Amazon Comprehend examples using AWS SDK for .NET - AWS SDK Code Examples

There are more AWS SDK examples available in the AWS Doc SDK Examples GitHub repo.

Amazon Comprehend examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios by using the AWS SDK for .NET with Amazon Comprehend.

Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.

Actions

The following code example shows how to use DetectDominantLanguage.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example calls the Amazon Comprehend service to determine the /// dominant language. /// </summary> public static class DetectDominantLanguage { /// <summary> /// Calls Amazon Comprehend to determine the dominant language used in /// the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle."; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); Console.WriteLine("Calling DetectDominantLanguage\n"); var detectDominantLanguageRequest = new DetectDominantLanguageRequest() { Text = text, }; var detectDominantLanguageResponse = await comprehendClient.DetectDominantLanguageAsync(detectDominantLanguageRequest); foreach (var dl in detectDominantLanguageResponse.Languages) { Console.WriteLine($"Language Code: {dl.LanguageCode}, Score: {dl.Score}"); } Console.WriteLine("Done"); } }

The following code example shows how to use DetectEntities.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the AmazonComprehend service detect any /// entities in submitted text. /// </summary> public static class DetectEntities { /// <summary> /// The main method calls the DetectEntitiesAsync method to find any /// entities in the sample code. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); Console.WriteLine("Calling DetectEntities\n"); var detectEntitiesRequest = new DetectEntitiesRequest() { Text = text, LanguageCode = "en", }; var detectEntitiesResponse = await comprehendClient.DetectEntitiesAsync(detectEntitiesRequest); foreach (var e in detectEntitiesResponse.Entities) { Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score: {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}"); } Console.WriteLine("Done"); } }
  • For API details, see DetectEntities in AWS SDK for .NET API Reference.

The following code example shows how to use DetectKeyPhrases.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to /// search text for key phrases. /// </summary> public static class DetectKeyPhrase { /// <summary> /// This method calls the Amazon Comprehend method DetectKeyPhrasesAsync /// to detect any key phrases in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectKeyPhrases"); var detectKeyPhrasesRequest = new DetectKeyPhrasesRequest() { Text = text, LanguageCode = "en", }; var detectKeyPhrasesResponse = await comprehendClient.DetectKeyPhrasesAsync(detectKeyPhrasesRequest); foreach (var kp in detectKeyPhrasesResponse.KeyPhrases) { Console.WriteLine($"Text: {kp.Text}, Score: {kp.Score}, BeginOffset: {kp.BeginOffset}, EndOffset: {kp.EndOffset}"); } Console.WriteLine("Done"); } }

The following code example shows how to use DetectPiiEntities.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to find /// personally identifiable information (PII) within text submitted to the /// DetectPiiEntitiesAsync method. /// </summary> public class DetectingPII { /// <summary> /// This method calls the DetectPiiEntitiesAsync method to locate any /// personally dientifiable information within the supplied text. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); var text = @"Hello Paul Santos. The latest statement for your credit card account 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109."; var request = new DetectPiiEntitiesRequest { Text = text, LanguageCode = "EN", }; var response = await comprehendClient.DetectPiiEntitiesAsync(request); if (response.Entities.Count > 0) { foreach (var entity in response.Entities) { var entityValue = text.Substring(entity.BeginOffset, entity.EndOffset - entity.BeginOffset); Console.WriteLine($"{entity.Type}: {entityValue}"); } } } }

The following code example shows how to use DetectSentiment.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to detect the overall sentiment of the supplied /// text using the Amazon Comprehend service. /// </summary> public static class DetectSentiment { /// <summary> /// This method calls the DetetectSentimentAsync method to analyze the /// supplied text and determine the overal sentiment. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectSentiment"); var detectSentimentRequest = new DetectSentimentRequest() { Text = text, LanguageCode = "en", }; var detectSentimentResponse = await comprehendClient.DetectSentimentAsync(detectSentimentRequest); Console.WriteLine($"Sentiment: {detectSentimentResponse.Sentiment}"); Console.WriteLine("Done"); } }

The following code example shows how to use DetectSyntax.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use Amazon Comprehend to detect syntax /// elements by calling the DetectSyntaxAsync method. /// </summary> public class DetectingSyntax { /// <summary> /// This method calls DetectSynaxAsync to identify the syntax elements /// in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); // Call DetectSyntax API Console.WriteLine("Calling DetectSyntaxAsync\n"); var detectSyntaxRequest = new DetectSyntaxRequest() { Text = text, LanguageCode = "en", }; DetectSyntaxResponse detectSyntaxResponse = await comprehendClient.DetectSyntaxAsync(detectSyntaxRequest); foreach (SyntaxToken s in detectSyntaxResponse.SyntaxTokens) { Console.WriteLine($"Text: {s.Text}, PartOfSpeech: {s.PartOfSpeech.Tag}, BeginOffset: {s.BeginOffset}, EndOffset: {s.EndOffset}"); } Console.WriteLine("Done"); } }
  • For API details, see DetectSyntax in AWS SDK for .NET API Reference.

The following code example shows how to use StartTopicsDetectionJob.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }

Scenarios

The following code example shows how to create an application that analyzes customer comment cards, translates them from their original language, determines their sentiment, and generates an audio file from the translated text.

AWS SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills the need of a fictitious hotel in New York City. The hotel receives feedback from guests in various languages in the form of physical comment cards. That feedback is uploaded into the app through a web client. After an image of a comment card is uploaded, the following steps occur:

  • Text is extracted from the image using Amazon Textract.

  • Amazon Comprehend determines the sentiment of the extracted text and its language.

  • The extracted text is translated to English using Amazon Translate.

  • Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the AWS CDK. For source code and deployment instructions, see the project in GitHub.

Services used in this example
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate