AWS CloudHSM: User Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
# Table of Contents

What Is AWS CloudHSM? .................................................................................................................... 1

Use Cases ............................................................................................................................................. 1
  Offload the SSL/TLS Processing for Web Servers ........................................................................ 1
  Protect the Private Keys for an Issuing Certificate Authority (CA) ........................................... 2
  Enable Transparent Data Encryption (TDE) for Oracle Databases ............................................ 2

Clusters .................................................................................................................................................. 2
  Cluster Architecture ....................................................................................................................... 3
  Cluster Synchronization .................................................................................................................. 4
  Cluster High Availability and Load Balancing ............................................................................. 5

Backups ................................................................................................................................................ 6
  Overview of Backups ..................................................................................................................... 6
  Security of Backups ....................................................................................................................... 7
  Durability of Backups ..................................................................................................................... 8
  Frequency of Backups .................................................................................................................... 8

Client Tools and Libraries .................................................................................................................. 8
  AWS CloudHSM Client .................................................................................................................. 9
  AWS CloudHSM Command Line Tools ....................................................................................... 10
  AWS CloudHSM Software Libraries ............................................................................................. 10

HSM Users .......................................................................................................................................... 10
  Precrypto Officer (PRECO) .......................................................................................................... 11
  Crypto Officer (CO) ....................................................................................................................... 11
  Crypto User (CU) .......................................................................................................................... 11
  Appliance User (AU) ....................................................................................................................... 11
  HSM User Permissions Table ....................................................................................................... 11

Compliance .......................................................................................................................................... 12

Pricing .................................................................................................................................................. 13

Regions ............................................................................................................................................... 13

Limits .................................................................................................................................................. 13

Getting Started ................................................................................................................................ 14
  Create IAM Administrators .......................................................................................................... 14
    Create an IAM User and Administrator Group ........................................................................ 15
    Restrict User Permissions to What's Necessary for AWS CloudHSM ........................................ 15
    Understanding Service-Linked Roles ......................................................................................... 17
  Create a VPC ................................................................................................................................... 18
  Create a Private Subnet .................................................................................................................... 18
  Create a Cluster .............................................................................................................................. 19
  Launch an EC2 Client ...................................................................................................................... 20
    Launch an EC2 Client .................................................................................................................... 20
  Create an HSM ............................................................................................................................... 21
  Verify HSM Identity (Optional) ..................................................................................................... 22
    Overview ..................................................................................................................................... 23
    Get Certificates from the HSM ................................................................................................. 24
    Get the Root Certificates ......................................................................................................... 25
    Verify Certificate Chains ......................................................................................................... 26
    Extract and Compare Public Keys ............................................................................................. 27
    AWS CloudHSM Root Certificate ............................................................................................... 27

Initialize the Cluster .......................................................................................................................... 28
  Get the Cluster CSR ....................................................................................................................... 29
  Sign the CSR .................................................................................................................................. 30
  Initialize the Cluster ....................................................................................................................... 31

Install the Client (Linux) ................................................................................................................... 32
  Install the AWS CloudHSM Client and Command Line Tools .................................................. 32
  Edit the Client Configuration ....................................................................................................... 33

Install the Client (Windows) ............................................................................................................. 33
Using the Software Libraries ................................................................. 164
Managing HSM Users and Keys ................................................................. 46
Managing Clusters ................................................................................... 37
Adding or Removing HSMs ................................................................. 37
Adding an HSM ...................................................................................... 37
Removing an HSM ................................................................................ 39
Deleting a Cluster .................................................................................. 40
Creating a Cluster From a Backup ......................................................... 41
Tagging Resources ................................................................................. 42
Adding or Updating Tags ....................................................................... 42
Listing Tags ......................................................................................... 44
Removing Tags ..................................................................................... 44
Managing Keys ..................................................................................... 49
Generate Keys ....................................................................................... 49
Import Keys ......................................................................................... 50
Export Keys ......................................................................................... 52
Delete Keys ......................................................................................... 53
Share and Unshare Keys ....................................................................... 53
Quorum Authentication (M of N) .......................................................... 54
Overview of Quorum Authentication ..................................................... 54
Additional Details about Quorum Authentication ................................. 55
First Time Setup for Crypto Officers ...................................................... 55
Quorum Authentication for Crypto Officers .......................................... 59
Change the Quorum Value for Crypto Officers ....................................... 65
Command Line Tools ........................................................................... 67
cloudhsm_mgmt_util ........................................................................... 67
Getting Started ..................................................................................... 68
Reference ............................................................................................ 71
key_mgmt_util ..................................................................................... 101
Getting Started ................................................................................... 101
Reference .......................................................................................... 103
Configure Tool ...................................................................................... 160
Syntax ................................................................................................. 160
Examples ............................................................................................. 160
Parameters .......................................................................................... 161
Related Topics ..................................................................................... 163
Using the Software Libraries ................................................................. 164
PKCS #11 Library .................................................................................. 164
Supported PKCS #11 Key Types .......................................................... 164
Supported PKCS #11 Mechanisms ......................................................... 164
Supported PKCS #11 APIs .................................................................. 166
Installing the PKCS #11 Library ........................................................... 167
OpenSSL Library ................................................................................ 169
Installing the OpenSSL Library ............................................................. 170
Java Library ......................................................................................... 171
Installing the Java Library .................................................................... 171
Supported Mechanisms ....................................................................... 175
Sample Prerequisites ........................................................................... 178
Java Samples ..................................................................................... 178
KSP and CNG Providers ...................................................................... 203
Install the Providers ............................................................................ 204
Prerequisites ....................................................................................... 204
What Is AWS CloudHSM?

AWS CloudHSM provides hardware security modules in the AWS Cloud. A hardware security module (HSM) is a computing device that processes cryptographic operations and provides secure storage for cryptographic keys.

When you use an HSM from AWS CloudHSM, you can perform a variety of cryptographic tasks:

- Generate, store, import, export, and manage cryptographic keys, including symmetric keys and asymmetric key pairs.
- Use symmetric and asymmetric algorithms to encrypt and decrypt data.
- Use cryptographic hash functions to compute message digests and hash-based message authentication codes (HMACs).
- Cryptographically sign data (including code signing) and verify signatures.
- Generate cryptographically secure random data.

If you want a managed service for creating and controlling your encryption keys, but you don't want or need to operate your own HSM, consider using AWS Key Management Service.

To learn more about what you can do with AWS CloudHSM, see the following topics. When you are ready to get started with AWS CloudHSM, see Getting Started (p. 14).

Topics
- AWS CloudHSM Use Cases (p. 1)
- AWS CloudHSM Clusters (p. 2)
- AWS CloudHSM Cluster Backups (p. 6)
- AWS CloudHSM Client Tools and Software Libraries (p. 8)
- HSM Users (p. 10)
- Compliance (p. 12)
- Pricing (p. 13)
- Regions (p. 13)
- AWS CloudHSM Limits (p. 13)

AWS CloudHSM Use Cases

A hardware security module (HSM) in AWS CloudHSM can help you accomplish a variety of goals.

Topics
- Offload the SSL/TLS Processing for Web Servers (p. 1)
- Protect the Private Keys for an Issuing Certificate Authority (CA) (p. 2)
- Enable Transparent Data Encryption (TDE) for Oracle Databases (p. 2)

Offload the SSL/TLS Processing for Web Servers

Web servers and their clients (web browsers) can use Secure Sockets Layer (SSL) or Transport Layer Security (TLS). These protocols confirm the identity of the web server and establish a secure connection
to send and receive webpages or other data over the internet. This is commonly known as HTTPS. The web server uses a public–private key pair and a public key certificate to establish an HTTPS session with each client. This process involves a lot of computation for the web server, but you can offload some of this computation to the HSMs in your AWS CloudHSM cluster. This is sometimes known as SSL acceleration. This offloading reduces the computational burden on your web server and provides extra security by storing the server's private key in the HSMs.

For information about setting up SSL/TLS offload with AWS CloudHSM, see SSL/TLS Offload (p. 210).

Protect the Private Keys for an Issuing Certificate Authority (CA)

In a public key infrastructure (PKI), a certificate authority (CA) is a trusted entity that issues digital certificates. These digital certificates bind a public key to an identity (a person or organization) by means of public key cryptography and digital signatures. To operate a CA, you must maintain trust by protecting the private keys that sign the certificates issued by your CA. You can store these private keys in an HSM and use the HSM to perform the cryptographic signing operations.

Enable Transparent Data Encryption (TDE) for Oracle Databases

Some versions of Oracle's database software offer a feature called Transparent Data Encryption (TDE). With TDE, the database software encrypts data before storing it on disk. The data in the database's table columns or table spaces is encrypted with a table key or tablespace key. These keys are encrypted with the TDE master encryption key. You can store the TDE master encryption key in the HSMs in your AWS CloudHSM cluster, which provides additional security.

For information about setting up Oracle TDE with AWS CloudHSM, see Oracle Database Encryption (p. 224).

AWS CloudHSM Clusters

AWS CloudHSM provides hardware security modules (HSMs) in a cluster. A cluster is a collection of individual HSMs that AWS CloudHSM keeps in sync. You can think of a cluster as one logical HSM. When you perform a task or operation on one HSM in a cluster, the other HSMs in that cluster are automatically kept up to date.

You can create a cluster that has from 1 to 28 HSMs (the default limit is 6 HSMs per AWS account per AWS Region). You can place the HSMs in different Availability Zones in an AWS Region. Adding more HSMs to a cluster provides higher performance. Spreading clusters across Availability Zones provides redundancy and high availability.

Making individual HSMs work together in a synchronized, redundant, highly available cluster can be difficult, but AWS CloudHSM does some of the undifferentiated heavy lifting for you. You can add and remove HSMs in a cluster and let AWS CloudHSM keep the HSMs connected and in sync for you.

To create a cluster, see Getting Started (p. 14).

For more information about clusters, see the following topics.

Topics
- Cluster Architecture (p. 3)
Cluster Architecture

When you create a cluster, you specify an Amazon Virtual Private Cloud (VPC) in your AWS account and one or more subnets in that VPC. We recommend that you create one subnet in each Availability Zone (AZ) in your chosen AWS Region. To learn how, see Create a Private Subnet (p. 18).

Each time you create an HSM, you specify the cluster and Availability Zone for the HSM. By putting the HSMs in different Availability Zones, you achieve redundancy and high availability in case one Availability Zone is unavailable.

When you create an HSM, AWS CloudHSM puts an elastic network interface (ENI) in the specified subnet in your AWS account. The elastic network interface is the interface for interacting with the HSM. The HSM resides in a separate VPC in an AWS account that is owned by AWS CloudHSM. The HSM and its corresponding network interface are in the same Availability Zone.

To interact with the HSMs in a cluster, you need the AWS CloudHSM client software. Typically you install the client on Amazon EC2 instances, known as client instances, that reside in the same VPC as the HSM ENIs, as shown in the following figure. That's not technically required though; you can install the client on any compatible computer, as long as it can connect to the HSM ENIs. The client communicates with the individual HSMs in your cluster through their ENIs.

The following figure represents an AWS CloudHSM cluster with three HSMs, each in a different Availability Zone in the VPC.
Cluster Synchronization

In an AWS CloudHSM cluster, AWS CloudHSM keeps the keys on the individual HSMs in sync. You don’t need to do anything to synchronize the keys on your HSMs. To keep the users and policies on each HSM in sync, update the AWS CloudHSM client configuration file before you manage HSM users (p. 46). For more information, see Keep HSM Users In Sync (p. 237).
When you add a new HSM to a cluster, AWS CloudHSM makes a backup of all keys, users, and policies on an existing HSM. It then restores that backup onto the new HSM. This keeps the two HSMs in sync.

If the HSMs in a cluster fall out of synchronization, AWS CloudHSM automatically resynchronizes them. To enable this, AWS CloudHSM uses the credentials of the appliance user (p. 10). This user exists on all HSMs provided by AWS CloudHSM and has limited permissions. It can get a hash of objects on the HSM and can extract and insert masked (encrypted) objects. AWS cannot view or modify your users or keys and cannot perform any cryptographic operations using those keys.

Cluster High Availability and Load Balancing

When you create an AWS CloudHSM cluster with more than one HSM, you automatically get load balancing. Load balancing means that the AWS CloudHSM client (p. 8) distributes cryptographic operations across all HSMs in the cluster based on each HSM's capacity for additional processing.

When you create the HSMs in different AWS Availability Zones, you automatically get high availability. High availability means that you get higher reliability because no individual HSM is a single point of failure. We recommend that you have a minimum of two HSMs in each cluster, with each HSM in different Availability Zones within an AWS Region.

For example, the following figure shows an Oracle database application that is distributed to two different Availability Zones. The database instances store their master keys in a cluster that includes an HSM in each Availability Zone. AWS CloudHSM automatically synchronizes the keys to both HSMs so that they are immediately accessible and redundant.
AWS CloudHSM Cluster Backups

AWS CloudHSM makes periodic backups of your cluster. You can't instruct AWS CloudHSM to make backups anytime that you want, but you can take certain actions that result in AWS CloudHSM making a backup. For more information, see the following topics.

When you add an HSM to a cluster that previously contained one or more active HSMs, AWS CloudHSM restores the most recent backup onto the new HSM. This means that you can use AWS CloudHSM to manage an HSM that you use infrequently. When you don't need to use the HSM, you can delete it, which triggers a backup. Later, when you need to use the HSM again, you can create a new HSM in the same cluster, effectively restoring your previous HSM.

You can also create a new cluster from an existing backup of a different cluster. You must create the new cluster in the same AWS Region that contains the existing backup.

Topics
- Overview of Backups (p. 6)
- Security of Backups (p. 7)
- Durability of Backups (p. 8)
- Frequency of Backups (p. 8)

Overview of Backups

Each backup contains encrypted copies of the following data:

- All users (COs, CUs, and AUs) (p. 10) on the HSM.
- All key material and certificates on the HSM.
- The HSM's configuration and policies.

AWS CloudHSM stores the backups in a service-controlled Amazon Simple Storage Service (Amazon S3) bucket in the same AWS Region as your cluster.
Security of Backups

When AWS CloudHSM makes a backup from the HSM, the HSM encrypts all of its data before sending it to AWS CloudHSM. The data never leaves the HSM in plaintext form.

To encrypt its data, the HSM uses a unique, ephemeral encryption key known as the ephemeral backup key (EBK). The EBK is an AES 256-bit encryption key generated inside the HSM when AWS CloudHSM makes a backup. The HSM generates the EBK, then uses it to encrypt the HSM's data with a FIPS-approved AES key wrapping method that complies with NIST special publication 800-38F. Then the HSM gives the encrypted data to AWS CloudHSM. The encrypted data includes an encrypted copy of the EBK.

To encrypt the EBK, the HSM uses another encryption key known as the persistent backup key (PBK). The PBK is also an AES 256-bit encryption key. To generate the PBK, the HSM uses a FIPS-approved key derivation function (KDF) in counter mode that complies with NIST special publication 800-108. The inputs to this KDF include the following:

- A manufacturer key backup key (MKBK), permanently embedded in the HSM hardware by the hardware manufacturer.
- An AWS key backup key (AKBK), securely installed in the HSM when it's initially configured by AWS CloudHSM.

The encryption processes are summarized in the following figure. The backup encryption key represents the persistent backup key (PBK) and the ephemeral backup key (EBK).
AWS CloudHSM can restore backups onto only AWS-owned HSMs made by the same manufacturer. Because each backup contains all users, keys, and configuration from the original HSM, the restored HSM contains the same protections and access controls as the original. The restored data overwrites all other data that might have been on the HSM prior to restoration.

A backup consists of only encrypted data. Before each backup is stored in Amazon S3, it’s encrypted again under an AWS Key Management Service (AWS KMS) customer master key (CMK).

**Durability of Backups**

AWS CloudHSM stores cluster backups in an Amazon S3 bucket in an AWS account that AWS CloudHSM controls. The durability of backups is the same as any object stored in Amazon S3. Amazon S3 is designed to deliver 99.999999999% durability.

**Frequency of Backups**

AWS CloudHSM makes a cluster backup at least once per 24 hours. In addition to recurring daily backups, AWS CloudHSM makes a backup when you perform any of the following actions:

- Initialize the cluster (p. 28).
- Add an HSM to an initialized cluster (p. 37).
- Remove an HSM from a cluster (p. 39).

**AWS CloudHSM Client Tools and Software Libraries**

To manage and use the HSMs in your cluster, you use the AWS CloudHSM client software. The client software includes several components, as described in the following topics.

**Topics**

- AWS CloudHSM Client (p. 9)
- AWS CloudHSM Command Line Tools (p. 10)
- AWS CloudHSM Software Libraries (p. 10)
AWS CloudHSM Client

The AWS CloudHSM client is a daemon that you install and run on your application hosts. The client establishes and maintains a secure, end-to-end encrypted connection with the HSMs in your AWS CloudHSM cluster. The client provides the fundamental connection between your application hosts and your HSMs. Most of the other AWS CloudHSM client software components rely on the client to communicate with your HSMs. To get started with the AWS CloudHSM client if you are using Linux, see Install the Client (Linux) (p. 32). If you are using Windows, see Install the Client (Windows) (p. 33).

AWS CloudHSM Client End-to-End Encryption

Communication between the AWS CloudHSM client and the HSMs in your cluster is encrypted from end to end. Only your client and your HSMs can decrypt the communication.

The following process explains how the client establishes end-to-end encrypted communication with an HSM.

1. Your client establishes a Transport Layer Security (TLS) connection with the server that hosts your HSM hardware. Your cluster's security group allows inbound traffic to the server only from client instances in the security group. The client also checks the server's certificate to ensure that it's a trusted server.

2. Next, the client establishes an encrypted connection with the HSM hardware. The HSM has the cluster certificate that you signed with your own certificate authority (CA), and the client has the CA's root certificate. Before the client–HSM encrypted connection is established, the client verifies the HSM's cluster certificate against its root certificate. The connection is established only when the client successfully verifies that the HSM is trusted. The client–HSM encrypted connection goes through the client–server connection established previously.
AWS CloudHSM Command Line Tools

The AWS CloudHSM client software includes two command line tools. You use the command line tools to manage the users and keys on the HSMs. For example, you can create HSM users, change user passwords, create keys, and more. For information about these tools, see Command Line Tools (p. 67).

AWS CloudHSM Software Libraries

You can use the AWS CloudHSM software libraries to integrate your applications with the HSMs in your cluster and use them for cryptoprocessing. For more information about installing and using the different libraries, see Using the Software Libraries (p. 164).

HSM Users

Most operations that you perform on the HSM require the credentials of an HSM user. The HSM authenticates each HSM user by means of a user name and password.

Each HSM user has a type that determines which operations the user is allowed to perform on the HSM. The following topics explain the types of HSM users.

Topics
- Precrypto Officer (PRECO) (p. 11)
- Crypto Officer (CO) (p. 11)
- Crypto User (CU) (p. 11)
- Appliance User (AU) (p. 11)
- HSM User Permissions Table (p. 11)
Precrypto Officer (PRECO)

The precrypto officer (PRECO) is a temporary user that exists only on the first HSM in an AWS CloudHSM cluster. The first HSM in a new cluster contains a PRECO user with a default user name and password. To activate a cluster (p. 34), you log in to the HSM and change the PRECO user's password. When you change the password, the PRECO user becomes a crypto officer (CO). The PRECO user can only change its own password and perform read-only operations on the HSM.

Crypto Officer (CO)

A crypto officer (CO) can perform user management operations. For example, a CO can create and delete users and change user passwords. For more information, see the HSM User Permissions Table (p. 11). When you activate a new cluster (p. 34), the user changes from a Precrypto Officer (p. 11) (PRECO) to a Crypto Officer (CO).

Crypto User (CU)

A crypto user (CU) can perform the following key management and cryptographic operations.

- **Key management** – Create, delete, share, import, and export cryptographic keys.
- **Cryptographic operations** – Use cryptographic keys for encryption, decryption, signing, verifying, and more.

For more information, see the HSM User Permissions Table (p. 11).

Appliance User (AU)

The appliance user (AU) can perform cloning and synchronization operations. AWS CloudHSM uses the AU to synchronize the HSMs in an AWS CloudHSM cluster. The AU exists on all HSMs provided by AWS CloudHSM, and has limited permissions. For more information, see the HSM User Permissions Table (p. 11).

AWS uses the AU to perform cloning and synchronization operations on your cluster's HSMs. AWS cannot perform any operations on your HSMs except those granted to the AU and unauthenticated users. AWS cannot view or modify your users or keys and cannot perform any cryptographic operations using those keys.

HSM User Permissions Table

The following table lists HSM operations and whether each type of HSM user can perform them.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Crypto Officer (CO)</th>
<th>Crypto User (CU)</th>
<th>Appliance User (AU)</th>
<th>Unauthenticated user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get basic cluster info¹</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zeroize an HSM²</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Change own password</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
AWS CloudHSM User Guide
Compliance

<table>
<thead>
<tr>
<th></th>
<th>Crypto Officer (CO)</th>
<th>Crypto User (CU)</th>
<th>Appliance User (AU)</th>
<th>Unauthenticated user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change any user’s password</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Add, remove users</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Get sync status³</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Extract, insert masked objects⁴</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Create, share, delete keys</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Encrypt, decrypt</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sign, verify</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Generate digests and HMACs</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

¹Basic cluster information includes the number of HSMs in the cluster and each HSM's IP address, model, serial number, device ID, firmware ID, etc.

²When an HSM is zeroized, all keys, certificates, and other data on the HSM is destroyed. You can use your cluster's security group to prevent an unauthenticated user from zeroizing your HSM. For more information, see Create a Cluster (p. 19).

³The user can get a set of digests (hashes) that correspond to the keys on the HSM. An application can compare these sets of digests to understand the synchronization status of HSMs in a cluster.

⁴Masked objects are keys that are encrypted before they leave the HSM. They cannot be decrypted outside of the HSM. They are only decrypted after they are inserted into an HSM that is in the same cluster as the HSM from which they were extracted. An application can extract and insert masked objects to synchronize the HSMs in a cluster.

Compliance

AWS and AWS Marketplace partners offer many solutions for protecting data in AWS. But some applications and data are subject to strict contractual or regulatory requirements for managing and using cryptographic keys. Using an HSM from AWS CloudHSM can help you meet corporate, contractual, and regulatory compliance requirements for data security in the AWS Cloud.

FIPS 140-2

The Federal Information Processing Standard (FIPS) Publication 140-2 is a US government security standard that specifies security requirements for cryptographic modules that protect sensitive information. The HSMs provided by AWS CloudHSM comply with FIPS 140-2 level 3. For more information, see FIPS Compliance on the AWS website.

PCI DSS

The Payment Card Industry Data Security Standard (PCI DSS) is a proprietary information security standard administered by the PCI Security Standards Council. The HSMs provided by AWS CloudHSM comply with PCI DSS. For more information, see PCI DSS Compliance on the AWS website.
Pricing

With AWS CloudHSM, you pay by the hour with no long-term commitments or upfront payments. For more information, see AWS CloudHSM Pricing on the AWS website.

Regions

Visit AWS Regions and Endpoints in the AWS General Reference or the AWS Region Table to see the regional availability for AWS CloudHSM.

Like most AWS resources, clusters and HSMs are used regionally. To create an HSM in more than one region, you must first create a cluster in that region. You cannot reuse or extend a cluster across regions. You must perform all of the required steps listed in Getting Started with AWS CloudHSM (p. 14) to create a new cluster in a new region.

AWS CloudHSM Limits

The following limits apply to your AWS CloudHSM resources per AWS Region and AWS account.

Service Limits

<table>
<thead>
<tr>
<th>Item</th>
<th>Default Limit</th>
<th>Hard Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>HSMs</td>
<td>6</td>
<td>N/A</td>
</tr>
<tr>
<td>HSMs per cluster</td>
<td>N/A</td>
<td>28</td>
</tr>
</tbody>
</table>

System Limits

<table>
<thead>
<tr>
<th>Item</th>
<th>Hard Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keys per cluster</td>
<td>3500</td>
</tr>
<tr>
<td>Number of users per cluster</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum length of a user name</td>
<td>31 characters</td>
</tr>
<tr>
<td>Required password length</td>
<td>7 to 32 characters</td>
</tr>
<tr>
<td>Maximum number of concurrent clients</td>
<td>1024</td>
</tr>
</tbody>
</table>

To request an increase in the number of clusters or HSMs, use the service limit increase form in the AWS Support Center.
Getting Started with AWS CloudHSM

The following topics contain information that will help you create, initialize, and activate an AWS CloudHSM cluster. After you complete the instructions included in these topics, you'll be ready to manage users, manage clusters, and perform cryptographic operations using the included software libraries.

To get started with AWS CloudHSM
1. Follow the steps in Create IAM Administrators (p. 14) to set up your IAM users and groups.
2. Follow the steps in Create a Cluster (p. 19).
3. Follow the steps in Create an HSM (p. 21).
4. (Optional) Follow the steps in Verify HSM Identity (Optional) (p. 22) to verify the identity and authenticity of the cluster's HSM.
5. Follow the steps in Initialize the Cluster (p. 28).
6. (First time only) Follow the steps in Launch an EC2 Client (p. 20).
7. (First time only) Follow the steps in Install the Client (Linux) (p. 32) if you are using Linux or Install the Client (Windows) (p. 33) if you are using Windows.
8. Follow the steps in Activate the Cluster (p. 34).

Topics
- Create IAM Administrative Groups (p. 14)
- Create a Virtual Private Cloud (VPC) (p. 18)
- Create a Private Subnet (p. 18)
- Create a Cluster (p. 19)
- Launch an Amazon EC2 Client Instance (p. 20)
- Create an HSM (p. 21)
- Verify the Identity and Authenticity of Your Cluster's HSM (Optional) (p. 22)
- Initialize the Cluster (p. 28)
- Install and Configure the AWS CloudHSM Client (Linux) (p. 32)
- Install and Configure the AWS CloudHSM Client (Windows) (p. 33)
- Activate the Cluster (p. 34)

Create IAM Administrative Groups

As a best practice, don't use your AWS account root user to interact with AWS, including AWS CloudHSM. Instead, use AWS Identity and Access Management (IAM) to create an IAM user, IAM role, or federated user. Follow the steps in the Create an IAM User and Administrator Group (p. 15) section to create an administrator group and attach the AdministratorAccess policy to it. Then create a new administrative user and add the user to the group. Add additional users to the group as needed. Each user you add will inherit the AdministratorAccess policy from the group.

Another best practice is to create an AWS CloudHSM administrator group that has only the permissions required to run AWS CloudHSM. Add individual users to this group as needed. Each user will inherit the limited permissions attached to the group rather than full AWS access. The Restrict User Permissions to What's Necessary for AWS CloudHSM (p. 15) section below contains the policy you should attach to your AWS CloudHSM administrator group.
Create an IAM User and Administrator Group

To create an IAM user for yourself and add the user to an Administrators group

1. Use your AWS account email address and password to sign in as the AWS account root user to the IAM console at https://console.aws.amazon.com/iam/.

   Note
   We strongly recommend that you adhere to the best practice of using the Administrator IAM user below and securely lock away the root user credentials. Sign in as the root user only to perform a few account and service management tasks.

2. In the navigation pane of the console, choose Users, and then choose Add user.
3. For User name, type Administrator.
4. Select the check box next to AWS Management Console access, select Custom password, and then type the new user's password in the text box. You can optionally select Require password reset to force the user to create a new password the next time the user signs in.
5. Choose Next: Permissions.
6. On the Set permissions for user page, choose Add user to group.
7. Choose Create group.
8. In the Create group dialog box, type Administrators.
9. For Filter, choose Job function.
10. In the policy list, select the check box for AdministratorAccess. Then choose Create group.
11. Back in the list of groups, select the check box for your new group. Choose Refresh if necessary to see the group in the list.
12. Choose Next: Review to see the list of group memberships to be added to the new user. When you are ready to proceed, choose Create user.

You can use this same process to create more groups and users, and to give your users access to your AWS account resources. To learn about using policies to restrict users' permissions to specific AWS resources, go to Access Management and Example Policies.

You can create multiple administrators in your account and add each to the Administrators group. To sign in to the AWS Management Console, each user needs an AWS account ID or alias. To get these, see Your AWS Account ID and Its Alias in the IAM User Guide.

Restrict User Permissions to What's Necessary for AWS CloudHSM

We recommend that you create an IAM administrators group for AWS CloudHSM that contains only the permissions required to run AWS CloudHSM. Attach the policy below to your group. Add IAM users to the group as needed. Each user that you add will inherit the policy from the group.
Create a Customer Managed Policy

1. Sign in to the IAM console using the credentials of an AWS administrator.
2. In the navigation pane of the console, choose Policies.
3. Choose Create policy.
4. Choose the JSON tab.
5. Copy the following policy into the editor.

```json
{
    "Version": "2012-10-17",
    "Statement": {
        "Effect": "Allow",
        "Action": [
            "cloudhsm:*",
            "ec2:CreateNetworkInterface",
            "ec2:DescribeNetworkInterfaces",
            "ec2:DescribeNetworkInterfaceAttribute",
            "ec2:DetachNetworkInterface",
            "ec2:DeleteNetworkInterface",
            "ec2:CreateSecurityGroup",
            "ec2:AuthorizeSecurityGroupIngress",
            "ec2:AuthorizeSecurityGroupEgress",
            "ec2:RevokeSecurityGroupEgress",
            "ec2:DescribeSecurityGroups",
            "ec2:DeleteSecurityGroup",
            "ec2:CreateTags",
            "ec2:DescribeVpcs",
            "ec2:DescribeSubnets",
            "iam:CreateServiceLinkedRole"
        ],
        "Resource": "*"
    }
}
```

7. For Name, type CloudHsmAdminPolicy.
8. Type an optional description.
9. Choose Create policy.

Create a AWS CloudHSM Administrator Group

1. Sign in to the IAM console using the credentials of an AWS administrator.
2. In the navigation pane of the console, choose Groups.
4. For Group Name, type CloudHsmAdministrator.
5. For Filter, choose Customer Managed.
7. Choose Create Group.

The preceding policy includes full access to the AWS CloudHSM API and additional permissions for select Amazon Elastic Compute Cloud (Amazon EC2) actions. When you use the AWS CloudHSM console or API, AWS CloudHSM takes additional actions on your behalf to manage certain Amazon EC2 resources. This happens, for example, when you create and delete clusters and HSMs.

The preceding policy also includes the iam:CreateServiceLinkedRole action. You must include this action to enable AWS CloudHSM to automatically create the AWSServiceRoleForCloudHSM service–
Understanding Service–Linked Roles

The IAM policy you created above to Restrict User Permissions to What’s Necessary for AWS CloudHSM (p. 15) includes the `iam:CreateServiceLinkedRole` action. AWS CloudHSM defines a service–linked role named AWSServiceRoleForCloudHSM. The role is predefined by AWS CloudHSM and includes permissions that AWS CloudHSM requires to call other AWS services on your behalf. The role makes setting up your service easier because you don’t need to manually add the role policy and trust policy permissions.

The role policy allows AWS CloudHSM to create Amazon CloudWatch Logs log groups and log streams and write log events on your behalf. You can view it below and in the IAM console.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "logs:CreateLogGroup",
        "logs:CreateLogStream",
        "logs:PutLogEvents",
        "logs:DescribeLogStreams"
      ],
      "Resource": [
        "arn:aws:logs:*:*:*"
      ]
    }
  ]
}
```

The trust policy for the AWSServiceRoleForCloudHSM role allows AWS CloudHSM to assume the role.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "cloudhsm.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}
```

Creating a Service-Linked Role (Automatic)

AWS CloudHSM creates the AWSServiceRoleForCloudHSM role when you create a cluster if you include the `iam:CreateServiceLinkedRole` action in the permissions that you defined when you created the AWS CloudHSM administrators group. See Restrict User Permissions to What’s Necessary for AWS CloudHSM (p. 15).

If you already have one or more clusters and just want to add the AWSServiceRoleForCloudHSM role, you can use the console, the `create-cluster` command, or the CreateCluster API to create a cluster and...
then use the console, the delete-cluster command, or the DeleteCluster API to delete it. Creating the new
cluster creates the service–linked role and applies it to all clusters in your account. Alternatively, you can
create the role manually. See the following section for more information.

Note
You do not need to perform all of the steps outlined in Getting Started with
AWS CloudHSM (p. 14) to create a cluster if you are only creating it to add the
AWSServiceRoleForCloudHSM role.

Creating a Service-Linked Role (Manual)

You can use the IAM console, CLI, or API to create the AWSServiceRoleForCloudHSM service-linked role.
For more information, see Creating a Service-Linked Role in the IAM User Guide.

Editing the Service-Linked Role

AWS CloudHSM does not allow you to edit the AWSServiceRoleForCloudHSM service–linked role. After
the role is created, for example, you cannot change its name because various entities might reference
the role by name. Also, you cannot change the role policy. You can, however, use IAM to edit the role
description. For more information, see Editing a Service–Linked Role in the IAM User Guide.

Deleting the Service-Linked Role

You cannot delete a service–linked role as long as a cluster to which it has been applied still exists. To
delete the role, you must first delete each HSM in your cluster and then delete the cluster. Every cluster
in your account must be deleted. You can then use the IAM console, CLI, or API to delete the role. For
more information about deleting a cluster, see Deleting an AWS CloudHSM Cluster (p. 40). For more
information, about deleting a role, see Deleting a Service-Linked Role in the IAM User Guide.

Create a Virtual Private Cloud (VPC)

If you don't already have an Amazon Virtual Private Cloud (VPC), create one now.

To create a VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation bar, use the region selector to choose one of the AWS Regions where AWS
CloudHSM is currently supported.
3. Choose Start VPC Wizard.
4. Choose the first option, VPC with a Single Public Subnet. Then choose Select.
5. For VPC name, type an identifiable name such as CloudHSM. For Subnet name, type an identifiable
name such as CloudHSM public subnet. Leave all other options set to their defaults. Then
choose Create VPC. After the VPC is created, choose OK.

Create a Private Subnet

Create a private subnet (a subnet with no internet gateway attached) for each Availability Zone where
you want to create an HSM. Creating a private subnet in each Availability Zone provides the most robust
configuration for high availability.

To create the private subnets in your VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, choose Subnets. Then choose Create Subnet.

3. In the Create Subnet dialog box, do the following:
   a. For Name tag, type an identifiable name such as CloudHSM private subnet.
   b. For VPC, choose the VPC that you created previously.
   c. For Availability Zone, choose the first Availability Zone in the list.
   d. For CIDR block, type the CIDR block to use for the subnet. If you used the default values for the VPC in the previous procedure, then type 10.0.1.0/28.

   Choose Yes, Create.

4. Repeat steps 2 and 3 to create subnets for each remaining Availability Zone in the region. For the subnet CIDR blocks, you can use 10.0.2.0/28, 10.0.3.0/28, and so on.

### Create a Cluster

A cluster is a collection of individual HSMs. AWS CloudHSM synchronizes the HSMs in each cluster so that they function as a logical unit.

**Important**

When you create a cluster, AWS CloudHSM creates a service-linked role named AWSServiceRoleForCloudHSM. If AWS CloudHSM cannot create the role or the role does not already exist, you may not be able to create a cluster. For more information, see Resolving Cluster Creation Failures (p. 240). For more information about service-linked roles, see Understanding Service–Linked Roles (p. 17).

When you create a cluster, AWS CloudHSM creates a security group for the cluster on your behalf. This security group controls network access to the HSMs in the cluster. It allows inbound connections only from Amazon Elastic Compute Cloud (Amazon EC2) instances that are in the security group. By default, the security group doesn't contain any instances. Later, you launch a client instance (p. 20) and add it to this security group.

**Warning**

The cluster's security group prevents unauthorized access to your HSMs. Anyone that can access instances in the security group can access your HSMs. Most operations require a user to log in to the HSM, but it's possible to zeroize HSMs without authentication, which destroys the key material, certificates, and other data. If this happens, data created or modified after the most recent backup is lost and unrecoverable. To prevent this, ensure that only trusted administrators can access the instances in the cluster's security group or modify the security group.

You can create a cluster from the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

**To create a cluster (console)**

2. On the navigation bar, use the region selector to choose one of the AWS Regions where AWS CloudHSM is currently supported.
3. Choose Create cluster.
4. In the Cluster configuration section, do the following:
   a. For VPC, select the VPC that you created.
   b. For AZ(s), next to each Availability Zone, choose the private subnet that you created.
5. Choose Next: Review.
6. Review your cluster configuration, then choose **Create cluster**.

**To create a cluster (AWS CLI)**

- At a command prompt, run the `create-cluster` command. Specify the HSM instance type and the subnet IDs of the subnets where you plan to create HSMs. Use the subnet IDs of the private subnets that you created. Specify only one subnet per Availability Zone.

```bash
$ aws cloudhsmv2 create-cluster --hsm-type hsm1.medium --subnet-ids <subnet ID 1> <subnet ID 2> <subnet ID N>

{
  "Cluster": {
    "BackupPolicy": "DEFAULT",
    "VpcId": "vpc-50ae0636",
    "SubnetMapping": {
      "us-west-2b": "subnet-49a1bc00",
      "us-west-2c": "subnet-6f950334",
      "us-west-2a": "subnet-fd54af9b"
    },
    "SecurityGroup": "sg-6cb2c216",
    "HsmType": "hsm1.medium",
    "Certificates": {},
    "State": "CREATE_IN_PROGRESS",
    "Hsms": [],
    "ClusterId": "cluster-igklspoyj5v",
    "CreateTimestamp": 1502423370.069
  }
}
```

**To create a cluster (AWS CloudHSM API)**

- Send a `CreateCluster` request. Specify the HSM instance type and the subnet IDs of the subnets where you plan to create HSMs. Use the subnet IDs of the private subnets that you created. Specify only one subnet per Availability Zone.

If your attempts to create a cluster fail, it might be related to problems with the AWS CloudHSM service-linked roles. For help to resolve the failure, see Resolving Cluster Creation Failures (p. 240).

---

**Launch an Amazon EC2 Client Instance**

To interact with and manage your AWS CloudHSM cluster and HSM instances, you must be able to communicate with the elastic network interfaces (ENIs) of your HSMs. The easiest way to do this is to use an Amazon EC2 instance in the same Amazon VPC as your cluster (see below). You can also use the following AWS resources to connect to your cluster.

- **Amazon VPC Peering**
- **AWS Direct Connect**
- **VPN Connections**

**Launch an EC2 Client**

The AWS CloudHSM documentation typically assumes that you are using an Amazon EC2 instance in the same Amazon Virtual Private Cloud (VPC) and Availability Zone (AZ) in which you create your cluster.
To create an Amazon EC2 client instance

1. Open the EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose **Launch instance** on the **EC2 Dashboard**.
3. Select an Amazon machine image (AMI). Choose a Linux AMI or a Windows Server AMI.
4. Choose an instance type and then choose **Next: Configure Instance Details**.
5. For **Network**, choose the VPC you previously created for your cluster.
6. For **Subnet**, choose the public subnet that you created for the VPC.
7. For **Auto-assign Public IP**, choose **Enable**.
8. Choose **Next: Add Storage** and configure your storage.
9. Choose **Next: Add Tags** and add any name–value pairs that you want to associate with the instance.
10. Choose **Next: Configure Security Group**.
11. Choose **Select an existing security group**. Select the default security group that was created when your cluster was created, or select a security group that you created specifically for your client.

   **Note**
   To be able to connect to a Windows Server EC2 instance, you must set one of your **Inbound Rules** to RDP(3389) to allow incoming TCP traffic on port 3389. To be able to connect to a Linux EC2 instance, you must set one of your **Inbound Rules** to SSH(22) to allow incoming TCP traffic on port 22. Specify the source IP addresses that can connect to your instance. You should not specify 0.0.0.0/0 because that will open your instance to access by anyone.
   
   If you want your EC2 instance to be able to connect to the internet, set the **Outbound Rules** on your security group to allow **ALL Traffic** on all ports to a destination of 0.0.0.0/0.

12. Choose **Review and Launch**.

For more information about creating an Amazon EC2 client if you don't already have one, see **Getting Started with Amazon EC2 Linux Instances**. For information about connecting to a running client, see the following topics:

- Connecting to Your Linux Instance Using SSH
- Connecting to Your Linux Instance from Windows Using PuTTY

Note that you can use your Amazon EC2 instance to run all of the AWS CLI commands contained in this guide. If the AWS CLI is not installed, you can download it from **AWS Command Line Interface**. If you are using Windows, you can download and run a 64-bit or 32-bit Windows installer. If you are using Linux or own a Mac, you can install the CLI using pip.

To communicate with the HSMs in your cluster, you must install the AWS CloudHSM client software on your instance. For more information if you are using Linux, see **Install the Client (Linux)** (p. 32). For more information if you are using Windows, see **Install the Client (Windows)** (p. 33).

Create an HSM

After you create a cluster, you can create an HSM. However, before you can create an HSM in your cluster, the cluster must be in the uninitialized state. To determine the cluster's state, view the clusters page in the AWS CloudHSM console, use the AWS CLI to run the `describe-clusters` command, or send a `DescribeClusters` request in the AWS CloudHSM API. You can create an HSM from the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

**To create an HSM (console)**

2. Choose **Initialize** next to the cluster that you created previously.
3. Choose an Availability Zone (AZ) for the HSM that you are creating. Then choose **Create**.

**To create an HSM (AWS CLI)**

- At a command prompt, run the `create-hsm` command. Specify the cluster ID of the cluster that you created previously and an Availability Zone for the HSM. Specify the Availability Zone in the form of `us-west-2a`, `us-west-2b`, etc.

```
$ aws cloudhsmv2 create-hsm --cluster-id <cluster ID> --availability-zone <Availability Zone>
```

```
{
   "Hsm": {
      "HsmId": "hsm-ted36yp5b2x",
      "EniIp": "10.0.1.12",
      "AvailabilityZone": "us-west-2a",
      "ClusterId": "cluster-igklspoyj5v",
      "EniId": "eni-5d7ade72",
      "SubnetId": "subnet-fd54af9b",
      "State": "CREATE_IN_PROGRESS"
   }
}
```

**To create an HSM (AWS CloudHSM API)**

- Send a CreateHsm request. Specify the cluster ID of the cluster that you created previously and an Availability Zone for the HSM.

After you create a cluster and HSM, you can optionally verify the identity of the HSM (p. 22), or proceed directly to **Initialize the Cluster** (p. 28).

**Verify the Identity and Authenticity of Your Cluster's HSM (Optional)**

To initialize your cluster, you sign a certificate signing request (CSR) generated by the cluster's first HSM. Before you do this, you might want to verify the identity and authenticity of the HSM.

**Note**
This process is optional. However, it works only until a cluster is initialized. After the cluster is initialized, you cannot use this process to get the certificates or verify the HSMs.

**Topics**
- Overview (p. 23)
- Get Certificates from the HSM (p. 24)
- Get the Root Certificates (p. 25)
- Verify Certificate Chains (p. 26)
- Extract and Compare Public Keys (p. 27)
- AWS CloudHSM Root Certificate (p. 27)
Overview

To verify the identity of your cluster's first HSM, complete the following steps:

1. Get the certificates and CSR (p. 24) – In this step, you get three certificates and a CSR from the HSM. You also get two root certificates, one from AWS CloudHSM and one from the HSM hardware manufacturer.

2. Verify the certificate chains (p. 26) – In this step, you construct two certificate chains, one to the AWS CloudHSM root certificate and one to the manufacturer root certificate. Then you verify the HSM certificate with these certificate chains to determine that AWS CloudHSM and the hardware manufacturer both attest to the identity and authenticity of the HSM.

3. Compare public keys (p. 27) – In this step, you extract and compare the public keys in the HSM certificate and the cluster CSR, to ensure that they are the same. This should give you confidence that the CSR was generated by an authentic, trusted HSM.

The following diagram shows the CSR, the certificates, and their relationship to each other. The subsequent list defines each certificate.

[Diagram showing the relationship between the CSR, certificates, and their relationship to each other.]

- AWS Root Certificate
- Manufacturer Root Certificate
- AWS Hardware Certificate
- Manufacturer Hardware Certificate
- HSM Certificate
- Cluster CSR
AWS Root Certificate

This is AWS CloudHSM's root certificate. You can view and download this certificate at https://docs.aws.amazon.com/cloudhsm/latest/userguide/root-certificate.html (p. 27).

Manufacturer Root Certificate

This is the hardware manufacturer's root certificate. You can view and download this certificate at https://www.cavium.com/LS/TAmanuCert/.

AWS Hardware Certificate

AWS CloudHSM created this certificate when it claimed the HSM hardware. This certificate asserts that AWS CloudHSM owns the hardware.

Manufacturer Hardware Certificate

The HSM hardware manufacturer created this certificate when it manufactured the HSM hardware. This certificate asserts that the manufacturer created the hardware.

HSM Certificate

The HSM certificate is generated by the FIPS-validated hardware when you create the first HSM in the cluster. This certificate asserts that the HSM hardware created the HSM.

Cluster CSR

The first HSM creates the cluster CSR. When you sign the cluster CSR (p. 30), you claim the cluster. Then, you can use the signed CSR to initialize the cluster (p. 31).

Get Certificates from the HSM

To verify the identity and authenticity of your HSM, start by getting a CSR and five certificates. You get three of the certificates from the HSM, which you can do with the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

To get the CSR and HSM certificates (console)

2. Choose Initialize next to the cluster that you created previously.
3. When the certificates and CSR are ready, you see links to download them.
Choose each link to download and save the CSR and certificates. To simplify the subsequent steps, save all of the files to the same directory and use the default file names.

To get the CSR and HSM certificates (AWS CLI)

- At a command prompt, run the describe-clusters command four times, extracting the CSR and different certificates each time and saving them to files.
  
a. Issue the following command to extract the cluster CSR. Replace `<cluster ID>` with the ID of the cluster that you created previously.

```
$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \
  --output text \ 
  --query 'Clusters[].Certificates.ClusterCsr' \ 
  > <cluster ID>_ClusterCsr.csr
```

b. Issue the following command to extract the HSM certificate. Replace `<cluster ID>` with the ID of the cluster that you created previously.

```
$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \
  --output text \ 
  --query 'Clusters[].Certificates.HsmCertificate' \ 
  > <cluster ID>_HsmCertificate.crt
```

c. Issue the following command to extract the AWS hardware certificate. Replace `<cluster ID>` with the ID of the cluster that you created previously.

```
$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \
  --output text \ 
  --query 'Clusters[].Certificates.AwsHardwareCertificate' \ 
  > <cluster ID>_AwsHardwareCertificate.crt
```

d. Issue the following command to extract the manufacturer hardware certificate. Replace `<cluster ID>` with the ID of the cluster that you created previously.

```
$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \
  --output text \ 
  --query 'Clusters[].Certificates.ManufacturerHardwareCertificate' \ 
  > <cluster ID>_ManufacturerHardwareCertificate.crt
```

To get the CSR and HSM certificates (AWS CloudHSM API)

- Send a DescribeClusters request, then extract and save the CSR and certificates from the response.

Get the Root Certificates

Follow these steps to get the root certificates for AWS CloudHSM and the manufacturer. Save the root certificate files to the directory that contains the CSR and HSM certificate files.
Verify Certificate Chains

To get the AWS CloudHSM and manufacturer root certificates

1. Go to https://docs.aws.amazon.com/cloudhsm/latest/userguide/root-certificate.html (p. 27), and then choose AWS_CloudHSM_Root-G1.zip. After you download the file, extract (unzip) its contents.
2. Go to https://www.cavium.com/LS/TAmanuCert/, and then choose Download Certificate. You might need to right-click the Download Certificate link and then choose Save Link As... to save the certificate file.

Verify Certificate Chains

In this step, you construct two certificate chains, one to the AWS CloudHSM root certificate and one to the manufacturer root certificate. Then use OpenSSL to verify the HSM certificate with each certificate chain.

To create the certificate chains, open a Linux shell. You need OpenSSL, which is available in most Linux shells, and you need the root certificate (p. 25) and HSM certificate files (p. 24) that you downloaded. However, you do not need the AWS CLI for this step, and the shell does not need to be associated with your AWS account.

**Note**
To verify the certificate chain, use OpenSSL 1.0. Due to a change in OpenSSL certificate verification, the following instructions do not work with OpenSSL 1.1.

To verify the HSM certificate with the AWS CloudHSM root certificate

1. Navigate to the directory where you saved the root certificate (p. 25) and HSM certificate files (p. 24) that you downloaded. The following commands assume that all of the certificates are in the current directory and use the default file names.

   Use the following command to create a certificate chain that includes the AWS hardware certificate and the AWS CloudHSM root certificate, in that order. Replace `<cluster ID>` with the ID of the cluster that you created previously.

   ```bash
   $ cat <cluster ID>_AwsHardwareCertificate.crt 
   AWS_CloudHSM_Root-G1.crt 
   > <cluster ID>_AWS_chain.crt
   
   $ openssl verify -CAfile <cluster ID>_AWS_chain.crt 
   <cluster ID>_HsmCertificate.crt: OK
   
   $ openssl verify -CAfile <cluster ID>_AWS_chain.crt <cluster ID>_HsmCertificate.crt
   <cluster ID>_HsmCertificate.crt: OK
   ```

To verify the HSM certificate with the manufacturer root certificate

1. Use the following command to create a certificate chain that includes the manufacturer hardware certificate and the manufacturer root certificate, in that order. Replace `<cluster ID>` with the ID of the cluster that you created previously.

   ```bash
   $ cat <cluster ID>_ManufacturerHardwareCertificate.crt 
   cavium_cert.crt 
   > <cluster ID>_manufacturer_chain.crt
   
   $ openssl verify -CAfile <cluster ID>_manufacturer_chain.crt 
   <cluster ID>_HsmCertificate.crt: OK
   
   $ openssl verify -CAfile <cluster ID>_manufacturer_chain.crt <cluster ID>_HsmCertificate.crt
   <cluster ID>_HsmCertificate.crt: OK
   ```
Extract and Compare Public Keys

Use OpenSSL to extract and compare the public keys in the HSM certificate and the cluster CSR, to ensure that they are the same.

To compare the public keys, use your Linux shell. You need OpenSSL, which is available in most Linux shells, but you do not need the AWS CLI for this step, and the shell does not need to be associated with your AWS account.

**To extract and compare the public keys**

1. Use the following command to extract the public key from the HSM certificate.

```
$ openssl x509 -in <cluster ID>_HsmCertificate.crt -pubkey -noout > <cluster ID>_HsmCertificate.pub
```

2. Use the following command to extract the public key from the cluster CSR.

```
$ openssl req -in <cluster ID>_ClusterCsr.csr -pubkey -noout > <cluster ID>_ClusterCsr.pub
```

3. Use the following command to compare the public keys. If the public keys are identical, the following command produces no output.

```
$ diff <cluster ID>_HsmCertificate.pub <cluster ID>_ClusterCsr.pub
```

After you verify the identity and authenticity of the HSM, proceed to Initialize the Cluster (p. 28).

**AWS CloudHSM Root Certificate**

Download the AWS CloudHSM root certificate: AWS_CloudHSM_Root-G1.zip.

```
Certificate:
Data:
  Version: 3 (0x2)
  Serial Number: 17952736724058547791 (0xf924eeecf9ea64f)
  Signature Algorithm: sha256WithRSAEncryption
  Issuer: C=US, ST=Virginia, L=Herndon, O=Amazon Web Services INC., OU=CloudHSM, CN=AWS CloudHSM Root G1
Validity
  Not Before: Apr 28 08:37:46 2017 GMT
  Not After : Apr 26 08:37:46 2027 GMT
Subject: C=US, ST=Virginia, L=Herndon, O=Amazon Web Services INC., OU=CloudHSM, CN=AWS CloudHSM Root G1
```
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)

Modulus:
00:c8:e3:6f:2a:e0:1f:le:66:73:00:le:57:dc:3e:
98:25:5a:45:5f:1f:c4:60:0e:29:e4:ac:65:f0:6b:
84:bb:00:dc:57:d8:48:94:5c:13:7a:ff:3b:37:52:
59:ee:6a:9a:97:75:35:ff:1e:32:08:0e:2f:bc:
4f:3f:ce:1c:2f:b5:1e:0f:4f:15:ff:27:00:23:67:
58:7a:0b:fd:ff:6d:d3:1c:64:10:47:8c:4f:ab:3e:
61:0c:a2:a9:0b:2d:6e:59:ff:4c:1c:2c:92:2a:4f:
7f:3b:66:e8:aa:9f:dd:1d:5a:5c:2e:31:ee:
52:61

Exponent: 65537 (0x10001)
X509v3 extensions:
  X509v3 Subject Key Identifier:
  X509v3 Authority Key Identifier:

X509v3 Basic Constraints:
  CA:TRUE
Signature Algorithm: sha256WithRSAEncryption

d6:18:e8:64:62

Initialize the Cluster

Complete the steps in the following topics to initialize your AWS CloudHSM cluster.

Note
Before you initialize the cluster, review the process by which you can verify the identity and authenticity of the HSMs (p. 22). This process is optional and works only until a cluster is initialized. After the cluster is initialized, you cannot use this process to get your certificates or verify the HSMs.

Topics
- Get the Cluster CSR (p. 29)
- Sign the CSR (p. 30)
Get the Cluster CSR

Before you can initialize the cluster, you must download and sign a certificate signing request (CSR) that is generated by the cluster’s first HSM. If you followed the steps to verify the identity of your cluster’s HSM (p. 22), you already have the CSR and you can sign it. Otherwise, retrieve the CSR now by using the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

Retrieve the CSR (console)
2. Choose Initialize next to the cluster that you created previously (p. 19).
3. When the CSR is ready, you see a link to download it.

Retrieve the CSR (AWS CLI)
- At a command prompt, run the following describe-clusters command, which extracts the CSR and saves it to a file. Replace <cluster ID> with the ID of the cluster that you created previously (p. 19).
  
  ```bash
  $ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \
  --output text \ 
  --query 'Clusters[].Certificates.ClusterCsr' \
  > <cluster ID>_ClusterCsr.csr
  ```

Retrieve the CSR (AWS CloudHSM API)
- Send a DescribeClusters request, and then extract and save the CSR from the response.
Sign the CSR

Currently, you must create a self-signed signing certificate and use it to sign the CSR for your cluster. You do not need the AWS CLI for this step, and the shell does not need to be associated with your AWS account. To sign the CSR, you must do the following:

- Retrieve the CSR (see Get the Cluster CSR (p. 29)).
- Create a private key.
- Use the private key to create a signing certificate.
- Sign your cluster CSR.

Create a private key

Use the following command to create a private key. For a production cluster, the key should be created in a secure manner using a trusted source of randomness. We recommend that you use a secured off-site and off-line HSM or the equivalent. Store the key safely. Being able to demonstrate that you own the key enables you to demonstrate that you own the cluster and the data it contains.

During development and test, you can use any convenient tool (such as OpenSSL) to create and sign the cluster certificate. The following example shows you how to create a key. After you have used the key to create a self-signed certificate (see below), you should store it in a safe manner. To sign into your AWS CloudHSM instance, the certificate needs to be present but the private key does not. You use the key only for specific purposes such as restoring from a backup.

```
$ openssl genrsa -aes256 -out customerCA.key 2048
Generating RSA private key, 2048 bit long modulus
........+++
............+++e is 65537 (0x10001)
Enter pass phrase for customerCA.key:
Verifying - Enter pass phrase for customerCA.key:
```

Use the private key to create a self-signed certificate

The trusted hardware that you use to create the private key for your production cluster should also provide a software tool to generate a self-signed certificate using that key. The following example uses OpenSSL and the private key that you created in the previous step to create a signing certificate. The certificate is valid for 10 years (3652 days). Read the on-screen instructions and follow the prompts.

```
$ openssl req -new -x509 -days 3652 -key customerCA.key -out customerCA.crt
Enter pass phrase for customerCA.key:
You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:
```
Initialize the Cluster

This command creates a certificate file named `customerCA.crt`. Put this certificate on every host from which you will connect to your AWS CloudHSM cluster. If you give the file a different name or store it in a path other than the root of your host, you should edit your client configuration file accordingly. Use the certificate and the private key you just created, to sign the cluster certificate signing request (CSR) in the next step.

**Sign the Cluster CSR**

The trusted hardware you use to create your private key for your production cluster should also provide a tool to sign the CSR using that key. The following example uses OpenSSL to sign the cluster's CSR. The example uses your your private key and the self-signed certificate you created in the previous step.

```
$ openssl x509 -req -days 3652 -in <cluster ID>_ClusterCsr.csr \
   -CA customerCA.crt \
   -CAkey customerCA.key \
   -CAcreateserial \
   -out <cluster ID>_CustomerHsmCertificate.crt
```

Signature ok
subject=/C=US/ST=CA/O=Cavium/OU=N3FIPS/L=SanJose/CN=HSM:<HSM identifier>:PARTN:<partition number>, for FIPS mode
Getting CA Private Key
Enter pass phrase for customerCA.key:

This command creates a file named `<cluster ID>_CustomerHsmCertificate.crt`. Use this file as the signed certificate when you initialize the cluster.

**Initialize the Cluster**

Use your signed HSM certificate and your signing certificate to initialize your cluster. You can use the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

**To initialize a cluster (console)**

2. Choose Initialize next to the cluster that you created previously.
3. On the Download certificate signing request page, choose Next. If Next is not available, first choose one of the CSR or certificate links. Then choose Next.
4. On the Sign certificate signing request (CSR) page, choose Next.
5. On the Upload the certificates page, do the following:
   a. Next to Cluster certificate, choose Upload file. Then select the HSM certificate that you signed previously. If you completed the steps in the previous section, select the file named `<cluster ID>_CustomerHsmCertificate.crt`.
   b. Next to Issuing certificate, choose Upload file. Then select your signing certificate. If you completed the steps in the previous section, select the file named `customerCA.crt`.
   c. Choose Upload and initialize.

**To initialize a cluster (AWS CLI)**

- At a command prompt, run the `initialize-cluster` command. Provide the following:
  - The ID of the cluster that you created previously.
  - The HSM certificate that you signed previously. If you completed the steps in the previous section, it's saved in a file named `<cluster ID>_CustomerHsmCertificate.crt`.

---

31
Your signing certificate. If you completed the steps in the previous section, the signing certificate is saved in a file named `customerCA.crt`.

```bash
$ aws cloudhsmv2 initialize-cluster --cluster-id <cluster ID> \
   --signed-cert file://<cluster ID>_CustomerHsmCertificate.crt \
   --trust-anchor file://customerCA.crt
{
   "State": "INITIALIZE_IN_PROGRESS",
   "StateMessage": "Cluster is initializing. State will change to INITIALIZED upon completion."
}
```

**To initialize a cluster (AWS CloudHSM API)**

- Send an `InitializeCluster` request with the following:
  - The ID of the cluster that you created previously.
  - The HSM certificate that you signed previously.
  - Your signing certificate.

After you initialize the cluster, proceed to **Launch an EC2 Client (p. 20)**.

**Install and Configure the AWS CloudHSM Client (Linux)**

To interact with the HSM in your AWS CloudHSM cluster, you need the AWS CloudHSM client software for Linux. You should install it on Linux EC2 client instance that you created previously. You can also install a client if you are using Windows. For more information, see **Install and Configure the AWS CloudHSM Client (Windows) (p. 33)**.

**Topics**

- Install the AWS CloudHSM Client and Command Line Tools (p. 32)
- Edit the Client Configuration (p. 33)

**Install the AWS CloudHSM Client and Command Line Tools**

Complete the steps in the following procedure to install the AWS CloudHSM client and command line tools.

**To install (or update) the client and command line tools**

1. Connect to your client instance.
2. Use the following commands to download and then install the client and command line tools.

   Amazon Linux

   ```bash
   wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-latest.x86_64.rpm
   ```
Edit the Client Configuration

Before you can use the AWS CloudHSM client to connect to your cluster, you must edit the client configuration.

To edit the client configuration

1. Copy your issuing certificate—the one that you used to sign the cluster's certificate (p. 30)—to the following location on the client instance: `/opt/cloudhsm/etc/customerCA.crt`. You need root permissions on the client instance to copy your certificate to this location.

2. Use the following `configure` command to update the configuration files for the AWS CloudHSM client and command line tools, specifying the IP address of the HSM in your cluster. To get the HSM's IP address, view your cluster in the AWS CloudHSM console, or run the `describe-clusters` AWS CLI command. In the command's output, the HSM's IP address is the value of the `EniIp` field. If you have more than one HSM, choose the IP address for any of the HSMs; it doesn't matter which one.

   ```bash
   sudo /opt/cloudhsm/bin/configure -a <IP address>
   ```

   Updating server config in `/opt/cloudhsm/etc/cloudhsm_client.cfg`
   Updating server config in `/opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg`

3. Go to Activate the Cluster (p. 34).

Install and Configure the AWS CloudHSM Client (Windows)

To interact with an HSM in your AWS CloudHSM cluster, you need the AWS CloudHSM client software for Windows. You should install it on the Windows Server instance that you created previously. You can also install a client if you are using Linux. For more information, see Install and Configure the AWS CloudHSM Client (Linux) (p. 32).

To install (or update) the client and command line tools

1. Connect to your Windows Server instance.


3. Go to your download location and run the `AWSCloudHSMClient.msi` installer. Follow the installer instructions.
Important
You must run the installer with administrative privileges. Open a command window as an administrator, navigate to the C:\Program Files\Amazon\CloudHSM directory, and run AWSCloudHSMClient.exe.

Note
You can uninstall the client by running the installer again and following the directions.

4. Choose Close after the installer dialog has finished.

Note
The installer automatically registers the KSP and CNG providers.

The installer copies the executable files into the C:\Program Files\Amazon\CloudHSM folder:
- cloudhsm_client
- cloudhsm_mgmt_util
- cng_config
- configure
- key_mgmt_util
- ksp_config
- pkpspeed_blocking.exe

Certificates and keys are installed in the C:\ProgramData\Amazon\CloudHSM folder:
- client.crt
- client.key

Configuration files are copied into the C:\ProgramData\Amazon\CloudHSM\data folder:
- application.cfg
- cloudhsm_client.cfg
- cloudhsm_mgmt_util.cfg

5. Copy your self-signed issuing certificate—the one that you used to sign the cluster certificate (p. 30)—to the C:\ProgramData\Amazon\CloudHSM folder.

6. Run the following command to update your configuration files:

   c:\Program Files\Amazon\CloudHSM>configure.exe -a <HSM IP address>

7. Go to Activate the Cluster (p. 34).

Activate the Cluster

When you activate an AWS CloudHSM cluster, the cluster's state changes from initialized to active. You can then manage the HSM's users (p. 46) and use the HSM (p. 164).

To activate the cluster, log in to the HSM with the credentials of the precrypto officer (PRECO) (p. 10). This a temporary user that exists only on the first HSM in an AWS CloudHSM cluster. The first HSM in a new cluster contains a PRECO user with a default user name and password. When you change the password, the PRECO user becomes a crypto officer (CO).
To activate a cluster

1. Connect to the client instance that you launched in previously. For more information, see Launch an Amazon EC2 Client Instance (p. 20). You can launch a Linux instance or a Windows Server.

2. Use the following command to start the `cloudhsm_mgmt_util` command line utility.

   Amazon Linux
   
   ```bash
   $ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
   ```

   Ubuntu
   
   ```bash
   $ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
   ```

   Windows
   
   ```
   c:\Program Files\Amazon\CloudHSM>configure.exe -a <HSM IP address>
   ```

   ```
   c:\Program Files\Amazon\CloudHSM>cloudhsm_mgmt_util.exe c:\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg
   ```

3. Use the `enable_e2e` command to enable end-to-end encryption.

   ```
   aws-cloudhsm>enable_e2e
   E2E enabled on server 0(server1)
   ```

4. (Optional) Use the `listUsers` command to display the existing users.

   ```
   aws-cloudhsm>listUsers
   Users on server 0(server1):
   Number of users found:2
   
   User Id  User Type  User Name       MofnPubKey  LoginFailureCnt  2FA
   1        PRECO     admin           NO          0               
   2        AU         app_user       NO          0               
   ```

5. Use the `loginHSM` command to log in to the HSM as the PRECO user. This is a temporary user that exists on the first HSM in your cluster.

   ```
   aws-cloudhsm>loginHSM PRECO admin password
   loginHSM success on server 0(server1)
   ```

6. Use the `changePswd` command to change the password for the PRECO user. When you change the password, the PRECO user becomes a crypto officer (CO).

   ```
   aws-cloudhsm>changePswd PRECO admin <NewPassword>
   ****************************************CAUTION****************************************
   This is a CRITICAL operation, should be done on all nodes in the
cluster. Cav server does NOT synchronize these changes with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.

****************************************************************
Do you want to continue(y/n)?
y
Changing password for admin(PRECO) on 1 nodes

We recommend that you write down the new password on a password worksheet. Do not lose the
worksheet. We recommend that you print a copy of the password worksheet, use it to record your
critical HSM passwords, and then store it in a secure place. We also recommended that you store a
copy of this worksheet in secure off-site storage.

7. **(Optional) Use the listUsers command to verify that the user's type changed to crypto officer
   (CO) (p. 11).**

```
aws-cloudhsm>listUsers
Users on server 0(server1):
Number of users found:2

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2FA</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

8. **Use the quit command to stop the cloudhsm_mgmt_util tool.**

```
aws-cloudhsm>quit
```
Managing AWS CloudHSM Clusters

You can manage your AWS CloudHSM clusters from the AWS CloudHSM console or one of the AWS SDKs or command line tools. For more information, see the following topics.

To create a cluster, see Getting Started (p. 14).

Topics
- Adding or Removing HSMs in an AWS CloudHSM Cluster (p. 37)
- Deleting an AWS CloudHSM Cluster (p. 40)
- Creating an AWS CloudHSM Cluster from a Previous Backup (p. 41)
- Tagging AWS CloudHSM Resources (p. 42)

Adding or Removing HSMs in an AWS CloudHSM Cluster

To scale up or down your AWS CloudHSM cluster, add or remove HSMs by using the AWS CloudHSM console or one of the AWS SDKs or command line tools.

Topics
- Adding an HSM (p. 37)
- Removing an HSM (p. 39)

Adding an HSM

The following figure illustrates the events that occur when you add an HSM to a cluster.
1. You add a new HSM to a cluster. The following procedures explain how to do this from the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), and the AWS CloudHSM API.

   This is the only action that you take. The remaining events occur automatically.

2. AWS CloudHSM makes a backup copy of an existing HSM in the cluster. For more information, see Backups (p. 6).

3. AWS CloudHSM restores the backup onto the new HSM. This ensures that the HSM is in sync with the others in the cluster.

4. The existing HSMs in the cluster notify the AWS CloudHSM client that there's a new HSM in the cluster.

5. The client establishes a connection to the new HSM.
To add an HSM (console)

2. Choose a cluster for the HSM that you are adding.
3. On the HSMs tab, choose Create HSM.
4. Choose an Availability Zone (AZ) for the HSM that you are creating. Then choose Create.

To add an HSM (AWS CLI)

- At a command prompt, issue the create-hsm command, specifying a cluster ID and an Availability Zone for the HSM that you are creating. If you don’t know the cluster ID of your preferred cluster, issue the describe-clusters command. Specify the Availability Zone in the form of us-east-2a, us-east-2b, etc.

```bash
$ aws cloudhsmv2 create-hsm --cluster-id <cluster ID> --availability-zone <Availability Zone>
{
  "Hsm": {
    "State": "CREATE_IN_PROGRESS",
    "ClusterId": "cluster-5a73d5gqrdh",
    "HsmId": "hsm-lgavqitns2a",
    "SubnetId": "subnet-0e358c43",
    "AvailabilityZone": "us-east-2c",
    "EniId": "eni-bab18892",
    "EniIp": "10.0.3.10"
  }
}
```

To add an HSM (AWS CloudHSM API)

- Send a CreateHsm request, specifying the cluster ID and an Availability Zone for the HSM that you are creating.

Removing an HSM

You can remove an HSM by using the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

To remove an HSM (console)

2. Choose the cluster that contains the HSM that you are removing.
3. On the HSMs tab, choose the HSM that you are removing. Then choose Delete HSM.
4. Confirm that you want to delete the HSM. Then choose Delete.

To remove an HSM (AWS CLI)

- At a command prompt, issue the delete-hsm command. Pass the ID of the cluster that contains the HSM that you are deleting and one of the following HSM identifiers:
  - The HSM ID (--hsm-id)
  - The HSM IP address (--eni-ip)
  - The HSM's elastic network interface ID (--eni-id)
Deleting a Cluster

To remove an HSM (AWS CloudHSM API)

- Send a DeleteHsm request, specifying the cluster ID and an identifier for the HSM that you are deleting.

Deleting an AWS CloudHSM Cluster

Before you can delete a cluster, you must remove all HSMs from the cluster. For more information, see Removing an HSM (p. 39).

After you remove all HSMs, you can delete a cluster by using the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

To delete a cluster (console)

2. Choose the cluster that you are deleting. Then choose Delete cluster.
3. Confirm that you want to delete the cluster, then choose Delete.

To delete a cluster (AWS CLI)

- At a command prompt, issue the delete-cluster command, passing the ID of the cluster that you are deleting. If you don't know the cluster ID, issue the describe-clusters command.

```
$ aws cloudhsmv2 delete-cluster --cluster-id <cluster ID> 
{   "Certificates": {   "ClusterCertificate": "<certificate string>",
    "SourceBackupId": "backup-rtq2dw12gg6",
    "SecurityGroup": "sg-40399d28",
    "CreateTimestamp": 1504903546.035,
    "SubnetMapping": {
        "us-east-2a": "subnet-f1d6e798",
        "us-east-2c": "subnet-0e358c43",
        "us-east-2b": "subnet-40ed9d3b"
    },
    "ClusterId": "cluster-kdmrayrc7gi",
    "VpcId": "vpc-641d3c0d",
    "State": "DELETE_IN_PROGRESS",
    "HsmType": "hsm1.medium",
    "StateMessage": "The cluster is being deleted.",
    "Hsms": [],
    "BackupPolicy": "DEFAULT"
}
```
Creating an AWS CloudHSM Cluster from a Previous Backup

To restore an AWS CloudHSM cluster from a previous backup, you create a new cluster, specifying the backup to restore. After you create the cluster, you don’t need to initialize or activate it. You can just add an HSM to the cluster; this HSM contains the same users, key material, certificates, configuration, and policies that were in the backup that you restored. For more information about backups, see Backups (p. 6).

You can restore a cluster from a backup from the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

To create a cluster from a previous backup (console)
2. Choose Create cluster.
3. In the Cluster configuration section, do the following:
   a. For VPC, choose a VPC for the cluster that you are creating.
   b. For AZ(s), choose a private subnet for each Availability Zone that you are adding to the cluster.
4. In the Cluster source section, do the following:
   a. Choose Restore cluster from existing backup.
   b. Choose the backup that you are restoring.
5. Choose Next: Review.
6. Review your cluster configuration, then choose Create cluster.

To create a cluster from a previous backup (AWS CLI)
- At a command prompt, issue the create-cluster command. Specify the HSM instance type, the subnet IDs of the subnets where you plan to create HSMs, and the backup ID of the backup that you are restoring. If you don’t know the backup ID, issue the describe-backups command.

```bash
$ aws cloudhsmv2 create-cluster --hsm-type hsm1.medium --subnet-ids <subnet ID 1> <subnet ID 2> <subnet ID N> --source-backup-id <backup ID>
```

```json
{
  "Cluster": {
    "HsmType": "hsm1.medium",
    "VpcId": "vpc-641d3c0d",
    "Hsms": [],
    "State": "CREATE_IN_PROGRESS",
    "SourceBackupId": "backup-rtq2dwi2gq6",
    "BackupPolicy": "DEFAULT",
    "SecurityGroup": "sg-640fab0c",
    "CreateTimestamp": 1504907311.112,
    "SubnetMapping": {
      "us-east-2c": "subnet-0e358c43",
      "us-east-2a": "subnet-f1d6e798",
      "us-east-2b": "subnet-40ed9d3b"
  }
}
```
To create a cluster from a previous backup (AWS CloudHSM API)

- Send a CreateCluster request. Specify the HSM instance type, the subnet IDs of the subnets where you plan to create HSMs, and the backup ID of the backup that you are restoring.

To create an HSM that contains the same users, key material, certificates, configuration, and policies that were in the backup that you restored, add an HSM (p. 37) to the cluster.

Tagging AWS CloudHSM Resources

A tag is a label that you assign to an AWS resource. You can assign tags to your AWS CloudHSM clusters. Each tag consists of a tag key and a tag value, both of which you define. For example, the tag key might be **Cost Center** and the tag value might be **12345**. Tag keys must be unique for each cluster.

You can use tags for a variety of purposes. One common use is to categorize and track your AWS costs. You can apply tags that represent business categories (such as cost centers, application names, or owners) to organize your costs across multiple services. When you add tags to your AWS resources, AWS generates a cost allocation report with usage and costs aggregated by tags. You can use this report to view your AWS CloudHSM costs in terms of projects or applications, instead of viewing all AWS CloudHSM costs as a single line item.

For more information about using tags for cost allocation, see Using Cost Allocation Tags in the *AWS Billing and Cost Management User Guide*.

You can use the AWS CloudHSM console or one of the AWS SDKs or command line tools to add, update, list, and remove tags.

**Topics**
- Adding or Updating Tags (p. 42)
- Listing Tags (p. 44)
- Removing Tags (p. 44)

**Adding or Updating Tags**

You can add or update tags from the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

**To add or update tags (console)**

2. Choose the cluster that you are tagging.
3. Choose Tags.
4. To add a tag, do the following:
   a. Choose Add Tag.
b. For **Tag Key**, type a key for the tag.

c. (Optional) For **Tag Value**, type a value for the tag.

d. Choose the action for adding a tag, as shown in the following image.

5. To update a tag, do the following:

   a. Choose the tag value to update.

   **Note**
   If you update the tag key for an existing tag, the console deletes the existing tag and creates a new one.

   b. Type the new tag value. Then choose the action for updating a tag, as shown in the following image.

**To add or update tags (AWS CLI)**

1. At a command prompt, issue the `tag-resource` command, specifying the tags and the ID of the cluster that you are tagging. If you don't know the cluster ID, issue the `describe-clusters` command.

   ```bash
   $ aws cloudhsmv2 tag-resource --resource-id <cluster ID> \
   --tag-list Key="<tag key>" Value="<tag value>
   ```

2. To update tags, use the same command but specify an existing tag key. When you specify a new tag value for an existing tag, the tag is overwritten with the new value.
To add or update tags (AWS CloudHSM API)
- Send a TagResource request. Specify the tags and the ID of the cluster that you are tagging.

**Listing Tags**

You can list tags for a cluster from the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

**To list tags (console)**
2. Choose the cluster whose tags you are listing.
3. Choose Tags.

**To list tags (AWS CLI)**
- At a command prompt, issue the list-tags command, specifying the ID of the cluster whose tags you are listing. If you don't know the cluster ID, issue the describe-clusters command.

```bash
$ aws cloudhsmv2 list-tags --resource-id <cluster ID>
{
    "TagList": [ 
        { 
            "Key": "Cost Center",
            "Value": "12345"
        }
    ]
}
```

**To list tags (AWS CloudHSM API)**
- Send a ListTags request, specifying the ID of the cluster whose tags you are listing.

**Removing Tags**

You can remove tags from a cluster by using the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

**To remove tags (console)**
2. Choose the cluster whose tags you are removing.
3. Choose Tags.
4. Next to the tag that you are removing, choose the action for deleting a tag, as shown in the following image.
To remove tags (AWS CLI)

- At a command prompt, issue the `untag-resource` command, specifying the tag keys of the tags that you are removing and the ID of the cluster whose tags you are removing. When you use the AWS CLI to remove tags, specify only the tag keys, not the tag values.

```bash
$ aws cloudhsmv2 untag-resource --resource-id <cluster ID> \   --tag-key-list "<tag key>"
```

To remove tags (AWS CloudHSM API)

- Send an `UntagResource` request in the AWS CloudHSM API, specifying the ID of the cluster and the tags that you are removing.
Managing HSM Users and Keys in AWS CloudHSM

Before you can use your AWS CloudHSM cluster for cryptoprocessing, you must create users and keys on the HSMs in your cluster. See the following topics for more information about using the AWS CloudHSM command line tools to manage HSM users and keys. You can also learn how to use quorum authentication (also known as M of N access control).

Topics
- Managing HSM Users in AWS CloudHSM (p. 46)
- Managing Keys in AWS CloudHSM (p. 49)
- Enforcing Quorum Authentication (M of N Access Control) (p. 54)

Managing HSM Users in AWS CloudHSM

To manage users on the HSMs in your AWS CloudHSM cluster, use the AWS CloudHSM command line tool known as cloudhsm_mgmt_util. Before you can manage users, you must start cloudhsm_mgmt_util, enable end-to-end encryption, and log in to the HSMs. For more information, see cloudhsm_mgmt_util (p. 67).

To manage HSM users, log in to the HSM with the user name and password of a cryptographic officer (p. 11) (CO). Only COs can manage other users. The HSM contains a default CO named admin. You set this user’s password when you activated the cluster (p. 34).

Topics
- Create Users (p. 46)
- List Users (p. 47)
- Change a User’s Password (p. 48)
- Delete Users (p. 48)

Create Users

Use the createUser (p. 75) command to create a user on the HSM. The following examples create new CO and CU users, respectively. For information about user types, see HSM Users (p. 10).

aws-cloudhsm>createUser CO example_officer <password>
***********************************************************************************************
CAUTION***********************************************************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
***********************************************************************************************
Do you want to continue(y/n)?y
Creating User example_officer(CO) on 3 nodes

aws-cloudhsm> createUser CU example_user <password>

************************************************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
************************************************************************************

Do you want to continue(y/n)? y
Creating User example_user(CU) on 3 nodes

The following shows the syntax for the createUser (p. 75) command. User types and passwords are case-sensitive in cloudhsm_mgmt_util commands, but user names are not.

aws-cloudhsm> createUser <user type> <user name> <password>

List Users

Use the listUsers (p. 94) command to list the users on each HSM in the cluster. All HSM user types (p. 10) can use this command; it's not restricted to COs.

The PCO is the first ("primary") CO created on each HSM. It has the same permissions on the HSM as any other CO.

aws-cloudhsm> listUsers

Users on server 0(10.0.2.9):
Number of users found:4

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2FA</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>example_officer</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>CU</td>
<td>example_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Users on server 1(10.0.3.11):
Number of users found:4

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2FA</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>example_officer</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>CU</td>
<td>example_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Users on server 2(10.0.1.12):
Number of users found:4

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2FA</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>
Change a User's Password

Use the `changePswd` command to change the password for any user. All HSM user types (p. 10) can issue this command, but only COs can change the password for other users. Crypto users (CUs) and appliance users (AUs) can change only their own password. The following examples change the password for the CO and CU users that were created in the Create Users (p. 46) examples.

```bash
aws-cloudhsm> changePswd CO example_officer <new password>
CAUTION: This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
Do you want to continue(y/n)? y
Changing password for example_officer(CO) on 3 nodes
```

```bash
aws-cloudhsm> changePswd CU example_user <new password>
CAUTION: This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
Do you want to continue(y/n)? y
Changing password for example_user(CU) on 3 nodes
```

The following shows the syntax for the `changePswd` command. User types and passwords are case-sensitive, but user names are not.

```bash
aws-cloudhsm> changePswd <user type> <user name> <new password>
```

**Warning**
The CO cannot change the password for a user (CO or CU) who is currently logged in.

Delete Users

Use the `deleteUser` command to delete a user. The following examples delete the CO and CU users that were created in the Create Users (p. 46) examples.

```bash
aws-cloudhsm> deleteUser CO example_officer
Deleting user example_officer(CO) on 3 nodes
deleteUser success on server 0(10.0.2.9)
deleteUser success on server 1(10.0.3.11)
deleteUser success on server 2(10.0.1.12)
```

```bash
aws-cloudhsm> deleteUser CU example_user
```

---

**Table:**

<table>
<thead>
<tr>
<th>User Type</th>
<th>User Name</th>
<th>Password Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>example_officer</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CU</td>
<td>example_user</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>
Deleting user example_user(CU) on 3 nodes
deleteUser success on server 0(10.0.2.9)
deleteUser success on server 1(10.0.3.11)
deleteUser success on server 2(10.0.1.12)

The following shows the syntax for the `deleteUser` command.

```
aws-cloudhsm> deleteUser <user type> <user name>
```

Warning
Deleting a CU user will orphan all of the keys owned by that CU and make them unusable. You will not receive any warning that the user you are about to delete still owns keys in the cluster.

Managing Keys in AWS CloudHSM

To manage keys on the HSMs in your AWS CloudHSM cluster, use the `key_mgmt_util (p. 101)` command line tool. Before you can manage keys, you must start the AWS CloudHSM client, start `key_mgmt_util`, and log in to the HSMs.

To manage keys, log in to the HSM (p. 103) with the user name and password of a crypto user (CU). Only CUs can create keys. Keys are inherently owned and managed by the CU who created them.

Topics
- Generate Keys (p. 49)
- Import Keys (p. 50)
- Export Keys (p. 52)
- Delete Keys (p. 53)
- Share and Unshare Keys (p. 53)

Generate Keys

To generate keys on the HSM, use the command that corresponds to the type of key that you want to generate.

Generate Symmetric Keys

Use the `genSymKey (p. 132)` command to generate AES, triple DES, and other types of symmetric keys. To see all available options, use the `genSymKey -h` command.

The following example creates a 256-bit AES key.

```
Command: genSymKey -t 31 -s 32 -l aes256
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created. Key Handle: 524295
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```
Generate RSA Key Pairs

To generate an RSA key pair, use the `genRSAKeyPair (p. 127)` command. To see all available options, use the `genRSAKeyPair -h` command.

The following example generates an RSA 2048-bit key pair.

```
Command: genRSAKeyPair -m 2048 -e 65537 -l rsa2048
Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS
Cfm3GenerateKeyPair:    public key handle: 524294    private key handle: 524296
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```

Generate ECC (Elliptic Curve Cryptography) Key Pairs

To generate an ECC key pair, use the `genECCKeyPair (p. 123)` command. To see all available options, including a list of the supported elliptic curves, use the `genECCKeyPair -h` command.

The following example generates an ECC key pair using the P-384 elliptic curve defined in NIST FIPS publication 186-4.

```
Command: genECCKeyPair -i 14 -l ecc-p384
Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS
Cfm3GenerateKeyPair:    public key handle: 524297    private key handle: 524298
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```

Import Keys

To import secret keys—that is, symmetric keys and asymmetric private keys—into the HSM, you must first create a wrapping key on the HSM. You can import public keys directly without a wrapping key.

Import Secret Keys

Complete the following steps to import a secret key. Before you import a secret key, save it to a file. Save symmetric keys as raw bytes, and asymmetric private keys in PEM format.

This example shows how to import a plaintext secret key from a file into the HSM. To import an encrypted key from a file into the HSM, use the `unWrapKey (p. 153)` command.

To import a secret key

1. Use the `genSymKey (p. 132)` command to create a wrapping key. The following command creates a 128-bit AES wrapping key that is valid only for the current session. You can use a session key or a persistent key as a wrapping key.

```
Command: genSymKey -t 31 -s 16 -sess -l import-wrapping-key
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created.  Key Handle: 524299
```
AWS CloudHSM User Guide

Import Keys

Cluster Error Status
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

2. Use one of the following commands, depending on the type of secret key that you are importing.

- To import a symmetric key, use the `imSymKey` command. The following command imports an AES key from a file named `aes256.key` using the wrapping key created in the previous step. To see all available options, use the `imSymKey -h` command.

  ```
  Command: imSymKey -f aes256.key -t 31 -l aes256-imported -w 524299
  Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
  Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS
  Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS
  Symmetric Key Unwrapped. Key Handle: 524300
  Cluster Error Status
  Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
  ```

- To import an asymmetric private key, use the `importPrivateKey` command. The following command imports a private key from a file named `rsa2048.key` using the wrapping key created in the previous step. To see all available options, use the `importPrivateKey -h` command.

  ```
  Command: importPrivateKey -f rsa2048.key -l rsa2048-imported -w 524299
  BER encoded key length is 1216
  Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
  Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS
  Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS
  Private Key Unwrapped. Key Handle: 524301
  Cluster Error Status
  Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
  ```

Import Public Keys

Use the `importPubKey` command to import a public key. To see all available options, use the `importPubKey -h` command.

The following example imports an RSA public key from a file named `rsa2048.pub`.

```
Command: importPubKey -f rsa2048.pub -l rsa2048-public-imported
Cfm3CreatePublicKey returned: 0x00 : HSM Return: SUCCESS
Public Key Handle: 524302
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```
Export Keys

To export secret keys—that is, symmetric keys and asymmetric private keys—from the HSM, you must first create a wrapping key. You can export public keys directly without a wrapping key.

Only the key owner can export a key. Users with whom the key is shared can use the key in cryptographic operations, but they cannot export it. When running this example, be sure to export a key that you created.

**Important**
The `exSymKey` command writes a plaintext (unencrypted) copy of the secret key to a file. The export process requires a wrapping key, but the key in the file is not a wrapped key. To export a wrapped (encrypted) copy of a key, use the `wrapKey` command.

Export Secret Keys

Complete the following steps to export a secret key.

**To export a secret key**

1. Use the `genSymKey` command to create a wrapping key. The following command creates a 128-bit AES wrapping key that is valid only for the current session.

   Command: `genSymKey -t 31 -s 16 -sess -l export-wrapping-key`
   
   Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
   
   Symmetric Key Created. Key Handle: 524304

   Cluster Error Status
   Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

2. Use one of the following commands, depending on the type of secret key that you are exporting.

   - To export a symmetric key, use the `exSymKey` command. The following command exports an AES key to a file named `aes256.key.exp`. To see all available options, use the `exSymKey -h` command.

     Command: `exSymKey -k 524295 -out aes256.key.exp -w 524304`

     Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
     
     Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS
     
     Wrapped Symmetric Key written to file "aes256.key.exp"

   - To export a private key, use the `exportPrivateKey` command. The following command exports a private key to a file named `rsa2048.key.exp`. To see all available options, use the `exportPrivateKey -h` command.

     Command: `exportPrivateKey -k 524296 -out rsa2048.key.exp -w 524304`

     Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
     
     Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

**Notes**
The command’s output says that a "Wrapped Symmetric Key" is written to the output file. However, the output file contains a plaintext (not wrapped) key. To export a wrapped (encrypted) key to a file, use the `wrapKey` command.

- To export a private key, use the `exportPrivateKey` command. The following command exports a private key to a file named `rsa2048.key.exp`. To see all available options, use the `exportPrivateKey -h` command.

   Command: `exportPrivateKey -k 524296 -out rsa2048.key.exp -w 524304`

   Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS

   Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS
Export Public Keys

Use the `exportPubKey` command to export a public key. To see all available options, use the `exportPubKey -h` command.

The following example exports an RSA public key to a file named `rsa2048.pub.exp`.

```
Command: exportPubKey -k 524294 -out rsa2048.pub.exp
PEM formatted public key is written to rsa2048.pub.key
Cfm3ExportPubKey returned: 0x00 : HSM Return: SUCCESS
```

Delete Keys

Use the `deleteKey` (p. 107) command to delete a key, as in the following example. Only the key owner can delete a key.

```
Command: deleteKey -k 524300
Cfm3DeleteKey returned: 0x00 : HSM Return: SUCCESS
```

Share and Unshare Keys

In AWS CloudHSM, the CU who creates the key owns it. The owner manages the key, can export and delete it, and can use the key in cryptographic operations. The owner can also share the key with other CU users. Users with whom the key is shared can use the key in cryptographic operations, but they cannot export or delete the key, or share it with other users.

You can share keys with other CU users when you create the key, such as by using the --u parameter of the `genSymKey` (p. 132) or `genRSAKeyPair` (p. 127) commands. To share existing keys with a different HSM user, use the `cloudhsm_mgmt_util` (p. 67) command line tool. This is different from most of the tasks documented in this section, which use the `key_mgmt_util` (p. 101) command line tool.

Before you can share a key, you must start `cloudhsm_mgmt_util`, enable end-to-end encryption, and log in to the HSMs. To share a key, log in to the HSM as the crypto user (CU) that owns the key. Only key owners can share a key.

Use the `shareKey` command to share or unshare a key, specifying the handle of the key and the IDs of the user or users. To share or unshare with more than one user, specify a comma-separated list of user IDs. To share a key, use 1 as the command's last parameter, as in the following example. To unshare, use 0.

```
aws-cloudhsm>shareKey 524295 4 1
**************************CAUTION**************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
****************************************************************
```
Do you want to continue (y/n)? y
shareKey success on server 0 (10.0.2.9)
shareKey success on server 1 (10.0.3.11)
shareKey success on server 2 (10.0.1.12)

The following shows the syntax for the shareKey command.

aws-cloudhsm>shareKey <key handle> <user ID> <Boolean: 1 for share, 0 for unshare>

Enforcing Quorum Authentication (M of N Access Control)

The HSMs in your AWS CloudHSM cluster support quorum authentication, which is also known as M of N access control. With quorum authentication, no single user on the HSM can do quorum-controlled operations on the HSM. Instead, a minimum number of HSM users (at least 2) must cooperate to do these operations. With quorum authentication, you can add an extra layer of protection by requiring approvals from more than one HSM user.

Quorum authentication can control the following operations:

- HSM user management by crypto officers (COs) (p. 11) – Creating and deleting HSM users, and changing a different HSM user’s password. For more information, see Using Quorum Authentication for Crypto Officers (p. 59).
- Cryptographic operations by crypto users (CUs) (p. 11) – For example:
  - Using asymmetric private keys on the HSM to cryptographically sign messages.
  - Using AES symmetric keys on the HSM for AES wrap and unwrap.

The following topics provide more information about quorum authentication in AWS CloudHSM.

Topics
- Overview of Quorum Authentication (p. 54)
- Additional Details about Quorum Authentication (p. 55)
- Using Quorum Authentication for Crypto Officers: First Time Setup (p. 55)
- Using Quorum Authentication for Crypto Officers (p. 59)
- Change the Quorum Minimum Value for Crypto Officers (p. 65)

Overview of Quorum Authentication

The following steps summarize the quorum authentication processes. For the specific steps and tools, see Using Quorum Authentication for Crypto Officers (p. 59).

1. Each HSM user creates an asymmetric key for signing. He or she does this outside of the HSM, taking care to protect the key appropriately.
2. Each HSM user logs in to the HSM and registers the public part of his or her signing key (the public key) with the HSM.
3. When an HSM user wants to do a quorum-controlled operation, he or she logs in to the HSM and gets a quorum token.
4. The HSM user gives the quorum token to one or more other HSM users and asks for their approval.
5. The other HSM users approve by using their keys to cryptographically sign the quorum token. This occurs outside the HSM.
6. When the HSM user has the required number of approvals, he or she logs in to the HSM and gives the quorum token and approvals (signatures) to the HSM.
7. The HSM uses the registered public keys of each signer to verify the signatures. If the signatures are valid, the HSM approves the token.
8. The HSM user can now do a quorum-controlled operation.

Additional Details about Quorum Authentication

Note the following additional information about using quorum authentication in AWS CloudHSM.

• An HSM user can sign his or her own quorum token—that is, the requesting user can provide one of the required approvals for quorum authentication.
• You choose the minimum number of quorum approvers for quorum-controlled operations. The smallest number you can choose is two (2). For HSM user management operations by COs, the largest number you can choose is twenty (20). For cryptographic operations by CUs, the largest number you can choose is eight (8).
• The HSM can store up to 1024 quorum tokens. If the HSM already has 1024 tokens when you try to create a new one, the HSM purges one of the expired tokens. By default, tokens expire ten minutes after their creation.

Using Quorum Authentication for Crypto Officers: First Time Setup

The following topics describe the steps that you must complete to configure your HSM so that crypto officers (COs) can use quorum authentication. You need to do these steps only once when you first configure quorum authentication for COs. After you complete these steps, see Using Quorum Authentication for Crypto Officers (p. 59).

Topics
• Prerequisites (p. 55)
• Create and Register a Key for Signing (p. 56)
• Set the Quorum Minimum Value on the HSM (p. 58)

Prerequisites

To understand this example, you should be familiar with the cloudhsm_mgmt_util command line tool (p. 67). In this example, the AWS CloudHSM cluster has two HSMs, each with the same COs, as shown in the following output from the listUsers command. For more information about creating users, see Managing HSM Users (p. 46).

```
aws-cloudhsm> listUsers
Users on server 0(10.0.2.14):
Number of users found: 7

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
</tbody>
</table>
```

55
Create and Register a Key for Signing

To use quorum authentication, each CO must create an asymmetric key for signing (a signing key). This is done outside of the HSM.

There are many different ways to create and protect a personal signing key. The following example shows how to do it with OpenSSL.

**Example – Create a personal signing key with OpenSSL**

The following example demonstrates how to use OpenSSL to create a 2048-bit RSA key that is protected by a pass phrase. To use this example, replace `officer1.key` with the name of the file where you want to store the key.

```
$ openssl genrsa -out officer1.key -aes256 2048
Generating RSA private key, 2048 bit long modulus
.....................................++++
.e is 65537 (0x10001)
Enter pass phrase for officer1.key:
Verifying - Enter pass phrase for officer1.key:
```

Each CO should create his or her own key.

After creating a key, the CO must register the public part of the key (the public key) with the HSM.

**To register a public key with the HSM**

1. Use the following command to start the `cloudhsm_mgmt_util` command line tool.

```
$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
```
2. Use the `enable_e2e` command to establish end-to-end encrypted communication.
3. Use the `loginHSM` command to log in to the HSM as a CO. For more information, see Log in to the HSMs (p. 70).
4. Use the `registerMofnPubKey` command to register the public key. For more information, see the following example or use the `help registerMofnPubKey` command.

Example – Register a public key with the HSM

The following example shows how to use the `registerMofnPubKey` command in the cloudhsm_mgmt_util command line tool to register a CO's public key with the HSM. To use this command, the CO must be logged in to the HSM. Replace these values with your own:

- `key_match_string` – An arbitrary string that is used to match the public and private keys. You can use any string for this value. The cloudhsm_mgmt_util command line tool encrypts this string with the private key, and then sends the encrypted blob and the plaintext string to the HSM. The HSM uses the public key to decrypt the encrypted blob, and then compares the decrypted string to the plaintext string. If the strings match, the HSM registers the public key; otherwise it doesn't.
- `officer1` – The user name of the CO who is registering the public key. This must be the same CO who is logged in to the HSM and is running this command.
- `officer1.key` – The name of the file that contains the CO's key. This file must contain the complete key (not just the public part) because the cloudhsm_mgmt_util command line tool uses the private key to encrypt the `key match string`.

When prompted, type the pass phrase that protects the CO's key.

```
aws-cloudhsm> registerMofnPubKey CO key_match_string officer1 officer1.key
****************************************************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. Cav server does NOT synchronize these changes with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************
Do you want to continue(y/n)? y
Enter PEM pass phrase:
registerMofnPubKey success on server 0(10.0.2.14)
registerMofnPubKey success on server 1(10.0.1.4)
```

Each CO must register his or her public key with the HSM. After all COs register their public keys, the output from the `listUsers` command shows this in the `MofnPubKey` column, as shown in the following example.

```
aws-cloudhsm> listUsers
Users on server 0(10.0.2.14):
Number of users found:7

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>officer1</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>CO</td>
<td>officer2</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>CO</td>
<td>officer3</td>
<td>YES</td>
</tr>
</tbody>
</table>
```

57
Set the Quorum Minimum Value on the HSM

To use quorum authentication for COs, a CO must log in to the HSM and then set the *quorum minimum value*, also known as the *m value*. This is the minimum number of CO approvals that are required to perform HSM user management operations. Any CO on the HSM can set the quorum minimum value, including COs that have not registered a key for signing. You can change the quorum minimum value at any time; for more information, see Change the Quorum Value for Crypto Officers (p. 65).

To set the quorum minimum value on the HSM

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

   ```bash
   $ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
   ```

2. Use the `enable_e2e` command to establish end-to-end encrypted communication.

3. Use the `loginHSM` command to log in to the HSM as a CO. For more information, see Log in to the HSMs (p. 70).

4. Use the `setMValue` command to set the quorum minimum value. For more information, see the following example or use the `help setMValue` command.

   **Example – Set the quorum minimum value on the HSM**

   This example uses a quorum minimum value of two. You can choose any value from two to twenty, up to the total number of COs on the HSM. In this example, the HSM has six COs (the PCO user (p. 11) is the same as a CO), so the maximum possible value is six.

   To use the following example command, replace the final number (2) with the preferred quorum minimum value.

   ```bash
   aws-cloudhsm>setMValue 3 2
   ************************************************************CAUTION************************************************************
   This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
Do you want to continue(y/n)? y
Setting M Value(2) for 3 on 2 nodes

In the preceding example, the first number (3) identifies the HSM service whose quorum minimum value you are setting.

The following table lists the HSM service identifiers along with their names, descriptions, and the commands that are included in the service.

<table>
<thead>
<tr>
<th>Service Identifier</th>
<th>Service Name</th>
<th>Service Description</th>
<th>HSM Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>USER_MGMT</td>
<td>HSM user management</td>
<td>• createUser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• deleteUser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• changePswd (applies only when changing the password of a different HSM user)</td>
</tr>
<tr>
<td>4</td>
<td>MISC_CO</td>
<td>Miscellaneous CO service</td>
<td>• setMValue</td>
</tr>
</tbody>
</table>

To get the quorum minimum value for a service, use the `getMValue` command, as in the following example.

```
aws-cloudhsm>getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]
```

The output from the preceding `getMValue` command shows that the quorum minimum value for HSM user management operations (service 3) is now two.

After you complete these steps, see Using Quorum Authentication for Crypto Officers (p. 59).

**Using Quorum Authentication for Crypto Officers**

A crypto officer (CO) (p. 11) on the HSM can configure quorum authentication for the following operations on the HSM:

- Creating HSM users
- Deleting HSM users
- Changing another HSM user's password

After the HSM is configured for quorum authentication, COs cannot perform HSM user management operations on their own. The following example shows the output when a CO attempts to create a new user on the HSM. The command fails with a `RET_MXN_AUTH_FAILED` error, which indicates that quorum authentication failed.

```
aws-cloudhsm>createUser CU user1 password
********************************************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
```
To perform an HSM user management operation, a CO must complete the following tasks:

1. Get a quorum token (p. 60).
2. Get approvals (signatures) from other COs (p. 61).
3. Approve the token on the HSM (p. 61).
4. Perform the HSM user management operation (p. 63).

If you have not yet configured the HSM for quorum authentication for COs, do that now. For more information, see First Time Setup for Crypto Officers (p. 55).

Get a Quorum Token

First the CO must use the cloudhsm_mgmt_util command line tool to request a quorum token.

To get a quorum token

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

   ```bash
   $ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
   ```

2. Use the `enable_e2e` command to establish end-to-end encrypted communication.
3. Use the `loginHSM` command to log in to the HSM as a CO. For more information, see Log in to the HSMs (p. 70).
4. Use the `getToken` command to get a quorum token. For more information, see the following example or use the `help getToken` command.

Example – Get a quorum token

This example gets a quorum token for the CO with user name officer1 and saves the token to a file named `officer1.token`. To use the example command, replace these values with your own:

- `officer1` – The name of the CO who is getting the token. This must be the same CO who is logged in to the HSM and is running this command.
- `officer1.token` – The name of the file to use for storing the quorum token.

In the following command, 3 identifies the service for which you can use the token that you are getting. In this case, the token is for HSM user management operations (service 3). For more information, see Set the Quorum Minimum Value on the HSM (p. 58).

```bash
aws-cloudhsm> getToken 3 officer1 officer1.token
getToken success on server 0(10.0.2.14)
Token:
  Id:1
  Service:3
  Node:1
  Key Handle:0
  User:officer1
```
getToken success on server 1(10.0.1.4)
Token:
  Id:1
  Service:3
  Node:0
  Key Handle:0
  User:officer1

Get Signatures from Approving COs

A CO who has a quorum token must get the token approved by other COs. To give their approval, the other COs use their signing key to cryptographically sign the token. They do this outside the HSM.

There are many different ways to sign the token. The following example shows how to do it with OpenSSL. To use a different signing tool, make sure that the tool uses the CO’s private key (signing key) to sign a SHA-256 digest of the token.

Example – Get signatures from approving COs

In this example, the CO that has the token (officer1) needs at least two approvals. The following example commands show how two COs can use OpenSSL to cryptographically sign the token.

In the first command, officer1 signs his or her own token. To use the following example commands, replace these values with your own:

- officer1.key and officer2.key – The name of the file that contains the CO’s signing key.
- officer1.token.sig1 and officer1.token.sig2 – The name of the file to use for storing the signature. Make sure to save each signature in a different file.
- officer1.token – The name of the file that contains the token that the CO is signing.

```
$ openssl dgst -sha256 -sign officer1.key -out officer1.token.sig1 officer1.token
Enter pass phrase for officer1.key:
```

In the following command, officer2 signs the same token.

```
$ openssl dgst -sha256 -sign officer2.key -out officer1.token.sig2 officer1.token
Enter pass phrase for officer2.key:
```

Approve the Signed Token on the HSM

After a CO gets the minimum number of approvals (signatures) from other COs, he or she must approve the signed token on the HSM.

To approve the signed token on the HSM

1. Create a token approval file. For more information, see the following example.
2. Use the following command to start the cloudhsm_mgmt_util command line tool.

```
$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
```

3. Use the enable_e2e command to establish end-to-end encrypted communication.
4. Use the loginHSM command to log in to the HSM as a CO. For more information, see Log in to the HSMs (p. 70).
5. Use the approveToken command to approve the signed token, passing the token approval file. For more information, see the following example.
Example – Create a token approval file and approve the signed token on the HSM

The token approval file is a text file in a particular format that the HSM requires. The file contains information about the token, its approvers, and the approvers' signatures. The following shows an example token approval file.

```plaintext
# For "Multi Token File Path", type the path to the file that contains
# the token. You can type the same value for "Token File Path", but
# that's not required. The "Token File Path" line is required in any
# case, regardless of whether you type a value.
Multi Token File Path = officer1.token;
Token File Path = ;

# Total number of approvals
Number of Approvals = 2;

# Approver 1
# Type the approver's type, name, and the path to the file that
# contains the approver's signature.
Approver Type = 2; # 2 for CO, 1 for CU
Approver Name = officer1;
Approval File = officer1.token.sig1;

# Approver 2
# Type the approver's type, name, and the path to the file that
# contains the approver's signature.
Approver Type = 2; # 2 for CO, 1 for CU
Approver Name = officer2;
Approval File = officer1.token.sig2;
```

After creating the token approval file, the CO uses the cloudhsm_mgmt_util command line tool to log in to the HSM. The CO then uses the `approveToken` command to approve the token, as shown in the following example. Replace `approval.txt` with the name of the token approval file.

```plaintext
aws-cloudhsm>approveToken approval.txt
approveToken success on server 0(10.0.2.14)
approveToken success on server 1(10.0.1.4)
```

When this command succeeds, the HSM has approved the quorum token. To check the status of a token, use the `listTokens` command, as shown in the following example. The command's output shows that the token has the required number of approvals.

The token validity time indicates how long the token is guaranteed to persist on the HSM. Even after the token validity time elapses (zero seconds), you can still use the token.

```plaintext
aws-cloudhsm>listTokens
=====================         
| Server 0(10.0.2.14)    |
=====================
-------- Token - 0 --------
Token:
  Id:1
  Service:3
  Node:1
  Key Handle:0
  User:officer1
  Token Validity: 506 sec
  Required num of approvers : 2
  Current num of approvals : 2
  Approver-0: officer1
```
Approver-1: officer2
Num of tokens = 1

=====================  
Server 1(10.0.1.4)  
=====================  
-------- Token - 0 ----------  
Token: 
Id:1  
Service:3  
Node:0  
Key Handle:0  
User:officer1  
Token Validity: 506 sec  
Required num of approvers : 2  
Current num of approvals : 2  
Approver-0: officer1  
Approver-1: officer2  
Num of tokens = 1  
listTokens success

Use the Token for User Management Operations

After a CO has a token with the required number of approvals, as shown in the previous section, the CO can perform one of the following HSM user management operations:

- Create an HSM user with the `createUser` (p. 75) command
- Delete an HSM user with the `deleteUser` command
- Change a different HSM user's password with the `changePswd` command

For more information about using these commands, see Managing HSM Users (p. 46).

The CO can use the token for only one operation. When that operation succeeds, the token is no longer valid. To do another HSM user management operation, the CO must get a new quorum token, get new signatures from approvers, and approve the new token on the HSM.

In the following example command, the CO creates a new user on the HSM.

```
aws-cloudhsm> createUser CU user1 password
*************************************************CAUTION*******************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
*************************************************CAUTION*******************************************************
Do you want to continue(y/n)?y
Creating User user1(CU) on 2 nodes
```

After the previous command succeeds, a subsequent `listUsers` command shows the new user.

```
aws-cloudhsm> listUsers
Users on server 0(10.0.2.14):
Number of users found:8

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

63
If the CO tries to perform another HSM user management operation, it fails with a quorum authentication error, as shown in the following example.

```
aws-cloudhsm> deleteUser CU user1
Deleting user user1(CU) on 2 nodes
deleteUser failed: RET_MXN_AUTH_FAILED
deleteUser failed on server 0(10.0.2.14)
Retry/rollBack/Ignore?(R/B/I):I
deleteUser failed: RET_MXN_AUTH_FAILED
deleteUser failed on server 1(10.0.1.4)
Retry/rollBack/Ignore?(R/B/I):I
```

The `listTokens` command shows that the CO has no approved tokens, as shown in the following example. To perform another HSM user management operation, the CO must get a new quorum token, get new signatures from approvers, and approve the new token on the HSM.

```
aws-cloudhsm> listTokens
===============================================
Server 0(10.0.2.14)
Num of tokens = 0
===============================================
Server 1(10.0.1.4)
```

If the CO tries to perform another HSM user management operation, it fails with a quorum authentication error, as shown in the following example.
Change the Quorum Minimum Value for Crypto Officers

After you set the quorum minimum value (p. 58) so that crypto officers (COs) (p. 11) can use quorum authentication, you might want to change the quorum minimum value. The HSM allows you to change the quorum minimum value only when the number of approvers is the same or higher than the current quorum minimum value. For example, if the quorum minimum value is two, at least two COs must approve to change the quorum minimum value.

To get quorum approval to change the quorum minimum value, you need a quorum token for the `setMValue` command (service 4). To get a quorum token for the `setMValue` command (service 4), the quorum minimum value for service 4 must be higher than one. This means that before you can change the quorum minimum value for COs (service 3), you might need to change the quorum minimum value for service 4.

The following table lists the HSM service identifiers along with their names, descriptions, and the commands that are included in the service.

<table>
<thead>
<tr>
<th>Service Identifier</th>
<th>Service Name</th>
<th>Service Description</th>
<th>HSM Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>USER_MGMT</td>
<td>HSM user management</td>
<td>• createUser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• deleteUser</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• changePswd (applies only when changing the password of a different HSM user)</td>
</tr>
<tr>
<td>4</td>
<td>MISC_CO</td>
<td>Miscellaneous CO service</td>
<td>• setMValue</td>
</tr>
</tbody>
</table>

To change the quorum minimum value for crypto officers

1. Use the following command to start the cloudhsm_mgmt_util command line tool.
   
   ```bash
   $ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
   ```

2. Use the `enable_e2e` command to establish end-to-end encrypted communication.
3. Use the `loginHSM` command to log in to the HSM as a CO. For more information, see Log in to the HSMs (p. 70).
4. Use the `getMValue` command to get the quorum minimum value for service 3. For more information, see the following example.
5. Use the `getMValue` command to get the quorum minimum value for service 4. For more information, see the following example.
6. If the quorum minimum value for service 4 is lower than the value for service 3, use the `setMValue` command to change the value for service 4. Change the value for service 4 to one that is the same or higher than the value for service 3. For more information, see the following example.
7. Get a quorum token (p. 60), taking care to specify service 4 as the service for which you can use the token.
8. Get approvals (signatures) from other COs (p. 61).
9. Approve the token on the HSM (p. 61).
10. Use the `setMValue` command to change quorum minimum value for service 3 (user management operations performed by COs).

**Example – Get quorum minimum values and change the value for service 4**

The following example command shows that the quorum minimum value for service 3 is currently two.

```
aws-cloudhsm> getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]
```

The following example command shows that the quorum minimum value for service 4 is currently one.

```
aws-cloudhsm> getMValue 4
MValue of service 4[MISC_CO] on server 0 : [1]
MValue of service 4[MISC_CO] on server 1 : [1]
```

To change the quorum minimum value for service 4, use the `setMValue` command, setting a value that is the same or higher than the value for service 3. The following example sets the quorum minimum value for service 4 to two (2), the same value that is set for service 3.

```
aws-cloudhsm> setMValue 4 2
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
*****************************************************
Do you want to continue(y/n)? y
Setting M Value(2) for 4 on 2 nodes
```

The following commands show that the quorum minimum value is now two for service 3 and service 4.

```
aws-cloudhsm> getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]

aws-cloudhsm> getMValue 4
MValue of service 4[MISC_CO] on server 0 : [2]
MValue of service 4[MISC_CO] on server 1 : [2]
```
AWS CloudHSM Command Line Tools

AWS CloudHSM provides command line tools for managing and using AWS CloudHSM.

Topics
- cloudhsm_mgmt_util (p. 67)
- key_mgmt_util (p. 101)
- Configure Tool (p. 160)

Manage Clusters and HSMs
These tools get, create, delete, and tag AWS CloudHSM clusters and HSMs:
- CloudHSMv2 commands in AWS Command Line Interface (AWS CLI). To use these commands, you need to install and configure AWS CLI.
- HSM2 PowerShell cmdlets in the AWSPowerShell module. These cmdlets are available in a Windows PowerShell module and a cross-platform PowerShell Core module.

Manage Users
This tool creates and deletes HSM users, including implementing quorum authentication of user management tasks:
- cloudhsm_mgmt_util (p. 67). This tool is included in the AWS CloudHSM client software.

Manage Keys
This tool creates, deletes, imports, and exports symmetric keys and asymmetric key pairs:
- key_mgmt_util (p. 101). This tool is included in the AWS CloudHSM client software.

Helper Tools
These tools help you to use the tools and software libraries.
- configure (p. 160) updates your CloudHSM client configuration files. This enables the AWS CloudHSM to synchronize the HSMs in a cluster.
- pkpspeed (p. 237) measures the performance of your HSM hardware independent of software libraries.

cloudhsm_mgmt_util

The cloudhsm_mgmt_util command line tool helps Crypto Officers (PCOs and COs) manage users in the HSMs. It includes tools that create, delete, and list users, and change user passwords.

cloudhsm_mgmt_util also includes commands that allow Crypto Users (CUs) to share keys, get and set key attributes. These commands complement the key management commands in the primary key management tool, key_mgmt_util (p. 101).
For a quick start, see Getting Started with cloudhsm_mgmt_util (p. 68). For detailed information about the cloudhsm_mgmt_util commands and examples of using the commands, see cloudhsm_mgmt_util Command Reference (p. 71).

Topics
- Getting Started with cloudhsm_mgmt_util (p. 68)
- cloudhsm_mgmt_util Command Reference (p. 71)

Getting Started with cloudhsm_mgmt_util

AWS CloudHSM includes two command line tools with the AWS CloudHSM client software (p. 32). The cloudhsm_mgmt_util (p. 71) tool includes commands to manage HSM users. The key_mgmt_util (p. 103) tool includes commands to manage keys. To get started with the cloudhsm_mgmt_util command line tool, see the following topics.

Topics
- Prepare to run cloudhsm_mgmt_util (p. 68)
- Basic Usage of cloudhsm_mgmt_util (p. 69)

Prepare to run cloudhsm_mgmt_util

Complete the following steps before you use cloudhsm_mgmt_util. You need to do these steps the first time you use cloudhsm_mgmt_util and after you add or remove HSMs in your cluster. The steps update the HSM list in the configuration files that the AWS CloudHSM client and command line tools use. Keeping these files updated helps AWS CloudHSM to synchronize data and maintain consistency across all HSMs in the cluster.

Topics
- Step 1: Stop the AWS CloudHSM Client (p. 68)
- Step 2: Update the AWS CloudHSM Configuration Files (p. 68)
- Step 3: Start the AWS CloudHSM Client (p. 69)
- Step 4: Update the cloudhsm_mgmt_util Configuration File (p. 69)

Step 1: Stop the AWS CloudHSM Client

Before you update the configuration files that the AWS CloudHSM and command line tools use, stop the AWS CloudHSM client. If the client is already stopped, running the stop command has no harmful effect.

Amazon Linux

```bash
sudo stop cloudhsm-client
```

Windows

You can use <ctrl><c> to stop the client.

Step 2: Update the AWS CloudHSM Configuration Files

This step uses the -a parameter of the Configure tool (p. 160) to add the ENI IP address of one of the HSMs in the cluster to the configuration file.
To get the ENI IP address of an HSM in your cluster, you can use the DescribeClusters command, the describe-clusters command, or the Get-HSM2Cluster PowerShell cmdlet. Enter only one ENI IP address. It does not matter which ENI IP address you select.

**Step 3: Start the AWS CloudHSM Client**

Next, start or restart the AWS CloudHSM client. When the AWS CloudHSM client starts, it uses the ENI IP address in its configuration file to query the cluster. Then, it adds the ENI IP addresses of all HSMs in the cluster to the cluster information file.

Amazon Linux

```
$ sudo start cloudhsm-client
```

Windows

```
c:\Program Files\Amazon\CloudHSM>cloudhsm_client.exe C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg
```

**Step 4: Update the cloudhsm_mgmt_util Configuration File**

The final step uses the `-m` parameter of the Configuration tool (p. 160) to copy the updated ENI IP addresses from the cluster information file to the configuration file that cloudhsm_mgmt_util uses. If you skip this step, you might run into synchronization problems, such as inconsistent user data (p. 237) in your cluster's HSMs.

Amazon Linux

```
$ sudo /opt/cloudhsm/bin/configure -m
```

Windows

```
c:\Program Files\Amazon\CloudHSM>configure.exe -m
```

When this step completes, you are ready to start cloudhsm_mgmt_util. If you add or delete HSMs at any time, be sure to repeat this procedure before using cloudhsm_mgmt_util.

**Basic Usage of cloudhsm_mgmt_util**

See the following topics for the basic usage of the cloudhsm_mgmt_util tool.

**Note**

The cloudhsm_mgmt_util tool doesn’t support auto-completing commands with the Tab key. Don’t use the Tab key with cloudhsm_mgmt_util, because that can make the tool unresponsive.
Topics

- Start cloudhsm_mgmt_util (p. 70)
- Enable End-to-End Encryption (p. 70)
- Log in to the HSMs (p. 70)
- Log Out from the HSMs (p. 71)
- Stop cloudhsm_mgmt_util (p. 71)

Start cloudhsm_mgmt_util

Use the following command to start cloudhsm_mgmt_util.

Amazon Linux

```
$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
```

Windows

```
c:\Program Files\Amazon\CloudHSM>cloudhsm_mgmt_util.exe c:\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg
```

Output should be similar to the following depending on how many HSMs you have.

```
Connecting to the server(s), it may take time depending on the server(s) load, please wait...

Connecting to server '10.0.2.9': hostname '10.0.2.9', port 2225...
Connected to server '10.0.2.9': hostname '10.0.2.9', port 2225.

Connecting to server '10.0.3.11': hostname '10.0.3.11', port 2225...
Connected to server '10.0.3.11': hostname '10.0.3.11', port 2225.

Connecting to server '10.0.1.12': hostname '10.0.1.12', port 2225...
Connected to server '10.0.1.12': hostname '10.0.1.12', port 2225.
```

The prompt changes to `aws-cloudhsm>` when cloudhsm_mgmt_util is running.

Enable End-to-End Encryption

Use the `enable_e2e` command to establish end-to-end encrypted communication between cloudhsm_mgmt_util and the HSMs in your cluster. You should enable end-to-end encryption each time you start cloudhsm_mgmt_util.

```
aws-cloudhsm>enable_e2e
E2E enabled on server 0(10.0.2.9)
E2E enabled on server 1(10.0.3.11)
E2E enabled on server 2(10.0.1.12)
```

Log in to the HSMs

Use the `loginHSM` command to log in to the HSMs. Any user of any type can use this command to log in to the HSMs.

The command in following example logs in `admin`, which is the default `crypto officer (CO)` (p. 10). You set this user's password when you activated the cluster (p. 34). The output shows that the command logged the `admin` user in to all of the HSMs in the cluster.
Warning
When you log in to cloudhsm_mgmt_util, verify that the ENI IP addresses in the success messages exactly match the ENI IP addresses of all HSMs in the cluster. If they do not, stop and run all steps in the section called “Prepare to run cloudhsm_mgmt_util” (p. 68) procedure.

To get the ENI IP addresses of the HSMs in your cluster, the DescribeClusters operation, the describe-clusters command, or the Get-HSM2Cluster PowerShell cmdlet.

```bash
aws-cloudhsm> loginHSM CO admin <password>
loginHSM success on server 0(10.0.2.9)
loginHSM success on server 1(10.0.3.11)
loginHSM success on server 2(10.0.1.12)
```

The following shows the syntax for the `loginHSM` command.

```bash
aws-cloudhsm> loginHSM <user type> <user name> <password>
```

Log Out from the HSMs

Use the `logoutHSM` command to log out of the HSMs.

```bash
aws-cloudhsm> logoutHSM
logoutHSM success on server 0(10.0.2.9)
logoutHSM success on server 1(10.0.3.11)
logoutHSM success on server 2(10.0.1.12)
```

Stop cloudhsm_mgmt_util

Use the `quit` command to stop cloudhsm_mgmt_util.

```bash
aws-cloudhsm> quit
disconnecting from servers, please wait...
```

cloudhsm_mgmt_util Command Reference

The `cloudhsm_mgmt_util` command line tool helps Crypto Officers (PCOs and COs) manage users in the HSMs. It also includes commands that allow Crypto Users (CUs) to share keys, and get and set key attributes. These commands complement the primary key management commands in the `key_mgmt_util` (p. 101) command line tool.

For a quick start, see Getting Started with cloudhsm_mgmt_util (p. 68).

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

To list all cloudhsm_mgmt_util commands, type:

```bash
aws-cloudhsm> help
```

To get the syntax for a cloudhsm_mgmt_util command, type:

```bash
aws-cloudhsm> help <command-name>
```
To run a command, type the command name, or enough of the name to distinguish it from the names of other cloudhsm_mgmt_util commands.

For example, to get a list of users on the HSMs, type `listUsers` or `listU`.

```
aws-cloudhsm> listUsers
```

To end your cloudhsm_mgmt_util session, type:

```
aws-cloudhsm> quit
```

For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

The following topics describe commands in cloudhsm_mgmt_util.

**Note**

Some commands in key_mgmt_util and cloudhsm_mgmt_util have the same names. However, the commands typically have different syntax, different output, and slightly different functionality.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>User Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>changePswd</td>
<td>Changes the passwords of users on the HSMs. Any user can change their own password. COs can change anyone's password.</td>
<td>CO</td>
</tr>
<tr>
<td>createUser</td>
<td>Creates users of all types on the HSMs.</td>
<td>CO</td>
</tr>
<tr>
<td>deleteUser</td>
<td>Deletes users of all types from the HSMs.</td>
<td>CO</td>
</tr>
<tr>
<td>findAllKeys</td>
<td>Gets the keys that a user owns or shares. Also gets a hash of the key ownership and sharing data for all keys on each HSM. CO, AU</td>
<td>CO, AU</td>
</tr>
<tr>
<td>getAttribute</td>
<td>Gets an attribute value for an AWS CloudHSM key and writes it to a file or stdout.</td>
<td>CU</td>
</tr>
<tr>
<td>getHSMInfo</td>
<td>Gets information about the hardware on which an HSM is running.</td>
<td>All. Login is not required.</td>
</tr>
<tr>
<td>getKeyInfo</td>
<td>Gets owners, shared users, and the quorum authentication status of a key.</td>
<td>All. Login is not required.</td>
</tr>
<tr>
<td>info</td>
<td>Gets information about an HSM, including the IP address, host name, port, and current user.</td>
<td>All. Login is not required.</td>
</tr>
<tr>
<td>listUsers</td>
<td>Gets the users in each of the HSMs, their user type and ID, and other attributes.</td>
<td>All. Login is not required.</td>
</tr>
</tbody>
</table>
### Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>User Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>setAttribute</code> (p. 95)</td>
<td>Changes the values of the label, encrypt, decrypt, wrap, and unwrap attributes of an existing key.</td>
<td>CU</td>
</tr>
<tr>
<td><code>shareKey</code> (p. 98)</td>
<td>Shares an existing key with other users.</td>
<td>CU</td>
</tr>
</tbody>
</table>

#### `changePswd`

The `changePswd` command in `cloudhsm_mgmt_util` changes the password of an existing user on the HSMs in the cluster.

Any user can change their own password. Crypto officers (COs and PCOs) can also change the password of any other user. You do not need to enter the current password to make the change. However, you cannot change the password of a user who is logged into the AWS CloudHSM client or key_mgmt_util.

Before you run any `cloudhsm_mgmt_util` command, you must start `cloudhsm_mgmt_util` (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

#### User Type

The following types of users can run this command.

- All users.

#### Syntax

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
changePswd <user-type> <user-name> <password>
```

#### Examples

These examples show how to use `changePassword` to create new users in your HSMs.

**Example : Change your password**

Any user on the HSMs can change use `changePswd` to change their own password.

The first command uses `info` (p. 92) to get the current user. The output shows that the current user, `bob`, is a crypto user (CU).

```
aws-cloudhsm> info server 0
Id  Name            Hostname       Port  State       Partition
LoginState
```
To change his password, bob runs `changePswd` with a new password, `newPassword`.

When the command completes, the password change is effective.

```bash
aws-cloudhsm> createUser CU bob newPassword
```

Example: Change the password of another user

This example shows how to change password of a different user. Any crypto officer (CO, PCO) can change the password of any user on the HSMs without specifying the existing password.

The first command uses `info` to confirm that `alice`, a CO, is logged into the HSMs in the cluster.

```bash
aws-cloudhsm> info server 0
```

```
<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Hostname</th>
<th>Port</th>
<th>State</th>
<th>Partition</th>
</tr>
</thead>
</table>
| 0  | 10.0.3.10       | 10.0.3.10        | 2225   | Connected       | hsm-aaaabbbccc Logged in
|    | as 'alice(CO)'  |                  |        |                 |           |
```

This command uses `changePswd` to change the password of `officer1`, another CO on the HSMs. In this case, the command resets the password to `defaultPassword`, the password that this fictitious enterprise uses as its default. Later, `officer1` can reset their password to a more secure value.

```bash
aws-cloudhsm> changePswd CO officer1 defaultPassword
```

```
<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Hostname</th>
<th>Port</th>
<th>State</th>
<th>Partition</th>
</tr>
</thead>
</table>
| 0  | 10.0.3.10       | 10.0.3.10        | 2225   | Connected        | hsm-cccaaaabbb Logged in
|    | as 'officer1(CO)' |                |        |                  |           |
```
Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
changePswd  <user-type>  <user-name>  <password>  [1FA | 2FA]
```

**<user-type>**

Specifies the current type of the user whose password you are changing. You cannot use `changePswd` to change the user type.

Valid values are `CO`, `CU`, `AU`, `PCO`, and `PRECO`.

To get the user type, use `listUsers` (p. 94). For detailed information about the user types on an HSM, see HSM Users (p. 10).

Required: Yes

**<user-name>**

Specifies the user’s friendly name. This parameter is not case-sensitive. You cannot use `changePswd` to change the user name.

Required: Yes

**<password>**

Specifies a new password for the user. Enter a string of 7 to 32 characters. This value is case sensitive. The password appears in plaintext when you type it.

Required: Yes

**1FA | 2FA**

Enables or disables dual-factor authentication for the new user. Enter `1FA` or `2FA`.

This parameter is valid only when the cluster has been configured for dual-factor authentication.

Required: No

Default: `1FA`. Dual factor authentication is not enabled.

Related Topics

- `listUsers` (p. 94)
- `createUser` (p. 75)
- `deleteUser` (p. 79)
- `syncUser`

**createUser**

The `createUser` command in `cloudhsm_mgmt_util` creates a user on the HSMs. Only crypto officers (COs and PCOs) can run this command. When you create a user, you specify the user type (CO or CU), a user name, and a password. When the command succeeds, it creates the user in all HSMs in the cluster.

However, if your HSM configuration is inaccurate, the user might not be created on all HSMs. To add the user to any HSMs in which it is missing, use `syncUser` or `createUser` commands only on the HSMs that are missing that user. To prevent configuration errors, run the `configure` tool with the `-m` option.
Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

User Type

The following types of users can run this command.

- Crypto officers (CO, PCO)

Syntax

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

User Type: Crypto officer (CO, PCO)

createUser <user-type> <user-name> <password> [1FA | 2FA]

Examples

These examples show how to use createUser to create new users in your HSMs.

Example : Create a Crypto Officer

This example creates a crypto officer (CO) on the HSMs in a cluster. The first command uses loginHSM to log in to the HSM as a crypto officer.

aws-cloudhsm> loginHSM CO admin 735782961
loginHSM success on server 0(10.0.0.1)
loginHSM success on server 1(10.0.0.2)
loginHSM success on server 1(10.0.0.3)

The second command uses the createUser command to create alice, a new crypto officer on the HSM.

The caution message explains that the command creates users on all of the HSMs in the cluster. But, if the command fails on any HSMs, the user will not exist on those HSMs. To continue, type y.

The output shows that the new user was created on all three HSMs in the cluster.

aws-cloudhsm> createUser CO alice 391019314
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
****************************************************************
Do you want to continue(y/n)?Invalid option, please type 'y' or 'n'
Do you want to continue(y/n)?y
Creating User alice(CO) on 3 nodes

When the command completes, alice has the same permissions on the HSM as the admin CO user, including changing the password of any user on the HSMs.

The final command uses the listUsers (p. 94) command to verify that alice exists on all three HSMs on the cluster. The output also shows that alice is assigned user ID 3. You use the user ID to identify alice in other commands, such as findAllKeys (p. 81).

Example : Create a Crypto User

This example creates a crypto user (CU), bob, on the HSM. Crypto users can create and manage keys, but they cannot manage users.

After you type y to respond to the caution message, the output shows that bob was created on all three HSMs in the cluster. The new CU can log in to the HSM to create and manage keys.

The command used a password value of defaultPassword. Later, bob or any CO can use the changePswd (p. 73) command to change his password.
nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
****************************************************************
Do you want to continue(y/n)?Invalid option, please type 'y' or 'n'
Do you want to continue(y/n)?y
Creating User bob(CU) on 3 nodes

Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

createUser <user-type> <user-name> <password> [ 1FA | 2FA ]

<user-type>

Specifies the type of user. This parameter is required.

For detailed information about the user types on an HSM, see HSM Users (p. 10).

Valid values:

• **CO**: Crypto officers can manage users, but they cannot manage keys.

• **CU**: Crypto users can create and manage keys and use keys in cryptographic operations.

• **AU**: Appliance users can clone and synchronize operations. One AU is created for you on each HSM that you install.

PCO, PRECO, and preCO are also valid values, but they are rarely used. A PCO is functionally identical to a CO user. A PRECO user is a temporary type that is created automatically on each HSM. The PRECO is converted to a PCO when you assign a password during HSM activation (p. 34).

Required: Yes

$user-name$

Specifies a friendly name for the user. The maximum length is 31 characters. The only special character permitted is an underscore (_).

You cannot change the name of a user after it is created. In cloudhsm_mgmt_util commands, the user type and password are case-sensitive, but the user name is not.

Required: Yes

$<password>

Specifies a password for the user. Enter a string of 7 to 32 characters. This value is case-sensitive. The password appears in plaintext when you type it.

To change a user password, use changePswd. Any HSM user can change their own password, but CO users can change the password of any user (of any type) on the HSMs.

Required: Yes

$1FA | 2FA$

Enables or disables dual-factor authentication for the new user. Enter 1FA or 2FA.

This parameter is valid only when the cluster has been configured for dual-factor authentication.
Required: No
Default: 1FA: Dual factor authentication is not enabled.

Related Topics
- listUsers (p. 94)
- deleteUser (p. 79)
- syncUser
- changePswd (p. 73)

deleteUser

The **deleteUser** command in cloudhsm_mgmt_util deletes a user from the HSMs. Only crypto officers (COs and PCOs) can run this command, but any CO user can delete any user of any type from the HSMs. However, you cannot delete a user who is logged into the AWS CloudHSM client, key_mgmt_util, or cloudhsm_mgmt_util.

**Warning**
When you delete a crypto user (CU), all keys that the user owned are deleted, even if the keys were shared with other users. To make accidental or malicious deletion of users less likely, use quorum authentication (p. 59).

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

User Type

The following types of users can run this command.
- Crypto officers (CO, PCO)

Syntax

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
deleteUser <user-type> <user-name>
```

Example

This example deletes a crypto officer (CO) from the HSMs in a cluster. The first command uses `listUsers` to list all users on the HSMs.

The output shows that user 3, **alice**, is a CO on the HSMs.

```
aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:3
```
<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginFailureCnt</td>
<td>2FA</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>alice</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

The second command uses the **deleteUser** command to delete *alice* from the HSMs.

The output shows that the command succeeded on all three HSMs in the cluster.

aws-cloudhsm> **deleteUser CO alice**
Deleting user alice(CO) on 3 nodes
deleteUser success on server 0(10.0.0.1)
deleteUser success on server 0(10.0.0.2)
deleteUser success on server 0(10.0.0.3)

The final command uses the **listUsers** (p. 94) command to verify that *alice* is deleted from all three of the HSMs on the cluster.

aws-cloudhsm> **listUsers**
Users on server 0(10.0.0.1):
Number of users found:2

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginFailureCnt</td>
<td>2FA</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>alice</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Users on server 1(10.0.0.2):
Number of users found:2

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginFailureCnt</td>
<td>2FA</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>CO</td>
<td>alice</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Users on server 1(10.0.0.3):
Number of users found:2

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginFailureCnt</td>
<td>2FA</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

`deleteUser <user-type> <user-name>`

 `<user-type>`

Specifies the type of user. This parameter is required.

 **Warning**

When you delete a crypto user (CU), all keys that the user owned are deleted, even if the keys were shared with other users. To make accidental or malicious deletion of users less likely, use quorum authentication (p. 59).

Valid values are **CO**, **CU**, **AU**, **PCO**, and **PRECO**.

To get the user type, use `listUsers` (p. 94). For detailed information about the user types on an HSM, see HSM Users (p. 10).

Required: Yes

 `<user-name>`

Specifies a friendly name for the user. The maximum length is 31 characters. The only special character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In cloudhsm_mgmt_util commands, the user type and password are case-sensitive, but the user name is not.

Required: Yes

**Related Topics**

- `listUsers` (p. 94)
- `createUser` (p. 75)
- `syncUser`
- `changePswd` (p. 73)

**findAllKeys**

The `findAllKeys` command in cloudhsm_mgmt_util gets the keys that a specified crypto user (CU) owns or shares. It also returns a hash of the user data on each of the HSMs. You can use the hash to determine at a glance whether the users, key ownership, and key sharing data are the same on all HSMs in the cluster.
**findAllKeys** returns public keys only when the specified CU owns the key, even though all CUs on the HSM can use any public key. This behavior is different from **findKey** (p. 114) in key_mgmt_util, which returns public keys for all CU users.

Only crypto officers (COs and PCOs) and appliance users (AUs) can run this command. Crypto users (CUs) can run **listUsers** (p. 94) to find all users, **findKey** (p. 114) in key_mgmt_util to find the keys that they can use and **getKeyInfo** (p. 140) in key_mgmt_util to find the owner and shared users of a particular key they own or share.

Before you run any cloudhsm_mgmt_util command, you must **start cloudhsm_mgmt_util** (p. 70), **enable end-to-end encryption** (p. 70), and **log in** (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, **update the configuration files** (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

**User Type**

The following types of users can run this command.

- Crypto officers (CO, PCO)
- Appliance users (AU)

**Syntax**

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
findAllKeys <user id> <key hash (0/1)> [<output file>]
```

**Examples**

These examples show how to use **findAllKeys** to find all keys for a user and get a hash of key user information on each of the HSMs.

**Example : Find the Keys for a CU**

This example uses **findAllKeys** to find the keys in the HSMs that user 4 owns and shares. The command uses a value of 0 for the second argument to suppress the hash value. Because it omits the optional file name, the command writes to stdout.

The output shows that user 4 can use 6 keys: 8, 9, 17, 262162, 19, and 31. The output uses an (s) to indicate that keys 8, 9, and 262162 are explicitly shared, although it does not indicate whether user 4 owns or shares them. The keys that are not marked with (s) include symmetric and private keys that the user 4 owns and does not share, and public keys that are available to all crypto users.

```
aws-cloudhsm> findAllKey 4 0
Keys on server 0(10.0.0.1):
Number of keys found 6
number of keys matched from start index 0::6
8(s),9(s),17,262162(s),19,31
findAllKeys success on server 0(10.0.0.1)

Keys on server 1(10.0.0.2):
Number of keys found 6
number of keys matched from start index 0::6
```
Example: Verify That User Data is Synchronized

This example uses `findAllKeys` to verify that all of the HSMs in the cluster contain the same users, key ownership, and key sharing values. To do this, it gets a hash of the key user data on each HSM and compares the hash values.

To get the key hash, the command uses a value of 1 in the second argument. The optional file name is omitted, so the command writes the key hash to stdout.

The example specifies user 6, but the hash value will be the same for any user that owns or shares any of the keys on the HSMs. If the specified user does not own or share any keys, such as a CO, the command does not return a hash value.

The output shows that the key hash is identical both of the HSMs in the cluster. If one of the HSM had different users, different key owners, or different shared users, the key hash values would not be equal.

```
aws-cloudhsm> findAllKeys 6 1
Keys on server 0(10.0.0.1):
Number of keys found 3
number of keys matched from start index 0::3
8(s),9(s),11,17
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49
findAllKeys success on server 0(10.0.0.1)
Keys on server 1(10.0.0.2):
Number of keys found 3
number of keys matched from start index 0::3
8(s),9(s),11,17
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49
findAllKeys success on server 1(10.0.0.2)
```

This command demonstrates that the hash value represents the user data for all keys on the HSM. The command uses the `findAllKeys` for user 3. Unlike user 6, who owns or shares just 3 keys, user 3 own or shares 17 keys, but the key hash value is the same.

```
aws-cloudhsm> findAllKeys 3 1
Keys on server 0(10.0.0.1):
Number of keys found 17
number of keys matched from start index 0::17
6,7,8(s),11,12,14,262159,262160,17(s),262162(s),19(s),20,21,262177,262179,262180,262181
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49
findAllKeys success on server 0(10.0.0.1)
Keys on server 1(10.0.0.2):
Number of keys found 17
number of keys matched from start index 0::17
6,7,8(s),11,12,14,262159,262160,17(s),262162(s),19(s),20,21,262177,262179,262180,262181
Key Hash:
```

83
Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
 findAllKeys <user id> <key hash (0/1)> [<output file>]
```

**<user id>**

Gets all keys that the specified user owns or shares. Enter the user ID of a user on the HSMs. To find the user IDs of all users, use listUsers (p. 94).

All users ID are valid, but findAllKeys returns keys only for crypto users (CUs).

Required: Yes

**<key hash>**

Includes (1) or excludes (0) a hash of the user ownership and sharing data for all keys on each HSM.

When the user id argument represents a user who owns or shares keys, the key hash is populated. The key hash value is identical for all users who own or share keys on the HSM, even though they own and share different keys. However, when the user id represents a user who does not own or share any keys, such as a CO, the hash value is not populated.

Required: Yes

**<output file>**

Writes the output to the specified file.

Required: No

Default: Stdout

Related Topics

- changePswd (p. 73)
- deleteUser (p. 79)
- listUsers (p. 94)
- syncUser
- findKey (p. 114) in key_mgmt_util
- getKeyInfo (p. 140) in key_mgmt_util

**getAttribute**

The getAttribute command in cloudhsm_mgmt_util gets one attribute value for a key from all HSMs in the cluster and writes it to stdout or to a file. Only crypto users (CUs) can run this command.

*Key attributes* are properties of a key. They include characteristics, like the key type, class, label, and ID, and values that represent actions that you can perform on the key, like encrypt, decrypt, wrap, sign, and verify.
You can use `getAttribute` only on keys that you own and key that are shared with you. You can run this command or the `getAttribute` (p. 84) command in key_mgmt_util, which writes one or all of the attribute values of a key to a file.

To get a list of attributes and the constants that represent them, use the `listAttributes` (p. 149) command. To change the attribute values of existing keys, use `setAttribute` (p. 151) in key_mgmt_util and `setAttribute` (p. 95) in cloudhsm_mgmt_util. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

**User Type**

The following types of users can run this command.

- Crypto users (CU)

**Syntax**

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

**User Type:** Crypto user (CU)

```
getAttribute <key handle> <attribute id> [<filename>]
```

**Example**

This example gets the value of the extractable attribute for a key in the HSMs. You can use a command like this to determine whether you can export a key from the HSMs.

The first command uses `listAttributes` to find the constant that represents the extractable attribute. The output shows that the constant for `OBJ_ATTR_EXTRACTABLE` is 354. You can also find this information, with descriptions of the attributes and their values, in the Key Attribute Reference (p. 157).

```
aws-cloudhsm> listAttributes
Following are the possible attribute values for getAttributes:

    OBJ_ATTR_CLASS                  = 0
    OBJ_ATTR_TOKEN                  = 1
    OBJ_ATTR_PRIVATE                = 2
    OBJ_ATTR_LABEL                  = 3
    OBJ_ATTR_KEY_TYPE               = 256
    OBJ_ATTR_ENCRYPT                = 260
    OBJ_ATTR_DECRYPT                = 261
    OBJ_ATTR_WRAP                   = 262
    OBJ_ATTR_UNWRAP                 = 263
    OBJ_ATTR_SIGN                   = 264
    OBJ_ATTR_VERIFY                 = 266
    OBJ_ATTR_LOCAL                  = 355
    OBJ_ATTR_MODULUS                = 288
```
OBJ_ATTR_MODULUS_BITS = 289
OBJ_ATTR_PUBLIC_EXPONENT = 290
OBJ_ATTR_VALUE_LEN = 353
OBJ_ATTR_EXTRACTABLE = 354
OBJ_ATTR_KCV = 371

The second command uses `getAttribute` to get the value of the extractable attribute for the key with key handle 262170 in the HSMs. To specify the extractable attribute, the command uses 354, the constant that represents the attribute. Because the command does not specify a file name, `getAttribute` writes the output to stdout.

The output shows that the value of the extractable attribute is 1 on all of the HSM. This value indicates that the owner of the key can export it. When the value is 0 (0x0), it cannot be exported from the HSMs. You set the value of the extractable attribute when you create a key, but you cannot change it.

```bash
aws-cloudhsm> getAttribute 262170 354
```

```
Attribute Value on server 0(10.0.1.10):
OBJ_ATTR_EXTRACTABLE
0x00000001

Attribute Value on server 1(10.0.1.12):
OBJ_ATTR_EXTRACTABLE
0x00000001

Attribute Value on server 2(10.0.1.7):
OBJ_ATTR_EXTRACTABLE
0x00000001
```

### Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
getAttribute <key handle> <attribute id> [<filename>]
```

**<key-handle>**

Specifies the key handle of the target key. You can specify only one key in each command. To get the key handle of a key, use `findKey (p. 114)` in `key_mgmt_util`

You must own the specified key or it must be shared with you. To find the users of a key, use `getKeyInfo (p. 140)` in `key_mgmt_util`

Required: Yes

**<attribute id>**

Identifies the attribute. Enter a constant that represents an attribute, or 512, which represents all attributes. For example, to get the key type, type 256, which is the constant for the `OBJ_ATTR_KEY_TYPE` attribute.

To list the attributes and their constants, use `listAttributes (p. 149)`. For help interpreting the key attributes, see the `Key Attribute Reference (p. 157)`

Required: Yes

**<filename>**

Writes the output to the specified file. Type a file path.

If the specified file exists, `getAttribute` overwrites the file without warning.
getHSMInfo

The `getHSMInfo` command in cloudhsm_mgmt_util gets information about the hardware on which each HSM runs, including the model, serial number, FIPS state, memory, temperature, and the version numbers of the hardware and firmware. The information also includes the server ID that cloudhsm_mgmt_util uses to refer to the HSM.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

User Type

The following types of users can run this command.

- All users. You do not have to be logged in to run this command.

Syntax

This command has no parameters.

```
getHSMInfo
```

Example

This example uses `getHSMInfo` to get information about the HSMs in the cluster.

```
aws-cloudhsm> getHSMInfo
Getting HSM Info on 3 nodes
*** Server 0 HSM Info ***
Label                :cavium
Model                :NITROX-III CNN35XX-NFBE
Serial Number        :3.0A0101-ICM000001
HSM Flags            :0
FIPS state           :2 [FIPS mode with single factor authentication]
Manufacturer ID      :
```
Device ID            :10
Class Code           :100000
System vendor ID     :177D
SubSystem ID         :10

TotalPublicMemory    :560596
FreePublicMemory     :294568
TotalPrivateMemory   :0
FreePrivateMemory    :0

Hardware Major       :3
Hardware Minor       :0
Firmware Major       :2
Firmware Minor       :03
Temperature          :56 C
Build Number         :13
Firmware ID          :xxxxxxxxxxxxxxxxx

Related Topics

• info (p. 92)
• loginHSM

getKeyInfo

The getKeyInfo command in the key_mgmt_util returns the HSM user IDs of users who can use the key, including the owner and crypto users (CU) with whom the key is shared. When quorum authentication is enabled on a key, getKeyInfo also returns the number of users who must approve cryptographic operations that use the key. You can run getKeyInfo only on keys that you own and keys that are shared with you.

When you run getKeyInfo on public keys, getKeyInfo returns only the key owner, even though all users of the HSM can use the public key. To find the HSM user IDs of users in your HSMs, use listUsers (p. 150). To find the keys for a particular user, use findKey (p. 114) -u in key_mgmt_util. Crypto officers can use findAllKeys (p. 81) in cloudhsm_mgmt_util.

You own the keys that you create. You can share a key with other users when you create it. Then, to share or unshare an existing key, use shareKey (p. 98) in cloudhsm_mgmt_util.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

User Type

The following types of users can run this command.

• Crypto users (CU)
Syntax

getKeyInfo -k <key-handle> <output_file>

Examples

These examples show how to use `getKeyInfo` to get information about the users of a key.

**Example : Get the Users for an Asymmetric Key**

This command gets the users who can use the AES (asymmetric) key with key handle 262162. The output shows that user 3 owns the key and has shared it with users 4 and 6.

Only users 3, 4, and 6 can run `getKeyInfo` on key 262162.

```
aws-cloudhsm>getKeyInfo 262162
Key Info on server 0(10.0.0.1):
    Token/Flash Key,
    Owned by user 3
    also, shared to following 2 user(s):
        4
        6
Key Info on server 1(10.0.0.2):
    Token/Flash Key,
    Owned by user 3
    also, shared to following 2 user(s):
        4
        6
```

**Example : Get the Users for a Symmetric Key Pair**

These commands use `getKeyInfo` to get the users who can use the keys in an **ECC (symmetric) key pair** (p. 132). The public key has key handle 262179. The private key has key handle 262177.

When you run `getKeyInfo` on the private key (262177), it returns the key owner (3) and crypto users (CUs) 4, with whom the key is shared.

```
aws-cloudhsm>getKeyInfo -k 262177
Key Info on server 0(10.0.0.1):
    Token/Flash Key,
    Owned by user 3
    also, shared to following 1 user(s):
        4
Key Info on server 1(10.0.0.2):
    Token/Flash Key,
    Owned by user 3
```
When you run `getKeyInfo` on the public key (262179), it returns only the key owner, user 3.

```
aws-cloudhsm>getKeyInfo -k 262179
Key Info on server 0(10.0.3.10):
  Token/Flash Key,
  Owned by user 3
Key Info on server 1(10.0.3.6):
  Token/Flash Key,
  Owned by user 3
```

To confirm that user 4 can use the public key (and all public keys on the HSM), use the `-u` parameter of `findKey (p. 114)` in key_mgmt_util.

The output shows that user 4 can use both the public (262179) and private (262177) key in the key pair. User 4 can also use all other public keys and any private keys that they have created or that have been shared with them.

```
Command: findKey -u 4
Total number of keys present 8
  number of keys matched from start index 0::7
  11, 12, 262159, 262161, 262162, 19, 20, 21, 262177, 262179
  Cluster Error Status
  Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
  Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
```

Example : Get the Quorum Authentication Value (m_value) for a Key

This example shows how to get the `m_value` for a key. The `m_value` is the number of users in the quorum who must approve any cryptographic operations that use the key and operations to share the unshare the key.

When quorum authentication is enabled on a key, a quorum of users must approve any cryptographic operations that use the key. To enable quorum authentication and set the quorum size, use the `m_value` parameter when you create the key.

This command uses `genSymKey (p. 132)` to create a 256-bit AES key that is shared with user 4. It uses the `m_value` parameter to enable quorum authentication and set the quorum size to two users. The number of users must be large enough to provide the required approvals.

The output shows that the command created key 10.

```
Command: genSymKey -t 31 -s 32 -l aes256m2 -u 4 -m_value 2
  Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
  Symmetric Key Created. Key Handle: 10
```
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

This command uses `getKeyInfo` in cloudhsm_mgmt_util to get information about the users of key 10. The output shows that the key is owned by user 3 and shared with user 4. It also shows that a quorum of two users must approve every cryptographic operation that uses the key.

```aws-cloudhsm>getKeyInfo 10
```

Key Info on server 0(10.0.0.1):

- Token/Flash Key,
- Owned by user 3
- also, shared to following 1 user(s):

  4
  2 Users need to approve to use/manage this key

Key Info on server 1(10.0.0.2):

- Token/Flash Key,
- Owned by user 3
- also, shared to following 1 user(s):

  4
  2 Users need to approve to use/manage this key

Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```getKeyInfo -k <key-handle> <output file>
```

**<key-handle>**

- Specifies the key handle of one key in the HSM. Enter the key handle of a key that you own or share. This parameter is required.

  Required: Yes

**<output file>**

- Writes the output to the specified file, instead of stdout. If the file exists, the command overwrites it without warning.

  Required: No

  Default: stdout

Related Topics

- `getKeyInfo` (p. 140) in key_mgmt_util
- `findKey` (p. 114) in key_mgmt_util
- `findAllKeys` (p. 81) in cloudhsm_mgmt_util
info

The info command in cloudhsm_mgmt_util gets information about each of the HSMs in the cluster, including the host name, port, IP address and the name and type of the user who is logged in to cloudhsm_mgmt_util on the HSM.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

User Type

The following types of users can run this command.

- All users. You do not have to be logged in to run this command.

Syntax

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
info server <server ID>
```

Example

This example uses info to get information about an HSM in the cluster. The command uses 0 to refer to the first HSM in the cluster. The output shows the IP address, port, and the type and names of the current user.

```
aws-cloudhsm> info server 0
Id       Name   Hostname   Port   State   Partition
0        10.0.0.1 10.0.0.1 2225   Connected hsm-udw0tkf glor
Logged in as 'testuser(CU)'
```

Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```
info server <server ID>
```

<server id>

Specifies the server ID of the HSM. The HSMs are assigned ordinal numbers that represent the order in which they are added to the cluster, beginning with 0. To find the server ID of an HSM, use getHSMInfo.
Related Topics

- getHSMInfo (p. 87)
- loginHSM

listAttributes

The listAttributes command in cloudhsm_mgmt_util lists the attributes of an AWS CloudHSM key and the constants that represent them. You use these constants to identify the attributes in getAttribute (p. 84) and setAttribute (p. 95) commands.

For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

User Type

The following types of users can run this command.

- All users. You do not have to be logged in to run this command.

Syntax

listAttributes [-h]

Example

This command lists the key attributes that you can get and change in key_mgmt_util and the constants that represent them. For help interpreting the key attributes, see the Key Attribute Reference (p. 157). To represent all attributes, use 512.

Command: listAttributes

Description

The following are all of the possible attribute values for getAttributes.

```
OBJ_ATTR_CLASS = 0
OBJ_ATTR_TOKEN = 1
OBJ_ATTR_PRIVATE = 2
OBJ_ATTR_LABEL = 3
OBJ_ATTR_KEY_TYPE = 256
OBJ_ATTR_ID = 258
OBJ_ATTR_SENSITIVE = 259
OBJ_ATTR_ENCRYPT = 260
OBJ_ATTR_DECRYPT = 261
OBJ_ATTR_WRAP = 262
OBJ_ATTR_UNWRAP = 263
OBJ_ATTR_SIGN = 264
OBJ_ATTR_VERIFY = 266
OBJ_ATTR_LOCAL = 355
OBJ_ATTR_MODULUS = 288
OBJ_ATTR_MODULUS_BITS = 289
```
Parameters

-h

Displays help for the command.

Required: Yes

Related Topics

- getAttribute (p. 84)
- setAttribute (p. 95)
- Key Attribute Reference (p. 157)

listUsers

The listUsers command in the cloudhsm_mgmt_util gets the users in each of the HSMs, along with their
user type and other attributes. All types of users can run this command. You do not even need to be
logged in to cloudhsm_mgmt_util to run this command.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70),
enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of
the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and
the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in
the cluster.

User Type

The following types of users can run this command.

- All users. You do not need to be logged in to run this command.

Syntax

This command has no parameters.

```
listUsers
```

Example

This command lists the users on each of the HSMs in the cluster and displays their attributes. You can
use the User ID attribute to identify users in other commands, such as deleteUser, changePswd, and
findAllKeys.

The output shows that one of the users, officer2, exists only on the first HSM. To add that user to other
HSMs, use syncUser.
aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:6

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
<th>LoginFailureCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2FA</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CU</td>
<td>crypto_user1</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CU</td>
<td>crypto_user2</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CO</td>
<td>officer1</td>
<td>YES</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CO</td>
<td>officer2</td>
<td>NO</td>
<td>0</td>
</tr>
</tbody>
</table>

Users on server 1(10.0.0.2):
Number of users found:5

<table>
<thead>
<tr>
<th>User Id</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
<th>LoginFailureCnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2FA</td>
<td>PCO</td>
<td>admin</td>
<td>YES</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>AU</td>
<td>app_user</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CU</td>
<td>crypto_user1</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CU</td>
<td>crypto_user2</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>CO</td>
<td>officer1</td>
<td>YES</td>
<td>0</td>
</tr>
</tbody>
</table>

The output includes the following user attributes:

- **User ID**: Identifies the user in key_mgmt_util and cloudhsm_mgmt_util (p. 67) commands.
- **User type (p. 10)**: Determines the operations that the user can perform on the HSM.
- **User Name**: Displays the user-defined friendly name for the user.
- **MofnPubKey**: Indicates whether the user has registered a key pair for signing quorum authentication tokens (p. 54).
- **LoginFailureCnt**:
- **2FA**: Indicates that the user has enabled multi-factor authentication.

Related Topics

- listUsers (p. 150) in key_mgmt_util
- createUser (p. 75)
- deleteUser (p. 79)
- syncUser
- changePswd (p. 73)

**setAttribute**

The **setAttribute** command in cloudhsm_mgmt_util changes the value of the label, encrypt, decrypt, wrap, and unwrap attributes of a key in the HSMs. You can also use the **setAttribute (p. 151)** command
in `key_mgmt_util` to convert a session key to a persistent key. You can only change the attributes of keys that you own.

Before you run any `cloudhsm_mgmt_util` command, you must start `cloudhsm_mgmt_util (p. 70)`, enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

**User Type**

The following types of users can run this command.

- Crypto users (CU)

**Syntax**

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

**User Type**: Crypto user (CU)

```plaintext
setAttribute <key handle> <attribute id>
```

**Example**

This example shows how to disable the decrypt functionality of a symmetric key. You can use a command like this one to configure a wrapping key, which should be able to wrap and unwrap other keys, but not to encrypt or decrypt data.

The first step is to create the wrapping key. This command uses `genSymKey (p. 132)` in `key_mgmt_util` to generate a 256-bit AES symmetric key. The output shows that the new key has key handle 14.

```
$ genSymKey -t 31 -s 32 -l aes256
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created.  Key Handle: 14
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

Next, we want to confirm the current value of the decrypt attribute. To get the attribute ID of the decrypt attribute, use `listAttributes (p. 93)`. The output shows that the constant that represents the `OBJ_ATTR_DECRYPT` attribute is 261. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

```
aws-cloudhsm> listAttributes
Following are the possible attribute values for getAttributes:

OBJ_ATTR_CLASS                  = 0
OBJ_ATTR_TOKEN                  = 1
OBJ_ATTR_PRIVATE                = 2
OBJ_ATTR_LABEL                  = 3
OBJ_ATTR_KEY_TYPE               = 256
```

96
OBJ_ATTR_ENCRYPT = 260
OBJ_ATTR_DECRYPT = 261
OBJ_ATTR_WRAP = 262
OBJ_ATTR_UNWRAP = 263
OBJ_ATTR_SIGN = 264
OBJ_ATTR_VERIFY = 266
OBJ_ATTR_LOCAL = 355
OBJ_ATTR_MODULUS = 288
OBJ_ATTR_MODULUS_BITS = 289
OBJ_ATTR_PUBLIC_EXPONENT = 290
OBJ_ATTR_VALUE_LEN = 353
OBJ_ATTR_EXTRACTABLE = 354
OBJ_ATTR_KCV = 371

To get the current value of the decrypt attribute for key 14, the next command uses `getAttribute` in `cloudhsm_mgmt_util`.

The output shows that the value of the decrypt attribute is true (1) on both HSMs in the cluster.

```
aws-cloudhsm> getAttribute 14 261
Attribute Value on server 0(10.0.0.1):
OBJ_ATTR_DECRYPT
0x00000001

Attribute Value on server 1(10.0.0.2):
OBJ_ATTR_DECRYPT
0x00000001
```

This command uses `setAttribute` to change the value of the decrypt attribute (attribute 261) of key 14 to 0. This will disable the decrypt functionality on the key.

The output shows that the command succeeded on both HSMs in the cluster.

```
aws-cloudhsm> setAttribute 14 261 0
****************************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
setAttribute success on server 0(10.0.0.1)
setAttribute success on server 1(10.0.0.2)
```

The final command repeats the `getAttribute` command. Again, it gets the decrypt attribute (attribute 261) of key 14.

This time, the output shows that the value of the decrypt attribute is false (0) on both HSMs in the cluster.

```
aws-cloudhsm> getAttribute 14 261
Attribute Value on server 0(10.0.3.6):
OBJ_ATTR_DECRYPT
0x00000000

Attribute Value on server 1(10.0.1.7):
OBJ_ATTR_DECRYPT
0x00000000
```
Arguments

setAttribute <key handle> <attribute id>

**<key handle>**

Specifies the key handle of a key that you own. You can specify only one key in each command. To get the key handle of a key, use findKey (p. 114) in key_mgmt_util. To find the users of a key, use getKeyInfo (p. 88).

Required: Yes

**<attribute id>**

Specifies the constant that represents the attribute that you want to change. You can specify only one attribute in each command. To get the attributes and their integer values, use listAttributes (p. 149). For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Valid values:
- 3: OBJ_ATTR_LABEL.
- 260: OBJ_ATTR_ENCRYPT.
- 261: OBJ_ATTR_DECRYPT.
- 262: OBJ_ATTR_WRAP.
- 263: OBJ_ATTR_UNWRAP.

Required: Yes

Related Topics

- setAttribute (p. 151) in key_mgmt_util
- getAttribute (p. 84)
- listAttributes (p. 93)
- Key Attribute Reference (p. 157)

shareKey

The shareKey command in cloudhsm_mgmt_util shares and unshares keys that you own with other crypto users. Only the key owner can share and unshare a key. You can also share a key when you create it.

Users who share the key can use the key in cryptographic operations, but they cannot delete, export, share, or unshare the key, or change its attributes. When quorum authentication is enabled on a key, the quorum must approve any operations that share or unshare the key.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util (p. 70), enable end-to-end encryption (p. 70), and log in (p. 70) to the HSM. Be sure that the user type of the account that you use to log in can run the commands you plan to use.

If you add or delete HSMs, update the configuration files (p. 68) that the AWS CloudHSM client and the command line tools use. Otherwise, the changes that you make might not be effective on all HSMs in the cluster.

**User Type**

The following types of users can run this command.
• Crypto users (CU)

Syntax

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

**User Type:** Crypto user (CU)

```
shareKey <key handle> <user id> <share/unshare key?> 1/0
```

**Example**

The following examples show how to use shareKey to share and unshare keys that you own with other crypto users.

**Example : Share a Key**

This example uses `shareKey` to share an **ECC private key (p. 132)** that the current user owns with another crypto user on the HSMs. Public keys are available to all users of the HSM, so you cannot share or unshare them.

The first command uses `getKeyInfo` (p. 88) to get the user information for key 262177, an ECC private key on the HSMs.

The output shows that key 262177 is owned by user 3, but is not shared.

```
aws-cloudhsm>getKeyInfo 262177

Key Info on server 0(10.0.3.10):
    Token/Flash Key,
    Owned by user 3

Key Info on server 1(10.0.3.6):
    Token/Flash Key,
    Owned by user 3
```

This example uses `shareKey` to share key 262177 with user 4, another crypto user on the HSMs. The final argument uses a value of 1 to indicate a share operation.

The output shows that the operation succeeded on both HSMs in the cluster.

```
aws-cloudhsm>shareKey 262177 4 1

*******************************************************************************************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
*******************************************************************************************************

Do you want to continue(y/n)? y

shareKey success on server 0(10.0.3.10)
shareKey success on server 1(10.0.3.6)
```

To verify that the operation succeeded, the example repeats the first `getKeyInfo` command.
The output shows that key 262177 is now shared with user 4.

```plaintext
aws-cloudhsm>getKeyInfo 262177

Key Info on server 0(10.0.3.10):
    Token/Flash Key,
    Owned by user 3
    also, shared to following 1 user(s):
        4

Key Info on server 1(10.0.3.6):
    Token/Flash Key,
    Owned by user 3
    also, shared to following 1 user(s):
        4
```

Example: Unshare a Key

This example unshares a symmetric key, that is, it removes a crypto user from the list of shared users for the key.

This command uses `shareKey` to remove user 4 from the list of shared users for key 6. The final argument uses a value of 0 to indicate an unshare operation.

The output shows that the command succeeded on both HSMs. As a result, user 4 can no longer use key 6 in cryptographic operations.

```plaintext
aws-cloudhsm>shareKey 6 4 0

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the cluster. Cav server does NOT synchronize these changes with the nodes on which this operation is not executed or failed, please ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
shareKey success on server 0(10.0.3.10)
shareKey success on server 1(10.0.3.6)
```

Arguments

Because this command does not have named parameters, you must enter the arguments in the order specified in the syntax diagram.

```plaintext
shareKey  <key handle>  <user id>  <(share/unshare key?) 1/0>
```

**<key-handle>**

Specifies the key handle of a key that you own. You can specify only one key in each command. To get the key handle of a key, use `findKey` (p. 114) in key_mgmt_util. To verify that you own a key, use `getKeyInfo` (p. 88).

Required: Yes
<user id>

Specifies the user ID the crypto user (CU) with whom you are sharing or unsharing the key. To find the user ID of a user, use listUsers (p. 94).

Required: Yes

<share 1 or unshare 0>

To share the key with the specified user, type 1. To unshare the key, that is, to remove the specified user from the list of shared users for the key, type 0.

Required: Yes

Related Topics

• getKeyInfo (p. 88)

key_mgmt_util

The key_mgmt_util command line tool helps Crypto Users (CU) manage keys in the HSMs. It includes multiple commands that generate, delete, import, and export keys, get and set attributes, find keys, and perform cryptographic operations.

For a quick start, see Getting Started with key_mgmt_util (p. 101). For detailed information about the commands, see key_mgmt_util Command Reference (p. 103). For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

To use key_mgmt_util if you are using Linux, connect to your client instance and then see Install and Configure the AWS CloudHSM Client (Linux) (p. 32). If you are using Windows, see Install and Configure the AWS CloudHSM Client (Windows) (p. 33).

Topics

• Getting Started with key_mgmt_util (p. 101)
• key_mgmt_util Command Reference (p. 103)

Getting Started with key_mgmt_util

AWS CloudHSM includes two command line tools with the AWS CloudHSM client software (p. 32). The cloudhsm_mgmt_util (p. 71) tool includes commands to manage HSM users. The key_mgmt_util (p. 103) tool includes commands to manage keys. To get started with the key_mgmt_util command line tool, see the following topics.

Topics

• Set Up key_mgmt_util (p. 101)
• Basic Usage of key_mgmt_util (p. 102)

If you encounter an error message or unexpected outcome for a command, see the Troubleshooting AWS CloudHSM (p. 232) topics for help. For details about the key_mgmt_util commands, see key_mgmt_util Command Reference (p. 103).

Set Up key_mgmt_util

Complete the following setup before you use key_mgmt_util.
Start the AWS CloudHSM Client

Before you use key_mgmt_util, you must start the AWS CloudHSM client. The client is a daemon that establishes end-to-end encrypted communication with the HSMs in your cluster. The key_mgmt_util tool uses the client connection to communicate with the HSMs in your cluster. Without it, key_mgmt_util doesn't work.

To start the AWS CloudHSM client

Use the following command to start the AWS CloudHSM client.

**Amazon Linux**

```bash
$ sudo start cloudhsm-client
```

**Ubuntu**

```bash
$ sudo service cloudhsm-client start
```

**Windows**

```bash
c:\Program Files\Amazon\CloudHSM>cloudhsm_client.exe C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg
```

Start key_mgmt_util

After you start the AWS CloudHSM client, use the following command to start key_mgmt_util.

**Amazon Linux**

```bash
$ /opt/cloudhsm/bin/key_mgmt_util
```

**Ubuntu**

```bash
$ /opt/cloudhsm/bin/key_mgmt_util
```

**Windows**

```bash
c:\Program Files\Amazon\CloudHSM>key_mgmt_util.exe
```

The prompt changes to Command: when key_mgmt_util is running.

If the command fails, such as returning a Daemon socket connection error message, try updating your configuration file (p. 236).

Basic Usage of key_mgmt_util

See the following topics for the basic usage of the key_mgmt_util tool.

**Topics**

- Log In to the HSMs (p. 103)
Log In to the HSMs

Use the `loginHSM` command to log in to the HSMs. The following command logs in as a crypto user (CU) named `example_user`. The output indicates a successful login for all three HSMs in the cluster.

Command: `loginHSM -u CU -s example_user -p <password>`

Cfm3LoginHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

The following shows the syntax for the `loginHSM` command.

Command: `loginHSM -u <user type> -s <username> -p <password>`

Log Out from the HSMs

Use the `logoutHSM` command to log out from the HSMs.

Command: `logoutHSM`

Cfm3LogoutHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Stop key_mgmt_util

Use the `exit` command to stop key_mgmt_util.

Command: `exit`

key_mgmt_util Command Reference

The `key_mgmt_util` command line tool helps you to manage keys in the HSMs in your cluster, including creating, deleting, and finding keys and their attributes. It includes multiple commands, each of which is described in detail in this topic.

For a quick start, see Getting Started with key_mgmt_util (p. 101). For help interpreting the key attributes, see the Key Attribute Reference (p. 157). For information about the cloudhsm_mgmt_util command line tool, which includes commands to manage the HSM and users in your cluster, see cloudhsm_mgmt_util (p. 67).

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).
To list all key_mgmt_util commands, type:

Command: `help`

To get help for a particular key_mgmt_util command, type:

Command: `<command-name> -h`

To end your key_mgmt_util session, type:

Command: `exit`

The following topics describe commands in key_mgmt_util.

**Note**
Some commands in key_mgmt_util and cloudhsm_mgmt_util have the same names. However, the commands typically have different syntax, different output, and slightly different functionality.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aesWrapUnwrap</code> (p. 105)</td>
<td>Encrypts and decrypts the contents of a key in a file on disk.</td>
</tr>
<tr>
<td><code>deleteKey</code> (p. 107)</td>
<td>Deletes a key from the HSMs.</td>
</tr>
<tr>
<td><code>Error2String</code> (p. 109)</td>
<td>Gets the error that corresponds to a key_mgmt_util hexadecimal error code.</td>
</tr>
<tr>
<td><code>exSymKey</code> (p. 110)</td>
<td>Exports a plaintext copy of a symmetric key from the HSMs to a file on disk.</td>
</tr>
<tr>
<td><code>findKey</code> (p. 114)</td>
<td>Search for keys by key attribute value.</td>
</tr>
<tr>
<td><code>findSingleKey</code> (p. 118)</td>
<td>Verifies that a key exists on all HSMs in the cluster.</td>
</tr>
<tr>
<td><code>genDSAKeyPair</code> (p. 118)</td>
<td>Generates a Digital Signing Algorithm (DSA) key pair in your HSMs.</td>
</tr>
<tr>
<td><code>genECCKeyPair</code> (p. 123)</td>
<td>Generates an Elliptic Curve Cryptography (ECC) key pair in your HSMs.</td>
</tr>
<tr>
<td><code>genPBEKey</code> (p. 127)</td>
<td>(This command is not supported on the FIPS-validated HSMs.)</td>
</tr>
<tr>
<td><code>genRSAKeyPair</code> (p. 127)</td>
<td>Generates an RSA asymmetric key pair in your HSMs.</td>
</tr>
<tr>
<td><code>genSymKey</code> (p. 132)</td>
<td>Generates a symmetric key in your HSMs</td>
</tr>
<tr>
<td><code>getAttribute</code> (p. 137)</td>
<td>Gets the attribute values for an AWS CloudHSM key and writes them to a file.</td>
</tr>
<tr>
<td><code>getKeyInfo</code> (p. 140)</td>
<td>Gets the HSM user IDs of users who can use the key. If the key is quorum controlled, it gets the number of users in the quorum.</td>
</tr>
</tbody>
</table>
### Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>imSymKey</code> (p. 143)</td>
<td>Imports a plaintext copy of a symmetric key from a file into the HSM.</td>
</tr>
<tr>
<td><code>listAttributes</code> (p. 149)</td>
<td>Lists the attributes of an AWS CloudHSM key and the constants that represent them.</td>
</tr>
<tr>
<td><code>listUsers</code> (p. 150)</td>
<td>Gets the users in the HSMs, their user type and ID, and other attributes.</td>
</tr>
<tr>
<td><code>setAttribute</code> (p. 151)</td>
<td>Converts a session key to a persistent key.</td>
</tr>
<tr>
<td><code>unwrapKey</code> (p. 153)</td>
<td>Imports a wrapped (encrypted) key from a file into the HSMs.</td>
</tr>
<tr>
<td><code>wrapKey</code> (p. 156)</td>
<td>Exports an encrypted copy of a key from the HSM to a file on disk.</td>
</tr>
</tbody>
</table>

### aesWrapUnwrap

The `aesWrapUnwrap` command encrypts or decrypts the contents of a file on disk. This command is designed to wrap and unwrap encryption keys, but you can use it on any file that contains less than 4 KB (4096 bytes) of data.

`aesWrapUnwrap` uses AES Key Wrap. It uses an AES key on the HSM as the wrapping or unwrapping key. Then it writes the result to another file on disk.

Before you run any key_mgmt_util command, you must start `key_mgmt_util` and `login` to the HSM as a crypto user (CU).

#### Syntax

```
aesWrapUnwrap -h

aesWrapUnwrap -m <wrap-unwrap mode>  
  -f <file-to-wrap-unwrap>  
  -w <wrapping-key-handle>  
  [-i <wrapping-IV>]  
  [-out <output-file>]
```

#### Examples

These examples show how to use `aesWrapUnwrap` to encrypt and decrypt an encryption key in a file.

**Example : Wrap an Encryption Key**

This command uses `aesWrapUnwrap` to wrap a Triple DES symmetric key that was exported from the HSM in plaintext (p. 110) into the `3DES.key` file. You can use a similar command to wrap any key saved in a file.

The command uses the `-m` parameter with a value of 1 to indicate wrap mode. It uses the `-w` parameter to specify an AES key in the HSM (key handle 6) as the wrapping key. It writes the resulting wrapped key to the `3DES.key.wrapped` file.

The output shows that the command was successful and that the operation used the default IV, which is preferred.
Command:  

Command: `aesWrapUnwrap -f 3DES.key -w 6 -m 1 -out 3DES.key.wrapped`

Warning: IV (-i) is missing. 

0xA6A6A6A6A6A6A6A6 is considered as default IV

result data:
49 49 E2 D0 11 C1 97 22
17 43 BD E3 4E F4 12 75
8D C1 34 CF 26 10 3A 8D
6D 0A 7B D5 D3 E8 4D C2
79 09 08 61 94 68 51 B7

result written to file 3DES.key.wrapped

Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS

**Example : Unwrap an Encryption Key**

This example shows how to use `aesWrapUnwrap` to unwrap (decrypt) a wrapped (encrypted) key in a file. You might want to do an operation like this one before importing a key to the HSM. For example, if you try to use the `imSymKey (p. 143)` command to import an encrypted key, it returns an error because the encrypted key doesn't have the format that is required for a plaintext key of that type.

The command unwraps the key in the `3DES.key.wrapped` file and writes the plaintext to the `3DES.key.unwrapped` file. The command uses the `-m` parameter with a value of 0 to indicate unwrap mode. It uses the `-w` parameter to specify an AES key in the HSM (key handle 6) as the wrapping key. It writes the resulting wrapped key to the `3DES.key.unwrapped` file.

Command:  

Command: `aesWrapUnwrap -m 0 -f 3DES.key.wrapped -w 6 -out 3DES.key.unwrapped`

Warning: IV (-i) is missing. 

0xA6A6A6A6A6A6A6A6 is considered as default IV

result data:
14 90 D7 AD D6 E4 F5 FA
A1 95 6F 24 89 79 F3 EE
37 21 E6 54 1F 3B 8D 62

result written to file 3DES.key.unwrapped

Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

**Parameters**

-h

Displays help for the command.

Required: Yes

-m

Specifies the mode. To wrap (encrypt) the file content, type 1; to unwrap (decrypt) the file content, type 0.

Required: Yes

-f

Specifies the file to wrap. Enter a file that contains less than 4 KB (4096 bytes) of data. This operation is designed to wrap and unwrap encryption keys.

Required: Yes
-w

Specifies the wrapping key. Type the key handle of an AES key on the HSM. This parameter is required. To find key handles, use the findKey (p. 114) command.

To create a wrapping key, use genSymKey (p. 132) to create an AES key (type 31). To verify that a key can be used as a wrapping key, use getAttribute (p. 137) to get the value of the OBJ_ATTR_WRAP attribute, which is represented by constant 262.

**Note**
Key handle 4 represents an unsupported internal key. We recommend that you use an AES key that you create and manage as the wrapping key.

Required: Yes

-i

Specifies an alternate initial value (IV) for the algorithm. Use the default value unless you have a special condition that requires an alternative.

Default: 0xA6A6A6A6A6A6A6A6. The default value is defined in the AES Key Wrap algorithm specification.

Required: No

-out

Specifies an alternate name for the output file that contains the wrapped or unwrapped key. The default is wrapped_key (for wrap operations) and unwrapped_key (for unwrap operations) in the local directory.

If the file exists, the aesWrapUnwrap overwrites it without warning. If the command fails, aesWrapUnwrap creates an output file with no contents.

Default: For wrap: wrapped_key. For unwrap: unwrapped_key.

Required: No

**Related Topics**

- exSymKey (p. 110)
- imSymKey (p. 143)
- unWrapKey (p. 153)
- wrapKey (p. 156)

**deleteKey**

The deleteKey command in key_mgmt_util deletes a key from the HSM. You can only delete one key at a time. Deleting one key in a key pair has no effect on the other key in the pair.

Only the key owner can delete a key. Users who share the key can use it in cryptographic operations, but not delete it.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Syntax**

deleteKey -h
**deleteKey -k**

**Examples**

These examples show how to use `deleteKey` to delete keys from your HSMs.

**Example : Delete a Key**

This command deletes the key with key handle 6. When the command succeeds, `deleteKey` returns success messages from each HSM in the cluster.

**Command:** `deleteKey -k 6`

```
Cfm3DeleteKey returned: 0x00 : HSM Return: SUCCESS
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```

**Example : Delete a Key (Failure)**

When the command fails because no key has the specified key handle, `deleteKey` returns an invalid object handle error message.

**Command:** `deleteKey -k 252126`

```
Cfm3FindKey returned: 0xa8 : HSM Error: Invalid object handle is passed to this operation
Cluster Error Status
Node id 1 and err state 0x000000a8 : HSM Error: Invalid object handle is passed to this operation
Node id 2 and err state 0x000000a8 : HSM Error: Invalid object handle is passed to this operation
```

When the command fails because the current user is not the owner of the key, the command returns an access denied error.

**Command:** `deleteKey -k 262152`

```
Cfm3DeleteKey returned: 0xc6 : HSM Error: Key Access is denied.
```

**Parameters**

- `-h`
  
  Displays command line help for the command.  
  
  Required: Yes

- `-k`
  
  Specifies the key handle of the key to delete. To find the key handles of keys in the HSM, use `findKey` (p. 114).  
  
  Required: Yes
Error2String

The Error2String helper command in key_mgmt_util returns the error that corresponds to a key_mgmt_util hexadecimal error code. You can use this command when troubleshooting your commands and scripts.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

Syntax

```
Error2String -h
Error2String -r <response-code>
```

Examples

These examples show how to use Error2String to get the error string for a key_mgmt_util error code.

Example : Get an Error Description

This command gets the error description for the 0xdb error code. The description explains that an attempt to log in to key_mgmt_util failed because the user has the wrong user type. Only crypto users (CU) can log in to key_mgmt_util.

```
Command:   Error2String -r 0xdb

Error Code db maps to HSM Error: Invalid User Type.
```

Example : Find the Error Code

This example shows where to find the error code in a key_mgmt_util error. The error code, 0xc6, appears after the string: Cfm3command-name returned: .

In this example, getKeyInfo (p. 140) indicates that the current user (user 4) can use the key in cryptographic operations. Nevertheless, when the user tries to use deleteKey (p. 107) to delete the key, the command returns error code 0xc6.

```
Command:   deleteKey -k 262162

Cfm3DeleteKey returned: 0xc6 : HSM Error: Key Access is denied

Cluster Error Status
Command:   getKeyInfo -k 262162

Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS

Owned by user 3
also, shared to following 1 user(s):
```
If the `0xc6` error is reported to you, you can use an `Error2String` command like this one to look up the error. In this case, the `deleteKey` command failed with an access denied error because the key is shared with the current user but owned by a different user. Only key owners have permission to delete a key.

<table>
<thead>
<tr>
<th>Command:</th>
<th><code>Error2String -r 0xa8</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Code</td>
<td><code>c6</code> maps to HSM Error: Key Access is denied</td>
</tr>
</tbody>
</table>

**Parameters**

- `-h`
  
  Displays help for the command.
  
  Required: Yes

- `-r`
  
  Specifies a hexadecimal error code. The `0x` hexadecimal indicator is required.
  
  Required: Yes

**exSymKey**

The `exSymKey` command in the `key_mgmt_util` tool exports a plaintext copy of a symmetric key from the HSM and saves it in a file on disk. To export an encrypted (wrapped) copy of a key, use `wrapKey` (p. 156). To import a plaintext key, like the ones that `exSymKey` exports, use `imSymKey` (p. 143).

During the export process, `exSymKey` uses an AES key that you specify (the `wrapping key`) to wrap (encrypt) and then unwrap (decrypt) the key to be exported. However, the result of the export operation is a plaintext (unwrapped) key on disk.

Only the owner of a key, that is, the CU user who created the key, can export it. Users who share the key can use it in cryptographic operations, but they cannot export it.

The `exSymKey` operation copies the key material to a file that you specify, but it does not remove the key from the HSM, change its key attributes (p. 157), or prevent you from using the key in cryptographic operations. You can export the same key multiple times.

`exSymKey` exports only symmetric keys. To export public keys, use `exPubKey`. To export private keys, use `exportPrivateKey`.

Before you run any `key_mgmt_util` command, you must start `key_mgmt_util` (p. 102) and `login` (p. 103) to the HSM as a crypto user (CU).

**Syntax**

```
exSymKey -h
exSymKey -k <key-to-export>
    -w <wrapping-key>
    -out <key-file>
    [-m 4]
    [-wk <unwrapping-key-file>]
```
Examples

These examples show how to use `exSymKey` to export symmetric keys that you own from your HSMs.

Example: Export a 3DES Symmetric Key

This command exports a Triple DES (3DES) symmetric key (key handle 7). It uses an existing AES key (key handle 6) in the HSM as the wrapping key. Then it writes the plaintext of the 3DES key to the `3DES.key` file.

The output shows that key 7 (the 3DES key) was successfully wrapped and unwrapped, and then written to the `3DES.key` file.

**Warning**

Although the output says that a "Wrapped Symmetric Key" was written to the output file, the output file contains a plaintext (unwrapped) key.

```
Command: exSymKey -k 7 -w 6 -out 3DES.key
Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS
Wrapped Symmetric Key written to file "3DES.key"
```

Example: Exporting with Session-Only Wrapping Key

This example shows how to use a key that exists only in the session as the wrapping key. Because the key to be exported is wrapped, immediately unwrapped, and delivered as plaintext, there is no need to retain the wrapping key.

This series of commands exports an AES key with key handle 8 from the HSM. It uses an AES session key created especially for the purpose.

The first command uses `genSymKey` (p. 132) to create a 256-bit AES key. It uses the `-sess` parameter to create a key that exists only in the current session.

The output shows that the HSM creates key 262168.

```
Command: genSymKey -t 31 -s 32 -l AES-wrapping-key -sess
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created. Key Handle: 262168
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
```

Next, the example verifies that key 8, the key to be exported, is a symmetric key that is extractable. It also verifies that the wrapping key, key 262168, is an AES key that exists only in the session. You can use the `findKey` (p. 114) command, but this example exports the attributes of both keys to files and then uses `grep` to find the relevant attribute values in the file.

These commands use `getAttribute` with an `-a` value of 512 (all) to get all attributes for keys 8 and 262168. For information about the key attributes, see the section called "Key Attribute Reference" (p. 157).

```
getAttribute -o 8 -a 512 -out attributes/attr_8
getAttribute -o 262168 -a 512 -out attributes/attr_262168
```
These commands use `grep` to verify the attributes of the key to be exported (key 8) and the session-only wrapping key (key 262168).

```bash
// Verify that the key to be exported is a symmetric key.
$ grep -A 1 "OBJ_ATTR_CLASS" attributes/attr_8
OBJ_ATTR_CLASS 0x04

// Verify that the key to be exported is extractable.
$ grep -A 1 "OBJ_ATTR_KEY_TYPE" attributes/attr_8
OBJ_ATTR_EXTRACTABLE 0x00000001

// Verify that the wrapping key is an AES key
$ grep -A 1 "OBJ_ATTR_KEY_TYPE" attributes/attr_262168
OBJ_ATTR_KEY_TYPE 0x1f

// Verify that the wrapping key is a session key
$ grep -A 1 "OBJ_ATTR_TOKEN" attributes/attr_262168
OBJ_ATTR_TOKEN 0x00

// Verify that the wrapping key can be used for wrapping
$ grep -A 1 "OBJ_ATTR_WRAP" attributes/attr_262168
OBJ_ATTR_WRAP 0x00000001
```

Finally, we use an `exSymKey` command to export key 8 using the session key (key 262168) as the wrapping key.

When the session ends, key 262168 no longer exists.

```
Command: exSymKey -k 8 -w 262168 -out aes256_H8.key

Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "aes256_H8.key"
```

**Example: Use an External Unwrapping Key**

This example shows how to use an external unwrapping key to export a key from the HSM.

When you export a key from the HSM, you specify an AES key on the HSM to be the wrapping key. By default, that wrapping key is used to wrap and unwrap the key to be exported. However, you can use the `--wk` parameter to tell `exSymKey` to use an external key in a file on disk for unwrapping. When you do, the key specified by the `--w` parameter wraps the target key, and the key in the file specified by the `--wk` parameter unwraps the key.

Because the wrapping key must be an AES key, which is symmetric, the wrapping key in the HSM and unwrapping key on disk must be the same key material. To do this, you must import the wrapping key to the HSM or export the wrapping key from the HSM before the export operation.

This example creates a key outside of the HSM and imports it into the HSM. It uses the internal copy of the key to wrap a symmetric key that is being exported, and the copy of key in the file to unwrap it.

The first command uses OpenSSL to generate a 256-bit AES key. It saves the key to the `aes256-forImport.key` file. The OpenSSL command does not return any output, but you can use several
commands to confirm its success. This example uses the `wc` (wordcount) tool, which confirms that the file that contains 32 bytes of data.

```bash
$ openssl rand -out keys/aes256-forImport.key 32
$ wc keys/aes256-forImport.key
  0  2 32 keys/aes256-forImport.key
```

This command uses the `imSymKey` command to import the AES key from the `aes256-forImport.key` file to the HSM. When the command completes, the key exists in the HSM with key handle 262167 and in the `aes256-forImport.key` file.

```bash
Command:  imSymKey -f keys/aes256-forImport.key -t 31 -l aes256-imported -w 6
        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
        Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS
        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS
        Symmetric Key Unwrapped.  Key Handle: 262167
        Cluster Error Status
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

This command uses the key in an export operation. The command uses `exSymKey` to export key 21, a 192-bit AES key. To wrap the key, it uses key 262167, which is the copy that was imported into the HSM. To unwrap the key, it uses the same key material in the `aes256-forImport.key` file. When the command completes, key 21 is exported to the `aes192_H21.key` file.

```bash
Command:  exSymKey -k 21 -w 262167 -out aes192_H21.key -wk aes256-forImport.key
        Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
        Wrapped Symmetric Key written to file "aes192_H21.key"
```

### Parameters

- `-h`

  Displays help for the command.

  Required: Yes

- `-k`

  Specifies the key handle of the key to export. This parameter is required. Enter the key handle of a symmetric key that you own. This parameter is required. To find key handles, use the `findKey` (p. 114) command.

  To verify that a key can be exported, use the `getAttribute` (p. 137) command to get the value of the `OBJ_ATTR_EXTRACTABLE` attribute, which is represented by constant 354. Also, you can export only keys that you own. To find the owner of a key, use the `getKeyInfo` (p. 140) command.

  Required: Yes

- `-w`

  Specifies the key handle of the wrapping key. This parameter is required. To find key handles, use the `findKey` (p. 114) command.
A wrapping key is a key in the HSM that is used to encrypt (wrap) and then decrypt (unwrap) the key to be exported. Only AES keys can be used as wrapping keys.

You can use any AES key (of any size) as a wrapping key. Because the wrapping key wraps, and then immediately unwraps, the target key, you can use as session-only AES key as a wrapping key. To determine whether a key can be used as a wrapping key, use `getAttribute (p. 137)` to get the value of the `OBJ_ATTR_WRAP` attribute, which is represented by the constant 262. To create a wrapping key, use `genSymKey (p. 132)` to create an AES key (type 31).

If you use the `-wk` parameter to specify an external unwrapping key, the `-w` wrapping key is used to wrap, but not to unwrap, the key during export.

**Note**
Key 4 represents an unsupported internal key. We recommend that you use an AES key that you create and manage as the wrapping key.

Required: Yes

**-out**

Specifies the path and name of the output file. When the command succeeds, this file contains the exported key in plaintext. If the file already exists, the command overwrites it without warning.

Required: Yes

**-m**

Specifies the wrapping mechanism. The only valid value is 4, which represents the NIST_AES_WRAP mechanism.

Required: No

Default: 4

**-wk**

Use the AES key in the specified file to unwrap the key that is being exported. Enter the path and name of a file that contains a plaintext AES key.

When you include this parameter, `exSymKey` uses the key in the HSM that is specified by the `-w` parameter to wrap the key that is being exported and it uses the key in the `-wk` file to unwrap it. The `-w` and `-wk` parameter values must resolve to the same plaintext key.

Required: No

Default: Use the wrapping key on the HSM to unwrap.

**Related Topics**

- `genSymKey (p. 132)`
- `imSymKey (p. 143)`
- `wrapKey (p. 156)`

**findKey**

Use the `findKey` command in `key_mgmt_util` to search for keys by the values of the key attributes. When a key matches all the criteria that you set, `findKey` returns the key handle. With no parameters, `findKey` returns the key handles of all the keys that you can use in the HSM. To find the attribute values of a particular key, use `getAttribute (p. 137)`.
Like all key_mgmt_util commands, `findKey` is user specific. It returns only the keys that the current user can use in cryptographic operations. This includes keys that current user owns and keys that have been shared with the current user.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Syntax**

```
findKey -h
findKey [-c <key class>] [-t <key type>] [-l <key label>] [-id <key ID>] [-sess (0 | 1)] [-u <user-ids>] [-m <modulus>] [-kcv <key_check_value>]
```

**Examples**

These examples show how to use `findKey` to find and identify keys in your HSMs.

**Example : Find All Keys**

This command finds all keys for the current user in the HSM. The output includes keys that the user owns and shares, and all public keys in the HSMs.

To get the attributes of a key with a particular key handle, use `getAttribute` (p. 137). To determine whether the current user owns or shares a particular key, use `getKeyInfo` (p. 140) or `findAllKeys` (p. 81) in cloudhsm_mgmt_util.

```
Command: findKey
Total number of keys present 13
number of keys matched from start index 0::12
6, 7, 524296, 9, 262154, 262155, 262156, 262157, 262158, 262159, 262160, 262161, 262162
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
```

**Example : Find Keys by Type, User, and Session**

This command finds persistent AES keys that the current user and user 3 can use. (User 3 might be able to use other keys that the current user cannot see.)

```
Command: findKey -t 31 -sess 0 -u 3
```

**Example : Find Keys by Class and Label**

This command finds all public keys for the current user with the 2018-sept label.

```
Command: findKey -c 2 -l 2018-sept
```
Example: Find RSA Keys by Modulus

This command finds RSA keys (type 0) for the current user that were created by using the modulus in the m4.txt file.

Command: `findKey -t 0 -m m4.txt`

**Parameters**

- **-h**
  Displays help for the command.

  Required: Yes

- **-t**
  Finds keys of the specified type. Enter the constant that represents the key class. For example, to find 3DES keys, type `-t 21`.

  Valid values:
  - 0: RSA
  - 1: DSA
  - 3: EC
  - 16: GENERIC_SECRET
  - 18: RC4
  - 21: Triple DES (3DES)
  - 31: AES

  Required: No

- **-c**
  Finds keys in the specified class. Enter the constant that represents the key class. For example, to find public keys, type `-c 2`.

  Valid values for each key type:
  - 2: Public. This class contains the public keys of public–private key pairs.
  - 3: Private. This class contains the private keys of public–private key pairs.
  - 4: Secret. This class contains all symmetric keys.

  Required: No

- **-l**
  Finds keys with the specified label. Type the exact label. You cannot use wildcard characters or regular expressions in the `--label` value.

  Required: No

- **-id**
  Finds the key with the specified ID. Type the exact ID string. You cannot use wildcard characters or regular expressions in the `-id` value.

  Required: No

- **-sess**
  Finds keys by session status. To find keys that are valid only in the current session, type 1. To find persistent keys, type 0.
Required: No

-\text{u}

Finds keys the specified users and the current user share. Type a comma-separated list of HSM user IDs, such as \texttt{-u 3} or \texttt{-u 4,7}. To find the IDs of users on an HSM, use \texttt{listUsers (p. 150)}.

When you specify one user ID, \texttt{findKey} returns the keys for that user. When you specify multiple user IDs, \texttt{findKey} returns the keys that all the specified users can use.

Because \texttt{findKey} only returns keys that the current user can use, the \texttt{-u} results are always identical to or a subset of the current user’s keys. To get all keys that are owned by or shared with any user, crypto officers (COs) can use \texttt{findAllKeys (p. 81)} in cloudhsm_mgmt_util.

Required: No

-\text{m}

Finds keys that were created by using the RSA modulus in the specified file. Type the path to file that stores the modulus.

Required: No

-\text{kcv}

Finds keys with the specified key check value.

The \textit{key check value} (KCV) is an 8-byte hash or checksum of a key. The HSM calculates a KCV when it generates the key. You can also calculate a KCV outside of the HSM, such as after you export a key. You can then compare the KCV values to confirm the identity and integrity of the key. To get the KCV of a key, use \texttt{getAttribute (p. 137)}.

AWS CloudHSM uses the following standard method to generate a key check value:

- \textbf{Symmetric keys}: First 8 bytes of the result of encrypting 16 zero-filled bytes with the key.
- \textbf{Asymmetric key pairs}: First 8 bytes of the modulus hash.

Required: No

\section*{Output}

The \texttt{findKey} output lists the total number of matching keys and their key handles.

\begin{verbatim}
Command: findKey
Total number of keys present 10
number of keys matched from start index 0::9
6, 7, 8, 9, 10, 11, 262156, 262157, 262158, 262159

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
\end{verbatim}

\section*{Related Topics}

- \texttt{findSingleKey (p. 118)}
- \texttt{getKeyInfo (p. 140)}
- \texttt{getAttribute (p. 137)}
- \texttt{findAllKeys (p. 81)} in cloudhsm_mgmt_util
findSingleKey

The findSingleKey command in the key_mgmt_util tool verifies that a key exists on all HSMs in the cluster.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>findSingleKey -h</td>
<td>Displays help for the command. Required: Yes</td>
</tr>
<tr>
<td>findSingleKey -k &lt;key-handle&gt;</td>
<td>Specifies the key handle of one key in the HSM. This parameter is required. To find key handles, use the findKey (p. 150) command. Required: Yes</td>
</tr>
</tbody>
</table>

Example

Example

This command verifies that key 252136 exists on all three HSMs in the cluster.

Command: findSingleKey -k 252136
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

-h
Displays help for the command.
Required: Yes

-k
Specifies the key handle of one key in the HSM. This parameter is required.
To find key handles, use the findKey (p. 150) command.
Required: Yes

Related Topics

- findKey (p. 150)
- getKeyInfo (p. 150)
- getAttribute (p. 114)

genDSAKeyPair

The genDSAKeyPair command in the key_mgmt_util tool generates a Digital Signing Algorithm (DSA) key pair in your HSMs. You must specify the modulus length; the command generates the modulus value.
You can also assign an ID, share the key with other HSM users, create nonextractable keys, and create keys that expire when the session ends. When the command succeeds, it returns the key handles that the HSM assigns to the public and private keys. You can use the key handles to identify the keys to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Tip**

To find the attributes of a key that you have created, such as the type, length, label, and ID, use getAttribute (p. 137). To find the keys for a particular user, use getKeyInfo (p. 140). To find keys based on their attribute values, use findKey (p. 114).

**Syntax**

```
genDSAKeyPair -h
```

```
genDSAKeyPair -m <modulus length>
   -l <label>
   [-id <key ID>]
   [-min_srv <minimum number of servers>]
   [-m_value <0..8>]
   [-nex]
   [-sess]
   [-timeout <number of seconds>]
   [-u <user-ids>]
   [-attest]
```

**Examples**

These examples show how to use `genDSAKeyPair` to create a DSA key pair.

**Example : Create a DSA Key Pair**

This command creates a DSA key pair with a DSA label. The output shows that the key handle of the public key is 19 and the handle of the private key is 21.

```
Command: genDSAKeyPair -m 2048 -l DSA
```

Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS

Cfm3GenerateKeyPair: public key handle: 19 private key handle: 21

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

**Example : Create a Session-Only DSA Key Pair**

This command creates a DSA key pair that is valid only in the current session. The command assigns a unique ID of DSA_temp_pair in addition to the required (nonunique) label. You might want to create a key pair like this to sign and verify a session-only token. The output shows that the key handle of the public key is 12 and the handle of the private key is 14.

```
Command: genDSAKeyPair -m 2048 -l DSA-temp -id DSA_temp_pair -sess
```

Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS

Cfm3GenerateKeyPair: public key handle: 12 private key handle: 14

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

To confirm that the key pair exists only in the session, use the \textit{-sess} parameter of \texttt{findKey} (p. 114) with a value of 1 (true).

Command: \texttt{findKey -sess 1}

Total number of keys present 2

number of keys matched from start index 0::1

12, 14

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Example : Create a Shared, Nonextractable DSA Key Pair

This command creates a DSA key pair. The private key is shared with three other users, and it cannot be exported from the HSM. Public keys can be used by any user and can always be extracted.

Command: \texttt{genDSAKeyPair -m 2048 -l DSA -id DSA\_shared\_pair -nex -u 3,5,6}

\texttt{Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS}

\texttt{Cfm3GenerateKeyPair: public key handle: 11 private key handle: 19}

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Example : Create a Quorum-Controlled Key Pair

This command creates a DSA key pair with the label DSA-mV2. The command uses the \texttt{-u} parameter to share the private key with user 4 and 6. It uses the \texttt{-m\_value} parameter to require a quorum of at least two approvals for any cryptographic operations that use the private key. The command also uses the \texttt{-attest} parameter to verify the integrity of the firmware on which the key pair is generated.

The output shows that the command generates a public key with key handle 12 and a private key with key handle 17, and that the attestation check on the cluster firmware passed.

Command: \texttt{genDSAKeyPair -m 2048 -l DSA\_mV2 -m\_value 2 -u 4,6 -attest}

\texttt{Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS}

\texttt{Cfm3GenerateKeyPair: public key handle: 12 private key handle: 17}

\texttt{Attestation Check : [PASS]}

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

This command uses \texttt{getKeyInfo} (p. 140) on the private key (key handle 17). The output confirms that the key is owned by the current user (user 3) and that it is shared with users 4 and 6 (and no others). The output also shows that quorum authentication is enabled and the quorum size is two.
Command: `getKeyInfo -k 17`

Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS

Owned by user 3

also, shared to following 2 user(s):

4
6

2 Users need to approve to use/manage this key

## Parameters

- **-h**
  
  Displays help for the command.

  Required: Yes

- **-m**
  
  Specifies the length of the modulus in bits. The only valid value is 2048.

  Required: Yes

- **-l**
  
  Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys in the pair.

  You can use any phrase that helps you to identify the key. Because the label does not have to be unique, you can use it to group and categorize keys.

  Required: Yes

- **-id**
  
  Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The default is an empty string. The ID that you specify applies to both keys in the pair.

  Default: No ID value.

  Required: No

- **-min_srv**
  
  Specifies the minimum number of HSMs on which the key is synchronized before the value of the `-timeout` parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.

  AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of `min_srv` to less than the number of HSMs in the cluster and set a low timeout value. Note, however, that some requests might not generate a key.

  Default: 1

  Required: No

- **-m_value**
  
  Specifies the number of users who must approve any cryptographic operation that uses the private key in the pair. Type a value from 0 to 8.
This parameter establishes a quorum authentication requirement for the private key. The default value, 0, disables the quorum authentication feature for the key. When quorum authentication is enabled, the specified number of users must sign a token to approve cryptographic operations that use the private key, and operations that share or unshare the private key.

To find the m_value of a key, use `getKeyInfo (p. 140)`.

This parameter is valid only when the `-u` parameter in the command shares the key pair with enough users to satisfy the m_value requirement.

Default: 0
Required: No

-nex

Makes the private key nonextractable. The private key that is generated cannot be exported from the HSM (p. 52). Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.
Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use `setAttribute (p. 151)`.

Default: The key is persistent.
Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.
Required: No

-u

Shares the private key in the pair with the specified users. This parameter gives other HSM crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can be used by any user without sharing.

Type a comma-separated list of HSM user IDs, such as `-u 5,6`. Do not include the HSM user ID of the current user. To find HSM user IDs of CUs on the HSM, use `listUsers (p. 150)`. To share and unshare existing keys, use `shareKey`.

Default: Only the current user can use the private key.
Required: No
-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.

Default: No attestation check.

Required: No

Related Topics

- genRSAKeyPair (p. 127)
- genSymKey (p. 132)
- genECCKeyPair (p. 123)

**genECCKeyPair**

The `genECCKeyPair` command in the `key_mgmt_util` tool generates an Elliptic Curve Cryptography (ECC) key pair in your HSMs. You must specify the elliptic curve type and a label for the keys. You can also share the private key with other CU users, create non-extractable keys, quorum-controlled keys, and keys that expire when the session ends. When the command succeeds, it returns the key handles that the HSM assigns to the public and private ECC keys. You can use the key handles to identify the keys to other commands.

Before you run any `key_mgmt_util` command, you must start `key_mgmt_util` (p. 102) and `login` (p. 103) to the HSM as a crypto user (CU).

**Tip**

To find the attributes of a key that you have created, such as the type, length, label, and ID, use `getAttribute` (p. 137). To find the keys for a particular user, use `getKeyInfo` (p. 140). To find keys based on their attribute values, use `findKey` (p. 114).

**Syntax**

```
$ genECCKeyPair -h
$ genECCKeyPair -i <EC curve id>
   -l <label>
   [-id <key ID>]
   [-min_srv <minimum number of servers>]
   [-m_value <0..8>]
   [-nex]
   [-sess]
   [-timeout <number of seconds>]
   [-u <user-ids>]
   [-attest]
```

**Examples**

These examples show how to use `genECCKeyPair` to create ECC key pairs in your HSMs.

**Example: Create and Examine an ECC Key Pair**

This command creates an ECC key pair using an NID_sect571r1 elliptic curve and an ecc12 label. The output shows that the key handle of the private key is 262177 and the key handle of the public key is 262179. The label applies to both the public and private keys.
Command: **genECCKeyPair -i 12 -l ecc12**

```plaintext
Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS
Cfm3GenerateKeyPair: public key handle: 262179 private key handle: 262177
Cluster Error Status
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

After generating the key, you might want to examine its attributes. The next command uses `getAttribute (p. 137)` to write all of the attributes (represented by the constant 512) of the new ECC private key to the `attr_262177` file.

Command: **getAttribute -o 262177 -a 512 -out attr_262177**

```
got all attributes of size 529 attr cnt 19
Attributes dumped into attr_262177

Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS
```

This command gets the content of the `attr_262177` attribute file. The output shows that the key is an elliptic curve private key that can be used for signing, but not for encrypting, decrypting, wrapping, unwrapping, or verifying. The key is persistent and exportable.

```
$ cat attr_262177

OBJ_ATTR_CLASS
0x03
OBJ_ATTR_KEY_TYPE
0x03
OBJ_ATTR_TOKEN
0x01
OBJ_ATTR_PRIVATE
0x01
OBJ_ATTR_ENCRYPT
0x00
OBJ_ATTR_DECRYPT
0x00
OBJ_ATTR_WRAP
0x00
OBJ_ATTR_UNWRAP
0x00
OBJ_ATTR_SIGN
0x01
OBJ_ATTR_VERIFY
0x00
OBJ_ATTR_LOCAL
0x01
OBJ_ATTR_SENSITIVE
0x01
OBJ_ATTR_EXTRACTABLE
0x01
OBJ_ATTR_EXPORTABLE
0x01
OBJ_ATTR_LABEL
ecc2
OBJ_ATTR_ID
OBJ_ATTR_VALUE_LEN
0x0000008a
OBJ_ATTR_KCV
0xbbb32a
OBJ_ATTR_MODULUS
124
```
Example Using an Invalid EEC Curve

This command attempts to create an ECC key pair by using an NID_X9_62_prime192v1 curve. Because this elliptic curve is not valid for FIPS-mode HSMs, the command fails. The message reports that a server in the cluster is unavailable, but this does not typically indicate a problem with the HSMs in the cluster.

```
Command: genECCKeyPair -i 1 -l ecc1
Cfm3GenerateKeyPair returned: 0xb3 : HSM Error: This operation violates the current configured/FIPS policies
Cluster Error Status
Node id 0 and err state 0x30000085 : HSM CLUSTER ERROR: Server in cluster is unavailable
```

Parameters

-h

Displays help for the command.

Required: Yes

-i

Specifies the identifier for the elliptic curve. Enter an identifier (1 - 15).

Valid values:

- 1: NID_X9_62_prime192v1
- 2: NID_X9_62_prime256v1
- 3: NID_sect163k1
- 4: NID_sect163r2
- 5: NID_sect233k1
- 6: NID_sect233r1
- 7: NID_sect283k1
- 8: NID_sect283r1
- 9: NID_sect409k1
- 10: NID_sect409r1
- 11: NID_sect571k1
- 12: NID_sect571r1
- 13: NID_secp224r1
- 14: NID_secp384r1
- 15: NID_secp521r1

Required: Yes

-l

Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys in the pair.

You can use any phrase that helps you to identify the key. Because the label does not have to be unique, you can use it to group and categorize keys.
Required: Yes

- \texttt{id}

Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The default is an empty string. The ID that you specify applies to both keys in the pair.

Default: No ID value.

Required: No

- \texttt{min\_srv}

Specifies the minimum number of HSMs on which the key is synchronized before the value of the \texttt{-timeout} parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of \texttt{min\_srv} to less than the number of HSMs in the cluster and set a low \texttt{timeout} value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

- \texttt{m\_value}

Specifies the number of users who must approve any cryptographic operation that uses the private key in the pair. Type a value from 0 to 8.

This parameter establishes a quorum authentication requirement for the private key. The default value, 0, disables the quorum authentication feature for the key. When quorum authentication is enabled, the specified number of users must sign a token to approve cryptographic operations that use the private key, and operations that share or unshare the private key.

To find the \texttt{m\_value} of a key, use \texttt{getKeyInfo (p. 140)}.

This parameter is valid only when the \texttt{-u} parameter in the command shares the key pair with enough users to satisfy the \texttt{m\_value} requirement.

Default: 0

Required: No

- \texttt{nex}

Makes the private key nonextractable. The private key that is generated cannot be exported from the HSM (p. 52). Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.

Required: No

- \texttt{sess}

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use \texttt{setAttribute (p. 151)}.

Default: The key is persistent.
- **-timeout**

  Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the `min_srv` parameter.

  This parameter is valid only when the `min_srv` parameter is also used in the command.

  Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.

  Required: No

- **-u**

  Shares the private key in the pair with the specified users. This parameter gives other HSM crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can be used by any user without sharing.

  Type a comma-separated list of HSM user IDs, such as `-u 5,6`. Do not include the HSM user ID of the current user. To find HSM user IDs of CUs on the HSM, use `listUsers (p. 150)`. To share and unshare existing keys, use `shareKey`.

  Default: Only the current user can use the private key.

  Required: No

- **-attest**

  Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.

  Default: No attestation check.

  Required: No

### Related Topics

- `genSymKey (p. 132)`
- `genRSAKeyPair (p. 127)`
- `genDSAKeyPair (p. 118)`

#### genPBEKey

The `genPBEKey` command in the `key_mgmt_util` tool generates a Triple DES (3DES) symmetric key based on a password. This command is not supported on the FIPS-validated HSMs that AWS CloudHSM provides.

To create symmetric keys, use `genSymKey (p. 132)`. To create asymmetric key pairs, use `genRSAKeyPair (p. 127)`, `genDSAKeyPair (p. 118)`, or `genECCKeyPair (p. 123)`. 

#### genRSAKeyPair

The `genRSAKeyPair` command in the `key_mgmt_util` tool generates an RSA asymmetric key pair. You specify the key type, modulus length, and a public exponent. The command generates a modulus of the specified length and creates the key pair. You can assign an ID, share the key with other HSM users, create nonextractable keys and keys that expire when the session ends. When the command succeeds, it returns a key handle that the HSM assigns to the key. You can use the key handle to identify the key to other commands.
Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Tip**
To find the attributes of a key that you have created, such as the type, length, label, and ID, use `getAttribute` (p. 137). To find the keys for a particular user, use `getKeyInfo` (p. 140). To find keys based on their attribute values, use `findKey` (p. 114).

**Syntax**

```
genRSAKeyPair -h

genRSAKeyPair -m <modulus length>
  -e <public exponent>
  -l <label>
  [-id <key ID>]
  [-min_srv <minimum number of servers>]
  [-m_value <0..8>]
  [-nex]
  [-sess]
  [-timeout <number of seconds>]
  [-u <user-ids>]
  [-attest]
```

**Examples**

These examples show how to use `genRSAKeyPair` to create asymmetric key pairs in your HSMs.

**Example: Create and Examine an RSA Key Pair**

This command creates an RSA key pair with a 2048-bit modulus and an exponent of 65541. The output shows that the public key handle is 262159 and the private key handle is 262160.

```
Command: genRSAKeyPair -m 2048 -e 65541 -l rsa_test

Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS
Cfm3GenerateKeyPair: public key handle: 262159 private key handle: 262160
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

The next command uses `getAttribute` (p. 114) to get the attributes of the public key that we just created. It writes the output to the `attr_262159` file. It is followed by a `cat` command that gets the content of the attribute file. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

```
The resulting hexadecimal values confirm that it is a public key (OBJ_ATTR_CLASS 0x02) with a type of RSA (OBJ_ATTR_KEY_TYPE 0x00). You can use this public key to encrypt (OBJ_ATTR_ENCRYPT 0x01), but not to decrypt (OBJ_ATTR_DECRYPT 0x00) or wrap (OBJ_ATTR_WRAP 0x00). The results also include the key length (512, 0x200), the modulus, the modulus length (2048, 0x800), and the public exponent (65541, 0x10005).

```

```
Command: getAttribute -o 262159 -a 512 -out attr_262159

got all attributes of size 731 attr cnt 20
Attributes dumped into attr_262159 file

Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS
```

128
### Example: Generate a Shared RSA Key Pair

This command generates an RSA key pair and shares the private key with user 4, another CU on the HSM. The command uses the `m_value` parameter to require at least two approvals before the private key in the pair can be used in a cryptographic operation. When you use the `m_value` parameter, you must also use `-u` in the command and the `m_value` cannot exceed the total number of users (number of values in `-u` + owner).

**Command:**  
```bash
$ genRSAKeyPair -m 2048 -e 195193 -l rsa_mofn -id rsa_mv2 -u 4 -m_value 2
```

Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS

Cfm3GenerateKeyPair:    public key handle: 27    private key handle: 28

Cluster Error Status  
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Parameters

-h
Displays help for the command.
Required: Yes

-m
Specifies the length of the modulus in bits. The minimum value is 2048.
Required: Yes

-e
Specifies the public exponent. The value must be an odd number greater than or equal to 65537.
Required: Yes

-l
Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys in the pair.
You can use any phrase that helps you to identify the key. Because the label does not have to be unique, you can use it to group and categorize keys.
Required: Yes

-id
Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The default is an empty string. The ID that you specify applies to both keys in the pair.
Default: No ID value.
Required: No

-min_srv
Specifies the minimum number of HSMs on which the key is synchronized before the value of the -timeout parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.
AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of min_srv to less than the number of HSMs in the cluster and set a low timeout value. Note, however, that some requests might not generate a key.
Default: 1
Required: No

-m_value
Specifies the number of users who must approve any cryptographic operation that uses the private key in the pair. Type a value from 0 to 8.
This parameter establishes a quorum authentication requirement for the private key. The default value, 0, disables the quorum authentication feature for the key. When quorum authentication is enabled, the specified number of users must sign a token to approve cryptographic operations that use the private key, and operations that share or unshare the private key.
To find the m_value of a key, use getKeyInfo (p. 140).
This parameter is valid only when the -u parameter in the command shares the key pair with enough users to satisfy the m_value requirement.

Default: 0
Required: No

-nex

Makes the private key nonextractable. The private key that is generated cannot be exported from the HSM (p. 52). Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.
Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute (p. 151).

Default: The key is persistent.
Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.

Required: No

-u

Shares the private key in the pair with the specified users. This parameter gives other HSM crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can be used by any user without sharing.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID of the current user. To find HSM user IDs of CUs on the HSM, use listUsers (p. 150). To share and unshare existing keys, use shareKey.

Default: Only the current user can use the private key.
Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.

Default: No attestation check.
Required: No
Related Topics

- genSymKey (p. 132)
- createKeyPair
- genDSAKeyPair (p. 118)
- genECCKeyPair (p. 123)

**genSymKey**

The **genSymKey** command in the key_mgmt_util tool generates a symmetric key in your HSMs. You can specify the key type and size, assign an ID and label, and share the key with other HSM users. You can also create nonextractable keys and keys that expire when the session ends. When the command succeeds, it returns a key handle that the HSM assigns to the key. You can use the key handle to identify the key to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Tip**

To find the attributes of a key that you have created, such as the type, length, label, and ID, use getAttribute (p. 137). To find the keys for a particular user, use getKeyInfo (p. 140). To find keys based on their attribute values, use findKey (p. 114).

**Syntax**

```
genSymKey -h

Path: genSymKey -t <key-type> -s <key-size> -l <label> [-id <key-ID>] [-min_srv <minimum-number-of-servers>] [-m_value <0..8>] [-nex] [-sess] [-timeout <number-of-seconds>] [-u <user-ids>] [-attest]
```

**Examples**

These examples show how to use genSymKey to create symmetric keys in your HSMs.

**Example : Generate an AES Key**

This command creates a 256-bit AES key with an aes256 label. The output shows that the key handle of the new key is 6.

**Command:** `genSymKey -t 31 -s 32 -l aes256`

```
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created. Key Handle: 6
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```
Example: Create a Session Key

This command creates a nonextractable 192-bit AES key that is valid only in the current session. You might want to create a key like this to wrap (and then immediately unwrap) a key that is being exported.

Command: `genSymKey -t 31 -s 24 -l tmpAES -id wrap01 -nex -sess`

Example: Return Quickly

This command creates a generic 512-byte key with a label of `IT_test_key`. The command does not wait for the key to be synchronized to all HSMs in the cluster. Instead, it returns as soon as the key is created on any one HSM (`-min_srv 1`) or in 1 second (`-timeout 1`), whichever is shorter. If the key is not synchronized to the specified minimum number of HSMs before the timeout expires, it is not generated. You might want to use a command like this in a script that creates numerous keys, like the `for` loop in the following example.

Command: `genSymKey -t 16 -s 512 -l IT_test_key -min_srv 1 -timeout 1`

```bash
$ for i in {1..30};
  do /opt/cloudhsm/bin/key_mgmt_util Cfm3Util singlecmd loginHSM -u CU -s example_user -p example_pwd genSymKey -l aes -t 31 -s 32 -min_srv 1 -timeout 1;
  done;
```

Example: Create a Quorum Authorized Generic Key

This command creates a 2048-bit generic secret key with the label `generic-mV2`. The command uses the `-u` parameter to share the key with another CU, user 6. It uses the `-m_value` parameter to require a quorum of at least two approvals for any cryptographic operations that use the key. The command also uses the `-attest` parameter to verify the integrity of the firmware on which the key is generated.

The output shows that the command generated a key with key handle 9 and that the attestation check on the cluster firmware passed.

Command: `genSymKey -t 16 -s 2048 -l generic-mV2 -m_value 2 -u 6 -attest`

```
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS

Symmetric Key Created. Key Handle: 9

Attestation Check : [PASS]

Cluster Error Status
  Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

Example: Create and Examine a Key

This command creates a Triple DES key with a `3DES_shared` label and an ID of `IT-02`. The key can be used by the current user, and users 4 and 5. The command fails if the ID is not unique in the cluster or if the current user is user 4 or 5.

The output shows that the new key has key handle 7.

Command: `genSymKey -t 21 -s 24 -l 3DES_shared -id IT-02 -u 4,5`

```
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
```
Symmetric Key Created. Key Handle: 7

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

To verify that the new 3DES key is owned by the current user and shared with users 4 and 5, use `getKeyInfo (p. 140)`. The command uses the handle that was assigned to the new key (`Key Handle: 7`).

The output confirms that the key is owned by user 3 and shared with users 4 and 5.

```
Command:  getKeyInfo -k 7
          Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS
          Owned by user 3
          also, shared to following 2 user(s):
              4, 5
```

To confirm the other properties of the key, use `getAttribute (p. 137)`. The first command uses `getAttribute` to get all attributes (-a 512) of key handle 7 (-o 7). It writes them to the `attr_7` file. The second command uses `cat` to get the contents of the `attr_7` file.

This command confirms that key 7 is a 192-bit (OBJ_ATTR_VALUE_LEN 0x00000018 or 24-byte) 3DES (OBJ_ATTR_KEY_TYPE 0x15) symmetric key (OBJ_ATTR_CLASS 0x04) with a label of 3DES_shared (OBJ_ATTR_LABEL 3DES_shared) and an ID of IT_02 (OBJ_ATTR_ID IT-02). The key is persistent (OBJ_ATTR_TOKEN 0x01) and extractable (OBJ_ATTR_EXTRACTABLE 0x01) and can be used for encryption, decryption, and wrapping.

For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

```
Command:  getAttribute -o 7 -a 512 -attr_7
          got all attributes of size 444 attr cnt 17
          Attributes dumped into attr_7 file

          $ cat attr_7

          OBJ_ATTR_CLASS
          0x04
          OBJ_ATTR_KEY_TYPE
          0x15
          OBJ_ATTR_TOKEN
          0x01
          OBJ_ATTR_PRIVATE
          0x01
          OBJ_ATTR_ENCRYPT
          0x01
          OBJ_ATTR_DECRYPT
          0x01
          OBJ_ATTR_WRAP
          0x00
          OBJ_ATTR_UNWRAP
          0x00
          OBJ_ATTR_SIGN
          0x00
          OBJ_ATTR_VERIFY
```
Parameters

-h
Displays help for the command.
Required: Yes

-t
Specifies the type of the symmetric key. Enter the constant that represents the key type. For example, to create an AES key, type `-t 31`.
Valid values:
- 16: GENERIC_SECRET. A generic secret key is a byte array that does not conform to any particular standard, such as the requirements for an AES key.
- 18: RC4. RC4 keys are not valid on FIPS-mode HSMs
- 21: Triple DES (3DES).
- 31: AES
Required: Yes

-s
Specifies the key size in bytes. For example, to create a 192-bit key, type `24`.
Valid values for each key type:
- AES: 16 (128 bits), 24 (192 bits), 32 (256 bits)
- 3DES: 24 (192 bits)
- RC4: <256 (2048 bits)
- Generic Secret: <3584 (28672 bits)
Required: Yes

-l
Specifies a user-defined label for the key. Type a string.
You can use any phrase that helps you to identify the key. Because the label does not have to be unique, you can use it to group and categorize keys.
Required: Yes

-attest
Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.
-id

Specifies a user-defined identifier for the key. Type a string that is unique in the cluster. The default is an empty string.

Default: No ID value.
Required: No

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of the -timeout parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of min_srv to less than the number of HSMs in the cluster and set a low timeout value. Note, however, that some requests might not generate a key.

Default: 1
Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the key. Type a value from 0 to 8.

This parameter establishes a quorum authentication requirement for the key. The default value, 0, disables the quorum authentication feature for the key. When quorum authentication is enabled, the specified number of users must sign a token to approve cryptographic operations that use the key, and operations that share or unshare the key.

To find the m_value of a key, use getKeyInfo (p. 140).

This parameter is valid only when the -u parameter in the command shares the key with enough users to satisfy the m_value requirement.

Default: 0
Required: No

-nex

Makes the key nonextractable. The key that is generated cannot be exported from the HSM (p. 52).

Default: The key is extractable.
Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute (p. 151).
Default: The key is persistent.

Required: No

**-timeout**

Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.

Required: No

**-u**

Shares the key with the specified users. This parameter gives other HSM crypto users (CUs) permission to use this key in cryptographic operations.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID of the current user. To find HSM user IDs of CUs on the HSM, use listUsers (p. 150). To share and unshare existing keys, use shareKey.

Default: Only the current user can use the key.

Required: No

**Related Topics**

- exSymKey (p. 110)
- genRSAKeyPair (p. 127)
- genDSAKeyPair (p. 118)
- genECCKeyPair (p. 123)

**getAttribute**

The `getAttribute` command in key_mgmt_util writes one or all of the attribute values for an AWS CloudHSM key to a file. If the attribute you specify does not exist for the key type, such as the modulus of an AES key, `getAttribute` returns an error.

*Key attributes* are properties of a key. They include characteristics, like the key type, class, label, and ID, and values that represent actions that you can perform with the key, like encrypt, decrypt, wrap, sign, and verify.

You can use `getAttribute` only on keys that you own and key that are shared with you. You can run this command or the `getAttribute (p. 84)` command in cloudhsm_mgmt_util, which gets one attribute value of a key from all HSMs in a cluster, and writes it to stdout or to a file.

To get a list of attributes and the constants that represent them, use the `listAttributes (p. 149)` command. To change the attribute values of existing keys, use `setAttribute (p. 151)` in key_mgmt_util and `setAttribute (p. 95)` in cloudhsm_mgmt_util. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Before you run any key_mgmt_util command, you must `start key_mgmt_util (p. 102)` and `login (p. 103)` to the HSM as a crypto user (CU).
Syntax

```
getAttribute -h
getAttribute -o <key handle>  
        -a <attribute constant>  
        -out <file>
```

Examples

These examples show how to use `getAttribute` to get the attributes of keys in your HSMs.

Example : Get the Key Type

This example gets the type of the key, such an AES, 3DES, or generic key, or an RSA or elliptic curve key pair.

The first command runs `listAttributes (p. 149)`, which gets the key attributes and the constants that represent them. The output shows that the constant for key type is \( 256 \). For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

```
Command: listAttributes
```

**Description**

```
The following are all of the possible attribute values for getAttributes.

OBJ_ATTR_CLASS                  = 0
OBJ_ATTR_TOKEN                  = 1
OBJ_ATTR_PRIVATE                = 2
OBJ_ATTR_LABEL                  = 3
OBJ_ATTR_KEY_TYPE               = 256
OBJ_ATTR_ID                     = 258
OBJ_ATTR_SENSITIVE              = 259
OBJ_ATTR_ENCRYPT                = 260
OBJ_ATTR_DECRYPT                = 261
OBJ_ATTR_WRAP                   = 262
OBJ_ATTR_UNWRAP                 = 263
OBJ_ATTR_SIGN                   = 264
OBJ_ATTR_VERIFY                 = 266
OBJ_ATTR_LOCAL                  = 355
OBJ_ATTR_MODULUS                = 288
OBJ_ATTR_MODULUS_BITS           = 289
OBJ_ATTR_PUBLIC_EXPONENT        = 290
OBJ_ATTR_VALUE_LEN              = 353
OBJ_ATTR_EXTRACTABLE            = 354
OBJ_ATTR_KCV                    = 371
```

The second command runs `getAttribute`. It requests the key type (attribute \( 256 \)) for key handle `524296` and writes it to the `attribute.txt` file.

```
Command: getAttribute -o 524296 -a 256 -out attribute.txt
```

Attributes dumped into attribute.txt file

The final command gets the content of the key file. The output reveals that the key type is \( 0x15 \) or 21, which is a Triple DES (3DES) key. For definitions of the class and type values, see the Key Attribute Reference (p. 157).

```
$ cat attribute.txt
OBJ_ATTR_KEY_TYPE
```
Example: Get All Attributes of a Key

This command gets all attributes of the key with key handle 6 and writes them to the attr_6 file. It uses an attribute value of 512, which represents all attributes.

Command: `getAttribute -o 6 -a 512 -out attr_6`

got all attributes of size 444 attr cnt 17
Attributes dumped into attribute.txt file

Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS>

This command shows the content of a sample attribute file with all attribute values. Among the values, it reports that key is a 256-bit AES key with an ID of test_01 and a label of aes256. The key is extractable and persistent, that is, not a session-only key. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

```
$ cat attribute.txt

OBJ_ATTR_CLASS 0x04
OBJ_ATTR_KEY_TYPE 0x15
OBJ_ATTR_TOKEN 0x01
OBJ_ATTR_PRIVATE 0x01
OBJ_ATTR_ENCRYPT 0x01
OBJ_ATTR_DECRYPT 0x01
OBJ_ATTR_WRAP 0x01
OBJ_ATTR_UNWRAP 0x01
OBJ_ATTR_SIGN 0x00
OBJ_ATTR_VERIFY 0x00
OBJ_ATTR_LOCAL 0x01
OBJ_ATTR_SENSITIVE 0x01
OBJ_ATTR_EXTRACTABLE 0x01
OBJ_ATTR_LABEL aes256
OBJ_ATTR_ID test_01
OBJ_ATTR_VALUE_LEN 0x00000020
OBJ_ATTR_KCV 0x1a4b31
```

Parameters

-h

Displays help for the command.
-o

Specifies the key handle of the target key. You can specify only one key in each command. To get the key handle of a key, use findKey (p. 114).

Also, you must own the specified key or it must be shared with you. To find the users of a key, use getKeyInfo (p. 140).

Required: Yes

-a

Identifies the attribute. Enter a constant that represents an attribute, or 512, which represents all attributes. For example, to get the key type, type 256, which is the constant for the OBJ_ATTR_KEY_TYPE attribute.

To list the attributes and their constants, use listAttributes (p. 149). For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Required: Yes

-out

Writes the output to the specified file. Type a file path. You cannot write the output to stdout.

If the specified file exists, getAttribute overwrites the file without warning.

Required: Yes

Related Topics

• getAttribute (p. 84) in cloudhsm_mgmt_util
• listAttributes (p. 149)
• setAttribute (p. 151)
• findKey (p. 114)
• Key Attribute Reference (p. 157)

getKeyInfo

The getKeyInfo command in the key_mgmt_util returns the HSM user IDs of users who can use the key, including the owner and crypto users (CU) with whom the key is shared. When quorum authentication is enabled on a key, getKeyInfo also returns the number of users who must approve cryptographic operations that use the key. You can run getKeyInfo only on keys that you own and keys that are shared with you.

When you run getKeyInfo on public keys, getKeyInfo returns only the key owner, even though all users of the HSM can use the public key. To find the HSM user IDs of users in your HSMs, use listUsers (p. 150). To find the keys for a particular user, use findKey (p. 114) -u.

You own the keys that you create. You can share a key with other users when you create it. Then, to share or unshare an existing key, use shareKey (p. 98) in cloudhsm_mgmt_util.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

Syntax

getKeyInfo -h
getKeyInfo -k <key-handle>

Examples

These examples show how to use getKeyInfo to get information about the users of a key.

Example: Get the Users for a Symmetric Key

This command gets the users who can use the AES (symmetric) key with key handle 9. The output shows that user 3 owns the key and has shared it with user 4.

Command: getCodeInfo -k 9

Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS

Owned by user 3
also, shared to following 1 user(s):

4

Example: Get the Users for an Asymmetric Key Pair

These commands use getKeyInfo to get the users who can use the keys in an RSA (asymmetric) key pair. The public key has key handle 21. The private key has key handle 20.

When you run getKeyInfo on the private key (20), it returns the key owner (3) and crypto users (CUs) 4 and 5, with whom the key is shared.

Command: getCodeInfo -k 20

Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS

Owned by user 3
also, shared to following 2 user(s):

4
5

When you run getKeyInfo on the public key (21), it returns only the key owner (3).

Command: getCodeInfo -k 21

Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS

Owned by user 3

To confirm that user 4 can use the public key (and all public keys on the HSM), use the -u parameter of findKey (p. 114).

The output shows that user 4 can use both the public (21) and private (20) key in the key pair. User 4 can also use all other public keys and any private keys that they have created or that have been shared with them.

Command: findKey -u 4
Total number of keys present 8
number of keys matched from start index 0::7
Example: Get the Quorum Authentication Value (m_value) for a Key

This example shows how to get the m_value for a key, that is, the number of users in the quorum who must approve any cryptographic operations that use the key.

When quorum authentication is enabled on a key, a quorum of users must approve any cryptographic operations that use the key. To enable quorum authentication and set the quorum size, use the -m_value parameter when you create the key.

This command uses genRSAKeyPair (p. 127) to create an RSA key pair that is shared with user 4. It uses the m_value parameter to enable quorum authentication on the private key in the pair and set the quorum size to two users. The number of users must be large enough to provide the required approvals.

The output shows that the command created public key 27 and private key 28.

```
Command:   genRSAKeyPair -m 2048 -e 195193 -l rsa_mofn -id rsa_mv2 -u 4 -m_value 2
  Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS
  Cfm3GenerateKeyPair:    public key handle: 27    private key handle: 28

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
```

This command uses getKeyInfo to get information about the users of the private key. The output shows that the key is owned by user 3 and shared with user 4. It also shows that a quorum of two users must approve every cryptographic operation that uses the key.

```
Command:   getKeyInfo -k 28
  Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS
  Owned by user 3
  also, shared to following 1 user(s):
    4
    2 Users need to approve to use/manage this key
```

Parameters

-h
Displays command line help for the command.
Required: Yes
-k
Specifies the key handle of one key in the HSM. Enter the key handle of a key that you own or share. This parameter is required.
To find key handles, use the findKey (p. 150) command.
Required: Yes

Related Topics

- `getKeyInfo (p. 88)` in `cloudhsm_mgmt_util`
- `listUsers (p. 150)`
- `findKey (p. 114)`
- `findAllKeys (p. 81)` in `cloudhsm_mgmt_util`

**imSymKey**

The `imSymKey` command in the `key_mgmt_util` tool imports a plaintext copy of a symmetric key from a file into the HSM. You can use it to import keys that you generate by any method outside of the HSM and keys that were exported from an HSM, such as the keys that the `exSymKey (p. 110)`, command writes to a file.

During the import process, `imSymKey` uses an AES key that you select (the **wrapping key**) to **wrap** (encrypt) and then **unwrap** (decrypt) the key to be imported. However, `imSymKey` works only on files that contain plaintext keys. To export and import encrypted keys, use the `wrapKey (p. 156)` and `unWrapKey (p. 153)` commands.

Also, the `imSymKey` command exports only symmetric keys. To import public keys, use `importPubKey`. To import private keys, use `importPrivateKey` or `wrapKey`.

Imported keys work very much like keys generated in the HSM. However, the value of the **OBJ_ATTR_LOCAL attribute (p. 157)** is zero, which indicates that it was not generated locally. You can use the following command to share a symmetric key as you import it. You can use the `shareKey` command in `cloudhsm_mgmt_util (p. 67)` to share the key after it is imported.

```
imSymKey -l aesShared -t 31 -f kms.key -w 3296 -u 5
```

After you import a key, be sure to mark or delete the key file. This command does not prevent you from importing the same key material multiple times. The result, multiple keys with distinct key handles and the same key material, make it difficult to track use of the key material and prevent it from exceeding its cryptographic limits.

Before you run any `key_mgmt_util` command, you must `start key_mgmt_util (p. 102)` and `login (p. 103)` to the HSM as a crypto user (CU).

**Syntax**

```
imSymKey -h
imSymKey -f <key-file>
  -w <wrapping-key-handle>
  -t <key-type>
  -l <label>
  [-id <key-ID>]
  [-sess]
  [-wk <wrapping-key-file>]
  [-attest]
  [-min_srv <minimum-number-of-servers>]
  [-timeout <number-of-seconds>]
  [-u <user-ids>]
```
Examples

These examples show how to use `imSymKey` to import symmetric keys into your HSMs.

Example : Import an AES Symmetric Key

This example uses `imSymKey` to import an AES symmetric key into the HSMs.

The first command uses OpenSSL to generate a random 256-bit AES symmetric key. It saves the key in the `aes256.key` file.

```bash
$ openssl rand -out aes256-forImport.key 32
```

The second command uses `imSymKey` to import the AES key from the `aes256.key` file into the HSMs. It uses key 20, an AES key in the HSM, as the wrapping key and it specifies a label of `imported`. Unlike the ID, the label does not need to be unique in the cluster. The value of the `-t` (type) parameter is 31, which represents AES.

The output shows that the key in the file was wrapped and unwrapped, then imported into the HSM, where it was assigned the key handle 262180.

```bash
Command:  imSymKey -f aes256.key -w 20 -t 31 -l imported
```

The next command uses `getAttribute` to get the OBJ_ATTR_LOCAL attribute (attribute 355) of the newly imported key and writes it to the `attr_262180` file.

```bash
Command:  getAttribute -o 262180 -a 355 -out attributes/attr_262180
```

When you examine the attribute file, you can see that the value of the OBJ_ATTR_LOCAL attribute is zero, which indicates that the key material was not generated in the HSM.

```bash
$ cat attributes/attr_262180_local
OBJ_ATTR_LOCAL
0x00000000
```

Example : Move a Symmetric Key Between Clusters

This example shows how to use `exSymKey` and `imSymKey` to move a plaintext AES key between clusters. You might use a process like this one to create an AES wrapping that exists on the HSMs both clusters. Once the shared wrapping key is in place, you can use `wrapKey` and `unWrapKey` to move encrypted keys between the clusters.

The CU user who performs this operation must have permission to log in to the HSMs on both clusters.
The first command uses `exSymKey` to export key 14, a 32-bit AES key, from the cluster 1 into the `aes.key` file. It uses key 6, an AES key on the HSMs in cluster 1, as the wrapping key.

```
Command: exSymKey -k 14 -w 6 -out aes.key

Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS
Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "aes.key"
```

The user then logs into key_mgmt_util in cluster 2 and runs an `imSymKey` command to import the key in the `aes.key` file into the HSMs in cluster 2. This command uses key 252152, an AES key on the HSMs in cluster 2, as the wrapping key.

```
Command: imSymKey -f aes.key -w 262152 -t 31 -l xcluster

Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS
Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Unwrapped.  Key Handle: 21

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
```

To prove that key 14 of cluster 1 and key 21 in cluster 2 have the same key material, get the key check value (KCV) of each key. If the KCV values are the same, the key material is the same.

The following command uses `getAttribute` (p. 137) in cluster 1 to write the value of the KCV attribute (attribute 371) of key 14 to the `attr_14_kcv` file. Then, it uses a `cat` command to get the content of the `attr_14_kcv` file.

```
Command: getAttribute -o 14 -a 371 -out attr_14_kcv
Attributes dumped into attr_14_kcv file

$ cat attr_14_kcv
OBJ_ATTR_KCV
0xc33cbd
```

This similar command uses `getAttribute` (p. 137) in cluster 2 to write the value of the KCV attribute (attribute 371) of key 21 to the `attr_21_kcv` file. Then, it uses a `cat` command to get the content of the `attr_21_kcv` file.

```
Command: getAttribute -o 21 -a 371 -out attr_21_kcv
Attributes dumped into attr_21_kcv file

$ cat attr_21_kcv
OBJ_ATTR_KCV
0xc33cbd
```
The output shows that the KCV values of the two keys are the same, which proves that the key material is the same.

Because the same key material exists in the HSMs of both clusters, you can now share encrypted keys between the clusters without ever exposing the plaintext key. For example, you can use the wrapKey command with wrapping key 14 to export an encrypted key from cluster 1, and then use unWrapKey with wrapping key 21 to import the encrypted key into cluster 2.

**Example : Import a Session Key**

This command uses the -sess parameters of imSymKey to import a 192-bit Triple DES key that is valid only in the current session.

The command uses the -f parameter to specify the file that contains the key to import, the -t parameter to specify the key type, and the -w parameter to specify the wrapping key. It uses the -l parameter to specify a label that categorizes the key and the -id parameter to create a friendly, but unique, identifier for the key. It also uses the -attest parameter to verify the firmware that is importing the key.

The output shows that the key was successfully wrapped and unwrapped, imported into the HSM, and assigned the key handle 37. Also, the attestation check passed, which indicates that the firmware has not been tampered.

```
Command:  imSymKey -f 3des192.key -w 6 -t 21 -l temp -id test01 -sess -attest

Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS
Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Unwrapped.  Key Handle: 37
Attestation Check : [PASS]
Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

Next, you can use the getAttribute (p. 137) or findKey (p. 114) commands to verify the attributes of the newly imported key. The following command uses findKey to verify that key 37 has the type, label, and ID specified by the command, and that it is a session key. A shown on line 5 of the output, findKey reports that the only key that matches all of the attributes is key 37.

```
Command:  findKey -t 21 -l temp -id test01 -sess 1
Total number of keys present 1
number of keys matched from start index 0::0 37

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
```

**Parameters**

- **-attest**

  Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.
Default: No attestation check.
Required: No

-f

Specifies the file that contains that key to import.

The file must contain a plaintext copy of an AES or Triple DES key of the specified length. RC4 and DES keys are not valid on FIPS-mode HSMs.

- AES: 16, 24 or 32 bytes
- Triple DES (3DES): 24 bytes

Required: Yes

-h

Displays help for the command.
Required: Yes

-id

Specifies a user-defined identifier for the key. Type a string that is unique in the cluster. The default is an empty string.

Default: No ID value.
Required: No

-l

Specifies a user-defined label for the key. Type a string.

You can use any phrase that helps you to identify the key. Because the label does not have to be unique, you can use it to group and categorize keys.

Required: Yes

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of the -timeout parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of min_srv to less than the number of HSMs in the cluster and set a low timeout value. Note, however, that some requests might not generate a key.

Default: 1
Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute (p. 151).

Default: The key is persistent.
-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.

Required: No

-t

Specifies the type of the symmetric key. Enter the constant that represents the key type. For example, to create an AES key, enter -t 31.

Valid values:
- 21: Triple DES (3DES).
- 31: AES

Required: Yes

-u

Shares the key you are importing with specified users. This parameter gives other HSM crypto users (CUs) permission to use this key in cryptographic operations.

Type one ID or a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID of the current user. To find the an ID, you can use the listUsers command in the cloudhsm_mgmt_util command line tool or the listUsers command in the key_mgmt_util command line tool.

Required: No

-w

Specifies the key handle of the wrapping key. This parameter is required. To find key handles, use the findKey (p. 114) command.

A wrapping key is a key in the HSM that is used to encrypt ("wrap") and then decrypt ("unwrap") the key during the import process. Only AES keys can be used as wrapping keys.

You can use any AES key (of any size) as a wrapping key. Because the wrapping key wraps, and then immediately unwraps, the target key, you can use as session-only AES key as a wrapping key. To determine whether a key can be used as a wrapping key, use getAttribute (p. 137) to get the value of the OBJ_ATTR_WRAP attribute (262). To create a wrapping key, use genSymKey (p. 132) to create an AES key (type 31).

If you use the -wk parameter to specify an external wrapping key, the -w wrapping key is used to unwrap, but not to wrap, the key that is being imported.

Note

Key 4 is an unsupported internal key. We recommend that you use an AES key that you create and manage as the wrapping key.

Required: Yes

-wk

Use the AES key in the specified file to wrap the key that is being imported. Enter the path and name of a file that contains a plaintext AES key.
When you include this parameter, `imSymKey` uses the key in the `-wk` file to wrap the key being imported and it uses the key in the HSM that is specified by the `-w` parameter to unwrap it. The `-w` and `-wk` parameter values must resolve to the same plaintext key.

Default: Use the wrapping key on the HSM to unwrap.

Required: No

Related Topics

- `genSymKey` (p. 132)
- `exSymKey` (p. 110)
- `wrapKey` (p. 156)
- `unWrapKey` (p. 153)
- `exportPrivateKey`
- `exportPubKey`

**listAttributes**

The `listAttributes` command in `key_mgmt_util` lists the attributes of an AWS CloudHSM key and the constants that represent them. You use these constants to identify the attributes in `getAttribute` (p. 137) and `setAttribute` (p. 151) commands. For help interpreting the key attributes, see the `Key Attribute Reference` (p. 157).

Before you run any `key_mgmt_util` command, you must `start key_mgmt_util` (p. 102) and `login` (p. 103) to the HSM as a crypto user (CU).

**Syntax**

This command has no parameters.

```
listAttributes
```

**Example**

This command lists the key attributes that you can get and change in `key_mgmt_util` and the constants that represent them. For help interpreting the key attributes, see the `Key Attribute Reference` (p. 157).

To represent all attributes in the `getAttribute` (p. 137) command in `key_mgmt_util`, use 512.

```
Command: listAttributes
```

Following are the possible attribute values for `getAttribute`:

```
OBJ_ATTR_CLASS = 0
OBJ_ATTR_TOKEN = 1
OBJ_ATTR_PRIVATE = 2
OBJ_ATTR_LABEL = 3
OBJ_ATTR_KEY_TYPE = 256
OBJ_ATTR_ENCRYPT = 260
OBJ_ATTR_DECRYPT = 261
OBJ_ATTR_WRAP = 262
OBJ_ATTR_UNWRAP = 263
OBJ_ATTR_SIGN = 264
OBJ_ATTR_VERIFY = 266
OBJ_ATTR_LOCAL = 355
```
Related Topics

- listAttributes (p. 93) in cloudhsm_mgmt_util
- getAttribute (p. 137)
- setAttribute (p. 151)
- Key Attribute Reference (p. 157)

listUsers

The listUsers command in the key_mgmt_util gets the users in the HSMs, along with their user type and other attributes.

In key_mgmt_util, listUsers returns output that represents all HSMs in the cluster, even if they are not consistent. To get information about the users in each HSM, use the listUsers (p. 150) command in cloudhsm_mgmt_util.

The user commands in key_mgmt_util, listUsers and getKeyInfo, are read-only commands that crypto users (CUs) have permission to run. The remaining user management commands are part of cloudhsm_mgmt_util. They are run by crypto officers (CO) who have user management permissions.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

Syntax

```
listUsers
listUsers -h
```

Example

This command lists the users of HSMs in the cluster and their attributes. You can use the User ID attribute to identify users in other commands, such as findKey (p. 114), getAttribute (p. 137), and getKeyInfo (p. 140).

```
Command:  listUsers

Number Of Users found 4

<table>
<thead>
<tr>
<th>Index</th>
<th>User ID</th>
<th>User Type</th>
<th>User Name</th>
<th>MofnPubKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoginFailureCnt</td>
<td>2FA</td>
<td>PCO</td>
<td>admin</td>
<td>NO</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>2</td>
<td>AU</td>
<td>app_user</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>3</td>
<td>CU</td>
<td>alice</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>4</td>
<td>CU</td>
<td>bob</td>
</tr>
<tr>
<td>0</td>
<td>NO</td>
<td>5</td>
<td>CU</td>
<td>trent</td>
</tr>
</tbody>
</table>

```
Cfm3ListUsers returned: 0x00 : HSM Return: SUCCESS

The output includes the following user attributes:

- **UserID**: Identifies the user in key_mgmt_util and cloudhsm_mgmt_util (p. 67) commands.
- **User type (p. 10)**: Determines the operations that the user can perform on the HSM.
- **User Name**: Displays the user-defined friendly name for the user.
- **MofnPubKey**: Indicates whether the user has registered a key pair for signing quorum authentication tokens (p. 54).
- **LoginFailureCnt**: 
- **2FA**: Indicates that the user has enabled multi-factor authentication.

**Parameters**

- `h`
  
  Displays help for the command.
  
  Required: Yes

**Related Topics**

- listUsers (p. 150) in cloudhsm_mgmt_util
- findKey (p. 114)
- getAttribute (p. 137)
- getKeyInfo (p. 140)

**setAttribute**

The `setAttribute` command in key_mgmt_util converts a key that is valid only in the current session to a persistent key that exists until you delete it. It does this by changing the value of the token attribute of the key (**OBJ_ATTR_TOKEN**) from false (0) to true (1). You can only change the attributes of keys that you own.

You can also use the `setAttribute` command in cloudhsm_mgmt_util to change the label, wrap, unwrap, encrypt, and decrypt attributes.

Before you run any key_mgmt_util command, you must start key_mgmt_util (p. 102) and login (p. 103) to the HSM as a crypto user (CU).

**Syntax**

```
setAttribute -h
setAttribute -o <object handle> -a 1
```

**Example**

This example shows how to convert a session key to a persistent key.
The first command uses the `--sess` parameter of `genSymKey (p. 132)` to create a 192-bit AES key that is valid only in the current session. The output shows that the key handle of the new session key is 262154.

```
Command: genSymKey -t 31 -s 24 -l tmpAES --sess

Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
Symmetric Key Created. Key Handle: 262154
Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
```

This command uses `findKey (p. 114)` to find the session keys in the current session. The output verifies that key 262154 is a session key.

```
Command: findKey --sess 1

Total number of keys present 1
number of keys matched from start index 0::0
262154

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
```

This command uses `setAttribute` to convert key 262154 from a session key to a persistent key. To do so, it changes the value of the token attribute (OBJ_ATTR_TOKEN) of the key from 0 (false) to 1 (true). For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

The command uses the `--o` parameter to specify the key handle (262154) and the `--a` parameter to specify the constant that represents the token attribute (1). When you run the command, it prompts you for a value for the token attribute. The only valid value is 1 (true); the value for a persistent key.

```
Command: setAttribute --o 262154 --a 1
This attribute is defined as a boolean value.
Enter the boolean attribute value (0 or 1): 1

Cfm3SetAttribute returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
```

To confirm that key 262154 is now persistent, this command uses `findKey` to search for session keys (`--sess 1`) and persistent keys (`--sess 0`). This time, the command does not find any session keys, but it returns 262154 in the list of persistent keys.

```
Command: findKey --sess 1

Total number of keys present 0

Cluster Error Status
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS
```
Command: `findKey -sess 0`
Total number of keys present 5

  number of keys matched from start index 0::4
  6, 7, 524296, 9, 262154

Cluster Error Status
  Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
  Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Parameters

- **-h**
  Displays help for the command.
  Required: Yes

- **-o**
  Specifies the key handle of the target key. You can specify only one key in each command. To get the key handle of a key, use `findKey (p. 114)`.
  Required: Yes

- **-a**
  Specifies the constant that represents the attribute that you want to change. The only valid value is 1, which represents the token attribute, OBJ_ATTR_TOKEN.
  To get the attributes and their integer values, use `listAttributes (p. 149)`.
  Required: Yes

Related Topics

- `setAttribute (p. 95)` in cloudhsm_mgmt_util
- `getAttribute (p. 137)`
- `listAttributes (p. 149)`
- `Key Attribute Reference (p. 157)`

unWrapKey

The **unWrapKey** command in the key_mgmt_util tool imports a wrapped (encrypted) symmetric or private key from a file into the HSM. It is designed to import encrypted keys from files that were created by the `wrapKey (p. 156)` command.

During the import process, **unWrapKey** uses an AES key on the HSM that you specify to unwrap (decrypt) the key in the file. Then it saves the key in the HSM with a key handle and the attributes that you specify. To export and import plaintext keys, use the `exSymKey (p. 110)` and `imSymKey (p. 143)` commands.

Imported keys work very much like keys generated in the HSM. However, the value of the OBJ_ATTR_LOCAL attribute (p. 157) is zero, which indicates that it was not generated locally. The **unWrapKey** command does not have parameters that assign a label or share the key with other users,
but you can use the `shareKey` command in `cloudhsm_mgmt_util (p. 67)` to add those attributes after the key is imported.

After you import a key, be sure to mark or delete the key file. This command does not prevent you from importing the same key material multiple times. The result, multiple keys with distinct key handles and the same key material, make it difficult to track use of the key material and prevent it from exceeding its cryptographic limits.

Before you run any `key_mgmt_util` command, you must `start key_mgmt_util (p. 102)` and `login (p. 103)` to the HSM as a crypto user (CU).

**Syntax**

```
unWrapKey  
```

```
unWrapKey -f <key-file-name> 
   -w <wrapping-key-handle> 4 
   [-sess] 
   [-min_srv <minimum-number-of-HSMs>] 
   [-timeout <number-of-seconds>] 
   [-attest]
```

**Example**

**Example**

This command imports an wrapped (encrypted) copy of a Triple DES (3DES) symmetric key from the 3DES.key file into the HSMs. To unwrap (decrypt) the key, the command uses the `-w` parameter to specify key 6, an AES key on the HSM. The AES key that unwraps during import must be the same key that was wrapped during export, or a cryptographically identical copy.

The output shows that the key in the file was unwrapped and imported. The new key has key handle 29.

If you are using `unWrapKey` to move a key between clusters, you must first create an AES wrapping key that exists on both clusters. You can generate a key outside of the HSMs and then use `imSymKey` to import it to the HSMs on both cluster. Or, generate an AES key in the HSMs on one cluster, use `exSymKey (p. 110)` to export it in plaintext to a file. Then use `imSymKey` to import the plaintext key into the other cluster. Once the wrapping key is established on both clusters, you can use `wrapKey` and `unWrapKey` to move encrypted keys between clusters without ever exposing the plaintext key.

**Parameters**

- `-h`
  - Displays help for the command.
  - Required: Yes

- `-f`
  - Specifies the path and name of the file that contains the wrapped key.
Required: Yes

-w

Specifies the wrapping key. Type the key handle of an AES key on the HSM. This parameter is required. To find key handles, use the findKey (p. 114) command.

To create a wrapping key, use genSymKey (p. 132) to create an AES key (type 31). To verify that a key can be used as a wrapping key, use getAttribute (p. 137) to get the value of the OBJ_ATTR_WRAP attribute, which is represented by constant 262.

Note

Key handle 4 represents an unsupported internal key. We recommend that you use an AES key that you create and manage as the wrapping key.

Required: Yes

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute (p. 151).

Default: The key is persistent.

Required: No

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of the -timeout parameter expires. If the key is not synchronized to the specified number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up your process, set the value of min_srv to less than the number of HSMs in the cluster and set a low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is synchronized to the minimum number of servers.

Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been tampered with.

Default: No attestation check.

Required: No
Related Topics

- wrapKey (p. 156)
- exSymKey (p. 110)
- imSymKey (p. 143)

wrapKey

The `wrapKey` command in `key_mgmt_util` exports an encrypted copy of a symmetric or private key from the HSM to a file on disk. When you run `wrapKey`, you specify the key to export, an AES key on the HSM to encrypt (wrap) the key to be exported, and the output file.

The `wrapKey` command writes the encrypted key to a file that you specify, but it does not remove the key from the HSM, change its key attributes (p. 157), or prevent you from using it in cryptographic operations. You can export the same key multiple times.

Only the owner of a key, that is, the CU user who created the key, can export it. Users who share the key can use it in cryptographic operations, but they cannot export it.

To import (and unwrap) the encrypted key from the file to an HSM, use `unWrapKey (p. 153)`. To export a plaintext key from the HSM, use `exSymKey (p. 110)`. The `aesWrapUnwrap (p. 105)` command cannot decrypt (unwrap) keys that `wrapKey` encrypts.

Before you run any `key_mgmt_util` command, you must start `key_mgmt_util (p. 102)` and `login (p. 103)` to the HSM as a crypto user (CU).

Syntax

```
wrapKey -h
wrapKey -k <exported-key-handle> 
    -w <wrapping-key-handle> 
    -out <output-file>
```

Example

Example

This command exports a 192-bit Triple DES (3DES) symmetric key (key handle 7). It uses a 256-bit AES key in the HSM (key handle 14) to wrap key 7. Then it writes the encrypted 3DES key to the `3DES-encrypted.key` file.

The output shows that key 7 (the 3DES key) was successfully wrapped and written to the specified file.

The encrypted key is 307 bytes long.

```
Command: wrapKey -k 7 -w 14 -out 3DES-encrypted.key

Key Wrapped.

Wrapped Key written to file "3DES-encrypted.key length 307

Cfm2WrapKey returned: 0x00 : HSM Return: SUCCESS
```

Parameters

- `h`
  
  Displays help for the command.
Required: Yes

-k

Specifies the key handle of the key to export. Type the key handle of a symmetric or private key that you own. To find key handles, use the findKey (p. 114) command.

To verify that a key can be exported, use the getAttribute (p. 137) command to get the value of the OBJ_ATTR_EXTRACTABLE attribute, which is represented by constant 354. For help interpreting the key attributes, see the Key Attribute Reference (p. 157).

Also, you can export only keys that you own. To find the owner of a key, use the getKeyInfo (p. 140) command.

Required: Yes

-w

Specifies the wrapping key. Type the key handle of an AES key on the HSM. This parameter is required. To find key handles, use the findKey (p. 114) command.

To create a wrapping key, use genSymKey (p. 132) to create an AES key (type 31). To verify that a key can be used as a wrapping key, use getAttribute (p. 137) to get the value of the OBJ_ATTR_WRAP attribute, which is represented by constant 262.

Note
Key handle 4 represents an unsupported internal key. We recommend that you use an AES key that you create and manage as the wrapping key.

Required: Yes

-out

Specifies the path and name of the output file. When the command succeeds, this file contains an encrypted copy of the exported key. If the file already exists, the command overwrites it without warning.

Required: Yes

Related Topics
- exSymKey (p. 110)
- imSymKey (p. 143)
- unWrapKey (p. 153)

Key Attribute Reference

The key_mgmt_util commands use constants to represent the attributes of keys in an HSM. This topic can help you to identify the attributes, find the constants that represent them in commands, and understand their values.

You set the attributes of a key when you create it. To change the token attribute, which indicates whether a key is persistent or exists only in the session, use the setAttribute (p. 151) command in key_mgmt_util. To change the label, wrap, unwrap, encrypt, or decrypt attributes, use the setAttribute command in cloudhsm_mgmt_util.

To get a list of attributes and their constants, use listAttributes (p. 149). To get the attribute values for a key, use getAttribute (p. 137).
The following table lists the key attributes, their constants, and their valid values.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Constant</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ_ATTR_CLASS</td>
<td>0</td>
<td>2: Public key in a public–private key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: Private key in a public–private key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: Secret (symmetric) key.</td>
</tr>
<tr>
<td>OBJ_ATTR_TOKEN</td>
<td>1</td>
<td>0: False. Session key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. Persistent key.</td>
</tr>
<tr>
<td>OBJ_ATTR_PRIVATE</td>
<td>2</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. Private key in a public–private key pair.</td>
</tr>
<tr>
<td>OBJ_ATTR_LABEL</td>
<td>3</td>
<td>User-defined string. It does not have to be unique in the cluster.</td>
</tr>
<tr>
<td>OBJ_ATTR_KEY_TYPE</td>
<td>256</td>
<td>0: RSA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: DSA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: EC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16: Generic secret.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18: RC4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21: Triple DES (3DES).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31: AES.</td>
</tr>
<tr>
<td>OBJ_ATTR_ID</td>
<td>258</td>
<td>User-defined string. Must be unique in the cluster. The default is an empty string.</td>
</tr>
<tr>
<td>OBJ_ATTR_SENSITIVE</td>
<td>259</td>
<td>0: False. Public key in a public–private key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True.</td>
</tr>
<tr>
<td>OBJ_ATTR_ENCRYPT</td>
<td>260</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used to encrypt data.</td>
</tr>
<tr>
<td>OBJ_ATTR_DECRYPT</td>
<td>261</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used to decrypt data.</td>
</tr>
<tr>
<td>OBJ_ATTR_WRAP</td>
<td>262</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used to encrypt keys.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Constant</td>
<td>Values</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>OBJ_ATTR_UNWRAP</td>
<td>263</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used to decrypt keys.</td>
</tr>
<tr>
<td>OBJ_ATTR_SIGN</td>
<td>264</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used for signing (private keys).</td>
</tr>
<tr>
<td>OBJ_ATTR_VERIFY</td>
<td>266</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be used for verification (public keys).</td>
</tr>
<tr>
<td>OBJ_ATTR_MODULUS</td>
<td>288</td>
<td>The modulus that was used to generate an RSA key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For other key types, this attribute does not exist.</td>
</tr>
<tr>
<td>OBJ_ATTR_MODULUS_BITS</td>
<td>289</td>
<td>The length of the modulus used to generate an RSA key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For other key types, this attribute does not exist.</td>
</tr>
<tr>
<td>OBJ_ATTR_PUBLIC_EXPONENT</td>
<td>290</td>
<td>The public exponent used to generate an RSA key pair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For other key types, this attribute does not exist.</td>
</tr>
<tr>
<td>OBJ_ATTR_VALUE_LEN</td>
<td>353</td>
<td>Key length in bits.</td>
</tr>
<tr>
<td>OBJ_ATTR_EXTRACTABLE</td>
<td>354</td>
<td>0: False.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: True. The key can be exported from the HSMs.</td>
</tr>
<tr>
<td>OBJ_ATTR_LOCAL</td>
<td>355</td>
<td>0. False. The key was imported into the HSMs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. True.</td>
</tr>
<tr>
<td>OBJ_ATTR_KCV</td>
<td>371</td>
<td>Key check value of the key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information, see Additional Details (p. 159).</td>
</tr>
<tr>
<td>OBJ_ATTR_ALL</td>
<td>512</td>
<td>Represents all attributes.</td>
</tr>
</tbody>
</table>

**Additional Details**

**Key check value (kcv)**

The *key check value* (KCV) is an 8-byte hash or checksum of a key. The HSM calculates a KCV when it generates the key. You can also calculate a KCV outside of the HSM, such as after you export a key.
You can then compare the KCV values to confirm the identity and integrity of the key. To get the KCV of a key, use `getAttribute` (p. 137).

AWS CloudHSM uses the following standard method to generate a key check value:

- **Symmetric keys**: First 8 bytes of the result of encrypting 16 zero-filled bytes with the key.
- **Asymmetric key pairs**: First 8 bytes of the modulus hash.

## Configure Tool

AWS CloudHSM automatically synchronizes data among all HSMs in a cluster. The `Configure` tool updates the HSM data in the configuration files that the synchronization mechanisms use. Use `Configure` to refresh the HSM data before you use the command line tools, especially when the HSMs in the cluster have changed.

Before using the `key_mgmt_util` tool, run `configure -a`. Before using the `cloudhsm_mgmt_util` tool, run `configure -a` and then run `configure -m`. You can also run `configure --ssl` to update SSL keys and certificates.

You can also use the `Configure` tool to update SSL keys and certificates.

### Syntax

```
configure -h | --help
configure -a <ENI IP address>
configure -m [-i <daemon_id>]
configure --ssl --pkey <private key file> --cert <certificate file>
```

### Examples

These examples show how to use the `Configure` tool.

**Example : Update the HSM Data for the AWS CloudHSM Client and key_mgmt_util**

This example uses the `configure -a` command to update the HSM data for the AWS CloudHSM client and `key_mgmt_util`. This command is also the first step in updating the `cloudhsm_mgmt_util` configuration file.

Before running `configure -a`, stop the AWS CloudHSM client. This prevents conflicts that might occur while `Configure` edits the client's configuration file. If the client is already stopped, this command has no ill effects, so you can use it in a script.

```
$ sudo stop cloudhsm-client
cloudhsm-client stop/waiting
```

Next, get the ENI IP address of any one of the HSMs in your cluster. This command uses the `describe-clusters` command in the AWS CLI, but you can also use the `DescribeClusters` operation or the `Get-HSM2Cluster` PowerShell cmdlet.

This excerpt of the output shows the ENI IP addresses of the HSMs in a sample cluster. We can use either of the IP addresses in the next command.
This step uses `configure -a` to add the 10.0.0.9 ENI IP address to the configurations files.

The output shows that `Configure` added 10.0.0.9 to the `cloudhsm_client.cfg` and `cloudhsm_mgmt_util.cfg` files.

Next, restart the AWS CloudHSM client. When the client starts, it uses the ENI IP address in its configuration file to query the cluster. Then, it writes the ENI IP addresses of all HSMs in the cluster to the `cluster.info` file.

```
$ sudo start cloudhsm-client
cloudhsm-client start/running, process 2747
```

When the command completes, the HSM data that the AWS CloudHSM client and `key_mgmt_util` use is complete and accurate. Before using `cloudhsm_mgmt_util`, run the `configure -m` command, as shown in the following example.

**Example: Update the HSM Data for cloudhsm_mgmt_util**

This example uses the `configure -m` command to copy the updated HSM data from the `cluster.info` file to the `cloudhsm_mgmt_util.cfg` file that `cloudhsm_mgmt_util` uses.

Before running `configure -m`, stop the AWS CloudHSM client, run `configure -a`, and then restart the AWS CloudHSM client, as shown in the previous example (p. 160). This ensures that the data copied into the `cloudhsm_mgmt_util.cfg` file from the `cluster.info` file is complete and accurate.

```
$ sudo /opt/cloudhsm/bin/configure -a
Updating server config in /opt/cloudhsm/etc/cloudhsm_client.cfg
Updating server config in /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg
```

```
$ sudo /opt/cloudhsm/bin/configure -m
Updating '/opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg' from cluster state
```

### Parameters

-h | --help

Displays command syntax.

Required: Yes
-a <ENI IP address>

Adds the specified HSM elastic network interface (ENI) IP address to AWS CloudHSM configuration files. Enter the ENI IP address of any one of the HSMs in the cluster. It does not matter which one you select.

To get the ENI IP addresses of the HSMs in your cluster, use the DescribeClusters operation, the describe-clusters AWS CLI command, or the Get-HSM2Cluster PowerShell cmdlet.

Note

Before running configure -a, stop the AWS CloudHSM client. Then, when configure -a completes, restart the AWS CloudHSM client. For details, see the examples (p. 160).

This parameter edits the following configuration files:
- /opt/cloudhsm/etc/cloudhsm_client.cfg: Used by AWS CloudHSM client and key_mgmt_util (p. 101).
- /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg: Used by cloudhsm_mgmt_util (p. 67).

When the AWS CloudHSM client starts, it uses the ENI IP address in its configuration file to query the cluster and update the cluster.info file (/opt/cloudhsm/daemon/1/cluster.info) with the correct ENI IP addresses for all HSMs in the cluster.

Required: Yes

-m

Updates the HSM ENI IP addresses in the configuration file that cloudhsm_mgmt_util uses.

When you run configure -a and then start the AWS CloudHSM client, the client daemon queries the cluster and updates the cluster.info files with the correct HSM IP addresses for all HSMs in the cluster. Running configure -m completes the update by copying the HSM IP addresses from the cluster.info to the cloudhsm_mgmt_util.cfg configuration file that cloudhsm_mgmt_util uses.

Be sure to run configure -a and restart the AWS CloudHSM client before running configure -m. This ensures that the data copied into cloudhsm_mgmt_util.cfg from cluster.info is complete and accurate.

Required: Yes

-i

Specifies an alternate client daemon. The default value represents the AWS CloudHSM client.

Default: 1

Required: No

--ssl

Replaces the SSL key and certificate for the cluster with the specified private key and certificate. When you use this parameter, the --pkey and --cert parameters are required.

Required: No

--pkey

Specifies the new private key. Enter the path and file name of the file that contains the private key.

Required: Yes if --ssl is specified. Otherwise, this should not be used.

--cert

Specifies the new certificate. Enter the path and file name of the file that contains the certificate. The certificate should chain up to the customerCA.crt certificate, the self-signed certificate used to initialize the cluster. For more information, see Initialize the Cluster.
Required: Yes if --ssl is specified. Otherwise, this should not be used.

Related Topics

- Set Up key_mgmt_util (p. 101)
- Prepare to run cloudhsm_mgmt_util (p. 68)
Using the AWS CloudHSM Software Libraries

To use your AWS CloudHSM cluster for cryptoprocessing, you use the AWS CloudHSM software libraries to integrate your applications with the HSMs in your cluster. See the following topics for more information about the available software libraries.

Topics
- AWS CloudHSM Software Library for PKCS #11 (p. 164)
- AWS CloudHSM Software Library for OpenSSL (p. 169)
- AWS CloudHSM Software Library for Java (p. 171)
- KSP and CNG Providers for Windows (p. 203)

AWS CloudHSM Software Library for PKCS #11

The AWS CloudHSM software library for PKCS #11 is a PKCS #11 standard implementation that communicates with the HSMs in your AWS CloudHSM cluster. The library supports PKCS #11 version 2.40, including the following key types, mechanisms, and APIs.

Topics
- Supported PKCS #11 Key Types (p. 164)
- Supported PKCS #11 Mechanisms (p. 164)
- Supported PKCS #11 APIs (p. 166)
- Install and Use the AWS CloudHSM Software Library for PKCS #11 (p. 167)

Supported PKCS #11 Key Types

The AWS CloudHSM software library for PKCS #11 supports the following key types.

- RSA – 2048-bit to 4096-bit RSA keys, in increments of 256 bits.
- ECDSA – Generate keys with the P-224, P-256, P-384, and P-521 curves. Only the P-256 and P-384 curves are supported for sign/verify.
- AES – 128, 192, and 256-bit AES keys.
- Triple DES (3DES) – 192-bit keys.
- GENERIC_SECRET – 1 to 64 bytes.

Supported PKCS #11 Mechanisms

The AWS CloudHSM software library for PKCS #11 supports the following PKCS #11 mechanisms.

Generate, Create, Import Keys
- CKM_AES_KEY_GEN
• CKM_DES3_KEY_GEN
• CKM_EC_KEY_PAIR_GEN
• CKM_GENERIC_SECRET_KEY_GEN
• CKM_RSA_X9_31_KEY_PAIR_GEN

Note
This mechanism is functionally identical to the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, but offers stronger guarantees for p and q generation. If you need the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, use CKM_RSA_X9_31_KEY_PAIR_GEN.

Sign/Verify
• CKM_RSA_PKCS
• CKM_RSA_PKCS_PSS
• CKM_SHA256_RSA_PKCS
• CKM_SHA224_RSA_PKCS
• CKM_SHA384_RSA_PKCS
• CKM_SHA512_RSA_PKCS
• CKM_SHA1_RSA_PKCS_PSS
• CKM_SHA256_RSA_PKCS_PSS
• CKM_SHA224_RSA_PKCS_PSS
• CKM_SHA384_RSA_PKCS_PSS
• CKM_SHA512_RSA_PKCS_PSS
• CKM_MD5_HMAC
• CKM_SHA_1_HMAC
• CKM_SHA224_HMAC
• CKM_SHA256_HMAC
• CKM_SHA384_HMAC
• CKM_SHA512_HMAC
• CKM_ECDSA
• CKM_ECDSA_SHA1
• CKM_ECDSA_SHA224
• CKM_ECDSA_SHA256
• CKM_ECDSA_SHA384
• CKM_ECDSA_SHA512

Digest
• CKM_SHA1
• CKM_SHA224
• CKM_SHA256
• CKM_SHA384
• CKM_SHA512

Encrypt/Decrypt
• CKM_AES_CBC
• CKM_AES_CBC_PAD
• CKM_AES_GCM

  **Note**
  When performing AES-GCM encryption, the HSM ignores the initialization vector (IV) in the request and uses an IV that it generates. The HSM writes the generated IV to the memory reference pointed to by the pIV element of the CK_GCM_PARAMS parameters structure that you supply.

• CKM_DES3_CBC
• CKM_DES3_CBC_PAD
• CKM_RSA_OAEP_PAD
• CKM_RSA_PKCS

**Key Derive**

• CKM_ECDH1_DERIVE

**Key Wrap**

• CKM_AES_KEY_WRAP

## Supported PKCS #11 APIs

The AWS CloudHSM software library for PKCS #11 supports the following PKCS #11 APIs.

• C_CreateObject
• C_Decrypt
• C_DecryptFinal
• C_DecryptInit
• C_DecryptUpdate
• C_DestroyObject
• C_DigestInit
• C_Digest
• C_Encrypt
• C_EncryptFinal
• C_EncryptInit
• C_EncryptUpdate
• C_FindObjects
• C_FindObjectsFinal
• C_FindObjectsInit
• C_Finalize
• C_GenerateKey
• C_GenerateKeyPair
• C_GenerateRandom
• C_GetAttributeValue
• C_GetFunctionList
• C_GetInfo
• C_GetMechanismInfo
• C_GetMechanismList
Install and Use the AWS CloudHSM Software Library for PKCS #11

AWS CloudHSM provides two software libraries for PKCS #11. One uses Redis to create a local cache for efficiency, which can increase performance. However, consider the following before you choose the library with Redis:

**Considerations**

- Redis caches all operations performed with the PKCS #11 library running on the same host, but it's not aware of operations that are performed outside the library. You can use another interface to modify keys on the HSMs in your cluster—for example, the command line tools (p. 67) or software library for Java (p. 171). But if you do, the Redis cache can fall out of sync with the HSMs. You can rebuild the cache to bring it back into sync, but it doesn't happen automatically.

- The PKCS #11 library expects that it's the only Redis consumer on the host, and it modifies some of the Redis configuration accordingly. Don't use the PKCS #11 library with Redis when you have other applications that use Redis on the same host.

**Topics**

- Prerequisites (p. 168)
- Install the PKCS #11 Library (p. 168)
- Specify a PIN for PKCS #11 (p. 169)
Prerequisites

Before you can use the AWS CloudHSM software library for PKCS #11, you need the AWS CloudHSM client.

The client is a daemon that establishes end-to-end encrypted communication with the HSMs in your cluster, and the PKCS #11 library communicates locally with the client. If you haven’t installed and configured the AWS CloudHSM client package, do that now by following the steps at Install the Client (Linux) (p. 32). After you install and configure the client, use the following command to start it.

Amazon Linux

```bash
$ sudo start cloudhsm-client
```

Ubuntu

```bash
$ sudo service cloudhsm-client start
```

Install the PKCS #11 Library

Complete the following steps to install or update the AWS CloudHSM software library for PKCS #11.

Use the following commands to download and install the PKCS #11 library.

Amazon Linux

```bash
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11-latest.x86_64.rpm
```

```bash
$ sudo yum install -y ./cloudhsm-client-pkcs11-latest.x86_64.rpm
```

Ubuntu

```bash
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11_latest_amd64.deb
```

```bash
$ sudo dpkg -i cloudhsm-client-pkcs11_latest_amd64.deb
```

After you complete the preceding steps, you can find the PKCS #11 libraries in `/opt/cloudhsm/lib`.

To install (or update) the PKCS #11 library with Redis

1. Complete the preceding steps to install the PKCS #11 library.
2. Complete the following steps to enable the repository named Extra Packages for Enterprise Linux.
   a. Use a text editor to open the file `/etc/yum.repos.d/epel.repo`. This requires administrative permissions (sudo).
   b. In the [epel] configuration, ensure that `enabled` is set to 1, as shown in the following example.

```
[epel]
name=Extra Packages for Enterprise Linux 6 - #basearch
```
Configure AWS CloudHSM

c. Save the file, and then close it.

3. Use the following command to change your working directory to `/opt/cloudhsm`.

```bash
$ cd /opt/cloudhsm
```

4. Use the following command to install Redis and configure it for the PKCS #11 library.

```bash
$ sudo /opt/cloudhsm/bin/setup_redis
```

5. Use the following command to start the Redis service.

```bash
$ sudo service redis start
```

6. Use the following command to build the Redis cache, specifying the user name and password of a crypto user (CU) on the HSM.

```bash
$ /opt/cloudhsm/bin/build_keystore -s <CU user name> -p <password>
```

Specify a PIN for PKCS #11

The PKCS #11 interface defines a PIN (personal identification number) for users of a cryptographic token. To specify a PKCS #11 PIN in the context of the AWS CloudHSM software library for PKCS#11, use the following format.

```
<HSM_user_name>:<password>
```

For example, the following is the PKCS #11 PIN for an HSM crypto user (CU) with user name `CryptoUser` and password `CUPassword123!`.

```
CryptoUser:CUPassword123!
```

AWS CloudHSM Software Library for OpenSSL

The AWS CloudHSM software library for OpenSSL is an OpenSSL dynamic engine that supports the OpenSSL command line interface and EVP APIs. The software library allows applications that are integrated with OpenSSL, such as the Nginx and Apache web servers, to offload their cryptographic processing to the HSMs in your AWS CloudHSM cluster. The engine supports the following key types and ciphers:

- RSA key generation for 2048, 3072, and 4096-bit keys.
- RSA sign/verify.
- RSA encrypt/decrypt.
- Random number generation that is cryptographically secure and FIPS-validated.

For more information, see the following topic.
Install and Use the AWS CloudHSM Software Library for OpenSSL

Before you can use the AWS CloudHSM software library for OpenSSL, you need the AWS CloudHSM client.

The client is a daemon that establishes end-to-end encrypted communication with the HSMs in your cluster, and the OpenSSL library communicates locally with the client. If you haven't installed and configured the AWS CloudHSM client package, do that now by following the steps at Install the Client (Linux) (p. 32). After you install and configure the client, use the following command to start it.

Amazon Linux

```
$ sudo start cloudhsm-client
```

Ubuntu

```
$ sudo service cloudhsm-client start
```

Install and Configure the OpenSSL Library

Complete the following steps to install (or update) and configure the AWS CloudHSM software library for OpenSSL.

To install (or update) and configure the OpenSSL library

1. Use the following command to download the OpenSSL library.

Amazon Linux

```
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn-latest.x86_64.rpm
```

Ubuntu

```
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn_latest_amd64.deb
```

2. Use the following command to install the OpenSSL library.

Amazon Linux

```
$ sudo yum install -y ./cloudhsm-client-dyn-latest.x86_64.rpm
```
Ubuntu

```bash
$sudo dpkg -i cloudhsm-client-dyn_latest_amd64.deb
```

After you complete the preceding step, you can find the OpenSSL library at `/opt/cloudhsm/lib/libcloudhsm_openssl.so`.

3. Use the following command to set an environment variable named `n3fips_password` that contains the credentials of a crypto user (CU).

```bash
# export n3fips_password=<HSM user name>:<password>
```

**Use the OpenSSL Library**

To use the AWS CloudHSM software library for OpenSSL from the OpenSSL command line, use the `-engine` option to specify the OpenSSL dynamic engine named `cloudhsm`. For example:

```bash
$ openssl s_server -cert server.crt -key server.key -engine cloudhsm
```

To use the AWS CloudHSM software library for OpenSSL from an OpenSSL-integrated application, ensure that your application uses the OpenSSL dynamic engine named `cloudhsm`. The shared library for the dynamic engine is located at `/opt/cloudhsm/lib/libcloudhsm_openssl.so`.

**AWS CloudHSM Software Library for Java**

The AWS CloudHSM software library for Java is a provider implementation for the Sun Java JCE (Java Cryptography Extension) provider framework. It includes implementations for interfaces and engine classes in the JCA (Java Cryptography Architecture) standard. For more information about installing and using the Java library, see the following topics.

**Topics**
- Install and Use the AWS CloudHSM Software Library for Java (p. 171)
- Supported Mechanisms (p. 175)
- Example Code Prerequisites (p. 178)
- Code Samples for the AWS CloudHSM Software Library for Java (p. 178)

**Install and Use the AWS CloudHSM Software Library for Java**

Before you can use the AWS CloudHSM software library for Java, you need the AWS CloudHSM client. The client is a daemon that establishes end-to-end encrypted communication with the HSMs in your cluster, and the Java library communicates locally with the client. If you haven't installed and configured the AWS CloudHSM client package, do that now by following the steps at Install the Client (Linux) (p. 32). After you install and configure the client, use the following command to start it.

**Amazon Linux**

```bash
# sudo start cloudhsm-client
```
Installing the Java Library

Complete the following steps to install or update the AWS CloudHSM software library for Java.

Use the following commands to download and install the Java library.

**Amazon Linux**

```
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce-latest.x86_64.rpm
$ sudo yum install -y ./cloudhsm-client-jce-latest.x86_64.rpm
```

**Ubuntu**

```
$ wget https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce_latest_amd64.deb
$ sudo dpkg -i cloudhsm-client-jce_latest_amd64.deb
```

After you complete the preceding steps, you can find the following Java library files:

- `/opt/cloudhsm/java/cloudhsm-1.0.jar`
- `/opt/cloudhsm/java/cloudhsm-test-1.0.jar`
- `/opt/cloudhsm/java/hamcrest-all-1.3.jar`
- `/opt/cloudhsm/java/junit.jar`
- `/opt/cloudhsm/java/log4j-api-2.8.jar`
- `/opt/cloudhsm/java/log4j-core-2.8.jar`
- `/opt/cloudhsm/lib/libcaviumjca.so`

Testing the Java Library

To test that the AWS CloudHSM software library for Java works with the HSMs in your cluster, complete the following steps.

**To test the Java library with your cluster**

1. (Optional) If you don't already have Java installed in your environment, use the following command to install it.
Amazon Linux

$ sudo yum install -y java-1.8.0-openjdk

Ubuntu

$ sudo apt-get install openjdk-8-jre

2. Use the following commands to set the necessary environment variables. Replace `<HSM user name>` and `<password>` with the credentials of a crypto user (CU).

$ export LD_LIBRARY_PATH=/opt/cloudhsm/lib

$ export HSM_PARTITION=PARTITION_1

$ export HSM_USER=<HSM user name>

$ export HSM_PASSWORD=<password>

3. Use the following command to run the RSA test.

$ java8 -cp "/usr/share/java/junit4.jar:/opt/cloudhsm/java/*" \ 
org.junit.runner.JUnitCore \ 
com.cavium.unittest.TestRSA

To run a different test, replace `TestRSA` in the preceding command with one of the following values:

- TestAESKeyGen
- TestAes
- TestBlockCipherBuffer
- TestKeyStore
- TestLoginManager
- TestMac
- TestMessageDigest
- TestMessageUtil
- TestPadding
- TestProvider
- TestRSA
- TestRSAKeyGen
- TestSUNJce
- TestUtils

### Providing Credentials to the Java Library

Your Java application must be authenticated by the HSMs in your cluster before it can use them. Each application can use one session, which is established by providing credentials in one of the following ways. In the following examples, replace `<HSM user name>` and `<password>` with the credentials of a crypto user (CU).
Installing the Java Library

The first of the following examples shows how to use the LoginManager class to manage sessions in your code. Instead, you can let the library implicitly manage sessions when your application starts, as shown in the remaining examples. However in these latter cases it might be difficult to understand error conditions when the provided credentials are invalid or the HSMs are having problems. When you use the LoginManager class, you have more control over how your application deals with failures.

- Provide a file named HsmCredentials.properties in your application’s CLASSPATH. The file’s contents should look like the following:

```
HSM_PARTITION = PARTITION_1
HSM_USER = <HSM user name>
HSM_PASSWORD = <password>
```

- Provide Java system properties when running your application. The following examples show two different ways that you can do this:

```
$ java -DHSM_PARTITION=PARTITION_1 -DHSM_USER=<HSM user name> -DHSM_PASSWORD=<password>
```

```
System.setProperty("HSM_PARTITION","PARTITION_1");
System.setProperty("HSM_USER","<HSM user name>");
System.setProperty("HSM_PASSWORD","<password>");
```

- Set system environment variables. For example:

```
$ export HSM_PARTITION=PARTITION_1
```

```
$ export HSM_USER=<HSM user name>
```

```
$ export HSM_PASSWORD=<password>
```

Key Management Basics in the Java Library

The following key management basics can help you get started with the AWS CloudHSM software library for Java.

**To import a key implicitly**

To implicitly import a key, pass the key to any API that accepts one. If the key is the correct type for the specified operation, the HSMs automatically import and use the provided key.

**To import a key explicitly**

Use the utility class named ImportKey to import a key and set its attributes.

**To make a session key persist**

Use the Util.persistKey() method to make a session key into a token key—that is, to persist the key in the HSMs.

**To delete a key**

Use the Util.deleteKey() method to delete a key.
Supported Mechanisms

For information about the Java Cryptography Architecture (JCA) interfaces and engine classes supported by AWS CloudHSM, see the following topics.

Topics
- Supported Keys (p. 175)
- Supported Ciphers (p. 175)
- Supported Digests (p. 176)
- Supported Hash-Based Message Authentication Code (HMAC) Algorithms (p. 177)
- Supported Sign/Verify Mechanisms (p. 177)

Supported Keys

The AWS CloudHSM software library for Java enables you to generate the following key types.

- **RSA** – 2048-bit to 4096-bit RSA keys, in increments of 256 bits.
- **AES** – 128, 192, and 256-bit AES keys.
- **EC** key pairs for NIST curves P256 and P384.

In addition to standard parameters, we support the following parameters for each key that is generated.

- **Label**: A key label that you can use to search for keys.
- **isExtractable**: Indicates whether the key can be exported from the HSM. (Imported keys are never extractable.)
- **isPersistent**: Indicates whether the key remains on the HSM when the current session ends.

Supported Ciphers

The AWS CloudHSM software library for Java supports the following algorithm, mode, and padding combinations.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mode</th>
<th>Padding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>CBC</td>
<td>AES/CBC/NoPadding</td>
<td>Implements Cipher.ENCRYPT_MODE, Cipher.DECRYPT_MODE, Cipher.WRAP_MODE, Cipher.UNWRAP_MODE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AES/CBC/PKCS5Padding</td>
<td></td>
</tr>
<tr>
<td>AES</td>
<td>ECB</td>
<td>NoPadding</td>
<td>Implements Cipher.WRAP_MODE and Cipher.UNWRAP_MODE. Use Transformation AES.</td>
</tr>
<tr>
<td>AES</td>
<td>GCM</td>
<td>AES/GCM/NoPadding</td>
<td>Implements Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE,</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Mode</td>
<td>Padding</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>--------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>DESede (Triple DES)</td>
<td>CBC</td>
<td>DESede/CBC/NoPadding</td>
<td>When performing AES-GCM encryption, the HSM ignores the initialization vector (IV) in the request and uses an IV that it generates. When the operation completes, you must call Cipher.getIV() to get the IV.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DESede/CBC/PKCS5Padding</td>
<td>Implement Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE. The key generation routines accept a size of 168 or 192 bits. However, internally, all DESede keys are 192 bits.</td>
</tr>
<tr>
<td>RSA</td>
<td>ECB</td>
<td>RSA/ECB/NoPadding</td>
<td>Implement Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE. OAEPPadding is OAEP with the SHA-1 padding type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/PKCS1Padding</td>
<td></td>
</tr>
<tr>
<td>RSA</td>
<td>ECB</td>
<td>RSA/ECB/OAEPPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPWithSHA-1ANDMGFPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/PKCS1Padding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPWithSHA-224ANDMGFPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPWithSHA-256ANDMGFPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPWithSHA-384ANDMGFPadding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA/ECB/OAEPWithSHA-512ANDMGFPadding</td>
<td></td>
</tr>
</tbody>
</table>

**Supported Digests**

The AWS CloudHSM software library for Java supports the following message digests.
Supported Mechanisms

- SHA-1
- SHA-224
- SHA-256
- SHA-384
- SHA-512

Supported Hash-Based Message Authentication Code (HMAC) Algorithms

The AWS CloudHSM software library for Java supports the following HMAC algorithms.

- HmacSHA1
- HmacSHA224
- HmacSHA256
- HmacSHA384
- HmacSHA512

Supported Sign/Verify Mechanisms

The AWS CloudHSM software library for Java supports the following types of signature and verification.

**RSA Signature Types**

- NONEwithRSA
- SHA1withRSA
- SHA224withRSA
- SHA256withRSA
- SHA384withRSA
- SHA512withRSA
- SHA1withRSA/PSS
- SHA224withRSA/PSS
- SHA256withRSA/PSS
- SHA384withRSA/PSS
- SHA512withRSA/PSS

**ECDSA Signature Types**

- NONEwithECDSA
- SHA1withECDSA
- SHA224withECDSA
- SHA256withECDSA
- SHA384withECDSA
- SHA512withECDSA
Example Code Prerequisites

The Java code samples included in this documentation show you how to use the AWS CloudHSM software library for Java (p. 171) to perform basic tasks in AWS CloudHSM. Before running the samples, perform the following steps to set up your environment:

- Install and configure the AWS CloudHSM software library for Java (p. 171) and the AWS CloudHSM client package (p. 32).
- Set up a valid HSM user name and password (p. 46). Cryptographic user (CU) permissions are sufficient for these tasks. Your application uses these credentials to log in to the HSM in each example. The examples use the `loginWithExplicitCredentials()` method (p. 179) to log in to an HSM, but you can use the method that you prefer.
- Decide how to specify the Cavium provider (p. 178).

Code Samples for the AWS CloudHSM Software Library for Java

The following Java code examples show you how to use the AWS CloudHSM software library for Java to perform basic tasks in AWS CloudHSM.

Topics

- Specify the Cavium Provider (p. 178)
- Log In To and Out Of an HSM (p. 179)
- Generate an AES Symmetric Key (p. 180)
- Generate Triple DES Symmetric Key (p. 183)
- Encrypting and Decrypting with AES GCM (p. 185)
- Generate an RSA Asymmetric Key Pair (p. 188)
- Generate an Elliptical Curve (EC) Asymmetric Key Pair (p. 192)
- Encrypting and Decrypting with an RSA Key Pair (p. 195)
- Signing a Message (p. 197)
- Create a Hash (p. 199)
- Create an HMAC (p. 199)
- Managing Keys in an HSM (p. 200)

Specify the Cavium Provider

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

The Java examples included in this documentation use the Cavium provider in the AWS CloudHSM client package. To specify the Cavium provider, use either of the following techniques:

- Create an instance of the Cavium provider and pass it to the methods that take a provider, such as this `KeyGenerator.getInstance()` method.

```java
CaviumProvider cp = new CaviumProvider();
```
Add the Cavium provider to the $JAVA_HOME/jre/lib/security/java.security file. Then use the Cavium string to refer to the provider. If you do not specify a provider, Java uses the first provider in the file, but it’s best to specify the provider explicitly.

**Important**
The Cavium JCA provider cannot be installed as the highest priority provider.

```
// Add the Cavium provider to the Java provider file but make
// sure that it's not in the first slot within the file.
Security.addProvider(new CaviumProvider());

// Or insert the provider into any specific position other than the first.
Security.insertProviderAt(new CaviumProvider(), 10);

// Then you can use "Cavium" where necessary to specify the provider.
keyGen = KeyGenerator.getInstance("AES","Cavium");
```

Log In To and Out Of an HSM

**Example code only - Not for production use**

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This example demonstrates multiple ways for your Java application to log in to the HSMs in your cluster. These methods use the LoginManager class to manage sessions in the code. Each provides credentials in a different way.

**Note**
The remaining samples in the Code Samples for the AWS CloudHSM Software Library for Java (p. 178) section use the loginWithEnvVars() method to log in to an HSM. You can change them to use the method that you prefer.

**Note**
To run this example, you must replace CryptoUser and passw0rd123! with a valid AWS CloudHSM user name and password. Also, the loginWithEnvVariables() method fails unless you have set the HSM environment variables in advance.

For more details about providing credentials to the Java library, see Providing Credentials to the Java Library (p. 173)

```java
package com.amazonaws.cloudhsm.examples;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.LoginManager;

public class LoginLogoutExampleRunner {
    public static void main(String[] z) {
        System.out.println("*********** Logging in Using System.Properties ***********");
        loginUsingJavaProperties();

        System.out.println("*********** Logging in Using Environment Variables ***********");
        loginWithEnvVariables();

        System.out.println("Logging out of Session");
        logout();
    }
}
```
/**
 * Method #1: Use Java system properties
 * 
 * Replace "CryptoUser" and "CUPassword123!" with a valid user name and password.
 */
public static void loginUsingJavaProperties() {
    System.setProperty("HSM_PARTITION","PARTITION_1");
    System.setProperty("HSM_USER","cryptoUser");
    System.setProperty("HSM_PASSWORD","passw0rd@123");
    try {
        LoginManager lm = LoginManager.getInstance();
        int appID = lm.getAppid();
        System.out.println("App ID = "+ appID);
        int sessionID = lm.getSessionid();
        System.out.println("Session ID = "+ sessionID);
    } catch (CFM2Exception e) {
        e.printStackTrace();
    }
}

/**
 * Method #2: Use environment variables
 * 
 * Before invoking the JVM, set the following environment variables
 * using a valid user name and password
 * export HSM_PARTITION=PARTITION_1
 * export HSM_USER=<hsm-user-name>
 * export HSM_PASSWORD=<password>
 */
public static void loginWithEnvVariables() {
    try {
        LoginManager lm = LoginManager.getInstance();
        int appID = lm.getAppid();
        System.out.println("App ID = "+ appID);
        int sessionID = lm.getSessionid();
        System.out.println("Session ID = "+ sessionID);
    } catch (CFM2Exception e) {
        e.printStackTrace();
    }
}

public static void logout() {
    try {
        LoginManager.getInstance().logout();
    } catch (CFM2Exception e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}

Generate an AES Symmetric Key

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This example shows how to generate a 256-bit Advanced Encryption Standard (AES) symmetric key and save it in an HSM. By default, the keys that the HSM generates are not saved. To save a key, call
the makeKeyPersistant method below. You can save the key object and use the key handle in other operations.

**Note**
This example uses the loginWithEnvVars() method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM. You can substitute the login method that you prefer. Also, the example assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```java
package com.amazonaws.cloudhsm.examples.key.symmetric;

import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.Util;
import com.cavium.key.CaviumAESKey;
import com.cavium.key.parameter.CaviumAESKeyGenParameterSpec;
import com.cavium.provider.CaviumProvider;

public class AESSymmetricKeyGeneration {
    public static void main(String[] z) {
        LoginLogoutExample.loginWithEnvVars();
        new AESSymmetricKeyGeneration().generateAESKey(256, true);
        new AESSymmetricKeyGeneration().generateAESKey(256, "AESKeyCustomLabel", false, true);
        LoginLogoutExample.logout();
    }

    // Generate a key given the bit size and a Boolean value that specifies whether the key is
    // to be added to the HSM (persistent)
    public Key generateAESKey(int keySize, boolean isPersistent) {
        KeyGenerator keyGen;
        try {
            // Create an instance of the provider.
            keyGen = KeyGenerator.getInstance("AES","Cavium");

            // Generate the key.
            keyGen.init(keySize);
            SecretKey aesKey = keyGen.generateKey();
            System.out.println("Key Generated!");

            if(aesKey instanceof CaviumAESKey) {
                System.out.println("Key is of type CaviumAESKey");
                CaviumAESKey caviumAESKey = (CaviumAESKey) aesKey;

                // Save the key handle. You'll need this to perform future encryption and decryption operations.
                System.out.println("Key Handle = " + caviumAESKey.getHandle());

                // Get the key label generated by the SDK.
                System.out.println("Key Label = " + caviumAESKey.getLabel());

                // Get the Extractable property of the key.
                System.out.println("Is Key Extractable? : " + caviumAESKey.isExtractable());
            }
        } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
            e.printStackTrace();
        }
    }
}
```
// Get the Persistent property of the key.
System.out.println("Is Key Persistent? : " + caviumAESKey.isPersistent());

// By default, keys are not persistent. Make them Persistent here.
if(isPersistent){
    System.out.println("Setting Key as Persistent: ");
    makeKeyPersistant(caviumAESKey);
    System.out.println("Key is Persistent!");
}
System.out.println("Is Key Persistent? : " + caviumAESKey.isPersistent());

// Verify the key type and size.
System.out.println("Key Algo : " + caviumAESKey.getAlgorithm());
System.out.println("Key Size : " + caviumAESKey.getSize());

return aesKey;

} catch (NoSuchAlgorithmException e) {
    e.printStackTrace();
} catch (NoSuchProviderException e) {
    e.printStackTrace();
} catch (Exception e) {
    e.printStackTrace();
}
return null;

// This method allows you to specify the size in bits of the key, the private key label, whether the private key
// can be extracted, and whether the key is persistent.
public Key generateAESKey(int keySize, String keyLabel, boolean isExtractable, boolean isPersistent) {
    try {
        // Create an instance of the provider.
        KeyGenerator keyGen;

        // Generate the key.
        CaviumAESKeyGenParameterSpec aesSpec = new CaviumAESKeyGenParameterSpec(keySize, keyLabel, isExtractable, isPersistent);
        keyGen.init(aesSpec);
        SecretKey aesKey = keyGen.generateKey();
        System.out.println("Key Generated!");

        if(aesKey instanceof CaviumAESKey) {
            System.out.println("Key is of type CaviumAESKey");
            CaviumAESKey caviumAESKey = (CaviumAESKey) aesKey;

            // Save the key handle. You'll need this to perform future encryption and decryption operations.
            System.out.println("Key Handle = " + caviumAESKey.getHandle());

            // Get the key label.
            System.out.println("Key Label = " + caviumAESKey.getLabel());

            // Get the Extractable property of the key.
            System.out.println("Is Key Extractable? : " + caviumAESKey.isExtractable());

            // Get the Persistent property of the key.
            System.out.println("Is Key Persistent? : " + caviumAESKey.isPersistent());

            // Verify the key type and size.
            System.out.println("Key Algo : " + caviumAESKey.getAlgorithm());
            System.out.println("Key Size : " + caviumAESKey.getSize());
        }
    } catch (NoSuchAlgorithmException e) {
        e.printStackTrace();
    } catch (NoSuchProviderException e) {
        e.printStackTrace();
    } catch (Exception e) {
        e.printStackTrace();
    }
    return null;
}
Generate Triple DES Symmetric Key

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This example shows how to generate a 168-bit Triple DES (3DES) symmetric key and save it in an HSM. By default, the keys that the HSM generates are not saved. To save a key, call the makeKeyPersistant method below. You can save the key object and use the key handle in other operations.

**Note**
This example uses the loginWithEnvVars() method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM. You can substitute the login method that you prefer. Also, the example assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```java
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.Util;
import com.cavium.key.CaviumDES3Key;
import com.cavium.key.parameter.CaviumDESKeyGenParameterSpec;

public class DES3SymmetricKeyGeneration {
    public static void main(String[] args) {
        // Generate the key
        KeyGenerator keyGenerator = SecretKeyFactory.getInstance("DES-168");
        keyGenerator.init(168); // 168-bit key
        SecretKey key = keyGenerator.generateKey();

        // Save the key to the HSM.
        public static void makeKeyPersistant(Key key) {
            CaviumAESKey caviumAESKey = (CaviumAESKey) key;
            try {
                Util.persistKey(caviumAESKey);
                System.out.println("Added Key to HSM");
            } catch (CFM2Exception e) {
                e.printStackTrace();
            }
        }
    }
}
// The key size can be either 168 or 192 bits.
public static void main(String[] args) {
    LoginLogoutExample.loginWithEnvVars();
    new DES3SymmetricKeyGeneration().generate3DesKey(168, true);
    new DES3SymmetricKeyGeneration().generate3DesKey(168, "DESKey-1", false, true);
    LoginLogoutExample.logout();
}

public Key generate3DesKey(int keySize, boolean isPersistent) {
    KeyGenerator keyGen;
    try {
        // Create an instance of the provider.
        keyGen = KeyGenerator.getInstance("DESede","Cavium");

        // Generate the key.
        keyGen.init(keySize);
        SecretKey des3Key = keyGen.generateKey();
        System.out.println("Key Generated!");

        if(des3Key instanceof CaviumDES3Key) {
            System.out.println("Key is of type CaviumDES3Key");
            CaviumDES3Key ck = (CaviumDES3Key) des3Key;

            // Save the key handle. You'll need this to perform future encryption and decryption operations.
            System.out.println("Key Handle = " + ck.getHandle());

            // Get the key label generated by the SDK.
            System.out.println("Key Label = " + ck.getLabel());

            // Get the Extractable property of the key.
            System.out.println("Is Key Extractable? : " + ck.isExtractable());

            // Get the Persistent property of the key.
            System.out.println("Is Key Persistent? : " + ck.isPersistent());

            // By default, keys are not persistent. Make them Persistent here.
            if(isPersistent){
                System.out.println("Setting Key as Persistent:");
                makeKeyPersistant(ck);
                System.out.println("Key is Persistent!");
            }
            System.out.println("Is Key Persistant? : " + ck.isPersistent());

            // Verify the key type and size.
            System.out.println("Key Algo : " + ck.getAlgorithm());
            System.out.println("Key Size : " + ck.getSize());
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        } catch (NoSuchProviderException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return des3Key;
    } catch (NoSuchAlgorithmException e) {
        e.printStackTrace();
    } catch (NoSuchProviderException e) {
        e.printStackTrace();
    } catch (Exception e) {
        e.printStackTrace();
    }
    return null;
}

// This method allows you to specify the size in bits of the key, the private key label, whether the private key
// can be extracted, and whether the key is persistent.
public Key generate3DesKey(int keySize, String keyLabel, boolean isExtractable, boolean isPersistent) {
    KeyGenerator keyGen;
try {
    // Create an instance of the provider.
    keyGen = KeyGenerator.getInstance("DESede","Cavium");

    // Generate the key.
    CaviumDESKeyGenParameterSpec desKeyGenSpec = new
    CaviumDESKeyGenParameterSpec(keySize, keyLabel, isExtractable, isPersistent);
    keyGen.init(desKeyGenSpec);
    SecretKey des3Key = keyGen.generateKey();
    System.out.println("Key Generated!");

    if(des3Key instanceof CaviumDES3Key) {
        System.out.println("Key is of type CaviumDES3Key");
        CaviumDES3Key ck = (CaviumDES3Key) des3Key;

        // Save the key handle. You'll need this to perform future encryption and
        // decryption operations.
        System.out.println("Key Handle = " + ck.getHandle());

        // Get the key label.
        System.out.println("Key Label = " + ck.getLabel());

        // Get the Extractable property of the key.
        System.out.println("Is Key Extractable? : " + ck.isExtractable());

        // Get the Persistent property of the key.
        System.out.println("Is Key Persistent? : " + ck.isPersistent());

        // Verify the key type and size.
        System.out.println("Key Algo : " + ck.getAlgorithm());
        System.out.println("Key Size : " + ck.getSize());
    }
    return des3Key;
} catch (NoSuchAlgorithmException e) { e.printStackTrace();
} catch (NoSuchProviderException e) { e.printStackTrace();
} catch (Exception e) { e.printStackTrace();
} return null;
}

// Save the key to the HSM.
public static void makeKeyPersistant(Key key) {
    CaviumDES3Key caviumDES3Key = (CaviumDES3Key) key;
    try {
        Util.persistKey(caviumDES3Key);
        System.out.println("Added Key to HSM");
    } catch (CFM2Exception e) { e.printStackTrace();
}
}

Encrypting and Decrypting with AES GCM

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.
The example shows how to use the AES algorithm with the Galois Counter Mode (GCM) to encrypt and decrypt a message. The example uses an initialization vector (IV), additional authenticated data (AAD), and no padding. The `encrypt()` method returns an object that includes the ciphertext, the IV, the length of the ciphertext, and the length of the IV.

**Note**
This example uses the `loginWithEnvVars()` method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM. This sample uses the `AESSymmetricKeyGeneration` discussed in the Create an AES Key (p. 180). The sample assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the `Cavium` string.

```java
package com.amazonaws.cloudhsm.examples.crypto.symmetric;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.util.Arrays;
import java.util.Base64;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.GCMParameterSpec;
import com.amazonaws.cloudhsm.examples.key.symmetric.AESSymmetricKeyGeneration;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.cavium.key.CaviumAESKey;
public class AESGCMEncryptDecryptExample {
    String plainText = "This!";                    // String to encrypt.
    String aad = "aad";                            // Additional authenticated data
    String transformation = "AES/GCM/NoPadding";   // No padding
    int tagLengthInBytes = 16;                     // Tag length
    int ivSizeReturnedByHSM;                       // Size of IV returned by HSM
    public static void main(String[] z) {
        AESGCMEncryptDecryptExample obj = new AESGCMEncryptDecryptExample();
        // Log in to HSM with cryptographic user permissions.
        LoginLogoutExample.loginWithEnvVars();
        // Generate a new AES Key to use for encryption.
        Key key = AESSymmetricKeyGeneration().generateAESKey(256, true);
        byte[] iv = null;
        // Encrypt the plaintext.
        System.out.println("Performing AES Encryption Operation");
        byte[] result = obj.encrypt(obj.transformation, (CaviumAESKey) key, obj.plainText,
                                     obj.aad, obj.tagLengthInBytes);
        System.out.println("Plaintext Encrypted");
        System.out.println("Base64 Encoded Encrypted Text with IV = " +
                           Base64.getEncoder().encodeToString(result));
        System.out.println("Performing Decrypt Operation");
        // Extract the IV created by the HSM during encryption.
        iv = Arrays.copyOfRange(result, 0, obj.ivSizeReturnedByHSM);
    }
}
```
// Get the ciphertext.
byte[] cipherText = Arrays.copyOfRange(result, obj.ivSizeReturnedByHSM, result.length);
System.out.println("Base64 Encoded Cipher Text = "+Base64.getEncoder().encodeToString(cipherText));

// Decrypt the ciphertext.
byte[] decryptedText = obj.decrypt(obj.transformation, (CaviumAESKey) key, cipherText, iv, obj.aad, obj.tagLengthInBytes);
System.out.println("Plain Text = "+new String(decryptedText));
LoginLogoutExample.logout();
}

// Encrypt the plaintext.
public byte[] encrypt(String transformation, CaviumAESKey key, String plainText, String aad, int tagLength) {
try {
    // Create an encryption cipher.
    Cipher encCipher = Cipher.getInstance(transformation, "Cavium");

    // Configure the encryption cipher.
    encCipher.init(Cipher.ENCRYPT_MODE, key);
    encCipher.updateAAD(aad.getBytes());
    encCipher.update(plainText.getBytes());

    // Encrypt the plaintext data.
    byte[] ciphertext = encCipher.doFinal();

    // You'll get a new IV from the HSM after encryption. Save it. You'll need it to recreate the
    // GCM parameter spec for decryption. The IV returned by the HSM has a fixed length
    16 bytes.
    // Append the IV to the ciphertext for easier management.
    ivSizeReturnedByHSM = encCipher.getIV().length;
    byte[] finalResult = new byte[ivSizeReturnedByHSM + ciphertext.length];
    System.arraycopy(encCipher.getIV(), 0, finalResult, 0, ivSizeReturnedByHSM);
    System.arraycopy(ciphertext, 0, finalResult, ivSizeReturnedByHSM, ciphertext.length);
    return finalResult;
} catch (NoSuchAlgorithmException | NoSuchProviderException | NoSuchPaddingException e) {
    e.printStackTrace();
} catch (InvalidKeyException e) {
    e.printStackTrace();
} catch (IllegalBlockSizeException e) {
    e.printStackTrace();
} catch (BadPaddingException e) {
    e.printStackTrace();
}
return null;
}

// Decrypt the ciphertext using the specified algorithm, key, IV, and AAD.
public byte[] decrypt(String transformation, CaviumAESKey key, byte[] cipherText, byte[] iv, String aad, int tagLength) {
    Cipher decCipher;
    try {
        // Create the decryption cipher.
        decCipher = Cipher.getInstance(transformation, "Cavium");

        // Create a GCM parameter spec from the IV.
        GCMPacketSpec gcmSpec = new GCMPacketSpec(tagLengthInBytes * Byte.SIZE, iv);

        // Configure the decryption cipher.
        decCipher.init(Cipher.DECRYPT_MODE, key, gcmSpec);
        decCipher.updateAAD(aad.getBytes());
    } catch (NoSuchAlgorithmException | NoSuchProviderException | NoSuchPaddingException e) {
        e.printStackTrace();
    } catch (InvalidKeyException e) {
        e.printStackTrace();
    } catch (IllegalBlockSizeException e) {
        e.printStackTrace();
    } catch (BadPaddingException e) {
        e.printStackTrace();
    }
    return null;
}
// Decrypt the ciphertext and return the plaintext.
return decCipher.doFinal(cipherText);

} catch (NoSuchAlgorithmException | NoSuchProviderException | NoSuchPaddingException e)
{
  e.printStackTrace();
} catch (InvalidKeyException e) {
  e.printStackTrace();
} catch (InvalidAlgorithmParameterException e) {
  e.printStackTrace();
} catch (IllegalBlockSizeException e) {
  e.printStackTrace();
} catch (BadPaddingException e) {
  e.printStackTrace();
}
return null;
}

Generate an RSA Asymmetric Key Pair

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This example shows how to generate an RSA asymmetric key pair and save the keys in an HSM. By default, the keys that the HSM generates are not saved. To save a key, call the makeKeyPersistant method below. You can save the key object and use the key handle in other operations.

Note
This example uses the loginWithEnvVars() method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM. You can substitute the login method that you prefer. Also, the example assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```java
package com.amazonaws.cloudhsm.examples.key.asymmetric;
import java.math.BigInteger;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.Util;
import com.cavium.key.CaviumKey;
import com.cavium.key.CaviumRSAPrivateKey;
import com.cavium.key.CaviumRSAPublicKey;
import com.cavium.key.parameter.CaviumRSAKeyGenParameterSpec;
public class RSAAsymmetricKeyGeneration {
```
```java
public static void main(String[] args) {
    LoginLogoutExample.loginWithEnvVars();
    new RSAAsymmetricKeyGeneration().generateRSAKeyPair(2048, new BigInteger("65537"), true);
    new RSAAsymmetricKeyGeneration().generateRSAKeyPair(2048, new BigInteger("65537"), "publicKeyLabel-1", "privateKeyLabel-1", false, true);
    LoginLogoutExample.logout();
}

public KeyPair generateRSAKeyPair(int keySize, BigInteger exponent, boolean isPersistant) {
    KeyPairGenerator keyPairGen;
    try {
        // Create an instance of the provider.
        keyPairGen = KeyPairGenerator.getInstance("RSA", "Cavium");

        // Generate the key pair.
        keyPairGen.initialize(new CaviumRSAKeyGenParameterSpec(keySize, exponent));
        KeyPair kp = keyPairGen.generateKeyPair();
        if (kp == null) {
            System.out.println("Failed to generate keypair");
        }

        // Get the key pair.
        RSAPrivateKey privKey = (RSAPrivateKey) kp.getPrivate();
        RSAPublicKey pubKey = (RSAPublicKey) kp.getPublic();
        System.out.println("Generated RSA Key Pair!");

        if (privKey instanceof CaviumRSAPrivateKey) {
            CaviumRSAPrivateKey cavRSAPrivateKey = (CaviumRSAPrivateKey) privKey;

            // Save the private key handle. You’ll need this to perform future encryption and decryption operations.
            System.out.println("Private Key Handle = " + cavRSAPrivateKey.getHandle());

            // Get the private key label generated by the SDK.
            System.out.println("Private Key Label = " + cavRSAPrivateKey.getLabel());

            // Get the Extractable property of the private key.
            System.out.println("Is Private Key Extractable = " + cavRSAPrivateKey.isExtractable());

            // Get the Persistent property of the private key.
            System.out.println("Is Private Key Persistent = " + cavRSAPrivateKey.isPersistent());

            // By default, keys are not persistent. Make them Persistent here.
            if(isPersistant) {
                makeKeyPersistant(cavRSAPrivateKey);
                System.out.println("Added RSA Private Key to HSM");
            }

            System.out.println("Is Private Key Persistent = " + cavRSAPrivateKey.isPersistent());

            // Verify the key type and size.
            System.out.println("Key Algo : " + cavRSAPrivateKey.getAlgorithm());
            System.out.println("Key Size : " + cavRSAPrivateKey.getKeySize());
        }

        if(pubKey instanceof CaviumRSAPublicKey) {
            CaviumRSAPublicKey cavRSAPublicKey = (CaviumRSAPublicKey) pubKey;

            // Save the public key handle. You’ll need this to perform future encryption and decryption operations.
        }
    }
    catch (Exception e) {
        e.printStackTrace();
    }
}
```
System.out.println("Public Key Handle = " + cavRSAPublicKey.getHandle());

// Get the public key label generated by the SDK.
System.out.println("Public Key Label = " + cavRSAPublicKey.getLabel());

// Get the Extractable property of the public key.
System.out.println("Is Public Key Extractable = " + cavRSAPublicKey.isExtractable());

// Get the Persistent property of the public key.
System.out.println("Is Public Key Persistent = " + cavRSAPublicKey.isPersistent());

// By default, keys are not persistent. Make them Persistent here.
if(isPersistant) {
    System.out.println("Setting Public Key as Persistent:");
    makeKeyPersistant(cavRSAPublicKey);
    System.out.println("Added RSA Public Key to HSM");
}System.out.println("Is Public Key Persistent = " + cavRSAPublicKey.isPersistent());

// Verify the key type and size.
System.out.println("Public Key Algo : " + cavRSAPublicKey.getAlgorithm());
System.out.println("Public Key Size : " + cavRSAPublicKey.getSize());

return kp;

} catch (NoSuchAlgorithmException | NoSuchProviderException e) {
    e.printStackTrace();
} catch (InvalidAlgorithmParameterException e) {
    e.printStackTrace();
}
return null;

// If invoking this method, you can specify public key label, private key label, if
private key can be extracted and if key pair is Persistent
// This method allows you to specify the following parameters:
// - The key size in bits.
// - The exponent.
// - The public and private key labels.
// - A Boolean value that specifies whether the keys can be extracted.
// - A Boolean value that specifies whether the keys should be saved to an HSM.
//
public KeyPair generateRSAKeyPair(int keySize, BigInteger exponent, String
publicKeyLabel, String privateKeyLabel, boolean isExtractable, boolean isPersistent) {
    KeyPairGenerator keyPairGen;
    try {
        // Create an instance of the provider.
        keyPairGen = KeyPairGenerator.getInstance("RSA", "Cavium");

        // Generate the key pair.
        CaviumRSAKeyGenParameterSpec rsaKeyGenSpec = new
        CaviumRSAKeyGenParameterSpec(keySize, exponent, publicKeyLabel, privateKeyLabel,
        isExtractable, isPersistent);
        keyPairGen.initialize(rsaKeyGenSpec);
        KeyPair kp = keyPairGen.generateKeyPair();
        if (kp == null) {
            System.out.println("Failed to generate keypair");
        }

        // Get the key pair.
        RSAPrivateKey privKey = (RSAPrivateKey) kp.getPrivate();
        RSAPublicKey pubKey = (RSAPublicKey) kp.getPublic();
        System.out.println("Generated RSA Key Pair!");
    } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
        e.printStackTrace();
    } catch (InvalidAlgorithmParameterException e) {
        e.printStackTrace();
    }
    return null;
}
if (privKey instanceof CaviumRSAPrivateKey) {
    CaviumRSAPrivateKey cavRSAPrivateKey = (CaviumRSAPrivateKey) privKey;

    // Save the private key handle. You'll need this to perform future encryption and
    // decryption operations.
    System.out.println("Private Key Handle = " + cavRSAPrivateKey.getHandle());

    // Get the private key label generated by the SDK.
    System.out.println("Private Key Label = " + cavRSAPrivateKey.getLabel());

    // Get the Extractable property of the private key.
    System.out.println("Is Private Key Extractable = " +
    cavRSAPrivateKey.isExtractable());

    // Get the Persistent property of the private key.
    System.out.println("Is Private Key Persistent = " +
    cavRSAPrivateKey.isPersistent());

    // Verify the key type and size.
    System.out.println("Private Key Algo : " + cavRSAPrivateKey.getAlgorithm());
    System.out.println("Private Key Size : " + cavRSAPrivateKey.getSize());
}

if(pubKey instanceof CaviumRSAPublicKey) {
    CaviumRSAPublicKey cavRSAPublicKey = (CaviumRSAPublicKey) pubKey;

    // Save the public key handle. You'll need this to perform future encryption and
    // decryption operations.
    System.out.println("Public Key Handle = " + cavRSAPublicKey.getHandle());

    // Get the public key label generated by the SDK.
    System.out.println("Public Key Label = " + cavRSAPublicKey.getLabel());

    // Get the Extractable property of the public key.
    System.out.println("Is Public Key Extractable = " +
    cavRSAPublicKey.isExtractable());

    // Get the Persistent property of the public key.
    System.out.println("Is Public Key Persistent = " + cavRSAPublicKey.isPersistent());

    // Verify the key type and size.
    System.out.println("Public Key Algo : " + cavRSAPublicKey.getAlgorithm());
    System.out.println("Public Key Size : " + cavRSAPublicKey.getSize());
}

return kp;
}

return null;

protected void makeKeyPersistant(CaviumKey key) {
    CaviumKey rsaKey = (CaviumKey) key;

    try {
        Util.persistKey(rsaKey);
        System.out.println("Added Key to HSM");
    } catch (CFM2Exception e) {
        e.printStackTrace();
    }

protected void makeKeyPersistant(CaviumKey key) {
    CaviumKey rsaKey = (CaviumKey) key;

    try {
        Util.persistKey(rsaKey);
        System.out.println("Added Key to HSM");
    } catch (CFM2Exception e) {
        e.printStackTrace();
    }

    // Save the key to the HSM.
}
Generate an Elliptical Curve (EC) Asymmetric Key Pair

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This example shows how to generate Elliptical Curve (EC) asymmetric key pair and save the keys in an HSM. By default, the keys that the HSM generates are not saved. To save a key, call the `makeKeyPersistant` method below. You can save the key object and use the key handle in other operations.

**Note**
This example uses the `loginWithEnvVars()` method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM. You can substitute the login method that you prefer. Also, the example assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```java
package com.amazonaws.cloudhsm.examples.key.asymmetric;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PrivateKey;
import java.security.PublicKey;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.amazonaws.cloudhsm.examples.operations.LoginLogoutExample;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.Util;
import com.cavium.key.CaviumECPrivateKey;
import com.cavium.key.CaviumECPublicKey;
import com.cavium.key.CaviumKey;
import com.cavium.key.parameter.CaviumECGenParameterSpec;
public class ECAsymmetricKeyGeneration {
    String[] supportedSpec = {"prime256v1", "secp256r1", "secp384r1"};

    public static void main(String[] z) {
        LoginLogoutExample.loginWithEnvVars();
        ECAsymmetricKeyGeneration obj = new ECAsymmetricKeyGeneration();
        obj.generateECKeyPair("secp256r1", true);
        obj.generateECKeyPair("secp256r1", "MyECPublicKey", "MyECPrivateKey", false, true);
        LoginLogoutExample.logout();
    }

    public KeyPair generateECKeyPair(String spec, boolean isPersistent) {
        KeyPairGenerator keyPairGen;
        try {
            // Create an instance of the provider.
            keyPairGen = KeyPairGenerator.getInstance("EC", "Cavium");
            // Generate the key pair.
        }
    }
}
```
CaviumECGenParameterSpec paramSpec = new CaviumECGenParameterSpec(spec);
keyPairGen.initialize(paramSpec);
KeyPair kp = keyPairGen.generateKeyPair();
if (kp == null) {
    System.out.println("Failed to generate keypair");
}

// Get the key pair.
PrivateKey privKey = kp.getPrivate();
PublicKey pubKey = kp.getPublic();
System.out.println("Generated EC Key Pair!");
if (privKey instanceof CaviumECPrivateKey) {
    CaviumECPrivateKey cavEcPrivateKey = (CaviumECPrivateKey) privKey;
    // Save the private key handle. You'll need this to perform future encryption and decryption operations.
    System.out.println("Private Key Handle = " + cavEcPrivateKey.getHandle());
    // Get the private key label generated by the SDK.
    System.out.println("Private Key Label = " + cavEcPrivateKey.getLabel());
    // Get the Extractable property of the private key.
    System.out.println("Is Private Key Extractable = " + cavEcPrivateKey.isExtractable());
    // Get the Persistent property of the private key.
    System.out.println("Is Private Key Persistent = " + cavEcPrivateKey.isPersistent()));
    if(isPersistent) {
        System.out.println("Setting Private Key as Persistent:");
        makeKeyPersistant(cavEcPrivateKey);
        System.out.println("Added EC Private Key to HSM");
    }
    System.out.println("Is Private Key Persistent = " + cavEcPrivateKey.isPersistent()));
}
if(pubKey instanceof CaviumECPublicKey) {
    CaviumECPublicKey cavEcPublicKey = (CaviumECPublicKey) pubKey;
    // Save the public key handle. You'll need this to perform future encryption and decryption operations.
    System.out.println("Public Key Handle = " + cavEcPublicKey.getHandle());
    // Get the public key label generated by the SDK.
    System.out.println("Public Key Label = " + cavEcPublicKey.getLabel());
    // Get the Extractable property of the public key.
    System.out.println("Is Public Key Extractable = " + cavEcPublicKey.isExtractable());
    // Get the Persistent property of the public key.
    System.out.println("Is Public Key Persistent = " + cavEcPublicKey.isPersistent()));
    if(isPersistent) {
        System.out.println("Setting Public Key as Persistent:");
        makeKeyPersistant(cavEcPublicKey);
        System.out.println("Added EC Public Key to HSM");
    }
    System.out.println("Is Private Key Persistent = " + cavEcPublicKey.isPersistent()));
}
return kp;
public KeyPair generateECKeyPair(String spec, String publicKeyLabel, String privateKeyLabel, boolean isExtractable, boolean isPersistent) {
    KeyPairGenerator keyPairGen;
    try {
        // Create an instance of the provider.
        keyPairGen = KeyPairGenerator.getInstance("EC", "Cavium");
        // Generate the key pair.
        CaviumECGenParameterSpec paramSpec = new CaviumECGenParameterSpec(spec, publicKeyLabel, privateKeyLabel, isExtractable, isPersistent);
        KeyPair kp = keyPairGen.generateKeyPair();
        if (kp == null) {
            System.out.println("Failed to generate keypair");
        }
        // Get the key pair.
        PrivateKey privKey = kp.getPrivate();
        PublicKey pubKey = kp.getPublic();
        System.out.println("Generated EC Key Pair!");
        if (privKey instanceof CaviumECPrivateKey) {
            CaviumECPrivateKey cavEcPrivateKey = (CaviumECPrivateKey) privKey;
            // Save the private key handle. You'll need this to perform future encryption and decryption operations.
            System.out.println("Private Key Handle = " + cavEcPrivateKey.getHandle());
            // Get the private key label generated by the SDK.
            System.out.println("Private Key Label = " + cavEcPrivateKey.getLabel());
            // Get the Extractable property of the private key.
            System.out.println("Is Private Key Extractable = " + cavEcPrivateKey.isExtractable());
            // Get the Persistent property of the private key.
            System.out.println("Is Private Key Persistent = " + cavEcPrivateKey.isPersistent());
        }
        if (pubKey instanceof CaviumECPublicKey) {
            CaviumECPublicKey cavEcPublicKey = (CaviumECPublicKey) pubKey;
            // Save the public key handle. You'll need this to perform future encryption and decryption operations.
            System.out.println("Public Key Handle = " + cavEcPublicKey.getHandle());
            // Get the public key label generated by the SDK.
        }
    } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
        e.printStackTrace();
    } catch (InvalidAlgorithmParameterException e) {
        e.printStackTrace();
    }
System.out.println("Public Key Label = " + cavEcPublicKey.getLabel());

// Get the Extractable property of the public key.
System.out.println("Is Public Key Extractable = " + cavEcPublicKey.isExtractable());

// Get the Persistent property of the public key.
System.out.println("Is Public Key Persistent = " + cavEcPublicKey.isPersistent());

return kp;

} catch (NoSuchAlgorithmException | NoSuchProviderException e) {
    e.printStackTrace();
} catch (InvalidAlgorithmParameterException e) {
    e.printStackTrace();
}

return null;

// Save the key to the HSM.
protected void makeKeyPersistant(CaviumKey key) {
    CaviumKey rsaKey = (CaviumKey) key;
    try {
        Util.persistKey(rsaKey);
    } catch (CFM2Exception e) {
        e.printStackTrace();
    }
}

Encrypting and Decrypting with an RSA Key Pair

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This sample shows how to encrypt and decrypt a string using a 2048-bit RSA key pair. The sample first encrypts a message by using the public key and then decrypts it by using the private key. It then encrypts using the private key and decrypts using the public key.

To generate the key pair, this sample calls the generateRSAKeyPair() method in the Create an RSA Key Pair (p. 188) sample. It uses the loginWithEnvVars() method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM, but you can substitute the login method that you prefer. Also, this sample assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```java
package com.amazonaws.cloudhsm.examples;

import java.security.InvalidKeyException;
import java.security.Key;
import java.security.KeyPair;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
```

195
import javax.crypto.IllegalArgumentException;
import javax.crypto.NoSuchPaddingException;
import org.bouncycastle.util.encoders.Base64;
import com.cavium.key.CaviumRSAPrivateKey;
import com.cavium.key.CaviumRSAPublicKey;

public class AsymmetricEncryptDecryptExample {
    String plainText = "This is a plaintext string";

    // Specify the encryption algorithm.
    String transformation = "RSA/ECB/OAEPWithSHA-224ANDMGF1Padding";

    public static void main(String[] args) {
        // Log into the HSM.
        LoginLogoutExample.loginWithEnvVars();

        // Generate a 2048-bit RSA key pair and save it in the HSM.
        KeyPair kp = new AsymmetricKeyGeneration().generateRSAKeyPair(2048, true);

        // Create an example object.
        AsymmetricEncryptDecryptExample obj = new AsymmetricEncryptDecryptExample();

        // Get the private key.
        CaviumRSAPrivateKey privKey = (CaviumRSAPrivateKey) (RSAPrivateKey) kp.getPrivate();

        // Get the public key.
        CaviumRSAPublicKey pubKey = (CaviumRSAPublicKey) (RSAPublicKey) kp.getPublic();

        // Encrypt with the public key.
        cipherText = obj.asymmetricKeyEncryption(obj.transformation, pubKey, obj.plainText);
        System.out.println("CipherText = " + Base64.toBase64String(cipherText));

        // Decrypt with private key.
        plainText = obj.asymmetricKeyDecryption(obj.transformation, privKey, cipherText);
        System.out.println("PlainText = " + plainText);

        LoginLogoutExample.logout();
    }

    // Encrypt with the specified algorithm and key.
    public byte[] asymmetricKeyEncryption(String transformation, Key key, String plainText) {
        try {
            Cipher cipher = Cipher.getInstance(transformation, "Cavium");
            cipher.init(Cipher.ENCRYPT_MODE, key);
            byte[] cipherText = cipher.doFinal(plainText.getBytes());
            return cipherText;
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        } catch (NoSuchProviderException e) {
            e.printStackTrace();
        } catch (NoSuchPaddingException e) {
            e.printStackTrace();
        } catch (IllegalArgumentException e) {
            e.printStackTrace();
        } catch (InvalidKeyException e) {
            e.printStackTrace();
        } catch (IllegalBlockSizeException e) {
            e.printStackTrace();
        } catch (BadPaddingException e) {
            e.printStackTrace();
        }
        return cipherText;
    }

    // Decrypt with the specified algorithm and key.
    public String asymmetricKeyDecryption(String transformation, Key key, byte[] cipherText) {
        try {
            Cipher cipher = Cipher.getInstance(transformation, "Cavium");
            cipher.init(Cipher.DECRYPT_MODE, key);
            return cipher.doFinal(cipherText);
        } catch (NoSuchAlgorithmException e) {
            e.printStackTrace();
        } catch (NoSuchProviderException e) {
            e.printStackTrace();
        } catch (NoSuchPaddingException e) {
            e.printStackTrace();
        } catch (InvalidKeyException e) {
            e.printStackTrace();
        } catch (IllegalBlockSizeException e) {
            e.printStackTrace();
        } catch (BadPaddingException e) {
            e.printStackTrace();
        }
        return null;
    }
}
public String asymmetricKeyDecryption(String transformation, Key key, byte[] cipherText) {
    try {
        Cipher cipher = Cipher.getInstance(transformation, "Cavium");
        cipher.init(Cipher.DECRYPT_MODE, key);
        // Decrypt the ciphertext.
        byte[] plainText = cipher.doFinal(cipherText);
        return new String(plainText);
    } catch (NoSuchAlgorithmException e) {
        e.printStackTrace();
    } catch (NoSuchProviderException e) {
        e.printStackTrace();
    } catch (NoSuchPaddingException e) {
        e.printStackTrace();
    } catch (InvalidKeyException e) {
        e.printStackTrace();
    } catch (IllegalBlockSizeException e) {
        e.printStackTrace();
    } catch (BadPaddingException e) {
        e.printStackTrace();
    }
    return null;
}

// Decrypt with the specified algorithm and key

private void connectToHSM(String logInName, String logInPassword) {
    try {
        // Establish authentication
        String cavium = "Cavium";
        String provider = "com.amazonaws.cloudhsm.providers.cavium.Cavium";
        String caviumClass = "com.amazonaws.cloudhsm.providers.cavium.Cavium";
        Class.forName(cavium); // Lazy load
        Class.forName(provider); // Lazy load

        // Log in to the HSM
        caviumClass.forName(caviumClass);
        caviumClass.forName(provider);
        Cavium cavium = new Cavium(caviumClass, provider);

        // Perform actions on the HSM
        cavium.logIn(logInName, logInPassword);
        cavium.decrypt(cipherText, key);
        cavium.sign(message, signature); // sign is a hash function
        cavium.verify(encryptedMessage, signature); // verify is a hash function
        cavium.close();
    } catch (ClassNotFoundException e) {
        e.printStackTrace();
    } catch (NoSuchAlgorithmException e) {
        e.printStackTrace();
    } catch (NoSuchProviderException e) {
        e.printStackTrace();
    } catch (InvalidKeyException e) {
        e.printStackTrace();
    } catch (IllegalBlockSizeException e) {
        e.printStackTrace();
    } catch (BadPaddingException e) {
        e.printStackTrace();
    }
}

package com.amazonaws.cloudhsm.examples;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.KeyPair;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Signature;
import java.security.SignatureException;
import java.util.Base64;

// Signing a Message

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This sample shows how to sign a message by using a key in an HSM. The sample generates a 4096-bit asymmetric key pair. It uses the private key to sign the message. It uses the public key to verify the message signature.

To generate the key pair, this sample calls the generateRSAKeyPair() method in the Create an RSA Key Pair (p. 188) sample. It uses the loginWithExplicitCredentials() method in the Log In To an HSM (p. 179) sample to log in to the HSM, but you can substitute the login method that you prefer. Also, the sample assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.
import com.cavium.key.CaviumRSAPrivateKey;
import com.cavium.key.CaviumRSAPublicKey;

public class SignatureExample {
    String sampleMessage = "This is a sample message.");
    String signingAlgorithm = "SHA512withRSA/PSS";
    public static void main(String[] args) {
        LoginLogoutExample.loginUsingJavaProperties();
        SignatureExample obj = new SignatureExample();

        // Generate a 4096-bit pair and save it in the HSM.
        KeyPair kp = new AsymmetricKeyGeneration().generateRSAKeyPair(4096, true);
        System.out.println("Generated key pair");

        // Sign the message with the private key and the specified signing algorithm.
        byte[] signature = obj.signMessage(sampleMessage, signingAlgorithm,
                                             (CaviumRSAPrivateKey) kp.getPrivate());
        System.out.println("Signature : " + Base64.getEncoder().encodeToString(signature));

        // Verify the signature.
        boolean isVerificationSuccessful = obj.verifySign(sampleMessage,
                                                  signingAlgorithm,
                                                  (CaviumRSAPublicKey) kp.getPublic(), signature);
        System.out.println("Verification result : " + isVerificationSuccessful);
        LoginLogoutExample.logout();
    }

    // Use the private key to sign the message.
    public byte[] signMessage(String message, String signingAlgorithm, CaviumRSAPrivateKey privateKey) {
        try {
            Signature sig = Signature.getInstance(signingAlgorithm, "Cavium");
            sig.initSign(privateKey);
            sig.update(message.getBytes());
            byte[] signature = null;
            signature = sig.sign();
            return signature;
        } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
            e.printStackTrace();
        } catch (InvalidKeyException e) {
            e.printStackTrace();
        } catch (SignatureException e) {
            e.printStackTrace();
        }
        return null;
    }

    // Use the public key to verify the message signature.
    public boolean verifySign(String message, String signingAlgorithm, CaviumRSAPublicKey publicKey, byte[] signature) {
        try {
            Signature sig = Signature.getInstance(signingAlgorithm, "Cavium");
            sig.initVerify(publicKey);
            sig.update(message.getBytes());

            boolean isVerificationSuccessful = sig.verify(signature);
            return isVerificationSuccessful;
        } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
            e.printStackTrace();
        } catch (InvalidKeyException e) {
            e.printStackTrace();
        } catch (SignatureException e) {
            e.printStackTrace();
        }
        return false;
    }
}
Create a Hash

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This sample shows how to generate a hash of a message using an HSM and the SHA-512 hash algorithm.

This example uses the `loginWithEnvVars()` method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM, but you can substitute the login method that you prefer. Also, the sample assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

```
package com.amazonaws.cloudhsm.examples;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import javax.xml.bind.DatatypeConverter;

public class HashExample {

    String plainText = "This is a sample plaintext message.";
    String hashAlgorithm = "SHA-512";

    public static void main(String[] args) {
        LoginLogoutExample.loginWithEnvVars();
        HashExample obj = new HashExample();
        // Generate the hash.
        byte[] hash = obj.getHash(obj.plainText, obj.hashAlgorithm);
        System.out.println("Hash : " + DatatypeConverter.printHexBinary(hash));
        LoginLogoutExample.logout();
    }

    public byte[] getHash(String message, String hashAlgorithm) {
        try {
            // Specify the Cavium provider.
            MessageDigest md = MessageDigest.getInstance(hashAlgorithm, "Cavium");
            md.update(message.getBytes());
            byte[] hash = md.digest();
            return hash;
        } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
            e.printStackTrace();
        }
        return null;
    }
}
```

Create an HMAC

** Example code only - Not for production use **

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.
This sample shows how to generate a hash-based message authentication code (HMAC) in the HSM and use it to hash a message. Unlike a typical hash, an HMAC uses a hash function and a cryptographic key.

To generate a symmetric key, this sample calls the `generateAESKey()` method in the Create an AES Key (p. 180) sample. It uses the `loginWithEnvVars()` method in the Log In To an HSM (p. 179) example to log in to the HSM, but you can substitute the login method that you prefer. Also, this sample assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the `Cavium` string.

```java
package com.amazonaws.cloudhsm.examples;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import javax.crypto.Mac;
import javax.xml.bind.DatatypeConverter;
import com.cavium.key.CaviumAESKey;

public class HMACExample {
    String message = "This is a plaintext message.";
    String macAlgorithm = "HmacSHA512";

    public static void main(String[] args) {
        LoginLogoutExample.loginWithEnvVars();

        // Generate a 256-bit AES key for the HMAC.
        Key aesKey = new SymmetricKeyGeneration().generateAESKey(256, true);
        HMACExample obj = new HMACExample();

        // Generate the HMAC using the plaintext, algorithm, and key.
        byte[] mac = obj.getHmac(obj.message, obj.macAlgorithm, (CaviumAESKey)aesKey);
        System.out.println("HMAC : " + DatatypeConverter.printHexBinary(mac));
        LoginLogoutExample.logout();
    }

    // The HMAC function takes a hash algorithm and a cryptographic key.
    public byte[] getHmac(String message, String macAlgorithm, CaviumAESKey key) {
        try {
            Mac mac = Mac.getInstance(macAlgorithm,"Cavium");
            mac.init(key);
            mac.update(message.getBytes());
            byte[] hmacValue = mac.doFinal();
            return hmacValue;
        } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
            e.printStackTrace();
        } catch (InvalidKeyException e) {
            e.printStackTrace();
        }
        return null;
    }
}
```

Managing Keys in an HSM

**Example code only - Not for production use**
This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

This sample shows how to manage keys in an HSM. It demonstrates the following operations:

- **Get** a reference to a key in the HSM.
- **Export** a key from the HSM. This operation returns the key so that you can import it into a different HSM and use it in other operations. It does not delete the key from the HSM.
- **Delete** a key from the HSM.
- **Import** a key into the HSM. This example returns a key handle that you can use to identify the key in other operations.

**Note**
To use a key in an encryption operation, specify the key handle. You do not need to get or export the key.

This sample uses the `loginWithEnvVars()` method in the Log In To and Out Of an HSM (p. 179) sample to log in to the HSM, but you can substitute the login method that you prefer. Also, the example assumes that the Cavium provider (p. 178) is included in your Java provider file. If it is not, create an instance of the provider and substitute it for the Cavium string.

You can also use the `key_mgmt_util` command line tool to manage keys in AWS CloudHSM (p. 49).

```java
package com.amazonaws.cloudhsm.examples;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Base64;
import java.util.Vector;
import javax.crypto.BadPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import javax.crypto.KeyGenerator;
import org.bouncycastle.util.Arrays;
import com.cavium.cfm2.CFM2Exception;
import com.cavium.cfm2.ImportKey;
import com.cavium.cfm2.Util;
import com.cavium.key.CaviumAESKey;
import com.cavium.key.CaviumKey;
import com.cavium.key.CaviumKeyAttributes;
import com.cavium.key.CaviumRSAPrivateKey;
import com.cavium.key.CaviumRSAPublicKey;
import com.cavium.key.parameter.CaviumKeyGenAlgorithmParameterSpec;

public class KeyManagement {
    public static void main(String[] args) {
        LoginLogoutExample.loginWithEnvVars();
    }
}
```
// Get a reference to a key in the HSM. Replace the placeholder with an actual key handle value.
l long keyHandle = 262194;
 CaviumKey ck = getKey(keyHandle);

// Delete the specified key from the HSM. Replace the placeholder with an actual key handle value.
 deleteKey(51);
 Key key = exportKey(keyHandle);

// Import a key. Generate a 256-bit AES symmetric key.
 KeyGenerator kg = KeyGenerator.getInstance("AES");
 kg.init(256);
 Key keyToBeImported = kg.generateKey();

// Import the key as extractable and persistent. You can use the key handle to identify the key in other operations.
 long importedKeyHandle = importKey(keyToBeImported, "Test", true, true);
 System.out.println("Imported Key Handle : " + importedKeyHandle);

LoginLogoutExample.logout();
}

// Get an existing key from the HSM. The type of the object that is returned depends on the key type.
 public static CaviumKey getKey(long handle) {
 try {
 byte[] keyAttribute = Util.getKeyAttributes(handle);
 CaviumKeyAttributes cka = new CaviumKeyAttributes(keyAttribute);
 if(cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_AES) {
 CaviumAESKey aesKey = new CaviumAESKey(handle, cka);
 return aesKey;
 }
 else if(cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_RSA &
 cka.getKeyClass() == CaviumKeyAttributes.CLASS_PRIVATE_KEY) {
 CaviumRSAPrivateKey privKey = new CaviumRSAPrivateKey(handle, cka);
 return privKey;
 }
 else if(cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_RSA &
 cka.getKeyClass() == CaviumKeyAttributes.CLASS_PUBLIC_KEY) {
 CaviumRSAPublicKey pubKey = new CaviumRSAPublicKey(handle, cka);
 return pubKey;
 }
 } catch (CFM2Exception e) {
 e.printStackTrace();
 } return null;
}

// Delete an existing persisted key.
 public static void deleteKey(long handle) {
 CaviumKey ck = getKey(handle);
 try {
 Util.deleteKey(ck);
 System.out.println("Key Deleted!");
 } catch (CFM2Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
}

// Export an existing persisted key. The type of the object that is returned depends on the key type.
 public static Key exportKey(long handle) {
try {
    byte[] encoded = Util.exportKey(handle);
    byte[] keyAttribute = Util.getKeyAttributes(handle);
    CaviumKeyAttributes cka = new CaviumKeyAttributes(keyAttribute);
    if (cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_AES) {
        Key aesKey = new SecretKeySpec(encoded, 0, encoded.length, "AES");
        return aesKey;
    } else if (cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_RSA &&
               cka.getKeyClass() == CaviumKeyAttributes.CLASS_PRIVATE_KEY) {
        PrivateKey privateKey = KeyFactory.getInstance("RSA").generatePrivate(new
            PKCS8EncodedKeySpec(encoded));
        return privateKey;
    } else if (cka.getKeyType() == CaviumKeyAttributes.KEY_TYPE_RSA &&
               cka.getKeyClass() == CaviumKeyAttributes.CLASS_PUBLIC_KEY) {
        PublicKey publicKey = KeyFactory.getInstance("RSA").generatePublic(new
            X509EncodedKeySpec(encoded));
        return publicKey;
    }
    System.out.println(new String(encoded));
} catch (BadPaddingException | CFM2Exception e) {
    e.printStackTrace();
} catch (InvalidKeySpecException e) {
    e.printStackTrace();
} catch (NoSuchAlgorithmException e) {
    e.printStackTrace();
} return null;
}

// Import a key.
public static void importKey(Key key, String keyLabel, boolean isExtractable, boolean
isPersistent) {
    // Create a new key parameter spec to identify the key. Specify a label
    // and Boolean values for extractable and persistent.
    CaviumKeyGenAlgorithmParameterSpec spec = new
        CaviumKeyGenAlgorithmParameterSpec(keyLabel, isExtractable, isPersistent);
    try {
        ImportKey.importKey(key, spec);
    } catch (InvalidKeyException e) {
        e.printStackTrace();
    }
}

KSP and CNG Providers for Windows

Cryptography API: Next Generation (CNG) is a cryptographic API specific to the Microsoft Windows
operating system. CNG enables developers to use cryptographic techniques to secure Windows-based
applications. At a high level, CNG provides the following functionality.

- **Cryptographic Primitives** - enable you to perform fundamental cryptographic operations.
- **Key Import and Export** - enable you to import and export symmetric and asymmetric keys.
- **Data Protection API (CNG DPAPI)** - enables you to easily encrypt and decrypt data.
- **Key Storage and Retrieval** - enables you to securely store and isolate the private key of an asymmetric
  key pair.
Key Storage Providers (KSPs) enable key storage and retrieval. For example, if you add the Microsoft Active Directory Certificate Services (AD CS) role to your Windows server and you choose to create a new private key for your certificate authority (CA), you can choose the KSP that will manage key storage. The Windows CloudHSM client includes KSPs created by Cavium specifically for AWS CloudHSM. When you configure the AD CS role, you can choose a Cavium KSP. For more information, see Add and Configure AD CS (p. 228). The Windows CloudHSM client also installs a Cavium CNG provider.

Topics
• Install the KSP and CNG Providers for Windows (p. 204)
• Windows AWS CloudHSM Prerequisites (p. 204)
• Code Sample for Cavium CNG Provider (p. 205)

Install the KSP and CNG Providers for Windows

The Cavium KSP and CNG providers are installed when you install the Windows AWS CloudHSM client.

• For client installation instructions, see Install the Client (Windows) (p. 33).
• Before you can use the Windows CloudHSM client, you must satisfy the Prerequisites (p. 204).
• You can choose the Cavium KSP when add the AD CS role to your Windows Server. See Add and Configure AD CS (p. 228).

You can use either of the following commands to determine which providers are installed on your system. The commands list the registered KSP and CNG providers. The AWS CloudHSM client does not need to be running.

```
C:\Program Files\Amazon\CloudHSM> ksp_config.exe -enum
```

```
C:\Program Files\Amazon\CloudHSM> cng_config.exe -enum
```

Verify that the Cavium KSP and CNG providers are installed on your Windows Server EC2 instance. If the CNG provider is missing, run the following command.

```
C:\Program Files\Amazon\CloudHSM> cng_config.exe -register
```

If the Cavium KSP is missing, run the following command.

```
C:\Program Files\Amazon\CloudHSM> ksp_config.exe -register
```

Windows AWS CloudHSM Prerequisites

Before you can start the Windows AWS CloudHSM client and use the KSP and CNG providers, you must set two environment variables named n3fips_password and n3fips_partition. You can do this for the current shell environment only or you can set the variables permanently. Also, you must create a crypto user (p. 11) (CU) that you can specify in the n3fips_password variable. For more information, see Create Users (p. 46). You can find an HSM ID for the n3fips_partition variable by running the describe-clusters command, the DescribeClusters function, or by selecting a cluster in the AWS CloudHSM console.

To create a temporary environment variable

1. Open an elevated command prompt as administrator.
2. Type `set n3fips_password=...</user name>:user password`.  
3. Type `set n3fips_partition=HSM ID`.  
4. You can check your environment variables by typing `set` at the command prompt. Use the `set` command to create, change, delete, or display environment variables. Note that `set` modifies the environment variables only in the current shell.

**To create a permanent environment variable**

1. Choose **Start**.  
2. Choose **Control Panel**.  
3. Type a backslash (\) in the address bar and choose **All Control Panel Items** from the dropdown menu.  
4. Choose **System**.  
5. Choose **Advanced system settings**.  
6. Choose **Environment Variables**...  
7. Choose **New** in the bottom window.  
8. For **Variable name**: type `n3fips_password`.  
9. For **Variable value**: enter the name of a crypto user, a colon, and a password for the user.  
10. Choose **OK**.  
11. Choose **New** in the bottom window.  
12. For **Variable name**: type `n3fips_partition`.  
13. For **Variable value**: enter an HSM ID.  
14. Choose **OK**.

**Code Sample for Cavium CNG Provider**

This page includes example code that has not been fully tested. It is designed for test environments. Do not run this code in production.

The following sample shows how to enumerate the registered cryptographic providers on your system to find the Cavium CNG provider. The sample also shows how to create an asymmetric key pair and how to use the key pair to sign data.

**Important**  
You must set the `n3fips_password` and `n3fips_partition` environment variables before running this example. Set `n3fips_password` to the user name and password of a specific crypto user (p. 11) (CU). Set `n3fips_partition` to the ID of the HSM. For more information about setting the environment variables, see Windows AWS CloudHSM Prerequisites (p. 204).

```c++
// CloudHsmCngExampleConsole.cpp : Console application that demonstrates CNG capabilities.  
// This example contains the following functions.  
//  
// VerifyProvider() - Enumerate the registered providers and retrieve Cavium KSP and CNG providers.  
// GenerateKeyPair() - Create an RSA key pair.  
// SignData() - Sign and verify data.
```
//
#include "stdafx.h"
#include <Windows.h>
ifndef NT_SUCCESS
#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)
endif

#define CAVIUM_CNG_PROVIDER L"Cavium CNG Provider"
#define CAVIUM_KEYSTORE_PROVIDER L"Cavium Key Storage Provider"

// Enumerate the registered providers and determine whether the Cavium CNG provider
// and the Cavium KSP provider exist.
//
bool VerifyProvider()
{
NTSTATUS status;
ULONG cbBuffer = 0;
PCRYPT_PROVIDERS pBuffer = NULL;
bool foundCng = false;
bool foundKeystore = false;

// Retrieve information about the registered providers.
// cbBuffer - the size, in bytes, of the buffer pointed to by pBuffer.
// pBuffer - pointer to a buffer that contains a CRYPT_PROVIDERS structure.
status = BCryptEnumRegisteredProviders(&cbBuffer, &pBuffer);

// If registered providers exist, enumerate them and determine whether the
// Cavium CNG provider and Cavium KSP provider have been registered.
if (NT_SUCCESS(status))
{
if (pBuffer != NULL)
{
for (ULONG i = 0; i < pBuffer->cProviders; i++)
{
// Determine whether the Cavium CNG provider exists.
if (wcscmp(CAVIUM_CNG_PROVIDER, pBuffer->rgpszProviders[i]) == 0)
{
printf("Found %S\n", CAVIUM_CNG_PROVIDER);
foundCng = true;
}

// Determine whether the Cavium KSP provider exists.
else if (wcscmp(CAVIUM_KEYSTORE_PROVIDER, pBuffer->rgpszProviders[i]) == 0)
{
printf("Found %S\n", CAVIUM_KEYSTORE_PROVIDER);
foundKeystore = true;
}
}
}
else
{
printf("BCryptEnumRegisteredProviders failed with error code 0x%08x\n", status);
}

// Free memory allocated for the CRYPT_PROVIDERS structure.
if (NULL != pBuffer)
{
BCryptFreeBuffer(pBuffer);
}
return foundCng == foundKeystore == true;
}
// Generate an asymmetric key pair. As used here, this example generates an RSA key pair
// and returns a handle. The handle is used in subsequent operations that use the key
// pair.
// The key material is not available.
// The key pair is used in the SignData function.
NTSTATUS GenerateKeyPair(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE *hKey)
{
    NTSTATUS status;

    // Generate the key pair.
    status = BCryptGenerateKeyPair(hAlgorithm, hKey, 2048, 0);
    if (!NT_SUCCESS(status))
    {
        printf("BCryptGenerateKeyPair failed with code 0x%08x\n", status);
        return status;
    }

    // Finalize the key pair. The public/private key pair cannot be used until this
    // function is called.
    status = BCryptFinalizeKeyPair(&hKey, 0);
    if (!NT_SUCCESS(status))
    {
        printf("BCryptFinalizeKeyPair failed with code 0x%08x\n", status);
        return status;
    }

    return status;
}

// Sign and verify data using the RSA key pair. The data in this function is hardcoded
// and is for example purposes only.
NTSTATUS SignData(BCRYPT_KEY_HANDLE hKey)
{
    NTSTATUS status;
    PBYTE sig;
    ULONG sigLen;
    ULONG resLen;
    BCRYPT_PKCS1_PADDING_INFO pInfo;

    // Hardcode the data to be signed (for demonstration purposes only).
    PBYTE message = (PBYTE)"d83e7716bed8a20343d8dc6845e574477e4a9be63a80a0122f1fdca7a3c18c3";
    ULONG messageLen = strlen((char*)message);

    // Retrieve the size of the buffer needed for the signature.
    status = BCryptSignHash(hKey, NULL, message, messageLen, NULL, 0, &sigLen, 0);
    if (!NT_SUCCESS(status))
    {
        printf("BCryptSignHash failed with code 0x%08x\n", status);
        return status;
    }

    // Allocate a buffer for the signature.
    sig = (PBYTE)HeapAlloc(GetProcessHeap(), 0, sigLen);
    if (sig == NULL)
    {
        return -1;
    }

    // Use the SHA256 algorithm to create padding information.
    pInfo.pszAlgId = BCRYPT_SHA256_ALGORITHM;

    // Create a signature.
status = BCryptSignHash(hKey, &pInfo, message, messageLen, sig, sigLen, &resLen, BCRYPT_PAD_PKCS1);
if (!NT_SUCCESS(status))
{
    printf("BCryptSignHash failed with code 0x%08x\n", status);
    return status;
}

// Verify the signature.
status = BCryptVerifySignature(hKey, &pInfo, message, messageLen, sig, sigLen, 0);
if (!NT_SUCCESS(status))
{
    printf("BCryptVerifySignature failed with code 0x%08x\n", status);
    return status;
}

// Free the memory allocated for the signature.
if (sig != NULL)
{
    HeapFree(GetProcessHeap(), 0, sig);
    sig = NULL;
}
return 0;

// Main function.
//
int main()
{
    NTSTATUS status;
    BCRYPT_ALG_HANDLE hRsaAlg;
    BCRYPT_KEY_HANDLE hKey = NULL;

    // Enumerate the registered providers.
    printf("Searching for Cavium providers...\n");
    if (VerifyProvider() == false) {
        printf("Could not find the CNG and Keystore providers\n");
        return 1;
    }

    // Get the RSA algorithm provider from the Cavium CNG provider.
    printf("Opening RSA algorithm\n");
    status = BCryptOpenAlgorithmProvider(&hRsaAlg, BCRYPT_RSA_ALGORITHM, CAVIUM_CNG_PROVIDER, 0);
    if (!NT_SUCCESS(status))
    {
        printf("BCryptOpenAlgorithmProvider RSA failed with code 0x%08x\n", status);
        return status;
    }

    // Generate an asymmetric key pair using the RSA algorithm.
    printf("Generating RSA Keypair\n");
    GenerateKeyPair(hRsaAlg, &hKey);
    if (hKey == NULL)
    {
        printf("Invalid key handle returned\n");
        return 0;
    }
    printf("Done!\n");

    // Sign and verify [hardcoded] data using the RSA key pair.
    printf("Sign/Verify data with key\n");
    SignData(hKey);
    printf("Done!\n");
// Remove the key handle from memory.
status = BCryptDestroyKey(hKey);
if (!NT_SUCCESS(status))
{
    printf("BCryptDestroyKey failed with code 0x%08x\n", status);
    return status;
}

// Close the RSA algorithm provider.
status = BCryptCloseAlgorithmProvider(hRsaAlg, NULL);
if (!NT_SUCCESS(status))
{
    printf("BCryptCloseAlgorithmProvider RSA failed with code 0x%08x\n", status);
    return status;
}
return 0;
Integrating Third-Party Applications with AWS CloudHSM

Some of the use cases (p. 1) for AWS CloudHSM involve integrating third-party software applications with the HSMs in your AWS CloudHSM cluster. By integrating third-party software with AWS CloudHSM, you can accomplish a variety of security related goals. The following topics describe how to accomplish some of these goals.

Topics
- Oracle Database Transparent Data Encryption (TDE) with AWS CloudHSM (p. 224)
- Configure Windows Server Active Directory Certificate Services (AD CS) to Use a Cavium KSP (p. 228)

Improve Your Web Server's Security with SSL/TLS Offload in AWS CloudHSM

Web servers and their clients (web browsers) can use Secure Sockets Layer (SSL) or Transport Layer Security (TLS). These protocols confirm the identity of the web server and establish a secure connection to send and receive webpages or other data over the internet. This is commonly known as HTTPS. The web server uses a public–private key pair and an SSL/TLS public key certificate to establish an HTTPS session with each client. This process involves a lot of computation for the web server, but you can offload some of this to an HSM in your AWS CloudHSM cluster. This is sometimes known as SSL acceleration. Offloading reduces the computational burden on your web server and provides extra security by storing the server's private key in an HSM.

The Nginx and Apache HTTP Server web server applications natively integrate with OpenSSL to support HTTPS. The AWS CloudHSM software library for OpenSSL (p. 169) provides an interface that enables the web server to use the HSMs in your cluster for cryptographic offloading and key storage. The AWS CloudHSM software library for OpenSSL is the bridge that connects the web server to your AWS CloudHSM cluster.

In this tutorial, you choose whether to use the Nginx or Apache web server. You install the web server on a Linux instance in Amazon EC2. You can then optionally use Amazon EC2 to create a second web server and Elastic Load Balancing to create a load balancer. Using a load balancer can increase performance by distributing the load across multiple servers. It can also provide redundancy and higher availability if one or more servers fail.

For more information, see the following topics:

Topics
- How SSL/TLS Offload with AWS CloudHSM Works (p. 211)
- Web Server SSL/TLS Offload Step 1: Set Up the Prerequisites (p. 211)
- Web Server SSL/TLS Offload Step 2: Import or Generate a Private Key and SSL/TLS Certificate (p. 212)
- Web Server SSL/TLS Offload Step 3: Configure the Web Server (p. 215)
- Web Server SSL/TLS Offload Step 4: Add a Load Balancer with Elastic Load Balancing (p. 219)
How SSL/TLS Offload with AWS CloudHSM Works

To establish an HTTPS connection, your web server performs a handshake process with clients. As part of this process, the server offloads some of the cryptographic processing to the HSMs, as shown in the following figure. Each step of the process is explained below the figure.

**Note**
The following image and process assumes that RSA is used for server verification and key exchange. The process is slightly different when Diffie–Hellman is used instead of RSA.

1. The client sends a hello message to the server.
2. The server responds with a hello message and sends the server's certificate.
3. The client performs the following actions:
   a. Verifies that the SSL/TLS server certificate is signed by a root certificate that the client trusts.
   b. Extracts the public key from the server certificate.
   c. Generates a premaster secret and encrypts it with the server's public key.
   d. Sends the encrypted premaster secret to the server.
4. To decrypt the client's premaster secret, the server sends it to the HSM. The HSM uses the private key in the HSM to decrypt the premaster secret and then it sends the premaster secret to the server. Independently, the client and server each use the premaster secret and some information from the hello messages to calculate a master secret.
5. The handshake process ends. For the rest of the session, all messages sent between the client and the server are encrypted with derivatives of the master secret.

### Web Server SSL/TLS Offload Step 1: Set Up the Prerequisites

To set up web server SSL/TLS offload with AWS CloudHSM, you need the following:

- An active AWS CloudHSM cluster with at least one HSM.
- An Amazon EC2 instance running a Linux operating system with the following software installed:
  - The AWS CloudHSM client and command line tools.
Get a Private Key

- The Nginx or Apache web server application.
- The AWS CloudHSM software library for OpenSSL.
- A cryptographic user (CU) to own and manage the private key on the HSM.

**To set up the prerequisites for SSL/TLS offload AWS CloudHSM**

1. Complete the steps in *Getting Started (p. 14)*. You will then have an active cluster with one HSM and an Amazon EC2 client instance. Your EC2 instance will be configured with the command line tools. Use this client instance as your web server.
2. Connect to your client instance and do the following:
   a. Choose whether to install the Nginx or Apache web server application. Then complete one of the following steps:
      - To install Nginx, run the following command.
        ```bash
        sudo yum install -y nginx
        ```
      - To install Apache, run the following command.
        ```bash
        sudo yum install -y httpd24 mod24_ssl
        ```
   b. Install and configure the OpenSSL library (p. 170).
3. (Optional) Add more HSMs to your cluster. For more information, see *Adding an HSM (p. 37).*
4. To create a cryptographic user (CU) on your HSM, do the following:
   a. *Start the AWS CloudHSM client (p. 69).*
   b. *Update the cloudhsm_mgmt_util configuration file (p. 69).*
   c. Use cloudhsm_mgmt_util to create a CU. For more information, see *Managing HSM Users (p. 46).* Keep track of the CU user name and password. You will need them later when you generate or import the HTTPS private key for your web server.

After you complete these steps, go to *Get a Private Key (p. 212).*

**Web Server SSL/TLS Offload Step 2: Import or Generate a Private Key and SSL/TLS Certificate**

To enable HTTPS, your web server application (Nginx or Apache) needs a private key and a corresponding SSL/TLS certificate. To use web server SSL/TLS offload with AWS CloudHSM, you must store the private key in an HSM in your AWS CloudHSM cluster. You can accomplish this in one of the following ways:

- If you don't yet have a private key and a corresponding certificate, you can generate a private key in an HSM (p. 213). You can then use the private key to create a certificate signing request (CSR). Use the CSR to create the SSL/TLS certificate.

- If you already have a private key and corresponding certificate, you can import the private key into an HSM (p. 214).

Regardless of which method you choose, you then export a *fake PEM private key* from the HSM and save it to a file. This file doesn't contain the actual private key. It contains a reference to the private key that is stored on the HSM. Your web server uses the fake PEM private key file and the AWS CloudHSM software library for OpenSSL to offload SSL/TLS processing to an HSM.
Generate a Private Key and Certificate

If you don't have a private key and a corresponding SSL/TLS certificate to use for HTTPS, you can generate a private key on an HSM. You can then use the private key to create a certificate signing request (CSR). Sign the CSR to create the certificate.

To generate a private key on an HSM

1. Connect to your client instance.
2. Run the following command to set an environment variable named `n3fips_password` that contains the user name and password of the cryptographic user (CU). Replace `<CU user name>` with the user name of the cryptographic user. Replace `<password>` with the CU password.

```bash
export n3fips_password=<CU user name>:<password>
```

3. Run the following command to use the AWS CloudHSM software library for OpenSSL to generate a private key on an HSM. This command also exports the fake PEM private key and saves it in a file. Replace `<web_server_fake_PEM.key>` with the file name you want to use for the exported fake PEM private key.

```bash
openssl genrsa -engine cloudhsm -out <web_server_fake_PEM.key> 2048
```

To create a CSR

Run the following command to use the AWS CloudHSM software library for OpenSSL to create a certificate signing request (CSR). Replace `<web_server_fake_PEM.key>` with the name of the file that contains your fake PEM private key. Replace `<web_server.csr>` with the name of the file that contains your CSR.

The `req` command is interactive. Respond to each field. The field information is copied into your SSL/TLS certificate.

```bash
openssl req -engine cloudhsm -new -key <web_server_fake_PEM.key> -out <web_server.csr>
```

In a production environment, you typically use a certificate authority (CA) to create a certificate from a CSR. A CA is not necessary for a test environment. If you do use a CA, send the CSR file `<web_server.csr>` to it and use the CA create a signed SSL/TLS certificate. Your web server uses the signed certificate for HTTPS.

As an alternative to using a CA, you can use the AWS CloudHSM software library for OpenSSL to create a self-signed certificate. Self-signed certificates are not trusted by browsers and should not be used in production environments. They can be used in test environments.

To create a self-signed certificate

**Important**  
Self-signed certificates should be used in a test environment only. For a production environment, use a more secure method such as a certificate authority to create a certificate.

Run the following command to use the AWS CloudHSM software library for OpenSSL to sign your CSR with your private key on your HSM. This creates a self-signed certificate. Replace the following values in the command with your own.

- `<web_server.csr>` — Name of the file that contains the CSR.
- `<web_server_fake_PEM.key>` — Name of the file that contains the fake PEM private key.
- `<web_server.crt>` — Name of the file that will contain your web server.
Get a Private Key

After you complete these steps, you can configure your web server (p. 215).

Import an Existing Private Key

If you already have a private key and a corresponding SSL/TLS certificate that you use for HTTPS on your web server, you can import that key into an HSM by doing the following.

1. Connect to your Amazon EC2 client instance. If necessary, copy your existing private key and certificate to the instance.
2. Run the following command to start the AWS CloudHSM client.

   Amazon Linux

   $ sudo start cloudhsm-client

   Ubuntu

   $ sudo service cloudhsm-client start

3. Run the following command to start the key_mgmt_util command line tool.

   /opt/cloudhsm/bin/key_mgmt_util

4. Run the following command to log in to the HSM. Replace <user name> and <password> with the user name and password of the cryptographic user (CU).

   loginHSM -u CU -s <user name> -p <password>

5. Run the following commands to import your private key into an HSM.

   a. Run the following command to create a symmetric wrapping key that is valid for the current session only. The command and output are shown.

      genSymKey -t 31 -s 16 -sess -l wrapping_key_for_import

      Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS
      Symmetric Key Created. Key Handle: 6
      Cluster Error Status
      Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

   b. Run the following command to import your existing private key into an HSM. The command and output are shown. Replace the following values with your own:

      • <web_server_existing.key> – Name of the file that contains your private key.
      • <web_server_imported_key> – Label for your imported private key.
      • <wrapping_key_handle> – Wrapping key handle generated by the preceding command. In the previous example, the wrapping key handle is 6.

      importPrivateKey -f <web_server_existing.key> -l <web_server_imported_key> -w <wrapping_key_handle>

      BER encoded key length is 1219
      Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS
6. Run the following command to export the private key in fake PEM format and save it to a file. Replace the following values with your own.

- `<private_key_handle>` – Handle of the imported private key. This handle was generated by the second command in the preceding step. In the preceding example, the handle of the private key is 8.
- `<web_server_fake_PEM.key>` – Name of the file that contains your exported fake PEM private key.

```
getCaviumPrivKey -k <private_key_handle> -out <web_server_fake_PEM.key>
```

7. Run the following command to stop key_mgmt_util.

```
exit
```
4. Run the following command to copy your fake PEM private key to the required location. Replace `<web_server_fake_PEM.key>` with the name of the file that contains your fake PEM private key.

```
sudo cp <web_server_fake_PEM.key> /etc/pki/nginx/private/server.key
```

5. Run the following command to change the file ownership so that the user named `nginx` can read them.

```
sudo chown nginx /etc/pki/nginx/server.crt /etc/pki/nginx/private/server.key
```

6. Run the following command to make a backup copy of the file named `/etc/nginx/nginx.conf`.

```
sudo cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.backup
```

7. Use a text editor to edit the file named `/etc/nginx/nginx.conf`. At the top of the file, add the following line:

```
ssl_engine cloudhsm;
```

Then uncomment the TLS section of the file so that it looks like the following:

```
# Settings for a TLS enabled server.

server {

    listen 443 ssl http2 default_server;
    listen [::]:443 ssl http2 default_server;
    server_name _;
    root /usr/share/nginx/html;

    ssl_certificate  "/etc/pki/nginx/server.crt";
    ssl_certificate_key  "/etc/pki/nginx/private/server.key";
    # It is *strongly* recommended to generate unique DH parameters
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048
    #ssl_dhparam "'/etc/pki/nginx/dhparams.pem";
    ssl_session_cache shared:SSL:1m;
    ssl_session_timeout 10m;
    ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
    ssl_ciphers HIGH:SEED:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK:!RSAPSK:!aDH:!aECDH:!EDH-DSS-DES-CBC3-SHA:!KRB5-DES-CBC3-SHA:!SRP;
    ssl_prefer_server_ciphers on;

    # Load configuration files for the default server block.
    include /etc/nginx/default.d/*.conf;

    location / {

       error_page 404 /404.html;
       location = /40x.html { 

       error_page 500 502 503 504 /50x.html;
       location = /50x.html {  

    }
    }

    }
```

Save the file. This requires Linux root permissions.
8. Run the following command to make a backup copy of the file named /etc/sysconfig/nginx.

```bash
sudo cp /etc/sysconfig/nginx /etc/sysconfig/nginx.backup
```

9. Use a text editor to edit the file named /etc/sysconfig/nginx. Add the following line, specifying the user name and password of the cryptographic user (CU). Replace `<CU user name>` with the user name of the cryptographic user. Replace `<password>` with the CU password.

```bash
export n3fips_password=<CU user name>:<password>
```

Save the file. This requires Linux root permissions.

10. Run the following command to start the Nginx web server.

```bash
sudo service nginx start
```

11. Run the following command if you want to configure your server to start Nginx when the server starts.

```bash
# sudo chkconfig nginx on
```

**Update the web server configuration for Apache**

1. Connect to your Amazon EC2 client instance.
2. Run the following command to make a backup copy of the default certificate.

```bash
sudo cp /etc/pki/tls/certs/localhost.crt /etc/pki/tls/certs/localhost.crt.backup
```

3. Run the following command to make a backup copy of the default private key.

```bash
sudo cp /etc/pki/tls/private/localhost.key /etc/pki/tls/private/localhost.key.backup
```

4. Run the following command to copy your web server certificate to the required location. Replace `<web_server.crt>` with the name of your web server certificate.

```bash
sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt
```

5. Run the following command to copy your fake PEM private key to the required location. Replace `<web_server_fake_PEM.key>` with the name of the file that contains your fake PEM private key.

```bash
sudo cp <web_server_fake_PEM.key> /etc/pki/tls/private/localhost.key
```

6. Run the following command to change the ownership of these files so that the user named `apache` can read them.

```bash
sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/localhost.key
```

7. Run the following command to make a backup copy of the file named /etc/httpd/conf.d/ssl.conf.

```bash
sudo cp /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/ssl.conf.backup
```

8. Use a text editor to edit the file named /etc/httpd/conf.d/ssl.conf. Replace the line that starts with `SSLCryptoDevice` so that it looks like the following:
Configure the Web Server

SSL CryptoDevice cloudhsm

Save the file. This requires Linux root permissions.

9. Run the following command to make a backup copy of the file named /etc/sysconfig/httpd.

```bash
sudo cp /etc/sysconfig/httpd /etc/sysconfig/httpd.backup
```

10. Use a text editor to edit the file named /etc/sysconfig/httpd. Add the following line, specifying the user name and password of the cryptographic user (CU). Replace `<CU user name>` with the name of the cryptographic user. Replace `<password>` with the CU password.

```bash
export n3fips_password=<CU user name>:<password>
```

Save the file. This requires Linux root permissions.

11. Run the following command to start the Apache HTTP Server.

```bash
sudo service httpd start
```

12. Run the following command to configure your server to start Apache when the server starts.

```bash
sudo chkconfig httpd on
```

Add the Web Server to a Security Group

To connect to your web server from a client (such as a web browser), create a security group that allows inbound HTTPS connections. Specifically, it should allow inbound TCP connections on port 443. Assign this security group to your web server.

To create a security group for HTTPS and assign it to your web server

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.
2. Choose Security Groups in the navigation pane.
4. For Create Security Group, do the following:
   a. For Security group name, type a name for the security group that you are creating.
   b. (Optional) Type a description of the security group that you are creating.
   c. For VPC, choose the VPC that contains your Amazon EC2 instance.
   d. Choose Add Rule.
   e. For Type, choose HTTPS.
5. Choose Create.
6. In the navigation pane, choose Instances.
7. Select the check box next to your web server instance. Then choose Actions, Networking, and Change Security Groups.
8. Select the check box next to the security group that you created for HTTPS. Then choose Assign Security Groups.
Verify That HTTPS Uses the Private Key in Your AWS CloudHSM Cluster

After you add the web server to a security group, you can verify that SSL/TLS offload with AWS CloudHSM is working. You can do this with a web browser or with a tool such as OpenSSL `s_client`.

**To verify SSL/TLS offload with a web browser**

1. Use a web browser to connect to your web server using the public DNS name or IP address of the server. Ensure that the URL in the address bar begins with https://. For example, `https://ec2-52-14-212-67.us-east-2.compute.amazonaws.com/`.

   **Note**
   You can use a DNS service such as Route 53 to route your website's domain name to your web server. For more information, see [Routing Traffic to an Amazon EC2 Instance](https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/) in the Amazon Route 53 Developer Guide or in the documentation for your DNS service.

2. Use your web browser to view the web server certificate. For more information, see the following:
   - For Mozilla Firefox, see [View a Certificate](https://support.mozilla.org/en-US/kb/view-certificate) on the Mozilla Support website.
   - For Google Chrome, see [Understand Security Issues](https://developers.google.com/chrome/turbo/security) on the Google Developers website.

   Other web browsers might have similar features that you can use to view the web server certificate.

3. Ensure that the SSL/TLS certificate is the one that you configured your web server to use. For more information, see [Update the Web Server Configuration](p. 215). Ensure that the private key is stored in an HSM in your AWS CloudHSM cluster.

**To verify SSL/TLS offload with OpenSSL `s_client`**

1. Run the following OpenSSL command to connect to your web server using HTTPS. Replace `<server name>` with the public DNS name or IP address of your web server.

   ```
   $ openssl s_client -connect <server name>:443
   ```

2. Ensure that the SSL/TLS certificate is the one that you configured your web server to use. For more information, see [Update the Web Server Configuration](p. 215). Ensure that the private key is stored in an HSM in your AWS CloudHSM cluster.

You now have a website that is secured with HTTPS. The private key for the web server is stored in an HSM in your AWS CloudHSM cluster. However, you have only one web server. To set up a second web server and a load balancer for higher availability, go to [Add a Load Balancer](p. 219).

**Web Server SSL/TLS Offload Step 4: Add a Load Balancer with Elastic Load Balancing**

After you set up SSL/TLS offload with one web server, you can create more web servers and an Elastic Load Balancing load balancer that routes HTTPS traffic to the web servers. A load balancer can reduce the load on your individual web servers by balancing traffic across two or more servers. It can also increase the availability of your website because the load balancer monitors the health of your web servers and only routes traffic to healthy servers. If a web server fails, the load balancer automatically stops routing traffic to it. To add a load balancer for your web servers, see the following topics.

**Topics**

- [Create a Subnet for a Second Web Server](p. 220)
Create a Subnet for a Second Web Server

Before you can create another web server, you need to create a new subnet in the same VPC that contains your existing web server and AWS CloudHSM cluster.

To create a new subnet

1. Open the Subnets section of the Amazon VPC console at https://console.aws.amazon.com/vpc/home#subnets:.
2. Choose Create Subnet.
3. In the Create Subnet dialog box, do the following:
   a. For Name tag, type a name for your subnet.
   b. For VPC, choose the CloudHSM VPC that contains your existing web server and AWS CloudHSM cluster.
   c. For Availability Zone, choose an Availability Zone that is different from the one that contains your existing web server.
   d. For IPv4 CIDR block, type the CIDR block to use for the subnet. For example, type 10.0.10.0/24.
   e. Choose Yes, Create.
4. Select the check box next to the public subnet that contains your existing web server. This is different from the public subnet that you created in the previous step.
5. In the content pane, choose the Route Table tab. Then choose the link for the route table.

   ![Route Table](image)

   - Destination: 10.0.0.0/16, Target: local
   - Destination: 0.0.0.0/0, Target: igw-68e440c

6. Select the check box next to the route table.
7. Choose the Subnet Associations tab. Then choose Edit.
8. Select the check box next to the public subnet that you created earlier in this procedure. Then choose Save.

Create the Second Web Server

Complete the following steps to create a second web server with the same configuration as your existing web server.
To create a second web server

1. Open the Instances section of the Amazon EC2 console at https://console.aws.amazon.com/ec2/v2/home#Instances.
2. Select the check box next to your existing web server instance.
3. Choose Actions, Image, and then Create Image.
4. In the Create Image dialog box, do the following:
   a. For Image name, type a name for the image.
   b. For Image description, type a description for the image.
   c. Choose Create Image. This action reboots your existing web server.
   d. Choose the View pending image ami-<AMI ID> link.

   In the Status column, note your image status. When your image status is available (this might take several minutes), go to the next step.
5. In the navigation pane, choose Instances.
6. Select the check box next to your existing web server.
7. Choose Actions and choose Launch More Like This.
8. Choose Edit AMI.
9. In the left navigation pane, choose My AMIs. Then clear the text in the search box.
10. Next to your web server image, choose Select.
11. Choose Yes, I want to continue with this AMI (<image name> - ami-<AMI ID>).
12. Choose Next.
13. Select an instance type, and then choose Next: Configure Instance Details.
14. For Step 3: Configure Instance Details, do the following:
   a. For Network, choose the VPC that contains your existing web server.
   b. For Subnet, choose the public subnet that you created for the second web server.
   c. For Auto-assign Public IP, choose Enable.
   d. Change the remaining instance details as preferred. Then choose Next: Add Storage.
15. Change the storage settings as preferred. Then choose Next: Add Tags.
16. Add or edit tags as preferred. Then choose Next: Configure Security Group.
17. For Step 6: Configure Security Group, do the following:
   a. For Assign a security group, choose Select an existing security group.
b. Select the check box next to the security group named `cloudhsm-<cluster ID>-sg`. AWS CloudHSM created this security group on your behalf when you created the cluster (p. 19). You must choose this security group to allow the web server instance to connect to the HSMs in the cluster.

c. Select the check box next to the security group that allows inbound HTTPS traffic. You created this security group previously (p. 218).

d. (Optional) Select the check box next to a security group that allows inbound SSH traffic from your network. That is, the security group must allow inbound TCP traffic on port 22. Otherwise, you cannot connect to your client instance with SSH. If you don't have a security group like this, you must create one and then assign it to your client instance later. For more information about creating a security group, see Create a Security Group in the Amazon VPC Getting Started Guide.

Choose Review and Launch.

18. Review your instance details, and then choose Launch.

19. Choose whether to launch your instance with an existing key pair, create a new key pair, or launch your instance without a key pair.

- To use an existing key pair, do the following:
  1. Choose Choose an existing key pair.
  2. For Select a key pair, choose the key pair to use.
  3. Select the check box next to I acknowledge that I have access to the selected private key file (`<private key file name>.pem`), and that without this file, I won't be able to log into my instance.

- To create a new key pair, do the following:
  1. Choose Create a new key pair.
  2. For Key pair name, type a key pair name.
  3. Choose Download Key Pair and save the private key file in a secure and accessible location.

  Warning
  You cannot download the private key file again after this point. If you do not download the private key file now, you will be unable to access the client instance.

- To launch your instance without a key pair, do the following:
  1. Choose Proceed without a key pair.
  2. Select the check box next to I acknowledge that I will not be able to connect to this instance unless I already know the password built into this AMI.

Choose Launch Instances.

Create the Load Balancer

Complete the following steps to create an Elastic Load Balancing load balancer that routes HTTPS traffic to your web servers.

To create a load balancer

1. Open the Load Balancers section of the Amazon EC2 console at https://console.aws.amazon.com/ec2/v2/home#LoadBalancers:.

2. Choose Create Load Balancer.

3. In the Network Load Balancer section, choose Create.

4. For Step 1: Configure Load Balancer, do the following:
a. For Name, type a name for the load balancer that you are creating.
b. In the Listeners section, for Load Balancer Port, change the value to 443.
c. In the Availability Zones section, for VPC, choose the VPC that contains your web servers.
d. In the Availability Zones section, choose the subnets that contain your web servers.
e. Choose Next: Configure Routing.

5. For Step 2: Configure Routing, do the following:
   a. For Name, type a name for the target group that you are creating.
   b. For Port, change the value to 443.
   c. Choose Next: Register Targets.

6. For Step 3: Register Targets, do the following:
   a. In the Instances section, select the check boxes next to your web server instances. Then choose Add to registered.
   b. Choose Next: Review.

7. Review your load balancer details, then choose Create.
8. When the load balancer has been successfully created, choose Close.

After you complete the preceding steps, the Amazon EC2 console shows your Elastic Load Balancing load balancer. When your load balancer's state is active, you can verify that the load balancer is working. That is, you can verify that it's sending HTTPS traffic to your web servers with SSL/TLS offload with AWS CloudHSM. You can do this with a web browser or with a tool such as OpenSSL s_client.

To verify that your load balancer is working with a web browser

1. In the Amazon EC2 console, find the DNS name for the load balancer that you just created. Then select the DNS name and copy it.
2. Use a web browser such as Mozilla Firefox or Google Chrome to connect to your load balancer using the load balancer's DNS name. Ensure that the URL in the address bar begins with https://.

   Note
   You can use a DNS service such as Route 53 to route your website's domain name (for example, https://www.example.com/) to your load balancer. For more information, see Routing Traffic to an ELB Load Balancer in the Amazon Route 53 Developer Guide or the documentation for your DNS service.

3. Use your web browser to view the web server certificate. For more information, see the following:
   - For Mozilla Firefox, see View a Certificate on the Mozilla Support website.
   - For Google Chrome, see Understand Security Issues on the Google Developers website.

   Other web browsers might have similar features that you can use to view the web server certificate.

4. Ensure that the certificate is the one that you configured the web server to use. Ensure that the private key is stored in an HSM in your AWS CloudHSM cluster.

To verify that your load balancer is working with OpenSSL s_client

1. Use the following OpenSSL command to connect to your load balancer using HTTPS. Replace <DNS name> with the DNS name of your load balancer.

   ```bash
   openssl s_client -connect <DNS name>:443
   ```
2. Ensure that the certificate is the one that you configured the web server to use (p. 215), whose private key is stored in the HSMs in your AWS CloudHSM cluster.

You now have a website that is secured with HTTPS, with the web server's private key stored in an HSM in your AWS CloudHSM cluster. Your website has two web servers and a load balancer to help improve efficiency and availability.

Oracle Database Transparent Data Encryption (TDE) with AWS CloudHSM

Some versions of Oracle's database software offer a feature called Transparent Data Encryption (TDE). With TDE, the database software encrypts data before storing it on disk. The data in the database's table columns or tablespaces is encrypted with a table key or tablespace key. These keys are encrypted with the TDE master encryption key. You can store the TDE master encryption key in the HSMs in your AWS CloudHSM cluster, which provides additional security.

In this solution, you use Oracle Database installed on an Amazon EC2 instance. Oracle Database integrates with the AWS CloudHSM software library for PKCS #11 (p. 164) to store the TDE master key in the HSMs in your cluster.

Important
You cannot use an Oracle instance in Amazon Relational Database Service (Amazon RDS) to integrate with AWS CloudHSM. You must install Oracle Database on an Amazon EC2 instance.
For information about integrating an Oracle instance in Amazon RDS with AWS CloudHSM Classic, see Using AWS CloudHSM Classic to Store Amazon RDS Oracle TDE Keys in the Amazon Relational Database Service User Guide.

Complete the following steps to accomplish Oracle TDE integration with AWS CloudHSM.

**To configure Oracle TDE integration with AWS CloudHSM**

1. Follow the steps in Set Up Prerequisites (p. 225) to prepare your environment.
2. Follow the steps in Configure the Database (p. 226) to configure Oracle Database to integrate with your AWS CloudHSM cluster.

**Oracle TDE with AWS CloudHSM: Set Up the Prerequisites**

To accomplish Oracle TDE integration with AWS CloudHSM, you need the following:

- An active AWS CloudHSM cluster with at least one HSM.
- An Amazon EC2 instance running the Amazon Linux operating system with the following software installed:
  - The AWS CloudHSM client and command line tools.
  - The AWS CloudHSM software library for PKCS #11.
- Oracle Database. AWS CloudHSM supports Oracle TDE integration with Oracle Database versions 11 and 12.
- A cryptographic user (CU) to own and manage the TDE master encryption key on the HSMs in your cluster.

Complete the following steps to set up all of the prerequisites.

**To set up the prerequisites for Oracle TDE integration with AWS CloudHSM**

1. Complete the steps in Getting Started (p. 14). After you do so, you’ll have an active cluster with one HSM. You will also have an Amazon EC2 instance running the Amazon Linux operating system. The AWS CloudHSM client and command line tools will also be installed and configured.
2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM (p. 37).
3. Connect to your Amazon EC2 client instance and do the following:
   a. Install the AWS CloudHSM software library for PKCS #11 (p. 167).
   b. Install Oracle Database. For more information, see the Oracle Database documentation. AWS CloudHSM supports Oracle TDE integration with Oracle Database versions 11 and 12.
   c. Start the AWS CloudHSM client (p. 69).
   d. Update the configuration file for the cloudhsm_mgmt_util command line tool (p. 69).
   e. Use the cloudhsm_mgmt_util command line tool to create a cryptographic user (CU) on your cluster. For more information, see Managing HSM Users (p. 46).

After you complete these steps, you can Configure the Database (p. 226).
Oracle TDE with AWS CloudHSM: Configure the Database and Generate the Master Encryption Key

To integrate Oracle TDE with your AWS CloudHSM cluster, see the following topics:

1. Update the Oracle Database Configuration (p. 226) to use the HSMs in your cluster as the external security module. For information about external security modules, see Introduction to Transparent Data Encryption in the Oracle Database Advanced Security Guide.

2. Generate the Oracle TDE Master Encryption Key (p. 227) on the HSMs in your cluster.

Topics
- Update the Oracle Database Configuration (p. 226)
- Generate the Oracle TDE Master Encryption Key (p. 227)

Update the Oracle Database Configuration

To update the Oracle database configuration to use an HSM in your cluster as the external security module, complete the following steps. For information about external security modules, see Introduction to Transparent Data Encryption in the Oracle Database Advanced Security Guide.

To update the Oracle configuration

1. Connect to your Amazon EC2 client instance. This is the instance where you installed Oracle Database.
2. Make a backup copy of the file named sqlnet.ora. For the location of this file, see the Oracle documentation.
3. Use a text editor to edit the file named sqlnet.ora. Add the following line. If an existing line in the file begins with encryption_wallet_location, replace the existing line with the following one.

   ```
   encryption_wallet_location=(source=(method=hsm))
   ```

   Save the file.
4. Run the following command to create the directory where Oracle Database expects to find the library file for the AWS CloudHSM PKCS #11 software library.

   ```
   sudo mkdir -p /opt/oracle/extapi/64/hsm
   ```
5. Use one of the following commands to copy the AWS CloudHSM software library for PKCS #11 file to the directory that you created in the previous step.
   - If you installed the PKCS #11 library without Redis, run the following command.

     ```
     sudo cp /opt/cloudhsm/lib/libcloudhsm_pkcs11_standard.so /opt/oracle/extapi/64/hsm/
     ```
   - If you installed the PKCS #11 library with Redis, run the following command.

     ```
     sudo cp /opt/cloudhsm/lib/libcloudhsm_pkcs11_redis.so /opt/oracle/extapi/64/hsm/
     ```

Note
The /opt/oracle/extapi/64/hsm directory must contain only one library file. Copy only the library file that corresponds to the way you installed the PKCS #11 library (p. 168). If additional files exist in that directory, remove them.
6. Run the following command to change the ownership of the /opt/oracle directory and everything inside it.

   ```
   sudo chown -R oracle:dba /opt/oracle
   ```

7. Start the Oracle Database.

Generate the Oracle TDE Master Encryption Key

To generate the Oracle TDE master key on the HSMs in your cluster, complete the steps in the following procedure.

**To generate the master key**

1. Use the `sqlplus` command to open Oracle SQL*Plus. When prompted, type the system password that you set when you installed Oracle Database.

2. Run the SQL statement that creates the master encryption key, as shown in the following examples. Use the statement that corresponds to your version of Oracle Database. Replace `<CU user name>` with the user name of the cryptographic user (CU). Replace `<password>` with the CU password.

   **Important**
   Run the following command only once. Each time the command is run, it creates a new master encryption key.

   - For Oracle Database version 11, run the following SQL statement.
     ```
     SQL> alter system set encryption key identified by "<CU user name>:<password>";
     ```
   - For Oracle Database version 12, run the following SQL statement.
     ```
     SQL> administer key management set key identified by "<CU user name>:<password>";
     ```

   If the response is `System altered` or `keystore altered`, then you successfully generated and set the master key for Oracle TDE.

3. (Optional) Run the following command to verify the status of the `Oracle wallet`.

   ```
   SQL> select * from v$encryption_wallet;
   ```

   If the wallet is not open, use one of the following commands to open it. Replace `<CU user name>` with the name of the cryptographic user (CU). Replace `<password>` with the CU password.

   - For Oracle 11, run the following command to open the wallet.
     ```
     SQL> alter system set encryption wallet open identified by "<CU user name>:<password>";
     ```
   - To manually close the wallet, run the following command.
     ```
     SQL> alter system set encryption wallet close identified by "<CU user name>:<password>";
     ```
   - For Oracle 12, run the following command to open the wallet.
     ```
     SQL> administer key management set keystore open identified by "<CU user name>:<password>";
     ```
Configure Windows Server Active Directory Certificate Services (AD CS) to Use a Cavium KSP

After you install the Windows AWS CloudHSM client, you can add the Active Directory Certificate Services (AD CS) role to your Windows Server. When you configure the role, you can choose a Cavium Key Storage Provider (KSP) to create and store the certificate authority (CA) private key. For more information, see the following topics.

Topics
• Set Up the Prerequisites to Configure AD CS to use the Cavium KSP (p. 228)
• Add and Configure the Windows Server AD CS Role (p. 228)

Set Up the Prerequisites to Configure AD CS to use the Cavium KSP

Before you can use the Cavium KSP provider to create and store the private key for a Windows certificate authority (CA), you must install the Windows AWS CloudHSM client. For more information, see Install the Client (Windows) (p. 33). Next create a crypto user (CU) and set the `n3fips_password` and `n3fips_partition` environment variables as discussed in Windows AWS CloudHSM Prerequisites (p. 204). Then use the following command to start the client.

```bash
c:\Program Files\Amazon\CloudHSM>cloudhsm_client.exe C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg
```

Add and Configure the Windows Server AD CS Role

To add and configure the the Windows Server Active Directory Certificate Services (AD CS) role, do the following:

1. Start Server Manager on your Windows Server.
2. Choose Add Roles and Features in the Server Manager dashboard.
3. Read the Before you begin information and choose Next.
4. For Installation Type, choose Role-based or feature-based installation and then choose Next.
5. For Server Selection, choose Select a server from the server pool and choose Next.
6. For Server Roles:
   • Select Active Directory Certificate Services and choose Next.
   • For the Add features that are required for Active Directory Certificate Services pop-up, choose Add Features.
   • Choose Next to finish selecting additional features.
   • Choose Next to finish selecting server roles.
7. For Features, accept the defaults and choose Next.
8. For **AD CA**:
   - Choose Next.
   - Select Certification Authority.
   - Choose Next.

9. For **Confirmation**, read the information presented and choose Install. Do not close the window.

10. Choose the highlighted **Configure Active Directory Certificate Services on the destination server** link.

11. For **Credentials**, accept or change the credentials displayed and click Next.

12. For **Role Services**, select Certification Authority and choose Next.

13. For **Setup Type**, select Standalone CA and choose Next.

14. For **CA Type**, select Root CA and choose Next.

15. For **Private Key**, select Create a new private key and choose Next.
   - For **Select a cryptographic provider**, choose a Cavium Key Storage Provider from the dropdown.
   - Choose a Key length.
   - Select a hash algorithm for signing certificates issued by the CA.
   - Choose Next.

16. For **CA Name**:
   - Accept or edit the common name.
   - Type an optional distinguished name suffix.
   - Verify the preview of the distinguished name.
   - Choose Next.

17. For **Validity Period**, specify a time period in years, weeks, days, or months.

18. For **Certificate Database**:
   - Type the database location and the database log location or accept the default values.
   - Choose Next.

19. For **Confirmation**, review the information provided and choose Configure.

20. Choose Close.
Retrieving Metrics

You can use Amazon CloudWatch and AWS CloudTrail to retrieve metrics and logs for your AWS CloudHSM instances. For more information, see the following topics:

Topics
- Getting CloudWatch Metrics (p. 230)
- Getting API Logs with AWS CloudTrail (p. 230)

Getting CloudWatch Metrics

AWS CloudHSM publishes metrics about your HSM instances to your CloudWatch dashboard. The metrics can be grouped by region, by cluster ID, and by HSM ID. Note, however, that the HSM ID will change if AWS CloudHSM replaces a failed HSM. We therefore recommend that you alarm and measure on the regional or cluster ID level rather than on the HSM ID. The following metrics are available:

- **HsmUnhealthy**: The HSM instance is not performing properly. AWS CloudHSM automatically replaces unhealthy instances for you. However, you can proactively expand cluster size to avoid HSM replacement.
- **HsmTemperature**: Junction temperature of the hardware processor. The system shuts down if temperature reaches 110 degrees Centigrade.
- **HsmKeysSessionOccupied**: Number of session keys being used by the HSM instance.
- **HsmKeysTokenOccupied**: Number of token keys being used by the HSM instance and the cluster.
- **HsmSslCtxsOccupied**: Number of end-to-end encrypted channels currently established for the HSM instance. Up to 2048 channels are allowed.
- **HsmSessionCount**: Number of open connections to the HSM instance. Up to 2048 are allowed. By default, the client daemon is configured to open two sessions with each HSM instance under one end-to-end encrypted channel.
- **HsmUsersAvailable**: Number of additional users that can be created. This equals the maximum number of users, **HsmUsersMax**, minus the users created to date.
- **HsmUsersMax**: Maximum number of users that can be created on the HSM instance. Currently this is 1024.
- **InterfaceEth2OctetsInput**: Cumulative sum of traffic to the HSM to date. We recommend that you also examine Amazon EC2 instance metrics.
- **InterfaceEth2OctetsOutput**: see the preceding metric - InterfaceEth2OctetsInput.

Getting API Logs with AWS CloudTrail

AWS CloudTrail records API calls in log files and delivers those files in the JSON (JavaScript Object Notation) format to an Amazon S3 bucket that you specify. CloudTrail records every call users in your account make to the AWS CloudHSM API, whether the call is made from the console, the AWS CLI, or from code.

Note
Calls made directly to an HSM instance under the e2e encrypted channel are not visible to the AWS CloudHSM service and are not logged by CloudTrail.
You can use CloudTrail log files to determine what request was made to AWS CloudHSM, the source IP address from which the request was made, who made the request, when it was made, and so on. CloudTrail log files contain all AWS API calls made in your AWS account, not only the AWS CloudHSM API calls. For general information about CloudTrail, see Getting Started with CloudTrail in the AWS CloudTrail User Guide. For more information about CloudTrail log entries, see the CloudTrail Event Reference. The following example shows a CloudTrail log entry for a CreateHsm call to the AWS CloudHSM API.

```json
{
  "eventVersion": "1.05",
  "userIdentity": {
    "type": "AssumedRole",
    "principalId": "principal_ID:ExampleSession",
    "arn": "arn:aws:sts::111122223333:assumed-role/AdminRole/ExampleSession",
    "accountId": "111122223333",
    "accessKeyId": "access-key-id",
    "sessionContext": {
      "attributes": {
        "mfaAuthenticated": "false",
        "creationDate": "2017-07-11T03:48:44Z"
      },
      "sessionIssuer": {
        "type": "Role",
        "principalId": "principal_ID",
        "arn": "arn:aws:iam::111122223333:role/AdminRole",
        "accountId": "111122223333",
        "userName": "AdminRole"
      }
    },
    "eventTime": "2017-07-11T03:50:45Z",
    "eventSource": "cloudhsm.amazonaws.com",
    "eventName": "CreateHsm",
    "awsRegion": "us-west-2",
    "sourceIPAddress": "205.251.233.179",
    "userAgent": "aws-internal/3",
    "requestParameters": {
      "availabilityZone": "us-west-2",
      "clusterId": "cluster-fw7mh6mayb5"
    },
    "responseElements": {
      "hsm": {
        "eniId": "eni-65338b5a",
        "clusterId": "cluster-fw7mh6mayb5",
        "state": "CREATE_IN_PROGRESS",
        "eniIp": "10.0.2.7",
        "hsmId": "hsm-6lz2hfmnzbx",
        "subnetId": "subnet-02c28c4b",
        "availabilityZone": "us-west-2"
      }
    },
    "requestID": "1dae0370-65ec-11e7-a770-6578d63da907",
    "eventID": "b73a5617-8508-4c3d-900d-aa8ac9b31d08",
    "eventType": "AwsApiCall",
    "recipientAccountId": "111122223333"
  }
}
```
Troubleshooting AWS CloudHSM

If you encounter problems with AWS CloudHSM, the following topics can help you resolve them.

Topics
- Known Issues (p. 232)
- Lost Connection to the Cluster (p. 236)
- Keep HSM Users In Sync Across HSMs In The Cluster (p. 237)
- Verify the Performance of the HSM (p. 237)
- Resolving Cluster Creation Failures (p. 240)

Known Issues

The following issues are currently known for AWS CloudHSM.

Topics
- Known Issues for all HSM instances (p. 232)
- Known Issues for the PKCS#11 SDK (p. 233)
- Known Issues for the JCE SDK (p. 235)
- Known Issues for the OpenSSL SDK (p. 235)

Known Issues for all HSM instances

The following issues impact all AWS CloudHSM users regardless of whether they use the `key_mgmt_util` command line tool, the PKCS#11 SDK, the JCE SDK, or the OpenSSL SDK.

Issue: AES key wrapping uses PKCS#5 padding instead of providing a standards-compliant implementation of key wrap with zero padding. Additionally, key wrap with no padding is not supported.

- Impact: There is no impact if you wrap and unwrap within AWS CloudHSM. Keys wrapped with AWS CloudHSM cannot be unwrapped within other HSMs or software which expect compliance to the no padding specification. This is because you may see up to 8 bytes of padding data suffixed to your key data following a standards-compliant unwrap. Externally wrapped keys cannot be properly unwrapped into a AWS CloudHSM instance.

- Workaround: If you are attempting to externally unwrap a key that was wrapped with AES Key Wrapping on a AWS CloudHSM instance, you must strip the extra padding before attempting to use the key. You can do this by trimming the extra bytes in a file editor or copying only the key bytes into a new buffer in your code.

- Resolution Status: We are fixing the client and SDKs to provide SP800-38F compliant AES key wrapping. Updates will be announced to the AWS CloudHSM forum and to the version history page. The update will include mechanisms to assist you in re-wrapping any existing wrapped keys in a standards-compliant way.

Issue: Imported keys cannot be specified as non-exportable.
**Known Issues for the PKCS#11 SDK**

**Issue:** PKCS#11-compliant error messages are not directly available from the HSM instance.

- **Impact:** The PKCS#11 library makes two round trips to the HSM per call – first to verify whether the requested operation is permitted, and second to execute the operation if it is permitted. This results in slower performance.
- **Workaround:** We have an alternative implementation of the PKCS#11 library which relies on a local REDIS cache so that correctness of the requested operation can be checked locally. There are pros and cons to using this workaround.
- **Resolution status:** We are implementing fixes to directly provide PKCS#11-compliant error messages, removing the need for the REDIS workaround. The updated PKCS#11 library will be announced to the version history page.

**Issue:** The CKA_DERIVE attribute is not supported and is not handled.
• **Impact:** Specifying the CKA_DERIVE attribute for a key, whether the attribute is set to true or false, will cause the key operation to fail with an invalid template error.

• **Workaround:** Do not specify the CKA_DERIVE attribute in your code.

• **Resolution status:** We are implementing fixes to accept CKA_DERIVE if it is set to FALSE. CKA_DERIVE set to true will not be supported until we begin to add key derivation function support to AWS CloudHSM. The updated PKCS#11 library will be announced to the version history page.

**Issue:** The CKA_SENSITIVE attribute is not supported and is not handled.

• **Impact:** Specifying the CKA_SENSITIVE attribute for a key, whether the attribute is set to true or false, will cause the key operation to fail with an invalid template error.

• **Workaround:** Do not specify the CKA_SENSITIVE attribute in your code.

• **Resolution status:** We are implementing fixes to accept and properly honor the CKA_SENSITIVE attribute. The updated PKCS#11 library will be announced to the version history page.

**Issue:** Multi-part hashing and signing are not supported.

• **Impact:** C_DigestUpdate and C_DigestFinal are not implemented. C_SignFinal is also not implemented and will fail with CKR_ARGUMENTS_BAD for a non-NULL buffer.

• **Workaround:** Hash your data within your application and use AWS CloudHSM only for signing the hash.

• **Resolution status:** We are fixing the client and the SDKs to correctly implement multi-part hashing. Updates will be announced to the AWS CloudHSM forum and to the version history page.

**Issue:** C_GenerateKeyPair does not handle CKA_MODULUS_BITS or CKA_PUBLIC_EXPONENT in the private template in a manner that is compliant with standards.

• **Impact:** C_GenerateKeyPair should return CKA_TEMPLATE_INCONSISTENT when the private template contains CKA_MODULUS_BITS or CKA_PUBLIC_EXPONENT. It instead generates a private key for which all usage fields are set to FALSE. The key cannot be used.

• **Workaround:** We recommend that your application check the usage field values in addition to the error code.

• **Resolution status:** We are implementing fixes to return the proper error message when an incorrect private key template is used. The updated PKCS#11 library will be announced in the version history page.

**Issue:** You cannot hash more than 16KB of data. For larger buffers, only the first 16KB will be hashed and returned. The excess data will be silently ignored.

• **Impact:** C_DIGEST will return an incorrect result if the data size exceeds 16KB.

• **Workaround:** You should hash your data within your application and use AWS CloudHSM to sign the hash.

• **Resolution status:** We are fixing the SDK to fail explicitly if the data buffer is too large. We are evaluating alternatives to support hashing larger buffers without relying on multi-part hashing. Updates will be announced to the AWS CloudHSM forum and to the version history page.

**Issue:** Buffers for the C_Encrypt and C_Decrypt APIs cannot exceed 16KB when using the CKM_AES_GCM mechanism. Also, AWS CloudHSM does not support multi-part AES-GCM encryption.

• **Impact:** You cannot use the CKM_AES_GCM mechanism to encrypt data larger than 16KB.

• **Workaround:** You can use an alternative mechanism such as CKM_AES_CBC or you can divide your data into pieces and encrypt each piece individually. You must manage the division of your data and
Known Issues for the JCE SDK

Issue: Key wrap and key unwrap functions are not implemented.

- Impact: You cannot programmatically wrap or unwrap keys using the JCE.
- Workaround: You can script key_mgmt_util to wrap and unwrap keys.
- Resolution status: We are planning to add support for key wrap and unwrap directly through the JCE. The update will be announced on the version history page once available.

Issue: The JCE KeyStore is read-only.

- Impact: You cannot store an object type that is not supported by the HSM in the JCE Keystore today. Specifically, you cannot store certificates in the keystore. This precludes interoperability with tools such as jarsigner which expect to find the certificate in the keystore.
- Workaround: You can rework your code to load certificates from local files or from an S3 bucket location instead of from the keystore.
- Resolution status: We are adding support for certificate storage in the keystore. The feature will be announced on the version history page once available.

Issue: Buffers for AES-GCM encryption cannot exceed 16KB. Also, multi-part AES-GCM is not supported.

- Impact: You cannot use the AES-GCM to encrypt data larger than 16KB.
- Workaround: You can use an alternative mechanism such as AES-CBC or you can divide your data into pieces and encrypt each piece individually. You must manage the division of your data and subsequent encryption. AWS CloudHSM does not perform multi-part AES-GCM encryption for you. Note that FIPS requires that the initialization vector (IV) for AES-GCM be generated on the HSM. Therefore, the IV for each of your AES-GCM encrypted pieces of data will be different.
- Resolution status: We are fixing the SDK to fail explicitly if the data buffer is too large. We are evaluating alternatives to support larger buffers without relying on multi-part encryption. Updates will be announced to the AWS CloudHSM forum and to the version history page.

Known Issues for the OpenSSL SDK

Issue: Only RSA offload to the HSM is supported by default.

- Impact: To maximize performance, the SDK is not configured to offload additional functions such as random number generation or EC-DH operations.
- Workaround: Please contact us through a support case if you need to offload additional operations.
- Resolution status: We are adding support to the SDK to configure offload options through a configuration file. The update will be announced on the version history page once available.

Issue: RSA encryption and decryption with OAEP padding using a key on the HSM is not supported.
• **Impact:** Any call to RSA encryption and decryption with OAEP padding fails with a divide by zero error. This occurs because the OpenSSL library calls the operation locally using the fake PEM file instead of offloading the operation to the HSM.

• **Workaround:** You can perform this procedure by using either the AWS CloudHSM Software Library for PKCS #11 (p. 164) or the AWS CloudHSM Software Library for Java (p. 171).

• **Resolution status:** We are adding support to the SDK to correctly offload this operation. The update will be announced on the version history page once available.

**Issue:** Only private key generation of RSA and ECC keys is offloaded to the HSM. For any other key type, the OpenSSL AWS CloudHSM engine is not used for call processing. Instead, the local OpenSSL library is used instead. This generates a key locally in software.

• **Impact:** Because the failover is silent, there is no indication that you have not received a key that was securely generated on the HSM. You will see an output trace that contains the string "............+++
++++++" if the key is locally generated by OpenSSL in software. This trace is absent when the operation is offloaded to the HSM. Because the key is not generated or stored on the HSM, it will be unavailable for future use.

• **Workaround:** Only use the OpenSSL engine for key types it supports. For all other key types, use PKCS#11 or JCE in applications or use `key_mgmt_util` in the AWS CLI.

---

**Lost Connection to the Cluster**

When you configured the AWS CloudHSM client (p. 33), you provided the IP address of the first HSM in your cluster. This IP address is saved in the configuration file for the AWS CloudHSM client. When the client starts, it tries to connect to this IP address. If it can’t—for example, because the HSM failed or you deleted it—you might see errors like the following:

| LIQUIDSECURITY: Daemon socket connection error |
| LIQUIDSECURITY: Invalid Operation |

To resolve these errors, update the configuration file with the IP address of an active, reachable HSM in the cluster.

**To update the configuration file for the AWS CloudHSM client**

1. Use one of the following ways to find the IP address of an active HSM in your cluster.
   - View the HSMs tab on the cluster details page in the AWS CloudHSM console.
   - Use the AWS Command Line Interface (AWS CLI) to issue the describe-clusters command.

   You need this IP address in a subsequent step.

2. Use the following command to stop the client.

   Amazon Linux
   ```
   $ sudo stop cloudhsm-client
   ```

   Ubuntu
   ```
   $ sudo service cloudhsm-client stop
   ```
Keep HSM Users In Sync Across HSMs In The Cluster

To manage your HSM's users (p. 46), you use a AWS CloudHSM command line tool known as cloudhsm_mgmt_util. It communicates only with the HSMs that are in the tool's configuration file. It's not aware of other HSMs in the cluster that are not in the configuration file.

AWS CloudHSM synchronizes the keys on your HSMs across all other HSMs in the cluster, but it doesn't synchronize the HSM's users or policies. When you use cloudhsm_mgmt_util to manage HSM users (p. 46), these user changes might affect only some of the cluster's HSMs—the ones that are in the cloudhsm_mgmt_util configuration file. This can cause problems when AWS CloudHSM syncs keys across HSMs in the cluster, because the users that own the keys might not exist on all HSMs in the cluster.

To avoid these problems, edit the cloudhsm_mgmt_util configuration file before managing users. For more information, see Step 4: Update the cloudhsm_mgmt_util Configuration File (p. 69).

Verify the Performance of the HSM

To verify the performance of the HSMs in your AWS CloudHSM cluster, you can use the pkpspeed (Linux) or pkpspeed_blocking (Windows) tool that is included with the AWS CloudHSM client software. For more information about installing the client on a Linux EC2 instance, see Install and Configure the AWS CloudHSM Client (Linux) (p. 32). For more information about installing the client on a Windows instance, see Install and Configure the AWS CloudHSM Client (Windows) (p. 33).

After you install and configure the AWS CloudHSM client, issue the following command to start it.

Amazon Linux

```bash
$ sudo stop cloudhsm-client
```

237
Verify Performance

Ubuntu

```bash
$ sudo service cloudhsm-client stop
```

Windows

```cmd
c:\Program Files\Amazon\CloudHSM>cloudhsm_client.exe C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg
```

If you have already installed the client software, you might need to download and install the latest version to get pkpspeed. You can find the pkpspeed tool at /opt/cloudhsm/bin/pkpspeed in Linux or C:\Program Files\Amazon\CloudHSM\ in Windows.

To use pkpspeed, issue the `pkpspeed` command or `pkpspeed_blocking.exe`, specifying the user name and password of a crypto user (CU) on the HSM. Then set the options to use, considering the following recommendations.

**Recommendations**

- To test the performance of RSA sign and verify operations, choose the RSA_CRT cipher in Linux or option B in Windows. Don’t choose RSA (option A in Windows). The ciphers are equivalent, but RSA_CRT is optimized for performance.
- Start with a small number of threads. For testing AES performance, one thread is typically enough to show maximum performance. For testing RSA performance (RSA_CRT), three or four threads is typically enough.

The following examples show the options that you can choose with pkpspeed (Linux) or pkpspeed_blocking.exe (Windows) to test the HSM’s performance for RSA and AES operations.

**Example – Using pkpspeed to test RSA performance**

Amazon Linux

```
/opt/cloudhsm/bin/pkpspeed -s CU user name -p password
```

SDK Version: 2.03

Available Ciphers:

- AES_128
- AES_256
- 3DES
- RSA (non-CRT. modulus size can be 2048/3072)
- RSA_CRT (same as RSA)

For RSA, Exponent will be 65537

Current FIPS mode is: 00002
Enter the number of thread [1-10]: 3
Enter the cipher: RSA_CRT
Enter modulus length: 2048
Enter time duration in Secs: 60
Starting non-blocking speed test using data length of 245 bytes...
[Test duration is 60 seconds]

Do you want to use static key[y/n] (Make sure that KEK is available)?n

Windows

```
c:\Program Files\Amazon\CloudHSM>pkpspeed_blocking.exe -s CU user name -p password
```
Please select the test you want to run

RSA non-CRT------------------->A
RSA CRT----------------------->B
Basic 3DES CBC--------------->C
Basic AES---------------------->D
FIPS Random------------------->H
Random------------------------->I
AES GCM ---------------------->K

eXit----------------------------->X

Running 4 threads for 25 sec

Enter mod size(2048/3072):2048
Do you want to use Token key[y/n]n
Do you want to use static key[y/n] (Make sure that KEK is available)?  n

OPERATIONS/second                821/1
OPERATIONS/second                833/1
OPERATIONS/second                845/1
OPERATIONS/second                835/1
OPERATIONS/second                837/1
OPERATIONS/second                836/1
OPERATIONS/second                837/1
OPERATIONS/second                849/1
OPERATIONS/second                841/1
OPERATIONS/second                856/1
OPERATIONS/second                841/1
OPERATIONS/second                847/1
OPERATIONS/second                838/1
OPERATIONS/second                843/1
OPERATIONS/second                852/1
OPERATIONS/second                837/

Example – Using pkpspeed to test AES performance

Amazon Linux

```
/opt/cloudhsm/bin/pkpspeed -s <CU user name> -p <password>
```

SDK Version: 2.03

Available Ciphers:

- AES_128
- AES_256
- 3DES
- RSA (non-CRT. modulus size can be 2048/3072)
- RSA_CRT (same as RSA)

For RSA, Exponent will be 65537

Current FIPS mode is: 00000002
Enter the number of thread [1-10]: 1
Enter the cipher: AES_256
Enter the data size [1-16200]: 8192
Enter time duration in Secs: 60
Starting non-blocking speed test using data length of 8192 bytes...

Windows

```
c:\Program Files\Amazon\CloudHSM>pkpspeed_blocking.exe -s CU user name -p password
```
Resolving Cluster Creation Failures

When you create a cluster, AWS CloudHSM creates the AWSServiceRoleForCloudHSM service-linked role, if the role does not already exist. If AWS CloudHSM cannot create the service-linked role, your attempt to create a cluster might fail.

This topic explains how to resolve the most common problems so you can create a cluster successfully. You need to create this role only one time. Once the service-linked role is created in your account, you can use any of the supported methods to create additional clusters and to manage them.

The following sections offer suggestions to troubleshoot cluster creation failures that are related to the service-linked role. If you try them but are still unable to create a cluster, contact AWS Support. For more information about the AWSServiceRoleForCloudHSM service-linked role, see Understanding Service-Linked Roles (p. 17).

Topics

- Add the Missing Permission (p. 240)
- Create the Service-Linked Role Manually (p. 241)
- Use a Nonfederated User (p. 241)

Add the Missing Permission

To create a service-linked role, the user must have the iam:CreateServiceLinkedRole permission. If the IAM user who is creating the cluster does not have this permission, the cluster creation process fails when it tries to create the service-linked role in your AWS account.
When a missing permission causes the failure, the error message includes the following text.

This operation requires that the caller have permission to call iam:CreateServiceLinkedRole to create the CloudHSM Service Linked Role.

To resolve this error, give the IAM user who is creating the cluster the AdministratorAccess permission or add the iam:CreateServiceLinkedRole permission to the user’s IAM policy. For instructions, see Adding Permissions to a New or Existing User.

Then try to create the cluster (p. 19) again.

Create the Service-Linked Role Manually

You can use the IAM console, CLI, or API to create the AWSServiceRoleForCloudHSM service-linked role. For more information, see Creating a Service-Linked Role in the IAM User Guide.

Use a Nonfederated User

Federated users, whose credentials originate outside of AWS, can perform many of the tasks of a nonfederated user. However, AWS does not allow users to make the API calls to create a service-linked role from a federated endpoint.

To resolve this problem, create a non-federated user (p. 14) with the iam:CreateServiceLinkedRole permission, or give an existing non-federated user the iam:CreateServiceLinkedRole permission. Then have that user create a cluster (p. 19) from the AWS CLI. This creates the service-linked role in your account.

Once the service-linked role is created, if you prefer, you can delete the cluster that the nonfederated user created. Deleting the cluster does not affect the role. Thereafter, any user with the required permissions, included federated users, can create AWS CloudHSM clusters in your account.

To verify that the role was created, open the IAM console at https://console.aws.amazon.com/iam/ and choose Roles. Or use the IAM get-role command in the AWS CLI.

```bash
$ aws iam get-role --role-name AWSServiceRoleForCloudHSM
{
  "Role": {
    "Description": "Role for CloudHSM service operations",
    "AssumeRolePolicyDocument": {
      "Version": "2012-10-17",
      "Statement": [
        {
          "Action": "sts:AssumeRole",
          "Effect": "Allow",
          "Principal": {
            "Service": "cloudhsm.amazonaws.com"
          }
        }
      ]
    },
    "RoleId": "AROAJ4I6WN5QVGSG7CBY",
    "CreateDate": "2017-12-19T20:53:12Z",
    "RoleName": "AWSServiceRoleForCloudHSM",
    "Path": "/aws-service-role/cloudhsm.amazonaws.com/",
    "Arn": "arn:aws:iam::111122223333:role/aws-service-role/cloudhsm.amazonaws.com/AWSServiceRoleForCloudHSM"
  }
}
```
AWS CloudHSM Client and Software Version History

The following topics contain the version history for the AWS CloudHSM client and software libraries.

Topics
- AWS CloudHSM Client (p. 242)
- CNG/KSP Providers (p. 244)
- PKCS #11 Library (p. 244)
- OpenSSL Library (p. 245)
- Java Library (p. 246)

AWS CloudHSM Client

This section describes the updates to each version of the AWS CloudHSM client software.

Current Version: 1.0.18

You can download the current version of the AWS CloudHSM client from the following locations. For more information if you are using Linux, see Install the Client (Linux) (p. 32). For more information if you are using Windows, see Install the Client (Windows) (p. 33).

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-latest.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client_latest_amd64.deb
- Windows: https://s3.amazonaws.com/cloudhsmv2-software/AWSCloudHSMClient-latest.msi

Significant changes in this version include the following:

- Added the Windows AWS CloudHSM client.

  Note
  The following Windows Server operating systems are currently supported:
  - Microsoft Windows Server 2012 (64-bit)
  - Microsoft Windows Server 2012 R2 (64-bit)
  - Microsoft Windows Server 2016 (64-bit)

- Added the pkpspeed_blocking performance testing tool for Windows. For more information, see Verify the Performance of the HSM (p. 237).
- Improved stability when HSM connectivity is lost.
- Corrected handling of expired cluster certificate.
- Fixed various bugs.
Previous Versions

Version 1.0.14

You can download version 1.0.14 from the following locations.

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-1.0-14.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client_1.0-14_amd64.deb

Significant changes in this version include the following:

- Improved failover behavior.
- Displays version metadata.
- Fixed various bugs.

Version 1.0.11

Significant changes in this version include the following:

- Improved load balancing.
- Improved performance.
- Improved handling of lost server connections.

Version 1.0.10

Significant changes in this version include the following:

- Updated the key_mgmt_util command line tool to enable AES wrapped key import.
- Improved performance.
- Fixed various bugs.

Version 1.0.8

Significant changes in this version include the following:

- Improved setup experience.
- Added respawn to the client upstart service.
- Fixed various bugs.

Version 1.0.7

Significant changes in this version include the following:

- Added the pkpspeed performance testing tool. For more information, see Verify the Performance of the HSM (p. 257).
- Fixed bugs to improve stability and performance.

Version 1.0.0

This is the initial release.
CNG/KSP Providers

Current Version: 1.0.18

The CNG and KSP providers are included in the Windows AWS CloudHSM client. You can download the current version of the client from the following location. For more information about the client, see Install the Client (Windows) (p. 33).

- Windows: https://s3.amazonaws.com/cloudhsmv2-software/AWSCloudHSMClient-latest.msi

Significant changes in this version include the following:

- The Windows AWS CloudHSM client is new in this version.

Note
The following Windows Server operating systems are currently supported:
- Microsoft Windows Server 2012 (64-bit)
- Microsoft Windows Server 2012 R2 (64-bit)
- Microsoft Windows Server 2016 (64-bit)
- Added the pkpspeed_blocking performance testing tool for Windows. For more information, see Verify the Performance of the HSM (p. 237).

PKCS #11 Library

Current Version: 1.0.18

You can download the current version of the AWS CloudHSM software library for PKCS #11 from one of the following locations. For more information, see Installing the PKCS #11 Library (p. 167).

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11-latest.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11_latest_amd64.deb

Significant changes in this version include the following:

- Added support for PKCS7Padding.
- Strengthened checks on key templates.
- Fixed various bugs.

Previous Versions

Version 1.0.14

You can download version 1.0.14 from the following locations.

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11-1.0-14.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-pkcs11_1.0-14_amd64.deb
Significant changes in this version include the following:

- Implemented PKCS7Padding for C_DecryptUpdate and C_EncryptUpdate.
- CKA_ID no longer required for RSA private key generation.
- Improved multi-threading performance.
- Fixed various bugs.

Version 1.0.11

Significant changes in this version include the following:

- Added support for the CKM_RSA_PKCS_PSS sign/verify mechanism.

Version 1.0.10

Updated the version number for consistency.

Version 1.0.8

Significant changes in this version include the following:

- Fixed bugs to address relative paths in the Redis setup.

Version 1.0.7

Significant changes in this version include the following:

- Added an accelerated version of the library that uses a Redis local cache to improve performance.
- Fixed bugs related to attribute handling.
- Added the ability to generate ECDSA keys.

Version 1.0.0

This is the initial release.

OpenSSL Library

Current Version: 1.0.18

You can download the current version of the AWS CloudHSM software library for OpenSSL from any of the following locations. For more information, see Installing the OpenSSL Library (p. 170).

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn-latest.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn_latest_amd64.deb

Significant changes in this version include the following:

- Added support to getCaviumPrivKey for ECC based keys.
- Improved stability when client daemon connectivity is lost.
- Fixed various bugs.
Previous Versions

Version 1.0.14
You can download version 1.0.14 from the following locations.

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn-1.0-14.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-dyn_1.0-14_amd64.deb

Significant changes in this version include the following:

- Added support for CSRs for ECC keys.
- Improved stability and failure handling.

Version 1.0.11
Updated the version number for consistency.

Version 1.0.10
Updated the version number for consistency.

Version 1.0.8
Significant changes in this version include the following:

- Improved performance.

Version 1.0.7
Updated the version number for consistency.

Version 1.0.0
This is the initial release.

Java Library

Current Version: 1.0.18
You can download the current version of the AWS CloudHSM software library for Java from any of the following locations. For more information, see Installing the Java Library (p. 171).

- Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce-latest.x86_64.rpm
- Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce_latest_amd64.deb

Significant changes in this version include the following:

- [Breaking Change] The LoginManager.getInstance() public method will no longer accept username and password arguments directly. Instead see the alternative login mechanisms at Log In To and Out Of an HSM.
• Added support for PKCS7Padding.
• Added wrap and unwrap methods.
• Improved stability when client daemon connectivity is lost.
• Fixed various bugs.

Previous Versions

Version 1.0.14
You can download version 1.0.14 from the following locations.
• Amazon Linux (and compatible distributions): https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce-1.0-14.x86_64.rpm
• Ubuntu: https://s3.amazonaws.com/cloudhsmv2-software/cloudhsm-client-jce_1.0-14_amd64.deb

Updated the version number for consistency.

Version 1.0.11
Significant changes in this version include the following:
• Improved the performance of several algorithms.
• Added Triple DES (3DES) key import feature.
• Various bug fixes.

Version 1.0.10
Significant changes in this version include the following:
• Added support for additional algorithms.
• Improved performance.

Version 1.0.8
Significant changes in this version include the following:
• Updated the version number for consistency.

Version 1.0.7
Significant changes in this version include the following:
• Added support for additional algorithms.
• Signed the JAR files for compatibility with the Sun JCE provider.

Version 1.0.0
This is the initial release.
# Document History

The following table describes the documentation release history of AWS CloudHSM.

**Latest documentation update:** April 30, 2018

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>New content</td>
<td>Added a Windows AWS CloudHSM client. For more information, see the following topics:</td>
<td>April 30, 2018</td>
</tr>
<tr>
<td></td>
<td>• Install and Configure the AWS CloudHSM Client (Windows) (p. 33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• KSP and CNG Providers for Windows (p. 203)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configure Windows Server Active Directory Certificate Services (AD CS) to Use a Cavium KSP (p. 228)</td>
<td></td>
</tr>
<tr>
<td>New content</td>
<td>Added quorum authentication (M of N access control) for crypto officers (COs). For more information, see Enforcing Quorum Authentication (M of N Access Control) (p. 54).</td>
<td>November 9, 2017</td>
</tr>
<tr>
<td>Update</td>
<td>Added documentation about using the key_mgmt_util command line tool. For more information, see key_mgmt_util Command Reference (p. 103).</td>
<td>November 9, 2017</td>
</tr>
<tr>
<td>New content</td>
<td>Added Oracle Transparent Data Encryption. For more information, see Oracle Database Encryption (p. 224).</td>
<td>October 25, 2017</td>
</tr>
<tr>
<td>New content</td>
<td>Added SSL Offload. For more information, see SSL/TLS Offload (p. 210).</td>
<td>October 12, 2017</td>
</tr>
<tr>
<td>New content</td>
<td>Added code samples (p. 178) that demonstrate how to use the AWS CloudHSM software library for Java (p. 171).</td>
<td>August 29, 2017</td>
</tr>
<tr>
<td>New guide</td>
<td>This release introduces AWS CloudHSM</td>
<td>August 14, 2017</td>
</tr>
</tbody>
</table>