \texttt{Java(TM), Java Runtime Environment, Java SE, J2SE, or Java2}, the OpenJDK isn't installed or isn't set as the default Java development toolset. Continue with step 2 in this procedure to install OpenJDK 8, and then switch to using OpenJDK 8.
   - If the output contains values starting with \texttt{java version 1.8} and \texttt{OpenJDK}, skip ahead to Step 2: Add Code (p. 353). OpenJDK 8 is installed correctly for this sample.
   - If the output contains a \texttt{java version} less than 1.8 and values starting with \texttt{OpenJDK}, continue with step 2 in this procedure to upgrade the installed OpenJDK version to OpenJDK 8.

2. Ensure the latest security updates and bug fixes are installed. To do this, run the yum tool with the \texttt{update} command.

   ```
 sudo yum -y update
   ```

3. Install OpenJDK 8. To do this, run the yum tool with the \texttt{install} command, specifying the OpenJDK 8 package.

   ```
 sudo yum -y install java-1.8.0-openjdk-devel
   ```
For more information, see How to download and install prebuilt OpenJDK packages on the OpenJDK website.

4. Switch or upgrade the default Java development toolset to OpenJDK 8. To do this, run the `update-alternatives` command with the `--config` option. Run this command twice to switch or upgrade the command line versions of the Java runner and compiler.

```
sudo update-alternatives --config java
sudo update-alternatives --config javac
```

At each prompt, type the selection number for OpenJDK 8 (the one that contains `java-1.8`).

5. Confirm that the command line versions of the Java runner and compiler are using OpenJDK 8. To do this, run the command line versions of the Java runner and compiler with the `--version` option.

```
java --version
javac --version
```

If OpenJDK 8 is installed and set correctly, the Java runner version output contains a value starting with `openjdk version 1.8`, and the Java compiler version output starts with the value `javac 1.8`.

### Step 2: Add Code

In the AWS Cloud9 IDE, create a file with the following code, and save the file with the name `hello.java`. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save.)

```java
public class hello {
 public static void main(String []args) {
 System.out.println("Hello, World!");
 System.out.println("The sum of 2 and 3 is 5.");
 int sum = Integer.parseInt(args[0]) + Integer.parseInt(args[1]);
 System.out.format("The sum of %s and %s is %s.
 args[0], args[1], Integer.toString(sum));
 }
}
```

### Step 3: Build and Run the Code

1. Use the command line version of the Java compiler to compile the `hello.java` file into a `hello.class` file. To do this, using the terminal in the AWS Cloud9 IDE, from the same directory as the `hello.java` file, run the Java compiler, specifying the `hello.java` file.

```
javac hello.java
```

2. Use the command line version of the Java runner to run the `hello.class` file. To do this, from the same directory as the `hello.class` file, run the Java runner, specifying the name of the `hello` class that was declared in the `hello.java` file, with two integers to add (for example, 5 and 9).

```
java hello 5 9
```

3. Compare your output.
Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.

Step 4: Set Up to Use the AWS SDK for Java

You can enhance this sample to use the AWS SDK for Java to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install Apache Maven or Gradle in your environment. Maven and Gradle are common build automation systems that can be used with Java projects. After you install Maven or Gradle, you use it to generate a new Java project. In this new project, you add a reference to the AWS SDK for Java. This AWS SDK for Java provides a convenient way to interact with AWS services such as Amazon S3, from your Java code.

- Set Up With Maven (p. 354)
- Set Up With Gradle (p. 356)

Set Up With Maven

1. Install Maven in your environment. To see whether Maven is already installed, using the terminal in the AWS Cloud9 IDE, run Maven with the -version option.

   mvn -version

   If successful, the output contains the Maven version number. If Maven is already installed, skip ahead to step 4 in this procedure to use Maven to generate a new Java project in your environment.

2. Install Maven by using the terminal to run the following commands. These commands get information about the package repository where Maven is stored, and then use this information to install Maven.

   `sudo sed -i s/$releasever/6/g /etc/yum.repos.d/epel-apache-maven.repo`
   `sudo yum install -y apache-maven`

   For more information about the preceding commands, see Extra Packages for Enterprise Linux (EPEL) on the Fedora Project Wiki website.

3. Confirm the installation by running Maven with the -version option.

   mvn -version

4. Use Maven to generate a new Java project. To do this, use the terminal to run the following command from the directory where you want Maven to generate the project (for example, the root directory of your environment).

   `mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false`

   The preceding command creates the following directory structure for the project in your environment.

   my-app
For more information about the preceding directory structure, see Maven Quickstart Archetype and Introduction to the Standard Directory Layout on the Apache Maven Project website.

5. Modify the Project Object Model (POM) file for the project. (A POM file defines a Maven project's settings.) To do this, from the Environment window, open the my-app/pom.xml file. In the editor, replace the file's current contents with the following code, and then save the pom.xml file.

```xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>3.0.0</version>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.mycompany.app.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>
```
The preceding POM file includes project settings that specify declarations such as the following:

- The artifactId setting of my-app sets the project's root directory name, and the groupId setting of com.mycompany.app sets the com/mycompany/app subdirectory structure and the package declaration in the App.Java and AppTest.java files.
- The artifactId setting of my-app, with the packaging setting of jar, the version setting of 1.0-SNAPSHOT, and the descriptorRef setting of jar-with-dependencies set the output JAR file's name of my-app-1.0-SNAPSHOT-jar-with-dependencies.jar.
- The plugin section declares that a single JAR, which includes all dependencies, will be built.
- The dependency section with the groupId setting of com.amazonaws and the artifactId setting of aws-java-sdk includes the AWS SDK for Java library files. The AWS SDK for Java version to use is declared by the version setting. To use a different version, replace this version number.

Skip ahead to Step 5: Set Up AWS Credentials Management in Your Environment (p. 358).

Set Up With Gradle

1. Install Gradle in your environment. To see whether Gradle is already installed, using the terminal in the AWS Cloud9 IDE, run Gradle with the -version option.

   gradle -version

   If successful, the output contains the Gradle version number. If Gradle is already installed, skip ahead to step 4 in this procedure to use Gradle to generate a new Java project in your environment.

2. Install Gradle by using the terminal to run the following commands. These commands install and run the SDKMAN! tool, and then use SDKMAN! to install the latest version of Gradle.

   curl -s "https://get.sdkman.io" | bash
   source "$HOME/.sdkman/bin/sdkman-init.sh"
   sdk install gradle

   For more information about the preceding commands, see Installation on the SDKMAN! website and Install with a package manager on the Gradle website.

3. Confirm the installation by running Gradle with the -version option.

   gradle -version

4. Use Gradle to generate a new Java project in your environment. To do this, use the terminal to run the following commands to create a directory for the project, and then switch to that directory.

   mkdir my-app
   cd my-app

5. Run the following command to have Gradle generate a new Java application project in the my-app directory in your environment.
Step 4: Set Up to Use the AWS SDK for Java

```
gradle init --type java-application
```

The preceding command creates the following directory structure for the project in your environment.

```
my-app
|-- .gradle
| `-- (various supporting project folders and files)
| `-- gradle
| `-- (various supporting project folders and files)
|-- src
| |-- main
| `-- java
| `-- App.java
| `-- test
| `-- java
| `-- AppTest.java
|-- build.gradle
|-- gradlew
|-- gradlew.bat
| `-- settings.gradle
```

6. Modify the `AppTest.java` for the project. (If you do not do this, the project might not build or run as expected). To do this, from the Environment window, open the `my-app/src/test/java/AppTest.java` file. In the editor, replace the file's current contents with the following code, and then save the `AppTest.java` file.

```
import org.junit.Test;
import static org.junit.Assert.*;

public class AppTest {
 @Test public void testAppExists () {
 try {
 Class.forName("com.mycompany.app.App");
 } catch (ClassNotFoundException e) {
 fail("Should have a class named App.");
 }
 }
}
```

7. Modify the `build.gradle` file for the project. (A build.gradle file defines a Gradle project's settings.) To do this, from the Environment window, open the `my-app/build.gradle` file. In the editor, replace the file's current contents with the following code, and then save the `build.gradle` file.

```
apply plugin: 'java'
apply plugin: 'application'

repositories {
 jcenter()
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.3.RELEASE"
 }
}
```
The preceding build.gradle file includes project settings that specify declarations such as the following:

- The io.spring.dependency-management plugin is used to import the AWS SDK for Java Maven Bill of Materials (BOM) to manage AWS SDK for Java dependencies for the project. classpath declares the version to use. To use a different version, replace this version number.
- com.amazonaws:aws-java-sdk-s3 includes the Amazon S3 portion of the AWS SDK for Java library files. mavenBom declares the version to use. If you want to use a different version, replace this version number.

### Step 5: Set Up AWS Credentials Management in Your Environment

Each time you use the AWS SDK for Java to call an AWS service, you must provide a set of AWS credentials with the call. These credentials determine whether the AWS SDK for Java has the appropriate permissions to make that call. If the credentials don’t cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java Developer Guide.

### Step 6: Add AWS SDK Code

In this step, you add code to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created.

From the Environment window, open the my-app/src/main/java/com/mycompany/app/App.java file for Maven or the my-app/src/main/java/App.java file for Gradle. In the editor, replace the file's current contents with the following code, and then save the App.java file.
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import java.util.List;

public class App 
{

    private static AmazonS3 s3;

    public static void main( String[] args )
    {
        if (args.length < 2) {
            System.out.format("Usage: <the bucket name> <the AWS Region to use>\n" +
                "Example: my-test-bucket us-east-2\n");
            return;
        }

        String bucket_name = args[0];
        String region = args[1];

        s3 = AmazonS3ClientBuilder.standard()
                .withCredentials(new ProfileCredentialsProvider())
                .withRegion(region)
                .build();

        // List current buckets.
        ListMyBuckets();

        // Create the bucket.
        if (!s3.doesBucketExistV2(bucket_name)) {
            System.out.format("\nCreating a new bucket named '%s'...
", bucket_name);
            try {
                s3.createBucket(new CreateBucketRequest(bucket_name, region));
            } catch (AmazonS3Exception e) {
                System.err.println(e.getErrorMessage());
            }
        } else {
            System.out.format("\nCannot create the bucket. \n" +
                "A bucket named '%s' already exists.", bucket_name);
            return;
        }

        // Confirm that the bucket was created.
        ListMyBuckets();

        // Delete the bucket.
        try {
            System.out.format("\nDeleting the bucket named '%s'...
", bucket_name);
            s3.deleteBucket(bucket_name);
        } catch (AmazonS3Exception e) {
            System.err.println(e.getErrorMessage());
        }

        // Confirm that the bucket was deleted.
        ListMyBuckets();
    }

    private static void ListMyBuckets() {
        List<Bucket> buckets = s3.listBuckets();
        System.out.println("My buckets now are:");
        for (Bucket b : buckets) {
            System.out.println(b.getName());
        }
    }
}
Step 7: Build and Run the AWS SDK Code

To run the code from the previous step, run the following commands from the terminal. These commands use Maven or Gradle to create an executable JAR file for the project, and then use the Java runner to run the JAR. The JAR runs with the name of the bucket to create in Amazon S3 (for example, my-test-bucket) and the ID of the AWS Region to create the bucket in as input (for example, us-east-2).

For Maven, run the following commands.

```bash
cd my-app
mvn package
```

For Gradle, run the following commands.

```bash
gradle build
gradle run -PappArgs="["my-test-bucket", "us-east-2"]"
```

Compare your results to the following output.

```
My buckets now are:
Creating a new bucket named 'my-test-bucket'...
My buckets now are:
my-test-bucket
Deleting the bucket named 'my-test-bucket'...
My buckets now are:
```

Step 8: Clean Up

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Delete an Environment (p. 108).

C++ Sample for AWS Cloud9

This sample enables you to run some C++ code in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 361)
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install and configure the GNU Compiler Collection (GCC), which is required to run this sample.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether GCC is already installed by running the `g++ --version` command. (To start a new terminal session, on the menu bar, choose **Window, New Terminal**.) If successful, the output contains the GCC version number. Otherwise, an error message should be output. If GCC is installed, skip ahead to Step 2: Add Code (p. 361).

2. Run the `yum update` command to help ensure the latest security updates and bug fixes are installed.

   ```bash
 sudo yum -y update
   ```

3. To install GCC, run the `yum install` command.

   ```bash
 sudo yum -y install gcc-c++
   ```

4. Confirm that GCC is now successfully installed by running the `g++ --version` command. If successful, the output contains the GCC version number.

Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `hello.cpp`. (To create a file, on the menu bar, choose **File, New File.** To save the file, choose **File, Save.**)

```cpp
#include <iostream>
#include <stdlib.h>
```
int main( int argc, char *argv[] )
{
    std::cout << "Hello, World!\n";
    std::cout << "The sum of 2 and 3 is 5.\n";

    if (argc > 2) {
        std::cout << "The sum of " << argv[1] << " and " << argv[2] << " is " << atoi(argv[1]) + atoi(argv[2]) << ".\n";
    }

    return 0;
}

Step 3: Run the Code

1. Compile the hello.cpp source code into an object module, and then link the object module into a program named hello. Do this by choosing Run, Build System, G++ followed by Run, Build on the menu bar.

   **Note**
   If G++ is not available, you can create a custom builder for G++.
   a. Choose Run, Build System, New Build System on the menu bar.
   b. On the My Builder.build tab, replace the tab's contents with this code.

   ```json
 {
 "cmd": ["g++", "-o", "$file_base_name", "$file_name"],
 "info": "Compiling $file_name and linking to $file_base_name...",
 "selector": "source.cpp"
 }
   ```
   c. Choose File, Save As on the menu bar, and then save the file as G++.build in the /.c9/builders folder.
   d. Choose the hello.cpp tab to make it active.
   e. Choose Run, Build System, G++ followed by Run, Build.

2. In the AWS Cloud9 IDE, run the code by choosing Run, Run Configurations, New Run Configuration on the menu bar.


   **Note**
   If C++ isn't available, you can create a custom runner for C++.
   b. On the My Runner.run tab, replace the tab's contents with this code.

   ```json
 {
 "cmd" : ["$file", "$args"],
 "info" : "Running $project_path$file_name...",
 "selector" : "source"
 }
   ```
   c. Choose File, Save As on the menu bar, and then save the file as C++.run in the /.c9/runners folder.

4. For Command, type hello 5 9. In the code, 5 represents argv[1], and 9 represents argv[2].

5. Choose the Run button, and compare your output.

   Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.

Step 4: Install and Configure the AWS SDK for C++

You can enhance this sample to use the AWS SDK for C++ to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for C++, which provides a convenient way to interact with AWS services, such as Amazon S3, from your C++ code. Before you install the AWS SDK for C++, you must install some dependencies. After you install the AWS SDK for C++, you must set up credentials management in your environment. The AWS SDK for C++ needs these credentials to interact with AWS services.

Note
The following steps require your environment to be running on an Amazon EC2 instance or your own server that has at least 4 GB of RAM.

To install AWS SDK for C++ dependencies

From a terminal session in the AWS Cloud9 IDE, run the following command to install several packages that the AWS SDK for C++ depends on to run correctly.

```bash
sudo yum -y install libcurl-devel openssl-devel libuuid-devel cmake3
```

To download and extract the AWS SDK for C++ source code

1. Run the `wget` command, specifying the location of the AWS SDK for C++ source.

   ```bash
 wget https://github.com/aws/aws-sdk-cpp/archive/master.zip
   ```

2. Run the `unzip` command, specifying the name of the .zip file you just downloaded.

   ```bash
 unzip master.zip
   ```

3. Run the `rm` command to delete the .zip file, as you no longer need it.

   ```bash
 rm master.zip
   ```

To build the AWS SDK for C++

Note
This step could take up to one or more hours to complete, depending on the computing resources available to your Amazon EC2 instance or your own server and how much of the AWS SDK for C++ you choose to build.

1. Create a folder to build the AWS SDK for C++ into.

   ```bash
 mkdir sdk_build
   ```

2. Switch to the folder you just created.

   ```bash
 cd sdk_build
   ```
3. Prepare to build the AWS SDK for C++ into this folder.

```
cmake3 ../aws-sdk-cpp-master
```

**Note**
To build only the Amazon S3 portion of the AWS SDK for C++ and its dependencies, run this command instead:

```
cmake3 ../aws-sdk-cpp-master -DBUILD_ONLY="s3"
```

4. Build the AWS SDK for C++ into this folder.

```
make
```

5. After the AWS SDK for C++ successfully builds, switch to the root of your environment.

```
cd ..
```

**To set up credentials management in your environment**

Each time you use the AWS SDK for C++ to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for C++ has the appropriate permissions to make that call. If the credentials don't cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Providing AWS Credentials in the AWS SDK for C++ Developer Guide.

**Step 5: Add AWS SDK Code**

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

1. In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `s3-demo.cpp` at the root (`/`) of your environment.

```cpp
#include <aws/core/Aws.h>
#include <aws/s3/S3Client.h>
#include <aws/s3/model/Bucket.h>
#include <aws/s3/model/CreateBucketConfiguration.h>
#include <aws/s3/model/CreateBucketRequest.h>
#include <aws/s3/model/DeleteBucketRequest.h>
#include <string>

bool ListMyBuckets(Aws::S3::S3Client s3_client);
bool CreateMyBucket(Aws::S3::S3Client s3_client, Aws::String bucket_name, Aws::S3::Model::BucketLocationConstraint region);
bool DeleteMyBucket(Aws::S3::S3Client s3_client, Aws::String bucket_name);
void Cleanup(Aws::SDKOptions options);

int main(int argc, char** argv) {
 if (argc < 3) {
 std::cout << "Usage: ./s3-demo <the bucket name> <the AWS Region to use>" << std::endl;
 std::cout << "Example: ./s3-demo my-test-bucket us-west-1" << std::endl;
 }
 // Rest of the code
```
return false;
}

Aws::String bucket_name = argv[1];
Aws::Client::ClientConfiguration client_configuration;
Aws::S3::Model::BucketLocationConstraint region;

// Set the AWS Region to use, based on the user's AWS Region input ID.
if (strcmp(argv[2], "ap-northeast-1") == 0) {
    client_configuration.region = Aws::Region::AP_NORTHEAST_1;
    region = Aws::S3::Model::BucketLocationConstraint::ap_northeast_1;
} else if (strcmp(argv[2], "ap-northeast-2") == 0) {
    client_configuration.region = Aws::Region::AP_NORTHEAST_2;
    region = Aws::S3::Model::BucketLocationConstraint::ap_northeast_2;
} else if (strcmp(argv[2], "ap-south-1") == 0) {
    client_configuration.region = Aws::Region::AP_SOUTH_1;
    region = Aws::S3::Model::BucketLocationConstraint::ap_south_1;
} else if (strcmp(argv[2], "ap-southeast-1") == 0) {
    client_configuration.region = Aws::Region::AP_SOUTHEAST_1;
    region = Aws::S3::Model::BucketLocationConstraint::ap_southeast_1;
} else if (strcmp(argv[2], "ap-southeast-2") == 0) {
    client_configuration.region = Aws::Region::AP_SOUTHEAST_2;
    region = Aws::S3::Model::BucketLocationConstraint::ap_southeast_2;
} else if (strcmp(argv[2], "cn-north-1") == 0) {
    client_configuration.region = Aws::Region::CN_NORTH_1;
    region = Aws::S3::Model::BucketLocationConstraint::cn_north_1;
} else if (strcmp(argv[2], "eu-central-1") == 0) {
    client_configuration.region = Aws::Region::EU_CENTRAL_1;
    region = Aws::S3::Model::BucketLocationConstraint::eu_central_1;
} else if (strcmp(argv[2], "eu-west-1") == 0) {
    client_configuration.region = Aws::Region::EU_WEST_1;
    region = Aws::S3::Model::BucketLocationConstraint::eu_west_1;
} else if (strcmp(argv[2], "sa-east-1") == 0) {
    client_configuration.region = Aws::Region::SA_EAST_1;
    region = Aws::S3::Model::BucketLocationConstraint::sa_east_1;
} else if (strcmp(argv[2], "us-west-1") == 0) {
    client_configuration.region = Aws::Region::US_WEST_1;
    region = Aws::S3::Model::BucketLocationConstraint::us_west_1;
} else if (strcmp(argv[2], "us-west-2") == 0) {
    client_configuration.region = Aws::Region::US_WEST_2;
    region = Aws::S3::Model::BucketLocationConstraint::us_west_2;
} else {
    std::cout << "Unrecognized AWS Region ID " " << argv[2] << "" << std::endl;
    return false;
}

Aws::SDKOptions options;
Aws::InitAPI(options);
{
    Aws::S3::S3Client s3_client(client_configuration);
    if (!ListMyBuckets(s3_client)) {
        Cleanup(options);
    }
    if (!CreateMyBucket(s3_client, bucket_name, region)) {
        Cleanup(options);
    }
    if (!ListMyBuckets(s3_client)) {
        Cleanup(options);
    }
    if (!DeleteMyBucket(s3_client, bucket_name)) {
        Cleanup(options);
    }
}
if (!ListMyBuckets(s3_client)) {
    Cleanup(options);
}
Cleanup(options);

// List all of your available buckets.
bool ListMyBuckets(Aws::S3::S3Client s3_client) {
    auto outcome = s3_client.ListBuckets();

    if (outcome.IsSuccess()) {
        std::cout << "My buckets now are:
        " << std::endl;
        AWS::Vector<Aws::S3::Model::Bucket> bucket_list =
            outcome.GetResult().GetBuckets();
        for (auto const &bucket: bucket_list) {
            std::cout << bucket.GetName() << std::endl;
        }
        std::cout << std::endl;
        return true;
    } else {
        std::cout << "ListBuckets error: "
            << outcome.GetError().GetExceptionName() << std::endl
            << outcome.GetError().GetMessage() << std::endl;
        return false;
    }
}

// Create a bucket in this AWS Region.
bool CreateMyBucket(Aws::S3::S3Client s3_client, Aws::String bucket_name,
    Aws::S3::Model::BucketLocationConstraint region) {
    std::cout << "Creating a new bucket named "
        << bucket_name
        << "...
        " << std::endl;
    Aws::S3::Model::CreateBucketConfiguration bucket_configuration;
    bucket_configuration.WithLocationConstraint(region);
    Aws::S3::Model::CreateBucketRequest bucket_request;
    bucket_request.WithBucket(bucket_name).WithCreateBucketConfiguration(bucket_configuration);
    auto outcome = s3_client.CreateBucket(bucket_request);
    if (outcome.IsSuccess()) {
        return true;
    } else {
        std::cout << "CreateBucket error: "
            << outcome.GetError().GetExceptionName() << std::endl
            << outcome.GetError().GetMessage() << std::endl;
        return false;
    }
}

// Delete the bucket you just created.
bool DeleteMyBucket(Aws::S3::S3Client s3_client, Aws::String bucket_name) {
    std::cout << "Deleting the bucket named "
        << bucket_name
        << "...
        " << std::endl;

Step 6: Build and Run the AWS SDK Code

2. Create a file with this content, and save the file with the name CMakeLists.txt at the root (/) of your environment. This file enables you to build your code into an executable file.

```
A minimal CMakeLists.txt file for the AWS SDK for C++.
The minimum version of CMake that will work.
cmake_minimum_required(VERSION 2.8)
The project name.
project(s3-demo)
Locate the AWS SDK for C++ package.
Requires that you build with:
-Daws-sdk-cpp_DIR=/path/to/sdk_build
or export/set:
CMAKE_PREFIX_PATH=/path/to/sdk_build
find_package(aws-sdk-cpp)
Link to the AWS SDK for C++ shared libraries.
add_definitions(-DUSE_IMPORT_EXPORT)
The executable name and its source files.
add_executable(s3-demo s3-demo.cpp)
The libraries used by your executable.
target_link_libraries(s3-demo aws-cpp-sdk-s3)
```

Step 6: Build and Run the AWS SDK Code

1. In the terminal, prepare to build your source code.

   `cmake3 -Daws-sdk-cpp_DIR=sdk_build`

2. Build your source code.

   `make`

3. Run the code by choosing Run, Run Configurations, New Run Configuration on the menu bar.

5. For **Command**, type `s3-demo my-test-bucket us-east-2`, where `my-test-bucket` is the name of the bucket you want to create and then delete, and `us-east-2` is the ID of the AWS Region you want to create the bucket in. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

**Note**
Amazon S3 bucket names must be unique across AWS—not just your AWS account.

6. Choose the **Run** button, and compare your output.

```
My buckets now are:
Creating a new bucket named 'my-test-bucket'...
My buckets now are:
my-test-bucket
Deleting the bucket named 'my-test-bucket'...
My buckets now are:
```

**Step 7: Clean Up**

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

**Python Sample for AWS Cloud9**

This sample enables you to run some Python scripts in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 368)
- Step 1: Install Required Tools (p. 369)
- Step 2: Add Code (p. 370)
- Step 3: Run the Code (p. 370)
- Step 4: Install and Configure the AWS SDK for Python (Boto) (p. 371)
- Step 5: Add AWS SDK Code (p. 372)
- Step 6: Run the AWS SDK Code (p. 373)
- Step 7: Clean Up (p. 373)

**Prerequisites**

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.
Step 1: Install Required Tools

In this step, you install Python, which is required to run this sample.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether Python is already installed by running the `python --version` command. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output contains the Python version number. If Python is installed, skip ahead to Step 2: Add Code (p. 370).

2. Run the `yum update` command to help ensure the latest security updates and bug fixes are installed.

```
sudo yum -y update
```

3. Install Python by running one or more of these `install` commands.

```
sudo yum -y install python27 # Installs Python 2.7.
sudo yum -y install python36 # Installs Python 3.6.
```

**Note**

If you have Python 2 and 3 installed, and you want to use Python 3 but running the `python --version` command outputs a version of Python 2, you can use Python 3 in one or more of the following ways:

- Instead of using the built-in Python 2 runner in the IDE, use the built-in Python 3 runner. For more information, see Step 3: Run the Code (p. 370).
- Instead of running the `python` command in a terminal session in the IDE, run the `python3` command instead.
- To set up the `python` command to use Python 3, use a tool such as virtualenv to create a virtual environment for Python 3, and then activate the new virtual environment. For example, you can run commands similar to the following to create and then activate the virtual environment:

```
virtualenv --version # If a version number is not output, see https://virtualenv.pypa.io/en/stable/installation/.
which python # If the 'python' command is aliased to something like '/usr/bin/python27', prepare to unalias it.
unalias python # If the 'python' command is aliased to something like '/usr/bin/python27', unalias it.
python --version # Output the current Python version, for example 'Python 2.7.12'.
python3 --version # Output the current version of Python 3, for example 'Python 3.6.2'.
which python36 # Output the path to the python36 binary, for example '/usr/bin/python36'.
cd ~/environment/ # Prepare to create a virtual environment in this path.
virtualenv -p /usr/bin/python36 vpy36 # Create a virtual environment for Python 3.6 in this path.
source vpy36/bin/activate # Switch to use Python 3.6 instead of Python 2.7.12 when you run the 'python --version' command.
python --version # Output the current Python version, for example 'Python 3.6.2'.
deactivate # If and when you are done using Python 3.6, prepare to make Python 2.7.12 active again.
```
Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name hello.py. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save.)

```python
import sys

print('Hello, World!')
print('The sum of 2 and 3 is 5.')
sum = int(sys.argv[1]) + int(sys.argv[2])
print('The sum of {0} and {1} is {2}.'.format(sys.argv[1], sys.argv[2], sum))
```

**Note**
The preceding code doesn't rely on any custom Python modules or packages. However, if you ever import custom Python modules or packages, and you want AWS Cloud9 to use those modules or packages to do code completion as you type, turn on the Project, Python Support, Enable Python code completion setting in Preferences, and then add the paths to those modules or packages to the Project, Python Support, PYTHONPATH setting. (To view and change your preferences, choose AWS Cloud9, Preferences on the menu bar.)

Step 3: Run the Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
2. On the [New] - Idle tab, choose Runner: Auto, and then choose Python 2 or Python 3, depending on which version of Python you want to use.

**Note**
If Python 2 or Python 3 isn't available, you can create a custom runner for the version of Python that is installed in your environment.

b. On the My Runner.run tab, replace the tab's contents with this code.

```json
{
 "cmd" : ["python", "$file", "$args"],
 "info" : "Running $project_path$file_name...",
 "selector" : "source.py"
}
```
c. Choose File, Save As on the menu bar, and save the file as Python.run in the /.c9/runners folder.
e. Choose the hello.py tab to make it active.
   To use a specific version of Python that is installed in your environment, change python to the path to the Python executable in the preceding custom runner definition (for example, /usr/bin/python27, /usr/bin/python36, or similar).

4. Choose the **Run** button, and compare your output.

```plaintext
Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.
```

**Step 4: Install and Configure the AWS SDK for Python (Boto)**

You can enhance this sample to use the AWS SDK for Python (Boto) to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for Python (Boto), which provides a convenient way to interact with AWS services, such as Amazon S3, from your Python code. Before you can install the AWS SDK for Python (Boto), you must install pip. After you install the AWS SDK for Python (Boto), you must set up credentials management in your environment. The AWS SDK for Python (Boto) needs these credentials to interact with AWS services.

**To install pip**

1. In the AWS Cloud9 IDE, confirm whether pip is already installed by running the `pip --version` command. If successful, the output contains the pip version number. Otherwise, an error message should be output. If pip is installed, skip ahead to the next procedure, "To install the AWS SDK for Python (Boto)."

2. To install pip, run these commands, one at a time.

   ```plaintext
curl -O https://bootstrap.pypa.io/get-pip.py # Get the install script.
sudo python get-pip.py # Install pip.
rm get-pip.py # Delete the install script.
```

   For more information, see **pip Installation** on the pip website.

**To install the AWS SDK for Python (Boto)**

After you install pip, use Python to run the `pip install` command.

```plaintext
sudo python -m pip install boto3
```

For more information, see the "Installation" section of **Quickstart** in the **AWS SDK for Python Developer Guide**.

**To set up credentials management in your environment**

Each time you use the AWS SDK for Python (Boto) to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for Python (Boto) has the appropriate permissions to make that call. If the credentials don't cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in **Call AWS Services from an Environment** (p. 83), and then return to this topic.
For additional information, see **Credentials** in the *AWS SDK for Python Developer Guide*.

**Step 5: Add AWS SDK Code**

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `s3.py`.

```python
import boto3
import sys
import botocore

if len(sys.argv) < 3:
 print('Usage: python s3.py <the bucket name> <the AWS Region to use>
 Example: python s3.py my-test-bucket us-east-2')
 sys.exit()

bucket_name = sys.argv[1]
region = sys.argv[2]

s3 = boto3.client(
 's3',
 region_name = region
)

Lists all of your available buckets in this AWS Region.
def list_my_buckets(s3):
 resp = s3.list_buckets()
 print('My buckets now are:
 for bucket in resp['Buckets']:
 print(bucket['Name'])
 return

list_my_buckets(s3)

Create a new bucket.
try:
 print('
Creating a new bucket named ' + bucket_name + '...
')
 s3.create_bucket(Bucket = bucket_name,
 CreateBucketConfiguration = {
 'LocationConstraint': region
 }
)
except botocore.exceptions.ClientError as e:
 if e.response['Error']['Code'] == 'BucketAlreadyExists':
 print("Cannot create the bucket. A bucket with the name " + bucket_name + " already exists. Exiting.")
 sys.exit()

list_my_buckets(s3)

Delete the bucket you just created.
print('
Deleting the bucket named ' + bucket_name + '...
')
 s3.delete_bucket(Bucket = bucket_name)

list_my_buckets(s3)
```
Step 6: Run the AWS SDK Code

1. On the menu bar, choose Run, Run Configurations, New Run Configuration.
2. On the [New] - Idle tab, choose Runner: Auto, and then choose Python 2 or Python 3, depending on which version of Python you want to use and is installed in your environment.
3. For Command, type s3.py my-test-bucket us-east-2, where my-test-bucket is the name of the bucket you want to create and then delete, and us-east-2 is the ID of the AWS Region you want to create the bucket in. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

   **Note**
   Amazon S3 bucket names must be unique across AWS—not just your AWS account.

4. Choose the Run button, and compare your output.

   |
   My buckets now are:
   Creating a new bucket named 'my-test-bucket'...
   My buckets now are:
   my-test-bucket
   Deleting the bucket named 'my-test-bucket'...
   My buckets now are:

Step 7: Clean Up

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

.NET Core Sample for AWS Cloud9

This sample enables you to run some .NET Core code in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 374)
- Step 1: Install Required Tools (p. 374)
- Step 2: Create a .NET Core Console Application Project (p. 376)
- Step 3: Add Code (p. 376)
- Step 4: Build and Run the Code (p. 377)
- Step 5: Create and Set Up a .NET Core Console Application Project That Uses the AWS SDK for .NET (p. 378)
- Step 6: Add AWS SDK Code (p. 379)
- Step 7: Build and Run the AWS SDK Code (p. 380)
- Step 8: Clean Up (p. 381)
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install the .NET Core 2 SDK into your environment, which is required to run this sample.

1. Confirm whether the .NET Core 2 SDK is already installed in your environment. To do this, in a terminal session in the AWS Cloud9 IDE, run the .NET Core command line interface (CLI) with the `-help` option.

   ```bash
 dotnet -help
   ```

   If the .NET Command Line Tools version is displayed, and the version is 2.0 or greater, skip ahead to Step 2: Create a .NET Core Console Application Project (p. 376). If the version is less than 2.0, or if an error such as `bash: dotnet: command not found` is displayed, continue on to install the .NET Core 2 SDK.

2. In a terminal session in the AWS Cloud9 IDE, run the following commands to help ensure the latest security updates and bug fixes are installed, and to install a `libunwind` package that the .NET Core 2 SDK needs. (To start a new terminal session, on the menu bar, choose Window, New Terminal.)

   ```bash
 sudo yum -y update
 sudo yum -y install libunwind
   ```

3. Get the URL for the .NET Core 2 SDK file to download into your environment. To get this URL, do the following from a web browser on your local computer (not from the IDE):

   a. Go to All .NET Downloads on the Microsoft website.

   b. On the All Downloads page, in the .NET Core section, look for the SDK subsection. Choose the link that starts with .NET Core SDK for the latest version (for example, .NET Core SDK 2.1.200).

   c. On the Download .NET Core SDK page, in the Linux section, look for the File downloads subsection. Choose the x64 Binaries link.

   d. On the Thanks for downloading .NET Core SDK page, if a download dialog box appears, close it or choose Cancel. (Do not download the .NET Core 2 SDK file to your local computer.)

   e. Right-click the Try again link. Depending on your web browser, choose the command that copies the download URL to your system clipboard. For example, the download URL might be as follows.

   ```bash
   ```

4. Back in the IDE, download the .NET Core 2 SDK file into your environment. To do this, run the `wget` command in the terminal with the download URL you copied earlier.
Step 1: Install Required Tools

5. Extract the .NET Core 2 SDK download file into a subdirectory named `dotnet` within the home directory of your environment. To do this, run the `mkdir` command with the path to the new `dotnet` subdirectory to create. Then run the `tar` command with the name and location of the .NET Core 2 SDK file to extract along with the path to the `dotnet` subdirectory.

```bash
mkdir -p "$HOME/dotnet"
tar zxf dotnet-sdk-2.1.200-linux-x64.tar.gz -C "$HOME/dotnet"
```

For the `mkdir` command, `-p` creates intermediate directories as needed. The `tar` command uses the following options.

- `z` specifies to extract a file of type `tar.gz`.
- `x` extracts the file.
- `f` specifies the name and location of the file to extract.
- `-C` extracts the file to the specified location.

6. In the `.bash_profile` file for the environment, add the `~/.dotnet` subdirectory to the `PATH` variable for the environment, as follows.

   a. Open the `.bash_profile` file for editing by using the `vi` command.

   ```bash
 vi ~/.bash_profile
   ```

   b. Using the down arrow or `j` key, move to the line that starts with `PATH`.

   c. Using the right arrow or `$` key, move to the end of that line.

   d. Switch to insert mode by pressing the `i` key. (** INSERT ---** will appear at the end of the display.)

   e. Add the `~/dotnet` subdirectory to the `PATH` variable by typing `:$HOME/dotnet`. Be sure to include the colon character (`:`). The line should now look similar to the following.

   ```bash
 PATH=$PATH:$HOME/.local/bin:$HOME/bin:$HOME/dotnet
   ```

   f. Save the file. To do this, press the `Esc` key (** INSERT ---** will disappear from the end of the display), type `:wq` (to write to and then quit the file), and then press `Enter`.

7. Load the .NET Core 2 SDK by sourcing the `.bash_profile` file.

   ```bash
 . ~/.bash_profile
   ```

8. Confirm the .NET Core 2 SDK is loaded by running .NET Core CLI with the `-help` option.

   ```bash
 dotnet -help
   ```

   If successful, the .NET Core 2 SDK version number is displayed, with additional usage information.

9. If you no longer want to keep the .NET Core 2 SDK file in your environment, you can delete it as follows.

   ```bash
 rm dotnet-sdk-2.1.200-linux-x64.tar.gz
   ```
Step 2: Create a .NET Core Console Application Project

In this step, you use .NET Core to create a project named hello. This project contains all of the files that .NET Core needs to run a simple application from the terminal in the IDE. The application's code is written in C#.

1. In the terminal, run the following commands to create a directory for the project, and then switch to that new directory.

```bash
mkdir hello
cd hello
```

2. Create a .NET Core console application project. To do this, run the .NET Core CLI with the `new` command, specifying the console application project template type and the programming language to use (in this sample, C#).

```bash
dotnet new console -lang C#
```

The preceding command adds a subdirectory named `obj` with several files, and some additional standalone files, to the `hello` directory. You should note the following two key files:

- The `hello/hello.csproj` file contains information about the console application project.
- The `hello/Program.cs` file contains the application's code to run.

Step 3: Add Code

In this step, you add some code to the application.

From the Environment window in the AWS Cloud9 IDE, open the `hello/Program.cs` file.

In the editor, replace the file's current contents with the following code, and then save the `Program.cs` file.

```csharp
using System;
namespace hello
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 Console.WriteLine("The sum of 2 and 3 is 5.";
 int sum = Int32.Parse(args[0]) + Int32.Parse(args[1]);
 Console.WriteLine("The sum of {0} and {1} is {2}.",
 args[0], args[1], sum.ToString());
 }
 }
}
```
Step 4: Build and Run the Code

In this step, you build the project and its dependencies into a set of binary files, including a runnable application file. Then you run the application.

1. In the IDE, create a builder for .NET Core as follows.
   a. On the menu bar, choose Run, Build System, New Build System.
   b. On the My Builder.build tab, replace the tab's contents with the following code.

   ```json
 {
 "cmd": ["dotnet", "build"],
 "info": "Building..."
 }
   ```
   c. Choose File, Save As.
   d. For Filename, type .NET Core.build.
   e. For Folder, type /.c9/builders.
   f. Choose Save.

2. With the contents of the Program.cs file displayed in the editor, choose Run, Build System, .NET Core. Then choose Run, Build.

   This builder adds a subdirectory named bin and adds a subdirectory named Debug to the hello/obj subdirectory. Note the following three key files.
   - The hello/bin/Debug/netcoreapp2.0/hello.dll file is the runnable application file.
   - The hello/bin/Debug/netcoreapp2.0/hello.deps.json file lists the application's dependencies.
   - The hello/bin/Debug/netcoreapp2.0/hello.runtimeconfig.json file specifies the shared runtime and its version for the application.

3. Create a runner for .NET Core as follows.
   a. On the menu bar, choose Run, Run With, New Runner.
   b. On the My Runner.run tab, replace the tab's contents with the following code.

   ```json
 {
 "cmd": ["dotnet", "run", "$args"],
 "working_dir": "$file",
 "info": "Running..."
 }
   ```
   c. Choose File, Save As.
   d. For Filename, type .NET Core.run.
   e. For Folder, type /.c9/runners.
   f. Choose Save.

4. Run the application with two integers to add (for example, 5 and 9) as follows.
   a. With the contents of the Program.cs file displayed in the editor, choose Run, Run Configurations, New Run Configuration.
   b. In the [New] - Idle tab, choose Runner: Auto, and then choose .NET Core.
   c. In the Command box, type hello 5 9.
   d. Choose Run.

   By default, this runner instructs .NET Core to run the hello.dll file in the hello/bin/Debug/netcoreapp2.0 directory.

   Compare your output to the following.

   377
Step 5: Create and Set Up a .NET Core Console Application Project That Uses the AWS SDK for .NET

You can enhance this sample to use the AWS SDK for .NET to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this new project, you add a reference to the AWS SDK for .NET. The AWS SDK for .NET provides a convenient way to interact with AWS services such as Amazon S3, from your .NET code. You then set up AWS credentials management in your environment. The AWS SDK for .NET needs these credentials to interact with AWS services.

To create the project

1. In the terminal, run the following commands to change to the root directory of the environment, create a directory for a project named s3, and then switch to that new directory.

```
cd ..
mkdir s3
cd s3
```

2. Create a .NET Core console application project. To do this, run the .NET Core CLI with the `new` command, specifying the console application project template type and the programming language to use.

```
dotnet new console -lang C#
```

3. Add a project reference to the Amazon S3 package in the AWS SDK for .NET. To do this, run the .NET Core CLI with the `add package` command, specifying the name of the Amazon S3 package in NuGet. (NuGet defines how packages for .NET are created, hosted, and consumed, and provides the tools for each of those roles.)

```
dotnet add package AWSSDK.S3
```

When you add a project reference to the Amazon S3 package, NuGet also adds a project reference to the rest of the AWS SDK for .NET.

**Note**
For the names and versions of other AWS related packages in NuGet, see [NuGet packages tagged with aws-sdk](https://www.nuget.org/packages?tags=aws-sdk) on the NuGet website.

To set up AWS credentials management

Each time you use the AWS SDK for .NET to call an AWS service, you must provide a set of AWS credentials with the call. These credentials determine whether the AWS SDK for .NET has the appropriate permissions to make that call. If the credentials don't cover the appropriate permissions, the call will fail.

To store your credentials within the environment, follow the instructions in [Call AWS Services from an Environment (p. 83)](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html), and then return to this topic.
Step 6: Add AWS SDK Code

In this step, you add code to interact with Amazon S3 to create a bucket, delete the bucket you just created, and then list your available buckets.

From the Environment window in the AWS Cloud9 IDE, open the s3/Program.cs file. In the editor, replace the file's current contents with the following code, and then save the Program.cs file.

```csharp
using Amazon;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;
using System;
using System.Threading.Tasks;

namespace s3
{
 class Program
 {
 private static RegionEndpoint bucketRegion;
 private static IAmazonS3 s3Client;

 static void Main(string[] args)
 {
 if (args.Length < 2)
 {
 Console.Write("Usage: <the bucket name> <the AWS Region to use>\n" +
 "Example: my-test-bucket us-east-2\n");
 return;
 }

 if (args[1] == "us-east-2")
 {
 bucketRegion = RegionEndpoint.USEast2;
 }
 else
 {
 Console.WriteLine("Cannot continue. The only supported AWS Region ID is " +
 "'us-east-2'.");
 return;
 }

 // Note: You could add more valid AWS Regions above as needed.

 s3Client = new AmazonS3Client(bucketRegion);
 var bucketName = args[0];

 // Create the bucket.
 try
 {
 if (!DoesBucketExist(bucketName))
 {
 Console.WriteLine("Cannot continue. Cannot create bucket. \n" +
 "A bucket named '{0}' already exists.", bucketName);
 return;
 }
 else
 {
 Console.WriteLine("\nCreating the bucket named '{0}'...", bucketName);
 s3Client.PutBucketAsync(bucketName).Wait();
 }
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Cannot continue. {0}". e.Message);
 }
 catch (Exception e)
 {
```
Step 7: Build and Run the AWS SDK Code

In this step, you build the project and its dependencies into a set of binary files, including a runnable application file. Then you run the application.

1. Build the project. To do this, with the contents of the s3/Program.cs file displayed in the editor, on the menu bar, choose Run, Build.

2. Run the application with the name of the Amazon S3 bucket to create and the ID of the AWS Region to create the bucket in (for example, my-test-bucket and us-east-2) as follows.
   a. With the contents of the s3/Program.cs file still displayed in the editor, choose Run, Run Configurations, New Run Configuration.
   b. In the [New] - Idle tab, choose Runner: Auto, and then choose .NET Core.
   c. In the Command box, type the name of the application, the name of the Amazon S3 bucket to create, and the ID of the AWS Region to create the bucket in (for example, s3 my-test-bucket us-east-2).
   d. Choose Run.
By default, this runner instructs .NET Core to run the `s3.dll` file in the `s3/bin/Debug/netcoreapp2.0` directory.

Compare your results to the following output.

```
Creating a new bucket named 'my-test-bucket'...
Created the bucket named 'my-test-bucket'.

Deleting the bucket named 'my-test-bucket'...
Deleted the bucket named 'my-test-bucket'.

My buckets now are:
```

## Step 8: Clean Up

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the environment. For instructions, see Delete an Environment (p. 108).

### Node.js Sample for AWS Cloud9

This sample enables you to run some Node.js scripts in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 381)
- Step 1: Install Required Tools (p. 382)
- Step 2: Add Code (p. 382)
- Step 3: Run the Code (p. 382)
- Step 4: Install and Configure the AWS SDK for JavaScript (p. 383)
- Step 5: Add AWS SDK Code (p. 384)
- Step 6: Run the AWS SDK Code (p. 385)
- Step 7: Clean Up (p. 385)

### Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.
Step 1: Install Required Tools

In this step, you install Node.js, which is required to run this sample.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether Node.js is already installed by running the `node --version` command. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output contains the Node.js version number. If Node.js is installed, skip ahead to Step 2: Add Code (p. 382). Run the **yum update** command to help ensure the latest security updates and bug fixes are installed.

   ```bash
 sudo yum -y update
   ```

3. To install Node.js, begin by running this command to download Node Version Manager (nvm). (nvm is a simple Bash shell script that is useful for installing and managing Node.js versions. For more information, see Node Version Manager on the GitHub website.)

   ```bash
 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.0/install.sh | bash
   ```

4. To start using nvm, either close the terminal session and start it again, or source the `~/.bashrc` file that contains the commands to load nvm.

   ```bash
 . ~/.bashrc
   ```

5. Run this command to install the latest version of Node.js.

   ```bash
 nvm install node
   ```

Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `hello.js`. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save.)

```javascript
console.log('Hello, World!');
console.log('The sum of 2 and 3 is 5.');
var sum = parseInt(process.argv[2], 10) + parseInt(process.argv[3], 10);
```

Step 3: Run the Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration. On the [New] - Idle tab, choose Runner: Auto, and then choose Node.js.
2. For Command, type `hello.js 5 9`. In the code, 5 represents `process.argv[2]`, and 9 represents `process.argv[3]`. `process.argv[0]` represents the name of the runtime (node), and `process.argv[1]` represents the name of the file (hello.js).
3. Choose the Run button, and compare your output.

   Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.

Step 4: Install and Configure the AWS SDK for JavaScript

You can enhance this sample to use the AWS SDK for JavaScript to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for JavaScript, which provides a convenient way to interact with AWS services such as Amazon S3, from your JavaScript code. After you install the AWS SDK for JavaScript, you must set up credentials management in your environment. The AWS SDK for JavaScript needs these credentials to interact with AWS services.

To install the AWS SDK for JavaScript

Use npm to run the `install` command.

```
 npm install aws-sdk
```

For more information, see Installing the SDK for JavaScript in the AWS SDK for JavaScript Developer Guide.

To set up credentials management in your environment

Each time you use the AWS SDK for JavaScript to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for JavaScript has the appropriate permissions to make that call. If the credentials do not cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Setting Credentials in Node.js in the AWS SDK for JavaScript Developer Guide.
Step 5: Add AWS SDK Code

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `s3.js`.

```javascript
if (process.argv.length < 4) {
 console.log('Usage: node s3.js <the bucket name> <the AWS Region to use>\n' +
 'Example: node s3.js my-test-bucket us-east-2');
 process.exit(1);
}

var AWS = require('aws-sdk'); // To set the AWS credentials and region.
var async = require('async'); // To call AWS operations asynchronously.

AWS.config.update({
 region: region
});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});
var bucket_name = process.argv[2];
var region = process.argv[3];

var create_bucket_params = {
 Bucket: bucket_name,
 CreateBucketConfiguration: {
 LocationConstraint: region
 }
};

var delete_bucket_params = {Bucket: bucket_name};

// List all of your available buckets in this AWS Region.
function listMyBuckets(callback) {
 s3.listBuckets(function(err, data) {
 if (err) {
 return;
 } else {
 console.log("My buckets now are:\n");
 for (var i = 0; i < data.Buckets.length; i++) {
 console.log(data.Buckets[i].Name);
 }
 }
 callback(err);
 });
}

// Create a bucket in this AWS Region.
function createMyBucket(callback) {
 console.log('Creating a bucket named ' + bucket_name + '...\n');

 s3.createBucket(create_bucket_params, function(err, data) {
 if (err) {
 console.log(err.code + ": " + err.message);
 }
 callback(err);
 });
}

// Delete the bucket you just created.
```
function deleteMyBucket(callback) {
    console.log('
Deleting the bucket named ' + bucket_name + '...\n');

    s3.deleteBucket(delete_bucket_params, function(err, data) {
        if (err) {
            console.log(err.code + ': ' + err.message);
        }
        callback(err);
    });
}

// Call the AWS operations in the following order.
async.series([listMyBuckets, createMyBucket, listMyBuckets, deleteMyBucket, listMyBuckets]);

Step 6: Run the AWS SDK Code

1. Enable the code to call Amazon S3 operations asynchronously by using npm to run the `install` command.

   ```bash
 npm install async
   ```

2. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
4. For Command, type `s3.js my-test-bucket us-east-2`, where `my-test-bucket` is the name of the bucket you want to create and then delete, and `us-east-2` is the ID of the AWS Region you want to create the bucket in. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

    **Note**
    Amazon S3 bucket names must be unique across AWS—not just your AWS account.

5. Choose the Run button, and compare your output.

   ```plaintext
 My buckets now are:
 Creating a new bucket named 'my-test-bucket'...
 My buckets now are:
 my-test-bucket
 Deleting the bucket named 'my-test-bucket'...
 My buckets now are:
   ```

Step 7: Clean Up

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).
PHP Sample for AWS Cloud9

This sample enables you to run some PHP scripts in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 386)
- Step 1: Install Required Tools (p. 386)
- Step 2: Add Code (p. 387)
- Step 3: Run the Code (p. 387)
- Step 4: Install and Configure the AWS SDK for PHP (p. 388)
- Step 5: Add AWS SDK Code (p. 388)
- Step 6: Run the AWS SDK Code (p. 389)
- Step 7: Clean Up (p. 390)

Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.
- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install PHP, which is required to run this sample.

**Note**
The following procedure installs PHP only. To install related tools such as an Apache web server and a MySQL database, see Tutorial: Installing a LAMP Web Server on Amazon Linux in the Amazon EC2 User Guide for Linux Instances.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether PHP is already installed by running the `php --version` command. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output contains the PHP version number. If PHP is installed, skip ahead to Step 2: Add Code (p. 387).
2. Run the `yum update` command to help ensure the latest security updates and bug fixes are installed.

   ```bash
sudo yum -y update
 ``
3. Install PHP by running the `install` command.

   ```bash
   sudo yum -y install php56
   ```
For more information, see Installation and Configuration on the PHP website.

Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name hello.php. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save, type hello.php for Filename, and then choose Save.)

```php
<?php
    print('Hello, World!');
    print("\nThe sum of 2 and 3 is 5.");
    $sum = (int)$argv[1] + (int)$argv[2];
    print("\nThe sum of $argv[1] and $argv[2] is $sum.");
?>
```

Note

The preceding code doesn't rely on any external files. However, if you ever include or require other PHP files in your file, and you want AWS Cloud9 to use those files to do code completion as you type, turn on the Project, PHP Support, Enable PHP code completion setting in Preferences, and then add the paths to those files to the Project, PHP Support, PHP Completion Include Paths setting. (To view and change your preferences, choose AWS Cloud9, Preferences on the menu bar.)

Step 3: Run the Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
3. For Command, type hello.php 5 9. In the code, 5 represents $argv[1], and 9 represents $argv[2].($argv[0] represents the name of the file (hello.php).)
4. Choose the Run button, and compare your output.

Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.
Step 4: Install and Configure the AWS SDK for PHP

You can enhance this sample to use the AWS SDK for PHP to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for PHP, which provides a convenient way to interact with AWS services such as Amazon S3, from your PHP code. Before you can install the AWS SDK for PHP, you should install Composer. After you install the AWS SDK for PHP, you must set up credentials management in your environment. The AWS SDK for PHP needs these credentials to interact with AWS services.

To install Composer

Run the `curl` command with the silent (–s) and show error (–S) options, piping the Composer installer into a PHP archive (PHAR) file, named `composer.phar` by convention.

```
curl -sS https://getcomposer.org/installer | php
```

To install the AWS SDK for PHP

Use the php command to run the Composer installer to install the AWS SDK for PHP.

```
php composer.phar require aws/aws-sdk-php
```

This command creates several folders and files in your environment. The primary file you will use is `autoload.php`, which is in the `vendor` folder in your environment.

For more information, see Installation in the AWS SDK for PHP Getting Started Guide.

To set up credentials management in your environment

Each time you use the AWS SDK for PHP to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for PHP has the appropriate permissions to make that call. If the credentials don’t cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see the "Creating a client" section of Basic Usage in the AWS SDK for PHP Getting Started Guide.

Step 5: Add AWS SDK Code

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `s3.php`.

```
<?php
require './vendor/autoload.php';

if ($argc < 4) {
    exit("Usage: php s3.php <the time zone> <the bucket name> <the AWS Region to use>\nExample: php s3.php America/Los_Angeles my-test-bucket us-east-2");
}
```
Step 6: Run the AWS SDK Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.

3. For Command, type `s3.php America/Los_Angeles my-test-bucket us-east-2`, where:
 - America/Los_Angeles is your default time zone ID. For more IDs, see List of Supported Timezones on the PHP website.
 - my-test-bucket is the name of the bucket you want to create and then delete.

 Note
 Amazon S3 bucket names must be unique across AWS—not just your AWS account.

 - us-east-2 is the ID of the AWS Region you want to create the bucket in. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

4. Choose the Run button, and compare your output.

   ```
   My buckets now are:
   Creating a new bucket named 'my-test-bucket'...
   My buckets now are:
   my-test-bucket
   Deleting the bucket named 'my-test-bucket'...
   My buckets now are:
   ```

Step 7: Clean Up

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

Ruby Sample for AWS Cloud9

This sample enables you to run some Ruby scripts in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- **Prerequisites** (p. 390)
- **Step 1: Install Required Tools** (p. 391)
- **Step 2: Add Code** (p. 391)
- **Step 3: Run the Code** (p. 391)
- **Step 4: Install and Configure the AWS SDK for Ruby** (p. 392)
- **Step 5: Add AWS SDK Code** (p. 393)
- **Step 6: Run the AWS SDK Code** (p. 394)
- **Step 7: Clean Up** (p. 394)

Prerequisites

Before you use this sample, be sure to meet the following requirements.
You must have an existing AWS Cloud9 development environment. This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

You have the AWS Cloud IDE for the existing environment already open. When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install Ruby, which is required to run this sample.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether Ruby is already installed by running the `ruby --version` command. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output contains the Ruby version number. If Ruby is installed, skip ahead to Step 2: Add Code (p. 391).

2. Run the `yum update` command to help ensure the latest security updates and bug fixes are installed.

   ```bash
   sudo yum -y update
   ```

3. Install Ruby by running the `install` command.

   ```bash
   sudo yum -y install ruby
   ```

 For more information, see Installing Ruby on the Ruby website.

Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `hello.rb`. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save.)

```ruby
puts "Hello, World!"
puts "The sum of 2 and 3 is 5."
argv0 = ARGV[0]
argv1 = ARGV[1]
sum = argv0.to_i + argv1.to_i
puts "The sum of #{argv0} and #{argv1} is #{sum}."
```

Step 3: Run the Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
3. For Command, type `hello.rb 5 9`. In the code, 5 represents `ARGV[0]`, and 9 represents `ARGV[1].`
4. Choose the Run button, and compare your output.

 Hello, World!
Step 4: Install and Configure the AWS SDK for Ruby

You can enhance this sample to use the AWS SDK for Ruby to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for Ruby, which provides a convenient way to interact with AWS services such as Amazon S3, from your Ruby code. Before you can install the AWS SDK for Ruby, you must install RubyGems. After you install the AWS SDK for Ruby, you must set up credentials management in your environment. The AWS SDK for Ruby needs these credentials to interact with AWS services.

To install RubyGems

1. In the AWS Cloud9 IDE, confirm whether RubyGems is already installed by running the `gem --version` command. If successful, the output contains the RubyGems version number. Otherwise, an error message should be output. If RubyGems is installed, skip ahead to "Step 4.2: Install the AWS SDK for Ruby."

2. To install RubyGems, run the `install` command.

   ```bash
   sudo yum -y install gem
   ```

 For more information, see Download RubyGems on the RubyGems website.

To install the AWS SDK for Ruby

After you install RubyGems, run the `gem install` command.

```bash
sudo gem install aws-sdk
```

For more information, see Installing the AWS SDK for Ruby in the AWS SDK for Ruby Developer Guide.

The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.
To set up credentials management in your environment

Each time you use the AWS SDK for Ruby to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for Ruby has the appropriate permissions to make that call. If the credentials don’t cover the appropriate permissions, the call will fail.

In this step, you will store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Configuring the AWS SDK for Ruby in the AWS SDK for Ruby Developer Guide.

Step 5: Add AWS SDK Code

In this step, you will add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name s3.rb.

```ruby
require 'aws-sdk'

if ARGV.length < 2
  puts "Usage: ruby s3.rb <the bucket name> <the AWS Region to use>
  " + "Example: ruby s3.rb my-test-bucket us-east-2"
end

bucket_name = ARGV[0]
region = ARGV[1]
s3 = Aws::S3::Client.new(region: region)

# Lists all of your available buckets in this AWS Region.
def list_my_buckets(s3)
  resp = s3.list_buckets()
  puts "My buckets now are:

  "
  resp.buckets.each do |bucket|
    puts bucket.name
  end
end

list_my_buckets(s3)

# Create a new bucket.
beg
  puts "Creating a new bucket named '#{bucket_name}'...

  s3.create_bucket({
    bucket: bucket_name,
    create_bucket_configuration: {
      location_constraint: region
    }
  })
rescue Aws::S3::Errors::BucketAlreadyExists
  puts "Cannot create the bucket. " + "A bucket with the name '#{bucket_name}' already exists. Exiting."
  exit(false)
end

list_my_buckets(s3)

# Delete the bucket you just created.
puts "Deleting the bucket named '#{bucket_name}'...

```

393
s3.delete_bucket(bucket: bucket_name)
list_my_buckets(s3)

Step 6: Run the AWS SDK Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
2. In the [New] - Idle tab, choose Runner: Auto, and then choose Ruby.
3. For Command, type s3.rb YOUR_BUCKET_NAME THE_AWS_REGION, where YOUR_BUCKET_NAME is the name of the bucket you want to create and then delete, and THE_AWS_REGION is the ID of the AWS Region you want to create the bucket in. For example, for the US East (Ohio) Region, use us-east-2. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

 Note
 Amazon S3 bucket names must be unique across AWS—not just your AWS account.
4. Choose the Run button, and compare your output.

 My buckets now are:
 Creating a new bucket named 'my-test-bucket'...
 My buckets now are:
 my-test.bucket
 Deleting the bucket named 'my-test-bucket'...
 My buckets now are:

Step 7: Clean Up

To prevent ongoing charges to your AWS account after you're done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

Go Sample for AWS Cloud9

This sample enables you to run some Go code in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see Amazon EC2 Pricing and Amazon S3 Pricing.

- Prerequisites (p. 395)
- Step 1: Install Required Tools (p. 395)
- Step 2: Add Code (p. 396)
- Step 3: Run the Code (p. 396)
- Step 4: Install and Configure the AWS SDK for Go (p. 397)
- Step 5: Add AWS SDK Code (p. 398)
- Step 6: Run the AWS SDK Code (p. 399)
- Step 7: Clean Up (p. 400)
Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See Creating an Environment (p. 74) for details.

- **You have the AWS Cloud IDE for the existing environment already open.** When you open an environment, AWS Cloud9 opens the IDE for that environment in your web browser. See Opening an Environment (p. 81) for details.

Step 1: Install Required Tools

In this step, you install and configure Go, which is required to run this sample.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether Go is already installed by running the `go version` command. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output should contain the Go version number. Otherwise, an error message should be output. If Go is installed, skip ahead to Step 2: Add Code (p. 396).

2. Run the `yum update` command to help ensure the latest security updates and bug fixes are installed.

   ```shell
   sudo yum -y update
   ```

3. To install Go, run these commands, one at a time.

   ```shell
   wget https://storage.googleapis.com/golang/go1.9.3.linux-amd64.tar.gz # Download the Go installer.
   sudo tar -C /usr/local -xzf ./go1.9.3.linux-amd64.tar.gz # Install Go.
   rm ./go1.9.3.linux-amd64.tar.gz # Delete the installer.
   ```

 The preceding commands assume the latest stable version of Go at the time this topic was written. For more information, see Downloads on The Go Programming Language website.

4. Add the path to the Go binary to your `PATH` environment variable, like this.

 a. Open your shell profile file (for example, `~/.bashrc` in Amazon Linux) for editing.

 b. At the end of this line of code, type the following, so that the code now looks like this.

   ```shell
   PATH=$PATH:/usr/local/go/bin
   ```

 a. Save the file.

5. Source the `~/.bashrc` file so that the terminal can now find the Go binary you just referenced.

   ```shell
   . ~/.bashrc
   ```

6. Confirm that Go is now successfully installed and configured by running the `go version` command. If successful, the output contains the Go version number.
Step 2: Add Code

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name hello.go. (To create a file, on the menu bar, choose File, New File. To save the file, choose File, Save.)

```
package main

import (
    "fmt"
    "os"
    "strconv"
)

func main() {
    fmt.Printf("Hello, World\n")
    fmt.Printf("The sum of 2 and 3 is 5.\n")
    first, _ := strconv.Atoi(os.Args[1])
    second, _ := strconv.Atoi(os.Args[2])
    sum := first + second
    fmt.Printf("The sum of %s and %s is %s.\n", os.Args[1], os.Args[2], strconv.Itoa(sum))
}
```

Step 3: Run the Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
2. On the [New] - Idle tab, choose Runner: Auto, and then choose Go.

 Note

 If Go is not available, you can create a custom runner for Go.

 b. On the My Runner.run tab, replace the tab's contents with this code.

   ```json
   {
     "cmd" : ["go", "run", "$file", "$args"],
     "info" : "Running $project_path$file_name...",
     "selector" : "source.go"
   }
   ```

 c. Choose File, Save As on the menu bar, and save the file as Go.run in the /.c9/runners folder.

 d. On the [New] - Idle tab, choose Runner: Auto, and then choose Go.

 e. Choose the hello.go tab to make it active.

3. For Command, type hello.go 5 9. In the code, 5 represents os.Args[1], and 9 represents os.Args[2].
Step 4: Install and Configure the AWS SDK for Go

You can enhance this sample to use the AWS SDK for Go to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for Go, which provides a convenient way to interact with AWS services such as Amazon S3, from your Go code. Before you install the AWS SDK for Go, you must set your GOPATH environment variable. After you install the AWS SDK for Go and set your GOPATH environment variable, you must set up credentials management in your environment. The AWS SDK for Go needs these credentials to interact with AWS services.

To set your GOPATH environment variable

1. Open your ~/.bashrc file for editing.
2. After the last line in the file, type this code.

   ```bash
   GOPATH=~/environment/go
   export GOPATH
   ```

3. Save the file.
4. Source the ~/.bashrc file so that the terminal can now find the GOPATH environment variable you just referenced.

4. Choose the Run button, and compare your output.

 Hello, World!
The sum of 2 and 3 is 5.
The sum of 5 and 9 is 14.
5. Confirm that the `GOPATH` environment variable is successfully set by running the `echo $GOPATH` command. If successful, `/home/ec2-user/environment/go` should be output.

To install the AWS SDK for Go

Run the `go get` command, specifying the location of the AWS SDK for Go source.

```
go get -u github.com/aws/aws-sdk-go/...
```

Go installs the AWS SDK for Go source into the location specified by your `GOPATH` environment variable, which is the `go` folder in your environment.

To set up credentials management in your environment

Each time you use the AWS SDK for Go to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for Go has the appropriate permissions to make that call. If the credentials don’t cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Specifying Credentials in the AWS SDK for Go Developer Guide.

Step 5: Add AWS SDK Code

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You will run this code later.

In the AWS Cloud9 IDE, create a file with this content, and save the file with the name `s3.go`.

```go
package main

import (
    "fmt"
    "os"
    "github.com/aws/aws-sdk-go/aws"
    "github.com/aws/aws-sdk-go/aws/session"
    "github.com/aws/aws-sdk-go/service/s3"
)

func main() {
    if len(os.Args) < 3 {
        fmt.Printf("Usage: go run s3.go <the bucket name> <the AWS Region to use>\n" +
            "Example: go run s3.go my-test-bucket us-east-2\n")
        os.Exit(1)
    }

    sess := session.Must(session.NewSessionWithOptions(session.Options{
        SharedConfigState: session.SharedConfigEnable,
    }))
    svc := s3.New(sess, &aws.Config{
        Region: aws.String(os.Args[2]),
    })

    listMyBuckets(svc)
    createMyBucket(svc, os.Args[1], os.Args[2])
}
```
Step 6: Run the AWS SDK Code

1. In the AWS Cloud9 IDE, on the menu bar, choose Run, Run Configurations, New Run Configuration.
2. On the [New] - Idle tab, choose Runner: Auto, and then choose Go.
3. For Command, type `s3.go YOUR_BUCKET_NAME THE_AWS_REGION`, where `YOUR_BUCKET_NAME` is the name of the bucket you want to create and then delete, and `THE_AWS_REGION` is the ID of

```go
listMyBuckets(svc)
delteMyBucket(svc, os.Args[1])
listMyBuckets(svc)
}

// List all of your available buckets in this AWS Region.
func listMyBuckets(svc *s3.S3) {
    result, err := svc.ListBuckets(nil)
    if err != nil {
        exitErrorf("Unable to list buckets, %v", err)
    }
    fmt.Println("My buckets now are:\n")
    for _, b := range result.Buckets {
        fmt.Printf(aws.StringValue(b.Name) + "\n")
    }
    fmt.Printf("\n")
}

// Create a bucket in this AWS Region.
func createMyBucket(svc *s3.S3, bucketName string, region string) {
    fmt.Printf("\nCreating a new bucket named '" + bucketName + "'...\n")
    _, err := svc.CreateBucket(&s3.CreateBucketInput{
        Bucket: aws.String(bucketName),
        CreateBucketConfiguration: &s3.CreateBucketConfiguration{
            LocationConstraint: aws.String(region),
        },
    })
    if err != nil {
        exitErrorf("Unable to create bucket, %v", err)
    }
}

// Delete the bucket you just created.
func deleteMyBucket(svc *s3.S3, bucketName string) {
    fmt.Printf("\nDeleting the bucket named '" + bucketName + "'...\n")
    _, err := svc.DeleteBucket(&s3.DeleteBucketInput{
        Bucket: aws.String(bucketName),
    })
    if err != nil {
        exitErrorf("Unable to delete bucket, %v", err)
    }
}

// If there's an error, display it.
func exitErrorf(msg string, args ...interface{}) {
    fmt.Fprintf(os.Stderr, msg+
    os.Exit(1)
}
```
the AWS Region you want to create the bucket in. For example, for the US East (Ohio) Region, use us-east-2. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

Note

Amazon S3 bucket names must be unique across AWS—not just your AWS account.

4. Choose the **Run** button, and compare your output.

```
My buckets now are:
Creating a new bucket named 'my-test-bucket'...
My buckets now are:
my-test-bucket
Deleting the bucket named 'my-test-bucket'...
My buckets now are:
```

Step 7: Clean Up

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see [Deleting an Environment](p. 108).

TypeScript Sample for AWS Cloud9

This sample shows you how to work with TypeScript in an AWS Cloud9 development environment.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2 and Amazon S3. For more information, see [Amazon EC2 Pricing](p. 405) and [Amazon S3 Pricing](p. 405).

- **Prerequisites** (p. 400)
- **Step 1: Install Required Tools** (p. 401)
- **Step 2: Add Code** (p. 402)
- **Step 3: Run the Code** (p. 402)
- **Step 4: Install and Configure the AWS SDK for JavaScript** (p. 403)
- **Step 5: Add AWS SDK Code** (p. 404)
- **Step 6: Run the AWS SDK Code** (p. 405)
- **Step 7: Clean Up** (p. 406)

Prerequisites

Before you use this sample, be sure to meet the following requirements.

- **You must have an existing AWS Cloud9 development environment.** This sample assumes you already have an AWS Cloud9 EC2 development environment that is connected to an Amazon EC2 instance running Amazon Linux. If you have a different type of environment or operating system, you might need to adapt this sample's instructions to set up related tools. See [Creating an Environment](p. 74) for details.
Step 1: Install Required Tools

In this step, you install TypeScript by using Node Package Manager (npm). To install npm, you use Node Version Manager (nvm). If you don’t have nvm, you install it in this step first.

1. In a terminal session in the AWS Cloud9 IDE, confirm whether TypeScript is already installed by running the command line TypeScript compiler with the --version option. (To start a new terminal session, on the menu bar, choose Window, New Terminal.) If successful, the output contains the TypeScript version number. If TypeScript is installed, skip ahead to Step 2: Add Code (p. 402).

 tsc --version

2. Confirm whether npm is already installed by running npm with the --version option. If successful, the output contains the npm version number. If npm is installed, skip ahead to step 10 in this procedure to use npm to install TypeScript.

 npm --version

3. Run yum to help ensure the latest security updates and bug fixes are installed.

 sudo yum -y update

4. To install npm, begin by running the following command to download Node Version Manager (nvm). (nvm is a simple Bash shell script that’s useful for installing and managing Node.js versions. For more information, see Node Version Manager on the GitHub website.)

 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.0/install.sh | bash

5. To start using nvm, either close the terminal session and start it again, or source the ~/.bashrc file that contains the commands to load nvm.

 . ~/.bashrc

6. Confirm that nvm is installed by running nvm with the --version option.

 nvm --version

7. Install the latest version of Node.js by running nvm. (npm is included in Node.js.)

 nvm install node

8. Confirm that Node.js is installed by running the command line version of Node.js with the --version option.

 node --version

9. Confirm that npm is installed by running npm with the --version option.

 npm --version

10. Install TypeScript by running npm with the -g option. This installs TypeScript as a global package in the environment.
Step 2: Add Code

In the AWS Cloud9 IDE, create a file with the following content, and save the file with the name `hello.ts`. (To create a file, on the menu bar, choose **File**, **New File**. To save the file, choose **File**, **Save**.)

```javascript
import { } from 'node';

console.log('Hello, World!');

console.log('The sum of 2 and 3 is 5.);

const sum: number = parseInt(process.argv[2], 10) + parseInt(process.argv[3], 10);

```

Step 3: Run the Code

1. In a terminal in the IDE, from the same directory as the `hello.ts` file, run `npm` to install the `@types/node` library.

   ```bash
   npm install @types/node
   ```

 This adds a `node_modules/@types/node` folder in the same directory as the `hello.ts` file. This new folder contains Node.js type definitions (for example, ones for the `console.log` and `process.argv` properties in the `hello.ts` file) that TypeScript needs later in this procedure.

2. In the terminal, from the same directory as the `hello.ts` file, run the TypeScript compiler. Specify the `hello.ts` file and additional libraries to include.

   ```bash
   tsc hello.ts --lib es6
   ```

 TypeScript uses the `hello.ts` file and a set of ECMAScript 6 (ES6) library files to transpile the TypeScript code in the `hello.ts` file into equivalent JavaScript code in a file named `hello.js`.

3. In the **Environment** window, open the `hello.js` file.

4. On the menu bar, choose **Run**, **Run Configurations**, **New Run Configuration**.

5. On the **New** - **Idle** tab, choose **Runner: Auto**, and then choose **Node.js**.

6. For **Command**, type `hello.js` 5 9. In the code, 5 represents `process.argv[2]`, and 9 represents `process.argv[3]`. (`process.argv[0]` represents the name of the runtime (`node`), and `process.argv[1]` represents the name of the file (`hello.js`).)

7. Choose **Run**, and compare your output. When you're done, choose **Stop**.

   ```javascript
   Hello, World!
   The sum of 2 and 3 is 5.
   The sum of 5 and 9 is 14.
   ```
Step 4: Install and Configure the AWS SDK for JavaScript

You can enhance this sample to use the AWS SDK for JavaScript to create an Amazon S3 bucket, list your available buckets, and then delete the bucket you just created.

In this step, you install and configure the AWS SDK for JavaScript. The SDK provides a convenient way to interact with AWS services such as Amazon S3, from your JavaScript code. After you install the AWS SDK for JavaScript, you must set up credentials management in your environment. The SDK needs these credentials to interact with AWS services.

To install the AWS SDK for JavaScript

In a terminal session in the AWS Cloud9 IDE, from the same directory as the hello.js file from Step 3: Run the Code (p. 402), run npm to install the AWS SDK for JavaScript.

```
npm install aws-sdk
```

This command adds several folders to the node_modules folder from Step 3: Run the Code (p. 402). These folders contain source code and dependencies for the AWS SDK for JavaScript. For more information, see Installing the SDK for JavaScript in the AWS SDK for JavaScript Developer Guide.

To set up credentials management in your environment

Each time you use the AWS SDK for JavaScript to call an AWS service, you must provide a set of credentials with the call. These credentials determine whether the AWS SDK for JavaScript has the appropriate permissions to make that call. If the credentials don't cover the appropriate permissions, the call will fail.

In this step, you store your credentials within the environment. To do this, follow the instructions in Call AWS Services from an Environment (p. 83), and then return to this topic.

For additional information, see Setting Credentials in Node.js in the AWS SDK for JavaScript Developer Guide.
Step 5: Add AWS SDK Code

In this step, you add some more code, this time to interact with Amazon S3 to create a bucket, list your available buckets, and then delete the bucket you just created. You’ll run this code later.

In the AWS Cloud9 IDE, in the same directory as the hello.js file in previous steps, create a file with the following content, and save the file with the name s3.ts.

```javascript
import { } from 'node';
import { } from 'async';

if (process.argv.length < 4) {
    console.log('Usage: node s3.js <the bucket name> <the AWS Region to use>
    'Example: node s3.js my-test-bucket us-east-2');
    process.exit(1);
}

const AWS = require('aws-sdk'); // To set the AWS credentials and AWS Region.
const async = require('async'); // To call AWS operations asynchronously.

const s3 = new AWS.S3({apiVersion: '2006-03-01'});
const bucket_name = process.argv[2];
const region = process.argv[3];

AWS.config.update({
    region: region
});

const create_bucket_params = {
    Bucket: bucket_name,
    CreateBucketConfiguration: {
        LocationConstraint: region
    }
};

const delete_bucket_params = {Bucket: bucket_name};

// List all of your available buckets in this AWS Region.
function listMyBuckets(callback) {
    s3.listBuckets(function(err, data) {
        if (err) {

        } else {
            console.log("My buckets now are:\n");
            for (let i = 0; i < data.Buckets.length; i++) {
                console.log(data.Buckets[i].Name);
            }
        }
    });
    callback(err);
};

// Create a bucket in this AWS Region.
function createMyBucket(callback) {
    console.log("\nCreating a bucket named '+ bucket_name + '...
");
    s3.createBucket(create_bucket_params, function(err, data) {
        if (err) {
            console.log(err.code + ": " + err.message);
        }
    });
    callback(err);
}
```

404
Step 6: Run the AWS SDK Code

1. From a terminal in the AWS Cloud9 IDE, in the same directory as the `s3.ts` file from Step 5: Add AWS SDK Code (p. 404), enable the code to call Amazon S3 operations asynchronously by running `npm` to install the async library.

   ```bash
   npm install async
   ```

2. In the terminal, from the same directory as the `s3.ts` file, run the TypeScript compiler. Specify the `s3.ts` file and additional libraries to include.

   ```bash
   tsc s3.ts --lib es6
   ```

 TypeScript uses the `s3.ts` file, the AWS SDK for JavaScript, the async library, and a set of ECMAScript 6 (ES6) library files to transpile the TypeScript code in the `s3.ts` file into equivalent JavaScript code in a file named `s3.js`.

3. In the Environment window, open the `s3.js` file.

4. On the menu bar, choose Run, Run Configurations, New Run Configuration.

6. For Command, type `s3.js YOUR_BUCKET_NAME THE_AWS_REGION`, where `YOUR_BUCKET_NAME` is the name of the bucket you want to create and then delete, and `THE_AWS_REGION` is the ID of the AWS Region to create the bucket in. For example, for the US East (Ohio) Region, use `us-east-2`. For more IDs, see Amazon Simple Storage Service (Amazon S3) in the Amazon Web Services General Reference.

 Note

 Amazon S3 bucket names must be unique across AWS—not just your AWS account.

7. Choose Run, and compare your output. When you're done, choose Stop.

 My buckets now are:

 Creating a new bucket named 'my-test-bucket'...
Step 7: Clean Up

To prevent ongoing charges to your AWS account after you’re done using this sample, you should delete the environment. For instructions, see Deleting an Environment (p. 108).

Docker Sample for AWS Cloud9

This sample shows you how to connect an AWS Cloud9 SSH development environment to a running Docker container inside of an Amazon Linux instance in Amazon EC2. This enables you to use the AWS Cloud9 IDE to work with code and files inside of a Docker container and to run commands on that container. For information about Docker, see What is Docker on the Docker website.

Creating this sample might result in charges to your AWS account. These include possible charges for services such as Amazon EC2. For more information, see Amazon EC2 Pricing.

- Prerequisites (p. 406)
- Step 1: Install and Run Docker (p. 406)
- Step 2: Build the Image (p. 407)
- Step 3: Run the Container (p. 410)
- Step 4: Create the Environment (p. 411)
- Step 5: Run the Code (p. 412)
- Step 6: Clean Up (p. 412)

Prerequisites

- You should have an Amazon EC2 instance running Amazon Linux. This sample assumes you already have an Amazon EC2 instance running Amazon Linux in your AWS account. To launch an Amazon EC2 instance, see Launch a Linux Virtual Machine. In the Choose an Amazon Machine Image (AMI) page of the wizard, choose an AMI whose display name starts with Amazon Linux AMI.
- The Amazon EC2 instance should have at least 8 to 16 GB of free disk space available. This sample uses Docker images that are over 3 GB in size and can use additional increments of 3 GB or more of disk space to build images. If you try to run this sample on a disk that has 8 GB of free space or less, we’ve found that the Docker image might not build or the Docker container might not run. To check the instance's free disk space, you can run a command such as `df -h` (for “disk filesystem information in human-readable format”) on the instance. To increase an existing instance's disk size, see Modifying a Volume in the Amazon EC2 User Guide for Linux Instances.

Step 1: Install and Run Docker

In this step, you check if Docker is installed on the Amazon EC2 instance, and install Docker if it isn't already installed. After you install Docker, you run it on the instance.
Step 2: Build the Image

In this step, you use a Dockerfile to build one of the available Docker images for AWS Cloud9 onto the instance. This sample uses an image that includes Node.js and a sample chat server application.

1. On the instance, create the Dockerfile. To do this, with the SSH client still connected to the instance, in the /tmp directory on the instance, create a file named Dockerfile. For example, run the touch command as follows.

```
sudo touch /tmp/Dockerfile
```

2. Add the following contents to the Dockerfile file.

```
# Build a Docker image based on the cloud9/ws-nodejs Docker image
# definition for AWS Cloud9.
FROM cloud9/ws-nodejs

# Enable the Docker container to communicate with AWS Cloud9 by
# installing SSH.
RUN apt-get update && apt-get install -y openssh-server

# Ensure that Node.js is installed.
RUN apt-get install -y nodejs && ln -s /usr/bin/nodejs /usr/bin/node

# Disable password authentication by turning off the
# Pluggable Authentication Module (PAM).
RUN sed -i 's/UsePAM yes/UsePAM no/g' /etc/sshd_config

# Add the AWS Cloud9 SSH public key to the Docker container.
# This assumes a file named authorized_keys containing the
```
AWS Cloud9 User Guide
Step 2: Build the Image

AWS Cloud9 SSH public key already exists in the same
directory as the Dockerfile.
RUN mkdir -p /home/ubuntu/.ssh
ADD ./authorized_keys /home/ubuntu/.ssh/authorized_keys
RUN chown -R ubuntu /home/ubuntu/.ssh /home/ubuntu/.ssh/authorized_keys &
chmod 700 /home/ubuntu/.ssh &
chmod 600 /home/ubuntu/.ssh/authorized_keys

Start SSH in the Docker container.
CMD /usr/sbin/sshd -D

Update the password to a random one for the user ubuntu.
RUN echo "ubuntu:$\{cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1\}" |
chpasswd

To add the preceding contents to the Dockerfile file, you could use the vim utility on the instance as follows.
a. Use vim to open the /tmp/Dockerfile file.

```
sudo vim /tmp/Dockerfile
```
b. Paste the preceding contents into the Dockerfile file. If you're not sure how to do this, see your SSH client's documentation.
c. Switch to command mode. To do this, press the Esc key. (-- INSERT -- disappears from the bottom of the window.)
d. Type :wq (to write to the /tmp/Dockerfile file, save the file, and then exit vim), and then press Enter.

Note
Additional Docker images for AWS Cloud9 are available in the c9/templates repository on the GitHub website. The following table lists the available images and their content and definitions. To use a different Docker image for AWS Cloud9, replace cloud9/ws-nodejs in the Dockerfile with one of the following image IDs.

<table>
<thead>
<tr>
<th>Image ID</th>
<th>Contents</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloud9/workspace</td>
<td>Ubuntu 14.04.5 with common tools such as Git, Node.js, OpenJDK, Apache Ant, Apache Maven, Nginx, MySQL, PostgreSQL, Ruby, Apache HTTP Server, and PHP.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-android</td>
<td>The contents of the cloud9/workspace image with the Android SDK, Gradle, and common Android tools.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-cpp</td>
<td>The contents of the cloud9/workspace image with the GNU Compiler Collection (GCC) and sample C and C++ command line applications.</td>
<td>Definition</td>
</tr>
</tbody>
</table>
AWS Cloud9 User Guide
Step 2: Build the Image

<table>
<thead>
<tr>
<th>Image ID</th>
<th>Contents</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloud9/ws-default</td>
<td>The contents of the cloud9/workspace image with a basic readme file.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-html5</td>
<td>The contents of the cloud9/workspace image with a sample HTML file.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-meteor</td>
<td>The contents of the cloud9/workspace image with Meteor and a sample Meteor application.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-nodejs (this sample)</td>
<td>The contents of the cloud9/workspace image with additional versions of Node.js and a sample chat server application.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-php</td>
<td>The contents of the cloud9/workspace image with a sample PHP application.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-python-plain</td>
<td>The contents of the cloud9/workspace image with several versions of Python and a sample web application.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-python</td>
<td>The contents of the cloud9/workspace image with Django.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-ruby</td>
<td>The contents of the cloud9/workspace image with several versions of Ruby and Ruby on Rails.</td>
<td>Definition</td>
</tr>
<tr>
<td>cloud9/ws-wordpress</td>
<td>The contents of the cloud9/workspace image with WordPress.</td>
<td>Definition</td>
</tr>
</tbody>
</table>

3. On the instance, create a file that contains the AWS Cloud9 SSH public key for the Docker container to use. To do this, in the same directory as the Dockerfile file, create a file named authorized_keys, for example, by running the `touch` command.

```bash
sudo touch /tmp/authorized_keys
```

4. Add the AWS Cloud9 SSH public key to the authorized_keys file. To get the AWS Cloud9 SSH public key, do the following:
 b. In the AWS navigation bar, in the AWS Region selector, choose the AWS Region where you'll want to create the AWS Cloud9 development environment later in this topic.
 c. If a welcome page is displayed, for New AWS Cloud9 environment, choose Create environment. Otherwise, choose Create environment.
Step 3: Run the Container

In this step, you run a Docker container on the instance. This container is based on the image you built in the previous step.

1. To run the Docker container, run the `docker` command on the instance with the `run` action and the following options.

```bash
sudo docker run -d -it --expose 9090 -p 0.0.0.0:9090:22 --name cloud9 cloud9-image:latest
```

- `-d` runs the container in detached mode, exiting whenever the root process that is used to run the container (in this sample, the SSH client) exits.
- `-it` runs the container with an allocated pseudo-TTY and keeps STDIN open, even if the container is not attached.
- `--expose` makes the specified port (in this sample, port 9090) available from the container.
- `-p` makes the specified port available internally to the Amazon EC2 instance over the specified IP address and port. In this sample, port 9090 on the container can be accessed internally through port 22 on the Amazon EC2 instance.
- `--name` is a human-readable name for the container (in this sample, `cloud9`).
• cloud9-image:latest is the human-readable name of the built image to use to run the container.

To confirm that Docker is successfully running the container, run the `docker` command with the `container ls` action.

```
sudo docker container ls
```

If successful, the output displays an entry where the IMAGE field is set to cloud9-image:latest and the NAMES field is set to cloud9.

2. Log in to the running container. To do this, run the `docker` command with the `exec` action and the following options.

```
sudo docker exec -it cloud9 bash
```

• -it runs the container with an allocated pseudo-TTY and keeps STDIN open, even if the container isn't attached.
• cloud9 is the human-readable name of the running container.
• bash starts the standard shell in the running container.

If successful, the terminal prompt changes to display the logged-in user's name for the container and the ID of the container.

Note

If you ever want to log out of the running container, run the `exit` command. The terminal prompt changes back to display the logged-in user's name for the instance and the private DNS of the instance. The container should still be running.

3. For the directory on the running container that you want AWS Cloud9 to start from after it logs in, set its access permissions to `rwxr-xr-x`. This means read-write-execute permissions for the owner, read-execute permissions for the group, and read-execute permissions for others. For example, if the directory's path is `~`, you can set these permissions on the directory by running the `chmod` command in the running container as follows.

```
sudo chmod u=rwx,g=rx,o=rx ~
```

4. Make a note of the path to the directory on the running container that contains the Node.js binary, as you'll need it for **Step 4: Create the Environment (p. 411)**. If you're not sure what this path is, run the following command on the running container to get it.

```
which node
```

Step 4: Create the Environment

In this step, you use AWS Cloud9 to create an AWS Cloud9 SSH development environment and connect it to the running Docker container. After AWS Cloud9 creates the environment, it displays the AWS Cloud9 IDE so that you can start working with the files and code in the container.

1. Open the AWS Cloud9 console, if it isn't already open, at https://console.aws.amazon.com/cloud9/.
2. In the AWS navigation bar, in the AWS Region selector, choose the AWS Region where you want to create the SSH environment.
3. If a welcome page is displayed, for **New AWS Cloud9 environment**, choose **Create environment**. Otherwise, choose **Create environment**.
4. On the **Name environment** page, for **Name**, type a name for the environment.
5. To add a description to the environment, type it in Description.
6. Choose Next step.
7. For Environment type, choose Connect and run in remote server (SSH).
8. For User, type ubuntu.
9. For Host, type the public IP address of the Amazon EC2 instance, which you noted earlier.
10 For Port, type 9090.
11 Expand Advanced settings.
12 For Environment path, type the path to the directory on the running container that you want AWS Cloud9 to start from after it logs in.
13 For Node.js binary path, type the path to the directory on the running container that contains the Node.js binary, which you noted earlier.
14 Choose Next step.
15 Choose Create environment.
16 When the AWS Cloud9 Installer dialog box appears, choose Next.
17 In the list of components to be installed, clear the c9.ide.lambda.docker check box, and then choose Next. This is because AWS Cloud9 cannot run Docker inside of Docker.
18 When the AWS Cloud9 Installer dialog box displays Installation Completed, choose Next, and then choose Finish. The AWS Cloud9 IDE appears for the running container, and you can start working with the container's files and code.

Note
If the container stops running, you can no longer use the IDE to access the container until you start running the container again. To do this, go back to Step 3: Run the Container (p. 410).

Step 5: Run the Code

In this step, you use the AWS Cloud9 IDE to run a sample application inside the running Docker container.

1. With the AWS Cloud9 IDE displayed for the running container, start the sample chat server. To do this, in the Environment window, right-click the sample workspace/server.js file, and then choose Run.
2. Preview the sample application. To do this, in the Environment window, open the workspace/client/index.html file. Then, on the menu bar, choose Tools, Preview, Preview Running Application.
3. On the application preview tab, for Your Name, type your name. For Message, type a message. Then choose Send. The chat server adds your name and message to the list.

Step 6: Clean Up

In this step, you delete the environment and remove AWS Cloud9 and Docker support files from the Amazon EC2 instance. Also, to prevent ongoing charges to your AWS account after you're done using this sample, you should terminate the Amazon EC2 instance that is running Docker.

Step 6.1: Delete the Environment

To delete the environment, see Deleting an Environment (p. 108).

Step 6.2: Remove AWS Cloud9 Support Files from the Container

After you delete the environment, some AWS Cloud9 support files still remain in the container. If you want to keep using the container but no longer need these support files, delete the .c9 folder from the
directory on the container that you specified AWS Cloud9 to start from after it logs in. For example, if the directory is `~`, run the `rm` command with the `-r` option as follows.

```
sudo rm -r ~/.c9
```

Step 6.3: Remove Docker Support Files from the Instance

If you no longer want to keep the Docker container, the Docker image, and Docker on the Amazon EC2 instance, but you want to keep the instance, you can remove these Docker support files as follows.

1. Remove the Docker container from the instance. To do this, run the `docker` command on the instance with the `stop` and `rm` stop actions and the human-readable name of the container.

```
sudo docker stop cloud9
sudo docker rm cloud9
```

2. Remove the Docker image from the instance. To do this, run the `docker` command on the instance with the `image rm` action and the image's tag.

```
sudo docker image rm cloud9-image:latest
```

3. Remove any additional Docker support files that might still exist. To do this, run the `docker` command on the instance with the `system prune` action.

```
sudo docker system prune -a
```

4. Uninstall Docker. To do this, run the `yum` command on the instance with the `remove` action, specifying the `docker` package to uninstall.

```
sudo yum -y remove docker
```

You can also remove the `Dockerfile` and `authorized_keys` files you created earlier. For example, run the `rm` command on the instance.

```
sudo rm /tmp/Dockerfile
sudo rm /tmp/authorized_keys
```

Step 6.4: Terminate the Instance

To terminate the Amazon EC2 instance, see Terminate Your Instance in the Amazon EC2 User Guide for Linux Instances.
VPC Settings for AWS Cloud9
Development Environments

Every AWS Cloud9 development environment associated with an Amazon Virtual Private Cloud (Amazon VPC) must meet specific VPC requirements. These environments include EC2 environments, as well as SSH environments associated with AWS cloud compute instances (for example Amazon EC2 and Amazon Lightsail instances) that run within a VPC.

- Amazon VPC Requirements for AWS Cloud9 (p. 414)
- Create an Amazon VPC for AWS Cloud9 (p. 423)
- Create a Subnet for AWS Cloud9 (p. 425)

Amazon VPC Requirements for AWS Cloud9

The Amazon VPC that AWS Cloud9 uses requires the following settings. If you're already familiar with these requirements and just want to quickly create a compatible VPC, skip ahead to Create an Amazon VPC for AWS Cloud9 (p. 423).

Use the following checklist to confirm that the VPC meets all of the following requirements.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>How to confirm</th>
<th>Additional resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>The VPC must be in the same AWS account and AWS Region as the AWS Cloud9 development environment.</td>
<td>View a List of VPCs For an AWS Region (p. 415)</td>
<td>Create an Amazon VPC for AWS Cloud9 (p. 423)</td>
</tr>
</tbody>
</table>
| The VPC must have a public subnet. (A subnet is public if its traffic is routed to an internet gateway.) | • View a List of Subnets for a VPC (p. 415)
• Confirm Whether a Subnet is Public (p. 416) | • Create a Subnet for AWS Cloud9 (p. 425)
• View or Change Settings For an Internet Gateway (p. 416)
• Create an Internet Gateway (p. 417)
• Attach an Internet Gateway to a VPC (p. 417) |
| The subnet must have a route table with a minimum set of routes. | • Confirm Whether a Subnet Has a Route Table (p. 417)
• View or Change Settings For a Route Table (p. 418)
• Minimum Suggested Route Table Settings for AWS Cloud9 (p. 419) | • Create a Route Table (p. 418)
• Attach a Route Table to a Subnet (p. 418) |
| The associated security groups for the VPC (or for the AWS cloud compute instance, depending on your architecture) | • View a List of Security Groups for a VPC (p. 419)
• View a List of Security Groups For an AWS Cloud Compute Instance (p. 419) | • Create a Security Group in a VPC (p. 422) |
For the following procedures, if you use the Amazon VPC or Amazon EC2 consoles, we recommend you sign in to the AWS Management Console and open the Amazon VPC console (https://console.aws.amazon.com/vpc) or Amazon EC2 console (https://console.aws.amazon.com/ec2) using credentials for an IAM administrator user in your AWS account. If you use the AWS CLI or the aws-shell, we recommend you configure the AWS CLI or the aws-shell with the credentials for an IAM administrator user in your AWS account. If you can’t do this, check with your AWS account administrator.

View a List of VPCs For an AWS Region

To use the Amazon VPC console, in the AWS navigation bar, choose the AWS Region that AWS Cloud9 will create the environment in. Then choose Your VPCs in the navigation pane.

To use the AWS CLI or the aws-shell, run the Amazon EC2 describe-vpcs command, for example as follows.

```
aws ec2 describe-vpcs --output table --query 'Vpcs[*].VpcId' --region us-east-2
```

In the preceding command, replace `us-east-2` with the AWS Region that AWS Cloud9 will create the environment in. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

The output contains the list of VPC IDs.

View a List of Subnets for a VPC

To use the Amazon VPC console, choose Your VPCs in the navigation pane. Note the VPC's ID in the VPC ID column. Then choose Subnets in the navigation pane, and look for subnets that contain that ID in the VPC column.
To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-subnets` command, for example as follows.

```
aws ec2 describe-subnets --output table --query 'Subnets[*].[SubnetId,VpcId]' --region us-east-2
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the subnets. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

In the output, look for subnets that match the VPC's ID.

Confirm Whether a Subnet is Public

To use the Amazon VPC console, choose **Subnets** in the navigation pane. Select the box next to the subnet you want AWS Cloud9 to use. On the **Route Table** tab, if there is an entry in the **Target** column that starts with `igw-`, the subnet is public.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-route-tables` command, for example as follows.

```
aws ec2 describe-route-tables --output table --query 'RouteTables[*].Routes[*].{GatewayIds:GatewayId}' --region us-east-2 --filters Name=association.subnet-id,Values=subnet-12a3456b
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the subnet, and replace `subnet-12a3456b` with the subnet ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

In the output, if there is at least one result that starts with `igw-`, the subnet is public.

In the output, if there are no results, then the route table might be associated with the VPC instead of the subnet. To confirm this, run the Amazon EC2 `describe-route-tables` command for the subnet's related VPC instead of the subnet itself, for example as follows.

```
aws ec2 describe-route-tables --output table --query 'RouteTables[*].Routes[*].{GatewayIds:GatewayId}' --region us-east-1 --filters Name=vpc-id,Values=vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

In the output, if there is at least one result that starts with `igw-`, the VPC contains an internet gateway.

View or Change Settings For an Internet Gateway

To use the Amazon VPC console, choose **Internet Gateways** in the navigation pane. Select the box next to the internet gateway. To see the settings, look at each of the tabs. To change a setting on a tab, choose **Edit** if applicable, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell to see the settings, run the Amazon EC2 `describe-internet-gateways` command, for example as follows.

```
aws ec2 describe-internet-gateways --output table --region us-east-2 --internet-gateway-id igw-1234ab5c
```
Create an Internet Gateway

In the preceding command, replace `us-east-2` with the AWS Region that contains the internet gateway, and replace `igw-1234ab5c` with the internet gateway ID. To run the preceding command with the aws-shell, omit `aws`.

Create an Internet Gateway

To use the Amazon VPC console, choose Internet Gateways in the navigation pane. Choose Create internet gateway, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `create-internet-gateway` command, for example as follows.

```
aws ec2 create-internet-gateway --output text --query 'InternetGateway.InternetGatewayId' --region us-east-2
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the new internet gateway. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

The output contains the ID of the new internet gateway.

Attach an Internet Gateway to a VPC

To use the Amazon VPC console, choose Internet Gateways in the navigation pane. Select the box next to the internet gateway. Choose Actions, Attach to VPC if available, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `attach-internet-gateway` command, for example as follows.

```
aws ec2 attach-internet-gateway --region us-east-2 --internet-gateway-id igw-a1b2cdef --vpc-id vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the internet gateway, replace `igw-a1b2cdef` with the internet gateway ID, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command with the aws-shell, omit `aws`.

Confirm Whether a Subnet Has a Route Table

To use the Amazon VPC console, choose Subnets in the navigation pane. Select the box next to the VPC’s public subnet that you want AWS Cloud9 to use. On the Route table tab, if there is a value for Route Table, the public subnet has a route table.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-route-tables` command, for example as follows.

```
aws ec2 describe-route-tables --output table --query 'RouteTables[*].Associations[*].{RouteTableIds:RouteTableId}' --region us-east-2 --filters Name=association.subnet-id,Values=subnet-12a3456b
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the public subnet, and replace `subnet-12a3456b` with the public subnet ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

If there are values in the output, the public subnet has at least one route table.
In the output, if there are no results, then the route table might be associated with the VPC instead of the subnet. To confirm this, run the Amazon EC2 `describe-route-tables` command for the subnet's related VPC instead of the subnet itself, for example as follows.

```
aws ec2 describe-route-tables --output table --query 'RouteTables[*].Associations[*].{RouteTableIds:RouteTableId}' --region us-east-2 --filters Name=vpc-id,Values=vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

In the output, if there is at least one result, the VPC has at least one route table.

Attach a Route Table to a Subnet

To use the Amazon VPC console, choose **Route Tables** in the navigation pane. Select the box next to the route table that you want to attach. On the **Subnet Associations** tab, choose **Edit**, select the box next to the subnet you want to attach it to, and then choose **Save**.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `associate-route-table` command, for example as follows.

```
aws ec2 associate-route-table --region us-east-2 --subnet-id subnet-12a3456b --route-table-id rtb-ab12cde3
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the route table, replace `subnet-12a3456b` with the subnet ID, and replace `rtb-ab12cde3` with the route table ID. To run the preceding command with the aws-shell, omit `aws`.

Create a Route Table

To use the Amazon VPC console, choose **Route Tables** in the navigation pane. Choose **Create Route Table**, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `create-route-table` command, for example as follows.

```
aws ec2 create-route-table --output text --query 'RouteTable.RouteTableId' --region us-east-2 --vpc-id vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the new route table, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

The output contains the ID of the new route table.

View or Change Settings For a Route Table

To use the Amazon VPC console, choose **Route Tables** in the navigation pane. Select the box next to the route table. To see the settings, look at each of the tabs. To change a setting on a tab, choose **Edit**, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell to see the settings, run the Amazon EC2 `describe-route-tables` command, for example as follows.

```
aws ec2 describe-route-tables --output table --region us-east-2 --route-table-ids rtb-ab12cde3
```
In the preceding command, replace `us-east-2` with the AWS Region that contains the route table, and replace `rtb-ab12cde3` with the route table ID. To run the preceding command with the aws-shell, omit `aws`.

Minumum Suggested Route Table Settings for AWS Cloud9

<table>
<thead>
<tr>
<th>Destination</th>
<th>Target</th>
<th>Status</th>
<th>Propagated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIDR-BLOCK</td>
<td>local</td>
<td>Active</td>
<td>No</td>
</tr>
<tr>
<td>0.0.0.0/0</td>
<td>igw-INTERNET-GATEWAY-ID</td>
<td>Active</td>
<td>No</td>
</tr>
</tbody>
</table>

In these settings, `CIDR-BLOCK` is the subnet's CIDR block, and `igw-INTERNET-GATEWAY-ID` is the ID of a compatible internet gateway.

View a List of Security Groups for a VPC

To use the Amazon VPC console, choose **Security Groups** in the navigation pane. In the **Search Security Groups** box, type the VPC's ID or name, and then press **Enter**. Security groups for that VPC appear in the list of search results.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-security-groups` command, for example as follows.

```
aws ec2 describe-security-groups --output table --query 'SecurityGroups[*].GroupId' --region us-east-2 --filters Name=vpc-id,Values=vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

The output contains the list of security group IDs for that VPC.

View a List of Security Groups For an AWS Cloud Compute Instance

To use the Amazon EC2 console, expand **Instances** in the navigation pane, and then choose **Instances**. In the list of instances, select the box next to the instance. Security groups for that instance appear in the **Description** tab next to **Security groups**.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-security-groups` command, for example as follows.

```
aws ec2 describe-instances --output table --query 'Reservations[*].Instances[*].NetworkInterfaces[*].Groups[*].GroupId' --region us-east-2 --instance-ids i-12a3c456d789e0123
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the instance, and replace `i-12a3c456d789e0123` with the instance ID. To run the preceding command in Windows,
replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit aws.

The output contains the list of security group IDs for that instance.

View or Change Settings For a Security Group in a VPC

To use the Amazon VPC console, choose **Security Groups** in the navigation pane. Select the box next to the security group. To see the settings, look at each of the tabs. To change a setting on a tab, choose **Edit** if applicable, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell to see the settings, run the Amazon EC2 `describe-security-groups` command, for example as follows.

```
aws ec2 describe-security-groups --output table --region us-east-2 --group-ids sg-12a3b456
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the instance, and replace `sg-12a3b456` with the security group ID. To run the preceding command with the aws-shell, omit aws.

View or Change Settings For a Security Group For an AWS Cloud Compute Instance

To use the Amazon EC2 console, expand **Instances** in the navigation pane, and then choose **Instances**. In the list of instances, select the box next to the instance. In the **Description** tab, for **Security groups**, choose the security group. Look at each of the tabs. To change a setting on a tab, choose **Edit** if applicable, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell to see the settings, run the Amazon EC2 `describe-security-groups` command, for example as follows.

```
aws ec2 describe-security-groups --output table --region us-east-2 --group-ids sg-12a3b456
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the instance, and replace `sg-12a3b456` with the security group ID. To run the preceding command with the aws-shell, omit aws.

Minimum Inbound and Outbound Traffic Settings for AWS Cloud9

- **Inbound**: All IP addresses using SSH over port 22. However, you can restrict these IP addresses to only those that AWS Cloud9 uses. For more information, see Inbound SSH IP Address Ranges (p. 429).
- **Inbound**: For EC2 environments, and for SSH environments associated with Amazon EC2 instances running Amazon Linux, all IP addresses using TCP over ports 32768-61000. For more information, and for port ranges for other Amazon EC2 instance types, see Ephemeral Ports in the Amazon VPC User Guide.
- **Outbound**: All traffic sources using any protocol and port.

You can set this behavior at the security group level. For an additional level of security, you can also use a network ACL.
For example, to add inbound and outbound rules to a security group, you could set up those rules as follows.

Inbound rules:

<table>
<thead>
<tr>
<th>Type</th>
<th>Protocol</th>
<th>Port Range</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH (22)</td>
<td>TCP (6)</td>
<td>22</td>
<td>0.0.0.0 (But see Inbound SSH IP Address Ranges (p. 429).)</td>
</tr>
<tr>
<td>Custom TCP Rule</td>
<td>TCP (6)</td>
<td>32768-61000 (For Amazon Linux instances. For other instance types, see Ephemeral Ports.)</td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>

Outbound rules:

<table>
<thead>
<tr>
<th>Type</th>
<th>Protocol</th>
<th>Port Range</th>
<th>Source</th>
<th>Allow / Deny</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL Traffic</td>
<td>ALL</td>
<td>ALL</td>
<td>0.0.0.0/0</td>
<td></td>
</tr>
</tbody>
</table>

If you also choose to add inbound and outbound rules to a network ACL, you could set up those rules as follows.

Inbound rules:

<table>
<thead>
<tr>
<th>Rule #</th>
<th>Type</th>
<th>Protocol</th>
<th>Port Range</th>
<th>Source</th>
<th>Allow / Deny</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>SSH (22)</td>
<td>TCP (6)</td>
<td>22</td>
<td>0.0.0.0 (But see Inbound SSH IP Address Ranges (p. 429).)</td>
<td>ALLOW</td>
</tr>
<tr>
<td>200</td>
<td>Custom TCP Rule</td>
<td>TCP (6)</td>
<td>32768-61000 (For Amazon Linux instances. For other instance types, see Ephemeral Ports.)</td>
<td>0.0.0.0/0</td>
<td>ALLOW</td>
</tr>
<tr>
<td></td>
<td>ALL Traffic</td>
<td>ALL</td>
<td>ALL</td>
<td>0.0.0.0/0</td>
<td>DENY</td>
</tr>
</tbody>
</table>

Outbound rules:

<table>
<thead>
<tr>
<th>Rule #</th>
<th>Type</th>
<th>Protocol</th>
<th>Port Range</th>
<th>Source</th>
<th>Allow / Deny</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>ALL Traffic</td>
<td>ALL</td>
<td>ALL</td>
<td>0.0.0.0/0</td>
<td>ALLOW</td>
</tr>
<tr>
<td></td>
<td>ALL Traffic</td>
<td>ALL</td>
<td>ALL</td>
<td>0.0.0.0/0</td>
<td>DENY</td>
</tr>
</tbody>
</table>
For more information about security groups and network ACLs, see the following in the *Amazon VPC User Guide*.

- Security
- Security Groups for your VPC
- Network ACLs

Create a Security Group in a VPC

To use the Amazon VPC or Amazon EC2 consoles, do one of the following.

- In the Amazon VPC console, choose **Security Groups** in the navigation pane. Choose **Create Security Group**, and then follow the on-screen directions.
- In the Amazon EC2 console, expand **Network & Security** in the navigation pane, and then choose **Security Groups**. Choose **Create Security Group**, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `create-security-group` command, for example as follows.

```
aws ec2 create-security-group --region us-east-2 --vpc-id vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command with the aws-shell, omit `aws`.

Confirm Whether a VPC Has at Least One Network ACL

To use the Amazon VPC console, choose **Your VPCs** in the navigation pane. Select the box next to the VPC you want AWS Cloud9 to use. On the **Summary** tab, if there is a value for **Network ACL**, the VPC has at least one network ACL.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-network-acls` command, for example as follows.

```
aws ec2 describe-network-acls --output table --query 'NetworkAcls[*].Associations[*].NetworkAclId' --region us-east-2 --filters Name=vpc-id,Values=vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command in Windows, replace the single quotes with double quotes. To run the preceding command with the aws-shell, omit `aws`.

If the output contains at least one entry in the list, the VPC has at least one network ACL.

View a List of Network ACLs For a VPC

To use the Amazon VPC console, choose **Network ACLs** in the navigation pane. In the **Search Network ACLs** box, type the VPC’s ID or name, and then press **Enter**. Network ACLs for that VPC appear in the list of search results.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `describe-network-acls` command, for example as follows.
View or Change Settings For a Network ACL

To use the Amazon VPC console, choose Network ACLs in the navigation pane. Select the box next to the network ACL. To see the settings, look at each of the tabs. To change a setting on a tab, choose Edit if applicable, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell to see the settings, run the Amazon EC2 `describe-network-acls` command, for example as follows.

```bash
aws ec2 describe-network-acls --output table --region us-east-2 --network-acl-ids acl-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the network ACL, and replace `acl-1234ab56` with the network ACL ID. To run the preceding command with the aws-shell, omit `aws`.

Create a Network ACL

To use the Amazon VPC console, choose Network ACLs in the navigation pane. Choose Create Network ACL, and then follow the on-screen directions.

To use the AWS CLI or the aws-shell, run the Amazon EC2 `create-network-acl` command, for example as follows.

```bash
aws ec2 create-network-acl --region us-east-2 --vpc-id vpc-1234ab56
```

In the preceding command, replace `us-east-2` with the AWS Region that contains the VPC that you want to attach the new network ACL to, and replace `vpc-1234ab56` with the VPC ID. To run the preceding command with the aws-shell, omit `aws`.

Create an Amazon VPC for AWS Cloud9

You can use the Amazon VPC console to create an Amazon VPC that is compatible with AWS Cloud9.

Note
For this procedure, we recommend you sign in to the AWS Management Console and open the Amazon VPC console using credentials for an IAM administrator user in your AWS account. If you can't do this, check with your AWS account administrator. Some organizations may not allow you to create VPCs on your own. If you cannot create a VPC, check with your AWS account administrator or network administrator.

1. If the Amazon VPC console isn't already open, sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc.
2. In the navigation bar, if the AWS Region isn't the same as the environment, choose the correct AWS Region.
3. Choose **VPC Dashboard** in the navigation pane, if the **VPC Dashboard** page isn't already displayed.

4. Choose **Start VPC Wizard**.

5. For **Step 1: Select a VPC Configuration**, with **VPC with a Single Public Subnet** already selected, choose **Select**.

6. For **Step 2: VPC with a Single Public Subnet**, we recommend that you leave the following default settings. (However, you can change the CIDR settings if you have custom CIDRs you want to use. For more information, see VPC and Subnet Sizing in the Amazon VPC User Guide.)
 - IPv4 CIDR block: 10.0.0.0/16
 - IPv6 CIDR block: No IPv6 CIDR Block
 - Public subnet's IPv4 CIDR: 10.0.0.0/24
 - Availability Zone: No Preference
 - Enable DNS hostnames: Yes
 - Hardware tenancy: Default

7. For **VPC name**, type a name for the VPC.

8. For **Subnet name**, type a name for the subnet in the VPC.

9. Choose **Create new VPC**.

Amazon VPC creates the following resources that are compatible with AWS Cloud9:
- A VPC.
- A public subnet for the VPC.
- A route table for the public subnet with the minimum required settings.
- An internet gateway for the public subnet.
- A network ACL for the public subnet with the minimum required settings.

10. By default, the VPC allows incoming traffic from all types, protocols, ports, and IP addresses. You can restrict this behavior to allow only IP addresses coming from AWS Cloud9 using SSH over port 22. One approach is to set incoming rules on the VPC’s default network ACL, as follows.

 a. In the navigation pane of the Amazon VPC console, choose **Your VPCs**.

 b. Select the box for the VPC you just created.

 c. On the **Summary** tab, choose the link next to **Network ACL**.

 d. Select the box next to the network ACL that is displayed.

 e. On the **Inbound Rules** tab, choose **Edit**.

 f. For **Rule # 100**, for **Type**, choose **SSH (22)**.

 g. For **Source**, type one of the CIDR blocks in the Inbound SSH IP Address Ranges (p. 429) list that matches the AWS Region for this VPC.

 h. Choose **Add another rule**.

 i. For **Rule #**, type 200.

 j. For **Type**, choose **SSH (22)**.

 k. For **Source**, type the other CIDR block in the Inbound SSH IP Address Ranges (p. 429) list that matches the AWS Region for this VPC.

 l. At minimum, you must also allow incoming traffic from all IP addresses using TCP over ports 32768–61000 for Amazon Linux instance types. (For background, and for port ranges for other Amazon EC2 instance types, see Ephemeral Ports in the Amazon VPC User Guide.) To do this, choose **Add another rule**.

 m. For **Rule #**, type 300.

 n. For **Type**, choose **Custom TCP Rule**.

 o. For **Port Range**, type 32768–61000 (for Amazon Linux instance types).

 p. For **Source**, type 0.0.0.0/0.

 q. Choose **Save**.
r. You might need to add more inbound or outbound rules to the network ACL, depending on how you plan to use AWS Cloud9. See the documentation for the web services or APIs you want to allow to communicate into or out of the VPC for the *Type*, *Protocol*, *Port Range*, and *Source* values to specify for these rules.

Create a Subnet for AWS Cloud9

You can use the Amazon VPC console to create a subnet for a VPC that is compatible with AWS Cloud9.

If you followed the previous procedure to create a VPC for AWS Cloud9, you do not also need to follow this procedure. This is because the Create new VPC wizard creates a subnet for you automatically.

Important

- The AWS account must already have a compatible VPC in the same AWS Region for the environment. For more information, see the VPC requirements in Amazon VPC Requirements for AWS Cloud9 (p. 414).
- For this procedure, we recommend you sign in to the AWS Management Console, and then open the Amazon VPC console using credentials for an IAM administrator user in your AWS account. If you can't do this, check with your AWS account administrator.
- Some organizations may not allow you to create subnets on your own. If you cannot create a subnet, check with your AWS account administrator or network administrator.

1. If the Amazon VPC console isn't already open, sign in to the AWS Management Console and open the Amazon VPC console at https://console.aws.amazon.com/vpc.
2. In the navigation bar, if the AWS Region isn't the same as the AWS Region for the environment, choose the correct AWS Region.
3. Choose **Subnets** in the navigation pane, if the Subnets page isn't already displayed.
4. Choose **Create Subnet**.
5. In the **Create Subnet** dialog box, for **Name tag**, type a name for the subnet.
6. For **VPC**, choose the VPC to associate the subnet with.
7. For **Availability Zone**, choose the Availability Zone within the AWS Region for the subnet to use, or choose **No Preference** to let AWS choose an Availability Zone for you.
8. For **IPv4 CIDR block**, type the range of IP addresses for the subnet to use, in CIDR format. This range of IP addresses must be a subset of IP addresses in the VPC.

 For information about CIDR blocks, see VPC and Subnet Sizing in the Amazon VPC User Guide. See also 3.1. Basic Concept and Prefix Notation in RFC 4632 or IPv4 CIDR blocks in Wikipedia.
9. After you create the subnet, be sure to associate it with a compatible route table and an internet gateway, as well as security groups, a network ACL, or both. For more information, see the requirements in Amazon VPC Requirements for AWS Cloud9 (p. 414).
AWS Cloud9 SSH Development Environment Host Requirements

When you create an EC2 environment, AWS Cloud9 creates a new environment, requests Amazon EC2 to launch a new instance, and then connects the newly launched instance to the new environment. Creating an EC2 environment has the following benefits:

- **Automatic instance launching.** When you create an EC2 environment, AWS Cloud9 requests Amazon EC2 to create a new instance at the same time. In an SSH environment, you must provide an existing cloud compute instance (for example an Amazon EC2 instance) or your own server yourself.

- **Automatic instance shutdown.** By default, AWS Cloud9 automatically shuts down the EC2 environment 30 minutes after all web browser instances that are connected to the IDE for the EC2 environment are closed. (You can change this behavior at any time.) This helps reduce additional charges to your AWS account for using Amazon EC2.

- **Automatic instance cleanup.** When you delete an EC2 environment, the connected Amazon EC2 instance is automatically deleted. This also helps reduce additional charges to your AWS account for using Amazon EC2. In an SSH environment that is connected to cloud compute instance, you must remember to delete the instance yourself.

When and How to Create an SSH Environment

You must create an SSH environment instead of an EC2 environment whenever any of the following is true:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Directions</th>
</tr>
</thead>
</table>
| You don't want to incur additional charges to your AWS account for using AWS cloud compute instances, so you decide to connect AWS Cloud9 to an existing cloud compute instance outside of AWS or your own server instead. | 1. Be sure your instance or server meets the requirements (p. 427) later in this topic.
2. Create an SSH environment (p. 74) for AWS Cloud9 to connect your instance or server to. |
| You want to use an existing AWS cloud compute instance (for example an Amazon EC2 instance) in your AWS account instead of having AWS Cloud9 to launch a new instance at the same time the environment is created. | 1. Be sure the instance meets the requirements (p. 427) later in this topic.
2. Create an SSH environment (p. 74) for AWS Cloud9 to connect the instance to. |
| You want to use an Amazon EC2 instance type that AWS Cloud9 currently doesn't support for an EC2 environment (for example, R4). | 1. Launch an Amazon EC2 instance based on the desired instance type. Or identify an existing instance in your AWS account that runs the desired instance type.
2. Be sure the instance meets the requirements (p. 427) later in this topic.
3. Create an SSH environment (p. 74) for AWS Cloud9 to connect the instance to. |
SSH Host Requirements

The existing cloud compute instance or your own server must meet the following requirements for AWS Cloud9 to connect it to an SSH environment.

- It must run Linux.

 Note
 To log in to an existing AWS cloud compute instance to verify and meet requirements, see one or more of the following resources:

 - For Amazon EC2, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux Instances.
 - For Amazon Lightsail, see Connect to your Linux/Unix-based Lightsail instance in the Amazon Lightsail Documentation.
 - For AWS Elastic Beanstalk, see Listing and Connecting to Server Instances in the AWS Elastic Beanstalk Developer Guide.
 - For AWS OpsWorks, see Using SSH to Log In to a Linux Instance in the AWS OpsWorks User Guide.
 - For other AWS services, see the service’s documentation.

- It must be reachable over the public internet.

 Note
 If you are using an existing AWS cloud compute instance, and that instance is part of an Amazon Virtual Private Cloud (Amazon VPC), there are additional requirements. See Amazon VPC Settings (p. 414).

- It must have Python installed, and the version must be 2.7. To check the version, from the existing instance’s or server’s terminal, run the command python --version. To install Python 2.7 on the instance or server, see one of the following:

 - Step 1: Install Required Tools (p. 369) in the Python Sample.
 - Download Python from the Python website and see Installing Packages in the Python Packaging User Guide.
• It must have Node.js installed, and the **version must be 0.6.16 or later**. To check the version, from the existing instance's or server's terminal, run the command `node --version`. To install Node.js on the instance or server, see one of the following:
 • Step 1: Install Required Tools (p. 382) in the **Node.js Sample**.
 • Installing Node.js via package manager on the Node.js website.
 • Node Version Manager on GitHub.
• The public SSH key value that AWS Cloud9 generates for the SSH environment must be stored in the correct location on the existing instance or server. To do this, as you create a new environment (p. 74), with the create environment wizard open to the **Configure settings** page and **Connect and run remote server (SSH)** chosen, choose **Copy key to clipboard**. Paste the public SSH key value that was copied into the `~/.ssh/authorized_keys` file on the existing instance or server.

 Note
 To see the public SSH key value that was copied, expand **View public SSH key** on the **Configure settings** page.

• The path to the directory on the existing instance or server that you want AWS Cloud9 to start from after login must have its access permissions set to `rwxr-xr-x`. This means read-write-execute permissions for the owner, read-execute permissions for the group, and read-execute permissions for others. For example, if the directory's path is `~`, you can set these permissions on the directory by running the `chmod` command from the instance's or server's terminal, as follows.

  ```bash
  sudo chmod u=rwx,g=rx,o=rx ~
  ```

• Optionally, you can restrict inbound traffic over SSH to only the IP addresses that AWS Cloud9 uses. To do this, set inbound SSH traffic to the IP ranges as described in **Inbound SSH IP Address Ranges** (p. 429).
• If the SSH environment will be associated with an AWS cloud compute instance that runs within an Amazon Virtual Private Cloud (Amazon VPC), there are additional requirements. See **VPC Settings for AWS Cloud9 Development Environments** (p. 414).

After you are sure your instance or server meets the preceding requirements, create an SSH environment (p. 78) for AWS Cloud9 to connect it to.
Inbound SSH IP Address Ranges for AWS Cloud9

You can restrict incoming traffic to just the IP address ranges that AWS Cloud9 uses to connect over SSH to AWS cloud compute instances (for example Amazon EC2 instances) in an Amazon VPC or your own servers in your network.

These IP address ranges are in the `ip-ranges.json` file, as described in AWS IP Address Ranges in the Amazon Web Services General Reference. To find the IP ranges in that file:

- For Windows, using the AWS Tools for Windows PowerShell, run this command: `Get-AWSPublicIpAddressRange -ServiceKey CLOUD9`
- For Linux, download the `ip-ranges.json` file. Then you can query it by using a tool such as jq, for example, by running this command: `jq '.prefixes[] | select(.service=="CLOUD9")' < ip-ranges.json`

These IP ranges might change occasionally. Whenever there's a change, we send notifications to subscribers of the `AmazonIpSpaceChanged` topic. To get these notifications, see AWS IP Address Ranges Notifications in the Amazon Web Services General Reference.

To use these IP address ranges when configuring environments that use AWS cloud compute instances, see Amazon VPC Settings (p. 414). Also, if you choose to restrict incoming traffic for EC2 environments, or for SSH environments associated with Amazon EC2 instances running Amazon Linux, be sure to also allow at minimum all IP addresses using TCP over ports 32768-61000. For more information, as well as port ranges for other AWS cloud compute instance types, see Ephemeral Ports in the Amazon VPC User Guide.

To use these IP address ranges when configuring SSH environments that use your own network, see your network's documentation or your network administrator.
Amazon Machine Image (AMI)
Contents for an AWS Cloud9 EC2 Development Environment

The Amazon Machine Image (AMI) that AWS Cloud9 uses for an EC2 environment contains the following components:

- The packages listed in Amazon Linux AMI 2017.09 Packages on the Amazon Linux AMI website.
- Apache HTTP Server 2.4
- AWS CLI (p. 327)
- AWS SAM Local
- CoffeeScript
- Docker 17.03.2-ce
- GCC, G++ 4.8.5
- GDB 7.6.1
- Git 2.13.6
- GNU libc 2.17
- Go 1.9.1
- MySQL 14.14
- MySQL native driver for PHP
- Node.js v6.11.4
- Node Package manager (npm) 3.10.10
- Node Version Manager (nvm) 0.31.7
- PHP 5.6.31
- Pylint 1.7.4
- Python 2.7.12
- Python 3.6.2
- Ruby on Rails 5.1.4
- Ruby 2.4.1
- virtualenv 15.1.0
Access Permissions Reference for AWS Cloud9

Access to AWS Cloud9 requires AWS access credentials. Those credentials must have permissions to do things such as create, share, or delete an AWS Cloud9 development environment. The following sections describe how you can use AWS Identity and Access Management (IAM) to allow or deny access to your AWS Cloud9 resources and then map those permissions to credentials.

• Overview (p. 431)
• AWS Managed (Predefined) Policies for AWS Cloud9 (p. 435)
• Creating Customer-Managed Policies for AWS Cloud9 (p. 437)
• AWS Managed Temporary Credentials (p. 446)

Overview

This section provides an overview of the IAM authentication and access control model that applies to AWS Cloud9.

Note
If you just want to set up predefined sets of access permissions for common usage scenarios and user types, skip ahead to AWS Managed (Predefined) Policies for AWS Cloud9 (p. 435).

• Authentication (p. 431)
• Access Control (p. 432)
• AWS Cloud9 Resources and Operations (p. 433)
• Understanding Resource Ownership (p. 433)
• Managing Access to Resources (p. 434)

Authentication

You can access AWS as any of the following types of identities:

AWS account root user

When you sign up for AWS, you provide an email address and password that is associated with your AWS account. These are your root credentials, and they provide complete access to all of your AWS resources.

Important
As an AWS security best practice, we recommend that you use the root credentials only to create an IAM administrator group with an IAM administrator user. This is a group that gives the user full permissions to your AWS account. Then you can use this administrator user to create other IAM users and roles with limited permissions. For more information, see Create Individual IAM Users and Creating Your First IAM Admin User and Group in the IAM User Guide.
IAM user

An **IAM user** is simply an identity within your AWS account that has specific custom permissions (for example, permissions to create an AWS Cloud9 development environment). You can use an IAM user name and password to sign in to secure AWS webpages like the AWS Cloud9 console, AWS Management Console, AWS Discussion Forums, and AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You can use these keys when you access AWS services programmatically, either through one of the several AWS SDKs or by using the AWS Command Line Interface (AWS CLI) or the aws-shell. The AWS SDKs, the AWS CLI, and the aws-shell use these access keys to cryptographically sign your request. If you don't use these tools, you must sign the request yourself. AWS Cloud9 supports Signature Version 4, a protocol for authenticating inbound API requests. For more information about authenticating requests, see [Signature Version 4 Signing Process](https://docs.aws.amazon.com/general/latest/gr/signature_version_4.html) in the [Amazon Web Services General Reference](https://docs.aws.amazon.com/AmazonWebServices/latest/UserGuide/AmazonWebServicesGeneralReference.html).

IAM role

An **IAM role** is another IAM identity you can create in your account that has specific permissions. It's similar to an IAM user, but it isn't associated with a specific person. An IAM role enables you to obtain temporary access keys that can be used to access AWS services and resources. IAM roles with temporary credentials are useful in the following situations:

AWS service access

You can use an IAM role in your account to grant an AWS service permissions to access your account's resources. For example, you can create a role that allows AWS Lambda to access an Amazon S3 bucket on your behalf, and then load data stored in the bucket into an Amazon Redshift. For more information, see [Creating a Role to Delegate Permissions to an AWS Service](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for_service.html) in the [IAM User Guide](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for_service.html).

Applications running on Amazon EC2

Instead of storing access keys within an Amazon EC2 instance for use by applications running on the instance and making AWS API requests, you can use an IAM role to manage temporary credentials for these applications. To assign an AWS role to an Amazon EC2 instance and make it available to all of its applications, you can create an `instance profile` that is attached to the instance. An instance profile contains the role and enables programs running on the Amazon EC2 instance to get temporary credentials. For more information, see [Create and Use an Instance Profile to Manage Temporary Credentials](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-ec2-instance-profiles.html) and [Using an IAM Role to Grant Permissions to Applications Running on Amazon EC2 Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-ec2-instance-profiles.html) in the [IAM User Guide](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for_service.htm).

Note

Instead of attaching an instance profile to an Amazon EC2 instance that connects to an environment, AWS Cloud9 can automatically set up and manage temporary credentials on your behalf in an EC2 environment. For more information, see [AWS Managed Temporary Credentials](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-ec2-instance-profiles.html).

Federated user access

Instead of creating an IAM user, you can use pre-existing user identities from AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as **federated users**. AWS assigns a role to a federated user when access is requested through an identity provider. For more information, see [Federated Users and Roles](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for_service.htm) in the [IAM User Guide](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for_service.htm).

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions, you cannot create or access AWS Cloud9 resources. For example, you must have permissions to create, share, or delete an AWS Cloud9 development environment.
Every AWS resource is owned by an AWS account, and permissions to create or access a resource are governed by permissions policies. An account administrator can attach permissions policies to IAM identities (that is, users, groups, and roles).

When you grant permissions, you decide who is getting the permissions, the resources they can access, and the actions that can be performed on those resources.

AWS Cloud9 Resources and Operations

In AWS Cloud9, the primary resource is an AWS Cloud9 development environment. In a policy, you use an Amazon Resource Name (ARN) to identify the resource that the policy applies to. The following table lists environment ARNs. For more information, see Amazon Resource Names (ARNs) and AWS Service Namespaces in the *Amazon Web Services General Reference*.

<table>
<thead>
<tr>
<th>Resource type</th>
<th>ARN format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every environment owned by the specified account in the specified region</td>
<td>arn:aws:cloud9:REGION_ID:ACCOUNT_ID:environment:*</td>
</tr>
<tr>
<td>Every environment owned by the specified account in the specified region</td>
<td>arn:aws:cloud9:REGION_ID:ACCOUNT_ID:*</td>
</tr>
<tr>
<td>Every AWS Cloud9 resource, regardless of account and region</td>
<td>arn:aws:cloud9:*</td>
</tr>
</tbody>
</table>

For example, you can indicate a specific environment in your statement using its ARN, as follows.

```
"Resource": "arn:aws:cloud9:us-east-2:123456789012:environment:70d899206236474f9590d93b7c41dfEX"
```

To specify all resources, use the wildcard character (*) in the `Resource` element, as follows.

```
"Resource": "*"
```

To specify multiple resources in a single statement, separate their ARNs with commas, as follows.

```
"Resource": [
  "arn:aws:cloud9:us-east-2:123456789012:environment:70d899206236474f9590d93b7c41dfEX",
  "arn:aws:cloud9:us-east-2:123456789012:environment:81e900317347585a0601e04c8d52eaEX"
]
```

AWS Cloud9 provides a set of operations to work with AWS Cloud9 resources. For a list, see the AWS Cloud9 Permissions Reference (p. 444).

Understanding Resource Ownership

The AWS account owns the resources that are created in the account, regardless of who created the resources. For example:

- If you use the root account credentials of your AWS account to create an AWS Cloud9 development environment (which, although possible, is not recommend as an AWS security best practice), your AWS account is the owner of the environment.
• If you create an IAM user in your AWS account and grant permissions to create an environment to that user, the user can create an environment. However, your AWS account, to which the user belongs, owns the environment.

• If you create an IAM role in your AWS account with permissions to create an environment, anyone who can assume the role can create an environment. Your AWS account, to which the role belongs, owns the environment.

Managing Access to Resources

A permissions policy describes who has access to which resources.

Note

This section discusses the use of IAM in AWS Cloud9. It doesn’t provide detailed information about the IAM service. For complete IAM documentation, see [What Is IAM?](#) in the IAM User Guide. For information about IAM policy syntax and descriptions, see the [IAM JSON Policy Reference](#) in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (or IAM policies). Policies attached to a resource are referred to as resource-based policies. AWS Cloud9 supports both identity-based and resource-based policies.

Each of the following API actions requires only an IAM policy to be attached to the IAM identity who wants to call these API actions.

- CreateEnvironmentEC2
- DescribeEnvironments

The following API actions require a resource-based policy. An IAM policy isn’t required, but AWS Cloud9 will use an IAM policy if it is attached to the IAM identity who wants to call these API actions. The resource-based policy must be applied to the desired AWS Cloud9 resource.

- CreateEnvironmentMembership
- DeleteEnvironment
- DeleteEnvironmentMembership
- DescribeEnvironmentMemberships
- DescribeEnvironmentStatus
- UpdateEnvironment
- UpdateEnvironmentMembership

For details on what each of these API actions do, see the [AWS Cloud9 API Reference](#).

You cannot attach a resource-based policy to an AWS Cloud9 resource directly. Instead, AWS Cloud9 attaches the appropriate resource-based policies to AWS Cloud9 resources as you add, modify, update, or delete environment members.

To grant a user permissions to perform actions on AWS Cloud9 resources, you attach a permissions policy to an IAM group that the user belongs to. We recommend you attach an AWS managed (predefined) policy for AWS Cloud9 whenever possible. AWS managed policies are easier and faster to attach. They also contain predefined sets of access permissions for common usage scenarios and user types, such as full administration of an environment, environment users, and users who have only read-only access to an environment. For a list of AWS managed policies for AWS Cloud9, see [AWS Managed (Predefined) Policies for AWS Cloud9](#) (p. 435).
For more detailed usage scenarios and unique user types, you can create and attach your own customer-managed policies. See Advanced Team Setup for AWS Cloud9 (p. 14) and Creating Customer-Managed Policies for AWS Cloud9 (p. 437).

To attach an IAM policy (AWS managed or customer-managed) to an IAM identity, see Attaching IAM Policies (Console) in the IAM User Guide.

AWS Managed (Predefined) Policies for AWS Cloud9

AWS addresses many common use cases by providing standalone IAM policies that AWS creates and administers. These AWS managed policies grant necessary permissions for common use cases so you can avoid having to investigate what permissions are needed. For example, you can use AWS managed policies for AWS Cloud9 to quickly and easily allow users to have full administration of an AWS Cloud9 development environment, act as an environment user, or use an environment they are added to. For more information, see AWS Managed Policies in the IAM User Guide.

To attach an AWS managed policy to an IAM identity, see Attaching IAM Policies (Console) in the IAM User Guide.

The following AWS managed policies, which you can attach to IAM identities in your account, are specific to AWS Cloud9.

- **AWSCloud9Administrator**: Provides the following permissions:
 - Amazon EC2: get information about Amazon VPCs and subnets in their AWS account.
 - AWS Cloud9: all AWS Cloud9 actions in their AWS account.
 - IAM: get information about IAM users in their AWS account, and create the AWS Cloud9 service-linked role in their AWS account as needed.

The **AWSCloud9Administrator** managed policy contains the following permissions:

```json
{
    "Version": "2012-10-17",
    "Statement": [
      {
        "Effect": "Allow",
        "Action": [
          "cloud9:*",
          "ec2:DescribeSubnets",
          "ec2:DescribeVpcs",
          "iam:GetUser",
          "iam:ListUsers"
        ],
        "Resource": "*"
      },
      {
        "Effect": "Allow",
        "Action": [
          "iam:CreateServiceLinkedRole"
        ],
        "Resource": "*",
        "Condition": {
          "StringLike": {
            "iam:AWSServiceName": "cloud9.amazonaws.com"
          }
        }
      }
    ]
}
```
• **AWSCloud9User:** Provides the following permissions:

 • Amazon EC2: get information about Amazon VPCs and subnets in their AWS account.

 • AWS Cloud9: create and get information about their environments, and get and change user settings for their environments.

 • IAM: get information about IAM users in their AWS account, and create the AWS Cloud9 service-linked role in their AWS account as needed.

The **AWSCloud9User** managed policy contains the following permissions:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "cloud9:CreateEnvironmentEC2",
        "cloud9:CreateEnvironmentSSH",
        "cloud9:GetUserPublicKey",
        "cloud9:GetUserSettings",
        "cloud9:UpdateUserSettings",
        "cloud9:DescribeSubnets",
        "cloud9:DescribeVpcs",
        "ec2:DescribeSubnets",
        "ec2:DescribeVpcs",
        "iam:GetUser",
        "iam:ListUsers"
      ],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": [
        "cloud9:DescribeEnvironmentMemberships"
      ],
      "Resource": "*",
      "Condition": {
        "Null": {
          "cloud9:UserArn": "true",
          "cloud9:EnvironmentId": "true"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": [
        "iam:CreateServiceLinkedRole"
      ],
      "Resource": "*",
      "Condition": {
        "StringLike": {
          "iam:AWSServiceName": "cloud9.amazonaws.com"
        }
      }
    }
  ]
}
```

• **AWSCloud9EnvironmentMember:** Provides the following permissions:

 • AWS Cloud9: get information about environments they've been invited to, and get user settings for environments they've been invited to.

 • IAM: get information about IAM users in their AWS account.
The AWSCloud9EnvironmentMember managed policy contains the following permissions:

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "cloud9:GetUserSettings",
            "cloud9:UpdateUserSettings",
            "iam:GetUser",
            "iam:ListUsers"
         ],
         "Resource": "*"
      },
      {
         "Effect": "Allow",
         "Action": [
            "cloud9:DescribeEnvironmentMemberships"
         ],
         "Resource": "*",
         "Condition": {
            "Null": {
               "cloud9:UserArn": "true",
               "cloud9:EnvironmentId": "true"
            }
         }
      }
   ]
}
```

Creating Customer-Managed Policies for AWS Cloud9

If none of the AWS managed policies meet your access control requirements, you can create and attach your own customer-managed policies.

To create a customer-managed policy, see Create an IAM Policy (Console) in the IAM User Guide.

- Specifying Policy Elements: Effects, Principals, Actions, and Resources (p. 437)
- Customer-Managed Policy Examples (p. 438)
- AWS Cloud9 Permissions Reference (p. 444)

Specifying Policy Elements: Effects, Principals, Actions, and Resources

For each AWS Cloud9 resource, the service defines a set of API operations. To grant permissions for these API operations, AWS Cloud9 defines a set of actions that you can specify in a policy.

The following are the basic policy elements:

- **Effect**: You specify the effect, either allow or deny, when the user requests the action. If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also explicitly deny
access to a resource. You might do this to ensure a user cannot access a resource, even if a different policy grants access.

- **Principal:** In identity-based policies (IAM policies), the user the policy is attached to is the implicit principal. For resource-based policies, you specify the user, account, service, or other entity that you want to receive permissions.
- **Resource:** You use an ARN to identify the resource that the policy applies to.
- **Action:** You use action keywords to identify resource operations you want to allow or deny. For example, the `cloud9:CreateEnvironmentEC2` permission gives the user permissions to perform the `CreateEnvironmentEC2` operation.

To learn more about IAM policy syntax and descriptions, see the IAM JSON Policy Reference in the IAM User Guide.

For a table showing all of the AWS Cloud9 API actions and the resources they apply to, see the AWS Cloud9 Permissions Reference (p. 444).

Customer-Managed Policy Examples

In this section, you can find example policies that grant permissions for AWS Cloud9 actions. You can adapt the following example IAM policies to allow or explicitly deny AWS Cloud9 access for your IAM identities.

To create or attach a customer-managed policy to an IAM identity, see Create an IAM Policy (Console) and Attaching IAM Policies (Console) in the IAM User Guide.

Note
The following examples use the US East (Ohio) Region (`us-east-2`), a fictitious AWS account ID (`123456789012`), and a fictitious AWS Cloud9 development environment ID (`81e900317347585a0601e04c8d52eaEX`).

- Get Information About Environments (p. 438)
- Create EC2 Environments (p. 439)
- Create EC2 Environments with Specific Amazon EC2 Instance Types (p. 439)
- Create EC2 Environments in Specific Amazon VPC Subnets (p. 440)
- Create an EC2 Environment with a Specific Environment Name (p. 440)
- Create SSH Environments Only (p. 440)
- Update Environments, or Prevent Updating an Environment (p. 441)
- Get Lists of Environment Members (p. 441)
- Share Environments Only with a Specific User (p. 442)
- Prevent Sharing Environments (p. 442)
- Change, or Prevent Changing, the Settings of Environment Members (p. 443)
- Remove, or Prevent Removing, Environment Members (p. 443)
- Delete Environments, or Prevent Deleting an Environment (p. 444)

Get Information About Environments

The following example IAM policy statement, attached to an IAM entity, allows that entity to get information about any environment in their account.
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": "cloud9:DescribeEnvironments",
 "Resource": "*"
 }
]
}

Note that the preceding access permission is already included in the AWS managed policies AWSCloud9Administrator and AWSCloud9User.

Create EC2 Environments

The following example IAM policy statement, attached to an IAM entity, allows that entity to create AWS Cloud9 EC2 development environments in their account.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "cloud9:CreateEnvironmentEC2",
            "Resource": "*",
            "Condition": {
                "StringLike": {
                    "cloud9:InstanceType": "t2.*"
                }
            }
        }
    ]
}
```

Note that the preceding access permission is already included in the AWS managed policies AWSCloud9Administrator and AWSCloud9User.

Create EC2 Environments with Specific Amazon EC2 Instance Types

The following example IAM policy statement, attached to an IAM entity, allows that entity to create AWS Cloud9 EC2 development environments in their account. However, EC2 environments can use only the specified class of Amazon EC2 instance types.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "cloud9:CreateEnvironmentEC2",
            "Resource": "*",
            "Condition": {
                "StringLike": {
                    "cloud9:InstanceType": "t2.*"
                }
            }
        }
    ]
}
```

Note that if the AWS managed policy AWSCloud9Administrator or AWSCloud9User is already attached to the IAM entity, those AWS managed policies will override the behavior of the preceding IAM policy statement, as those AWS managed policies are more permissive.
Create EC2 Environments in Specific Amazon VPC Subnets

The following example IAM policy statement, attached to an IAM entity, allows that entity to create AWS Cloud9 EC2 development environments in their account. However, EC2 environments can use only the specified Amazon VPC subnets.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "cloud9:CreateEnvironmentEC2",
      "Resource": "*",
      "Condition": {
        "StringLike": {
          "cloud9:SubnetId": [
            "subnet-12345678",
            "subnet-23456789"
          ]
        }
      }
    }
  ]
}
```

Note that if the AWS managed policy AWSCloud9Administrator or AWSCloud9User is already attached to the IAM entity, those AWS managed policies will override the behavior of the preceding IAM policy statement, as those AWS managed policies are more permissive.

Create an EC2 Environment with a Specific Environment Name

The following example IAM policy statement, attached to an IAM entity, allows that entity to create an AWS Cloud9 EC2 development environment in their account. However, the EC2 environment can use only the specified name.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "cloud9:CreateEnvironmentEC2",
      "Resource": "*",
      "Condition": {
        "StringEquals": {
          "cloud9:EnvironmentName": "my-demo-environment"
        }
      }
    }
  ]
}
```

Note that if the AWS managed policy AWSCloud9Administrator or AWSCloud9User is already attached to the IAM entity, those AWS managed policies will override the behavior of the preceding IAM policy statement, as those AWS managed policies are more permissive.

Create SSH Environments Only

The following example IAM policy statement, attached to an IAM entity, allows that entity to create AWS Cloud9 SSH development environments in their account. However, the entity cannot create AWS Cloud9 EC2 development environments.
Update Environments, or Prevent Updating an Environment

The following example IAM policy statement, attached to an IAM entity, allows that entity to change information about any AWS Cloud9 development environment in their account.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "cloud9:UpdateEnvironment",
      "Resource": "*"
    }
  ]
}
```

Note that the preceding access permission is already included in the AWS managed policy AWSCloud9Administrator.

The following example IAM policy statement, attached to an IAM entity, explicitly prevents that entity from changing information about the environment with the specified ARN.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": "cloud9:UpdateEnvironment",
      "Resource": "arn:aws:cloud9:us-east-2:123456789012:environment:81e900317347585a0601e04c8d52eaEX"
    }
  ]
}
```

Get Lists of Environment Members

The following example IAM policy statement, attached to an IAM entity, allows that entity to get a list of members for any environment in their account.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "cloud9:DescribeMembersForEnvironment",
      "Resource": "*"
    }
  ]
}
```
Note that the preceding access permission is already included in the AWS managed policy AWSCloud9Administrator. Also note that the preceding access permission is more permissive than the equivalent access permission in the AWS managed policy AWSCloud9User.

Share Environments Only with a Specific User

The following example IAM policy statement, attached to an IAM entity, allows that entity to share any environment in their account with only the specified user.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": ["cloud9:DescribeEnvironmentMemberships"],
      "Resource": "*"
    }
  ]
}
```

Note that if the AWS managed policy AWSCloud9Administrator or AWSCloud9User is already attached to the IAM entity, those AWS managed policies will override the behavior of the preceding IAM policy statement, as those AWS managed policies are more permissive.

Prevent Sharing Environments

The following example IAM policy statement, attached to an IAM entity, prevents that entity from sharing any environment in their account.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": ["cloud9:CreateEnvironmentMembership", "cloud9:UpdateEnvironmentMembership"],
      "Resource": "*"
    }
  ]
}
```
Change, or Prevent Changing, the Settings of Environment Members

The following example IAM policy statement, attached to an IAM entity, allows that entity to change the settings of members in any environment in their account.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "cloud9:UpdateEnvironmentMembership",
            "Resource": "*
        }
    ]
}
```

Note that the preceding access permission is already included in the AWS managed policy AWSCloud9Administrator.

The following example IAM policy statement, attached to an IAM entity, explicitly prevents that entity from changing the settings of members in the environment with the specified ARN.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Deny",
            "Action": "cloud9:UpdateEnvironmentMembership",
            "Resource": "arn:aws:cloud9:us-east-2:123456789012:environment:81e900317347585a0601e04c8d52eaEX"
        }
    ]
}
```

Remove, or Prevent Removing, Environment Members

The following example IAM policy statement, attached to an IAM entity, allows that entity to remove any member from any environment in their account.

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "cloud9:DeleteEnvironmentMembership",
            "Resource": "*
        }
    ]
}
```

Note that the preceding access permission is already included in the AWS managed policy AWSCloud9Administrator.

The following example IAM policy statement, attached to an IAM entity, explicitly prevents that entity from removing any member from the environment with the specified ARN.

```
{
    "Version": "2012-10-17",
}
```
Delete Environments, or Prevent Deleting an Environment

The following example IAM policy statement, attached to an IAM entity, allows that entity to delete any environment in their account.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": "cloud9:DeleteEnvironment",
      "Resource": "*"
    }
  ]
}
```

Note that the preceding access permission is already included in the AWS managed policy AWSCloud9Administrator.

The following example IAM policy statement, attached to an IAM entity, explicitly prevents that entity from deleting the environment with the specified ARN.

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Deny",
      "Action": "cloud9:DeleteEnvironment",
      "Resource": "arn:aws:cloud9:us-east-2:123456789012:environment:81e900317347585a0601e04c8d52eaEX"
    }
  ]
}
```

AWS Cloud9 Permissions Reference

You can use the following table as a reference when you are setting up access control and writing permissions policies that you can attach to an IAM identity (identity-based policies).

You can use AWS-wide condition keys in your AWS Cloud9 policies to express conditions. For a list, see IAM JSON Policy Elements: Condition in the IAM User Guide.

You specify the actions in the policy's Action field. To specify an action, use the cloud9: prefix followed by the API operation name (for example, "Action": "cloud9:DescribeEnvironments"). To specify multiple actions in a single statement, separate them with commas (for example, "Action": ["cloud9:UpdateEnvironment", "cloud9:DeleteEnvironment"]).

- Using Wildcard Characters (p. 445)
- AWS Cloud9 API Operations and Required Permissions for Actions (p. 445)
Using Wildcard Characters

You specify an ARN, with or without a wildcard character (*), as the resource value in the policy's Resource field. You can use a wildcard to specify multiple actions or resources. For example, `cloud9:*` specifies all AWS Cloud9 actions and `cloud9:Describe*` specifies all AWS Cloud9 actions that begin with Describe.

The following example allows an IAM entity to get information about environments and environment memberships for any environment in their account.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": ["cloud9:Describe*"],
         "Resource": "*"
      }
   ]
}
```

Note that the preceding access permission is already included in the AWS managed policy `AWSCloud9Administrator`. Also note that the preceding access permission is more permissive than the equivalent access permission in the AWS managed policy `AWSCloud9User`.

AWS Cloud9 API Operations and Required Permissions for Actions

<table>
<thead>
<tr>
<th>AWS Cloud9 operation</th>
<th>Required permission (API action)</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>CreateEnvironmentEC2</td>
<td><code>cloud9:CreateEnvironmentEC2*</code></td>
<td>Required to create an AWS Cloud9 EC2 development environment.</td>
</tr>
<tr>
<td>CreateEnvironmentMembership</td>
<td><code>cloud9:CreateEnvironmentMembership*</code></td>
<td>Required to add a member to an environment.</td>
</tr>
<tr>
<td>DeleteEnvironment</td>
<td><code>cloud9:DeleteEnvironment</code></td>
<td>Required to delete an environment.</td>
</tr>
<tr>
<td>DeleteEnvironmentMembership</td>
<td><code>cloud9:DeleteEnvironmentMembership*</code></td>
<td>Required to remove a member from an environment.</td>
</tr>
<tr>
<td>DescribeEnvironmentMemberships</td>
<td><code>cloud9:DescribeEnvironmentMemberships</code></td>
<td>Required to get a list of members in an environment.</td>
</tr>
</tbody>
</table>
For an AWS Cloud9 EC2 development environment, AWS Cloud9 makes temporary AWS access credentials available to you in the environment. We call these AWS managed temporary credentials. This provides the following benefits:

- You don't need to store the permanent AWS access credentials of an AWS entity (for example, an IAM user) anywhere in the environment. This prevents those credentials from being accessed by environment members without your knowledge and approval.
- You don't need to manually set up, manage, or attach an instance profile to the Amazon EC2 instance that connects to the environment. (An instance profile is another approach for managing temporary AWS access credentials.)
- AWS Cloud9 continually renews its temporary credentials, so a single set of credentials can only be used for a limited time. This is an AWS security best practice. For more information, see Creating and Updating AWS Managed Temporary Credentials (p. 448).
- AWS Cloud9 puts additional restrictions on how its temporary credentials can be used to access AWS actions and resources from the environment. This is also an AWS security best practice.

Here's how AWS managed temporary credentials work whenever an EC2 environment tries to access an AWS service on behalf of an AWS entity (for example, an IAM user):

1. AWS Cloud9 checks to see if the calling AWS entity (for example, the IAM user) has permissions in IAM to take the requested action for the requested resource in AWS. If the permission doesn't exist or is explicitly denied, the request fails.
2. AWS Cloud9 checks AWS managed temporary credentials to see if its permissions allow the requested action for the requested resource in AWS. If the permission doesn't exist or is explicitly denied, the request fails. For a list of permissions that AWS managed temporary credentials support, see Actions Supported by AWS Managed Temporary Credentials (p. 447).
3. If both the AWS entity and AWS managed temporary credentials allow the requested action for the requested resource, the request succeeds.
4. If either the AWS entity or AWS managed temporary credentials explicitly deny (or fail to explicitly allow) the requested action for the requested resource, the request fails. This means that even if the calling AWS entity has the correct permissions, the request will fail if AWS Cloud9 doesn’t also explicitly allow it. Likewise, if AWS Cloud9 allows a specific action to be taken for a specific resource, the request will fail if the AWS entity doesn’t also explicitly allow it.

The owner of an EC2 environment can turn on or off AWS managed temporary credentials for that environment at any time, as follows:

1. With the environment open, in the AWS Cloud9 IDE, on the menu bar choose AWS Cloud9, Preferences.
2. In the Preferences tab, in the navigation pane, choose AWS Settings, Credentials.
3. Use AWS managed temporary credentials to turn AWS managed temporary credentials on or off.

If you turn off AWS managed temporary credentials, by default the environment cannot access any AWS services, regardless of the AWS entity who makes the request. If you cannot or do not want to turn on AWS managed temporary credentials for an environment, but you still need the environment to access AWS services, consider the following alternatives:

• Attach an instance profile to the Amazon EC2 instance that connects to the environment. For instructions, see Create and Use an Instance Profile to Manage Temporary Credentials (p. 84).
• Store your permanent AWS access credentials in the environment, for example, by setting special environment variables or by running the aws configure command. For instructions, see Create and Store Permanent Access Credentials in an Environment (p. 88).

The preceding alternatives override all permissions that are allowed (or denied) by AWS managed temporary credentials in an EC2 environment.

Actions Supported by AWS Managed Temporary Credentials

For an AWS Cloud9 EC2 development environment, AWS managed temporary credentials allow all AWS actions for all AWS resources in the caller’s AWS account, with the following restrictions:

• For IAM, only the following actions are allowed:
 • iam:AttachRolePolicy
 • iam:ChangePassword
 • iam:CreatePolicy
 • iam:CreatePolicyVersion
 • iam:CreateRole
 • iam:CreateServiceLinkedRole
 • iam:DeletePolicy
 • iam:DeletePolicyVersion
 • iam:DeleteRole
 • iam:DeleteRolePolicy
 • iam:DeleteSSHPublicKey
 • iam:DetachRolePolicy
 • iam:GetInstanceProfile
 • iam:GetPolicy
 • iam:GetPolicyVersion
• `iam:GetRole`
• `iam:GetSSHPublicKey`
• `iam:GetUser`
• `iam:Get*`
• `iam:PassRole`
• `iam:PutRolePolicy`
• `iam:SetDefaultPolicyVersion`
• `iam:Update AssumeRolePolicy`
• `iam:UpdateRoleDescription`
• `iam:UpdateSSHPublicKey`
• `iam:UploadSSHPublicKey`

All IAM actions that interact with roles are allowed only for role names starting with `cloud9-`. However, `iam:PassRole` works with all role names.

For AWS Security Token Service (AWS STS), only the following actions are allowed:

• `sts:GetCallerIdentity`
• `sts:DecodeAuthorizationMessage`

All supported AWS actions are restricted to the IP address of the environment. This is an AWS security best practice.

If AWS Cloud9 doesn’t support an action or resource that you need an EC2 environment to access, or if AWS managed temporary credentials is turned off for an EC2 environment and you cannot turn it back on, consider the following alternatives:

• Attach an instance profile to the Amazon EC2 instance that connects to the EC2 environment. For instructions, see Create and Use an Instance Profile to Manage Temporary Credentials (p. 84).
• Store your permanent AWS access credentials in the EC2 environment, for example, by setting special environment variables or by running the `aws configure` command. For instructions, see Create and Store Permanent Access Credentials in an Environment (p. 88).

The preceding alternatives override all permissions that are allowed (or denied) by AWS managed temporary credentials in an EC2 environment.

Creating and Updating AWS Managed Temporary Credentials

For an AWS Cloud9 EC2 development environment, AWS managed temporary credentials are created the first time you open the environment.

AWS managed temporary credentials are updated under any of the following conditions:

• Whenever a certain period of time passes. Currently, this is every 5 minutes.
• Whenever you reload the web browser tab that displays the IDE for the environment.
• When the timestamp that is listed in the `~/.aws/credentials` file for the environment is reached.
• If the **AWS managed temporary credentials** setting is set to off, whenever you turn it back on.
 (To view or change this setting, choose **AWS Cloud, Preferences** in the menu bar of the IDE. In the **Preferences** tab, in the navigation pane, choose **AWS Settings, Credentials**.)
AWS Cloud9 uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to AWS Cloud9. Service-linked roles are predefined by AWS Cloud9 and include all the permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up AWS Cloud9 easier because you don't have to manually add the necessary permissions. AWS Cloud9 defines the permissions of its service-linked roles, and only AWS Cloud9 can assume its roles. The defined permissions include the trust policy and the permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete the roles only after first deleting their related resources. This protects your AWS Cloud9 resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

- Service-Linked Role Permissions for AWS Cloud9 (p. 449)
- Creating a Service-Linked Role for AWS Cloud9 (p. 451)
- Editing a Service-Linked Role for AWS Cloud9 (p. 451)
- Deleting a Service-Linked Role for AWS Cloud9 (p. 451)

Service-Linked Role Permissions for AWS Cloud9

AWS Cloud9 uses the service-linked role named AWSServiceRoleForAWSCloud9. This service-linked role trusts the service cloud9.amazonaws.com to assume the role.

The role permissions policy allows AWS Cloud9 to complete the following actions on the specified resources.

```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"cloudformation:CreateStack",
"cloudformation:DescribeStacks",
"ec2:CreateSecurityGroup",
"ec2:DescribeInstances",
"ec2:DescribeSecurityGroups",
"ec2:DescribeVpcs",
"ec2:RunInstances"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject",
"s3:ListBucket"
],
"Resource": "*"
}
]
}
```
You must configure permissions to allow AWS Cloud9 to create a service-linked role on behalf of an IAM entity (such as a user, group, or role).

To allow AWS Cloud9 to create the AWSServiceRoleForAWSCloud9 service-linked role, add the following statement to the permissions policy for the IAM entity on whose behalf AWS Cloud9 needs to create the service-linked role.

```json
{
    "Effect": "Allow",
    "Action": [ "iam:CreateServiceLinkedRole" ],
    "Resource": "*",
    "Condition": {
        "StringLike": {
            "iam:AWSServiceName": "cloud9.amazonaws.com"
        }
    }
}
```

Alternatively, you can add the AWS managed policies AWSCloud9User or AWSCloud9Administrator to the IAM entity.
To allow an IAM entity to delete the AWSServiceRoleForAWSCloud9 service-linked role, add the following statement to the permissions policy for the IAM entity that needs to delete a service-linked role.

```
{
  "Effect": "Allow",
  "Action": [
    "iam:DeleteServiceLinkedRole",
    "iam:GetServiceLinkedRoleDeletionStatus"
  ],
  "Resource": "*",
  "Condition": {
    "StringLike": {
      "iam:AWSServiceName": "cloud9.amazonaws.com"
    }
  }
}
```

Creating a Service-Linked Role for AWS Cloud9

You don't need to manually create a service-linked role. When you create an AWS Cloud9 development environment, AWS Cloud9 creates the service-linked role for you.

Editing a Service-Linked Role for AWS Cloud9

AWS Cloud9 doesn't allow you to edit the AWSServiceRoleForAWSCloud9 service-linked role. For example, after you create a service-linked role, you can't change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a Service-Linked Role for AWS Cloud9

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don't have an unused entity that is not actively monitored or maintained.

Deleting a Service-Linked Role in IAM

Before you can use IAM to delete a service-linked role, you must remove any AWS Cloud9 resources used by the role. To remove AWS Cloud9 resources, see Deleting an Environment (p. 108).

You can use the IAM console to delete the AWSServiceRoleForAWSCloud9 service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.
Troubleshooting AWS Cloud9

Use the following information to help you identify and address issues with AWS Cloud9.

- Environment Creation Error: "Not authorized to perform sts:AssumeRole" (p. 452)
- Console Error: "User is not authorized to perform action on resource" (p. 452)
- Federated Identities Cannot Create Environments (p. 453)
- Cannot Open an Environment (p. 453)
- The AWS Cloud9 Installer Hangs or Fails (p. 455)
- SSH Environment Error: "Python version 2.7 is required to install pty.js" (p. 456)
- Application Preview Tab Displays an Error or is Blank (p. 456)
- Cannot Display Your Running Application Outside of the IDE (p. 457)
- After Reloading an Environment, You Must Refresh Application Preview (p. 458)
- Unable to Preview Application in the AWS Cloud9 IDE with HTTP (p. 459)
- Cannot Run Some Commands or Scripts in an EC2 Environment (p. 459)
- AWS CLI / aws-shell Error: "The security token included in the request is invalid" in an EC2 environment (p. 459)
- Amazon EC2 Instances Are Not Automatically Updated (p. 460)
- Lambda Local Function Run Error: Cannot Install SAM Local (p. 460)

Environment Creation Error: "Not authorized to perform sts:AssumeRole"

Issue: When you try to create a new environment, you see this error: "Not authorized to perform sts:AssumeRole," and the environment is not created.

Possible causes: An AWS Cloud9 service-linked role doesn't exist in your AWS account.

Recommended solutions: Create an AWS Cloud9 service-linked role in your AWS account by running the following command with the AWS Command Line Interface (AWS CLI) or the aws-shell.

```bash
aws iam create-service-linked-role --aws-service-name cloud9.amazonaws.com # For the AWS CLI.
iam create-service-linked-role --aws-service-name cloud9.amazonaws.com     # For the aws-shell.
```

If you cannot do this, check with your AWS account administrator.

After you run this command, try creating the environment again.

Console Error: "User is not authorized to perform action on resource"

Issue: When you try to use the AWS Cloud9 console to create or manage an AWS Cloud9 development environment, you see an error that contains the phrase "User arn:aws:iam::123456789012:user/
Federated Identities Cannot Create Environments

Issue: When you try to use an AWS federated identity to create an AWS Cloud9 development environment, an access error message is displayed, and the environment isn't created.

Cause: AWS Cloud9 uses service-linked roles. The service-linked role is created the first time an environment is created in an account using the `iam:CreateServiceLinkedRole` call. However, federated users can't call IAM APIs. For more information, see `GetFederationToken` in the AWS STS API Reference.

Solution: Ask an AWS account administrator to create the service-linked role for AWS Cloud9 either in the IAM console or by running this command with the AWS Command Line Interface (AWS CLI):

```
aws iam create-service-linked-role --aws-service-name cloud9.amazonaws.com
```

Or this command with the `aws-shell`:

```
iam create-service-linked-role --aws-service-name cloud9.amazonaws.com
```

For more information, see Using Service-Linked Roles in the IAM User Guide.

Cannot Open an Environment

Issue: When you try to open an environment, the IDE does not display for a long time (after at least five minutes).

Possible causes:

- Your web browser does not have third-party cookies enabled.
- The IAM user that is signed in to the AWS Cloud9 console does not have the required AWS access permissions to open the environment.
• If the environment is associated with an AWS cloud compute instance (for example an Amazon EC2 instance), the instance's associated VPC is not set to the correct settings for AWS Cloud9.

• If the environment is associated with an AWS cloud compute instance, the instance is transitioning between states or is failing automated status checks, during the time when AWS Cloud9 is trying to connect to the instance.

• If the environment is an SSH environment, the associated cloud compute instance or your own server is not set up correctly to allow AWS Cloud9 to access it.

Recommended solution:

• Enable third-party cookies in your web browser, and then try opening the environment again. To enable third-party cookies:
 • For Apple Safari, see Manage cookies and website data using Safari on the Apple Support website.
 • For Google Chrome, see Change your cookie settings in Clear, enable, and manage cookies in Chrome on the Google Chrome Help website.
 • For Internet Explorer, see To block or allow all cookies in Description of Cookies on the Microsoft Support website.
 • For Mozilla Firefox, see the Accept third party cookies setting in Enable and disable cookies that websites use to track your preferences on the Mozilla Support website.
 • For other web browsers, see their web browser's documentation.

If you want to restrict enabling third-party cookies only for AWS Cloud9 and your web browser allows this, specify the following domains, depending on the supported AWS Regions where you want to use AWS Cloud9.

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Pacific (Singapore)</td>
<td>*.vfs.cloud9.ap-southeast-1.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td>vfs.cloud9.ap-southeast-1.amazonaws.com</td>
</tr>
<tr>
<td>EU (Ireland)</td>
<td>*.vfs.cloud9.eu-west-1.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td>vfs.cloud9.eu-west-1.amazonaws.com</td>
</tr>
<tr>
<td>US East (N. Virginia)</td>
<td>*.vfs.cloud9.us-east-1.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td>vfs.cloud9.us-east-1.amazonaws.com</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>*.vfs.cloud9.us-east-2.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td>vfs.cloud9.us-east-2.amazonaws.com</td>
</tr>
<tr>
<td>US West (Oregon)</td>
<td>*.vfs.cloud9.us-west-2.amazonaws.com</td>
</tr>
<tr>
<td></td>
<td>vfs.cloud9.us-west-2.amazonaws.com</td>
</tr>
</tbody>
</table>

• Make sure the IAM user that is signed in to the AWS Cloud9 console has the required AWS access permissions to open the environment, and then try opening the environment again. For more information see the following, or check with your AWS account administrator:
 • Step 3: Add AWS Cloud9 Access Permissions to the Group (p. 11) in Team Setup
 • AWS Managed (Predefined) Policies for AWS Cloud9 (p. 435) in Authentication and Access Control
 • Customer-Managed Policy Examples for Teams (p. 16) in Advanced Team Setup
The AWS Cloud9 Installer Hangs or Fails

Issue: When you open an AWS Cloud9 SSH development environment, you are prompted to run the **AWS Cloud9 Installer.** When you try to run it, it either hangs or displays errors, and you cannot use the AWS Cloud9 IDE for the environment as expected. (In some cases, a message might display before you are prompted to run the **AWS Cloud9 Installer.** The message states that opening the environment is taking longer than expected.)

Cause: The **AWS Cloud9 Installer** cannot run a required setup script to properly set up the environment.

Solution: Manually run the `install.sh` script that the **AWS Cloud9 Installer** unsuccessfully tried to run, as follows:

1. Close the web browser tab for the environment, which stops the **AWS Cloud9 Installer.**
2. Connect to the cloud compute instance or your own server using an SSH connection client outside of AWS Cloud9, for example by using the `ssh` command or PuTTY.
3. Run one of the following commands on the cloud compute instance or your own server:
   ```bash
gzip -o - https://raw.githubusercontent.com/c9/install/master/install.sh | bash
```
4. Try opening the environment again. You might be prompted to run the **AWS Cloud9 Installer** again. When you try to run it this time though, it should run without hangs or errors. However, depending on your Linux distribution and build, you might need to repeat this process to successfully set up the environment.
SSH Environment Error: "Python version 2.7 is required to install pty.js"

Issue: After you open an AWS Cloud9 SSH development environment, the terminal in the AWS Cloud9 IDE displays a message that begins with "Python version 2.7 is required to install pty.js."

Cause: To work as expected, an SSH environment requires that Python version 2.7 is installed.

Solution: Install Python version 2.7 in the environment. To check your version, from your server's terminal, run the command `python --version`. To install Python 2.7 on your server, see one of the following:

- Step 1: Install Required Tools (p. 369) in the Python Sample.
- Download Python on the Python website and Installing Packages in the Python Packaging User Guide.

Application Preview Tab Displays an Error or is Blank

Issue: On the menu bar in the IDE, when you choose Preview, Preview Running Application or Tools, Preview, Preview Running Application to try to display your application in a preview tab in the IDE, the tab displays an error, or the tab is blank.

Possible causes:

- Your application is not running in the IDE.
- Your application is not running using HTTP.
- Your application is running over more than one port.
- Your application is running over a port other than 8080, 8081, or 8082.
- Your application is running with an IP other than 127.0.0.1, localhost, or 0.0.0.0.
- The port (8080, 8081, or 8082) is not specified in the URL on the preview tab.
- Your network blocks inbound traffic to ports 8080, 8081, or 8082.
- You are trying to go to an address that contains an IP of 127.0.0.1, localhost, or 0.0.0.0. The default built-in behavior of the AWS Cloud9 IDE is that this will attempt to go to your local computer, instead of attempting to go to the instance or your own server that is connected to the environment.

Recommended solutions:

- Ensure that the application is running in the IDE.
- Ensure that the application is running using HTTP. For some examples in Node.js and Python, see Run an Application (p. 129).
- Ensure that the application is running over only one port. For some examples in Node.js and Python, see Run an Application (p. 129).
- Ensure that the application is running over port 8080, 8081, or 8082. For some examples in Node.js and Python, see Run an Application (p. 129).
- Ensure that the application is running with an IP of 127.0.0.1, localhost, or 0.0.0.0. For some examples in Node.js and Python, see Run an Application (p. 129).
- Add :8080, :8081, or :8082 to the URL on the preview tab.
Cannot Display Your Running Application Outside of the IDE

Issue: When you or others try to display your running application in a web browser tab outside of the IDE, that web browser tab displays an error, or the tab is blank.

Possible causes:

- The application is not running in the IDE.
- The application is running with an IP of 127.0.0.1 or localhost.
- The application is running in an AWS Cloud9 EC2 development environment, and one or more security groups that are associated with the corresponding Amazon EC2 instance do not allow inbound traffic over the protocols, ports, or IP addresses that the application requires.
- The application is running in an AWS Cloud9 SSH development environment for an AWS cloud compute instance (for example an Amazon EC2 instance), and the network ACL for the subnet in the virtual private cloud (VPC) that is associated with the corresponding instance does not allow inbound traffic over the protocols, ports, or IP addresses that the application requires.
- The URL is incorrect.
- The URL in the application preview tab is being requested instead of the instance's public IP address.
- You are trying to go to an address that contains an IP of 127.0.0.1 or localhost. These IPs will attempt to access resources on your local computer instead of resources in the environment.
- The instance's public IP address has changed.
- The web request originates from a virtual private network (VPN) that blocks traffic over the protocols, ports, or IP addresses that the application requires.
- The application is running in an SSH environment, and your server or the associated network does not allow traffic over the protocols, ports, or IP addresses that the application requires.

Recommended solutions:

- Ensure that the application is running in the IDE.
- Ensure that the application is not running with an IP of 127.0.0.1 or localhost. For some examples in Node.js and Python, see Run an Application (p. 129).
• If the application is running on an AWS cloud compute instance (for example an Amazon EC2 instance), ensure all security groups that are associated with the corresponding instance allow inbound traffic over the protocols, ports, and IP addresses that the application requires. For instructions, see Step 2: Set Up the Security Group for the Instance (p. 132) in Share a Running Application over the Internet. See also Security Groups for Your VPC in the Amazon VPC User Guide.

• If the application is running on an AWS cloud compute instance, and a network ACL exists for the subnet in the VPC that is associated with the corresponding instance, ensure that network ACL allows inbound traffic over the protocols, ports, and IP addresses that the application requires. For instructions, see Step 3: Set Up the Subnet for the Instance (p. 133) in Share a Running Application over the Internet. See also Network ACLs in the Amazon VPC User Guide.

• Ensure that the requesting URL, including the protocol (and port, if it must be specified), is correct. For more information, see Step 5: Share the Running Application URL (p. 134) in Share a Running Application over the Internet.

• We do not recommend requesting a URL with the format https://<id>.vfs.cloud9.us-east-2.amazonaws.com/ (where <id> is the ID that AWS Cloud9 assigns to the environment, and us-east-2 is the ID of the AWS Region for the environment). This URL works only when the IDE for the environment is open and the application is running in the same web browser.

• If you are trying to go to an address that contains an IP of 127.0.0.1 or localhost, try going to the correct non-local address for the running application instead. For more information, see Share a Running Application over the Internet (p. 131).

• If the application is running on an AWS cloud compute instance, determine whether the instance's public IP address has changed. The instance's public IP address might change anytime the instance restarts. To prevent this IP address from changing, you can allocate an Elastic IP address and assign it to the running instance. For more information, see Step 5: Share the Running Application URL (p. 134) in Share a Running Application over the Internet.

• If the web request originates from a VPN, ensure that VPN allows traffic over the protocols, ports, and IP addresses that the application requires. If you cannot make changes to your VPN, see your network administrator. Or make the web request from a different network if possible.

• If the application is running in an SSH environment for your own server, ensure your server and the associated network allow traffic over the protocols, ports, and IP addresses that the application requires. If you cannot make changes to your server or the associated network, see your server or network administrator.

• Try running the application from a terminal in the environment by running the curl command, followed by the URL. If this command displays an error message, there might be some other issue that is not related to AWS Cloud9.

After Reloading an Environment, You Must Refresh Application Preview

Issue: After you reload an environment that displays an application preview tab, the tab doesn't display the application preview.

Cause: Sometimes users write code that can run an infinite loop or that otherwise uses so much memory that the AWS Cloud9 IDE can pause or stop when the application preview is running. To keep this from happening, AWS Cloud9 doesn't reload application preview tabs whenever an environment is reloaded.

Solution: After you reload an environment that displays an application preview tab, to display the application preview, choose the Click to load the page button on the tab.
Unable to Preview Application in the AWS Cloud9 IDE with HTTP

Issue: In the address box of an application preview tab in the AWS Cloud9 IDE, the URL always starts with `https`. If you try to change `https` in the box to `http` and then press `Enter`, the tab doesn't display the application preview.

Cause: To help improve code safety, in the address box of the application preview tab in the IDE, AWS Cloud9 always uses `https`. This behavior cannot be changed.

Solution: To view an application preview with an address starting with `http` instead of `https`, change `https` in the address box of the tab to `http` and then press `Enter`. Then choose the Open your page in a new tab button. This displays the application preview in a separate web browser tab using HTTP.

Cannot Run Some Commands or Scripts in an EC2 Environment

Issue: After you open an AWS Cloud9 EC2 development environment, you cannot install some types of packages, run commands such as `apt`, or run scripts containing commands that typically work with Linux operating systems such as Ubuntu.

Cause: The Amazon EC2 instance that AWS Cloud9 uses for an EC2 environment relies on Amazon Linux, which is based on Red Hat Enterprise Linux (RHEL).

Solution: If you install or manage packages or run commands or scripts in the IDE for an EC2 environment, ensure they are compatible with RHEL.

AWS CLI / aws-shell Error: "The security token included in the request is invalid" in an EC2 environment

Issue: When you try to use the AWS Command Line Interface (AWS CLI) or the aws-shell to run a command in the AWS Cloud9 IDE for an EC2 environment, an error displays: "The security token included in the request is invalid."

Possible causes:

- If you have AWS managed temporary credentials enabled, you are trying to run a command that is not allowed with those temporary credentials. For a list of allowed commands, see Actions Supported by AWS Managed Temporary Credentials (p. 447).

- If you have AWS managed temporary credentials enabled and the environment is a shared environment, the environment owner has not opened the environment within the past 12 hours so that AWS Cloud9 can refresh AWS managed temporary credentials in the environment. (AWS Cloud9 sets this 12-hour limit as an AWS security best practice.)

Recommended solutions:
• If you have AWS managed temporary credentials enabled, run allowed commands only. If you must run a command that is not allowed by AWS managed temporary credentials, one approach would be to configure the AWS CLI or aws-shell in the environment with a set of permanent credentials, which removes this limitation. For instructions, see Create and Store Permanent Access Credentials in an Environment (p. 88).

• Have the environment owner open the environment so that AWS Cloud9 can refresh temporary credentials in the environment.

For more information, see AWS Managed Temporary Credentials (p. 446).

Amazon EC2 Instances Are Not Automatically Updated

Issue: Recent system updates are not automatically applied to an Amazon EC2 instance that connects to an AWS Cloud9 development environment.

Cause: Automatically applying recent system updates could cause your code or the Amazon EC2 instance to behave in unexpected ways, without your prior knowledge or approval.

Recommended solutions:

Apply system updates to the Amazon EC2 instance on a regular basis by following the instructions in Updating Instance Software in the Amazon EC2 User Guide for Linux Instances.

To run commands on the instance, you can use a terminal session in the AWS Cloud9 IDE from the environment that is connected to the instance.

Alternatively, you can use an SSH remote access utility such as ssh or PuTTY to connect to the instance. To do this, from your local computer, use an SSH key pair creation utility such as ssh-keygen or PuTTYgen. Use the AWS Cloud9 IDE from the environment that is connected to the instance to store the generated public key on the instance. Then use the SSH remote access utility along with the generated private key to access the instance. For more information, see your utility's documentation.

Lambda Local Function Run Error: Cannot Install SAM Local

Issue: After you try to run the local version of an AWS Lambda function in the AWS Cloud9 IDE, a dialog box is displayed, stating that AWS Cloud9 is having trouble installing SAM Local. AWS Cloud9 needs SAM Local to run local versions of AWS Lambda functions in the IDE. Until SAM Local is installed, you cannot run local versions of Lambda functions in the IDE.

Cause: AWS Cloud9 can’t find SAM Local at the expected path in the environment, which is ~/c9/bin/sam. This is because SAM Local is not yet installed, or if it is installed, AWS Cloud9 can’t find it at that location.

Recommended solutions: You can wait for AWS Cloud9 to try to finish installing SAM Local, or you can install it yourself.

To see how AWS Cloud9 is doing with attempting to install SAM Local, choose Window, Installer on the menu bar.
To install SAM Local yourself, run the following commands, one at a time in the following order, from a terminal session in the IDE.

```
npm install -g aws-sam-local  # Use Node Package Manager (npm) to install SAM Local as a global package in the environment.
ln -sfn $(which sam) ~/.c9/bin/sam  # Create a symbolic link (a shortcut) from the path that AWS Cloud9 expects to where SAM Local is installed.
```

For more information, see the awslabs/aws-sam-local repository on the GitHub website.
Supported Browsers for AWS Cloud9

The following table lists the supported browsers for AWS Cloud9.

<table>
<thead>
<tr>
<th>Browser</th>
<th>Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Chrome</td>
<td>Latest three versions</td>
</tr>
<tr>
<td>Mozilla Firefox</td>
<td>Latest three versions</td>
</tr>
<tr>
<td>Microsoft Edge</td>
<td>Latest three versions</td>
</tr>
<tr>
<td>Apple Safari for macOS</td>
<td>Latest two versions</td>
</tr>
</tbody>
</table>
Limits for AWS Cloud9

The following tables list limits in AWS Cloud9 and related AWS services.

- AWS Cloud9 Limits (p. 463)
- Related AWS Service Limits (p. 463)

AWS Cloud9 Limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of AWS Cloud9 EC2 development environments</td>
<td>• 20 per IAM user</td>
</tr>
<tr>
<td></td>
<td>• 100 per AWS account</td>
</tr>
<tr>
<td>Maximum number of SSH environments</td>
<td>• 10 per IAM user</td>
</tr>
<tr>
<td></td>
<td>• 100 per AWS account</td>
</tr>
<tr>
<td>Maximum number of members in an environment</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of environments open at the same time</td>
<td>10 total per IAM user, regardless of environment type (EC2 or SSH)</td>
</tr>
</tbody>
</table>

Related AWS Service Limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of Amazon Elastic Block Store (Amazon EBS) volumes</td>
<td>5,000</td>
<td>For more information, see Amazon Elastic Block Store (Amazon EBS) Limits in the Amazon Web Services General Reference.</td>
</tr>
<tr>
<td>Maximum number of AWS CloudFormation stacks</td>
<td>200</td>
<td>For more information, see AWS CloudFormation Limits in the AWS CloudFormation User Guide.</td>
</tr>
</tbody>
</table>
Here is a list of significant changes to the *AWS Cloud9 User Guide*.

Latest documentation update: June 19, 2018

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date Changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>New topic</td>
<td>Added new sample demonstrating how to use AWS Cloud9 with Docker. For more information, see the Docker Sample (p. 406).</td>
<td>June 19, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added information about additional options for deploying AWS Lambda functions from the AWS Cloud9 IDE, depending on how the Lambda function was originally created. For more information, see Upload Code for a Lambda Function (p. 314).</td>
<td>May 29, 2018</td>
</tr>
<tr>
<td>New topics</td>
<td>Added new samples demonstrating how to use AWS Cloud9 with Java, .NET Core, and TypeScript. For more information, see the Java Sample (p. 351), .NET Core Sample (p. 373), and TypeScript Sample (p. 400).</td>
<td>May 29, 2018</td>
</tr>
<tr>
<td>New topic</td>
<td>Added information about supported browsers for AWS Cloud9. For more information, see Supported Browsers (p. 462).</td>
<td>May 23, 2018</td>
</tr>
<tr>
<td>New topics</td>
<td>Added new tutorials demonstrating how to create Lambda functions with AWS Cloud9. For more information, see the AWS Lambda Tutorial (p. 47) and Advanced AWS Lambda Tutorial (p. 62).</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>New topic</td>
<td>Added information about how to restrict incoming traffic to just the IP address ranges that AWS Cloud9 uses to connect to hosts over SSH. For more information, see Inbound SSH IP Address Ranges (p. 429).</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date Changed</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>New content</td>
<td>Added information about how to use the AWS Serverless Application Repository with AWS Cloud9. For more information, see Create and Deploy Lambda Functions with the AWS Serverless Application Repository (p. 299).</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added new troubleshooters for previewing applications and sharing running applications. For more information, see Application Preview Tab Displays an Error or is Blank (p. 456) and Cannot Display Your Running Application Outside of the IDE (p. 457).</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>New topic</td>
<td>Added information about how to use the File Revision History pane in the IDE. For more information, see Working with File Revisions (p. 135).</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added information about how to debug Lambda functions that use Python. For more information, see Debug the Local Version of a Lambda Function or Its Related API Gateway API (p. 311).</td>
<td>March 22, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added a new troubleshooter for opening AWS Cloud9 development environments. For more information, see Cannot Open an Environment (p. 453).</td>
<td>March 19, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added a new troubleshooter for the AWS Cloud9 Installer. For more information, see The AWS Cloud9 Installer Hangs or Fails (p. 455).</td>
<td>March 19, 2018</td>
</tr>
<tr>
<td>New topic</td>
<td>Added information about how to use AWS Cloud9 with AWS CodePipeline. For more information, see Working with AWS CodePipeline (p. 324).</td>
<td>February 13, 2018</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date Changed</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>New content</td>
<td>Added information about how to share AWS Cloud9 development environments across AWS accounts. For more information, see Invite an IAM User in Another Account to Your Environment (p. 98).</td>
<td>February 5, 2018</td>
</tr>
<tr>
<td>New content</td>
<td>Added information about how to use AWS Cloud9 with the aws-shell. For more information, see the AWS CLI and aws-shell Sample (p. 327).</td>
<td>January 19, 2018</td>
</tr>
<tr>
<td>GitHub availability</td>
<td>This guide is now available on GitHub. You can also use GitHub to submit feedback and change requests for this guide's content. For more information, choose the Edit on GitHub icon in the guide's navigation bar, or see the awsdocus/aws-cloud9-user-guide repository on the GitHub website.</td>
<td>January 10, 2018</td>
</tr>
<tr>
<td>Kindle format availability</td>
<td>This guide is now available in Amazon Kindle format. For more information, choose the Open Kindle icon in the guide's navigation bar, or see AWS Cloud9: User Guide Kindle Edition on the Amazon website.</td>
<td>January 2, 2018</td>
</tr>
<tr>
<td>New topic</td>
<td>Added information about how to use AWS Cloud9 with Amazon Lightsail. For more information, see Working with Amazon Lightsail Instances (p. 281).</td>
<td>December 19, 2017</td>
</tr>
<tr>
<td>New topic</td>
<td>Added descriptions of specific AWS settings for AWS Cloud9 development environments. For more information, see Working with AWS Project and User Settings (p. 161).</td>
<td>December 7, 2017</td>
</tr>
<tr>
<td>New topics</td>
<td>Added setup steps for using AWS Cloud9 with an AWS account root user. Added advanced setup steps for using AWS Cloud9 with teams. For more information, see Getting Started (p. 5).</td>
<td>December 5, 2017</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date Changed</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>New topic</td>
<td>Expanded coverage of requirements for an Amazon EC2 instance or your own server to connect to an AWS Cloud9 SSH development environment. For more information, see SSH Environment Host Requirements (p. 426).</td>
<td>December 4, 2017</td>
</tr>
<tr>
<td>Initial release</td>
<td>This is the initial release of the AWS Cloud9 User Guide.</td>
<td>November 30, 2017</td>
</tr>
</tbody>
</table>