CodeArtifact User Guide

CodeArtifact

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

CodeArtifact CodeArtifact User Guide

CodeArtifact: CodeArtifact User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

CodeArtifact CodeArtifact User Guide

Table of Contents

What is AWS COAEAItIfaCt? ...uuuueeueeeemeeneneennnnniniiiiiiiiiiiiiiiiiiiiiiiiiiesse 1
HOW d0eS COAEAITITACT WOIK?cueieiieiiirietctrertetetrestct ettt sttt sa et s ss st sb et e e saa s 1
CONCEPLS ettt ettt s e et s b e s sae e s b e s s sa e s b e s s sa e s b e s st e s b e e e s e essbeessaa s ae e s e e et e e st e e ae e s e e e aa e s e eeteeeraennaeas 2

ASSEL .ttt st st a e e b et ae st et e s e et et e e ae e b e Rt e b e et e e st e ebe st e ateseeaee 2
DOMIGIN ittt ettt ettt st et s b st et s b e st e e st s be st e st e b e st e e st s se e st e e st e sbeeae st e neentes 2
REPOSITOIY ettt ettt e st e st e s ae s s e e s ae e st e s saeessaeesae e st essseessaesssaassaasssesssaessseesstessseesseesnses 3
PACKAGE ..ottt ettt ste e e s e e e e e et e st e st e st e st e et e e seese et et et e basassaeseeseessensa e et e tasenseeseereensenaanes 3
PACKAGE GIOUP weevireiiieieietectecteeteeteee et e seesaestestestessessee e e aesaessessessassassessaesaassansassansansassassasssensansansassansanes 3
PACKAgE NAMESPACE ...cuveveeeeeeieteeieteteitestesteste s e sseeseeaesesaessestessassassassaesaessessessassansansassassassssssessansensensanes 3
PACKAGE VEISION ..cveeeeiieeteteteteeteee et e e e e et et e stesaestesse s e e e s s e s e sestessassassassaesaessensastansansansassasseesasssenean 4
PacKage VEIrSION FBVISION ...cuccueeuiiieieteiectecteeteeee e e te e e tetesaestestessessessee s e s esaese st esassassassessesssessensansansen 4
UPSErEAM FEPOSITONY ..oiieiiiieiteeteiceceteest e st estessaeesteesaeessaessaeessnesssessssesseesssesssessssesssaesseesssessseessens 4
How do | get started with COAEAItITaCt? ... 4

SEELING UP ceeeiiiiiiiiiiiiinieennniiiiiieeeiitessnne 6
SIGN UP FOF AWS ..ttt e te s e e e e e s e et e st e st e st e b e s seesaese e e e st et asbessessessasseaseensensansensansanes 6
Install or upgrade and then configure the AWS CLI ...t sae e naens 7
ProViSION @N TAM USEE ...ttt sttt et s e st st et s b e st e s st s ae st e st e sbesssessessasnnanns 8
Install your package manager or build 00l ...ttt 9

NEXE SEEPS eeteiiiicteetretee ettt et e st e s st s et st e e st e s s ae s e s e e s aa et e e besssaesse e st esssesssaesssaesseesssesssaessseesseenns 10

Getting StArtedccciiiiiiiieeeeeciiiiiiiiiiiiiieeensneeiisitseeeettess 11
PrEIEGQUISITES .ottt ettt et et e st e st e s sae e s ae s s ae e st e s ss e e st e s sse e s st esssessssassseessaesssessssessseesssesssesssaesnses 11
Getting started USING the CONSOLE ...ttt s e s e aeaeaens 12
Getting started USING the AWS CLI ...ttt sa et estesaesaesse s e e e s e e saananeens 14

Working With repOSIitOriesccccciiiiiiiieeeniiiiiiiieiiiinieeesssssiiiiseceettsses 21
Create @ FEPOSITONY ittt ettt st s e st e st e s sae e st e s saeesstessaaesssasssaesssessseasssessseesssesssesnes 21

Create a repOoSIitory (CONSOLE) ...ttt e e et et e s testessa e e e e e e e e e s e saeaannan 22
Create a repPOSItOry (AWS CLI) ettt ettt e tesae s e s e e e e s e s e saesaesaa s s e ssaesn e e ennennan 23
Create a repository with an upstream repoSItOry ... icececececeeeceeee e 24
CONNECE L0 Q FEPOSITONY .eeiiiiiieeeeteeterter ettt s st e et e s sae e st e s sae s snessaeessaesssesssaessaesssasssessssassssesseanns 25
Use a package mManager CLENT ..ottt e e e e s sae st et esaesaessesse e e ennens 25
DELELE @ FEPOSIEOIY ettt et ettt e s ae s e e st e e s e e e e e e e e e et esaesansessassesseesnensaneans 26
Delete a repoSitory (CONSOLE)cciirieieeeietececectee ettt ettt ste e s e e s st e aesaesbessassaesaesaennan 26
Delete @ repOoSItOry (AWS CLI) ..ottt te e teste e e e e e sa et e tesae s e ssessee s esaesaesaansans 26

Protect repositories from being deleted ... 27

CodeArtifact CodeArtifact User Guide

LIST FEPOSITONIES .ottt ettt et st s e e st e st e s s e e s sae e s st e s aesssaessaeessaesssassaesssaesssesssessseesseessaanns 28
List repositories in @an AWS QCCOUNTc...oiiiiiiiectcrterce ettt st esre s st ssaesssaessessaessssesssaesnans 29
List repositories in the dOmMain ... et aan 30

View or modify a repository configuration ...t 32
View or modify a repository configuration (CONSOLE)cceeeeereeieeeieecieteceeecec e 32
View or modify a repository configuration (AWS CLI)cceoioeeeieeeeeeeeecteeseceee e eenenens 33

REPOSITOIY POLICIES ..eveuveteieeieeeeeeeeetetetecte et e it st e st e s aesae e e e e e e e e e s e s et e tessassessasssessessensansansansanes 35
Create a resource policy to grant read QCCESScccevereeereeieieeeee e saesre e 35
SO @ POLICY ettt ettt et s e st e e e et e et e st e st e st e s b e b e e e e e e e et et e te b e e seese e st enaententententanes 37
REAA @ POLICY ettt ettt te s e e e e e b e st et e et e s b e e e e e e e et et et e sessasseeseeneensenaenaan 38
DELELE @ POLICY ettt e e it sa e st et e st e s e st eese e e e e et et e tebenbessesseereenaenean 39
Grant read access tO PriNCIPALS ..ottt e e e et sa et st e saesae e e se e e ennans 39
Grant Write aCCeSS t0 PACKAGESccueeuieeeeeieietetectetee ettt estestesaessesse e e e e et e saesaestessassessesnnensanes 40
Grant Write acCess T0 Q FEPOSITONY ..ottt sre et esae s sseessaessaeesaesssaesaessneans 41
Interaction between repository and domain PoOLICIEscccceeeeeeeceeecceceeeeceee e 42

TAQG @ FEPOSITONY oottt et te s re e st e st e s s sae s sae e st e s st essaessaessaassseasssessssessaessseessaessseessaessseanns 43
TAg rEPOSIEONIES (CLI) wouvieeeieeieeeeeetetetete ettt et et estesae s e e e e e e e e e et e tesaessesseeseeneesaensensansansanes 43
Tag repOSItOrieS (CONSOLE) ...cueouieieeeeeeeeeeeee ettt e s te e e e s e s e st e besae st e ssasse e s esaensansansans 46

Working with upstream rePOSItOriesccccciiiieeeeenciiiiiiieeeiinnnennessesssssssseeessssssssssssssssssssssssssssssssses 51

What's the difference between upstream repositories and external connections? 51

Add or remove UPStream FEPOSITONIEScecieciiciecrecececeeeee ettt ste e s e s e e e e e e saesaessessessessessaesaeneans 52
Add or remove upstream repositories (CONSOLE)ccuieecieceecieceeeceeecee et 52
Add or remove upstream repositories (AWS CLI)cceeeieeieeeececeseeecee et sre e ae e enennas 53

Connect a CodeArtifact repository to a public repOSItOrycccceeeeeeeecieceeceeeee e 56
Connect to an external repoSitory (CONSOLE)coiiiieiecieeececee et sae e 56
Connect to an external rePOSItOrY (CLI) .ottt sae e e e e e e sae s eens 57
Supported external conNEction rePOSILONIESc.cccvecveciecieeeeeceeeeeeee e sae e 59
Remove an external cCoONNECTION (CLI) ..ooveiioeiiiiiieeeeeeeeeceeeeereeeereeeerecessrecesseeeesseesssseessseessssesens 59

Requesting a package version with upstream repoSitoriesccoveeecieceececereseceeee e 60
Package retention from upstream repPOSItOriscoiveceeeeerierececeerete et e e s nens 61
Fetch packages through an upstream relationship ..o 61
Package retention in intermediate repOoSItOriscccvivviecieeierecececeeeeee e 63

Requesting packages from external CONNECLIONSc.coeeerieieieciecececece et 64
Fetch packages from an external CONNECLIONcocviiecieieniceceecce e 65
External conNNECLION LAtENCY ..ottt st et ae s e e sa et et ae e 66
CodeArtifact behavior when an external repository is not availablecccoeveeereerenennnee. 67

CodeArtifact CodeArtifact User Guide

Availability of NEW Package VEISIONS ...ttt e st stesaesse s e e se s e s s e nennens 67
Importing package versions with more than 0ne assetcooeeeeeeveceecieccciecececeeee e 68
Upstream repoSitory Priority OFAEN ... ettt ettt saesae s s e e e s esaennan 68
Simple priority order EXAMPLE ...ttt st a e aesaeaan 69
Complex priority Order @XaAMPLE ...ttt ettt e te e e e e e s e e e e saentans 70
APl behavior with UpStream rePOSILOIIESccciceeeeeeeeeeeete ettt te e s re e e e nennan 71
WOrking With PACKAQESeiiiiiiiiiiiiieennnniiiiiiieiiiiiiieeesssssesssssssessass 74
PACKAGES OVEIVIEW ...ttt tete st e testestessessa e e e s e aesae st e s e sassassaesae st et ensensensassasseesaensansansansan 74
Supported package fOrMALS ...ttt st a e aa e 75
Package PUDBLISRINGc.ooieeeeee ettt sttt e e a et a et s ae s e e se e ns 75
PACKage VEIrSION STATUS ..c.coueeiieeieieieteeteses ettt et et e e s e e se s e e e e e e s e st estessessasseeseesaennensensansans 78
Package name, package version, and asset name normalizationccccceeveeveeveeveeceecieceeceecnenne. 79
LiSt PACKAGE NAMIES ..ottt et et et e st e st et e st e e e e e e s et et e s et e sassassessaensessansansansansansas 79
LiSt NPM PACKAGE NAIMIES ..ottt et et e et estesse e e e s et e sae st e stessasaessessaesassnensansansans 81
List Maven Package NAMES ...ttt ettt teste st e st et s s sa et e st e bassesseesnesaenaennanes 82
List Python package NAamMES ...ttt ettt tesaeste st e s e e e e e et et e s e aessessnennan 83
Filter by package Name PrefiX ...ttt a e et sresaans 83
Supported search option comMbINAtIONScc.oouieeiiie e 84
FOPMAt QULPUL ..ottt et s e s ae e st e s st s s b e s ae e st e s sae s ssesssaesssassseasssesssaenees 85
Defaults and Other OPLIONS ...ttt et s aesae s s e e aennans 85
LiSt PACKAGE VEISIONS ...oeveriiieiteeetecteetesteeee e et e te et e stesaesse e e e e e e e s e saesse st assassessasssessansessansansansassassesnsanean 86
LiSt NPM PACKAGE VEISIONSeevieeieieeicietetectectee ettt e s e saestesteste s e s e e e esae s essestessassassassassnssesnsenean 88
List Maven PAckage VEISIONS ...ttt ste e te e e e s s e stestesaessassessasss e s e e enensansans 88
SOIT VEISIONS .ttt ettt et s st s e st e a e st s st s b st e e st st e et e s st s be st e st s basabessesasesntensesnsanns 88
Default diSPLlay VEISION ...ttt te st st e e e st a e st e s e s se e e e e e e e aesaebasanes 89
FOPMAt QULPUL ..ttt sttt s e e s ae e st e s s ae e st e s aa e s b e e b e s sae s saesssasssaasssesssaennnes 90
List PACKAGE VEIrSION QSSELSeccuieeeciieiieecicteceetetete e ste et st e st e aeste st e s e e s ss e s et e saa st e sassassassassnenaanes 90
List assets of an NPM PACKAGE ...ttt sae st b aans 92
List assets Oof @ MaVeNn PACKAGE ...ttt ettt sae s e s s e e e e aeaa s 92
Download package VEIrSiON @SSELScccicceeeiririciciceetesteste e e e e e aesaestestesaesse e e e s s aesaessasaassansas 92
Copy packages between rePOSITOTIESccecicieieciieeceeee ettt e e e saesaesaesse s e e e e e nes 93
Required 1AM permissions t0 COPY PACKAGEScccccvecuerieeerereeeeeeteceetecte e stesseeseeseesessesaesaessansans 93
COPY PACKAGE VEISIONS ...ttt e e e e saestesteste st essessesss e s e s e ssestastassassessasseesasssensansansans 95
Copy a package from upstream repPOSItOriESccecirererieeiereeeeeete et saesaesre s ens 96
Copy a scoped NPM PACKAGE ...ttt a et st aesae s s s e e e e e e nnennan 96
CopY MaVven PACKAGE VEISIONSc.ccveiecierienieeieeeeeeeeeesaessessessessessesssessessessessessessessessesssesessensessansanes 96

CodeArtifact CodeArtifact User Guide

Versions that do not exist in the source repPoSItory ... veeeeececieccccceee e 97
Versions that already exist in the destination repoSitorycovcecececececcecceceeceeece e 97
Specifying @ package VErsion FEVISIONcccceeieiecieriecieceseeeeeeee e seessesaestessesses e e s e e ssaesessessaneas 99
COPY NPM PACKAGES ..ttt rte sttt este s e s e e e e e e sae st e ste st e s b assassae s e s essessansassassessassaensanes 100
Delete a package or PACKAgE VEISIONccuccuiciieieeieeeeeeeetete et e e e e e saesaesaesaeste s e e e s e e s e saeneans 100
Deleting @ PACKAge (AWS CLI) oottt te e stestesve s e s e e e et eaessesaesaessassessnesnennens 101
Deleting @ package (CONSOLE) ...ttt re e e e e et e e e saasaassesanennennens 102
Deleting a package version (AWS CLI) ...ttt eeaesaestesse s e se e neaenes 102
Deleting a package vVersion (CONSOLE)cuuiiiiiieeererieeeeete ettt ae e ns 103
Deleting an npm package or package VErSiONcccceeeeieciecieceeseseseeeeee e ssesaesaessesseseeeens 103
Deleting a Maven package or Package VErSiONccccceceeerenieeeeeeeetecte e e sresseeeessesaessensens 104
Best practices for deleting packages or package VErsionsccccecececeeeneeeeceeeeceeceeceeseennens 104
View and update package version details and dependenciesccocevevececeececececeeeeceeceeceenen 105
View package version detailscccceeeeeieeeeeeeceteeteese ettt ste s e aesae st e ns 105
View npm package version detailscccecieceeenereeeeeeeeictestese e e et saesae e e ae e nnens 106
View Maven package version details ...ttt 107
View package version dePendEnCIEScciceeueeerieeeieeieriectetesese s e e ee e esesaesaesaessessessesseesessseneas 108
View package version readme fil ...ttt e 109
Update package VErsion SLAtUS ...ttt sae e ste s e e sae st et e saessessessae e ennens 110
Updating package Version STAtUs ...t sa et tesae e s e e e s nnan 110
Required IAM permissions to update a package version statuscccccceeveeeeeeceeceeceeceecieceenen, 112
Updating status for a scoped NPM PACKAGEccecueeieieieeeeeeececee ettt 112
Updating status for @ Maven PAckage ...ttt aeaens 112
Specifying a package VErsion FEVISIONcccceciicieciesiecieceeeeeeeeeeteseesaeseessesse e e eeesaesaesaessesseneas 113
Using the expected status PArameEter ... ettt aens 114
Errors with individual package VErsions ...ttt aens 115
DispoSing Of PACKAgE VEISIONScucieiiieiieeeeeeeeetetetee e e e sa et e stesaesse s e s e e e ssnesaesaasanean 116
Editing package Origin CONTIOLS ...ttt ettt stesre s e e e e e s et e aesaasaens 118
Common package access CONtrol SCENAMIOScccceeueeeeeeeeiereteteste e saesaesse e e e seens 118
Package origin CoNtrol SELLINGSccuccuiieeeeececece ettt ae e e e e st aesaasrans 120
Default package origin coNtrol SEHINGScceoeeieieieieeeeec et ae s 121
How package origin controls interact with package group origin controlsccccecveevenneene 122
Editing package origin CONTIOLS ...t sa et aeaas 122
Publishing and upstream repPOSItOriESc.cccceeeeeeeeieecteeecese et ste st s ae e aenens 124
Working with package groupseecciiiiiiiiiiiiinneemeseniiiiiiiciiiinssns 125
Create Q PACKAGE GrOUP ..cceccieceeeieeieeieeeetetete e te e teeee e e e et e st e ste st e ssessessa e s e s essessessassansassesssessansensensanes 126

Vi

CodeArtifact CodeArtifact User Guide

Create a package group (CONSOLE) ... iieieceeeceeeeeeretete ettt st sr e e e s e e saennan 126
Create a package group (AWS CLI) .ottt ste e e e et saesaesaessasse s e s e enaennan 127
View or edit @ PACKAGE GrOUPccieiiieieiecteieeeeeee et et e e testesteste s e s sesse e e e s e s esesaessessassessessessasnsansanes 128
View or edit a package group (CONSOLE)cuuiiieciecereeeeeeeeeetete ettt e e e e sae st saesressans 128
View or edit @ package group (AWS CLI) ...ttt eeseesaesaessesses e s e eaesnennans 128
Delete @ PACKAGE GrOUP ..uccuieeeeieeeectetecteetee ettt e tetestesaesse e e e e e s et e s et e be st e sassassassaesaessensansansansan 130
Delete a package group (CONSOLE) ...ttt e e e saesaesaesseas 130
Delete a package group (AWS CLI) .ottt s e e saesaesaesse s e s e e e s e eaenanaans 130
Package group Origin CONEIOLS ...ccuiiiiiieieieecteeeee et ettt ste e e e e s et e stestesaesse s e e saesseaassansans 131
RESTIICHION SEELINGS ..ottt st e s e s st s st e s s re e s b e s aaessnesssaessaesnesssaenans 131
ALLOWEd rePOSILOrY LISES .uveiiieieeieceeee ettt ettt te e e e st et aesaesae e e seennenaanes 133
Editing package group origin control SEttiNgsccoveeeeeeeeiecieceeceee e 133
Package group origin control configuration eXamplescceeeeeeciececeseececececeee e 134
How package group origin control settings interact with package origin control settings .. 137
Package group definition syntax and matching behavior ..., 137
Package group definition syntax and eXamples ... 137
Package group hierarchy and pattern specifiCity ... 139
Words, word boundaries, and prefix matching ... 139
S SENSITIVITY cuuviiciiieiieieeectee ettt st e st sae s sre e s e e s sae s s e e s saaessaesssaesaeessaasssessssesssessssesssesases 140
Strong and Weak MAtCh ...t a et nae s 141
AddItioNal Variationscceiiieiirecictreete ettt ettt a et e st e e s e st e se e s ba e e e e saeen 141
TAQ @ PACKAGE GIOUP .eveeeeeeieeietectesteetesee e et e e e tetestessessessessessaessessessassassassasssesssssessassansessansassessseseesans 142
Tag PACKAge GroOUPS (CLI) weeeueeeeeieeeietetecteseeee ettt cte st teste s e s e e e e s e s e s e saesaassessesseesassaensansansansan 142
Working With dOMAiNScccceeeeeiiiiiiiiiiiiiiiieennnniiiiiieeiiiniissssssssssssssssesss 146
DOMAIN OVEIVIEW ..ttt sttt ettt s b st s s st et ssse s sbe st s st s b e st e snesbessnesnesnsannes 146
CroSS-aCCOUNT OMAINS ...coiiiiiirieiiirertetee ettt te st et s e ste st e e s et e e s e st et e e ssasseseesessessesassansansons 147
Types of AWS KMS keys supported in CodeArtifact ... 148
Create @ AOMAIN .ottt ettt et st e st et st et e e s e st et ssesbe st e e sassentesessansensens 148
Create @ dOMAIN (CONSOLE) ...uuuiiieeieieieeieeeete ettt eeeteeeeteeessteeessresssstessseesssseessssesessssesssessssessnns 149
Create @ dOMAIN (AWS CLI) ettt eeate et e eesaeeeesseesssesssssesssssesssssessssssssssesssseessnsessns 149
EXample AWS KMS KEY POLICY ..coueeeeeeeeeeeetececteetee ettt te e stestesse s e e see s e s essessessessassasssennenaaneans 151
Delete @ OMAIN ..ottt ettt ettt et e s s et e e sse b et e e s sassestssassensenessanes 152
Restrictions on domain deletion ...ttt ettt sa e s ne 152
Delete @ dOmMAiN (CONSOLE) ...ttt e et eeeteesssteesssresesstesssseesssssessssesssssessssseessnne 153
Delete @ dOmMAiN (AWS CLI) ettt ceeteeeaeeeesreesesseeesssesssssesesssesssssessssesssssessssesssnne 153
DOMAIN POLICIES ..ottt ettt et e s e s te s e e te e e e e e e e e e s e st e besseesasseesaessassessessansasassassasnsanean 154

vii

CodeArtifact CodeArtifact User Guide

Enable cross-account access t0 @ dOMAiNc.ceueieirieniiinenierineneteesestet et e st s e sae s e esens 154
DOmMain POLICY EXAMIPLE ..ottt ettt te st e s e e e e e e e b e st e s aestasbessa e e ennenaenaenes 156
Domain policy example with AWS Organizationscccoeeeeeeieveececeseseceseeeeee e 157
Set @ AOMAIN POLICY eviieieeeceeee ettt teste st e e e e e et e st e st et esaessessaesaesesraensassansansan 158
REad @ dOMAIN POLICY wecviieeieeceeeeeetee ettt e st e s te s e e e s e e s e aeste st e sbesaassassessnenaanaans 159
Delete @ domain POLICY ..ottt a e st e aesae b nn e ns 159
TAG @ OM@IN ettt e et e e te st e s be et e e e e e et et et et assasseeseesaessastessansansassesseeseensensanes 160
Tag AOMAINS (CLI) cevereeeeeee ettt te et e e e e et e e et e st e st e s be e e e e esa et eaasessassassassessnenean 160
Tag dOMAINS (CONSOLE) .uviiiieieeeeeeeeeceete ettt ee st e s teste et e st e e e e e e e esae s et e sessassassaesessaenean 163
USING CArgO ccceeeeeeciiiiieeeinneeeesssssessssssscss 167
CoNfIGUIE ANA USE CArQO ..uccueeueeeeeeieieietectectestesee e eeeeestessessessessassesseesaessessessessassassassasssensensansansansansanes 167
Configure Cargo With COAEAItITACT ...ttt 167
INSTALliNG CArgo Crates ...cuicueeieeeeececeeeeee ettt et s te e et e e e e e e st e st e st e s aeesasseesa e s e saenaenaenes 172
PUDBLISHING CArgo Crates ...ttt ettt steste st s e e e e e e b e stessassassessnennan 173
Cargo COMMANGA SUPPOIT «.uviieteeeeececeetete e ste e e e s e e e esee s e saetestestessessassassaessessensessansassassassassassasseenen 173
Supported commands that require accessing the registryocoeveecececececerecceeeee 173
UNSUpPOrted COMMANGScoueoieieieeeteeecee ettt te e ste e s e s e e a e e e sae st e s besaessassessnesnennenaenaenes 174
USING MAVEN .cuiiiiiiiiiiiinennnniiiiicceiiiiissass 175
Use CodeArtifact With Gradle ...ttt sa e s se e aes 175
FECh AEPENAENCIES ...ttt ettt e st e s ae s e s e e e e na et e aanes 176
FEECH PLUGINS ettt sttt et sa e st e st e s s e e e e e e e et et et esbessasseesaasaennanean 177
PUDLISN @ItifACts c.veueeeeieieeeecce ettt ettt st ettt s st e e s e s e a s 178
Run a Gradle build in INTELLIJ IDEA ...ttt sae st et e ssesse s s e ssasaeaesans 180
Use CodeArtifact With MVN ...ttt a et sae st aes 184
FECh AEPENAENCIES ...ttt et et s b e s b e s ae s e e n e e e aesn e aanes 176
PUDLISN @ItifActs c.veueeeeeieieeceeee ettt ettt st ettt s b st e e s e s e a e 178
Publish third-party artifacts ...ttt a et 189
Restrict Maven dependency downloads to a CodeArtifact repositorycccceeeeeceeeeneenene. 190
Apache Maven Project information ...ttt eenenens 191
Use CodeArtifact With depS.@aN ...ttt st s nnan 192
FECh AEPENAENCIES ...ttt st e st e s s s e s sa e e e a et e aanes 192
PUDLISN @ItifACts c.veuieeeeieieeeecee ettt ettt ettt s s st e e s e saaa e s 193
PUBLISHING Wt CUIL ettt te st st a e a et et et nes 194
USE MaVEN ChECKSUMScuooiiiiieietretetsesete ettt ettt sae st ettt s b e st e s s e sae st s e saassesanas 196
CRECKSUM STOFAGE ...ttt ettt te e te st e e e e e s et e st e st e b e st e s e e e esaesaessessansansassassaesnansanean 197
Checksum mismatches during publiShing ..o 198

viii

CodeArtifact CodeArtifact User Guide

Recovering from checksum miSMatChes ... 199
USE MAVEN SNAPSNOLS ...cveeieieieeceececee ettt ettt e s e e e e e et e st e b e s ta s e e se e e e s e s e bassessassassassnenean 199
Snapshot publishing in COAEAItITACT ..o sae e 200
ConsuMING SNAPSNOL VEISIONScuecuiiieieieteteeeee sttt steste s e e e e e e e aesaesaesaessessessassaessenaenaan 202
Deleting SNaPShOt VEISIONS ...ttt ettt s ae st a e et et aa s 203
Snapshot publishing With QUL ...t 203
Snapshots and external CONNECLIONS ...ttt sae e aas 206
Snapshots and UPStream rePOSILOMIESc.cceeeeeeieieteeceece ettt re e e e e e sae s 206
Requesting Maven packages from upstreams and external connectionsccceceeveeveeeeceeceennnne 206
Importing standard aSSEt NAMES ..ottt te e e e s sa e s et besaanes 206
Importing non-standard @SSt NAMIESccecicieieieieeeee et te s e s ae e e e e e ennens 207
Checking @SSEL OFIGINS ...uecuiieieieieeeceeseeece ettt rte e s e s e s e e e s e e sa et e ste st e saesaessassaesaesaesaenaansansans 208
Importing new assets and package version status in upstream repositoriesccccecueuue... 208
Maven troUBLESNOOTINGcuiieeeeceeeee ettt e e e s e e e e e st et et e s te s e s sesanesaennens 209
Disable parallel puts to fix error 429: Too Many ReqUESLESccceeveecreceecrececececeeeeeeeeee e 209
USING NP ciiiiiiiiiiieenneeiiiiiieiiiitesessases 210
CoNFIGUIE QN USE NPIM .ottt et e e ste st e e e e e e et et e sae st e st asssesessaesaessansessansassassnesesseans 210
Configuring npm with the login comMmMaNd ..o 210
Configuring npm without using the login command ..., 211
RUNNING NPM COMMIANAS ...ouiiiieieieieeeeeetetectete e ste e s e e e e e e saestestessessessas e e e esaeaessassessassassesssensanes 213
Verifying npm authentication and authorization ... 214
Changing back to the default NPM reQiStry ... 215
Troubleshooting slow installs with npm 8.x or higher ..o 215
CoNFIGUIE @NA USE YAIN ..ttt ste e e s e s s et e st e st e st e s se e e s e e e et et esessessassasseasaensansanes 215
Configure Yarn 1.X with the aws codeartifact login command..........vnnnene. 216
Configure Yarn 2.X with the yarn config set commandnnininiinvnceeceennen, 217
NPM COMMANG SUPPOIT cuviiiieiieietestectesteseseee et e e st e ssestestessessessessessessessassassessessessessessesssessessensessansans 219
Supported commands that interact with @ repository ..., 219
Supported client-side COMMANASc.coeiieiiieeeeeee et saesre s e e e aens 221
UNSUpPOrted COMMANGScoiiiiiiiereteeseresce ettt et estesre s e s e e e s e st e b e saesaesaessessa e s esaenaeaanes 174
NPM tag NANALING ettt e s e st s s e e e e e a e st e st e basse s e e e enaanes 225
Edit tags with the NPM CLENt ... 225
npm tags and the CopyPackageVersions APliieeeneneneeeseecsesseseeseeseseseesssssessessenes 225
NPM tags and UPStream rePOSILOMIEScccieciecierieierereeeete ettt ste e se e et e s e saesaessassessn e s ans 226
Support for npm-compatible package mManagers ... 228
USING NUGEL «.ouiiiiiiiiiiiienntiiiiiiiicceitteesss 229

CodeArtifact CodeArtifact User Guide

Use CodeArtifact With Visual STUIO ..c..cevueeiiiiiiececretee et sa e 229
Configure Visual Studio with the CodeArtifact Credential Providercccoeveeveeveviecvecvecnenene 230
Use the Visual Studio Package Manager CONSOLEoovieieciecieciecececeeeere et 231

Use CodeArtifact with nuget or dOtNEt ...t 231
Configure the NuUget or dOtNEt CLI ...ttt aeaeaeaens 232
CoNSUME NUGETL PACKAGES ...ooverereeieeiectetetetete et e e e s e e stesaetestessessesseesassae s essessessansassassessasssennan 237
PUDbLiSh NUGEt PACKAGES ...ttt ste st te s e s e e s et et esaasaesae e snnens 238
CodeArtifact NuGet Credential Provider reference ... evveneieenenieineneeseseneeeeeseeeenes 239
CodeArtifact NuGet Credential Provider VEISIONSccceeeievirenieneeenenieenenienesesseseesessesseseenes 240

NuGet package name, version, and asset name normalizationcccceeeveeeneneccecvecceececceeenee, 240

NUGEL COMPALIDILILY oottt e e e a e st aeaas 241
General NuGet cOmMPAtibility co.occeeoeeieeeeeeeeeeeeeee ettt 242
NuGet command LiNE SUPPOIT ...c.v ettt et e s e s e e e e e e e e s e saesaesbassessnesaans 242

USING PYLRON c..ceeeeiiiiiiiiiiiiiieennnneiiiiiieeiiittsssnns 243

Configure and use pip With COdEArtIifact ..o 243
Configure pip with the 10gin coMmMANd ... eens 243
Configure pip without the login cOmMMAaNd ..o 244
RUN PUP ettt ettt te st esste st e s sae s st e s ae s s e e s sesssaesssassssasssessssesssessssasssessssessssesssessseesseennses 245

Configure and use twine with COAAIrtITACt ..o 246
Configure twine with the 10gin comMmand ... 246
Configure twine without the 1ogin command ... 246
RUN BWINE ettt ettt ettt sttt b e s a e s s e st e e st e et et e s essessesaesnesnsensans 247

Python package name NOrmMalization ... e e saeeens 248

Python COMPAtiDIility ..cc.coeoeeieeeee et saesae s s e s an e aesnans 248
PIP COMMANGA SUPPOIT «.uviiiieterieeeetetetestestesteste s e sre s e s e s saesaesaestessassessessaesasssessassessessassessassessssssensn 248

Requesting Python packages from upstreams and external connectionscccceveeeeverceeeennene. 250
Yanked PACKAGE VEISIONS ...c.cceeiicieiiirrenieseseneeeeresstessestessessessessessessssssessessessessassessesssssssssessassassanses 250
Why is CodeArtifact not fetching the latest yanked metadata or assets for a package
VEISIONT ..eiiteteteteetentessest et et et et essessessessesst et et esbessesessesseesesateatestessesessassasseestestentensessesensassessesnesnes 251

USING RUDY .orerriiiiiiiiiiiiiiiinnnnniiiiiiiiiiiiienssessssssssssssssesss 253

Configure and use RubyGems and BUNALET ..ottt sae e e saeeaeas 253
Configure RubyGems (gem) and Bundler (bundle) with CodeArtifactccccuvveeveverenrennnenee. 253
INSTALlNG RUDY GEIMIS ..ttt ettt s ae s s s e st st st e st e s e sbesaasse s e s e ssnesnannans 259
PUDBLISHING RUDY GEMIS ...ttt re et sa et a e st e s s s st e s st e sa e e e 260

RubyGems cOMMANGA SUPPOIToiiiieriiierteresesteteteste st estestestessesseses s ssaessesseseessassassessssssessessassassansanes 261

Bundler cOMPatibility ..ottt st a e a e sae e 261

CodeArtifact CodeArtifact User Guide

Bundler comMPatibility ..ottt ettt aens 261
USING SWifL ceueeiiiiiiiiiiiiiiinnnniiiiieiiiiiiineesssssssiisiseeessses 263
Configure Swift With COAEAITITACTocuvieieeeeee et 263
Configure Swift with the login command ... 263
Configure Swift without the login command ... 265
Consuming and publishing Swift PACKages ... 269
CoNSUMING SWIft PACKAGES ...ttt ettt sae st s ae s a e s a et aa s 269
Consuming Swift Packages iN XCOAE ...ttt saesaesae e 270
Publishing SWift PACKAGES ..ottt et sae st se e s se s e e e naaans 271
Fetching Swift packages from GitHub and republishing to CodeArtifactccceveunnnn.ee. 274
Swift package name and namespace NOrmMalization ... 276
SWiTt troUDLESNOOTING ..ottt e e e b et esaesbe st e e e e s e s enaesnantans 276
I'm getting a 401 error in Xcode even after configuring the Swift Package Manager 277
Xcode hangs on Cl machine due to keychain prompt for passwordcccooeveeieviecieceecenen, 277
USiNg geNEriC PACKAGESccuuueeeiiiiiiieiiiiiinneennnneisisieeesesesss 280
GENENIC PACKAGES OVEIVIEWocveeeeeeieeieieriteiteitesteeseeeeseesessestessessassessassessasssessessessessansassassessessssssensensen 280
Generic PACKage CONSLIAINTScceceiieiceeeeceecee ettt te st e s e s e e e e e et e e e sesaesaesaassesseennannans 280
SUPPOrted COMMANGS ...ttt te e s e e e e et et et e tesaesbessessaeseessessessansassasassessaessensensan 281
Publishing and consuming generic PACKAgEScccoeeeeeeieiecieciecteceseseee e testeste e se e anennas 282
Publishing @ generic PACKAGE ...ttt ettt s ae e snens 282
Listing generic PACKAge @SSELS ...ttt ettt st a e s a et e e 284
Downloading generic PACKage @SSELSoeiiieieiiicieiececeeee ettt re e e et saesaesaeseeas 285
Using CodeArtifact with CodeBuildccciiuuuuumureiiiiiiiiiiiiiinneennnsiiiisiceenineessssssssssssssssseesssssssssssssnes 287
Using npm packages in COAEBUILAocv ittt a s 287
Set up permissions With IAM FOLES ...ttt a e e ae s 287
LOG iN @NA USE NPIM .ttt ste e ve e e e s e e e et e st e st e s be st e s s e e e e s e s et eaestanbassassassesssenaanes 288
Using Python packages in CodeBUILd ...ttt sttt ns 289
Set up permissions With IAM FOLES ...ttt a e e aes 289
LOG in anNd USE PIP OF TWINE ...ttt te e a et stesae b e s ae s e sesn e s e n et e aa s 290
Using Maven packages in CodeBUILd ...ttt ste e e aeaeaens 292
Set up permissions With IAM FOLES ...ttt a e e e s 292
USE Gradle OF MV ..ttt e st st et e s b e s ae e e s e e s et et e sasbessaeseesaesaensansansansn 293
Using NuGet packages in CoOdeBUILA ..ottt a e sae e aas 294
Set up permissions With IAM FOLES ...ttt a e e e s 295
CoNSUME NUGETL PACKAGES ...oovereereeieeiieietetetete e ste e e se s e e stesaetestessessesseesassae s essessessansassassessasssennan 296
Build With NUGEt PACKAGES ...ttt st a et e e et b e b 297

Xi

CodeArtifact CodeArtifact User Guide

PUDbLiSh NUGEt PACKAGES ...ttt ettt te s e e e e s s et et esae s e s se s e ssnens 299
DEPENAENCY CACRING ..ottt e st e e te e e e e e e e s et e st e st e sbesse e e esaesaenaensensansansans 301
MonNitoring COAEAITIfactciiiiiiiiiiiiiieennnniiiiiiieiiiiiieeeeassnsssssssseessass 302
Monitoring COAEAItITACt EVENTSc.eevieeeeeeeeee ettt et b e nnens 302
CodeArtifact event format and eXampPle ... s 303
Use an event to start a CodePipeling eXeCULIONccoeeeeieiecieciecececee ettt 308
Configure EventBridge PermiSSIONScccceeeeeeieeieietectestesesesee e e e e seeaeaesaesaessessessesseesesaessennan 308
Create the EVENtBridge FULE ...ttt sttt 308
Create the EventBridge rule target ...ttt ettt resse s nnan 308
Use an event to run @ Lambda fUNCLION ...ttt 309
Create the EVENtBridge FULE ...ttt st 309
Create the EventBridge rule target ...ttt et e e re s nnan 309
Configure EventBridge PermiSSIONScccceeeeeeeeieictectestecesesesee e seesaeaesaessessessessesseessesaessensan 310
SECUNITY ceiiiiiiiieennneniiiieieeiiinnensessssssssssssesesessssssssssssssssssssess 311
DAt PrOTECLION ...ttt s e et e st e s sae e s e e s aesssaessaeessnasssaesssassaesssessseanns 312
DAta ENCIYPTION .ttt sttt ae s sae e st e s sae e s e e s seesbessseessaesssaessaassseasssesssessaessnnans 313
TrATFIC PrIVACY ettt ettt st e e e e e e s st e e e st e st e b e s s e e seesaeseenaennansensansanes 313
MONIEOTING .eviivieeieitceieect et e st e st ee e e e et e st e s seessaeesae e s st e s saesssassaasstesseesssessssasssesseesssessstesssenssaennees 313
Logging CodeArtifact API calls with AWS CloudTrailcoceeeeieciecieeeeeeeeceeeeee e 314
ComPLiANCE VAlIAAtiONeoeeeeeeee ettt e e e st e st esae s aesbe s s e s e e e e e e aenanaans 318
Authentication and TOKENS ...ttt sttt sa e ne 319
Tokens created with the 10gin cOmMmMaNnd ...t 320
Permissions required to call the GetAuthorizationToken APl ... ecnievieciececenen, 322
Tokens created with the GetAuthorizationToken APl ... 322
Pass an auth token using an environment variable ... 323
Revoking CodeArtifact authorization tOKENS ... 324
RESILIEICE .ttt ettt st ettt et st et e b et e s s et et e aase st enaesansentenas 325
INFraStrUCTUIE SECUNILY cuviieieieeeececerteee ettt ettt e st e st e s s e se s e e b e s e e s aesae s s e sse s e e e e e eaassaneans 325
Dependency substitution Qttacks ... 325
Identity and AcCeSS ManNAGEMENTcceviiiriiiiieietesese e ee st e st e st e saesaeste s e s s e s e s e s e saessesaessanes 326
AUAIBNCE ..ttt ettt sttt et s s et et s e s et e s s et et s aa s et enessebestesasestenessansenssnanes 327
Authenticating With identities ...t ens 327
Managing access USING POLICIES ...cciiiiieriirieriererereneetsrt et stestesvese s e s e s e e saesseseesaessessasssesasssansas 331
How AWS CodeArtifact Works With TAM ...ttt 333
Identity-based POLliCY XAMPLESccucouerieeeceeeeeeeerere ettt s sae s e s e e s saesaesaasaens 340
Using tags to control access to CodeArtifact reSOUIrCEScoiviririiecieciirteceneceneseeeeeenenens 349

xii

CodeArtifact CodeArtifact User Guide

AWS CodeArtifact permissions referenCe ... eceeieieciecieceees et as 353
TrOUBLESNOOTING ...ttt e e e e e st et e st e s aesbe s e e sa e e e e e s et entaneas 357
Working With VPC enNdPOiNtsciiiiiiiiiiiiiennenneiiissiceiiiniseess 359
Create VPC @NAPOINTS ...ttt rte st testeste e e e e s et estesbasbessa e e e sa e s e e s e ssessassassassesseensanes 359
Create the Amazon S3 gateway enNdpPOint ... sa e e saesaens 361
Minimum Amazon S3 bucket permissions for AWS CodeArtifactcooeeeeeveeeeiecieciecieieee 361

Use COdeArtifact TrOmM @ VPC ...ttt ettt s st st ettt s e sb et e s aa s 363
Use the codeartifact.repositories endpoint without private DNScccveuvneneee. 364
Create @ VPC eNdPOint POLICY ..cceveiieeiieteteciesteseeee ettt et ste s e s e s e e e s e e s et e saesaestessessassesnnenaansans 365
AWS ClOUAFOrmMAtion FESOUICESccceerrcrcrscsssnssesess 367
CodeArtifact and AWS CloudFormation templatescccceeeeeeeeieecieceeeseseee e 367
Preventing deletion of CodeArtifact reSOUICESoiiiiecenecececee e 367
Learn more about AWS CloUdFOrMAtion ...ttt sse e sse st ne 368
TroubLeShOOTING ..cciiiiiiieeiiiiiiiiiiiiiiiiieneneiiiiiieeettttesanssssssssssssseseesssns 369
| cAnNNOt VIEW NOTIFICAtIONS ..ceoieieteeeee ettt ettt s sb st aes 369
TQQGING FESOUICES ..cceieeeeeenreensssseeeeeesrsasss 370
CodeArtifact cost allocation With tags ... e 371
Allocating data storage costs in COdeArtifact ... 371
Allocating request costs in COAEArIfACt ... 371
QUOLAS IN AWS COAEAILIFACEeeeueiereenieereeceeeeecereenceceeseeeenssecesessecssssscsssssssssssscsssssesssssssssssssssnnsnns 372
(0o Yal 1Ty 4 L= o a4 T o] o PO UPUT N 375

xiii

CodeArtifact CodeArtifact User Guide

What is AWS CodeArtifact?

AWS CodeArtifact is a secure, highly scalable, managed artifact repository service that helps
organizations to store and share software packages for application development. You can use
CodeArtifact with popular build tools and package managers such as the NuGet CLI, Maven, Gradle,
npm, yarn, pip, and twine. CodeArtifact helps reduce the need for you to manage your own artifact
storage system or worry about scaling its infrastructure. There are no limits on the number or total
size of the packages that you can store in a CodeArtifact repository.

You can create a connection between your private CodeArtifact repository and an external, public
repository, such as npmjs.com or Maven Central. CodeArtifact will then fetch and store packages
on demand from the public repository when they're requested by a package manager. This makes it
more convenient to consume open-source dependencies used by your application and helps ensure
they're always available for builds and development. You can also publish private packages to a
CodeArtifact repository. This helps you share proprietary software components between multiple
applications and development teams in your organization.

For more information, see AWS CodeArtifact.

How does CodeArtifact work?

CodeArtifact stores software packages in repositories. Repositories are polyglot—a single
repository can contain packages of any supported type. Every CodeArtifact repository is a member
of a single CodeArtifact domain. We recommend that you use one production domain for your
organization with one or more repositories. For example, you might use each repository for a
different development team. Packages in your repositories can then be discovered and shared
across your development teams.

To add packages to a repository, configure a package manager such as npm or Maven to use the
repository endpoint (URL). You can then use the package manager to publish packages to the
repository. You can also import open-source packages into a repository by configuring it with an
external connection to a public repository such as npmjs, NuGet Gallery, Maven Central, or PyPI.
For more information, see Connect a CodeArtifact repository to a public repository.

You can make packages in one repository available to another repository in the same domain. To
do this, configure one repository as an upstream of the other. All package versions available to

the upstream repository are also available to the downstream repository. In addition, all packages
that are available to the upstream repository through an external connection to a public repository

How does CodeArtifact work? 1

https://aws.amazon.com/codeartifact/

CodeArtifact CodeArtifact User Guide

are available to the downstream repository. For more information, see Working with upstream
repositories in CodeArtifact.

CodeArtifact requires users to authenticate with the service in order to publish or consume package
versions. You must authenticate to the CodeArtifact service by creating an authorization token
using your AWS credentials. Packages in CodeArtifact repositories cannot be made publicly
available. For more information about authentication and access in CodeArtifact, see AWS
CodeArtifact authentication and tokens.

AWS CodeArtifact concepts

Here are some concepts and terms to know when you use CodeArtifact.

Topics

¢ Asset

« Domain

» Repository

» Package
» Package group

» Package namespace

» Package version

» Package version revision

« Upstream repository

Asset

An asset is an individual file stored in CodeArtifact that's associated with a package version, such as
an npm . tgz file or Maven POM and JAR files.

Domain

Repositories are aggregated into a higher-level entity known as a domain. All package assets and
metadata are stored in the domain, but they are consumed through repositories. A given package
asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's
present in. All of the assets and metadata in a domain are encrypted with the same AWS KMS key
(KMS key) stored in AWS Key Management Service (AWS KMS).

Concepts 2

CodeArtifact CodeArtifact User Guide

Each repository is a member of a single domain and can't be moved to a different domain.

Using a domain, you can apply an organizational policy across multiple repositories. With this
approach, you determine which accounts can access repositories in the domain, and which public
repositories can be used as the sources of packages.

Although an organization can have multiple domains, we recommend a single production domain
that contains all published artifacts. That way, teams can find and share packages across your
organization.

Repository

A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets.

Repositories are polyglot—a single repository can contain packages of any supported type. Each
repository exposes endpoints for fetching and publishing packages using tools like the nuget CLI,
the npm CLI, the Maven CLI (mvn), and pip. You can create up to 1,000 repositories per domain.

Package

A package is a bundle of software and the metadata that is required to resolve dependencies and
install the software. In CodeArtifact, a package consists of a package name, an optional namespace
such as @types in @types/node, a set of package versions, and package-level metadata such as
npm tags.

AWS CodeArtifact supports Cargo, generic, Maven, npm, NuGet, PyPI, Ruby, Swift package formats.

Package group

Package groups can be used to apply configuration to multiple packages that match a defined
pattern using package format, package namespace, and package name. You can use package
groups to more conveniently configure package origin controls for multiple packages. Package
origin controls are used to block or allow ingestion or publishing of new package versions, which
protects users from malicious actions known as dependency substitution attacks.

Package namespace

Some package formats support hierarchical package names to organize packages into logical

groups and help avoid name collisions. For example, npm supports scopes. For more information,
see the npm scopes documentation. The npm package @types/node has a scope of @types and
a name of node. There are many other package names in the @types scope. In CodeArtifact, the

Repository 3

https://docs.npmjs.com/cli/v7/using-npm/scope

CodeArtifact CodeArtifact User Guide

scope (“types”) is referred to as the package namespace and the name (“node”) is referred to as the
package name. For Maven packages, the package namespace corresponds to the Maven grouplID.
The Maven package org.apache.logging.log4j:1log4j has a grouplD (package namespace) of
org.apache.logging.log4j and the artifactID (package name) 1log4j. For generic packages, a
namespace is required. Some package formats such as PyPIl don't support hierarchical names with a
concept similar to npm scope or Maven grouplD. Without a way to group package names, it can be
more difficult to avoid name collisions.

Package version

A package version identifies the specific version of a package, such as @types/node 12.6.9.
The version number format and semantics vary for different package formats. For example,
npm package versions must conform to the Semantic Versioning specification. In CodeArtifact,

a package version consists of the version identifier, package version level metadata, and a set of
assets.

Package version revision

A package version revision is a string that identifies a specific set of assets and metadata for a
package version. Each time a package version is updated, a new package version revision is created.
For example, you might publish a source distribution archive (sdist) for a Python package version,
and later add a Python wheel that contains compiled code to the same version. When you publish
the wheel, a new package version revision is created.

Upstream repository

One repository is upstream of another when the package versions in it can be accessed from the
repository endpoint of the downstream repository. This approach effectively merges the contents
of the two repositories from the point of view of a client. Using CodeArtifact, you can create an
upstream relationship between two repositories.

How do | get started with CodeArtifact?

We recommend that you complete the following steps:

1. Learn more about CodeArtifact by reading AWS CodeArtifact concepts.

2. Set up your AWS account, the AWS CLI, and an IAM user by following the steps in Setting up
with AWS CodeArtifact.

Package version 4

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PublishPackageVersion.html#namespace
https://semver.org/

CodeArtifact CodeArtifact User Guide

3. Use CodeArtifact by following the instructions in Getting started with CodeArtifact.

How do I get started with CodeArtifact? 5

CodeArtifact CodeArtifact User Guide

Setting up with AWS CodeArtifact

If you've already signed up for Amazon Web Services (AWS), you can start using AWS CodeArtifact
immediately. You can open the CodeArtifact console, choose Create a domain and repository, and
follow the steps in the launch wizard to create your first domain and repository.

If you haven't signed up for AWS yet, or need assistance creating your first domain and repository,
complete the following tasks to get set up to use CodeArtifact:

Topics

Sign up for AWS

Install or upgrade and then configure the AWS CLI

Provision an IAM user

Install your package manager or build tool

Sign up for AWS

When you sign up for Amazon Web Services (AWS), you are charged only for the services and
resources that you use, including AWS CodeArtifact.

If you already have an AWS account, skip to the next task, Install or upgrade and then configure the

AWS CLI. If you don't have an AWS account, use the following procedure to create one.
To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

Sign up for AWS 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

CodeArtifact CodeArtifact User Guide

Install or upgrade and then configure the AWS CLI

To call CodeArtifact commands from the AWS Command Line Interface (AWS CLI) on a local
development machine, you must install the AWS CLI.

If you have an older version of the AWS CLI installed, you must upgrade it so the CodeArtifact
commands are available. CodeArtifact commands are available in the following AWS CLI versions:

1. AWS CLI 1: 1.18.77 and newer
2. AWS CLI 2: 2.0.21 and newer

To check the version, use the aws --version command.
To install and configure the AWS CLI

1. Install or upgrade the AWS CLI with the instructions in Installing the AWS Command Line

Interface.

2. Configure the AWS CLI, with the configure command, as follows.

aws configure

When prompted, specify the AWS access key and AWS secret access key of the IAM user that
you will use with CodeArtifact. When prompted for the default AWS Region name, specify the
Region where you will create the pipeline, such as us-east-2. When prompted for the default
output format, specify json.

/A Important

When you configure the AWS CLI, you are prompted to specify an AWS Region. Choose
one of the supported Regions listed in Region and Endpoints in the AWS General

Reference.

For more information, see Configuring the AWS Command Line Interface and Managing access

keys for IAM users.

3. To verify the installation or upgrade, call the following command from the AWS CLI.

Install or upgrade and then configure the AWS CLI 7

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/codeartifact.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html

CodeArtifact CodeArtifact User Guide

aws codeartifact help

If successful, this command displays a list of available CodeArtifact commands.

Next, you can create an IAM user and grant that user access to CodeArtifact. For more information,
see Provision an IAM user.

Provision an IAM user

Follow these instructions to prepare an IAM user to use CodeArtifact.
To provision anlAM user

1. Create an IAM user, or use one that is associated with your AWS account. For more information,
see Creating an IAM user and Overview of AWS IAM policies in the JAM User Guide.

2. Grant the IAM user access to CodeArtifact.

« Option 1: Create a custom IAM policy. With a custom IAM policy, you can provide the
minimum required permissions and change how long authentication tokens last. For more
information and example policies, see Identity-based policy examples for AWS CodeArtifact.

« Option 2: Use the AWSCodeArtifactAdminAccess AWS managed policy. The following
snippet shows the contents of this policy.

/A Important

This policy grants access to all CodeArtifact APIs. We recommend that you
always use the minimum permissions required to accomplish your task. For more
information, see IAM best practices in the IAM User Guide.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:*"

]I

Provision an IAM user 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

CodeArtifact CodeArtifact User Guide

"Effect": "Allow",

"Resource": "*"
},
{
"Effect": "Allow",
"Action": "sts:GetServiceBearerToken",
"Resource": "*",
"Condition": {
"StringEquals": {
"sts:AWSServiceName": "codeartifact.amazonaws.com"
}
}
}
]
}
(@ Note

The sts:GetServiceBearerToken permission must be added to the IAM user or role
policy. While it can be added to a CodeArtifact domain or repository resource policy, the
permission will have no effect in resource policies.

The sts:GetServiceBearerToken permission is required to call the CodeArtifact
GetAuthorizationToken API. This API returns a token that must be used when using a package
manager such as npm or pip with CodeArtifact. To use a package manager with a CodeArtifact
repository, your IAM user or role must allow sts:GetServiceBearerToken as shown in the
preceding policy example.

If you haven't installed the package manager or build tool that you plan to use with CodeArtifact,
see Install your package manager or build tool.

Install your package manager or build tool

To publish or consume packages from CodeArtifact, you must use a package manager. There are
different package managers for each package type. The following list contains some package
managers that you can use with CodeArtifact. If you haven't already, install the package managers
for the package type you want to use.

Install your package manager or build tool 9

CodeArtifact CodeArtifact User Guide

o For npm, use the npm CLI or pnpm.

« For Maven, use either Apache Maven (mvn) or Gradle.

« For Python, use pip to install packages and twine to publish packages.
» For NuGet, use the Toolkit for Visual Studio in Visual Studio or the nuget or dotnet CLlIs.

« For generic packages, use the AWS CLI or SDK to publish and download package contents.

Next steps

Your next steps will depend on which package type or types you are using with CodeArtifact, and
the state of your CodeArtifact resources.

If you are getting started with CodeArtifact for the first time for yourself, your team, or
organization, see the following documentation for general getting started information and help
creating the resources you will need.

o Getting started using the console

o Getting started using the AWS CLI

If your resources have already been created and you are ready to configure your package manager

to push packages to or install packages from a CodeArtifact repository, see the documentation that

corresponds to your package type or package manager.

» Using CodeArtifact with npm

» Using CodeArtifact with Python

» Using CodeArtifact with Maven
» Using CodeArtifact with NuGet

» Using CodeArtifact with generic packages

Next steps

10

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://pnpm.io/installation
https://maven.apache.org/install.html
https://gradle.org/install/
https://pip.pypa.io/en/stable/installation/
https://twine.readthedocs.io/en/stable/#installation
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html
https://learn.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference
https://learn.microsoft.com/en-us/dotnet/core/install/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

CodeArtifact CodeArtifact User Guide

Getting started with CodeArtifact

In this getting started tutorial, you use CodeArtifact to create the following:

e A domain called my-domain.
« Arepository called my-repo that is contained in my-domain.

« Arepository called npm-store that is contained in my-domain. The npm-store has an external
connection to the npm public repository. This connection is used to ingest an npm package into
the my-repo repository.

Before starting this tutorial, we recommend that you review CodeArtifact AWS CodeArtifact
concepts.

(® Note

This tutorial requires you to create resources that might result in charges to your AWS
account. For more information, see CodeArtifact pricing.

Topics

 Prerequisites

» Getting started using the console

o Getting started using the AWS CLI

Prerequisites

You can complete this tutorial using the AWS Management Console or the AWS Command Line
Interface (AWS CLI). To follow the tutorial, you must first complete the following prerequisites:

o Complete the steps in Setting up with AWS CodeArtifact.

« Install the npm CLI. For more information, see Downloading and installing Node.js and npm in

the npm documentation.

Prerequisites 11

https://aws.amazon.com/codeartifact/pricing/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

CodeArtifact CodeArtifact User Guide

Getting started using the console

Run the following steps to get started with CodeArtifact using the AWS Management Console. This

guide uses the npm package manager, if you are using a different package manager, you will need

to modify some of the following steps.

1.

oA WN

o> v ® N o

11.
12.

Sign in to the AWS Management Console and open the AWS CodeArtifact console at https://
console.aws.amazon.com/codesuite/codeartifact/start. For more information, see Setting up
with AWS CodeArtifact.

Choose Create repository.
In Repository name, enter my-repo.
(Optional) In Repository Description, enter an optional description for your repository.

In Public upstream repositories, select npm-store to create a repository connected to npmijs
that is upstream from your my -repo repository.

CodeArtifact assigns the name npm-stozre to this repository for you. All packages available in
the upstream repository npm-store are also available to its downstream repository, my-repo.

Choose Next.

In AWS account, choose This AWS account.
In Domain name, enter my-domain.
Expand Additional configuration.

You must use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an
AWS managed key or a KMS key that you manage:

» Choose AWS managed key if you want to use the default AWS managed key.

o Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed key and Customer managed key in the AWS Key

Management Service Developer Guide.
Choose Next.

In Review and create, review what CodeArtifact is creating for you.

» Package flow shows how my-domain, my-repo, and npm-store are related.

Getting started using the console 12

https://console.aws.amazon.com/codesuite/codeartifact/start
https://console.aws.amazon.com/codesuite/codeartifact/start
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

« Step 1: Create repository shows details about my-repo and npm-store.

« Step 2: Select domain shows details about my-domain.

When you're ready, choose Create repository.
13. On the my-repo page, choose View connection instructions, and then choose npm.

14. Use the AWS CLI to run the 1ogin command shown under Configure your npm client using
this AWS CLI CodeArtifact command.

aws codeartifact login --tool npm --repository my-repo --domain my-domain --domain-
owner 111122223333

You should receive output confirming your login succeeded.

Successfully configured npm to use AWS CodeArtifact repository https://my-
domain-111122223333.d.codeartifact.us-east-2.amazonaws.com/npm/my-repo/
Login expires in 12 hours at 2020-10-08 02:45:33-04:00

If you receive the error Could not connect to the endpoint URL, make sure that your
AWS CLlI is configured and that your Default region name is set to the same Region where you
created your repository, see Configuring the AWS Command Line Interface.

For more information, see Configure and use npm with CodeArtifact

15. Use the npm CLI to install an npm package. For example, to install the popular npm package
lodash, use the following command.

npm install lodash

16. Return to the CodeArtifact console. If your my-repo repository is open, refresh the page.
Otherwise, in the navigation pane, choose Repositories, and then choose my-repo.

Under Packages, you should see the npm library, or package, that you installed. You can
choose the name of the package to view its version and status. You can choose its latest
version to view package details such as dependencies, assets, and more.

Getting started using the console 13

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

CodeArtifact CodeArtifact User Guide

® Note

There may be a delay between when you install the package and when it is ingested
into your repository.

17. To avoid further AWS charges, delete the resources that you used during this tutorial:

® Note

You cannot delete a domain that contains repositories, so you must delete my-repo
and npm-store before you delete my-domain.

a. From the navigation pane, choose Repositories.

b. Choose npm-store, choose Delete, and then follow the steps to delete the repository.
c. Choose my-repo, choose Delete, and then follow the steps to delete the repository.
d. From the navigation pane, choose Domains.

e. Choose my-domain, choose Delete, and then follow the steps to delete the domain.

Getting started using the AWS CLI

Run the following steps to get started with CodeArtifact using the AWS Command Line Interface
(AWS CLI). For more information, see Install or upgrade and then configure the AWS CLI. This guide

uses the npm package manager, if you are using a different package manager, you will need to
modify some of the following steps.

1. Use the AWS CLI to run the create-domain command.

aws codeartifact create-domain --domain my-domain

JSON-formatted data appears in the output with details about your new domain.

"domain": {
"name": "my-domain",
"owner": "111122223333",

Getting started using the AWS CLI 14

CodeArtifact CodeArtifact User Guide

arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my-domain",
"status": "Active",

"createdTime": "2020-10-07T15:36:35.194000-04:00",

"encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
"repositoryCount": 0,

"assetSizeBytes": 0

If you receive the error Could not connect to the endpoint URL, make sure that your
AWS CLlI is configured and that your Default region name is set to the same Region where you
created your repository, see Configuring the AWS Command Line Interface.

2. Use the create-repository command to create a repository in your domain.

aws codeartifact create-repository --domain my-domain --domain-owner 111122223333
--repository my-repo

JSON-formatted data appears in the output with details about your new repository.

{
"repository": {
"name": "my-repo",
"administratorAccount™: "111122223333",
"domainName": "my-domain",

"domainOwnexr": "111122223333",

"arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",

"upstreams": [],

"externalConnections": []

3. Use the create-repository command to create an upstream repository for your my-repo
repository.

aws codeartifact create-repository --domain my-domain --domain-owner 111122223333
--repository npm-store

JSON-formatted data appears in the output with details about your new repository.

Getting started using the AWS CLI 15

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

CodeArtifact CodeArtifact User Guide

{
"repository": {
"name": "npm-store",
"administratorAccount™: "111122223333",
"domainName": "my-domain",

"domainOwnexr": "111122223333",

"arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",

"upstreams": [],

"externalConnections": []

4. Use the associate-external-connection command to add an external connection to the npm
public repository to your npm-store repository.

aws codeartifact associate-external-connection --domain my-domain --domain-
owner 111122223333 --repository npm-store --external-connection "public:npmjs"

JSON-formatted data appears in the output with details about the repository and its new
external connection.

{
"repository": {
"name": "npm-store",
"administratorAccount": "111122223333",
"domainName": "my-domain",

"domainOwner": "111122223333",

"arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",

"upstreams": [],

"externalConnections": [

{
"externalConnectionName": "public:npmjs",
"packageFormat": "npm",
"status": "AVAILABLE"

}

Getting started using the AWS CLI 16

CodeArtifact CodeArtifact User Guide

For more information, see Connect a CodeArtifact repository to a public repository.

5. Use the update-repository command to associate the npm-store repository as an upstream
repository to the my-repo repository.

aws codeartifact update-repository --repository my-repo --domain my-domain --
domain-owner 111122223333 --upstreams repositoryName=npm-store

JSON-formatted data appears in the output with details about your updated repository,
including its new upstream repository.

{
"repository": {
"name": "my-repo",
"administratorAccount": "111122223333",
"domainName": "my-domain",

"domainOwner": "111122223333",

arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",
"upstreams": [

{

"repositoryName": "npm-store"

1,

"externalConnections": []

For more information, see Add or remove upstream repositories (AWS CLI).

6. Use the login command to configure your npm package manager with your my-repo
repository.

aws codeartifact login --tool npm --repository my-repo --domain my-domain --domain-
owner 111122223333

You should receive output confirming your login succeeded.

Successfully configured npm to use AWS CodeArtifact repository https://my-
domain-111122223333.d.codeartifact.us-east-2.amazonaws.com/npm/my-repo/

Getting started using the AWS CLI 17

CodeArtifact CodeArtifact User Guide

Login expires in 12 hours at 2020-10-08 02:45:33-04:00

For more information, see Configure and use npm with CodeArtifact.

7. Use the npm CLI to install an npm package. For example, to install the popular npm package
lodash, use the following command.

npm install lodash

8. Use the list-packages command to view the package you just installed in your my-repo
repository.

(@ Note

There may be a delay between when the npm install install command completes
and when the package is visible in your repository. For details on typical latency when
fetching packages from public repositories, see External connection latency.

aws codeartifact list-packages --domain my-domain --repository my-repo

JSON-formatted data appears in the output with the format and name of the package that
you installed.

{
"packages": [
{
"format": "npm",
"package": "lodash"
}
]
}

You now have three CodeArtifact resources:

o The domain my-domain.

» The repository my-repo that is contained in my-domain. This repository has an npm
package available to it.

Getting started using the AWS CLI 18

CodeArtifact CodeArtifact User Guide

» The repository npm-store that is contained in my-domain. This repository has an external
connection to the public npm repository and is associated as an upstream repository with
the my-repo repository.

9. To avoid further AWS charges, delete the resources that you used during this tutorial:

(@ Note

You cannot delete a domain that contains repositories, so you must delete my-repo
and npm-store before you delete my-domain.

a. Use the delete-repository command to delete the npm-store repository.

aws codeartifact delete-repository --domain my-domain --domain-
owner 111122223333 --repository my-repo

JSON-formatted data appears in the output with details about the deleted repository.

{
"repository": {
"name": "my-repo",
"administratorAccount": "111122223333",
"domainName": "my-domain",

"domainOwner": "111122223333",
"arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",

"upstreams": [

{

"repositoryName": "npm-store"

1,

"externalConnections": []

b. Use the delete-repository command to delete the npm-store repository.

aws codeartifact delete-repository --domain my-domain --domain-
owner 111122223333 --repository npm-store

Getting started using the AWS CLI 19

CodeArtifact CodeArtifact User Guide

JSON-formatted data appears in the output with details about the deleted repository.

{
"repository": {
"name": "npm-store",
"administratorAccount": "111122223333",
"domainName": "my-domain",

"domainOwner": "111122223333",

" "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",

"upstreams": [],

"externalConnections": [

arn :

{
"externalConnectionName": "public:npmjs",
"packageFormat": "npm",
"status": "AVAILABLE"

}

c. Use the delete-domain command to delete the my-domain repository.

aws codeartifact delete-domain --domain my-domain --domain-owner 111122223333

JSON-formatted data appears in the output with details about the deleted domain.

"domain": {
"name": "my-domain",
"owner": "111122223333",
"arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my-domain",
"status": "Deleted",
"createdTime": "2020-10-07T15:36:35.194000-04:00",
"encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
"repositoryCount": 0,
"assetSizeBytes": 0

Getting started using the AWS CLI 20

CodeArtifact CodeArtifact User Guide

Working with repositories in CodeArtifact

These topics show you how to use the CodeArtifact console, AWS CLI, and CodeArtifact APIs to
create, list, update, and delete repositories.

Topics

« Create a repository

« Connect to a repository

» Delete a repository

« List repositories

» View or modify a repository configuration

» Repository policies

» Tag a repository in CodeArtifact

Create a repository

Because all packages in CodeArtifact are stored in repositories, to use CodeArtifact, you must
create one. You can create a repository using the CodeArtifact console, the AWS Command Line
Interface (AWS CLI), or AWS CloudFormation. Each repository is associated with the AWS account
that you use when you create it. You can have multiple repositories, and they are created and
grouped in domains. When you create a repository, it does not contain any packages. Repositories
are polyglot, which means that a single repository can contain packages of any supported type.

For information about CodeArtifact service limits, such as the maximum number of allowed
repositories in a single domain, see Quotas in AWS CodeArtifact. If you hit the maximum number of

allowed repositories, you can delete repositories to make room for more.

A repository can have one or more CodeArtifact repositories associated with it as upstream
repositories. This allows a package manager client to access the packages contained in more than
one repository using a single URL endpoint. For more information, see Working with upstream

repositories in CodeArtifact.

For more information about managing CodeArtifact repositories with CloudFormation, see Creating
CodeArtifact resources with AWS CloudFormation.

Create a repository 21

CodeArtifact CodeArtifact User Guide

® Note

After you create a repository, you cannot change its name, associated AWS account, or
domain.

Topics

» Create a repository (console)

» Create a repository (AWS CLI)

» Create a repository with an upstream repository

Create a repository (console)

1.

ok W

o

Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

On the navigation pane, choose Repositories, and then choose Create repository.
For Repository name, enter a name for your repository.
(Optional) In Repository description, enter an optional description for your repository.

(Optional) In Publish upstream repositories, add intermediate repositories that connect your
repositories to package authorities such as Maven Central or npmjs.com.

Choose Next.

In AWS account, choose This AWS account if you are signed in to the account that owns the
domain. Choose Different AWS account if another AWS account owns the domain.

In Domain, choose the domain that the repository will be created in.

If there are no domains in the account, you must create one. Enter the name for the new
domain in Domain name.

Expand Additional configuration.

You must use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an
AWS managed key or a KMS key that you manage:

Create a repository (console) 22

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

/A Important

CodeArtifact only supports symmetric KMS keys. You cannot use an asymmetric KMS
key to encrypt your CodeArtifact domains. For help determining whether a KMS key is
symmetric or asymmetric, see ldentifying symmetric and asymmetric KMS keys.

» Choose AWS managed key if you want to use the default AWS managed key.

« Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed keys and customer managed key in the AWS Key

Management Service Developer Guide.
9. Choose Next.

10. In Review and create, review what CodeArtifact is creating for you.

» Package flow shows how your domain and repositories are connected.

» Step 1: Create repository shows details about the repository and optional upstream
repositories that will be created.

« Step 2: Select domain shows details about my_domain.

When you're ready, choose Create repository.

Create a repository (AWS CLI)

Use the create-repository command to create a repository in your domain.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --description "My new repository"

Example output:

"repository": {

Create a repository (AWS CLI)

23

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

"name": "my_repo",
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "111122223333",

arn": "arn:aws:codeartifact:region-

id:111122223333:repository/my_domain/my_repo",

"description": "My new repository",
"upstreams": "[]",
"externalConnections"" "[]"

A new repository doesn't contain any packages. Each repository is associated with the AWS account
that you're authenticated to when the repository is created.

Create a repository with tags

To create a repository with tags, add the --tags parameter to your create-domain command.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --tags key=kl,value=v1l key=k2,value=v2

Create a repository with an upstream repository

You can specify one or more upstream repositories when you create a repository.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo \

--upstreams repositoryName=my-upstream-repo --repository-description "My new
repository"

Example output:

"repository": {
"name": "my_repo",
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "111122223333",

"arn "arn:aws:codeartifact:region-

id:111122223333:repository/my_domain/my_repo",

Create a repository with an upstream repository 24

CodeArtifact CodeArtifact User Guide

"description": "My new repository",
"upstreams": [
{
"repositoryName": "my-upstream-repo"
}
1,
"externalConnections"" "[]"
}
}
(® Note

To create a repository with an upstream, you must have permission for the
AssociateWithDownstreamRepository action on the upstream repository.

To add an upstream to a repository after it's been created, see Add or remove upstream

repositories (console) and Add or remove upstream repositories (AWS CLI).

Connect to a repository

After you have configured your profile and credentials to authenticate to your AWS account, decide
which repository to use in CodeArtifact. You have the following options:

» Create a repository. For more information, see Creating a Repository.

» Use a repository that already exists in your account. You can use the 1list-repositories
command to find the repositories created in your AWS account. For more information, see List

repositories.
» Use a repository in a different AWS account. For more information, see Repository policies.

Use a package manager client

After you know which repository you want to use, see one of the following topics.

« Using CodeArtifact with Maven

» Using CodeArtifact with npm

» Using CodeArtifact with NuGet

Connect to a repository 25

CodeArtifact CodeArtifact User Guide

» Using CodeArtifact with Python

Delete a repository

You can delete a repository using the CodeArtifact console or the AWS CLI. After a repository has
been deleted, you can no longer push packages to it or pull packages from it. All packages in the
repository become permanently unavailable and cannot be restored. You can create a repository
with the same name, but its contents will be empty.

/A Important

Deleting a repository cannot be undone. After you delete a repository, you are no longer
able to recover it and it cannot be restored.

Topics
o Delete a repository (console)

o Delete a repository (AWS CLI)

» Protect repositories from being deleted

Delete a repository (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the navigation pane, choose Repositories, then choose the repository that you want to
delete.

3. Choose Delete and then follow the steps to delete the domain.

Delete a repository (AWS CLI)

Use the delete-repository command to delete a repository.

aws codeartifact delete-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

Delete a repository 26

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

"repository": {
"name": "my_repo",
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "123456789012",

"arn": "arn:aws:codeartifact:region-

id:123456789012:repository/my_domain/my_repo",
"description": "My new repository",
"upstreams": [],

"externalConnections": []

Protect repositories from being deleted

You can prevent a repository from being accidentally deleted by including a domain policy similar
to the following:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "DenyRepositoryDeletion",
"Action": [
"codeartifact:DeleteRepository"
1,
"Effect": "Deny",
"Resource": "*",
"Principal": *
}
]
}

This policy prevents all principals from deleting the repository, but if you decide later that you
need to delete the repository, you can do so by following these steps:

1. In the domain policy, update the policy to the following:

"Version": "2012-10-17",

Protect repositories from being deleted 27

CodeArtifact

CodeArtifact User Guide

"Statement": [

{

"Sid": "DenyRepositoryDeletion",
"Action": [
"codeartifact:DeleteRepository"

1,
"Effect": "Deny",
"NotResource": "repository-arn",

"Principal": *

Replace repository-arn with the ARN of the repository that you would like to delete.

2. Inthe AWS CodeArtifact console, choose Repositories and delete your chosen repository.

3. After you've deleted the repository, you can change the policy back to prevent acccidental
delections.

"Version": "2012-10-17",
"Statement": [

{

"Sid": "DenyRepositoryDeletion",
"Action": [
"codeartifact:DeleteRepository"

1,
"Effect": "Deny",
"Resource": "*",

"Principal": *

Alternatively, you can include the same deny statement in a repository policy. This allow you to

have more flexibility to protect high-value repositories from deletion.

List repositories

Use the commands in this topic to list repositories in an AWS account or domain.

List repositories

28

CodeArtifact

CodeArtifact User Guide

List repositories in an AWS account

Use this command to list all of the repositories in your AWS account.

aws codeartifact list-repositories

Sample output:

"repositories": [
{

"name": "repol",

"administratorAccount": "123456789012",

"domainName": "my_domain",

"domainOwner": "123456789012",

"arn": "arn:aws:codeartifact:region-
id:123456789012:repository/my_domain/repol",

"description": "Description of repol"

Iy
{

"name": "repo2",

"administratorAccount": "123456789012",

"domainName": "my_domain",
"domainOwner": "123456789012",

"arn": "arn:aws:codeartifact:region-
1d:123456789012:repository/my_domain/repo2",

"description": "Description of repo2"

"name": "repo3",

"administratorAccount": "123456789012",

"domainName": "my_domain2",
"domainOwner": "123456789012",
"arn": "arn:aws:codeartifact:region-
1d:123456789012:repository/my_domain2/repo3",

"description": "Description of repo3"

List repositories in an AWS account

29

CodeArtifact CodeArtifact User Guide

You can paginate the response from list-repositories using the --max-results and --
next-token parameters. For --max-results, specify an integer from 1 to 1000 to specify the
number of results returned in a single page. Its default is 50. To return subsequent pages, run
list-repositories again and pass the nextToken value received in the previous command
output to --next-token. When the --next-token option is not used, the first page of results is
always returned.

List repositories in the domain
Use list-repositories-in-domain to get a list of all the repositories in a domain.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 123456789012 --max-results 3

The output shows that some of the repositories are administered by different AWS accounts.

{
"repositories": [
{
"name": "repol",
"administratorAccount": "123456789012",
"domainName": "my_domain",

"domainOwnexr": "111122223333",
"arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repol",
"description": "Description of repol"
},
{
"name": "repo2",
"administratorAccount": "444455556666",
"domainName": "my_domain",

"domainOwner": "111122223333",

arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repo2",

"description": "Description of repo2"
I
{
"name": "repo3",
"administratorAccount": "444455556666",
"domainName": "my_domain",

"domainOwnexr": "111122223333",

List repositories in the domain 30

CodeArtifact CodeArtifact User Guide

arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repo3",
"description": "Description of repo3"

You can paginate the response from list-repositories-in-domain using the --max-
results and --next-token parameters. For --max-results, specify an integer from 1 to 1000
to specify the number of results returned in a single page. Its default is 50. To return subsequent
pages, run list-repositories-in-domain again and pass the nextToken value received in
the previous command output to --next-token. When the --next-token option is not used,
the first page of results is always returned.

To output the repository names in a more compact list, try the following command.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 111122223333 \
--query 'repositories[*].[name]' --output text

Sample output:

repol
repo2
repo3

The following example outputs the account ID in addition to the repository name.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 111122223333 \
--query 'repositories[*].[name,administratorAccount]' --output text

Sample output:

repol 710221105108
repo2 710221105108
repo3 532996949307

For more information about the - -query parameter, see ListRepositories in the CodeArtifact API
Reference.

List repositories in the domain 31

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositories.html

CodeArtifact CodeArtifact User Guide

View or modify a repository configuration

You can view and update details about your repository using the CodeArtifact console or the AWS
Command Line Interface (AWS CLI).

(® Note

After you create a repository, you cannot change its name, associated AWS account, or
domain.

Topics

» View or modify a repository configuration (console)

« View or modify a repository configuration (AWS CLI)

View or modify a repository configuration (console)

You can view details about and update your repository using the CodeArtifact console.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Repositories, and then choose the repository name that you
want to view or modify.

3. Expand Details to see the following:

« The repository's domain. Choose the domain name to learn more about it.
» The repository's resource policy. Choose Apply a repository policy to add one.
« The repository's Amazon Resource Name (ARN).

« If your repository has an external connection, you can choose the connection to learn more
about it. A repository can have only one external connection. For more information, see
Connect a CodeArtifact repository to a public repository.

« If your repository has upstream repositories, you can choose one to see its details. A
repository can have up to 10 direct upstream repositories. For more information, see
Working with upstream repositories in CodeArtifact.

View or modify a repository configuration 32

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

® Note

A repository can have an external connection or upstream repositories, but not both.

4. In Packages, you can see any packages that are available to this repository. Choose a package
to learn more about it.

5. Choose View connection instructions, and then choose a package manager to learn how to
configure it with CodeArtifact.

6. Choose Apply repository policy to update or add a resource policy to your repository. For
more information, see Repository policies.

7. Choose Edit to add or update the following.

» The repository description.
» Tags associated with the repository.

« If your repository has an external connection, you can change which public repository
it connects to. Otherwise, you can add one or more existing repositories as upstream
repositories. Arrange them in the order you want them prioritized by CodeArtifact when a
package is requested. For more information, see Upstream repository priority order.

View or modify a repository configuration (AWS CLI)

To view a repository's current configuration in CodeArtifact, use the describe-repository
command.

aws codeartifact describe-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

"repository": {
"name": "my_repo",
"administratorAccount": "123456789012,
"domainName": "my_domain",
"domainOwner": "111122223333",

View or modify a repository configuration (AWS CLI) 33

CodeArtifact CodeArtifact User Guide

arn":

id:111122223333:repository/my_domain/my_repo"
"upstreams": [],
"externalConnections": []

"arn:aws:codeartifact:region-

Modify a repository upstream configuration

An upstream repository allows a package manager client to access the packages contained in
more than one repository using a single URL endpoint. To add or change a repository's upstream
relationship, use the update-repository command.

aws codeartifact update-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--upstreams repositoryName=my-upstream-repo

Example output:

"repository": {

"name": "my_repo",

"administratorAccount": "123456789012,

"domainName": "my_domain",

"domainOwnexr": "111122223333",

"arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo"

"upstreams": [

{
"repositoryName": "my-upstream-repo"
}
1,
"externalConnections": []
}
}
(@ Note

To add an upstream repository, you must have permission for the
AssociateWithDownstreamRepository action on the upstream repository.

View or modify a repository configuration (AWS CLI) 34

CodeArtifact CodeArtifact User Guide

To remove a repository's upstream relationship, use an empty list as the argument to the - -
upstreams option.

aws codeartifact update-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --upstreams []

Example output:

{
"repository": {
"name": "my_repo",
"administratorAccount": "123456789012,
"domainName": "my_domain",

"domainOwner": "111122223333",

": "arn:aws:codeartifact:region-

id:111122223333:repository/my_domain/my_repo"
"upstreams": [],
"externalConnections": []

arn

Repository policies

CodeArtifact uses resource-based permissions to control access. Resource-based permissions let
you specify who has access to a repository and what actions they can perform on it. By default,
only the repository owner has access to a repository. You can apply a policy document that allows
other IAM principals to access your repository.

For more information, see Resource-Based Policies and Identity-Based Policies and Resource-Based

Policies.

Create a resource policy to grant read access

A resource policy is a text file in JSON format. The file must specify a principal (actor), one or more
actions, and an effect (A11low or Deny). For example, the following resource policy grants the
account 123456789012 permission to download packages from the repository.

"Version": "2012-10-17",
"Statement": [

Repository policies 35

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

CodeArtifact CodeArtifact User Guide

{
"Action": [
"codeartifact:ReadFromRepository"
1,
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
.
"Resource": "*"
}

Because the policy is evaluated only for operations against the repository that it's attached to,
you don't need to specify a resource. Because the resource is implied, you can set the Resource
to *. In order for a package manager to download a package from this repository, a domain
policy for cross-account access will also need to be created. The domain policy must grant at least
codeartifact:GetAuthorizationToken permission to the principal. For an example of a full
domain policy for granting cross-account access, see this Domain policy example.

® Note

The codeartifact:ReadFromRepository action can only be used on a repository
resource. You cannot put a package's Amazon Resource Name (ARN) as a resource with
codeartifact:ReadFromRepository as the action to allow read access to a subset of
packages in a repository. A given principal can either read all the packages in a repository
or none of them.

Because the only action specified in the repository is ReadFromRepository, users and roles from

account 1234567890 can download packages from the repository. However, they can't perform
other actions on them (for example, listing package names and versions). Typically, you grant
permissions in the following policy in addition to ReadFromRepository because a user who
downloads packages from a repository needs to interact with it in other ways too.

"Version": "2012-10-17",
"Statement": [
{

"Action": [

Create a resource policy to grant read access

36

CodeArtifact

CodeArtifact User Guide

"codeartifact
"codeartifact
"codeartifact
"codeartifact
"codeartifact
"codeartifact:
"codeartifact:
"codeartifact:
"codeartifact:

1,

"Effect": "Allow",

"Principal": {

:DescribePackageVersion",
:DescribeRepository",
:GetPackageVersionReadme",
:GetRepositoryEndpoint",
:ListPackages",

ListPackageVersions",
ListPackageVersionAssets",
ListPackageVersionDependencies",
ReadFromRepository"

"AWS": "arn:aws:iam::123456789012:root"

iy

"Resource": "*"

Set a policy

After you create a policy document, use the put-repository-permissions-policy command

to attach it to a repository:

aws codeartifact put-repository-permissions-policy --domain my_domain --domain-

owner 111122223333 \

--repository my_repo --policy-document file:///PATH/TO/policy. json

When you call put-repository-

permissions-policy, the resource policy on the repository

is ignored when evaluating permissions. This ensures that the owner of a domain cannot lock

themselves out of the repository, which would prevent them from being able to update the

resource policy.

(@ Note

You cannot grant permissions to another AWS account to update the resource policy on

a repository using a resource

policy, since the resource policy is ignored when calling put-

repository-permissions-policy.

Sample output:

Set a policy

37

CodeArtifact CodeArtifact User Guide

{
"policy": {
"resourceArn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo",
"document": "{ ...policy document content...}",
"revision": "MQlyyTQRASRU3HB58gBtSDHXG7@3hvxxxxxxx="
}
}

The output of the command contains the Amazon Resource Name (ARN) of the repository resource,
the full contents of the policy document, and a revision identifier. You can pass the revision
identifier to put-repository-permissions-policy using the --policy-revision option.
This ensures that a known revision of the document is being overwritten, and not a newer version
set by another writer.

Read a policy

Use the get-repository-permissions-policy command to read an existing version
of a policy document. To format the output for readability, use the --output and --query
policy.document together with the Python json.tool module.

aws codeartifact get-repository-permissions-policy --domain my_domain --domain-
owner 111122223333 \

--repository my_repo --output text --query policy.document | python -m
json.tool

Sample output:

"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::123456789012:root"

},

"Action": [
"codeartifact:DescribePackageVersion",
"codeartifact:DescribeRepository",
"codeartifact:GetPackageVersionReadme",

Read a policy 38

CodeArtifact CodeArtifact User Guide

"codeartifact:GetRepositoryEndpoint",
"codeartifact:ListPackages",
"codeartifact:ListPackageVersions",
"codeartifact:ListPackageVersionAssets",
"codeartifact:ListPackageVersionDependencies",
"codeartifact:ReadFromRepository"

]I

"Resource": "*"

Delete a policy

Use the delete-repository-permissions-policy command to delete a policy from a
repository.

aws codeartifact delete-repository-permissions-policy --domain my_domain --domain-
owner 111122223333 \
--repository my_repo

The format of the output is the same as that of the get-repository-permissions-policy
command.

Grant read access to principals

When you specify the root user of an account as the principal in a policy document, you grant
access to all of the users and roles in that account. To limit access to selected users or roles, use
their ARN in the Principal section of the policy. For example, use the following to grant read
access to the IAM user bob in account 123456789012.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:ReadFromRepository"

1,
"Effect": "Allow",
"Principal": {

Delete a policy 39

CodeArtifact CodeArtifact User Guide

"AWS": "arn:aws:iam::123456789012:usex/bob"
iy

"Resource": "*"

Grant write access to packages

The codeartifact:PublishPackageVersion action is used to control permission to publish
new versions of a package. The resource used with this action must be a package. The format of
CodeArtifact package ARNs is as follows.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/package-
format/package-namespace/package-name

The following example shows the ARN for an npm package with scope @parity and name ui in
the my_repo repository in domain my_domain.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/npm/parity/ui

The ARN for an npm package without a scope has the empty string for the namespace field. For
example, the following is the ARN for a package without a scope and with name react in the
my_repo repository in domain my_domain.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/npm//react

The following policy grants account 123456789012 permission to publish versions of @parity/
ui in the my_repo repository.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:PublishPackageVersion"

1,
"Effect": "Allow",
"Principal": {

Grant write access to packages 40

CodeArtifact CodeArtifact User Guide

"AWS": "arn:aws:iam::123456789012:root"

1,
"Resource": "arn:aws:codeartifact:region-
id:111122223333:package/my_domain/my_repo/npm/parity/ui"

}

/A Important

To grant permission to publish Maven and NuGet package versions, add the following
permissions in addition to codeartifact:PublishPackageVersion.

1. NuGet: codeartifact:ReadFromRepository and specify the repository resource

2. Maven: codeartifact:PutPackageMetadata

Because this policy specifies a domain and repository as part of the resource, it allows publishing
only when attached to that repository.

Grant write access to a repository

You can use wildcards to grant write permission for all packages in a repository. For example,
use the following policy to grant an account permission to write to all packages in the my_repo
repository.

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:PublishPackageVersion"
1,
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam: :123456789012:root"
},
"Resource": "arn:aws:codeartifact:region-
id:111122223333:package/my_domain/my_repo/*"
}

Grant write access to a repository 41

CodeArtifact CodeArtifact User Guide

}

Interaction between repository and domain policies

CodeArtifact supports resource policies on domains and repositories. Resource policies are
optional. Each domain may have one policy and each repository in the domain may have its

own repository policy. If both a domain policy and a repository policy are present, then both are
evaluated when determining whether a request to a CodeArtifact repository is allowed or denied.
Domain and repository policies are evaluating using the following rules:

» No resource policies are evaluated when performing account-level operations such as
ListDomains or ListRepositories.

» No repository policies are evaluated when performing domain-level operations such as
DescribeDomain or ListRepositoriesinDomain.

« The domain policy is not evaluated when performing PutDomainPermissionsPolicy. Note that

this rule prevents lock-outs.

« The domain policy is evaluated when performing PutRepositoryPermissionsPolicy, but the

repository policy is not evaluated.
« An explicit deny in any policy overrides an allow in another policy.

« An explicit allow is only required in one resource policy. Omitting an action from a repository
policy will not result in an implicit deny if the domain policy allows the action.

« When no resource policy allows an action, the result is an implicit deny unless the calling
principal’s account is the domain owner or repository administrator account and an identity-
based policy allows the action.

Resource policies are optional when used to grant access in a single account scenario, where
the caller account used to access a repository is the same as the domain owner and repository
administrator account. Resource policies are required to grant access in a cross-account scenario
where the caller's account is not the same as the domain owner or repository administrator
account. Cross-account access in CodeArtifact follows the general IAM rules for cross-account
access as described in Determining whether a cross-account request is allowed in the IAM User
Guide.

« A principal in the domain owner account may be granted access to any repository in the domain
through an identity-based policy. Note that in this case, no explicit allow is required in a domain
or repository policy.

Interaction between repository and domain policies 42

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListDomains.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositories.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DescribeDomain.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositoriesInDomain.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PutDomainPermissionsPolicy.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PutRepositoryPermissionsPolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account

CodeArtifact CodeArtifact User Guide

« A principal in the domain owner account may be granted access to any repository through a
domain or repository policy. Note that in this case, no explicit allow is required in an identity-
based policy.

« A principal in the repository administrator account may be granted access to the repository
through an identity-based policy. Note that in this case, no explicit allow is required in a domain
or repository policy.

« A principal in another account is only granted access when allowed by at least one resource
policy and at least one identity-based policy, with no policy explicitly denying the action.

Tag a repository in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your repositories in
CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a repository. You can use the console or CLI
to add or remove tags, and update the values of tags in a repository. You can add up to 50 tags to
each repository.

Topics

» Tag repositories (CLI)

« Tag repositories (console)

Tag repositories (CLI)

You can use the CLI to manage repository tags.

Topics

« Add tags to a repository (CLI)

» View tags for a repository (CLI)

« Edit tags for a repository (CLI)

« Remove tags from a repository (CLI)

Tag a repository 43

CodeArtifact CodeArtifact User Guide

Add tags to a repository (CLI)
You can use the console or the AWS CLI to tag repositories.

To add a tag to a repository when you create it, see Create a repository.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line
Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the repository where you want to add tags and the key and value of the tag you
want to add.

(® Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

You can add more than one tag to a repository. For example, to tag a repository named my_repo in
a domain named my_domain with two tags, a tag key named key1 with the tag value of valuel,
and a tag key named key2 with the tag value of value2:

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tags key=keyl,value=valuel
key=key2,value=value2

If successful, this command has no output.
View tags for a repository (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a repository. If no tags have been
added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command.

Tag repositories (CLI) 44

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

CodeArtifact CodeArtifact User Guide

® Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --

query repository.arn

For example, to view a list of tag keys and tag values for a repository named
my_repo in a domain named my_domain with the arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo ARN value:

aws codeartifact list-tags-for-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo

If successful, this command returns information similar to the following:

{
"tags": {
"keyl": "valuel",
"key2": "value2"
}
}

Edit tags for a repository (CLI)

Follow these steps to use the AWS CLI to edit a tag for a repository. You can change the value for
an existing key or add another key.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
repository where you want to update a tag and specify the tag key and tag value.

(® Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --

query repository.arn

Tag repositories (CLI) 45

CodeArtifact CodeArtifact User Guide

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tags key=keyl,value=newvaluel

If successful, this command has no output.
Remove tags from a repository (CLI)
Follow these steps to use the AWS CLI to remove a tag from a repository.

(® Note

If you delete a repository, all tag associations are removed from the deleted repository. You
do not have to remove tags before you delete a repository.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
repository where you want to remove tags and the tag key of the tag you want to remove.

(® Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

For example, to remove multiple tags on a repository named my_repo in a domain named
my_domain with the tag keys key1 and key2:

aws codeartifact untag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tag-keys keyl key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the repository using the 1ist-tags-for-resource command.

Tag repositories (console)

You can use the console or the CLI to tag resources.

Tag repositories (console) 46

CodeArtifact CodeArtifact User Guide

Topics

Add tags to a repository (console)

View tags for a repository (console)

Edit tags for a repository (console)

Remove tags from a repository (console)

Add tags to a repository (console)

You can use the console to add tags to an existing repository.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository that you want to add tags to.
3. Expand the Details section.

4. Under Repository tags, if there are no tags on the repository, choose Add repository tags. If
there are tags on the repository, choose View and edit repository tags.

5. Choose Add new tag.

6. Inthe Key and Value fields, enter the text for each tag you want to add. (The Value field is
optional.) For example, in Key, enter Name. In Value, enter Test.

Tag repositories (console) 47

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact

CodeArtifact User Guide

Developer Tools CodeArtifact Repositories

Edit reponame ..«

Repository

Repository description - optional

1000 character limit

reponame

Edit repository

Tags

Tags - optional
Key Value - optional

Q, Mame b4) Test

Add new tag

You can add 49 more tags.

» AWS reserved tags

Resource tags added by other AWS services. These tags cannot be modified.

Remove

Upstream repositories - optional

Repository name

1. B8 reponame

Associate upstream repository How to use this input [7]

Cancel

7. (Optional) Choose Add tag to add more rows and enter more tags.

8. Choose Update repository.

Update repository

Tag repositories (console)

48

CodeArtifact CodeArtifact User Guide

View tags for a repository (console)

You can use the console to list tags for existing repositories.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. On the Repositories page, choose the repository where you want to view tags.
3. Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

® Note

If there are no tags added to this repository, the console will read Add repository tags.

Edit tags for a repository (console)

You can use the console to edit tags that have been added to repository.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. On the Repositories page, choose the repository where you want to update tags.
3. Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

® Note

If there are no tags added to this repository, the console will read Add repository tags.

5. In the Key and Value fields, update the values in each field as needed. For example, for the
Name key, in Value, change Test to Prod.

6. Choose Update repository.

Remove tags from a repository (console)

You can use the console to delete tags from repositories.

Tag repositories (console) 49

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository where you want to remove tags.
Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

® Note

If there are no tags added to this repository, the console will read Add repository tags.

5. Next to the key and value for each tag you want to delete, choose Remove.

6. Choose Update repository.

Tag repositories (console) 50

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Working with upstream repositories in CodeArtifact

A repository can have other AWS CodeArtifact repositories as upstream repositories. This enables
a package manager client to access the packages that are contained in more than one repository
using a single repository endpoint.

You can add one or more upstream repositories to an AWS CodeArtifact repository using the AWS
Management Console, AWS CLI, or SDK. To associate a repository with an upstream repository, you
must have permission for the AssociateWithDownstreamRepository action on the upstream
repository. For more information, see Create a repository with an upstream repository and Add or

remove upstream repositories.

If an upstream repository has an external connection to a public repository, the repositories that
are downstream from it can pull packages from that public repository. For example, suppose that
the repository my_repo has an upstream repository named upstream, and upstream has an
external connection to a public npm repository. In this case, a package manager that is connected
tomy_repo can pull packages from the npm public repository. For more information about
requesting packages from upstream repositories or external connections, see Requesting a package

version with upstream repositories or Requesting packages from external connections.

Topics

» What's the difference between upstream repositories and external connections?

« Add or remove upstream repositories

» Connect a CodeArtifact repository to a public repository

« Requesting a package version with upstream repositories

» Requesting packages from external connections

» Upstream repository priority order

» API behavior with upstream repositories

What's the difference between upstream repositories and
external connections?

In CodeArtifact, upstream repositories and external connections behave mostly the same, but there
are a few important differences.

What's the difference between upstream repositories and external connections? 51

CodeArtifact CodeArtifact User Guide

1. You can add up to 10 upstream repositories to a CodeArtifact repository. You can only add one
external connection.

2. There are separate API calls to add an upstream repository or an external connection.

3. The package retention behavior is slightly different, as packages requested from upstream
repositories are retained in those repositories. For more information, see Package retention in

intermediate repositories.

Add or remove upstream repositories

Follow the steps in the following sections to add or remove upstream repositories to or from an
CodeArtifact repository. For more information about upstream repositories, see Working with

upstream repositories in CodeArtifact.

This guide contains information about configuring other CodeArtifact repositories as upstream
repositories. For information about configuring an external connection to public repositories like
npmjs.com, Nuget Gallery, Maven Central, or PyPI, see Add an external connection.

Add or remove upstream repositories (console)

Perform the steps in the following procedure to add a repository as an upstream repository using
the CodeArtifact console. For information about adding an upstream repository with the AWS CLlI,
see Add or remove upstream repositories (AWS CLI).

To add an upstream repository using the CodeArtifact console

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.

3. Choose the name of your repository.
4. Choose Edit.

5. In Upstream repositories, choose Associate upstream repository and add the repository you
want to add as an upstream repository. You can only add repositories in the same domain as
upstream repositories.

6. Choose Update repository.

Add or remove upstream repositories 52

https://docs.aws.amazon.com/codeartifact/latest/ug/external-connection.html
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To remove an upstream repository using the CodeArtifact console

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.

Choose the name of your repository.
4. Choose Edit.

In Upstream repositories, find the list entry of the upstream repository you want to remove
and choose Disassociate.

/A Important

Once you remove an upstream repository from a CodeArtifact repository, package
managers will not have access to packages in the upstream repository or any of its
upstream repositories.

6. Choose Update repository.

Add or remove upstream repositories (AWS CLI)

You can add or remove a CodeArtifact repository's upstream repositories using the AWS Command
Line Interface (AWS CLI). To do this, use the update-repository command, and specify the
upstream repositories using the --upstreams parameter.

You can only add repositories in the same domain as upstream repositories.
To add upstream repositories (AWS CLI)

1. If you haven't, follow the steps in Setting up with AWS CodeArtifact to set up and configure
the AWS CLI with CodeArtifact.

2. Usethe aws codeartifact update-repository command with the --upstreams flag to
add upstream repositories.

® Note

Calling the update-repository command replaces the existing configured upstream
repositories with the list of repositories provided with the --upstreams flag. If you

Add or remove upstream repositories (AWS CLI) 53

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

want to add upstream repositories and keep the existing ones, you must include the
existing upstream repositories in the call.

The following example command adds two upstream repositories to a repository named
my_repo that is in a domain named my_domain. The order of the upstream repositories in
the - -upstreams parameter determines their search priority when CodeArtifact requests a
package from the my_repo repository. For more information, see Upstream repository priority
order.

For information about connecting to public, external repositories such as npmjs.com or Maven
Central, see Connect a CodeArtifact repository to a public repository.

aws codeartifact update-repository \
--repository my_repo \
--domain my_domain \
--domain-owner 111122223333 \
--upstreams repositoryName=upstream-1 repositoryName=upstream-2

The output contains the upstream repositories, as follows.

{
"repository": {
"name": "my_repo",
"administratorAccount": "123456789012",
"domainName": "my_domain",

"domainOwnexr": "111122223333",

"arn": "arn:aws:codeartifact:us-
east-2:111122223333:repository/my_domain/my_repo",

"upstreams": [

{

"repositoryName": "upstream-1"
1,
{

"repositoryName": "upstream-2"
}

]I

"externalConnections": []

Add or remove upstream repositories (AWS CLI) 54

CodeArtifact CodeArtifact User Guide

To remove an upstream repository (AWS CLI)

1. If you haven't, follow the steps in Setting up with AWS CodeArtifact to set up and configure
the AWS CLI with CodeArtifact.

2. To remove upstream repositories from a CodeArtifact repository, use the update-
repository command with the --upstreams flag. The list of repositories provided to the
command will be the new set of upstream repositories for the CodeArtifact repository. Include
existing upstream repositories that you want to keep, and omit the upstream repositories you
want to remove.

To remove all upstream repositories from a repository, use the update-repository
command and include - -upstreams without an argument. The following removes upstream
repositories from a repository named my_repo that is contained in a domain named
my_domain.

aws codeartifact update-repository \
--repository my_repo \
--domain my_domain \
--domain-owner 111122223333 \
--upstreams

The output shows that the list of upstreams is empty.

"repository": {
"name": "my_repo",
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "111122223333",
"arn": "arn:aws:codeartifact:us-
east-2:111122223333:repository/my_domain/my_repo",
"upstreams": [],

"externalConnections": []

Add or remove upstream repositories (AWS CLI) 55

CodeArtifact CodeArtifact User Guide

Connect a CodeArtifact repository to a public repository

You can add a external connection between a CodeArtifact repository and an external, public
repository such as https://npmjs.com or the Maven Central repository. Then, when you request a

package from the CodeArtifact repository that's not already present in the repository, the package
can be fetched from the external connection. This makes it possible to consume open-source
dependencies used by your application.

In CodeArtifact, the intended way to use external connections is to have one repository per domain
with an external connection to a given public repository. For example, if you want to connect to
npmjs.com, configure one repository in your domain with an external connection to npmjs.com
and configure all the other repositories with an upstream to it. This way, all the repositories can
make use of the packages that have already been fetched from npmjs.com, rather than fetching
and storing them again.

Topics

Connect to an external repository (console)

Connect to an external repository (CLI)

Supported external connection repositories

Remove an external connection (CLI)

Connect to an external repository (console)

When you use the console to add a connection to an external repository, the following will occur:

1. A -store repository for the external repository will be created in your CodeArtifact domain
if one does not exist already. These -store repositories behave as intermediate repositories
between your repository and the external repository and allow you to connect to more than one
external repository.

2. The appropriate -store repository is added as an upstream to your repository.
The following list contains each -store repository in CodeArtifact and the respective external
repository they connect to.

1. cargo-store is connected to crates.io.

2. clojars-store is connected to Clojars Repository.

Connect a CodeArtifact repository to a public repository 56

https://npmjs.com
https://repo.maven.apache.org/maven2/

CodeArtifact CodeArtifact User Guide

. commonsware-store is connected to CommonsWare Android Repository.
. google-android-store is connected to Google Android.

. gradle-plugins-store is connected to Gradle plugins.

. npm-store is connected to npmjs.com.
. huget-store is connected to nuget.org.

3
4
5
6. maven-central-store is connected to Maven Central Repository.
7
8
9. pypi-store is connected to the Python Packaging Authority.

1

Orubygems-store is connected to RubyGems.org.

To connect to an external repository (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.
Choose the name of your repository.

4. Choose Edit.
In Upstream repositories, choose Associate upstream repository and add the appropriate -
store repository that is connected as an upstream.

6. Choose Update repository.

After the -store repository is added as an upstream repository, package managers connected to
your CodeArtifact repository can fetch packages from the respective external repository.

Connect to an external repository (CLI)

You can use the AWS CLI to connect your CodeArtifact repository to an external repository
by adding an external connection directly to the repository. This will allow users connected
to the CodeArtifact repository, or any of its downstream repositories, to fetch packages from
the configured external repository. Each CodeArtifact repository can only have one external
connection.

It is recommended to have one repository per domain with an external connection to a given public
repository. To connect other repositories to the public repository, add the repository with the
external connection as an upstream to them. If you or someone else in your domain has already

Connect to an external repository (CLI) 57

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

configured external connections in the console, your domain likely already has a -store repository
with an external connection to the public repository you want to connect to. For more information
about -store repositories and connecting with the console, see Connect to an external repository

(console).
To add an external connection to a CodeArtifact repository (CLI)

« Useassociate-external-connection to add an external connection. The following
example connects a repository to the npm public registry, npmjs.com. For a list of supported
external repositories, see Supported external connection repositories.

aws codeartifact associate-external-connection --external-connection public:npmjs \
--domain my_domain --domain-owner 111122223333 --repository my_repo

Example output:

{
"repository": {
"name": my_repo
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "111122223333",
"arn": "arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo",
"description": "A description of my_repo",
"upstreams": [],
"externalConnections": [
{
"externalConnectionName": "public:npmjs",
"packageFormat": "npm",
"status": "AVAILABLE"
}
]
}
}

After adding an external connection, see Requesting packages from external connections for
information about requesting packages from an external repository with an external connection.

Connect to an external repository (CLI) 58

CodeArtifact

CodeArtifact User Guide

Supported external connection repositories

CodeArtifact supports an external connection to the following public repositories. To use the
CodeArtifact CLI to specify an external connection, use the value in the Name column for the - -
external-connection parameter when you run the associate-external-connection

command.

Repository type

Maven

Maven

Maven

Maven

Maven

npm
NuGet
Python

Ruby

Rust

Description

Clojars repository

CommonsWare Android repository

Google Android repository

Gradle plugins repository

Maven Central

npm public registry
NuGet Gallery
Python Package Index

RubyGems.org

Crates.io

Remove an external connection (CLI)

Name

public:maven-cloja

IS

public:maven-commo

nsware

public:maven-googl

eandroid

public:maven-gradl
eplugins

public:maven-centr

al

public:
public:
public:

public:

Ig

public:

npmjs
nuget-org
pypi

ruby-gems-o

crates-io

To remove an external connection that was added by using the associate-external-

connection command in the AWS CLI, use disassociate-external-connection.

Supported external connection repositories

59

CodeArtifact CodeArtifact User Guide

aws codeartifact disassociate-external-connection --external-connection public:npmjs \
--domain my_domain --domain-owner 111122223333 --repository my_repo

Example output:

"repository": {
"name": my_repo
"administratorAccount": "123456789012",
"domainName": "my_domain",
"domainOwner": "111122223333",

arn":
west-2:111122223333:repository/my_domain/my_repo",
"description": "A description of my_repo",
"upstreams": [],
"externalConnections": []

"arn:aws:codeartifact:us-

Requesting a package version with upstream repositories

When a client (for example, npm) requests a package version from a CodeArtifact repository
named my_repo that has multiple upstream repositories, the following can occur:

« If my_repo contains the requested package version, it is returned to the client.

« If my_repo does not contain the requested package version, CodeArtifact looks for it in
my_repo's upstream repositories. If the package version is found, a reference to it is copied to
my_repo, and the package version is returned to the client.

« If neither my_repo nor its upstream repositories contain the package version, an HTTP 404 Not
Found response is returned to the client.

When you add upstream repositories using the create-repository or update-repository
command, the order they are passed to the - -upstreams parameter determines their priority
when a package version is requested. Specify upstream repositories with --upstreams in

the order that you want CodeArtifact to use when a package version is requested. For more
information, see Upstream repository priority order.

Requesting a package version with upstream repositories 60

CodeArtifact CodeArtifact User Guide

The maximum number of direct upstream repositories allowed for one repository is 10. Because
direct upstream repositories can also have direct upstream repositories of their own, CodeArtifact
can search more than 10 repositories for package versions. The maximum number of repositories
CodeArtifact looks in when a package version is requested is 25.

Package retention from upstream repositories

If a requested package version is found in an upstream repository, a reference to it is retained and
is always available from the downstream repository. The retained package version is not affected
by any of the following:

Deleting the upstream repository.

Disconnecting the upstream repository from the downstream repository.

Deleting the package version from the upstream repository.

Editing the package version in the upstream repository (for example, by adding a new asset to it).

Fetch packages through an upstream relationship

If a CodeArtifact repository has an upstream relationship with a repository that has an external
connection, requests for packages not in the upstream repository are copied from the external
repository. For example, consider the following configuration: a repository named repo-A has an
upstream repository named repo-B. repo-B has an external connection to https://npmjs.com.

AWS CodeArtifact repositories External repository
Package) .
Manager repo-A repo-B npmjs.com
i‘-\\‘-\—_______ ____'___'__'_‘-’i‘____________ ____'___'__,_-";
Packages Packages

If npm is configured to use the repo-A repository, running npm install triggers the copying of
packages from https://npmjs.com into repo-B. The versions installed are also pulled into repo-A.

The following example installs 1odash.

$ npm config get registry
https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my-
downstream-repo/

Package retention from upstream repositories 61

https://npmjs.com
https://npmjs.com

CodeArtifact CodeArtifact User Guide

$ npm install lodash
+ lodash@4.17.20
added 1 package from 2 contributors in 6.933s

After running npm install, repo-A contains just the latest version (lodash 4.17.20) because
that's the version that was fetched by npm from repo-A.

aws codeartifact list-package-versions --repository repo-A --domain my_domain \
--domain-owner 111122223333 --format npm --package lodash

Example output:

{
"package": "lodash",
"format": "npm",
"versions": [
{
"version": "4.17.15",
"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"
}
]
}

Because repo-B has an external connection to https://npmijs.com, all the package versions that
are imported from https://npmjs.com are stored in repo-B. These package versions could have
been fetched by any downstream repository with an upstream relationship to repo-B.

The contents of repo-B provide a way to see all the packages and package versions imported from
https://npmjs.com over time. For example, to see all the versions of the 1odash package imported

over time, you can use list-package-versions, as follows.

aws codeartifact list-package-versions --repository repo-B --domain my_domain \
--domain-owner 111122223333 --format npm --package lodash --max-results 5

Example output:

"package": "lodash",

Fetch packages through an upstream relationship 62

https://npmjs.com
https://npmjs.com
https://npmjs.com

CodeArtifact CodeArtifact User Guide

"format": "npm",

"versions": [

{
"version": "0.10.0",
"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

},

{
"version": "0.2.2",
"revision": "REVISION-2-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

I

{
"version": "0.2.0",
"revision": "REVISION-3-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

},

{
"version": "0.2.1",
"revision": "REVISION-4-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

I

{
"version": "0.1.0",
"revision": "REVISION-5-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

}

1,
"nextToken": "eyJsaXNQUGFja2FnzZVZ1lcnNpb25zVG9rZW4i0iIwLjIuMiJo"

Package retention in intermediate repositories
CodeArtifact allows chaining upstream repositories. For example, repo-A can have repo-B as an

upstream and repo-B can have repo-C as an upstream. This configuration makes the package
versions in repo-B and repo-C available from repo-A.

Package
Manager

repo-A repo-B repo-C
S I —

T —— S —_— ——

Packages Packages

Package retention in intermediate repositories 63

CodeArtifact CodeArtifact User Guide

When a package manager connects to repository repo-A and fetches a package version from
repository repo-C, the package version will not be retained in repository repo-B. The package
version will only be retained in the most-downstream repository, in this example, repo-A. It will
not be retained in any intermediate repositories. This is also true for longer chains; for example
if there were four repositories repo-A, repo-B, repo-C, and repo-D and a package manager
connected to repo-A fetched a package version from repo-D, the package version would be
retained in repo-A but not in repo-B or repo-C.

Package retention behavior is similar when pulling a package version from an external repository,
except that the package version is always retained in the repository that has the external
connection attached. For example, repo-A has repo-B as an upstream. repo-B has repo-C as an
upstream, and repo-C also has npmjs.com configured as an external connection; see the followng

diagram.

AWS Codefrtifact repositories External repository
Package repo-A npmijs.com
Manager p p J)

If a package manager connected to repo-A requests a package version, lodash 4.17.20 for

Packages Packages Packages

example, and the package version is not present in any of the three repositories, it will be fetched
from npmjs.com. When lodash 4.17.20 is fetched, it will be retained in repo-A as that is the most-
downstream repository and repo-C as it has the external connection to npmjs.com attached.
lodash 4.17.20 will not be retained in repo-B as that is an intermediate repository.

Requesting packages from external connections

The following sections describe how to request a package from an external connection and
expected CodeArtifact behavior when requesting a package.

Topics

Fetch packages from an external connection

External connection latency

CodeArtifact behavior when an external repository is not available

Availability of new package versions

Importing package versions with more than one asset

Requesting packages from external connections 64

CodeArtifact CodeArtifact User Guide

Fetch packages from an external connection

To fetch packages from an external connection once you've added it to your CodeArtifact
repository as described in Connect a CodeArtifact repository to a public repository, configure your

package manager to use your repository and install the packages.

(® Note

The following instructions use npm, to view configuration and usage instructions for other
package types, see Using CodeArtifact with Maven, Using CodeArtifact with NuGet, or
Using CodeArtifact with Python.

To fetch packages from an external connection

1. Configure and authenticate your package manager with your CodeArtifact repository. For npm,
use the following aws codeartifact login command.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

2. Request the package from the public repository. For npm, use the following npm install
command, replacing Lodash with the package you want to install.

npm install lodash

3. After the package has been copied into your CodeArtifact repository, you can use the 1ist-
packages and list-package-versions commands to view it.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

"packages": [
{
"format": "npm",
"package": "lodash"

Fetch packages from an external connection 65

CodeArtifact CodeArtifact User Guide

The list-package-versions command lists all versions of the package copied into your
CodeArtifact repository.

aws codeartifact list-package-versions --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm --package lodash

Example output:

"defaultDisplayVersion: "1.2.5"
"format": "npm",

"package": "lodash",
"namespace": null,

"versions": [

{

"version": "1.2.5",
"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

External connection latency

When fetching a package from a public repository using an external connection, there is a delay
from when the package is fetched from the public repository and when it is stored in your
CodeArtifact repository. For example, say you have installed version 1.2.5 of the npm package
"lodash" as described in Fetch packages from an external connection. Although the npm install
lodash lodash command completed successfully, the package version might not appear in your
CodeArtifact repository yet. It typically takes around 3 minutes for the package version to appear
in your repository, although occasionally it can take longer.

Because of this latency, you might have successfully retrieved a package version, but might not
yet be able to see the version in your repository in the CodeArtifact console or when calling the
ListPackages and ListPackageVersions API operations. Once CodeArtifact has asynchronously
persisted the package version, it will be visible in the console and via API requests.

External connection latency 66

CodeArtifact CodeArtifact User Guide

CodeArtifact behavior when an external repository is not available

Occasionally, an external repository will experience an outage that means CodeArtifact cannot
fetch packages from it, or fetching packages is much slower than normal. When this occurs,
package versions already pulled from an external repository (e.g. npmjs.com) and stored in a
CodeArtifact repository will continue to be available for download from CodeArtifact. However,
packages that are not already stored in CodeArtifact may not be available, even when an external
connection to that repository has been configured. For example, your CodeArtifact repository
might contain the npm package version lodash 4.17.19 because that's what you have been
using in your application so far. When you want to upgrade to 4.17.20, normally CodeArtifact will
fetch that new version from npmjs.com and store it in your CodeArtifact repository. However, if
npmjs.com is experiencing an outage this new version will not be available. The only workaround is
to try again later once npmjs.com has recovered.

External repository outages can also affect publishing new package versions to CodeArtifact.
In a repository with an external connection configured, CodeArtifact will not permit publishing
a package version that is already present in the external repository. For more information, see
Packages overview. However, in rare cases, an external repository outage might mean that

CodeArtifact does not have up-to-date information on which packages and package versions are
present in an external repository. In this case, CodeArtifact might permit a package version to be
published that it would normally deny.

Availability of new package versions

For a package version in a public repository such as npmjs.com to be available through a
CodeArtifact repository, it must first be added to a Regional package metadata cache. This cache is
maintained by CodeArtifact in each AWS Region and contains metadata that describes the contents
of supported public repositories. Because of this cache, there is a delay between when a new
package version is published to a public repository and when it is available from CodeArtifact. This
delay varies by package type.

For npm, Python, and Nuget packages, there may be a delay of up to 30 minutes from when a
new package version is published to npmjs.com, pypi.org, or nuget.org and when it is available
for installation from a CodeArtifact repository. CodeArtifact automatically synchronizes metadata
from these two repositories to ensure that the cache is up to date.

For Maven packages, there may be a delay of up to 3 hours from when a new package version
is published to a public repository and when it is available for installation from a CodeArtifact
repository. CodeArtifact will check for new versions of a package at most once every 3 hours. The

CodeArtifact behavior when an external repository is not available 67

CodeArtifact CodeArtifact User Guide

first request for a given package name after the 3-hour cache lifetime has expired will cause all
new versions of that package to be imported into the Regional cache.

For Maven packages in common use, new versions will typically be imported every 3 hours because
the high rate of requests means that the cache will often be updated as soon as the cache lifetime
has expired. For infrequently used packages, the cache will not have the latest version until a
version of the package is requested from a CodeArtifact repository. On the first request, only
previously imported versions will be available from CodeArtifact, but this request will cause the
cache to be updated. On subsequent requests, the new versions of the package will be added to
the cache and will be available for download.

Importing package versions with more than one asset

Both Maven and Python packages can have multiple assets per package version. This makes
importing packages of these formats more complex than npm and NuGet packages, which only
have one asset per package version. For descriptions of which assets are imported for these
package types and how newly-added assets are made available, see Requesting Python packages

from upstreams and external connections and Requesting Maven packages from upstreams and

external connections.

Upstream repository priority order

When you request a package version from a repository with one or more upstream repositories,
their priority corresponds to the order that they were listed when calling the create-repository
or update-repository command. When the requested package version is found, the search
stops, even if it didn't search all upstream repositories. For more information, see Add or remove
upstream repositories (AWS CLI).

Use the describe-repository command to see the priority order.

aws codeartifact describe-repository --repository my_repo --domain my_domain --domain-
owner 111122223333

The result might be the following. It shows that the upstream repository priority is upstream-1
first, upstream-2 second, and upstream-3 third.

"repository": {
"name": "my_repo",

Importing package versions with more than one asset 68

CodeArtifact CodeArtifact User Guide

"administratorAccount": "123456789012",

"domainName": "my_domain",
"domainOwnexr": "111122223333",
"arn": "arn:aws:codeartifact:us-
east-1:111122223333:repository/my_domain/my_repo",
"description": "My new repository",
"upstreams": [
{
"repositoryName": "upstream-1"
I
{
"repositoryName": "upstream-2"
},
{
"repositoryName": "upstream-3"
}
1,

"externalConnections": []

Simple priority order example

In the following diagram, the my_repo repository has three upstream repositories. The priority
order of the upstream repositories is upstream-1, upstream-2, upstream-3.

A request for a package version in my_repo searches the repositories in the following order until it
is found, or until an HTTP 404 Not Found response is returned to the client:

1. my_repo

2. upstream-1

Simple priority order example 69

CodeArtifact CodeArtifact User Guide

3. upstream-2

4. upstream-3

If the package version is found, the search stops, even if it didn't look in all upstream repositories.
For example, if the package version is found in upstream-1, the search stops and CodeArtifact
doesn't look in upstream-2 or upstream-3.

When you use the AWS CLI command list-package-versions to list package versions in
my_repo, it looks only in my_xrepo. It does not list package versions in upstream repositories.

Complex priority order example

If an upstream repository has its own upstream repositories, the same logic is used to find a
package version before moving to the next upstream repository. For example, suppose that

your my_repo repository has two upstream repositories, A and B. If repository A has upstream
repositories, a request for a package version in my_repo first looks in my_repo, second in A, then
in the upstream repositories of A, and so on.

In the following diagram, the my_repo repository contains upstream repositories. Upstream
repository A has two upstream repositories, and D has one upstream repository. Upstream
repositories at the same level in the diagram appear in their priority order, left to right (repository
A has a higher priority order than repository B, and repository C has a higher priority order than
repository D).

Complex priority order example 70

CodeArtifact CodeArtifact User Guide

In this example, a request for a package version in my_repo looks in the repositories in the
following order until it is found, or until a package manager returns an HTTP 404 Not Found
response to the client:

1. my_repo

A

o v M W N
W m O N

API behavior with upstream repositories

When you call certain CodeArtifact APIs on repositories that are connected to upstream
repositories, the behavior may be different depending on if the packages or package versions
are stored in the target repository or the upstream repository. The behavior of these APIs is
documented here.

API behavior with upstream repositories 71

CodeArtifact CodeArtifact User Guide

For more information on CodeArtifact APIs, see the CodeArtifact APl Reference.

Most APIs that reference a package or package version will return a ResourceNotFound error if
the specified package version is not present in the target repository. This is true even if the package
or package version is present in an upstream repository. Effectively, upstream repositories are
ignored when calling these APIs. These APIs are:

» DeletePackageVersions

» DescribePackageVersion

» GetPackageVersionAsset

» GetPackageVersionReadme

« ListPackages

« ListPackageVersionAssets

« ListPackageVersionDependencies
« ListPackageVersions

« UpdatePackageVersionsStatus

To demonstrate this behavior, we have two repositories: target-repo and upstream-repo.
target-repo is empty and has upstream-repo configured as an upstream repository.
upstream-repo contains the npm package lodash.

When calling the DescribePackageVersion APl on upstream-repo, which contains the
lodash package, we get the following output:

"packageVersion": {
"format": "npm",
"packageName": "lodash",
"displayName": "lodash",
"version": "4.17.20",
"summary": "Lodash modular utilities.",
"homePage": "https://lodash.com/",
"sourceCodeRepository": "https://github.com/lodash/lodash.git",
"publishedTime": "2020-10-14T11:06:10.370000-04:00",
"licenses": [
{

"name": "MIT"

API behavior with upstream repositories 72

https://docs.aws.amazon.com/codeartifact/latest/APIReference/Welcome.html

CodeArtifact CodeArtifact User Guide

1,
"revision": "Ciqe5/9yicvk]IT13b5/LdLpCyE6fqA7poa9qp+FilPs=",
"status": "Published"

When calling the same APl on target-repo, which is empty but has upstream-repo configured
as an upstream, we get the following output:

An error occurred (ResourceNotFoundException) when calling the DescribePackageVersion
operation:

Package not found in repository. Repold: repo-id, Package =
PackageCoordinate{packageType=npm, packageName=lodash},

The CopyPackageVersions API behaves differently. By default, CopyPackageVersions API
only copies package versions that are stored in the target repository. If a package version is
stored in the upstream repository but not in the target repository, it will not be copied. To include
package versions of packages that are stored only in the upstream repository, set the value of
includeFromUpstreamto true in your API request.

For more information on the CopyPackageVersions API, see Copy packages between
repositories.

API behavior with upstream repositories 73

CodeArtifact CodeArtifact User Guide

Working with packages in CodeArtifact

The following topics show you how to perform actions on packages using the CodeArtifact CLI and
API.

Topics

» Packages overview

« List package names

« List package versions

« List package version assets

» Download package version assets

» Copy packages between repositories

» Delete a package or package version

« View and update package version details and dependencies

» Update package version status

» Editing package origin controls

Packages overview

A package is a bundle of software and the metadata that is required to resolve dependencies and
install the software. In CodeArtifact, a package consists of a package name, an optional namespace
such as @types in @types/node, a set of package versions, and package-level metadata such as
npm tags.

Contents

» Supported package formats

» Package publishing

« Publishing permissions

Overwriting package assets

Private packages and public repositories

Publishing patched package versions

Asset size limits for publishing

Packages overview 74

CodeArtifact CodeArtifact User Guide

« Publishing latency

» Package version status

» Package name, package version, and asset name normalization

Supported package formats

AWS CodeArtifact supports Cargo, generic, Maven, npm, NuGet, PyPI, Ruby, Swift package formats.

Package publishing

You can publish new versions of any supported package format to a CodeArtifact repository using

tools such as npm, twine, Maven, Gradle, nuget, and dotnet.
Publishing permissions

Your AWS Identity and Access Management (IAM) user or role must have permissions to publish to
the destination repository. The following permissions are required to publish packages:

« Cargo: codeartifact:PublishPackageVersion
« generic: codeartifact:PublishPackageVersion

« Maven: codeartifact:PublishPackageVersion and
codeartifact:PutPackageMetadata

« npm: codeartifact:PublishPackageVersion

* NuGet: codeartifact:PublishPackageVersion and
codeartifact:ReadFromRepository

e Python: codeartifact:PublishPackageVersion
« Ruby: codeartifact:PublishPackageVersion

« Swift: codeartifact:PublishPackageVersion

In the preceding list of permissions, your IAM policy must specify the

package resource for the codeartifact:PublishPackageVersion and
codeartifact:PutPackageMetadata permissions. It must also specify the repository
resource for the codeartifact:ReadFromRepository permission.

For more information about permissions in CodeArtifact, see AWS CodeArtifact permissions

reference.

Supported package formats 75

CodeArtifact CodeArtifact User Guide

Overwriting package assets

You can't republish a package asset that already exists with different content. For example,
suppose that you already published a Maven package with a JAR asset mypackage-1.0. jar.

You can only publish that asset again if the checksum of the old and new assets are identical. To
republish the same asset with new content, delete the package version using the delete-package-
versions command first. Trying to republish the same asset name with different content will result
in an HTTP 409 conflict error.

For package formats that support multiple assets (generic, PyPl and Maven), you can add new
assets with different names to an existing package version, assuming that you have the required
permissions. For generic packages, you can add new assets as long as the package version is in the
Unfinished state. Because npm only supports a single asset per package version, to modify a
published package version in any way, you must first delete it using delete-package-versions.

If you try to republish an asset that already exists (for example, mypackage-1.0. jar), and the
content of the published asset and the new asset are identical, the operation will succeed because
the operation is idempotent.

Private packages and public repositories

CodeArtifact does not publish packages stored in CodeArtifact repositories to public repositories
such as npmjs.com or Maven Central. CodeArtifact imports packages from public repositories to
a CodeArtifact repository, but it never moves packages in the other direction. Packages that you
publish to CodeArtifact repositories remain private and are only available to the AWS accounts,
roles, and users to which you have granted access.

Publishing patched package versions

Sometimes you might want to publish a modified package version, potentially one that is
available in a public repository. For example, you might have found a bug in a critical application
dependency called mydep 1.1, and you need to fix it sooner than the package vendor can review
and accept the change. As described previously, CodeArtifact prevents you from publishing mydep
1.1 in your CodeArtifact repository if the public repository is reachable from your CodeArtifact
repository via upstream repositories and an external connection.

To work around this, publish the package version to a different CodeArtifact repository where the
public repository isn't reachable. Then use the copy-package-versions API to copy the patched
version of mydep 1.1 to the CodeArtifact repository where you will consume it from.

Package publishing 76

CodeArtifact CodeArtifact User Guide

Asset size limits for publishing

The maximum size of a package asset that can be published is limited by the Asset file size
maximum quota shown in Quotas in AWS CodeArtifact. For example, you cannot publish a Maven

JAR or Python wheel larger than your current asset file size maximum quota. If you need to store
larger assets in CodeArtifact, request a quota increase.

In addition to the asset file size maximum quota, the maximum size of a publishing request for
npm packages is 2 GB. This limit is independent of the asset file size maximum quota and cannot
be raised with a quota increase. In an npm publishing request (HTTP PUT), package metadata
and the content of the npm package tar archive are bundled together. Because of this, the actual
maximum size of an npm package that can be published varies and depends on the size of the
included metadata.

(® Note

Published npm packages are limited to a maximum size less than 2 GB.

Publishing latency

Package versions published to a CodeArtifact repository are often available for download in less
than one second. For example, if you publish an npm package version to CodeArtifact with npm
publish, that version should be available to an npm install command in less than one second.
However, publishing can be inconsistent and can sometimes take longer. If you must use a package
version immediately after publishing, use retries to make sure that the download is reliable. For
example, after publishing the package version, repeat the download up to three times if the just-
published package version is not initially available on the first download attempt.

(@ Note

Importing a package version from a public repository typically takes longer than
publishing. For more information, see External connection latency.

Package publishing 77

CodeArtifact CodeArtifact User Guide

Package version status

Every package version in CodeArtifact has a status that describes the current state and availability
of the package version. You can change the package version status in the AWS CLI and SDK. For
more information, see Update package version status.

The following are possible values for package version status:

» Published - The package version is successfully published and can be requested using a package
manager. The package version will be included in package versions lists returned to package
managers, for example, in the output of npm view <package-name> versions. All assets of
the package version are available from the repository.

» Unfinished - The client has uploaded one or more assets for a package version, but has not
finalized it by moving it into the Published state. Currently only generic and Maven package
versions can have a status of Unfinished. For Maven packages, this can occur when the client
uploads one or more assets for a package version but does not publish a maven-metadata.xml
file for the package that includes that version. When a Maven package version is Unfinished,
it will not be included in version lists returned to clients such mvn or gradle, so it cannot be
used as part of a build. Generic packages can be deliberately kept in the Unfinished state by
providing the unfinished flag when calling the PublishPackageVersion API. A generic package
can be changed to the Published state by omitting the unfinished flag, or by calling the
UpdatePackageVersionsStatus API.

» Unlisted - The package version's assets are available for download from the repository, but
the package version is not included in the list of versions returned to package managers. For
example, for an npm package, the output of npm view <package-name> versions will
not include the package version. This means that npm's dependency resolution logic will not
select the package version because the version does not appear in the list of available versions.
However, if the Unlisted package version is already referenced in an npm package-lock. json
file, it can still be downloaded and installed, for example, when running npm ci.

» Archived - The package version's assets can no longer be downloaded. The package version
will not be included in the list of versions returned to package managers. Because the assets
are not available, consumption of the package version by clients is blocked. If your application
build depends on a version that is updated to Archived, the build will break, assuming the
package version has not been locally cached. You cannot use a package manager or build
tool to re-publish an Archived package version because it is still present in the repository,
but you can change the package version's status back to Unlisted or Published with the
UpdatePackageVersionsStatus API.

Package version status 78

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PublishPackageVersion.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

» Disposed — The package version doesn't appear in listings and the assets cannot be downloaded
from the repository. They key difference between Disposed and Archived is that with a status
of Disposed, the assets of the package version will be permanently deleted by CodeArtifact.
For this reason, you cannot move a package version from Disposed to Archived, Unlisted, or
Published. The package version can no longer be used because the assets have been deleted.
After a package version has been marked as Disposed, you will no longer be billed for storage of
the package assets.

Package versions of all statuses will be returned by default when calling list-package-versions with
no --status parameter.

Apart from the states listed previously, a package version can also be deleted with the
DeletePackageVersions API. After being deleted, a package version is no longer in the repository

and you can freely re-publish that package version using a package manager or build tool. After a
package version has been deleted, you will no longer be billed for storage of that package version's
assets.

Package name, package version, and asset name normalization

CodeArtifact normalizes package names, package versions, and asset names before storing them,
which means the names or versions in CodeArtifact may be different than the name or version
provided when the package was published. For more information about how names and versions
are normalized in CodeArtifact for each package type, see the following documentation:

» Python package name normalization

» NuGet package name, version, and asset name normalization

CodeArtifact does not perform normalization on other package formats.

List package names

Use the 1list-packages command in CodeArtifact to get a list of all the package names in a
repository. This command returns only the package names, not the versions.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo

Package name, package version, and asset name normalization 79

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DeletePackageVersions.html

CodeArtifact

CodeArtifact User Guide

Sample output:

{
"nextToken": "eyJidWNrzXRJzZCI6I...",
"packages": [
{
"package": "acorn",
"format": "npm",

"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"

"package": "acorn-dynamic-import",
"format": "npm",
"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"

"package": "ajv",
"format": "
"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"

npm",

"package": "ajv-keywords",
"format": "npm",
"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"

"package": "anymatch",
"format": "

npm",

List package names

80

CodeArtifact CodeArtifact User Guide

"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"

}
.
{
"package": "ast",
"namespace": "webassemblyjs",
"format": "npm",
"originConfiguration": {
"restrictions": {
"publish": "BLOCK",
"upstream": "ALLOW"
}
}

List npm package names

To list only the names of npm packages, set the value of the --format option to npm.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--format npm

To list npm packages in a namespace (npm scope), use the --namespace and --format options.

/A Important

The value for the --namespace option should not include the leading @. To search for the
namespace @types, set the value to types.

(@ Note

The --namespace option filters by namespace prefix. Any npm package with a scope that
starts with the value passed to the --namespace option will be returned in the 1ist-
packages response.

List npm package names 81

CodeArtifact CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--format npm --namespace types

Sample output:

{
"nextToken": "eyJidWNrzZXR3JZ...",
"packages": [
{
"package": "3d-bin-packing",
"namespace": "types",
"format": "npm"
I
{
"package": "a-big-triangle",
"namespace": "types",
"format": "npm"
I
{
"package": "ally-dialog",
"namespace": "types",
"format": "npm"
}
]
}

List Maven package names

To list only the names of Maven packages, set the value of the --format option to maven. You
must also specify the Maven group ID in the --namespace option.

(@ Note

The --namespace option filters by namespace prefix. Any npm package with a scope that
starts with the value passed to the --namespace option will be returned in the 1ist-
packages response.

List Maven package names 82

CodeArtifact CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--format maven --namespace org.apache.commons

Sample output:

{
"nextToken": "eyJidWNrzZXRJZ...",
"packages": [
{
"package": "commons-lang3",
"namespace": "org.apache.commons",
"format": "maven"
1,
{
"package": "commons-collections4",
"namespace": "org.apache.commons",
"format": "maven"
1,
{
"package": "commons-compress",
"namespace": "org.apache.commons",
"format": "maven"
}
]
}

List Python package names

To list only the names of Python packages, set the value of the --format option to pypi.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--format pypi

Filter by package name prefix

To return packages that begin with a specified string, you can use the --package-prefix option.

List Python package names 83

CodeArtifact

CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --

repository my_repo \
--format npm --package-prefix pat

Sample output:

{
"nextToken": "eyJidWNrzZXRJZ...",
"packages": [
{
"package": "path",
"format": "npm"
1,
{
"package": "pat-test",
"format": "npm"
b
{
"package": "patch-math3",
"format": "npm"
}
]
}

Supported search option combinations

You can use the --format, --namespace, and --package-prefix options in any combination,
except that --namespace can't be used by itself. Searching for all npm packages with a scope that

starts with @types requires the --format option to be specified. Using --namespace by itself

results in an error.

Using none of the three options is also supported by 1ist-packages and will return all packages

of all formats present in the repository.

Supported search option combinations

84

CodeArtifact CodeArtifact User Guide

Format output

You can use parameters that are available to all AWS CLI commands to make the 1ist-packages
response compact and more readable. Use the --query parameter to specify the format of each
returned package version. Use the - -output parameter to format the response as plaintext.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
--output text --query 'packages[*].[package]'

Sample output:

accepts
array-flatten
body-parser

bytes
content-disposition
content-type

cookie
cookie-signature

For more information, see Controlling command output from the AWS CLI in the AWS Command
Line Interface User Guide.

Defaults and other options

By default, the maximum number of results returned by 1ist-packages is 100. You can change
this result limit by using the --max-results option.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo --max-results 20

The maximum allowed value of --max-results is 1,000. To allow listing packages in repositories
with more than 1,000 packages, 1ist-packages supports pagination using the nextToken field
in the response. If the number of packages in the repository is more than the value of --max-
results, you can pass the value of nextToken to another invocation of 1ist-packages to get
the next page of results.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \

Format output 85

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html

CodeArtifact CodeArtifact User Guide

--next-token rO0ABXNyAEdjb. ..

List package versions

Use the 1ist-package-versions command in AWS CodeArtifact to get a list of all of the
versions of a package name in a repository.

aws codeartifact list-package-versions --package kind-of \
--domain my_domain --domain-owner 111122223333 \
--repository my_repository --format npm

Sample output:

"defaultDisplayVersion": "1.0.1",
"format": "npm",
"package": "kind-of",
"versions": [
{
"version": "1.0.1",
"revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"
.
"originType": "EXTERNAL"

"version": "1.0.0",
"revision": "REVISION-SAMPLE-2-C752BEEF6D2CFC",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"
},
"originType": "EXTERNAL"

List package versions 86

CodeArtifact CodeArtifact User Guide

"version": "0.1.2",
"revision": "REVISION-SAMPLE-3-654S65A5C5E1FC",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"
},
"originType": "EXTERNAL"

"version": "0.1.1",
"revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC"",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"
I
"originType": "EXTERNAL"

"version": "0.1.0",
"revision": "REVISION-SAMPLE-4-AF669139B772FC",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"

},
"originType": "EXTERNAL"

You can add the --status parameter to the 1ist-package-versions call to filter the results

based on package version status. For more information about package version status, see Package
version status.

You can paginate the response from 1list-package-versions using the --max-results and
--next-token parameters. For --max-results, specify an integer from 1 to 1000 to specify
the number of results returned in a single page. Its default is 50. To return subsequent pages,
run list-package-versions again and pass the nextToken value received in the previous

List package versions 87

CodeArtifact CodeArtifact User Guide

command output to --next-token. When the --next-token option is not used, the first page
of results is always returned.

The 1list-package-versions command does not list package versions in upstream repositories.
However, references to package versions in an upstream repository that were copied to your
repository during a package version request are listed. For more information, see Working with
upstream repositories in CodeArtifact.

List npm package versions

To list all the package versions for an npm package, set the value of the --format option to npm.

aws codeartifact list-package-versions --package my_package --domain my_domain \
--domain-owner 111122223333 --repository my_repo --format npm

To list npm package versions in a specific namespace (npm scope), use the --namespace option.
The value for the --namespace option should not include the leading @. To search for the
namespace @types, set the value to types.

aws codeartifact list-package-versions --package my_package --domain my_domain \
--domain-owner 111122223333 --repository my_repo --format npm \
--namespace types

List Maven package versions

To list all the package versions for a Maven package, set the value of the --format option to
maven. You must also specify the Maven group ID in the --namespace option.

aws codeartifact list-package-versions --package my_package --domain my_domain \
--domain-owner 111122223333 --repository my_repo --format maven \
--namespace org.apache.commons

Sort versions

list-package-versions can output versions sorted in descending order based on publish time
(the most-recently published versions are listed first). Use the --sort-by parameter with a value
of PUBLISHED_TIME, as follows.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
--repository my_repository \

List npm package versions 88

CodeArtifact

CodeArtifact User Guide

--format npm --package webpack --max-results 5 --sort-by PUBLISHED_TIME

Sample output:

{
"defaultDisplayVersion": "4.41.2",
"format": "npm",
"package": "webpack",
"versions": [
{
"version": "5.0.0-beta.7",
"revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
"status": "Published"
1,
{
"version": "5.0.0-beta.6",
"revision": "REVISION-SAMPLE-2-C752BEEF6D2CFC",
"status": "Published"
},
{
"version": "5.0.0-beta.5",
"revision": "REVISION-SAMPLE-3-654S65A5C5E1FC",
"status": "Published"
1,
{
"version": "5.0.0-beta.4",
"revision": "REVISION-SAMPLE-4-AF669139B772FC",
"status": "Published"
},
{
"version": "5.0.0-beta.3",
"revision": "REVISION-SAMPLE-5-C752BEE9B772FC",
"status": "Published"
}
1,
"nextToken": "eyJsaXNQUGF...."
}

Default display version

The return value for defaultDisplayVersion depends on the package format:

Default display version

89

CodeArtifact CodeArtifact User Guide

» For generic, Maven, and PyPI packages, it's the most recently published package version.

« For npm packages, it's the version referenced by the latest tag. If the 1latest tag is not set, it's
the most recently published package version.

Format output

You can use parameters that are available to all AWS CLI commands to make the 1ist-package-
versions response compact and more readable. Use the --query parameter to specify the
format of each returned package version. Use the - -output parameter to format the response as
plain text.

aws codeartifact list-package-versions --package my-package-name --domain my_domain --
domain-owner 111122223333 \
--repository my_repo --format npm --output text --query 'versions[*].[version]'

Sample output:

0.1.1
0.1.2
0.1.0
3.0.0

For more information, see Controlling Command Output from the AWS CLI in the AWS Command

Line Interface User Guide.

List package version assets

An asset is an individual file (for example, an npm . tgz file or Maven POM or JAR file) stored in
CodeArtifact that is associated with a package version. You can use the 1ist-package-version-
assets command to list the assets in each package version.

Run the list-package-version-assets command to return the following information about
each asset in your AWS account and your current AWS Region:

e Its name.
« Itssize, in bytes.

« A set of hash values used for checksum validation.

Format output 90

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html

CodeArtifact CodeArtifact User Guide

For example, use the following command to list the assets of the Python package flatten-json,
version0.1.7.

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \
--repository my_repo --format pypi --package flatten-json \
--package-version 0.1.7

The following shows the output.

"format": "pypi",
"package": "flatten-json",
"version": "0.1.7",
"versionRevision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
"assets": [
{
"name": "flatten_json-0.1.7-py3-none-any.whl",
"size": 31520,
"hashes": {
"MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
"SHA-1": "69b215c25dd4cdald997a786ec6EXAMPLE-SHA-1",
"SHA-256": "43f24850b7b7b7d79c5fa652418518fbdf427e602bledabe6EXAMPLE -
SHA-256",
"SHA-512":
"3947382ac2c180ee3f2abasf8788241527c8db9dfeSf4b0@39abedfc560aatsalfced7bd1e80a@dca9ce320d95F08¢E
SHA-512"

}
},
{
"name": "flatten_json-0.1.7.tar.gz",
"size": 2865,
"hashes": {
"MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
"SHA-1": "69b215c25dd4cdald997a786ec6EXAMPLE-SHA-1",
"SHA-256": "43f24850b7b7b7d79c5fa652418518fbdf427e602bledabe6EXAMPLE -
SHA-256",

"SHA-512":
"3947382ac2c180ee3f2aba4sf8788241527c8db9dfe9f4b0@39abe9fc560aaf5alfced7bdle80a®dca9ce320d95T08E
SHA-512"

List package version assets 91

CodeArtifact CodeArtifact User Guide

}

List assets of an npm package

An npm package always has a single asset with a name of package. tgz. To list the assets of a
scoped npm package, include the scope in the --namespace option.

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \

--repository my_repo --format npm --package webpack \

--namespace types --package-version 4.9.2

List assets of a Maven package

To list the assets of a Maven package, include the package namespace in the --namespace option.
To list the assets of the Maven package commons-cli:commons-cli:

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \

--repository my_repo --format maven --package commons-cli \

--namespace commons-cli --package-version 1.0

Download package version assets

An asset is an individual file (for example, an npm . tgz file or Maven POM or JAR file) stored in
CodeArtifact that is associated with a package version. You can download package assets using
the get-package-version-assets command. This allows you to retrieve assets without using
a package manager client such as npm or pip. To download an asset you must provide the asset's
name which can be obtained using the 1ist-package-version-assets command, for more
information see List package version assets. The asset will be downloaded to local storage with a

file name that you specify.

The following example downloads the guava-27.1-jre. jar asset from the Maven package
com.google.guava:guava with version 27.1-jre.

aws codeartifact get-package-version-asset --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format maven --namespace com.google.guava --package guava --package-version 27.1-

jre \

List assets of an npm package 92

CodeArtifact CodeArtifact User Guide

--asset guava-27.1-jre.jar \
guava-27.1-jre.jar

In this example, the file name was specified as guava-27.1-jre. jar by the last argument in the
preceding command, so the downloaded asset will be named guava-27.1-jre. jar.

The output of the command will be:

{

"assetName": '"gquava-27.1-jre.jar",

"packageVersion": "27.1-jre",

"packageVersionRevision": "YGp9ck2tmy@3PGSxioclfYzQOBfTLR9zzhQJtERVE62I="
}
(® Note

To download assets from a scoped npm package, include the scope in the --namespace
option. The @ symbol must be omitted when using --namespace. For example, if the
scope is @types, use --namespace types.

Downloading assets using get-package-version-asset requires
codeartifact:GetPackageVersionAsset permission on the package resource. For more
information about resource-based permission policies, see Resource-based policies in the AWS
Identity and Access Management User Guide.

Copy packages between repositories

You can copy package versions from one repository to another in CodeArtifact. This can be helpful
for scenarios such as package promotion workflows or sharing package versions between teams
or projects. The source and destination repositories must be in the same domain to copy package
versions.

Required IAM permissions to copy packages

To copy package versions in CodeArtifact, the calling user must have the required IAM permissions
and the resource-based policy attached to the source and destination repositories must have

the required permissions. For more information about resource-based permissions policies and
CodeArtifact repositories, see Repository policies.

Copy packages between repositories 93

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based

CodeArtifact CodeArtifact User Guide

The user calling copy-package-versions must have the ReadFromRepository permission on
the source repository and the CopyPackageVersions permission on the destination repository.

The source repository must have the ReadFromRepository permission and the destination
repository must have the CopyPackageVersions permission assigned to the IAM account or
user copying packages. The following policies are example repository policies to be added to the
source repository or destination repository with the put-repository-permissions-policy
command. Replace 111122223333 with the ID of the account calling copy-package-versions.

(® Note

Calling put-repository-permissions-policy will replace the current repository
policy if one exists. You can use the get-repository-permissions-policy command
to see if a policy exists, for more information see Read a policy. If a policy does exist, you
may want to add these permissions to it instead of replacing it.

Example source repository permissions policy

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:ReadFromRepository"
1,
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
.
"Resource": "*"
}
]
}

Example destination repository permissions policy

"Version": "2012-10-17",
"Statement": [
{

Required IAM permissions to copy packages 94

CodeArtifact CodeArtifact User Guide

"Action": [
"codeartifact:CopyPackageVersions"

1,
"Effect": "Allow",

"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
iy

"Resource": "*"

Copy package versions

Use the copy-package-versions command in CodeArtifact to copy one or more package
versions from a source repository to a destination repository in the same domain. The following
example will copy versions 6.0.2 and 4.0.0 of an npm package named my-package from the
my_repo repository to the repo-2 repository.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
--source-repository my_repo \
--destination-repository repo-2 --package my-package --format npm \
--versions 6.0.2 4.0.0

You can copy multiple versions of the same package name in a single operation. To copy versions
of different package names, you must call copy-package-versions for each one.

The previous command will produce the following output, assuming both versions could be copied
successfully.

"successfulVersions": {
"6.0.2": {
"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

},

"4.0.0": {
"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

}

iy

"failedVersions": {}

Copy package versions 95

CodeArtifact CodeArtifact User Guide

}

Copy a package from upstream repositories

Normally, copy-package-versions only looks in the repository specified by the --source-
repository option for versions to copy. However, you can copy versions from both the source
repository and its upstream repositories by using the --include-from-upstream option. If you
use the CodeArtifact SDK, call the CopyPackageVersions API with the includeFromUpstream
parameter set to true. For more information, see Working with upstream repositories in
CodeArtifact.

Copy a scoped npm package

To copy an npm package version in a scope, use the --namespace option to specify the scope. For
example, to copy the package @types/react, use --namespace types. The @ symbol must be
omitted when using --namespace.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
--source-repository repo-1 \
--destination-repository repo-2 --format npm --namespace types \
--package react --versions 0.12.2

Copy Maven package versions

To copy Maven package versions between repositories, specify the package to copy by passing the
Maven group ID with the --namespace option and the Maven artifactID with the - -name option.
For example, to copy a single version of com.google.guava:guava:

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
\

--source-repository my_repo --destination-repository repo-2 --format maven --
namespace com.google.guava \

--package guava --versions 27.1-jre

If the package version is copied successfully, the output will be similar to the following.

"successfulVersions": {
"27.1-jre": {

Copy a package from upstream repositories 96

CodeArtifact CodeArtifact User Guide

"revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
"status": "Published"

iy

"failedVersions": {}

Versions that do not exist in the source repository

If you specify a version that does not exist in the source repository, the copy will fail. If some
versions exist in the source repository and some do not, all versions will fail to copy. In the
following example, version 0.2.0 of the array-unique npm package is present in the source
repository, but version 5.6.7 is not:

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \
--source-repository my_repo --destination-repository repo-2 --format npm \
--package array-unique --versions 0.2.0 5.6.7

The output in this scenario will be similar to the following.

{
"successfulVersions": {3},
"failedVersions": {
"0.2.0": {
"errorCode": "SKIPPED",
"errorMessage": "Version 0.2.0 was skipped"
b
"5.6.7": {
"errorCode": "NOT_FOUND",
"errorMessage": "Could not find version 5.6.7"
}
}
}

The SKIPPED error code is used to indicate that the version was not copied to the destination
repository because another version was not able to be copied.

Versions that already exist in the destination repository

When a package version is copied to a repository where it already exists, CodeArtifact compares its
package assets and package version level metadata in the two repositories.

Versions that do not exist in the source repository 97

CodeArtifact CodeArtifact User Guide

If the package version assets and metadata are identical in the source and destination repositories,
a copy is not performed but the operation is considered successful. This means that copy-
package-versions is idempotent. When this occurs, the version that was already present in
both the source and destination repositories will not be listed in the output of copy-package-
versions.

In the following example, two versions of the npm package array-unique are present in the
source repository repo-1. Version 0.2.17 is also present in the destination repository dest-repo
and version 0.2.0 is not.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \
--source-repository my_repo --destination-repository repo-2 --format npm --
package array-unique \
--versions 0.2.1 0.2.0

The output in this scenario will be similar to the following.

{
"successfulVersions": {
"9.2.0": {
"revision": "Yad+B1lQcBq2kdEVrx1E1vSfHIVh8Pr61hBUkoWPGWXQ="",
"status": "Published"
}
1,
"failedVersions": {}
}

Version 0.2.0 is listed in successfulVersions because it was successfully copied from the source
to destination repository. Version 0.2.1 is not shown in the output as it was already present in the
destination repository.

If the package version assets or metadata differ in the source and destination repositories, the copy
operation will fail. You can use the --allow-overwrite parameter to force an overwrite.

If some versions exist in the destination repository and some do not, all versions will fail to copy.
In the following example, version 0.3.2 of the array-unique npm package is present in both the
source and destination repositories, but the contents of the package version are different. Version
0.2.1 is present in the source repository but not the destination.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \

Versions that already exist in the destination repository 98

CodeArtifact CodeArtifact User Guide

--source-repository my_repo --destination-repository repo-2 --format npm --
package array-unique \
--versions 0.3.2 0.2.1

The output in this scenario will be similar to the following.

{
"successfulVersions": {3},
"failedVersions": {
"9.2.1": {
"errorCode": "SKIPPED",
"errorMessage": "Version 0.2.1 was skipped"
},
"0.3.2": {
"errorCode": "ALREADY_EXISTS",
"errorMessage": "Version 0.3.2 already exists"
}
}
}

Version 0.2.1 is marked as SKIPPED because it was not copied to the destination repository. Is
was not copied because the copy of version 0.3.2 failed because it was already present in the
destination repository, but not identical in the source and destination repositories.

Specifying a package version revision

A package version revision is a string that specifies a specific set of assets and metadata for a
package version. You can specify a package version revision to copy package versions that are in a
specific state. To specify a package version revision, use the --version-revisions parameter to
pass one or more comma-separated package version and the package version revision pairs to the
copy-package-versions command.

(® Note

You must specify the --versions or the --version-revisions parameter with copy-
package-versions. You cannot specify both.

The following example will only copy version 0.3.2 of the package my-package if it is present in
the source repository with package version revision REVISION-1-SAMPLE-6C81EFF7DA55CC.

Specifying a package version revision 99

CodeArtifact CodeArtifact User Guide

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
--source-repository repo-1 \
--destination-repository repo-2 --format npm --namespace my-namespace \
--package my-package --version-revisions 0.3.2=REVISION-1-SAMPLE-6C81EFF7DA55CC

The following example copies two versions of package my-package, 0.3.2 and 0.3.13. The
copy will only succeed if in the source repository version 0.3.2 of my-package has revision
REVISION-1-SAMPLE-6C81EFF7DA55CC and version 0.3.13 has revision REVISION-2-
SAMPLE-55C752BEE772FC.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
--source-repository repo-1 \
--destination-repository repo-2 --format npm --namespace my-namespace \
--package my-package --version-revisions 0.3.2=REVISION-1-
SAMPLE-6C81EFF7DA55CC,0.3.13=REVISION-2-SAMPLE-55C752BEE772FC

To find the revisions of a package version, use the describe-package-version orthe 1ist-
package-versions command.

For more information, see Package version revision and CopyPackageVersion in the CodeArtifact
API Reference.

Copy npm packages

For more information about copy-package-versions behavior with npm packages, see npm
tags and the CopyPackageVersions API.

Delete a package or package version

You can delete one or more package versions at a time using the delete-package-versions
command. To remove a package from a repository completely, including all associated versions and
configuration, use the delete-package command. A package can exist in a repository without
any package versions. This can happen when all versions are deleted using the delete-package-
versions command, or if the package was created without any versions using the put-package-
origin-configuration API operation (see Editing package origin controls).

Topics

» Deleting a package (AWS CLI)

Copy npm packages 100

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_CopyPackageVersions.html

CodeArtifact CodeArtifact User Guide

» Deleting a package (console)

» Deleting a package version (AWS CLI)

» Deleting a package version (console)

« Deleting an npm package or package version

» Deleting a Maven package or package version

» Best practices for deleting packages or package versions

Deleting a package (AWS CLI)

You can delete a package, including all of its package versions and configuration, using the
delete-package command. The following example deletes the PyPl package named my -
package in the repo my_repo in the my_domain domain:

aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi \
--package my-package

Sample output:

{

"deletedPackage": {
"format": "pypi",
"originConfiguration": {

"restrictions": {
"publish": "ALLOW",
"upstream": "BLOCK"
}
3,
"package": "my-package"
}
}

You can confirm that the package was deleted by running describe-package for the same
package name:

aws codeartifact describe-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi --package my-package

Deleting a package (AWS CLI) 101

CodeArtifact CodeArtifact User Guide

Deleting a package (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

In the navigation pane, choose Repositories.
Choose the Repository from which you want to delete a package.

Choose the Package you want to delete.

i A WN

Choose Delete Package.

Deleting a package version (AWS CLI)

You can delete one or more package versions at a time using the delete-package-versions
command. The following example deletes versions 4.0.0, 4.0.1, and 5.0. 0 of the PyPI package
named my-package in the my_repo in the my_domain domain:

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333

\
--repository my_repo --format pypi \
--package my-package --versions 4.0.0 4.0.1 5.0.0

Sample output:

{
"successfulVersions": {
"4.0.0": {
"revision": "oxwwYC9dDeuBoCt6+PDSwL60MZ7rXeiXy44BM32Iawo="",
"status": "Deleted"
.
"4.0.1": {
"revision": "byaaQR748wrsdBaT+PDSwL60MZ7rXeiBKM@551agwWmo="",
"status": "Deleted"
.
"5.0.0": {
"revision": "yubm34QWeST345ts+ASeioPI354rXeiSWr734PotwRw="",
"status": "Deleted"
}
},
"failedVersions": {3}
}

Deleting a package (console) 102

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

You can confirm that the versions were deleted by running 1ist-package-versions for the
same package name:

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi --package my-package

Deleting a package version (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

In the navigation pane, choose Repositories.
Choose the Repository from which you want to delete package versions.
Choose the Package from which you want to delete versions.

Select the Package Version that you want to delete.

o v kA WN

Choose Delete.

® Note

In the console, you can only delete one package version at a time. To delete more than
one at a time, use the CLI.

Deleting an npm package or package version

To delete an npm package or individual package versions, set the - -format option to npm. To
delete a package version in a scoped npm package, use the --namespace option to specify the
scope. For example, to delete the package @types/react, use --namespace types. Omit the @
symbol when using --namespace.

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333
\

--repository my_repo --format npm --namespace types \

--package react --versions 0.12.2

Deleting a package version (console) 103

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To delete the package @types/react, including all of its versions:

aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format npm --namespace types \
--package react

Deleting a Maven package or package version

To delete a Maven package or individual package versions, set the --format option to maven and
specify the package to delete by passing the Maven group ID with the --namespace option and
the Maven artifactID with the --name option. For example, the following shows how to delete a
single version of com.google.guava:guava:

aws codeartifact delete-package-versions --domain my_domain --domain-
owner 111122223333 \

--repository my_repo --format maven --namespace com.google.guava \
--package guava --versions 27.1-jre

The following example shows how to delete the package com.google.guava:guava, including
all of its versions:

aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format maven --namespace com.google.guava \
--package guava

Best practices for deleting packages or package versions

If you do need to a delete a package version, as a best practice it's recommended that you create
a repository to store a backup copy of the package version you'd like to delete. You can do this by
first calling copy-package-versions to the backup repository:

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
--source-repository my_repo \
--destination-repository repo-2 --package my-package --format npm \
--versions 6.0.2 4.0.0

Once you've copied the package version, you can then call delete-package-versions on
package or package version you'd like to delete.

Deleting a Maven package or package version 104

CodeArtifact CodeArtifact User Guide

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333

\
--repository my_repo --format pypi \
--package my-package --versions 4.0.0 4.0.1 5.0.0

View and update package version details and dependencies

You can view information about a package version, including dependencies, in CodeArtifact. You
can also update the status of a package version. For more information on package version status,
see Package version status.

View package version details

Use the describe-package-version command to view details about package versions. Package
version details are extracted from a package when it is published to CodeArtifact. The details in
different packages vary and depend on their formats and how much information their authors
added to them.

Most information in the output of the describe-package-version command depends on
the package format. For example, describe-package-version extracts an npm package's
information from its package. json file. The revision is created by CodeArtifact. For more
information, see Specifying a package version revision.

Two package versions with the same name can be in the same repository if they each are in
different namespaces. Use the optional --namespace parameter to specify a namespace. For more
information, see View npm package version details or View Maven package version details.

The following example returns details about version 1.9.0 of a Python package named
pyhamcrest thatis in the my_repo repository.

aws codeartifact describe-package-version --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format pypi --package pyhamcrest --package-version 1.9.0

The output might look like the following.

"format": "pypi",
"package": "PyHamcrest",

View and update package version details and dependencies 105

CodeArtifact CodeArtifact User Guide

"displayName": "PyHamcrest",

"version": "1.9.0",

"summary": "Hamcrest framework for matcher objects",
"homePage": "https://github.com/hamcrest/PyHamcrest",
"publishedTime": 1566002944.273,

"licenses": [

{
"id": "license-id",
"name": "license-name"
}
1,
"revision": "REVISION-SAMPLE-55C752BEE9B772FC"
}
@ Note

CodeArtifact fetches package version details such as package home page or package
license information from the metadata provided by the package author. If any of this
information exceeds 400 KB, which is the DynamoDB item size limit, CodeArtifact won't
be able to process such data and you may not see this information on the console or from
the response of describe-package-version. For example, a python package such

as https://pypi.org/project/rapyd-sdk/ has a very large license field, so this information
wouldn't be processed by CodeArtifact.

View npm package version details

To view details about an npm package version, set the value of the --format option to npm.
Optionally, include the package version namespace (npm scope) in the --namespace option. The
value for the --namespace option should not include the leading @. To search for the namespace
@types, set the value to types.

The following returns details about version 4.41.5 of an npm package named webpack in the
@types scope.

aws codeartifact describe-package-version --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package webpack --namespace types --package-version 4.41.5

The output might look like the following.

View npm package version details 106

https://pypi.org/project/rapyd-sdk/

CodeArtifact CodeArtifact User Guide

npm",

"namespace": "types",

"package": "webpack",

"displayName": "webpack",

"version": "4.41.5",

"summary": "Packs CommonJs/AMD modules for the browser. Allows ... further output
omitted for brevity",

"homePage": "https://github.com/webpack/webpack",

"sourceCodeRepository": "https://github.com/webpack/webpack.git",

"publishedTime": 1577481261.09,

"licenses": [

{

"id": "license-id",

"format":

"name": "license-name"
}
1,
"revision": "REVISION-SAMPLE-55C752BEESB772FC",
"status": "Published",
"origin": {
"domainEntryPoint": {
"externalConnectionName": "public:npmjs"

3,
"originType": "EXTERNAL"

View Maven package version details

To view details about a Maven package version, set the value of the --format option to maven
and include the package version namespace in the --namespace option.

The following example returns details about version 1.2 of a Maven package named commons -
rng-client-api thatisin the org.apache.commons namespace and the my_repo repository.

aws codeartifact describe-package-version --domain my_domain --domain-

owner 111122223333 --repository my_repo \

--format maven --namespace org.apache.commons --package commons-rng-client-api --
package-version 1.2

The output might look like the following.

View Maven package version details 107

CodeArtifact CodeArtifact User Guide

{
"format": "maven",
"namespace": "org.apache.commons",
"package": "commons-rng-client-api",
"displayName": "Apache Commons RNG Client API",
"version": "1.2",
"summary": "API for client code that uses random numbers generators.",
"publishedTime": 1567920624.849,
"licenses": [],
"revision": "REVISION-SAMPLE-55C752BEESB772FC"
}
(® Note

CodeArtifact does not extract package version detail information from parent POM files.
The metadata for a given package version will only include information in the POM for that
exact package version, not for the parent POM or any other POM referenced transitively
using the POM parent tag. This means that the output of describe-package-version
will omit metadata (such as license information) for Maven package versions that rely on a
parent reference to contain this metadata.

View package version dependencies

Use the 1list-package-version-dependencies command to get a list of a package version's
dependencies. The following command lists the dependencies of an npm package named my -
package, version 4.41.5, in the my_repo repository, in the my_domain domain.

aws codeartifact list-package-version-dependencies --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package my-package --package-version 4.41.5

The output might look like the following.

{
"dependencies": [
{
"namespace": "webassemblyjs",
"package": "ast",

View package version dependencies 108

CodeArtifact CodeArtifact User Guide

"dependencyType": "regular",

"versionRequirement": "1.8.5"
1,
{
"namespace": "webassemblyjs",
"package": "helper-module-context",
"dependencyType": "regular",
"versionRequirement": "1.8.5"
1,
{
"namespace": "webassemblyjs",
"package": "wasm-edit",
"dependencyType": "regular",
"versionRequirement": "1.8.5"
}

1,
"versionRevision": "REVISION-SAMPLE-55C752BEE9B772FC"

For the range of supported values for the dependencyType field, see the PackageDependency data
type in the CodeArtifact API.

View package version readme file

Some package formats, such as npm, include a README file. Use the get-package-version-
readme to get the README file of a package version. The following command returns the README
file of an npm package named my-package, version 4.41.5, in the my_repo repository, in the
my_domain domain.

(® Note

CodeArtifact does not support displaying readme files from generic or Maven packages.

aws codeartifact get-package-version-readme --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package my-package --package-version 4.41.5

The output might look like the following.

View package version readme file 109

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PackageDependency.html

CodeArtifact CodeArtifact User Guide

"format": "npm",

"package": "my-package",

"version": "4.41.5"

"readme": "<div align=\"center\'">\n <a href=\https://github.com/webpack/webpack
\"> ... more content ... \n",

"versionRevision": "REVISION-SAMPLE-55C752BEESB772FC"

Update package version status

Every package version in CodeArtifact has a status that describes the current state and availability
of the package version. You can change the package version status using both the AWS CLI and the
console.

(@ Note

For more information on package version status, including a list of the available statuses,
see Package version status.

Updating package version status

Setting the status of a package version allows controlling how a package version can be used
without deleting it completely from the repository. For example, when a package version has a
status of Unlisted, it can still be downloaded as normal, but it will not appear in package version
lists returned to commands such as npm view. The UpdatePackageVersionsStatus API allows
setting the package version status of multiple versions of the same package in a single API call. For
a description of the different statuses, see Packages overview.

Use the update-package-versions-status command to change the status of a package
version to Published, Unlisted, or Archived. To see the required IAM permissions to use
the command, see Required IAM permissions to update a package version status. The following
example sets the status of version 4.1.0 of the npm package chalk to Archived.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 --target-status Archived

Sample output:

Update package version status 110

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

{
"successfulVersions": {
"4.1.0": {
"revision": "+0z8skWbwY3k8M6SINIgNj6bVH/ax+CxvkIx+No5j8I=",
"status": "Archived"
}
.
"failedVersions": {3}
}

This example uses an npm package, but the command works identically for other formats. Multiple
versions can be moved to the same target status using a single command, see the following
example.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 4.1.1 --target-status Archived

Sample output:

{
"successfulVersions": {
"4.1.0": {
"revision": "25/UjBleHs1DZewk+zozoeqH/R80ORc9gL1P8vbzVMI4=",
"status": "Archived"
.
"4.1.1": {
"revision": "+0z8skWbwY3k8M6SrNIgNj6bVH/ax+CxvkIx+No5j8I=",
"status": "Archived"
}
1,
"failedVersions": {3}
}

Note that once published, a package version cannot be moved back to the Unfinished state, so
this status is not permitted as a value for the --target-status parameter. To move the package
version to the Disposed state, use the dispose-package-versions command instead as
described below.

Updating package version status 111

CodeArtifact CodeArtifact User Guide

Required IAM permissions to update a package version status

To call update-package-versions-status for a package, you must have the
codeartifact:UpdatePackageVersionsStatus permission on the package resource. This
means you can grant permission to call update-package-versions-status on a per-package
basis. For example, an IAM policy that grants permission to call update-package-versions-
status on the npm package chalk would include a statement like the following.

"Action": [
"codeartifact:UpdatePackageVersionsStatus"

A,

"Effect": "Allow",

"Resource": "arn:aws:codeartifact:us-east-1:111122223333:package/my_domain/my_repo/
npm//chalk"

}

Updating status for a scoped npm package

To update the package version status of an npm package version with a scope, use the --
namespace parameter. For example, to unlist version 8.0.0 of @nestjs/core, use the following
command.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --namespace nestjs
--package core --versions 8.0.0 --target-status Unlisted

Updating status for a Maven package

Maven packages always have a group ID, which is referred to as a namespace in CodeArtifact.
Use the --namespace parameter to specify the Maven group ID when calling update-
package-versions-status. For example, to archive version 2.13.1 of the Maven package
org.apache.logging.log4j:1log4j, use the following command.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format maven
--namespace org.apache.logging.log4j --package log4j

--versions 2.13.1 --target-status Archived

Required IAM permissions to update a package version status 112

CodeArtifact CodeArtifact User Guide

Specifying a package version revision

A package version revision is a string that specifies a specific set of assets and metadata for a
package version. You can specify a package version revision to update the status of package
versions that are in a specific state. To specify a package version revision, use the --version-
revisions parameter to pass one or more comma-separated package versions and the package
version revision pairs. The status of a package version will only be updated if the current revision of
the package version matches the value specified.

(® Note

The —-versions parameter must also be defined when using the --version-
revisions parameter.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --package chalk
--version-revisions "4.1.0=25/UjBleHs1DZewk+zo0zoeqH/R80ORc9gL1P8bzVMI4="
--versions 4.1.0 --target-status Archived

To update multiple versions with a single command, pass a comma-separated list of version and
version revision pairs to the --version-revisions options. The following example command
defines two different package version and package version revision pairs.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm
--package chalk
--version-revisions "4.1.0=25/UjBleHs1DZewk+zozoeqH/
R8ORc9gL1P8vbzVMI4=,4.0.0=E31hBpORObRTut4pkjV5c1AQGkgSA70xtil6hMMzelc="
--versions 4.1.0 4.0.0 --target-status Published

Sample output:

"successfulVersions": {
"4.0.0": {
"revision": "E31hBp@RObRTut4pkjV5c1AQGkgSA70xtil6hMMzelc=",
"status": "Published"

}I

Specifying a package version revision 113

CodeArtifact CodeArtifact User Guide

"4.1.0": {
"revision": "25/UjBleHs1DZewk+zozoeqH/R80ORc9gL1P8vbzVMI4=",
"status": "Published"

}I

"failedVersions": {}

When updating multiple package versions, the versions passed to --version-revisions must
be the same as the versions passed to --versions. If a revision is specified incorrectly, that
version will not have its status updated.

Using the expected status parameter

The update-package-versions-status command provides the --expected-status
parameter that supports specifying the expected current status of a package version. If the current
status does not match the value passed to - -expected-status, the status of that package
version will not be updated.

For example, in my_repo, versions 4.0.0 and 4.1.0 of the npm package chalk currently have a
status of Published. A call to update-package-versions-status that specifies an expected
status of Unlisted will fail to update both package versions because of the status mismatch.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 4.0.0 --target-status Archived --expected-status Unlisted

Sample output:

"successfulVersions": {},
"failedVersions": {

"4.0.0": {

"errorCode": "MISMATCHED_STATUS",

"errorMessage": "current status: Published, expected status: Unlisted"
I
"4.1.0": {

"errorCode": "MISMATCHED_STATUS",

"errorMessage": "current status: Published, expected status: Unlisted"
}

Using the expected status parameter 114

CodeArtifact CodeArtifact User Guide

}

Errors with individual package versions

There are multiple reasons why the status of a package version will not be updated when calling
update-package-versions-status. For example, the package version revision may have
been specified incorrectly, or the expected status does not match the current status. In these
cases, the version will be included in the failedVersions map in the API response. If one
version fails, other versions specified in the same call to update-package-versions-status
might be skipped and not have their status updated. Such versions will also be included in the
failedVersions map with an errorCode of SKIPPED.

In the current implementation of update-package-versions-status, if one or more versions
cannot have their status changed, all other versions will be skipped. That is, either all versions

are updated successfully or no versions are updated. This behavior is not guaranteed in the API
contract; in the future, some versions might succeed while other versions fail in a single call to
update-package-versions-status.

The following example command includes an version status update failure caused by a package
version revision mismatch. That update failure causes another version status update call to be
skipped.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo
--format npm --package chalk
--version-revisions "4.1.0=25/UjBleHs1DZewk+zozoeqH/
R8ORc9gL1P8vbzVMI=,4.0.0=E31hBpORObRTut4dpkjV5c1AQGkgSA70xtil6hMMzelc=""
--versions 4.1.0 4.0.0 --target-status Archived

Sample output:

"successfulVersions": {3},
"failedVersions": {

"4.0.0": {

"errorCode": "SKIPPED",

"errorMessage": "version 4.0.0 is skipped"
},
"4.1.0": {

"errorCode": "MISMATCHED_REVISION",

Errors with individual package versions 115

CodeArtifact CodeArtifact User Guide

"errorMessage": "current revision: 25/UjBleHs1DZewk+zozoeqH/
R8ORc9gL1P8vbzVMI4=, expected revision: 25/UjBleHs1DZewk+zozoeqH/R80ORc9gL1P8vbzVMI="
}

Disposing of package versions

The Disposed package status has similar behavior to Archived, except that the package assets
will be permanently deleted by CodeArtifact so that the domain owner’s account will no longer

be billed for the asset storage. For more information about each package version status, see
Package version status. To change the status of a package version to Disposed, use the dispose-

package-versions command. This capability is separate from update-package-versions-
status because disposing of a package version is not reversible. Because the package assets will
be deleted, the version’s status cannot be changed back to Archived, Unlisted, or Published.
The only action that can be taken on a package version that has been disposed is for it to be
deleted using the delete-package-versions command.

To call dispose-package-versions successfully, the calling IAM principal must have the
codeartifact:DisposePackageVersions permission on the package resource.

The behavior of the dispose-package-versions command is similar to update-package-
versions-status, including the behavior of the --version-revisions and --expected-
status options that are described in the version revision and expected status sections. For

example, the following command attempts to dispose a package version but fails due to a
mismatched expected status.

aws codeartifact dispose-package-versions —domain my_domain --domain-
owner 111122223333

--repository my_repo --format npm --package chalk --versions 4.0.0
--expected-status Unlisted

Sample output:

"successfulVersions": {},
"failedVersions": {

"4.0.0": {
"errorCode": "MISMATCHED_STATUS",
"errorMessage": "current status: Published, expected status: Unlisted"

Disposing of package versions 116

CodeArtifact

CodeArtifact User Guide

If the same command is run again with an --expected-status of Published, the disposal will

succeed.

aws codeartifact dispose-package-versions —domain my_domain --domain-
owner 111122223333

--repository my_repo --format npm --package chalk --versions 4.0.0
--expected-status Published

Sample output:

{
"successfulVersions": {
"4.0.0": {
"revision": "E31hBp@RObRTut4pkjV5c1AQGkgSA70xtil6hMMzelc=",
"status": "Disposed"
}
b
"failedVersions": {}
}

Disposing of package versions

117

CodeArtifact CodeArtifact User Guide

Editing package origin controls

In AWS CodeArtifact, package versions can be added to a repository by directly publishing them,
pulling them down from an upstream repository, or ingesting them from an external, public
repository. Allowing package versions of a package to be added both by direct publishing and
ingesting from public repositories makes you vulnerable to a dependency substitution attack. For
more information, see Dependency substitution attacks. To protect yourself against a dependency

substitution attack, you can configure package origin controls on a package in a repository to limit
how versions of that package can be added to the repository.

Configuring package origin controls should be considered by any team that wants to allow new
versions of different packages to come from both internal sources, such as direct publishing, and
external sources, such as public repositories. By default, package origin controls will be configured
based on how the first version of a package is added to the repository. For information about the
package origin control settings and their default values, see Package origin control settings.

To remove the package record after using the put-package-origin-configuration API
operation, use delete-package (see Delete a package or package version).

Common package access control scenarios

This section includes some common scenarios when a package version is added to a CodeArtifact
repository. Package origin control settings will be set for new packages depending on how the first
package version is added.

In the following scenarios, an internal package is a package that is published directly from a
package manager to your repository, such as a package that you or your team authors and
maintains. An external package is a package that exists in a public repository that can be ingested
into your repository with an external connection.

An external package version is published for an existing internal package

In this scenario, consider an internal package, packageA. Your team publishes the first package
version for packageA to a CodeArtifact repository. Because this is the first package version for
that package, the package origin control settings are automatically set to Publish: Allow and
Upstream: Block. After the package exists in your repository, a package with the same name is
published to a public repository that is connected to your CodeArtifact repository. This could be
an attempted dependency substitution attack against the internal package, or it could just be a

Editing package origin controls 118

CodeArtifact CodeArtifact User Guide

coincidence. Regardless, package origin controls are configured to block the ingestion of the new
external version to protect themselves against a potential attack.

In the following image, repoA is your CodeArtifact repository with an external connection to a
public repository. Your repository contains versions 1.1 and 2.1 of packageA, but version 3.0 is
published to the public repository. Normally, repoA would ingest version 3.0 after the package
was requested by a package manager. Because package ingestion is set to Block, version 3.0 is not
ingested into your CodeArtifact repository and is not available to package managers connected to
it.

Repository name: repoA

Publish: Allow External Public repository
connection
. - 1 -
Upstream: Blocked R Internal versions: None
Package Packages :
Manager < Internal versions: (1.1, 2.1) External versions: (3.0)
External versions: None Packages All versions: (3.0)

All versions: (1.1, 2.1)

An internal package version is published for an existing external package

In this scenario, a package, packageB exists externally in a public repository that you have
connected to your repository. When a package manager connected to your repository requests
packageB, the package version is ingested into your repository from the public repository. Because
this is the first package version of packageB added to your repository, the package origin settings
are configured to Publish: BLOCK and Upstream: ALLOW. Later, you try to publish a version

with the same package name to the repository. Either you are not aware of the public package
and trying to publish an unrelated package under the same name, or you are trying to publish a
patched version, or you are trying to directly publish the exact package version that already exists
externally. CodeArtifact will reject the version you are trying to publish, but allow you to explicitly
override the rejection and publish the version if necessary.

In the following image, repoA is your CodeArtifact repository with an external connection to a
public repository. Your repository contains version 3.0 that it ingested from the public repository.
You want to publish version 1.1 to your repository. Normally, you could publish version 1.2 to
repoA, but because publishing is set to Block, version 1.2 cannot be published.

Common package access control scenarios 119

CodeArtifact CodeArtifact User Guide

Repository name: repoA

Publish: Block External Public repository
£y connection Int |] N
Upstream: Allow —_—> nternal versions: None
Package Packages
Manager < Internal versions: None < External versions: (3.0)
External versions: (3.0) Packages All versions: (3.0)

All versions: (3.0)

Publishing a patched package version of an existing external package

In this scenario, a package, packageB exists externally in a public repository that you have
connected to your repository. When a package manager connected to your repository requests
packageB, the package version is ingested into your repository from the public repository. Because
this is the first package version of packageB added to your repository, the package origin settings
are configured to Publish: BLOCK and Upstream: ALLOW. Your team decides that it needs to
publish patched package versions of this package to the repository. To be able to publish package
versions directly, your team changes the package origin control settings to Publish: ALLOW and
Upstream: BLOCK. Versions of this package can now be published directly to your repository and
ingested from public repositories. After your team publishes the patched package versions, your
team reverts the package origin settings to Publish: BLOCK and Upstream: ALLOW.

Package origin control settings

With package origin controls, you can configure how package versions can be added to a
repository. The following lists include the available package origin control settings and values.

(® Note

The available settings and values are different when configuring origin controls on package
groups. For more information, see Package group origin controls.

Publish

This setting configures whether package versions can be published directly to the repository using
package managers or similar tools.

« ALLOW: Package versions can be published directly.

Package origin control settings 120

CodeArtifact CodeArtifact User Guide

« BLOCK: Package versions cannot be published directly.

Upstream

This setting configures whether package versions can be ingested from external, public
repositories, or retained from upstream repositories when requested by a package manager.

« ALLOW: Any package version can be retained from other CodeArtifact repositories configured as
upstream repositories or ingested from a public source with an external connection.

« BLOCK: Package versions cannot be retained from other CodeArtifact repositories configured as
upstream repositories or ingested from a public source with an external connection.

Default package origin control settings

The default package origin control settings are configured based on the package's associated
package group's origin control settings. For more information about package groups and package
group origin controls, see Working with package groups in CodeArtifact and Package group origin

controls.

If a package is associated with a package group with restriction settings of ALLOW for every
restriction type, the default package origin controls for a package will be based on how the first
version of that package is added to the repository.

« If the first package version is published direcly by a package manager, the settings will be
Publish: ALLOW and Upstream: BLOCK.

« If the first package version is ingested from a public source, the settings will be Publish: BLOCK
and Upstream: ALLOW.

(® Note

Packages that existed in CodeArtifact repositories prior to around May 2022 will have a
default package origin controls of Publish: ALLOW and Upstream: ALLOW. Package origin
controls must be set manually for such packages. The current default values have been set
on new packages since that time, and started being enforced when the feature launched
on July 14, 2022. For more information about setting package origin controls, see Editing
package origin controls.

Default package origin control settings 121

CodeArtifact CodeArtifact User Guide

Otherwise, if a package is associated with a package group that has at least one restriction setting
of BLOCK or ALLOW_SPECIFIC_REPOSITORIES, then the default origin control settings for that
package will be set to Publish: ALLOW and Upstream: ALLOW.

How package origin controls interact with package group origin
controls

Because packages have origin control settings, and their associated package groups have origin
control settings, it's important to understand how those two different settings interact with one
another.

The interaction between the two settings is that a setting of BLOCK always wins over a setting of
ALLOW. The following table lists some example configurations and their effective origin control
settings.

Package origin control Package group origin control Effective origin control
setting setting setting

PUBLISH: ALLOW PUBLISH: ALLOW PUBLISH: ALLOW
UPSTREAM: ALLOW UPSTREAM: ALLOW UPSTREAM: ALLOW
PUBLISH: BLOCK PUBLISH: ALLOW PUBLISH: BLOCK
UPSTREAM: ALLOW UPSTREAM: ALLOW UPSTREAM: ALLOW
PUBLISH: ALLOW PUBLISH: ALLOW PUBLISH: ALLOW
UPSTREAM: ALLOW UPSTREAM: BLOCK UPSTREAM: BLOCK

What this means is that a package with origin settings of Publish: ALLOW and Upstream: ALLOW,
then it is effectively deferring to the associated package group's origin control settings.

Editing package origin controls

Package origin controls are configured automatically based on how the first package version of

a package is added to the repository, for more information see Default package origin control
settings. To add or edit package origin controls for a package in a CodeArtifact repository, perform
the steps in the following procedure.

How package origin controls interact with package group origin controls 122

CodeArtifact CodeArtifact User Guide

To add or edit package origin controls (console)

1.

Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

In the navigation pane, choose Repositories, and choose the repository that contains the
package you want to edit.

In the Packages table, search for and select the package you want to edit.
From the package summary page, in Origin controls, choose Edit.

In Edit origin controls, choose the package origin controls you want to set for this package.
Both package origin control settings, Publish and Upstream, must be set at the same time.

« To allow publishing package versions directly, in Publish, choose Allow. To block publishing
of package versions, choose Block.

» To allow ingestion of packages from external repositories and pulling packages from
upstream repositories, in Upstream sources, choose Allow. To block all ingestion and pulling
of package versions from external and upstream repositories, choose Block.

To add or edit package origin controls (AWS CLI)

1.

If you haven't, configure the AWS CLI by following the steps in Setting up with AWS

CodeArtifact.

Use the put-package-origin-configuration command to add or edit package origin
controls. Replace the following fields:

» Replace my_domain with the CodeArtifact domain that contains the package you want to
update.

» Replace my_repo with the CodeArtifact repository that contains the package you want to
update.

» Replace npm with the package format of the package you want to update.
» Replace my_package with the name of the package you want to update.

» Replace ALLOW and BLOCK with your desired package origin control settings.

aws codeartifact put-package-origin-configuration --domain my_domain \
--repository my_repo --format npm --package my_package \
--restrictions publish=ALLOW,upstream=BLOCK

Editing package origin controls 123

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Publishing and upstream repositories

CodeArtifact doesn't allow publishing package versions that are present in reachable upstream
repositories or public repositories. For example, suppose that you want to publish a Maven
package com.mycompany.mypackage:1.0 to a repository myrepo, and myrepo has an upstream
repository with an external connection to Maven Central. Consider the following scenarios.

1. The package origin control settings on com.mycompany .mypackage are Publish:
ALLOW and Upstream: ALLOW. If com.mycompany .mypackage:1.0 is present in the
upstream repository or in Maven Central, CodeArtifact rejects any attempt to publish to
it in myrepo with a 409 conflict error. You could still publish a different version, such as
com.mycompany.mypackage:1.1.

2. The package origin control settings on com.mycompany.mypackage are Publish: ALLOW
and Upstream: BLOCK. You can publish any version of com.mycompany.mypackage to your
repository that do not already exist because package versions are not reachable.

3. The package origin control settings on com.mycompany .mypackage are Publish: BLOCK and
Upstream: ALLOW. You cannot publish any package versions directly to your repository.

Publishing and upstream repositories 124

CodeArtifact CodeArtifact User Guide

Working with package groups in CodeArtifact

Package groups can be used to apply configuration to multiple packages that match a defined
pattern using package format, package namespace, and package name. You can use package
groups to more conveniently configure package origin controls for multiple packages. Package
origin controls are used to block or allow ingestion or publishing of new package versions, which
protects users from malicious actions known as dependency substitution attacks.

Every domain in CodeArtifact automatically contains a root package group. This root package
group, /*, contains all packages, and allows package versions to enter repositories in the domain
from all origin types by default. The root package group can be modified, but cannot be deleted.

The Package Group Configuration feature operates in an eventually consistent manner when
creating a new package group or deleting an existing package group. This means that upon
creating or deleting a package group, the origin controls will be applied to the expected associated
packages, but with some delay due to the eventual consistent behavior. The time to reach eventual
consistency depends on the number of package groups in the domain as well as the number of
packages in the domain. There may be a brief period where the origin controls are not immediately
reflected on the associated packages after a package group creation or deletion.

Additionally, updates to package group origin controls are effective almost immediately. Unlike the
creation or deletion of package groups, changes to the origin controls of an existing package group
are reflected on the associated packages without the same delay.

These topics contain information about package groups in AWS CodeArtifact.

Topics

» Create a package group

» View or edit a package group

» Delete a package group

» Package group origin controls

» Package group definition syntax and matching behavior

» Tag a package group in CodeArtifact

125

CodeArtifact CodeArtifact User Guide

Create a package group

You can create a package group using the CodeArtifact console, the AWS Command Line Interface
(AWS CLI), or AWS CloudFormation. For more information about managing CodeArtifact package
groups with CloudFormation, see Creating CodeArtifact resources with AWS CloudFormation.

Create a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain in which you want to
create a package group.

Choose Package groups, and choose Create package group.

4. In Package group definition, enter the package group definition for your package group. The
package group definition determines which packages are associated with the group. You can
enter the package group definition manually with text, or you can use the visual mode to make
selections and the package group definition will be created automatically.

5. To use the visual mode to create the package group definition:

a. Choose Visual to switch to the visual mode..
b. In Package format, choose the format of the packages to be associated with this group.

c. In Namespace (Scope), choose the namespace criteria to match on.

« Equals: Match the specified namespace exactly. If chosen, enter the namespace to
match on.

« Blank: Match packages with no namespace.

« Starts with word: Match namespaces that begin with a specified word. If chosen, enter
the prefix word to match on. For more information about words and word boundaries,
see Words, word boundaries, and prefix matching.

« All: Match packages in all namespaces.

d. If Equals, Blank, or Starts with word is selected, in Package name, choose the package
name criteria to match on.

« Exactly equals: Match the specified package name exactly. If chosen, enter the package
name to match on.

« Starts with prefix: Match packages that start with the specified prefix.

Create a package group 126

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

« Starts with word: Match packages that begin with a specified word. If chosen, enter the
prefix word to match on. For more information about words and word boundaries, see
Words, word boundaries, and prefix matching.

« All: Match all packages.
e. Choose Next to review the definition.

6. To enter the package group definition with text:

a. Choose Text to switch to the text mode.

b. In Package group definition, enter the package group definition. For more information
about package group definition syntax, see Package group definition syntax and matching

behavior.
c. Choose Next to review the definition.

7. In Review definition, review the packages that will be included in the new package group
based on the definition provided previously. After reviewing, choose Next.

8. In Package group information, optionally add a description and contact email for the package
group. Choose Next.

9. In Package origin controls, configure the origin controls to be applied to the packages in the
group. For more information about package group origin controls, see Package group origin

controls.

10. Choose Create package group.

Create a package group (AWS CLI)

Use the create-package-group command to create a package group in your domain. For the
--package-group option, enter the package group definition that determines which packages
are associated with the group. For more information about package group definition syntax, see
Package group definition syntax and matching behavior.

If you haven't, configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

aws codeartifact create-package-group \
--domain my_domain \
--package-group '/nuget/*' \
--domain-owner 111122223333 \
--contact-info contact@email.com \
--description "a new package group" \

Create a package group (AWS CLI) 127

CodeArtifact CodeArtifact User Guide

--tags key=keyl,value=valuel

View or edit a package group

You can view a list of all package groups, view details of a specific package group, or edit a
package group's details or configuration using the CodeArtifact console or the AWS Command Line
Interface (AWS CLI).

View or edit a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain that contains the
package group you want to view or edit.

Choose Package groups, and choose the package group you want to view or edit.

4. In Details, view information about the package group including its parent group, description,
ARN, contact email, and package origin controls.

5. In Subgroups, view a list of package groups that have this group as a parent group. The
package groups in this list can inherit settings from this package group. For more information,
see Package group hierarchy and pattern specificity.

6. In Packages, view the packages that belong to this package group based on the package group
definition. In the Strength column, you can see the strength of the package association. For
more information, see Package group hierarchy and pattern specificity.

7. To edit package group information, choose Edit package group.

a. In Information, update the package group's description or contact information. You
cannot edit a package group's definition.

b. In Package group origin controls, update the package group's origin control settings,
which determine how associated packages can enter repositories in the domain. For more
information, see Package group origin controls.

View or edit a package group (AWS CLI)

Use the following commands to view or edit package groups with the AWS CLI. If you haven't,
configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

View or edit a package group 128

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To view all package groups in a domain, use the 1ist-package-groups command.

aws codeartifact list-package-groups \
--domain my_domain \
--domain-owner 111122223333

To view details about a package group, use the describe-package-group command. For more
information about package group definitions, see Package group definition syntax and examples.

aws codeartifact describe-package-group \
--domain my_domain \
--domain-owner 111122223333 \
--package-group '/nuget/*'

To view the child package groups of a package group, use the 1ist-sub-package-groups
command.

aws codeartifact list-sub-package-groups \
--domain my_domain \
--domain-owner 111122223333 \
--package-group '/nuget/*' \

To view the package group that is associated to a package, use the get-associated-package-
group command. You must use the normalized package name and namespace for the NuGet,
Python, and Swift package formats. For more information about how the package names and
namespaces are normalized, see the NuGet, Python, and Swift name normalization documentation.

aws codeartifact get-associated-package-group \
--domain my_domain \
--domain-owner 111122223333 \
--format npm \
--package packageName \
--namespace scope

To edit a package group, use the update-package-group command. This command is used to
update a package group's contact information or description. For information about package group
origin control settings, and adding or editing them, see Package group origin controls. For more
information about package group definitions, see Package group definition syntax and examples

aws codeartifact update-package-group \

View or edit a package group (AWS CLI) 129

CodeArtifact CodeArtifact User Guide

--domain my_domain \

--package-group '/nuget/*' \

--domain-owner 111122223333 \

--contact-info contact@email.com \

--description "updated package group description"

Delete a package group

You can delete a package group using the CodeArtifact console or the AWS Command Line
Interface (AWS CLI).

Note the following behavior when deleting package groups:

« The root package group, /*, cannot be deleted.
« The packages and package versions that are associated with that package group are not deleted.

« When a package group is deleted, the direct child package groups will become children of the
package group's direct parent package group. Therefore, if any of the child groups are inheriting
any settings from the parent, those settings could change.

Delete a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain that contains the
package group you want to view or edit.

Choose Package groups.
4. Choose the package group you want to delete and choose Delete.

Enter delete in the field and choose Delete.

Delete a package group (AWS CLI)

To delete a package group, use the delete-package-group command.

aws codeartifact delete-package-group \
--domain my_domain \
--domain-owner 111122223333 \

Delete a package group 130

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

--package-group '/nuget/*'

Package group origin controls

Package origin controls are used to configure how package versions can enter a domain. You can
set up origin controls on a package group to configure how versions of every package associated
with the package group can enter specified repositories in the domain.

Package group origin control settings consist of the following:

 Restriction settings: These settings define if packages can enter a repository in CodeArtifact from
publishing, internal upstreams, or external, public repositories.

« Allowed repository lists: Each restriction setting can be set to allow specific repositories. If a
restriction setting is set to allow specific repositories, that restriction will have a corresponding

allowed repository list.

(® Note
Origin control settings for package groups are slightly different than the origin control
settings for individual packages. For more information about origin control settings for
packages, see Package origin control settings.

Restriction settings

The restriction settings of a package group's origin control settings determine how the packages
associated with that group can enter repositories in the domain.

PUBLISH

The PUBLISH setting configures whether package versions can be published directly to any
repository in the domain using package managers or similar tools.

« ALLOW: Package versions can be published directly to all repositories.
« BLOCK: Package versions cannot be published directly to any repository.

o ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be published directly to
repositories specified in the allowed repository list for publishing.

Package group origin controls 131

CodeArtifact CodeArtifact User Guide

o INHERIT: The PUBLISH setting is inherited from the first parent package group with a setting
that is not INHERIT.

EXTERNAL_UPSTREAM

The EXTERNAL_UPSTREAM setting configures whether package versions can be ingested from
external, public repositories when requested by a package manager. For a list of supported external
repositories, see Supported external connection repositories.

« ALLOW: Any package version can be ingested into all repositories from a public source with an
external connection.

« BLOCK: Package versions cannot be ingested into any repository from a public source with an
external connection.

« ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be ingested from a public source
into repositories specified in the allowed repository list for external upstreams.

o INHERIT: The EXTERNAL_UPSTREAM setting is inherited from the first parent package group
with a setting that is not INHERIT.

INTERNAL_UPSTREAM

The INTERNAL_UPSTREAM setting configures whether package versions can be retained from
internal upstream repositories in the same CodeArtifact domain when requested by a package
manager.

« ALLOW: Any package version can be retained from other CodeArtifact repositories configured as
upstream repositories.

« BLOCK: Package versions cannot be retained from other CodeArtifact repositories configured as
upstream repositories.

o ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be retained from other
CodeArtifact respositories configured as upstream repositories into repositories specified in the
allowed repository list for internal upstreams.

o INHERIT: The INTERNAL_UPSTREAM setting is inherited from the first parent package group
with a setting that is not INHERIT.

Restriction settings 132

CodeArtifact CodeArtifact User Guide

Allowed repository lists

When a restriction setting is configured as ALLOW_SPECIFIC_REPOSITORIES, the package group
contains an accompanying allowed repositories list which contains a list of repositories allowed
for that restriction setting. Therefore, a package group contains anywhere from 0 to 3 allowed
repository lists, one for each setting configured as ALLOW_SPECIFIC_REPOSITORIES.

When you add a repository to a package group's allowed repository list, you must specify which
allowed repository list to add it to.

The possible allowed repository lists are as follows:

« EXTERNAL_UPSTREAM: Allow or block ingestion of package versions from external repositories in
the added repository.

o INTERNAL_UPSTREAM: Allow or block pulling package versions from another CodeArtifact
repository in the added repository.

« PUBLISH: Allow or block direct publishing of package versions from package managers to the
added repository.

Editing package group origin control settings

To add or edit origin controls for a package group, perform the steps in the following procedure.
For information about the package group origin control settings, see Restriction settings and

Allowed repository lists.

To add or edit package group origin controls (CLI)

1. If you haven't, configure the AWS CLI by following the steps in Setting up with AWS
CodeArtifact.

2. Usethe update-package-group-origin-configuration command to add or edit
package origin controls.

e For --domain, enter the CodeArtifact domain that contains the package group you want to
update.

e For --domain-owner, enter the account number of the owner of the domain.
» For --package-group, enter the package group you want to update.

» For --restrictions, enter key-value pairs that represent the origin control restrictions.

Allowed repository lists 133

CodeArtifact CodeArtifact User Guide

e For --add-allowed-repositories, enter a JSON object containing the restriction type
and repository name to add to the corresponding allowed repositories list for the restriction.

e For --remove-allowed-repositories, enter a JSON object containing the restriction
type and repository name to remove from the corresponding allowed repositories list for the
restriction.

aws codeartifact update-package-group-origin-configuration \
--domain my_domain \
--domain-owner 111122223333 \
--package-group '/nuget/*' \
--restrictions INTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES \
--add-allowed-repositories
originRestrictionType=INTERNAL_UPSTREAM, repositoryName=my_repo \
--remove-allowed-repositories
originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo2

The following example adds multiple restrictions, and multiple repositories in one command.

aws codeartifact update-package-group-origin-configuration \
--domain my_domain \
--domain-owner 111122223333 \
--package-group '/nuget/*' \

restrictions PUBLISH=BLOCK,EXTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES,INTERNAL_UPSTREAM-=
\

--add-allowed-repositories
originRestrictionType=INTERNAL_UPSTREAM, repositoryName=my_repo
originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo2 \

--remove-allowed-repositories
originRestrictionType=INTERNAL_UPSTREAM, repositoryName=my_repo2

Package group origin control configuration examples

The following examples show package origin control configurations for common package
management scenarios.

Allowing packages with private names to be published, but not ingested

This scenario is likely a common scenario in package management:

Package group origin control configuration examples 134

CodeArtifact CodeArtifact User Guide

« Allow packages with private names to be published to repositories in your domain from package
managers, and block them from being ingested to repositories in your domain from external,
public repositories.

« Allow all other packages to be ingested to repositories in your domain from external, public
repositories, and block them from being published to repositories in your domain from package
managers.

To achieve this, you should configure a package group with a pattern that includes the private
name(s), and origin settings of PUBLISH: ALLOW, EXTERNAL_UPSTREAM: BLOCK, and
INTERNAL_UPSTREAM: ALLOW. This will ensure packages with private names can be published
directly, but cannot be ingested from external repositories.

The following AWS CLI commands create and configure a package group with origin restriction
settings that match the desired behavior:

To create the package group:

aws codeartifact create-package-group \
--domain my_domain \
--package-group /npm/space/anycompany~ \
--domain-owner 111122223333 \
--contact-info contact@email.com | URL \
--description "my package group'

To update the package group's origin configuration:

aws codeartifact update-package-group-origin-configuration \
--domain my_domain \
--domain-owner 111122223333 \

--package-group '/npm/space/anycompany~"' \
--restrictions PUBLISH=ALLOW,EXTERNAL_UPSTREAM=BLOCK, INTERNAL_UPSTREAM=ALLOW

Allowing ingestion from external repositories through one repository

In this scenario, your domain has multiple repositories. Of those repositories, repoA has an
upstream connection to repoB, which has an external connection to the public repository,
npmjs.com, as shown:

repoA --> repoB --> npmjs.com

Package group origin control configuration examples 135

CodeArtifact CodeArtifact User Guide

You want to allow ingestion of packages from a specific package group, /npm/space/
anycompany~ from npmjs.cominto repoA, but only through repoB. You also want to block
ingestion of packages associated with the package group into any other repositories in your
domain, and block direct publishing of packages with package managers. To achieve this, you
create and configure the package group as follows:

Origin restriction settings of PUBLISH: BLOCK, and EXTERNAL_UPSTREAM:
ALLOW_SPECIFIC_REPOSITORIES, and INTERNAL_UPSTREAM:
ALLOW_SPECIFIC_REPOSITORIES.

repoA and repoB added to the appropriate allowed repository list:

« repoA should be added to the INTERNAL_UPSTREAM list, as it will get packages from its internal
upstream, repoB.

« repoB should be added to the EXTERNAL_UPSTREAM list, as it will get packages from the
external repository, npmjs. com.

The following AWS CLI commands create and configure a package group with origin restriction
settings that match the desired behavior:

To create the package group:

aws codeartifact create-package-group \
--domain my_domain \
--package-group /npm/space/anycompany~ \
--domain-owner 111122223333 \
--contact-info contact@email.com | URL \
--description "my package group'

To update the package group's origin configuration:

aws codeartifact update-package-group-origin-configuration \
--domain my_domain \
--domain-owner 111122223333 \
--package-group /npm/space/anycompany~ \

restrictions PUBLISH=BLOCK,EXTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES,INTERNAL_UPSTREAM=ALLC
\

Package group origin control configuration examples 136

CodeArtifact CodeArtifact User Guide

--add-allowed-repositories
originRestrictionType=INTERNAL_UPSTREAM,repositoryName=repoA
originRestrictionType=EXTERNAL_UPSTREAM, repositoryName=repoB

How package group origin control settings interact with package origin
control settings

Because packages have origin control settings, and their associated package groups have origin
control settings, it's important to understand how those two different settings interact with one
another. For information about the interaction between the settings, see How package origin
controls interact with package group origin controls.

Package group definition syntax and matching behavior

This topic contains information about defining package groups, pattern matching behavior,
package association strength, and package group hierarchy.

Contents

» Package group definition syntax and examples

» Package group definition and normalization

« Namespaces in package group definitions

Package group hierarchy and pattern specificity

Words, word boundaries, and prefix matching

Case sensitivity

Strong and weak match

Additional variations

Package group definition syntax and examples

The pattern syntax for defining package groups closely follows the formatting of package paths. A
package path is created from a package's coordinate components (format, namespace, and name)
by adding a forward slash to the start and separating each of the components with a forward slash.
For example, the package path for the npm package named anycompany-ui-components in the
namespace space is /npm/space/anycompany-ui-components.

How package group origin control settings interact with package origin control settings 137

CodeArtifact CodeArtifact User Guide

A package group pattern follows the same structure as a package path, except components that
are not specified as part of the group definition are omitted, and the pattern is terminated with a
suffix. The suffix that is included determines the matching behavior of the pattern, as follows:

o A '$ suffix will match the full package coordinate.

« A ~ suffix will match a prefix.

« A * suffix will match all values of the previously defined component.

Here are example patterns for each of the allowed combinations:

1. All package formats: /*

. A specific package format: /npm/*

. Package format and namespace prefix: /maven/com.anycompany~
. Package format and namespace: /npm/space/*

. Package format, namespace, and name prefix: /npm/space/anycompany-ui~

o u A~ W N

. Package format, namespace, and name: /maven/org.apache.logging.log4j/log4j-core

$

As shown in the examples above, the ~ suffix is added to the end of a namespace or name to
represent a prefix match and * comes after a forward slash when used to match all values for the
next component in the path (either all formats, all namespaces, or all names).

Package group definition and normalization

CodeArtifact normalizes NuGet, Python, and Swift package names, and normalizes Swift package
namespaces before storing them. CodeArtifact uses these normalized names when matching
packages with package group definitions. Therefore, package groups that contain a namespace or
name in these formats must use the normalized namespace and name. For more information about
how the package names and namespaces are normalized, see the NuGet, Python, and Swift name
normalization documentation.

Namespaces in package group definitions

For packages or package formats without a namespace (Python and NuGet), package groups must
not contain a namespace. The package group definition for these package groups contain a blank

Package group definition syntax and examples 138

CodeArtifact CodeArtifact User Guide

namespace section. For example, the path for the Python package named requests is /python//
requests.

For packages or package formats with a namespace (Maven, generic, and Swift), the namespace
must be included if the package name is included. For the Swift package format, the normalized
package namespace will be used. For more information about how Swift package namespaces are
normalized, see Swift package name and namespace normalization.

Package group hierarchy and pattern specificity

The packages that are “in" or “associated with” a package group are packages with a package
path that matches the group’s pattern but do not match a more specific group’s pattern. For
example, given the package groups /npm/* and /npm/space/*, the package path /npm//react
is associated with the first group (/npm/*) while /npm/space/aui.components and /npm/space/
amplify-ui-core are associated with the second group (/npm/space/*). Even though a package
may match multiple groups, each package is only associated with a single group, the most specific
match, and only that one group's configuration applies to the package.

When a package path matches multiple patterns, the “more specific” pattern can be thought of

as the longest matching pattern. Alternatively, the more specific pattern is the one that matches

a proper subset of the packages that match the less specific pattern. From our earlier example,
every package that matches /npm/space/* also matches /npm/*, but the reverse is not true,
which makes /npm/space/* the more specific pattern because it is a proper subset of /npm/*.
Because one group is a subset of another group, it creates a hierarchy, in which /npm/space/* is a
subgroup of the parent group, /npm/*.

Though only the most specific package group’s configuration applies to a package, that group may
be configured to inherit from its parent group’s configuration.

Words, word boundaries, and prefix matching

Before discussing prefix matching, let's define some key terms:
» A word a letter or number followed by zero or more letters, numbers, or mark characters (such as
accents, umlauts, etc.).

« A word boundary is at the end of a word, when a non-word character is reached. Non-word
characters are punctuation characters such as ., -, and _.

Package group hierarchy and pattern specificity 139

CodeArtifact CodeArtifact User Guide

Specifically, the regex pattern for a word is [\p{L}\p{N}J[\p{LI\p{NI\p{M3}]*, which can be
broken down as follows:

« \p{L} represents any letter.
« \p{NJ} represents any number.

« \p{MJ} represents any mark character, such as accents, umlauts, etc.

Therefore, [\p{L}\p{N3}] represents a number or letter, and [\p{L}\p{N}\p{M}]* represents
zero or more letters, numbers, or mark characters and a word boundary is at the end of each match
of this regex pattern.

® Note

Word boundary matching is based on this definition of a “word". It is not based on words
defined in a dictionary, or CameCase. For example, there is no word boundary in oneword
or OneWozrd.

Now that word and word boundary are defined, we can use them to describe prefix matching in
CodeArtifact. To indicate a prefix match on a word boundary, a match character (~) is used after a
word character. For example, the pattern /npm/space/foo~ matches the package paths /npm/
space/foo and /npm/space/foo-bar, but not /npm/space/food or /npm/space/foot.

A wildcard (*) is required to be used instead of ~ when following a non-word character, such as in
the pattern /npm/*.

Case sensitivity

Package group definitions are case sensitive, which means that patterns that differ only by case
can exist as separate package groups. For example, a user can create separate package groups with
the patterns /npm//AsyncStorage$, /npm//asyncStorage$, and /npm//asyncstorage$
for the three separate packages that exist on the npm Public Registry: AsyncStorage, asyncStorage,
asyncstorage that differ only by case.

While case matters, CodeArtifact still associates packages to a package group if the package has a
variation of the pattern that differs by case. If a user creates the /npm//AsyncStorage$ package
group without creating the other two groups shown above, then all case variations of the name

AsyncStorage, including asyncStorage and asyncstorage, will be associated with the package group.

Case sensitivity 140

CodeArtifact CodeArtifact User Guide

But, as described in the next section, Strong and weak match, these variations will be handled
differently than AsyncStorage, which exactly matches the pattern.

Strong and weak match

The information in the previous section, Case sensitivity, states that package groups are case

sensitive, and then goes on to explain they are case insensitive. This is because package group
definitions in CodeArtifact have a concept of strong match (or exact match) and a weak match

(or variation match). A strong match is when the package matches the pattern exactly, without
any variation. A weak match is when the package matches a variation of the pattern, such as
different letter case. Weak match behavior prevents packages that are variations of a package
group's pattern from rolling up to a more general package group. When a package is a variation
(weak match) of the most specific matching group’s pattern, then the package is associated with
the group but the package is blocked instead of applying the group's origin control configuration,
preventing any new versions of the package from being pulled from upstreams or published. This
behavior reduces the risk of supply chain attacks resulting from dependency confusion of packages
with nearly identical names.

To illustrate weak match behavior, suppose package group /npm/* allows ingestion and blocks
publishing. A more specific package group, /npm//anycompany-spicy-client$, is configured
to block ingestion and allow publish. The package named anycompany-spicy-client is a strong
match of the package group, which allows package versions to be published and blocks ingestion
of package versions. The only casing of the package name that is allowed to be published is
anycompany-spicy-client, since it is a strong match for the package definition pattern. A different
case variation, such as AnyCompany-spicy-client is blocked from publishing because it is a weak
match. More importantly, the package group blocks ingestion of all case variations, not just the
lowercase name used in the pattern, reducing the risk of a dependency confusion attack.

Additional variations

In addition to case differences, weak matching also ignores differences in sequences of dash -,
dot ., underscore _, and confusable characters (such as similar looking characters from separate
alphabets). During normalization used for weak matching, CodeArtifact performs casefolding
(similar to converting to lowercase), replaces sequences of dash, dot, and underscore characters
with a single dot, and normalizes confusable characters.

Weak matching treats dashes, dots, and underscores as equivalent but does not completely ignore
them. This means that foo-bar, foo.bar, foo..bar, and foo_bar are all weak match equivalents, but

Strong and weak match 141

CodeArtifact CodeArtifact User Guide

foobar is not. Although several public repositories implement steps to prevent these types of
varations, the protection provided by public repositories does not make this feature of package
groups unnecessary. For example, public repositories such as the npm Public Registry registry will
only prevent new variations of the package named my-package if my-package is already published
to it. If my-package is an internal package and package group /npm//my-package$ is created that
allows publish and blocks ingestion, you likely don't want to publish my-package to the npm Public
Registry in order to prevent a variant such as my.package from being allowed.

While some package formats such as Maven treat these characters differently (Maven treats . as a
namespace hierarchy separator but not - or _), something like com.act-on could still be confused
with com.act.on.

® Note

Note that whenever multiple variations are associated with a package group, an
administrator may create a new package group for a specific variation to configure
different behavior for that variation.

Tag a package group in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your package groups
in CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a package group or add, remove, or update the
value of tags of an existing package group.

Tag package groups (CLI)
You can use the CLI to manage package group tags.

If you haven't, configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

® Tip
To add tags, you must provide the Amazon Resource Name (ARN) of the package group. To
get the ARN of the package group, run the describe-package-group command:

Tag a package group 142

CodeArtifact CodeArtifact User Guide

aws codeartifact describe-package-group \
--domain my_domain \
--package-group /npm/scope/anycompany~ \
--query packageGroup.arn

Topics

Add tags to a package group (CLI)

View tags for a package group (CLI)

Edit tags for a package group (CLI)

Remove tags from a package group (CLI)

Add tags to a package group (CLI)

You can add tags to package groups when they are created, or to an existing package group. For
information about adding tags to a package group when you create it, see Create a package group.

To add a tag to an existing package group with the AWS CLI, at the terminal or command line, run
the tag-resource command, specifying the Amazon Resource Name (ARN) of the package group
where you want to add tags and the key and value of the tag you want to add. For information
about package group ARNs, see Package group ARNSs.

You can add more than one tag to a package group. For example, to tag a package group, /npm/
scope/anycompany~ with two tags, a tag key named key1 with the tag value of valuel, and a
tag key named key2 with the tag value of value2:

aws codeartifact tag-resource \

--resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \

--tags key=keyl,value=valuel key=key2,value=value2

If successful, this command has no output.
View tags for a package group (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a package group. If no tags have
been added, the returned list is empty.

Tag package groups (CLI) 143

CodeArtifact CodeArtifact User Guide

At the terminal or command line, run the list-tags-for-resource command with the Amazon
Resource Name (ARN) of the package group. For information about package group ARNs, see
Package group ARNSs.

For example, to view a list of tag keys and tag values for a package group, /npm/
scope/anycompany~ named with an ARN value of arn:aws:codeartifact:us-
west-2:123456789012:package-group/my_domain/npm/scope/anycompany~

aws codeartifact list-tags-for-resource \
--resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~

If successful, this command returns information similar to the following:

{
"tags": {
"keyl": "valuel",
"key2": "value2"
}
}

Edit tags for a package group (CLI)

Follow these steps to use the AWS CLI to edit a tag for a package group. You can change the value
for an existing key or add another key. You can also remove tags from a package group, as shown
in the next section.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
package group where you want to update a tag and specify the tag key and tag value. For
information about package group ARNs, see Package group ARNSs.

aws codeartifact tag-resource \

--resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \

--tags key=keyl,value=newvaluel

If successful, this command has no output.
Remove tags from a package group (CLI)

Follow these steps to use the AWS CLI to remove a tag from a package group.

Tag package groups (CLI) 144

CodeArtifact CodeArtifact User Guide

® Note

If you delete a package group, all tag associations are removed from the deleted package
group. You do not have to remove tags before you delete a package group.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
package group where you want to remove tags and the tag key of the tag you want to remove. For
information about package group ARNSs, see Package group ARNSs.

For example, to remove multiple tags on a package group, /npm/scope/anycompany~, with the
tag keys key1 and key2:

aws codeartifact untag-resource \

--resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \

--tag-keys keyl key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the package group using the list-tags-for-resource command.

Tag package groups (CLI) 145

CodeArtifact CodeArtifact User Guide

Working with domains in CodeArtifact

CodeArtifact domains make it easier to manage multiple repositories across an organization. You
can use a domain to apply permissions across many repositories owned by different AWS accounts.
An asset is stored only once in a domain, even if it's available from multiple repositories.

Although you can have multiple domains, we recommend a single production domain that contains
all published artifacts so that your development teams can find and share packages. You can use a
second preproduction domain to test changes to the production domain configuration.

These topics describe how to use the CodeArtifact console, the AWS CLI, and AWS CloudFormation
to create or configure CodeArtifact domains.

Topics

Domain overview

Create a domain

Delete a domain

Domain policies

Tag a domain in CodeArtifact

Domain overview

When you're working with CodeArtifact, domains are useful for the following:

» Deduplicated storage: An asset only needs to be stored once in a domain, even if it's available in
1 or 1,000 repositories. That means you only pay for storage once.

» Fast copying: When you pull packages from an upstream CodeArtifact repository into a
downstream or use the CopyPackageVersions API, only metadata records must be updated. No

assets are copied. This makes it fast to set up a new repository for staging or testing. For more
information, see Working with upstream repositories in CodeArtifact.

» Easy sharing across repositories and teams: All of the assets and metadata in a domain are
encrypted with a single AWS KMS key (KMS key). You don't need to manage a key for each
repository or grant multiple accounts access to a single key.

« Apply policy across multiple repositories: The domain administrator can apply policy across
the domain. This includes restricting which accounts have access to repositories in the domain,

Domain overview 146

CodeArtifact CodeArtifact User Guide

and who can configure connections to public repositories to use as sources of packages. For more
information, see Domain policies.

« Unique repository names: The domain provides a namespace for repositories. Repository names
only need to be unique within the domain. You should use meaningful names that are easy to
understand.

Domain names must be unique within an account.

You cannot create a repository without a domain. When you use the CreateRepository API to create

a repository, you must specify a domain name. You cannot move a repository from one domain to
another.

A repository can be owned by the same AWS account that owns the domain, or a different
account. If the owning accounts are different, the repository-owning account must be granted the
CreateRepository permission on the domain resource. You can do this by adding a resource
policy to the domain using the PutDomainPermissionsPolicy command.

Although an organization can have multiple domains, the recommendation is to have a single
production domain that contains all published artifacts so that development teams can find and
share packages across their organization. A second pre-production domain can be useful for testing
changes to the production domain configuration.

Cross-account domains

Domain names only need to be unique within an account, which means there could be multiple
domains within a region that have the same name. Because of this, if you want to access a domain
that is owned by an account you are not authenticated to, you must provide the domain owner ID
along with the domain name in both the CLI and the console. See the following CLI examples.

Access a domain owned by an account you are authenticated to:

When accessing a domain within the account you're authenticated to, you only need to specify the
domain name. The following example lists packages in the my_repo repository in the my_domain
domain that is owned by your account.

aws codeartifact list-packages --domain my_domain --repository my_repo

Access a domain owned by an account that you are not authenticated to:

Cross-account domains 147

CodeArtifact CodeArtifact User Guide

When accessing a domain that is owned by an account that you're not authenticated to, you need
to specify the domain owner as well as the domain name. The following example lists packages in
the other-repo repository in the other-domain domain that is owned by an account that you
are not authenticated to. Notice the addition of the - -domain-owner parameter.

aws codeartifact list-packages --domain other-domain --domain-owner 111122223333 --
repository other-repo

Types of AWS KMS keys supported in CodeArtifact

CodeArtifact supports only symmetric KMS keys. You can't use an asymmetric KMS key to encrypt

your CodeArtifact domains. For more information, see Identifying symmetric and asymmetric KMS

keys. To learn how to create a new customer managed key, see Creating symmetric encryption KMS
keys in the AWS Key Management Service Developer Guide.

CodeArtifact supports AWS KMS External Key Stores (XKS). You are responsible for the availability,
durability, and latency of key operations with XKS keys, which can affect availability, durability, and
latency with CodeArtifact. Some examples of effects of using XKS keys with CodeArtifact:

» Because every asset of a requested package and all of its dependencies is subject to decryption
latency, build latency can be increased substantially with an increase in XKS operation latency.

» Because all assets are encrypted in CodeArtifact, a loss of XKS key materials will result in a loss
of all assets associated with the domain using the XKS key.

For more information about XKS keys, see External key stores in the AWS Key Management Service

Developer Guide.

Create a domain

You can create a domain using the CodeArtifact console, the AWS Command Line Interface (AWS
CLI), or AWS CloudFormation. When you create a domain, it does not contain any repositories. For
more information, see Create a repository. For more information about managing CodeArtifact

domains with CloudFormation, see Creating CodeArtifact resources with AWS CloudFormation.

Topics
e Create a domain (console)

o Create a domain (AWS CLI)

Types of AWS KMS keys supported in CodeArtifact 148

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/keystore-external.html

CodeArtifact CodeArtifact User Guide

« Example AWS KMS key policy

Create a domain (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

In the navigation pane, choose Domains, and then choose Create domain.
In Name, enter a name for your domain.

Expand Additional configuration.

Lok W

Use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an AWS
managed KMS key or a KMS key that you manage. For more information about the supported
types of KMS keys in CodeArtifact, see Types of AWS KMS keys supported in CodeArtifact.

» Choose AWS managed key if you want to use the default AWS managed key.

» Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed key and Customer managed key in the AWS Key
Management Service Developer Guide.

6. Choose Create domain.

Create a domain (AWS CLI)

To create a domain with the AWS CLI, use the create-domain command. You must use an AWS
KMS key (KMS key) to encrypt all assets in your domain. You can use an AWS managed KMS key or
a KMS key that you manage. If you use an AWS managed KMS key, do not use the --encryption-
key parameter.

For more information about the supported types of KMS keys in CodeArtifact, see Types of AWS

KMS keys supported in CodeArtifact. For more information about KMS keys, see AWS managed key

and Customer managed key in the AWS Key Management Service Developer Guide.

aws codeartifact create-domain --domain my_domain

Create a domain (console) 149

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

JSON-formatted data appears in the output with details about your new domain.

"domain": {
"name": "my_domain",
"owner": "111122223333",
"arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
"status": "Active",
"encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
"repositoryCount": 0,
"assetSizeBytes": 0,
"createdTime": "2020-10-12T16:51:18.039000-04:00"

If you use a KMS key that you manage, include its Amazon Resource Name (ARN) with the - -
encryption-key parameter.

aws codeartifact create-domain --domain my_domain --encryption-key arn:aws:kms:us-
west-2:111122223333:key/your-kms-key

JSON-formatted data appears in the output with details about your new domain.

"domain": {
"name": "my_domain",
"owner": "111122223333",

"arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
"status": "Active",

"encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
"repositoryCount": 0,

"assetSizeBytes": 0,

"createdTime": "2020-10-12T16:51:18.039000-04:00"

Create a domain with tags

To create a domain with tags, add the --tags parameter to your create-domain command.

Create a domain (AWS CLI) 150

CodeArtifact CodeArtifact User Guide

aws codeartifact create-domain --domain my_domain --tags key=k1,value=vl
key=k2,value=v2

Example AWS KMS key policy

When you create a domain in CodeArtifact, you use a KMS key to encrypt all assets in the domain.
You can choose an AWS managed KMS key, or a customer managed key that you manage. For more
information about KMS keys, see the AWS Key Management Service Developer Guide.

To use a customer managed key, your KMS key must have a key policy that grants access to
CodeArtifact. A key policy is a resource policy for an AWS KMS key and are the primary way to
control access to KMS keys. Every KMS key must have exactly one key policy. The statements in the
key policy determine who has permission to use the KMS key and how they can use it.

The following example key policy statement allows AWS CodeArtifact to create grants and

view key details on behalf of authorized users. This policy statement limits the permission to
CodeArtifact acting on the specified account ID’s behalf by using the kms:ViaService and
kms:CallerAccount condition keys. It also grants all AWS KMS permissions to the IAM root user,
so the key can be managed after it is created.

"Version": "2012-10-17",
"Id": "key-consolepolicy-3",
"Statement": [
{
"Sid": "Allow access through AWS CodeArtifact for all principals in the
account that are authorized to use CodeArtifact",
"Effect": "Allow",
"Principal": {
"AWS!:
},
"Action": [
"kms:CreateGrant",
"kms:DescribeKey"
1,
"Resource": "*",
"Condition": {
"StringEquals": {
"kms:CallerAccount": "111122223333",
"kms:ViaService": "codeartifact.us-west-2.amazonaws.com"

Example AWS KMS key policy 151

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

CodeArtifact CodeArtifact User Guide

}
.
{
"Sid": "Enable IAM User Permissions",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
.
"Action": "kms:*",
"Resource": "*"
}

Delete a domain

You can delete a domain using the CodeArtifact console or the AWS Command Line Interface (AWS
CLlI).

Topics

+ Restrictions on domain deletion

o Delete a domain (console)

o Delete a domain (AWS CLI)

Restrictions on domain deletion

Normally, you can't delete a domain that contains repositories. Before you delete the domain, you
must first delete its repositories. For more information, see Delete a repository.

However, if CodeArtifact no longer has access to the domain's KMS key, you can delete the domain
even if it still contains repositories. This situation will occur if you delete the domain's KMS key or
revoke the KMS grant that CodeArtifact uses to access the key. In this state, you cannot access the
repositories in the domain or the packages stored in them. Listing and deleting of repositories is
also not possible when CodeArtifact cannot access the domain's KMS key. For this reason, domain
deletion doesn't check whether the domain contains repositories when the domain's KMS key is
inaccessible.

Delete a domain 152

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

CodeArtifact CodeArtifact User Guide

® Note

When a domain that still contains repositories is deleted, CodeArtifact will asynchronously
delete the repositories within 15 minutes. After the domain is deleted, the repositories will
still be visible in the CodeArtifact console and in the output of the 1ist-repositories
command until the automatic repository cleanup occurs.

Delete a domain (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, then choose the domain that you want to delete.

3. Choose Delete.

Delete a domain (AWS CLI)

Use the delete-domain command to delete a domain.

aws codeartifact delete-domain --domain my_domain --domain-owner 111122223333

JSON-formatted data appears in the output with details about the deleted domain.

"domain": {
"name": "my_domain",
"owner": "111122223333",
"arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
"status": "Active",
"encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
"repositoryCount": 0,
"assetSizeBytes": 0,
"createdTime": "2020-10-12T16:51:18.039000-04:00"

Delete a domain (console) 153

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Domain policies

CodeArtifact supports using resource-based permissions to control access. Resource-based
permissions let you specify who has access to a resource and which actions they can perform on it.
By default, only the AWS account that owns the domain can create and access repositories in the
domain. You can apply a policy document to a domain to allow other IAM principals to access it.

For more information, see Policies and Permissions and Identity-Based Policies and Resource-Based

Policies.

Topics

e Enable cross-account access to a domain

« Domain policy example

« Domain policy example with AWS Organizations

» Set a domain policy

» Read a domain policy

» Delete a domain policy

Enable cross-account access to a domain

A resource policy is a text file in JSON format. The file must specify a principal (actor), one or

more actions, and an effect (A1low or Deny). To create a repository in a domain owned by another
account, the principal must be granted the CreateRepository permission on the domain
resource.

For example, the following resource policy grants the account 123456789012 permission to create
a repository in the domain.

"Version": "2012-10-17",
"Statement": [
{
"Action": [
"codeartifact:CreateRepository"
1,
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"

Domain policies 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

CodeArtifact CodeArtifact User Guide

}I

"Resource": "*"

To allow creating repositories with tags, you must include the codeartifact:TagResource
permission. This will also give the account access to add tags to the domain and all repositories in
it.

The domain policy is evaluated for all operations against the domain and all resources

within the domain. This means the domain policy may be used to apply permissions to

repositories and packages in the domain. When the Resource element is set to *, then the
statement applies to all resources in the domain. For example, if the policy above also included
codeartifact:DescribeRepository in the list of allowed IAM actions, then the policy would
allow calling DescribeRepository on every repository in the domain. A domain policy may be
used to apply permissions to specific resources in the domain by using specific resource ARNs in the
Resource element.

® Note

Both domain and repository policies may be used to configure permissions. When both
policies are present, then both policies will be evaluated and an action is allowed if allowed
by either policy. For more information, see Interaction between repository and domain

policies.

To access packages in a domain owned by another account, a principal must be granted the
GetAuthorizationToken permission on the domain resource. This allows the domain owner to
exercise control over which accounts can read the contents of repositories in the domain.

For example, the following resource policy grants the account 123456789012 permission to
retrieve an auth token for any repository in the domain.

"Version": "2012-10-17",
"Statement": [
{

"Action": [

Enable cross-account access to a domain 155

CodeArtifact CodeArtifact User Guide

"codeartifact:GetAuthorizationToken"

15
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
1,

"Resource": "*"

(® Note

A principal who wants to fetch packages from a repository endpoint must be granted

the ReadFromRepository permission on the repository resource in addition to the
GetAuthorizationToken permission on the domain. Similarly, a principal who wants to
publish packages to a repository endpoint must be granted the PublishPackageVersion
permission in addition to GetAuthorizationToken.

For more information about the ReadFromRepository and PublishPackageVersion
permissions, see Repository Policies.

Domain policy example

When multiple accounts are using a domain, the accounts should be granted a basic set of
permissions to allow full use of the domain. The following resource policy lists a set of permissions
that allow full use of the domain.

"Version": "2012-10-17",
"Statement": [
{

"Sid": "BasicDomainPolicy",

"Action": [
"codeartifact:GetDomainPermissionsPolicy",
"codeartifact:ListRepositoriesInDomain",
"codeartifact:GetAuthorizationToken",
"codeartifact:DescribeDomain",
"codeartifact:CreateRepository"

1,

"Effect": "Allow",

Domain policy example 156

CodeArtifact CodeArtifact User Guide

"Resource": "*",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"

(® Note

You don't need to create a domain policy if a domain and all its repositories are owned by a
single account and only need to be used from that account.

Domain policy example with AWS Organizations

You can use the aws :PrincipalOrgID condition key to grant access to an CodeArtifact domain
from all accounts in your organization, as follows.

"Version": "2012-10-17",
"Statement": {

"Sid": "DomainPolicyForOrganization",

"Effect": "Allow",

"Principal": "*",

"Action": [
"codeartifact:GetDomainPermissionsPolicy",
"codeartifact:ListRepositoriesInDomain",
"codeartifact:GetAuthorizationToken",
"codeartifact:DescribeDomain",
"codeartifact:CreateRepository"

1,

"Resource": "*",

"Condition": {

"StringEquals": { "aws:PrincipalOrgID":["o-XxXxXXXxxxxxx"]1}

For more information about using the aws :PrincipalOrgID condition key, see AWS Global
Condition Context Keys in the IAM User Guide.

Domain policy example with AWS Organizations 157

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

CodeArtifact CodeArtifact User Guide

Set a domain policy
You can use the put-domain-permissions-policy command to attach a policy to a domain.

aws codeartifact put-domain-permissions-policy --domain my_domain --domain-
owner 111122223333 \
--policy-document file://</PATH/TO/policy.json>

When you call put-domains-permissions-policy, the resource policy on the domain is
ignored when evaluting permissions. This ensures that the owner of a domain cannot lock
themselves out of the domain, which would prevent them from being able to update the resource

policy.

® Note

You cannot grant permissions to another AWS account to update the resource policy on
a domain using a resource policy, since the resource policy is ignored when calling put-
domain-permissions-policy.

Sample output:

{
"policy": {
"resourceArn": "arn:aws:codeartifact:region-id:111122223333:domain/my_domain",
"document": "{ ...policy document content...}",
"revision": "MQlyyTQRASRU3HB58gBtSDHXG7@3hvxxxxxxx="
}
}

The output of the command contains the Amazon Resource Name (ARN) of the domain resource,
the full contents of the policy document, and a revision identifier. The revision identifier can be
passed to put-domain-permissions-policy using the --policy-revision option. This
ensures that a known revision of the document is being overwritten, and not a newer version set by
another writer.

Set a domain policy 158

CodeArtifact CodeArtifact User Guide

Read a domain policy

To read an existing version of a policy document, use the get-domain-permissions-
policy command. To format the output for readability, use the --output and --query
policy.document together with the Python json.tool module, as follows.

aws codeartifact get-domain-permissions-policy --domain my_domain --domain-
owner 111122223333 \
--output text --query policy.document | python -m json.tool

Sample output:

"Version": "2012-10-17",
"Statement": [
{

"Sid": "BasicDomainPolicy",

"Action": [
"codeartifact:GetDomainPermissionsPolicy",
"codeartifact:ListRepositoriesInDomain",
"codeartifact:GetAuthorizationToken",
"codeartifact:CreateRepository"

1,

"Effect": "Allow",

"Resource": "*",

"Principal": {

"AWS": "arn:aws:iam::111122223333:root"

Delete a domain policy

Use the delete-domain-permissions-policy command to delete a policy from a domain.

aws codeartifact delete-domain-permissions-policy --domain my_domain --domain-
owner 111122223333

The format of the output is the same as that of the get-domain-permissions-policy and
delete-domain-permissions-policy commands.

Read a domain policy 159

CodeArtifact CodeArtifact User Guide

Tag a domain in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your domains in
CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a domain. You can use the console or CLI to
add or remove tags, and update the values of tags in a domain. You can add up to 50 tags to each
domain.

Topics

» Tag domains (CLI)

» Tag domains (console)

Tag domains (CLI)

You can use the CLI to manage domain tags.

Topics

« Add tags to a domain (CLI)

» View tags for a domain (CLI)

 Edit tags for a domain (CLI)

« Remove tags from a domain (CLI)

Add tags to a domain (CLI)
You can use the console or the AWS CLI to tag domains.

To add a tag to a domain when you create it, see Create a repository.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line

Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the domain where you want to add tags and the key and value of the tag you want
to add.

Tag a domain 160

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

CodeArtifact CodeArtifact User Guide

® Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

You can add more than one tag to a domain. For example, to tag a domain named my_domain with
two tags, a tag key named key1 with the tag value of valuel, and a tag key named key2 with the
tag value of value2:

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tags key=keyl,value=valuel key=key2,value=value2

If successful, this command has no output.
View tags for a domain (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a domain. If no tags have been
added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command with the Amazon
Resource Name (ARN) of the domain.

® Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

For example, to view a list of tag keys and tag values for a domain named my_domain with the
arn:aws:codeartifact:us-west-2:123456789012:domain/my_domain ARN value:

aws codeartifact list-tags-for-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain

If successful, this command returns information similar to the following:

Tag domains (CLI) 161

CodeArtifact User Guide

CodeArtifact
{
"tags": {
"keyl": "valuel",
"key2": "value2"
}
}

Edit tags for a domain (CLI)

Follow these steps to use the AWS CLI to edit a tag for a domain. You can change the value for an
existing key or add another key. You can also remove tags from a domain, as shown in the next

section.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
domain where you want to update a tag and specify the tag key and tag value:

(® Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tags key=keyl,value=newvaluel

If successful, this command has no output.

Remove tags from a domain (CLI)

Follow these steps to use the AWS CLI to remove a tag from a domain.
(® Note

If you delete a domain, all tag associations are removed from the deleted domain. You do
not have to remove tags before you delete a domain.

Tag domains (CLI) 162

CodeArtifact CodeArtifact User Guide

At the terminal or command line, run the untag-resource command, specifying the ARN of the
domain where you want to remove tags and the tag key of the tag you want to remove.

® Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

For example, to remove multiple tags on a domain named mydomain with the tag keys key1 and
key?2:

aws codeartifact untag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tag-keys keyl key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the domain using the 1ist-tags-for-resource command.

Tag domains (console)

You can use the console or the CLI to tag resources.

Topics

Add tags to a domain (console)

View tags for a domain (console)

Edit tags for a domain (console)

Remove tags from a domain (console)

Add tags to a domain (console)

You can use the console to add tags to an existing domain.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. On the Domains page, choose the domain that you want to add tags to.

Tag domains (console) 163

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

3. Expand the Details section.

4. Under Domain tags, choose Add domain tags if there are no tags on the domain, or choose
View and edit domain tags if there are.

5. Choose Add new tag.

6. Inthe Key and Value fields, enter the text for each tag you want to add. (The Value field is
optional.) For example, in Key, enter Name. In Value, enter Test.

Developer Tools CodeArtifact Daomains domainname Edit domain

Edit domainname .«

Tags

Tags - optional

Key Value - optional
Add new tag

You can add 49 more tags.

» AWS reserved tags

Resource tags added by other AWS services. These tags cannot be modified.

Cancel Update domain

7. (Optional) Choose Add tag to add more rows and enter more tags.

8. Choose Update domain.

View tags for a domain (console)

You can use the console to list tags for existing domains.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

2. On the Domains page, choose the domain where you want to view tags.
Expand the Details section.

4. Under Domain tags, choose View and edit domain tags.

Tag domains (console) 164

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact

CodeArtifact User Guide

® Note

If there are no tags added to this domain, the console will read Add domain tags.

Edit tags for a domain (console)

You can use the console to edit tags that have been added to domain.

1.

Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/

codeartifact/home.

On the Domains page, choose the domain where you want to update tags.
Expand the Details section.

Under Domain tags, choose View and edit domain tags.

(® Note

If there are no tags added to this domain, the console will read Add domain tags.

In the Key and Value fields, update the values in each field as needed. For example, for the
Name key, in Value, change Test to Prod.

Choose Update domain.

Remove tags from a domain (console)

You can use the console to delete tags from domains.

1.

Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

On the Domains page, choose the domain where you want to remove tags.
Expand the Details section.

Under Domain tags, choose View and edit domain tags.

Tag domains (console)

165

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

® Note

If there are no tags added to this domain, the console will read Add domain tags.

5. Next to the key and value for each tag you want to delete, choose Remove.

6. Choose Update domain.

Tag domains (console) 166

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Cargo

These topics describe how to use Cargo, the Rust package manager, with CodeArtifact.

(@ Note

CodeArtifact only supports Cargo 1.74.0 and higher. Cargo 1.74.0 is the earliest version
that supports authentication on a CodeArtifact repository.

Topics

» Configure and use Cargo with CodeArtifact

+ Cargo command support

Configure and use Cargo with CodeArtifact

You can use Cargo to publish and download crates from CodeArtifact repositories or to fetch crates
from crates.io, the Rust community's crate registry. This topic describes how to configure Cargo to
authenticate with and use a CodeArtifact repository.

Configure Cargo with CodeArtifact

To use Cargo to install and publish crates from AWS CodeArtifact, you'll first need to configure
them with your CodeArtifact repository information. Follow the steps in one of the following
procedure to configure Cargo with your CodeArtifact repository endpoint information and
credentials.

Configure Cargo using the console instructions

You can use configuration instructions in the console to connect Cargo to your CodeArtifact
repository. The console instructions provide a Cargo configuration customized for your
CodeArtifact repository. You can use this custom configuration to set up Cargo without needing to
find and fill in your CodeArtifact information.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

Configure and use Cargo 167

https://crates.io/
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact

CodeArtifact User Guide

2.

o un A~ W

In the navigation pane, choose Repositories, and then choose a repository to connect to
Cargo.

Choose View connection instructions.
Choose your operating system.
Choose Cargo.

Follow the generated instructions to connect Cargo to your CodeArtifact repository.

Configure Cargo manually

If you cannot or do not want to use the configuration instructions from the console, you can use

the following instructions to connect Cargo to your CodeArtifact repository manually.

macOS and Linux

In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact repository

as a registry in the Cargo configuration and provide credentials.

» Replace my_registry with your registry name.
» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

» Replace my_repo with your CodeArtifact repository name.

Copy the configuration to publish and download Cargo packages to your repository and
save it in the ~/.cargo/config.toml file for a system-level configuration or . cargo/
config.toml for a project-level configuration:

[registries.my_registry]

index = "sparse+https://my_domain-111122223333.d.codeartifact.us-

west-2.amazonaws.com/cargo/my_repo/"

credential-provider = "cargo:token-from-stdout aws codeartifact get-authorization-

token --domain my_domain --domain-owner 111122223333 --region us-west-2 --query
authorizationToken --output text"

[registry]
default = "my_registry"

Configure Cargo with CodeArtifact

168

CodeArtifact CodeArtifact User Guide

[source.crates-io]
replace-with = "my_registry"

Windows: Download packages only

In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact repository
as a registry in the Cargo configuration and provide credentials.

» Replace my_registry with your registry name.
» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

« Replace my_repo with your CodeArtifact repository name.

Copy the configuration to only download Cargo packages from your repository and save it in
the SUSERPROFILE%\.cargo\config.toml file for a system-level configuration or .cargo
\config.toml for a project-level configuration:

[registries.my_registry]

index = "sparsethttps://my_domain-111122223333.d.codeartifact.us-

west-2.amazonaws.com/cargo/my_repo/"

credential-provider = "cargo:token-from-stdout aws codeartifact get-authorization-

token --domain my_domain --domain-owner 111122223333 --region us-west-2 --query
authorizationToken --output text"

[registry]
default = "my_registry"

[source.crates-io]
replace-with = "my_registry"

Windows: Publish and download packages

1. In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact
repository as a registry in the Cargo configuration and provide credentials.

» Replace my_registry with your registry name.

» Replace my_domain with your CodeArtifact domain name.

Configure Cargo with CodeArtifact 169

CodeArtifact CodeArtifact User Guide

e Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

« Replace my_repo with your CodeArtifact repository name.

Copy the configuration to publish and download Cargo packages to your repository
and save it in the SUSERPROFILE%\.cargo\config.toml file for a system-level
configuration or . cargo\config.toml for a project-level configuration.

It is recommended that you use the credential provider cargo: token, which uses the
credentials stored in your ~/.cargo/credentials. toml file. You may run into an error
during cargo publish if you use cargo:token-from-stdout because the Cargo client
doesn't trim the authorization token properly during cargo publish.

[registries.my_registry]

index = "sparsethttps://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/cargo/my_repo/"

credential-provider = "cargo:token"

[registry]
default = "my_registry"

[source.crates-io]
replace-with = "my_registry"

2. To publish Cargo packages to your repository with Windows, you must use the CodeArtifact
get-authorization-token command and Cargo 1login command to fetch an
authorization token and your credentials.

« Replace my_registry with your registry name as defined in
[registries.my_registry].

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

Configure Cargo with CodeArtifact 170

CodeArtifact CodeArtifact User Guide

aws codeartifact get-authorization-token --domain my_domain --domain-
owner 111122223333 --region us-west-2 --query authorizationToken --output text |

cargo login --registry my_registry

(® Note
The authorization token generated is valid for 12 hours. You will need to create a
new one if 12 hours have passed since a token was created.

The [registries.my_registry] section in the preceding example defines a registry with
my_registry and provides index and credential-provider information.

« index specifies the URL of the index for your registry, which is the CodeArtifact repository
endpoint that ends with a /. The sparse+ prefix is required for registries that are not Git

repositories.

(@ Note
To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

« credential-provider specifies the credential provider for the given registry. If credential -
provider isn't set, the providers in registry.global-credential-providers will be used.
By setting credential-provider to cargo:token-from-stdout, the Cargo client will fetch
new authorization token automatically when publishing or downloading from your CodeArtifact
repository, therefore you don't need to manually refresh the authorization token every 12 hours.

The [registry] section defines the default registry used.

« default specifies the name of the registry defined in [Tregistries.my_registry], to use by
default when publishing or downloading from your CodeArtifact repository.

The [source.crates-io] section defines the default registry used when one isn't specified.

Configure Cargo with CodeArtifact 171

CodeArtifact CodeArtifact User Guide

« replace-with = "my_registry" replaces the public registry, crates.io with your
CodeArtifact repository defined in [registries.my_registry]. This configuration is
recommended if you need to request packages from the external connection such as crates.io.

To get all of the benefits of CodeArtifact, such as the package origin control that prevents
dependency confusion attacks, it is recommended that you use source replacement. With the
source replacement, CodeArtifact proxies all requests to the external connection and copies the
package from the external connection to your repository. Without the source replacement, the
Cargo client will directly retrieve the package based on the configuration in your Cargo.toml
file in your project. If a dependency is not marked with registry=my_registry, the Cargo
client will retrieve it directly from crates.io without communicating with your CodeArtifact
repository.

(® Note

If you start using source replacement and then update your configuration file to not use
source replacement, you may encounter errors. The opposite scenario may also lead to
errors. Therefore, it is recommended that you avoid changing the configuration for your
project.

Installing Cargo crates

Use the following procedures to install Cargo crates from a CodeArtifact repository or from
crates.io.

Install Cargo crates from CodeArtifact

You can use the Cargo (cargo) CLI to quickly install a specific version of a Cargo crate from your
CodeArtifact repository.

To install Cargo crates from a CodeArtifact repository with cargo

1. If you haven't, follow the steps in Configure and use Cargo with CodeArtifact to configure the
cargo CLI to use your CodeArtifact repository with proper credentials.

2. Use the following command to install Cargo crates from CodeArtifact:

cargo add my_cargo_package@l.0.0

Installing Cargo crates 172

https://crates.io/

CodeArtifact CodeArtifact User Guide

For more information, see cargo add in The Cargo Book.

Publishing Cargo crates to CodeArtifact

Use the following procedure to publish Cargo crates to a CodeArtifact repository using the cargo
CLI.

1. If you haven't, follow the steps in Configure and use Cargo with CodeArtifact to configure the
cargo CLI to use your CodeArtifact repository with proper credentials.

2. Use the following command to publish Cargo crates to a CodeArtifact repository:

cargo publish

For more information, see cargo publish in The Cargo Book.

Cargo command support

The following sections summarize the Cargo commands that are supported by CodeArtifact
repositories, in addition to specific commands that are not supported.

Contents

» Supported commands that require accessing the registry

« Unsupported commands

Supported commands that require accessing the registry

This section lists Cargo commands where the Cargo client requires access to the registry it's been
configured with. These commands have been verified to function correctly when invoked against a
CodeArtifact repository.

Command Description

build Builds local packages and their dependencies.

Publishing Cargo crates 173

https://doc.rust-lang.org/cargo/commands/cargo-add.html
https://doc.rust-lang.org/cargo/commands/cargo-publish.html
https://doc.rust-lang.org/cargo/commands/cargo-build.html

CodeArtifact CodeArtifact User Guide

Command Description

check Checks local packages and their dependencies
for errors.

fetch Fetches the dependencies of a package.

publish Publishes a package to the registry.

Unsupported commands

These Cargo commands are not supported by CodeArtifact repositories.

Command Description

owner Manages the owners of the
crate on the registry.

search Searches for packages in the
registry.

Unsupported commands 174

https://doc.rust-lang.org/cargo/commands/cargo-check.html
https://doc.rust-lang.org/cargo/commands/cargo-fetch.html
https://doc.rust-lang.org/cargo/commands/cargo-publish.html
https://doc.rust-lang.org/cargo/commands/cargo-owner.html
https://doc.rust-lang.org/cargo/commands/cargo-search.html

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Maven

The Maven repository format is used by many different languages, including Java, Kotlin, Scala, and
Clojure. It's supported by many different build tools, including Maven, Gradle, Scala SBT, Apache
Ivy, and Leiningen.

We have tested and confirmed compatibility with CodeArtifact for the following versions:

« Latest Maven version: 3.6.3.
« Latest Gradle version: 6.4.1. 5.5.1 has also been tested.

« Latest Clojure version: 1.11.1 has also been tested.

Topics

o Use CodeArtifact with Gradle

e Use CodeArtifact with mvn

» Use CodeArtifact with deps.edn

o Publishing with curl

« Use Maven checksums

« Use Maven snapshots

» Requesting Maven packages from upstreams and external connections

« Maven troubleshooting

Use CodeArtifact with Gradle

After you have the CodeArtifact auth token in an environment variable as described in Pass an auth
token using an environment variable, follow these instructions to consume Maven packages from,
and publish new packages to, a CodeArtifact repository.

Topics

» Fetch dependencies

» Fetch plugins

« Publish artifacts
+ Run a Gradle build in IntelliJ IDEA

Use CodeArtifact with Gradle 175

CodeArtifact CodeArtifact User Guide

Fetch dependencies

To fetch dependencies from CodeArtifact in a Gradle build, use the following procedure.
To fetch dependencies from CodeArtifact in a Gradle build

1. If you haven't, create and store a CodeArtifact auth token in an environment variable by
following the procedure in Pass an auth token using an environment variable.

2. Addamaven section to the repositories section in the project build.gradle file.

maven {

url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"'

credentials {

username "aws
password System.env.CODEARTIFACT_AUTH_TOKEN

The url in the preceding example is your CodeArtifact repository's endpoint. Gradle uses
the endpoint to connect to your repository. In the sample, my_domain is the name of your
domain, 111122223333 is the ID of the owner of the domain, and my_xrepo is the name of
your repository. You can retrieve a repository's endpoint by using the get-repository-
endpoint AWS CLI command.

For example, with a repository named my_repo inside a domain named my_domain, the
command is as follows:

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format maven

The get-repository-endpoint command will return the repository endpoint:

url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"

The credentials object in the preceding example includes the CodeArtifact auth token you
created in Step 1 that Gradle uses to authenticate to CodeArtifact.

Fetch dependencies 176

CodeArtifact CodeArtifact User Guide

® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

3. (Optional) - To use the CodeArtifact repository as the only source for your project
dependencies, remove any other sections in repositories from build.gradle. If you have
more than one repository, Gradle searches each repository for dependencies in the order they
are listed.

4. After you configure the repository, you can add project dependencies to the dependencies
section with standard Gradle syntax.

dependencies {
implementation 'com.google.guava:guava:27.1-jre'
implementation 'commons-cli:commons-cli:1.4'
testImplementation 'org.testng:testng:6.14.3'

Fetch plugins

By default Gradle will resolve plugins from the public Gradle Plugin Portal. To pull plugins from a
CodeArtifact repository, use the following procedure.

To pull plugins from a CodeArtifact repository

1. If you haven't, create and store a CodeArtifact auth token in an environment variable by
following the procedure in Pass an auth token using an environment variable.

2. AddapluginManagement block to your settings.gradle file. The pluginManagement
block must appear before any other statements in settings.gradle, see the following
snippet:

pluginManagement {
repositories {
maven {
name 'my_repo'
url
"https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"'
credentials {

Fetch plugins 177

https://plugins.gradle.org/

CodeArtifact CodeArtifact User Guide

username 'aws
password System.env.CODEARTIFACT_AUTH_TOKEN

This will ensure that Gradle resolves plugins from the specified repository. The repository must
have an upstream repository with an external connection to the Gradle Plugin Portal (e.g. gradle-
plugins-store) so that commonly-required Gradle plugins are available to the build. For more
information, see the Gradle documentation.

Publish artifacts

This section describes how to publish a Java library built with Gradle to a CodeArtifact repository.

First, add the maven-publish plugin to the plugins section of the project's build.gradle file.

plugins {
id 'java-library'
id 'maven-publish'

Next, add a publishing section to the project build.gradle file.

publishing {
publications {
mavenJava(MavenPublication) {
groupId = 'group-id'
artifactId = 'artifact-id'
version = 'version'
from components.java

}

}

repositories {
maven {

url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"
credentials {
username "aws"
password System.env.CODEARTIFACT_AUTH_TOKEN

Publish artifacts 178

https://docs.gradle.org/current/userguide/plugins.html#sec:custom_plugin_repositories

CodeArtifact CodeArtifact User Guide

The maven-publish plugin generates a POM file based on the groupId, artifactId, and
version specified in the publishing section.

After these changes to build.gradle are complete, run the following command to build the
project and upload it to the repository.

./gradlew publish

Use list-package-versions to check that the package was successfully published.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
--repository my_repo --format maven\
--namespace com.company.framework --package my-package-name

Sample output:

{
"format": "maven",
"namespace": '"com.company.framework",
"package": "example",
"versions": [
{
"version": "1.0",
"revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
"status": "Published"
}
]
}

For more information, see these topics on the Gradle website:

 Building Java Libraries

» Publishing a project as a module

Publish artifacts 179

https://guides.gradle.org/building-java-libraries/
https://docs.gradle.org/current/userguide/publishing_setup.html

CodeArtifact CodeArtifact User Guide

Run a Gradle build in IntelliJ IDEA

You can run a Gradle build in IntelliJ IDEA that pulls dependencies from CodeArtifact. To
authenticate with CodeArtifact, you must provide Gradle with a CodeArtifact authorization token.
There are three methods to provide an auth token.

« Method 1: Storing the auth token in gradle.properties. Use this method if you are able to
overwrite or add to the contents of the gradle.properties file.

« Method 2: Storing the auth token in a separate file. Use this method if you do not want to
modify your gradle.properties file.

« Method 3: Generating a new auth token for each run by running aws as an inline script in
build.gradle. Use this method if you want the Gradle script to fetch a new token on each run.
The token won't be stored on the file system.

Token stored in gradle.properties

Method 1: Storing the auth token in gradle.properties

(® Note
The example shows the gradle.properties file located in GRADLE_USER_HOME.

1. Update your build.gradle file with the following snippet:

repositories {
maven {
url
"https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"
credentials {
username "aws

password "$codeartifactToken"

Run a Gradle build in IntelliJ IDEA 180

CodeArtifact CodeArtifact User Guide

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
repositories {
maven {
name 'my_repo'
url
"https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/"'
credentials {

username
password "$codeartifactToken"

aws

3. Fetch a CodeArtifact auth token:

export CODEARTIFACT_AUTH_TOKEN='aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text --profile profile-name’

4. Write the auth token into the gradle.properties file:

echo "codeartifactToken=$CODEARTIFACT_AUTH_TOKEN" > ~/.gradle/gradle.properties

Token stored in separate file
Method 2: Storing the auth token in a separate file

1. Update your build.gradle file with the following snippet:

def props = new Properties()
file("file").withInputStream { props.load(it) }

repositories {

maven {

Run a Gradle build in IntelliJ IDEA 181

CodeArtifact CodeArtifact User Guide

url
"https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"'
credentials {
username
password props.getProperty("codeartifactToken")

aws

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
def props = new Properties()
file("file").withInputStream { props.load(it) }
repositories {
maven {
name 'my_repo'
url
"https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/"'
credentials {
username
password props.getProperty("codeartifactToken")

aws

3. Fetch a CodeArtifact auth token:

export CODEARTIFACT_AUTH_TOKEN="aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text --profile profile-name’

4. Write the auth token into the file that was specified in your build.gradle file:

echo "codeartifactToken=$CODEARTIFACT_AUTH_TOKEN" > file

Run a Gradle build in IntelliJ IDEA 182

CodeArtifact CodeArtifact User Guide

Token generated for each run in build.gradle

Method 3: Generating a new auth token for each run by running aws as an inline script in
build.gradle

1. Update your build.gradle file with the following snippet:

def codeartifactToken = "aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text --profile profile-name".execute().text
repositories {
maven {
url
"https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/"
credentials {
username "aws
password codeartifactToken

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
def codeartifactToken = "aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text --profile profile-name".execute().text
repositories {
maven {
name 'my_repo'
url
"https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/"'
credentials {
username
password codeartifactToken

aws

Run a Gradle build in IntelliJ IDEA 183

CodeArtifact CodeArtifact User Guide

Use CodeArtifact with mvn

You use the mvnh command to execute Maven builds. This section shows how to configure mvn to
use a CodeArtifact repository.

Topics

Fetch dependencies

Publish artifacts

Publish third-party artifacts

Restrict Maven dependency downloads to a CodeArtifact repository

Apache Maven Project information

Fetch dependencies

To configure mvn to fetch dependencies from a CodeArtifact repository, you must edit the Maven
configuration file, settings. xml, and optionally, your project's POM.

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your

CodeArtifact repository.

2. Insettings.xml (typically found at ~/.m2/settings.xml), add a <servers> section with
a reference to the CODEARTIFACT_AUTH_TOKEN environment variable so that Maven passes
the token in HTTP requests.

<settings>

<servers>
<server>
<id>codeartifact</id>
<username>aws</username>
<password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
</server>
</servers>

Use CodeArtifact with mvn 184

CodeArtifact CodeArtifact User Guide

</settings>

3. Add the URL endpoint for your CodeArtifact repository in a <repository> element. You can
do this in settings. xml or your project's POM file.

You can retrieve your repository's endpoint by using the get-repository-endpoint AWS
CLI command.

For example, with a repository named my_repo inside a domain named my_domain, the
command is as follows:

aws codeartifact get-repository-endpoint --domain my_domain --repository my_repo --
format maven

The get-repository-endpoint command will return the repository endpoint:

url 'https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/"'

(@ Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Add the repository endpoint to settings. xml as follows.

<settings>

<profiles>
<profile>
<id>default</id>
<repositories>
<repository>
<id>codeartifact</id>
<url>https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/</url>
</repository>
</repositories>
</profile>
</profiles>

Fetch dependencies 185

CodeArtifact CodeArtifact User Guide

<activeProfiles>
<activeProfile>default</activeProfile>
</activeProfiles>

</settings>

Or, you can add the <repositories> section to a project POM file to use CodeArtifact for

that project only.

<project>

<repositories>
<repository>
<id>codeartifact</id>
<name>codeartifact</name>
<url>https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/</url>
</repository>
</repositories>

</project>

/A Important

You can use any value in the <id> element, but it must be the same in both the <server>
and <repository> elements. This enables the specified credentials to be included in
requests to CodeArtifact.

After you make these configuration changes, you can build the project.
mvn compile

Maven logs the full URL of all the dependencies it downloads to the console.

[INFO] -----------om - < com.example.example:myapp >-------------------
[INFO] Building myapp 1.0
[INFO] -------mmmmmmmmm e e [J8T% Jl==s=sossssssssocsosascsocoosasa0s

Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.pom

Fetch dependencies 186

CodeArtifact CodeArtifact User Guide

Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.pom (11 kB at 3.9 kB/s)

Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom

Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom

Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom (68 kB at 123
kB/s)

Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.jar

Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/

maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.jar (54 kB at 134 kB/s)

Publish artifacts

To publish a Maven artifact with mvn to a CodeArtifact repository, you must also edit ~/.m2/
settings.xml and the project POM.

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your
CodeArtifact repository.

2. Adda <servers> section to settings.xml with a reference to the
CODEARTIFACT_AUTH_TOKEN environment variable so that Maven passes the token in HTTP
requests.

<settings>

<servers>
<server>
<id>codeartifact</id>
<username>aws</username>
<password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
</server>
</servers>

</settings>

3. Adda<distributionManagement> section to your project's pom.xml.

<project>

Publish artifacts 187

CodeArtifact CodeArtifact User Guide

<distributionManagement>
<repository>
<id>codeartifact</id>
<name>codeartifact</name>
<url>https://my_domain-111122223333.d.codeartifact.us-

west-2.amazonaws.com/maven/my_repo/</url>
</repository>
</distributionManagement>
</project>
After you make these configuration changes, you can build the project and publish it to the
specified repository.

mvn deploy

Use list-package-versions to check that the package was successfully published.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
--repository my_repo --format maven \

--namespace com.company.framework --package my-package-name

Sample output:

{
"defaultDisplayVersion": null,
"format": "maven",
"namespace": "com.company.framework",
"package": "my-package-name",
"versions": [
{
"version": "1.0",
"revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
"status": "Published"
}
]
}

Publish artifacts 188

CodeArtifact CodeArtifact User Guide

Publish third-party artifacts

You can publish third-party Maven artifacts to a CodeArtifact repository with mvn
deploy:deploy-file. This can be helpful to users that want to publish artifacts and only have
JAR files and don't have access to package source code or POM files.

Themvn deploy:deploy-file command will generate a POM file based on the information
passed in the command line.

Publish third-party Maven artifacts

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your
CodeArtifact repository.

2. Createa~/.m2/settings.xml file with the following contents:

<settings>
<servers>
<server>
<id>codeartifact</id>
<username>aws</username>
<password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
</server>
</servers>
</settings>

3. Runthemvn deploy:deploy-file command:

mvn deploy:deploy-file -DgroupId=commons-cli \
-DartifactId=commons-cli \
-Dversion=1.4 \
-Dfile=./commons-cli-1.4.jar \
-Dpackaging=jar \

-DrepositoryId=codeartifact \
-Durl=https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/repo-name/

Publish third-party artifacts 189

CodeArtifact CodeArtifact User Guide

® Note

The example above publishes commons-cli 1.4. Modify the groupld, artifactiD,
version, and file arguments to publish a different JAR.

These instructions are based on examples in the Guide to deploying 3rd party JARs to remote
repository from the Apache Maven documentation.

Restrict Maven dependency downloads to a CodeArtifact repository

If a package cannot be fetched from a configured repository, by default, the mvn command fetches
it from Maven Central. Add the mirrors element to settings.xml to make mvn always use your
CodeArtifact repository.

<settings>

<mirrors>
<mirror>
<id>central-mirror</id>
<name>CodeArtifact Maven Central mirror</name>
<url>https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/</url>
<mirrorOf>central</mirrorOf>
</mirror>
</mirrors>

</settings>

If you add amirrors element, you must also have a pluginRepository element in your
settings.xml or pom.xml. The following example fetches application dependencies and Maven
plugins from a CodeArtifact repository.

<settings>

<profiles>
<profile>
<pluginRepositories>
<pluginRepository>
<id>codeartifact</id>

Restrict Maven dependency downloads to a CodeArtifact repository 190

https://maven.apache.org/guides/mini/guide-3rd-party-jars-remote.html
https://maven.apache.org/guides/mini/guide-3rd-party-jars-remote.html

CodeArtifact CodeArtifact User Guide

<name>CodeArtifact Plugins</name>
<url>https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

</settings>

The following example fetches application dependencies from a CodeArtifact repository and
fetches Maven plugins from Maven Central.

<profiles>
<profile>
<id>default</id>

<pluginRepositories>
<pluginRepository>
<id>central-plugins</id>
<name>Central Plugins</name>
<url>https://repo.maven.apache.org/maven2/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

Apache Maven Project information

For more information about Maven, see these topics on the Apache Maven Project website:

Apache Maven Project information 191

CodeArtifact CodeArtifact User Guide

» Setting up Multiple Repositories

» Settings Reference

 Distribution Management

o Profiles

Use CodeArtifact with deps.edn

You use deps.edn with c1j to manage dependencies for Clojure projects. This section shows how
to configure deps. edn to use a CodeArtifact repository.

Topics

» Fetch dependencies

o Publish artifacts

Fetch dependencies

To configure Clojure to fetch dependencies from a CodeArtifact repository, you must edit the
Maven configuration file, settings. xml.

1. Insettings.xml, add a <servers> section with a reference to the
CODEARTIFACT_AUTH_TOKEN environment variable so that Clojure passes the token in HTTP
requests.

(® Note

Clojure expects the settings.xml file to be located at ~/.m2/settings.xml. If
elsewhere, create the file in this location.

<settings>

<servers>
<server>
<id>codeartifact</id>
<username>aws</username>
<password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
</server>

Use CodeArtifact with deps.edn 192

https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://maven.apache.org/settings.html
https://maven.apache.org/pom.html#Distribution_Management
https://maven.apache.org/pom.html#Profiles

CodeArtifact CodeArtifact User Guide

</servers>
</settings>

2. If you do not have one already, generate a POM xml for your project using c1j -Spom.

3. Inyour deps.edn configuration file, add a repository matching the server id from Maven
settings.xml.

:mvn/repos {

"clojars" nil

"central" nil

"codeartifact" {:url "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/"}

}

(® Note

« tools.deps guarantees that the central and clojars repositories will be
checked first for Maven libraries. Afterward, the other repositories listed in
deps.edn will be checked.

» To prevent downloading from Clojars and Maven Central directly, central and
clojars need to be set tonil.

Make sure you have the CodeArtifact Auth token in an environment variable (see Pass an
auth token using an environment variable). When building the package after these changes,

dependencies in deps. edn will be fetched from CodeArtifact.

(® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Publish artifacts

1. Update your Maven settings and deps. edn to include CodeArtifact as a maven-recognized
server (see Fetch dependencies). You can use a tool such as deps-deploy to upload artifacts to
CodeArtifact.

Publish artifacts 193

https://github.com/slipset/deps-deploy

CodeArtifact CodeArtifact User Guide

2. Inyourbuild.clj, add a deploy task to upload required artifacts to the previously setup
codeartifact repository.

(ns build
(:require [deps-deploy.deps-deploy :as dd]))

(defn deploy [_]
(dd/deploy {:installer :remote
:artifact "PATH_TO_JAR_FILE.jar"
:pom-file "pom.xml" ;; pom containing artifact coordinates
:repository "codeartifact"}))

3. Publish the artifact by running the command: c1j -T:build deploy

For more information on modifying default repositories, see Modifying the default repositories in
the Clojure Deps and CLI Reference Rationale.

Publishing with curl

This section shows how to use the HTTP client curl to publish Maven artifacts to a CodeArtifact
repository. Publishing artifacts with curl can be useful if you do not have or want to install the
Maven client in your environments.

Publish a Maven artifact with curl

1. Fetch a CodeArtifact authorization token by following the steps in Pass an auth token using an

environment variable and return to these steps.

2. Use the following curl command to publish the JAR to a CodeArtifact repository:
In each of the curl commands in this procedure, replace the following placeholders:

» Replace my_domain with your CodeArtifact domain name.

Replace 111122223333 with the ID of the owner of your CodeArtifact domain.

Replace us-west-2 with the region in which your CodeArtifact domain is located.

Replace my_repo with your CodeArtifact repository name.

curl --request PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/com/mycompany/app/my-app/1l.0/my-app-1.0.jar \

Publishing with curl 194

https://clojure.org/reference/deps_and_cli#_modifying_the_default_repositories

CodeArtifact CodeArtifact User Guide

--user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
--data-binary emy-app-1.0. jar

/A Important

You must prefix the value of the --data-binary parameter with a @ character. When
putting the value in quotation marks, the @ must be included inside the quotation
marks.

3. Use the following curl command to publish the POM to a CodeArtifact repository:

curl --request PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/com/mycompany/app/my-app/1l.0/my-app-1.0.pom \
--user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
--data-binary @emy-app-1.0.pom

4. At this point, the Maven artifact will be in your CodeArtifact repository with a status of
Unfinished. To be able to consume the package, it must be in the Published state. You
can move the package from Unfinished to Published by either uploading a maven-
metadata. xml file to your package, or calling the UpdatePackageVersionsStatus API to
change the status.

a. Option 1: Use the following curl command to add a maven-metadata.xml file to your
package:

curl --request PUT
https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/com/mycompany/app/my-app/maven-metadata.xml \
--user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
--data-binary @maven-metadata.xml

The following is an example of the contents of a maven-metadata.xml file:

<metadata modelVersion="1.1.0">
<groupId>com.mycompany.app</groupld>
<artifactId>my-app</artifactId>
<versioning>

Publishing with curl 195

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

<latest>1.0</latest>
<release>1.0</release>
<versions>
<version>1.0</version>
</versions>
<lastUpdated>20200731090423</1lastUpdated>
</versioning>
</metadata>

b. Option 2: Update the package status to Published with the
UpdatePackageVersionsStatus API.

aws codeartifact update-package-versions-status \
--domain my_domain \
--domain-owner 111122223333 \
--repository my_repo \
--format maven \
--namespace com.mycompany.app \
--package my-app \
--versions 1.0 \
--target-status Published

If you only have an artifact's JAR file, you can publish a consumable package version to a
CodeArtifact repository using mvn. This can be useful if you do not have access to the artifact's
source code or POM. See Publish third-party artifacts for details.

Use Maven checksums

When a Maven artifact is published to an AWS CodeArtifact repository, the checksum associated
with each asset or file in the package is used to validate the upload. Examples of assets are jar,
pom, and war files. For each asset, the Maven artifact contains multiple checksum files that use the
asset name with an additional extension, such as md5 or shal. For example, the checksum files for
a file named my-maven-package. jar might be my-maven-package.jar.md5 and my-maven-
package.jar.shal.

® Note

Maven uses the term artifact. In this guide, a Maven package is the same as a Maven
artifact. For more information, see AWS CodeArtifact package.

Use Maven checksums 196

https://docs.aws.amazon.com/codeartifact/latest/ug/welcome.html#welcome-concepts-package

CodeArtifact CodeArtifact User Guide

Checksum storage

CodeArtifact does not store Maven checksums as assets. This means that checksums do not
appear as individual assets in the output of the ListPackageVersionAssets API. Instead, checksums
computed by CodeArtifact are available for each asset in all supported checksum types. For
example, part of the response of calling ListPackageVersionAssets on the Maven package version
commons-lang:commons-lang 2.1is:

"name": "commons-lang-2.1.jar",
"size": 207723,
"hashes": {
"MD5": "51591549f1662a64543f08ald4a@cf87",
"SHA-1": "4763ecc9d78781c915c07eb03e90572c7ff04205",
"SHA-256": "2ded7343dc8e57decd5e6302337139be020fdd885a2935925e8d575975e480b9",
"SHA-512":
"a312a5e33b17835f2e82e74ab52ab81f0dec@la7e72a2ba58bb76b6al197ffcd2bb410e341ef7b3720f3b595ce49fc
}
b
{
"name": "commons-lang-2.1.pom",
"size": 9928,
"hashes": {
"MD5": "8e4lbacdd69de9373c20326d231c8a5d",
"SHA-1": "a34d992202615804c534953aba4s02de55d8ees7c",
"SHA-256": "f1a709cd489f23498a0b6b3dfbfc0d21d4f15904791446dec7f8a58a7da5bd6a",
"SHA-512":
"1631ce8fe4101b6cde857f5b1db9b29b937f98bas45a60e76cc2b8f2a732ff24d19b91821a052¢c1b56b73325104eC
}
},
{

"name": "maven-metadata.xml",
"size": 121,
"hashes": {
"MD5": "11bb3d48d984f2f49cealel50b6fa371",
"SHA-1": "7ef872bel7357751ce65ch907834b6c5769998db",
"SHA-256": "d04d140362ea8989a824a518439246e7194e719557e8d701831b7f5a8228411c",
"SHA-512":
"001813a0333ces4b2a47cf44900470bc2265ae65123a8c6b5ac5f2859184608596baasd8ee0696d0as97755daded e
}

Checksum storage 197

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListPackageVersionAssets.html

CodeArtifact CodeArtifact User Guide

Even though checksums are not stored as assets, Maven clients can still publish and download
checksums at the expected locations. For example, if commons-1lang:commons-lang 2.1 wasin
a repository called maven-repo, the URL path for the SHA-256 checksum of the JAR file would be:

/maven/maven-repo/commons-lang/commons-lang/2.1/commons-lang-2.1.jar.sha256

If you're uploading existing Maven packages (for example, packages previously stored in Amazon
S3) to CodeArtifact using a generic HTTP client such as curl, it's not necessary to upload the
checksums. CodeArtifact will generate them automatically. If you want to verify that the assets
have been uploaded correctly, you can use the ListPackageVersionAssets APl operation to compare
the checksums in the response to the original checksum values for each asset.

Checksum mismatches during publishing

Apart from assets and checksums, Maven artifacts also contain a maven-metadata. xml file. The
normal publishing sequence for a Maven package is for all assets and checksums to be uploaded
first, followed by maven-metadata.xml. For example, the publishing sequence for the Maven
package version commons-1lang 2.1 described previously, assuming the client was configured to
publish SHA-256 checksum files, would be:

PUT commons-lang-2.1.jar

PUT commons-lang-2.1.jar.sha256
PUT commons-lang-2.1.pom

PUT commons-lang-2.1.pom.sha256
PUT maven-metadata.xml

PUT maven-metadata.xml.sha256

When uploading the checksum file for an asset, such as a JAR file, the checksum upload request
will fail with a 400 (Bad Request) response if there's a mismatch between the uploaded checksum
value and the checksum value calculated by CodeArtifact. If the corresponding asset doesn't exist,
the request will fail with a 404 (Not Found) response. To avoid this error, you must first upload the
asset, and then upload the checksum.

When maven-metadata.xml is uploaded, CodeArtifact normally changes the status of the Maven
package version from Unfinished to Published. If a checksum mismatch is detected for any
asset, CodeArtifact will return a 400 (Bad Request) in response to the maven-metadata.xml
publishing request. This error may cause the client to stop uploading files for that package version.
If this occurs, and the maven-metadata. xml file is not uploaded, any assets of the package

Checksum mismatches during publishing 198

CodeArtifact CodeArtifact User Guide

version already uploaded cannot be downloaded. This is because the package version's status is not
set to Published and remains Unfinished.

CodeArtifact allows adding further assets to a Maven package version even after maven-
metadata.xml has been uploaded and the package version status has been set to Published. In
this status, a request to upload a mismatched checksum file will also fail with a 400 (Bad Request)
response. However, because the package version status has already been set to Published, you
can download any asset from the package, including those for which the checksum file upload
failed. When downloading a checksum for an asset where the checksum file upload failed, the
checksum value that the client receives will be the checksum value calculated by CodeArtifact
based on the uploaded asset data.

CodeArtifact checksum comparisons are case sensitive, and the checksums

calculated by CodeArtifact are formatted in lowercase. Therefore, if the checksum
909FA780F76DA393E992A3D2D495F 468 is uploaded, it will fail with a checksum mismatch
because CodeArtifact does not treat it as equal to 909fa780f76da393e992a3d2d495f468.

Recovering from checksum mismatches

If a checksum upload fails as a result of a checksum mismatch, try one of the following to recover:

« Run the command that publishes the Maven artifact again. This might work if a network issue
corrupted the checksum file. If this resolves the network issue, the checksum matches and the
download is successful.

» Delete the package version and then republish it. For more information, see
DeletePackageVersions in the AWS CodeArtifact API Reference.

Use Maven snapshots

A Maven snapshot is a special version of a Maven package that refers to the latest production
branch code. It is a development version that precedes the final release version. You can identify
a snapshot version of a Maven package by the suffix SNAPSHOT that's appended to the package
version. For example, the snapshot of version 1.1 is 1.1-SNAPSHOT. For more information, see
What is a SNAPSHOT version? on the Apache Maven Project website.

AWS CodeArtifact supports publishing and consuming Maven snapshots. Unique snapshots that
use a time-based version number are the only snapshots that are supported. CodeArtifact doesn't

Recovering from checksum mismatches 199

https://docs.aws.amazon.com/dms/latest/APIReference/API_DeletePackageVersions.html
https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version

CodeArtifact CodeArtifact User Guide

support non-unique snapshots that are generated by Maven 2 clients. You can publish a supported
Maven snapshot to any CodeArtifact repository.

Topics

» Snapshot publishing in CodeArtifact

« Consuming snapshot versions

» Deleting snapshot versions

« Snapshot publishing with curl

» Snapshots and external connections

« Snapshots and upstream repositories

Snapshot publishing in CodeArtifact

AWS CodeArtifact supports the request patterns that clients, such as mvn, use when publishing
snapshots. Because of this, you can follow the documentation for your build tool or package
manager without having a detailed understanding of how Maven snapshots are published. If
you're doing something more complex, this section describes in detail how CodeArtifact handles
snapshots.

When a Maven snapshot is published to a CodeArtifact repository, its previous version is preserved
in a new version called a build. Each time a Maven snapshot is published, a new build version is
created. All previous versions of a snapshot are maintained in its build versions. When a Maven
snapshot is published, its package version status is set to Published and the status of the build
that contains the previous version is set to Unlisted. This behavior applies only to Maven package
versions where the package version has -SNAPSHOT as a suffix.

For example, snapshot versions of a maven package called com.mycompany.myapp:pkg-1 are
uploaded to a CodeArtifact repository called my-maven-repo. The snapshot versionis 1.0-
SNAPSHOT. So far, no versions of com.mycompany.myapp:pkg-1 have been published. First, the
assets of the initial build are published at these paths:

PUT maven/my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210728.194552-1. jar
PUT maven/my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210728.194552-1.pom

Snapshot publishing in CodeArtifact 200

CodeArtifact CodeArtifact User Guide

Note that the timestamp 20210728.194552-1 is generated by the client publishing the snapshot
builds.

After the .pom and .jar files are uploaded, the only version of com.mycompany.myapp:pkg-1
that exists in the repository is 1.0-20210728.194552-1. This happens even though the version
specified in the preceding path is 1.0-SNAPSHOT. The package version status at this point is
Unfinished.

aws codeartifact list-package-versions --domain my-domain --repository \
my-maven-repo --package pkg-1 --namespace com.mycompany.myapp --format maven

{

"versions": [

{
"version": "1.0-20210728.194552-1",
"revision": "GipMW+599ImwTcTLaXo9YvDsVQ2bcrrk/@02rWIhoKUuU=",
"status": "Unfinished"
}
1,
"defaultDisplayVersion": null,
"format": "maven",
"package": "pkg-1",
"namespace": "com.mycompany.myapp"

Next, the client uploads the maven-metadata.xml file for the package version:

PUT my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/maven-metadata.xml

When the maven-metadata.xml file is uploaded successfully, CodeArtifact creates the 1.0-
SNAPSHOT package version and sets the 1.0-20210728.194552-1 version to Unlisted.

aws codeartifact list-package-versions --domain my-domain --repository \
my-maven-repo --package pkg-1 --namespace com.mycompany.myapp --format maven

{
"versions": [

{
"version": "1.0-20210728.194552-1",
"revision": "GipMW+599ImwTcTLaXo9YvDsVQ2bcrrk/@02rWIhoKUu=",
"status": "Unlisted"

},

{

"version": "1.0-SNAPSHOT",

Snapshot publishing in CodeArtifact 201

CodeArtifact CodeArtifact User Guide

"revision": "tWu8n3IX5HR82vzVZQAxlwcvvA4U/+S80edWNAkil24=",
"status": "Published"

}
1,
"defaultDisplayVersion": "1.0-SNAPSHOT",
"format": "maven",
"package": "pkg-1",
"namespace": "com.mycompany.myapp"

At this point, the snapshot version 1.0-SNAPSHOT can be consumed in a build. While there are two
versions of com.mycompany .myapp:pkg-1 in the repository my-maven-zrepo, they both contain
the same assets.

aws codeartifact list-package-version-assets --domain my-domain --repository \
my-maven-repo --format maven --namespace com.mycompany.myapp \
--package pkg-1 --package-version 1.0-SNAPSHOT--query 'assets[*].name'

[
"pkg-1-1.0-20210728.194552-1.jar",
"pkg-1-1.0-20210728.194552-1. pom"

Running the same list-package-version-assets command as shown previously with the
--package-version parameter changed to 1.0-20210728.194552-1 results in an identical
output.

As additional builds of 1.0-SNAPSHOT are added to the repository, a new Unlisted package
version is created for each new build. The assets of the version 1.0-SNAPSHOT are updated each
time so that the version always refers to the latest build for that version. Updating the 1.0-
SNAPSHOT with the latest assets is initiated by uploading the maven-metadata. xml file for the
new build.

Consuming snapshot versions

If you request a snapshot, the version with the status Published is returned. This is always

the most recent version of the Maven snapshot. You can also request a particular build of a
snapshot using the build version number (for example, 1.0-20210728.194552-1) instead of
the snapshot version (for example, 1.0-SNAPSHOT) in the URL path. To see the build versions of a
Maven snapshot, use the ListPackageVersions API in the CodeArtifact APl Guide and set the status

parameter to Unlisted.

Consuming snapshot versions 202

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListPackageVersions.html

CodeArtifact CodeArtifact User Guide

Deleting snapshot versions

To delete all build versions of a Maven snapshot, use the DeletePackageVersions API, specifying the

versions that you want to delete.

Snapshot publishing with curl

If you have existing snapshot versions stored in Amazon Simple Storage Service (Amazon S3)
or another artifact repository product, you may want to republish them to AWS CodeArtifact.
Because of how CodeArtifact supports Maven snapshots (see Snapshot publishing in CodeArtifact),

publishing snapshots with a generic HTTP client such as curl is more complex than publishing
Maven release versions as described in Publishing with curl. Note that this section isn't relevant if

you're building and deploying snapshot versions with a Maven client such as mvn or gradle. You
need to follow the documentation for that client.

Publishing a snapshot version involves publishing one or more builds of a snapshot version. In
CodeArtifact, if there are n builds of a snapshot version, there will be n + 7 CodeArtifact versions:
n build versions all with a status of Unlisted, and one snapshot version (the latest published
build) with a status of Published. The snapshot version (that is, the version with a version string
that contains “~-SNAPSHQOT") contains an identical set of assets to the latest published build. The
simplest way to create this structure using curl is as follows:

1. Publish all assets of all builds using curl.

2. Publish the maven-metadata. xml file of the last build (that is, the build with the most-recent
date-time stamp) with curl. This will create a version with “~-SNAPSHOT" in the version string
and with the correct set of assets.

3. Use the UpdatePackageVersionsStatus API to set the status of all the non-latest build versions
toUnlisted.

Use the following curl commands to publish snapshot assets (such as .jar and .pom files) for the
snapshot version 1.0-SNAPSHOT of a package com.mycompany.app:pkg-1:

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
\

-X PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210729.171330-2.jar \

--data-binary @pkg-1-1.0-20210728.194552-1. jar

Deleting snapshot versions 203

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DeletePackageVersions.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
\

-X PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210729.171330-2.pom \

--data-binary @pkg-1-1.0-20210728.194552-1.pom

When using these examples:

Replace my_domain with your CodeArtifact domain name.

Replace 111122223333 with the AWS account ID of the owner of your CodeArtifact domain.

Replace us-west-2 with the AWS Region in which your CodeArtifact domain is located.

Replace my_maven_repo with your CodeArtifact repository name.

/A Important

You must prefix the value of the --data-binary parameter with the @ character. When
putting the value in quotation marks, the @ must be included inside the quotation marks.

You may have more than two assets to upload for each build. For example, there might be Javadoc
and source JAR files in addition to the main JAR and pom. xml. It is not necessary to publish
checksum files for the package version assets because CodeArtifact automatically generates
checksums for each uploaded asset. To verify the assets were uploaded correctly, fetch the
generated checksums using the 1ist-package-version-assets command and compare

those to the original checksums. For more information about how CodeArtifact handles Maven
checksums, see Use Maven checksums.

Use the following curl command to publish the maven-metadata. xml file for the latest build
version:

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
\
-X PUT https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/maven-metadata.xml \
--data-binary @maven-metadata.xml

Snapshot publishing with curl 204

CodeArtifact CodeArtifact User Guide

The maven-metadata.xml file must reference at least one of the assets in the latest build version
in the <snapshotVersions> element. In addition, the <timestamp> value must be present and
must match the timestamp in the asset file names. For example, for the 20210729.171330-2
build published previously, the contents of maven-metadata.xml would be:

<?xml version="1.0" encoding="UTF-8"7?>
<metadata>
<groupId>com.mycompany.app</groupld>
<artifactId>pkg-1l</artifactId>
<version>1.0-SNAPSHOT</version>
<versioning>
<snapshot>
<timestamp>20210729.171330</timestamp>
<buildNumber>2</buildNumber>
</snapshot>
<lastUpdated>20210729171330</lastUpdated>
<snapshotVersions>
<snapshotVersion>
<extension>jar</extension>
<value>1.0-20210729.171330-2</value>
<updated>20210729171330</updated>
</snapshotVersion>
<snapshotVersion>
<extension>pom</extension>
<value>1.0-20210729.171330-2</value>
<updated>20210729171330</updated>
</snapshotVersion>
</snapshotVersions>
</versioning>
</metadata>

After maven-metadata.xml has been published, the last step is to set all the other build versions
(that is, all the build versions apart from the latest build) to have a package version status of
Unlisted. For example, if the 1.0-SNAPSHOT version has two builds, with the first build being
20210728.194552-1, the command to set that build to Unlisted is:

aws codeartifact update-package-versions-status --domain my-domain --domain-owner
111122223333 \

--repository my-maven-repo --format maven --namespace com.mycompany.app --package
pkg-1 \
--versions 1.0-20210728.194552-1 --target-status Unlisted

Snapshot publishing with curl 205

CodeArtifact CodeArtifact User Guide

Snapshots and external connections

Maven snapshots cannot be fetched from a Maven public repository through an external
connection. AWS CodeArtifact only supports importing Maven release versions.

Snapshots and upstream repositories

In general, Maven snapshots work in the same way as Maven release versions when used with
upstream repositories, but there is a limitation if you plan on publishing snapshots of the same
package version to two repositories which have an upstream relationship. For example, say that
there are two repositories in an AWS CodeArtifact domain, R and U, where U is an upstream of
R. If you publish a new build in R, when a Maven client requests the latest build of that snapshot
version, CodeArtifact returns the latest version from U. This can be unexpected since the latest
version is now in R, not U. There are two ways to avoid this:

1. Don't publish builds of a snapshot version such as 1.0-SNAPSHOT in R, if 1.0-SNAPSHOT exists
in U.

2. Use CodeArtifact package origin controls to disable upstreams on that package in R. The latter
will allow you to publish builds of1.@-SNAPSHOT in R, but it will also prevent R from getting
any other versions of that package from U that aren't already retained.

Requesting Maven packages from upstreams and external
connections

Importing standard asset names

When importing a Maven package version from a public repository, such as Maven Central, AWS
CodeArtifact attempts to import all the assets in that package version. As described in Requesting
a package version with upstream repositories, importing occurs when:

» A client requests a Maven asset from a CodeArtifact repository.
» The package version is not already present in the repository or its upstreams.

» There is a reachable external connection to a public Maven repository.

Even though the client may have only requested one asset, CodeArtifact attempts to import all the
assets it can find for that package version. How CodeArtifact discovers which assets are available

Snapshots and external connections 206

CodeArtifact CodeArtifact User Guide

for a Maven package version depends on the particular public repository. Some public Maven
repositories support requesting a list of assets, but others do not. For repositories that do not
provide a way to list assets, CodeArtifact generates a set of asset names that are likely to exist. For
example, when any asset of the Maven package version junit 4.13.2 is requested, CodeArtifact
will attempt to import the following assets:

junit-4.13.2.pom

junit-4.13.2.jar

junit-4.13.2-javadoc.jar

junit-4.13.2-sources.jar

Importing non-standard asset names

When a Maven client requests an asset that doesn’'t match one of the patterns described above,
CodeArtifact checks to see if that asset is present in the public repository. If the asset is present,
it will be imported and added to the existing package version record, if one exists. For example,
the Maven package version com.android.tools.build:aapt2 7.3.1-8691043 contains the
following assets:

e aapt2-7.3.1-8691043.pom

e aapt2-7.3.1-8691043-windows. jar
e aapt2-7.3.1-8691043-0sx.jar

e aapt2-7.3.1-8691043-1inux.jar

When a client requests the POM file, if CodeArtifact is unable to list the package version's assets,
the POM will be the only asset imported. This is because none of the other assets match the
standard asset name patterns. However, when the client requests one of the JAR assets, that asset
will be imported and added to the existing package version stored in CodeArtifact. The package
versions in both the most-downstream repository (the repository the client made the request
against) and the repository with the external connection attached will be updated to contain the
new asset, as described in Package retention from upstream repositories.

Normally, once a package version is retained in a CodeArtifact repository, it is not affected by
changes in upstream repositories. For more information, see Package retention from upstream

repositories. However, the behavior for Maven assets with non-standard names described earlier
is an exception to this rule. While the downstream package version won't change without an

Importing non-standard asset names 207

CodeArtifact CodeArtifact User Guide

additional asset being requested by a client, in this situation, the retained package version is
modified after initially being retained and so is not immutable. This behavior is necessary because
Maven assets with non-standard names would otherwise not be accessible through CodeArtifact.
The behavior also enables if they are added to a Maven package version on a public repository
after the package version was retained in a CodeArtifact repository.

Checking asset origins

When adding a new asset to a previously retained Maven package version, CodeArtifact confirms
the origin of the retained package version is the same as origin of the new asset. This prevents
creating a “mixed” package version where different assets originate from different public
repositories. Without this check, asset mixing could occur if a Maven package version is published
to more than one public repository and those repositories are part of a CodeArtifact repository’s
upstream graph.

Importing new assets and package version status in upstream
repositories

The package version status of package versions in upstream repositories can prevent CodeArtifact

from retaining those versions in downstream repositories.

For example, let's say a domain has three repositories: repo-A, repo-B, and repo-C, where repo-
B is an upsteam of repo-A and repo-C is upstream of repo-B.

AWS CodeArtifact repositories External repository

{ \f |

Package Google Maven
Manager repository

Packages Packages Packages

Package version 7.3 .1 of Maven package com.android.tools.build:aapt2is presentin
repo-B and has a status of Published. It is not present in repo-A. If a client requests an asset
of this package version from repo-A, the response will be a 200 (OK) and Maven package version
7.3.1 will be retained in repo-A. However, if the status of package version 7.3.1 in repo-B

is Archived or Disposed, the response will be 404 (Not Found) because the assets of package
versions in those two statuses are not downloadable.

Note that setting the package origin control to upstream=BLOCK for
com.android.tools.build:aapt2in repo-A, repo-B, and repo-C will prevent new assets

Checking asset origins 208

CodeArtifact CodeArtifact User Guide

from being fetched for all versions of that package from repo-A, regardless of the package version
status.

Maven troubleshooting

The following information might help you troubleshoot common issues with Maven and
CodeArtifact.

Disable parallel puts to fix error 429: Too Many Requests

Starting with version 3.9.0, Maven uploads package artifacts in parallel (up to 5 files at a time).
This can cause CodeArtifact to occassionally respond with an error response code 429 (Too Many
Requests). If you encounter this error, you can disable parallel puts to fix it.

To disable parallel puts, set the aether.connector.basic.parallelPut property to false in
your profile in your settings.xml file as shown by the following example:

<settings>
<profiles>
<profile>
<id>default</id>
<properties>
<aether.connector.basic.parallelPut>false</
aether.connector.basic.parallelPut>
</properties>
</profile>
</profiles>
<settings>

For more information, see Artifact Resolver Configuration Options in the Maven documentation.

Maven troubleshooting 209

https://maven.apache.org/resolver/configuration.html

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with npm

These topics describe how to use npm, the Node.js package manager, with CodeArtifact.

(@ Note
CodeArtifact supports node v4.9.1 and later and npm v5.0.0 and later.

Topics

« Configure and use npm with CodeArtifact

« Configure and use Yarn with CodeArtifact

« npm command support

« npm tag handling

« Support for npm-compatible package managers

Configure and use npm with CodeArtifact

After you create a repository in CodeArtifact, you can use the npm client to install and publish
packages. The recommended method for configuring npm with your repository endpoint and
authorization token is by using the aws codeartifact login command. You can also configure
npm manually.

Contents

« Configuring npm with the login command

» Configuring npm without using the login command

e Running npm commands

» Verifying npm authentication and authorization

» Changing back to the default npm registry

« Troubleshooting slow installs with npm 8.x or higher

Configuring npm with the login command

Use the aws codeartifact login command to fetch credentials for use with npm.

Configure and use npm 210

CodeArtifact CodeArtifact User Guide

® Note

If you are accessing a repository in a domain that you own, you don't need to include - -
domain-owner. For more information, see Cross-account domains.

/A Important

If you are using npm 10.x or newer, you must use AWS CLI version 2.9.5 or newer to
successfully run the aws codeartifact login command.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

This command makes the following changes to your ~/.npmrc file:

« Adds an authorization token after fetching it from CodeArtifact using your AWS credentials.
« Sets the npm registry to the repository specified by the --repository option.

« For npm 6 and lower: Adds "always-auth=true" so the authorization token is sent for every
npm command.

The default authorization period after calling 1oginis 12 hours, and 1ogin must be called to
periodically refresh the token. For more information about the authorization token created with
the 1login command, see Tokens created with the 1ogin command.

Configuring npm without using the login command

You can configure npm with your CodeArtifact repository without the aws codeartifact login
command by manually updating the npm configuration.

To configure npm without using the login command

1. Inacommand line, fetch a CodeArtifact authorization token and store it in an environment
variable. npm will use this token to authenticate with your CodeArtifact repository.

Configuring npm without using the login command 211

CodeArtifact CodeArtifact User Guide

® Note

The following command is for macOS or Linux machines. For information on
configuring environment variables on a Windows machine, see Pass an auth token

using an environment variable.

CODEARTIFACT_AUTH_TOKEN="aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text’

2. Get your CodeArtifact repository's endpoint by running the following command. Your
repository endpoint is used to point npm to your repository to install or publish packages.

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

» Replace my_repo with your CodeArtifact repository name.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm

The following URL is an example repository endpoint.

https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/

/A Important

The registry URL must end with a forward slash (/). Otherwise, you cannot connect to
the repository.

3. Usethenpm config set command to set the registry to your CodeArtifact repository.
Replace the URL with the repository endpoint URL from the previous step.

Configuring npm without using the login command 212

CodeArtifact CodeArtifact User Guide

npm config set
registry=https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/

npm/my_repo/

(® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

4. Usethe npm config set command to add your authorization token to your npm
configuration.

npm config set //my_domain-111122223333.d.codeartifact.region.amazonaws.com/
npm/my_repo/:_authToken=$CODEARTIFACT_AUTH_TOKEN

For npm 6 or lower: To make npm always pass the auth token to CodeArtifact, even for GET
requests, set the always-auth configuration variable with npm config set.

npm config set //my_domain-111122223333.d.codeartifact.region.amazonaws.com/
npm/my_repo/:always-auth=true

Example npm configuration file (. npmxc)

The following is an example . npmzc file after following the preceding instructions to set the
CodeArtifact registry endpoint, add an authentication token, and configure always-auth.

registry=https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my -
cli-repo/

//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/
my_repo/:_authToken=eyJ2ZX...
//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/:always-
auth=true

Running npm commands

After you configure the npm client, you can run npm commands. Assuming that a package is
present in your repository or one of its upstream repositories, you can install it with npm install.
For example, use the following to install the 1odash package.

Running npm commands 213

CodeArtifact CodeArtifact User Guide

npm install lodash

Use the following command to publish a new npm package to a CodeArtifact repository.

npm publish

For information about how to create npm packages, see Creating Node.js Modules on the npm

documentation website. For a list of npm commands supported by CodeArtifact, see npm
Command Support.

Verifying npm authentication and authorization

Invoking the npm ping command is a way to verify the following:

» You have correctly configured your credentials so that you can authenticate to an CodeArtifact
repository.

« The authorization configuration grants you the ReadFromRepository permission.

The output from a successful invocation of npm ping looks like the following.

$ npm -d ping

npm info it worked if it ends with ok

npm info using npm@6.4.1

npm info using node@v9.5.0

npm info attempt registry request try #1 at 4:30:59 PM
npm http request GET https://<domain>.d.codeartifact.us-west-2.amazonaws.com/npm/
shared/-/ping?write=true

npm http 200 https:///npm/shared/-/ping?write=true
Ping success: {3}

npm timing npm Completed in 716ms

npm info ok

The -d option causes npm to print additional debug information, including the repository URL.

This information makes it easy to confirm that npm is configured to use the repository you expect.

Verifying npm authentication and authorization

214

https://docs.npmjs.com/getting-started/creating-node-modules

CodeArtifact CodeArtifact User Guide

Changing back to the default npm registry

Configuring npm with CodeArtifact sets the npm registry to the specified CodeArtifact repository.
You can run the following command to set the npm registry back to its default registry when you're
done connecting to CodeArtifact.

npm config set registry https://registry.npmjs.com/

Troubleshooting slow installs with npm 8.x or higher

There is a known issue in npm versions 8.x and greater where if a request is made to a package
repository, and the repository redirects the client to Amazon S3 instead of streaming the assets
directly, the npm client can hang for several minutes per dependency.

Because CodeArtifact repositories are designed to always redirect the request to Amazon S3,
sometimes this issue occurs, which causes long build times due to long npm install times. Instances
of this behavior will present themselves as a progress bar showing for several minutes.

To avoid this issue, use either the --no-progress or progress=false flags with npm cli
commands, as shown in the following example.

npm install lodash --no-progress

Configure and use Yarn with CodeArtifact

After you create a repository, you can use the Yarn client to manage npm packages.

(® Note

Yarn 1.X reads and uses information from your npm configuration file (.npmrc), while
Yarn 2.X does not. The configuration for Yarn 2.X must be defined in the .yarnrc.yml
file.

Contents

« Configure Yarn 1.X with the aws codeartifact login command

« Configure Yarn 2.X with the yarn config set command

Changing back to the default npm registry 215

CodeArtifact CodeArtifact User Guide

Configure Yarn 1.X with the aws codeartifact login command

For Yarn 1.X, you can configure Yarn with CodeArtifact using the aws codeartifact login

command. The 1login command will configure your ~/.npmrc file with your CodeArtifact
repository endpoint information and credentials. With Yarn 1.X, yarn commands use the
configuration information from the ~/.npmrc file.

To configure Yarn 1.X with the login command

1.

If you haven't done so already, configure your AWS credentials for use with the AWS CLI, as
described in Getting started with CodeArtifact.

To run the aws codeartifact login command successfully, npm must be installed. See
Downloading and installing Node.js and npm in the npm documentation for installation

instructions.

Use the aws codeartifact login command to fetch CodeArtifact credentials and
configure your ~/.npmrc file.

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

» Replace my_repo with your CodeArtifact repository name.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

The 1login command makes the following changes to your ~/.npmrc file:

« Adds an authorization token after fetching it from CodeArtifact using your AWS credentials.
« Sets the npm registry to the repository specified by the --repository option.

e For npm 6 and lower: Adds "always-auth=true" so the authorization token is sent for
every npm command.

The default authorization period after calling 1ogin is 12 hours, and 1ogin must be called
to refresh the token periodically. For more information about the authorization token created
with the 1ogin command, see Tokens created with the 1ogin command.

Configure Yarn 1.X with the aws codeartifact login command 216

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm/

CodeArtifact CodeArtifact User Guide

4. For npm 7.X and 8.X, you must add always-auth=true to your ~/.npmrc file to use Yarn.

« Open your ~/.npmrc file in a text editor and add always-auth=true on a new line.

You can use the yarn config list command to check that Yarn is using the correct
configuration. After running the command, check the values in the info npm config section.
The contents should look similar to the following snippet.

info npm config

{
registry: 'https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/

my_repo/’,
'//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/
my_repo/:_authToken': 'eyJ2ZXI...',
'always-auth': true

}

Configure Yarn 2.X with the yarn config set command

The following procedure details how to configure Yarn 2.X by updating your .yarnrc.yml
configuration from the command line with the yarn config set command.

To update the yarnrc.yml configuration from the command line

1. If you haven't done so already, configure your AWS credentials for use with the AWS CLI, as
described in Getting started with CodeArtifact.

2. Usethe aws codeartifact get-repository-endpoint command to get your
CodeArtifact repository's endpoint.

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

» Replace my_repo with your CodeArtifact repository name.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm

Configure Yarn 2.X with the yarn config set command 217

CodeArtifact CodeArtifact User Guide

3. Update the npmRegistryServer value in your .yarnrc.yml file with your repository endpoint.

yarn config set npmRegistryServer
"https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"

4. Fetch a CodeArtifact authorization token and store it in an environment variable.

(® Note

The following command is for macOS or Linux machines. For information on
configuring environment variables on a Windows machine, see Pass an auth token

using an environment variable.

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

« Replace my_repo with your CodeArtifact repository name.

export CODEARTIFACT_AUTH_TOKEN="aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text’

5. Usetheyarn config set command to add your CodeArtifact authentication token to
your .yarnrc.yml file. Replace the URL in the following command with your repository endpoint
URL from Step 2.

yarn config set
'npmRegistries["https://my_domain-
111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"].npmAuthToken'
"${CODEARTIFACT_AUTH_TOKEN}"

6. Usetheyarn config set command to set the value of npmAlwaysAuth to true. Replace
the URL in the following command with your repository endpoint URL from Step 2.

yarn config set
'npmRegistries["https://my_domain-

Configure Yarn 2.X with the yarn config set command 218

CodeArtifact CodeArtifact User Guide

111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"].npmAlwaysAuth'
"true"

After configuring, your .yarnrc.yml configuration file should have contents similar to the following
snippet.

npmRegistries:
"https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/":
npmAlwaysAuth: true
npmAuthToken: eyJ2ZXI...

npmRegistryServer: "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/npm/my_repo/"

You can also use the yarn config command to check the values of npmRegistries and
npmRegistryServer.

npm command support

The following sections summarize the npm commands that are supported, by CodeArtifact
repositories, in addition to specific commands that are not supported.

Contents

» Supported commands that interact with a repository

» Supported client-side commands

o Unsupported commands

Supported commands that interact with a repository

This section lists npm commands where the npm client makes one or more requests to the registry
it's been configured with (for example, with npm config set registry). These commands
have been verified to function correctly when invoked against a CodeArtifact repository.

Command Description
bugs Tries to guess the location of a package’s bug

tracker URL, and then tries to open it.

npm command support 219

https://docs.npmjs.com/cli/bugs

CodeArtifact

CodeArtifact User Guide

Command
Ci

deprecate

dist-tag

docs

doctor

install

install-ci-test

install-test

outdated

ping

publish

update

Description

Installs a project with a clean slate.
Deprecates a version of a package.
Modifies package distribution tags.

Tries to guess the location of a package’s
documentation URL, and then tries to open it
using the --browser config parameter.

Runs a set of checks to ensure that your npm
installation has what it needs to manage your
JavaScript packages.

Installs a package.

Installs a project with a clean slate and runs
tests. Alias: npm cit. This command runs
an npm ci followed immediately by an npm
test.

Installs package and runs tests. Runs an npm
install followed immediately by an npm
test.

Checks the configured registry to see if any
installed packages are currently outdated.

Pings the configured or given npm registry
and verifies authentication.

Publishes a package version to the registry.

Guesses the location of a package’s repositor
y URL, and then tries to open it using the - -
browser config parameter.

Supported commands that interact with a repository

220

https://docs.npmjs.com/cli/ci
https://docs.npmjs.com/cli/deprecate
https://docs.npmjs.com/cli/dist-tag
https://docs.npmjs.com/cli/docs
https://docs.npmjs.com/cli/doctor
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install-ci-test
https://docs.npmjs.com/cli/install-test
https://docs.npmjs.com/cli/outdated
https://docs.npmjs.com/cli/ping
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/cli/update

CodeArtifact CodeArtifact User Guide

Command Description

view Displays package metadata. Can be used to

print metadata properties.

Supported client-side commands

These commands don't require any direct interaction with a repository, so CodeArtifact does not
need to do anything to support them.

Command Description

build Builds a package.

cache Manipulates the packages cache.

completion Enables tab completion in all npm commands.

confi Updates the contents of the user and global
npmzc files.

dedupe Searches the local package tree and

attempts to simplify the structure by moving
dependencies further up the tree, where they
can be more effectively shared by multiple
dependent packages.

edit Edits an installed package. Selects a
dependency in the current working directory
and opens the package folder in the default
editor.

explore Browses an installed package. Spawns a
subshell in the directory of the installed
package specified. If a command is specified
, then it is run in the subshell, which then
immediately terminates.

Supported client-side commands 221

https://docs.npmjs.com/cli/view
https://docs.npmjs.com/cli/v6/commands/npm-build
https://docs.npmjs.com/cli/cache
https://docs.npmjs.com/cli/completion
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/edit
https://docs.npmjs.com/cli/explore

CodeArtifact CodeArtifact User Guide

Command Description

help Gets help on npm.

help-search Searches npm help documentation.

init Creates a package.json file.

link Symlinks a package folder.

ls Lists installed packages.

pack Creates a tarball from a package.

prefix Displays prefix. This is the closest parent

directory to contain a package.json file
unless -g is also specified.

prune Removes packages that are not listed on the
parent package's dependencies list.

rebuild Runs the npm build command on the
matched folders.

restart Runs a package's stop, restart, and start scripts
and associated pre- and post- scripts.

root Prints the effective node_modules folder to
standard out.

run-script Runs arbitrary package scripts.

shrinkwrap Locks down dependency versions for publicati
on.

uninstall Uninstalls a package.

Unsupported commands

These npm commands are not supported by CodeArtifact repositories.

Unsupported commands 222

https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/help-search
https://docs.npmjs.com/cli/init
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/ls
https://docs.npmjs.com/cli/pack
https://docs.npmjs.com/cli/prefix
https://docs.npmjs.com/cli/prune
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/root
https://docs.npmjs.com/cli/run-script
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/uninstall

CodeArtifact

CodeArtifact User Guide

Command

dccess

adduser

audit

hook

login

logout

Description
Sets the access level on

published packages.

Adds a registry user account

Runs a security audit.

Manages npm hooks,
including adding, removing,
listing, and updating.

Authenticates a user. This is
an alias for npm adduser.

Signs out of the registry.

Notes

CodeArtifact uses a permissio
n model that is different from
the public npmjs repository.

CodeArtifact uses a user
model that is different from
the public npmjs repository.

CodeArtifact does not
currently vend security
vulnerability data.

CodeArtifact does not
currently support any kind
of change notification
mechanism.

CodeArtifact uses an
authentication model

that is different from the
public npmjs repository. For
information, see Authentic
ation with npm.

CodeArtifact uses an
authentication model that

is different from the public
npmjs repository. There is

no way to sign out from

a CodeArtifact repository,

but authentication tokens
expire after their configurable
expiration time. The default
token duration is 12 hours.

Unsupported commands

223

https://docs.npmjs.com/cli/access
https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/audit
https://docs.npmjs.com/cli/hook
https://docs.npmjs.com/cli-commands/adduser.html
https://docs.npmjs.com/cli/logout

CodeArtifact

CodeArtifact User Guide

Command

owner

rofile

search

star

stars

team

token

Description

Manages package owners.

Changes settings on your
registry profile.

Searches the registry for
packages matching the search
terms.

Marks your favorite packages.

Views packages marked as
favorites.

Manages organization teams
and team memberships.

Manages your authentication
tokens.

Notes

CodeArtifact uses a permissio
ns model that is different
from the public npmijs
repository.

CodeArtifact uses a user
model that is different from
the public npmjs repository.

CodeArtifact supports limited
search functionality with the

list-packages command.

CodeArtifact currently does
not support any kind of
favorites mechanism.

CodeArtifact currently does
not support any kind of
favorites mechanism.

CodeArtifact uses a user and
group membership model
that is different from the
public npmjs repository. For
information, see ldentities
(Users, Groups, and Roles) in
the IAM User Guide.

CodeArtifact uses a different
model for getting authentic
ation tokens. For information,
see Authentication with npm.

Unsupported commands

224

https://docs.npmjs.com/cli/owner
https://docs.npmjs.com/cli/profile
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/stars
https://docs.npmjs.com/cli/team
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.npmjs.com/cli/token

CodeArtifact CodeArtifact User Guide

Command Description Notes
unpublish Removes a package from the CodeArtifact does not
registry. support removing a package

version from a repository
using the npm client. You can
use the delete-package-ver

sion command.

whoami Displays the npm user name. CodeArtifact uses a user

model that is different from
the public npmjs repository.

npm tag handling

npm registries support tags, which are string aliases for package versions. You can use tags to
provide an alias instead of version numbers. For example, you might have a project with multiple
streams of development and use a different tag (for example, stable, beta, dev, canary) for
each stream. For more information, see dist-tag on the npm website.

By default, npm uses the 1latest tag to identify the current version of a package. npm install
pkg (without @version or @tag specifier) installs the latest tag. Typically, projects use the latest
tag for stable release versions only. Other tags are used for unstable or prerelease versions.

Edit tags with the npm client

The three npm dist-tag commands (add, rm, and 1s) function identically in CodeArtifact
repositories as they do in the default npm registry.

npm tags and the CopyPackageVersions API

When you use the CopyPackageVersions API to copy an npm package version, all tags aliasing
that version are copied to the destination repository. When a version that is being copied has a
tag that is also present in the destination, the copy operation sets the tag value in the destination
repository to match the value in the source repository.

For example, say both repository S and repository D contain a single version of the web-helper
package with the latest tag set as shown in this table.

npm tag handling 225

https://docs.npmjs.com/cli/unpublish
https://docs.npmjs.com/cli/whoami
https://docs.npmjs.com/cli/dist-tag
https://registry.npmjs.com/

CodeArtifact CodeArtifact User Guide

Repository Package name Package tags
S web-helper latest (alias for version 1.0.1)
D web-helper latest (alias for version 1.0.0)

CopyPackageVersions is invoked to copy web-helper 1.0.1 from S to D. After the operation is
complete, the latest tag on web-helper in repository D aliases 1.0.1, not 1.0.0.

If you need to change tags after copying, use the npm dist-tag command to modify tags directly
in the destination repository. For more information about the CopyPackageVersions API, see
Copying Packages Between Repositories.

npm tags and upstream repositories

When npm requests the tags for a package and versions of that package are also present in

an upstream repository, CodeArtifact merges the tags before returning them to the client. For
example, a repository named R has an upstream repository named U. The following table shows
the tags for a package named web-helper that's present in both repositories.

Repository Package name Package tags
R web-helper latest (alias for version 1.0.0)
U web-helper alpha (alias for version 1.0.1)

In this case, when the npm client fetches the tags for the web-helper package from repository R,
it receives both the latest and alpha tags. The versions the tags point to won't change.

When the same tag is present on the same package in both the upstream and downstream
repository, CodeArtifact uses the tag that is present in the upstream repository. For example,
suppose that the tags on webhelper have been modified to look like the following.

Repository Package name Package tags

R web-helper latest (alias for version 1.0.0)

npm tags and upstream repositories 226

CodeArtifact CodeArtifact User Guide

Repository Package name Package tags

U web-helper latest (alias for version 1.0.1)

In this case, when the npm client fetches the tags for package web-helper from repository R, the
latest tag will alias the version 7.0.7 because that's what's in the upstream repository. This makes
it easy to consume new package versions in an upstream repository that are not yet presentin a
downstream repository by running npm update.

Using the tag in the upstream repository can be problematic when publishing new versions of a
package in a downstream repository. For example, say that the latest tag on the package web-
helper is the same in both R and U.

Repository Package name Package tags
R web-helper latest (alias for version 1.0.1)
U web-helper latest (alias for version 1.0.1)

When version 1.0.2 is published to R, npm updates the latest tag to 1.0.2.

Repository Package name Package tags
R web-helper latest (alias for version 1.0.2)
U web-helper latest (alias for version 1.0.1)

However, the npm client never sees this tag value because the value of latest in U is 1.0.1. Running
npm install against repository R immediately after publishing 1.0.2 installs 1.0.1 instead of the
version that was just published. To install the most recently published version, you must specify the
exact package version, as follows.

npm install web-helper@l.0.2

npm tags and upstream repositories 227

CodeArtifact CodeArtifact User Guide

Support for npm-compatible package managers

These other package managers are compatible with CodeArtifact and work with the npm package
format and npm wire protocol:

« pnpm package manager. The latest version confirmed to work with CodeArtifact is 3.3.4, which
was released on May 18, 2019.

» Yarn package manager. The latest version confirmed to work with CodeArtifact is 1.21.1, which
was released on December 11, 2019.

(® Note

We recommend using Yarn 2.x with CodeArtifact. Yarn 1.x does not have HTTP retries,
which means it is more susceptible to intermittent service faults which result in 500-level
status codes or errors. There is no way to configure a different retry strategy for Yarn 1.x,
but this has been added in Yarn 2.x. You can use Yarn 1.x, but you may need to add higher-
level retries in build scripts. For example, running your yarn command in a loop so that it
will retry if downloading packages fails.

Support for npm-compatible package managers 228

https://pnpm.js.org
https://yarnpkg.com/

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with NuGet

These topics describe how to consume and publish NuGet packages using CodeArtifact.

(@ Note
AWS CodeArtifact only supports NuGet.exe version 4.8 and higher.

Topics

e Use CodeArtifact with Visual Studio

» Use CodeArtifact with the nuget or dotnet CLI

» NuGet package name, version, and asset name normalization

» NuGet compatibility

Use CodeArtifact with Visual Studio

You can consume packages from CodeArtifact directly in Visual Studio with the CodeArtifact
Credential Provider. The credential provider simplifies the setup and authentication of your
CodeArtifact repositories in Visual Studio and is available in the AWS Toolkit for Visual Studio.

(® Note
The AWS Toolkit for Visual Studio is not available for Visual Studio for Mac.

To configure and use NuGet with CLI tools, see Use CodeArtifact with the nuget or dotnet CLI.

Topics

» Configure Visual Studio with the CodeArtifact Credential Provider

» Use the Visual Studio Package Manager console

Use CodeArtifact with Visual Studio 229

https://docs.microsoft.com/en-us/nuget/release-notes/nuget-4.8-rtm
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html

CodeArtifact CodeArtifact User Guide

Configure Visual Studio with the CodeArtifact Credential Provider

The CodeArtifact Credential Provider simplifies the setup and continued authentication between
CodeArtifact and Visual Studio. CodeArtifact authentication tokens are valid for a maximum of 12
hours. To avoid having to manually refresh the token while working in Visual Studio, the credential
provider periodically fetches a new token before the current token expires.

/A Important

To use the credential provider, ensure that any existing AWS CodeArtifact credentials are
cleared from your nuget . config file that may have been added manually or by running
aws codeartifact login to configure NuGet previously.

Use CodeArtifact in Visual Studio with the AWS Toolkit for Visual Studio

1. Install the AWS Toolkit for Visual Studio using the following steps. The toolkit is compatible
with Visual Studio 2017 and 2019 using these steps. AWS CodeArtifact does not support
Visual Studio 2015 and earlier.

1. The Toolkit for Visual Studio for Visual Studio 2017 and Visual Studio 2019 is distributed
in the Visual Studio Marketplace. You can also install and update the toolkit within Visual
Studio by using Tools > Extensions and Updates (Visual Studio 2017) or Extensions >
Manage Extensions (Visual Studio 2019).

2. After the toolkit has been installed, open it by choosing AWS Explorer from the View menu.

2. Configure the Toolkit for Visual Studio with your AWS credentials by following the steps in
Providing AWS Credentials in the AWS Toolkit for Visual Studio User Guide.

3. (Optional) Set the AWS profile you want to use with CodeArtifact. If not set, CodeArtifact will
use the default profile. To set the profile, go to Tools > NuGet Package Manager > Select
CodeArtifact AWS Profile.

4. Add your CodeArtifact repository as a package source in Visual Studio.
1. Navigate to your repository in the AWS Explorer window, right click and select Copy NuGet
Source Endpoint.
2. Use the Tools > Options command and scroll to NuGet Package Manager.

3. Select the Package Sources node.

Configure Visual Studio with the CodeArtifact Credential Provider 230

https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html

CodeArtifact CodeArtifact User Guide

4. Select +, edit the name, and paste the repository URL endpoint copied in Step 3a in the
Source box, and select Update.

5. Select the checkbox for your newly added package source to enable it.

(@ Note

We recommend adding an external connection to NuGet.org to your CodeArtifact
repository and disabling the nuget.org package source in Visual Studio. When using
an external connection, all of the packages fetched from NuGet.org will be stored
in your CodeArtifact repository. If NuGet.org becomes unavailable, your application
dependencies will still be available for Cl builds and local development. For more
information about external connections, see Connect a CodeArtifact repository to a

public repository.

5. Restart Visual Studio for the changes to take effect.

After configuration, Visual Studio can consume packages from your CodeArtifact repository, any of
its upstream repositories, or from NuGet.org if you have added an external connection. For more
information about browsing and installing NuGet packages in Visual Studio, see Install and manage
packages in Visual Studio using the NuGet Package Manager in the NuGet documentation.

Use the Visual Studio Package Manager console

The Visual Studio Package Manager console will not use the Visual Studio version of the
CodeArtifact Credential Provider. To use it, you will have to configure the command-line credential
provider. See Use CodeArtifact with the nuget or dotnet CLI for more information.

Use CodeArtifact with the nuget or dotnet CLI

You can use CLI tools like nuget and dotnet to publish and consume packages from CodeArtifact.
This document provides information about configuring the CLI tools and using them to publish or
consume packages.

Topics

» Configure the nuget or dotnet CLI

» Consume NuGet packages from CodeArtifact

Use the Visual Studio Package Manager console 231

https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-visual-studio
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-visual-studio

CodeArtifact CodeArtifact User Guide

o Publish NuGet packages to CodeArtifact

o CodeArtifact NuGet Credential Provider reference

o CodeArtifact NuGet Credential Provider versions

Configure the nuget or dotnet CLI

You can configure the nuget or dotnet CLI with the CodeArtifact NuGet Credential Provider, with
the AWS CLI, or manually. Configuring NuGet with the credential provider is highly recommended
for simplified setup and continued authentication.

Method 1: Configure with the CodeArtifact NuGet Credential Provider

The CodeArtifact NuGet Credential Provider simplifies the authentication and configuration of
CodeArtifact with NuGet CLI tools. CodeArtifact authentication tokens are valid for a maximum of
12 hours. To avoid having to manually refresh the token while using the nuget or dotnet CLI, the
credential provider periodically fetches a new token before the current token expires.

/A Important

To use the credential provider, ensure that any existing AWS CodeArtifact credentials are
cleared from your nuget . config file that may have been added manually or by running
aws codeartifact login to configure NuGet previously.

Install and configure the CodeArtifact NuGet Credential Provider
dotnet

1. Download the latest version of the AWS.CodeArtifact.NuGet.CredentialProvider tool from
NuGet.org with the following dotnet command.

dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider

2. Use the codeartifact-creds install command to copy the credential provider to the
NuGet plugins folder.

dotnet codeartifact-creds install

Configure the nuget or dotnet CLI 232

https://www.nuget.org/packages/AWS.CodeArtifact.NuGet.CredentialProvider
https://www.nuget.org/packages/AWS.CodeArtifact.NuGet.CredentialProvider

CodeArtifact CodeArtifact User Guide

3. (Optional): Set the AWS profile you want to use with the credential provider. If not set, the
credential provider will use the default profile. For more information on AWS CLI profiles, see
Named profiles.

dotnet codeartifact-creds configure set profile profile_name

nuget

Perform the following steps to use the NuGet CLI to install the CodeArtifact NuGet Credential
Provider from an Amazon S3 bucket and configure it. The credential provider will use the
default AWS CLI profile, for more information on profiles, see Named profiles.

1. Download the latest version of the CodeArtifact NuGet Credential Provider (codeartifact-

nuget-credentialprovider.zip) from an Amazon S3 bucket.

To view and download earlier versions, see CodeArtifact NuGet Credential Provider versions.

2. Unzip the file.

3. Copy the AWS.CodeArtifact.NuGetCredentialProvider folder from the netfx folder to
suser_profile%/.nuget/plugins/netfx/ on Windows or ~/.nuget/plugins/netfx
on Linux or MacOS.

4. Copy the AWS.CodeArtifact.NuGetCredentialProvider folder from the netcore folder to
suser_profile%/.nuget/plugins/netcore/ on Windows or ~/.nuget/plugins/
netcore on Linux or MacOS.

After you create a repository and configure the credential provider you can use the nuget or
dotnet CLI tools to install and publish packages. For more information, see Consume NuGet
packages from CodeArtifact and Publish NuGet packages to CodeArtifact.

Method 2: Configure nuget or dotnet with the login command

The codeartifact login command in the AWS CLI adds a repository endpoint and
authorization token to your NuGet configuration file enabling nuget or dotnet to connect to your
CodeArtifact repository. This will modify the user-level NuGet configuration which is located at
%appdata%s\NuGet\NuGet.Config for Windows and ~/.config/NuGet/NuGet.Config

or ~/.nuget/NuGet/NuGet.Config for Mac/Linux. For more information about NuGet
configurations, see Common NuGet configurations.

Configure the nuget or dotnet CLI 233

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://a.co/dbGqKq7
https://a.co/dbGqKq7
https://docs.microsoft.com/en-us/nuget/consume-packages/configuring-nuget-behavior

CodeArtifact CodeArtifact User Guide

Configure nuget or dotnet with the 1login command

1. Configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact.

2. Ensure that the NuGet CLI tool (nuget or dotnet) has been properly installed and configured.
For instructions, see the nuget or dotnet documentation.

3. Use the CodeArtifact login command to fetch credentials for use with NuGet.

(@ Note

If you are accessing a repository in a domain that you own, you don't need to include
--domain-owner. For more information, see Cross-account domains.

dotnet

/A Important

Linux and MacOS users: Because encryption is not supported on non-Windows
platforms, your fetched credentials will be stored as plain text in your configuration
file.

aws codeartifact login --tool dotnet --domain my_domain --domain-
owner 111122223333 --repository my_repo

nuget

aws codeartifact login --tool nuget --domain my_domain --domain-
owner 111122223333 --repository my_repo

The login command will:

» Fetch an authorization token from CodeArtifact using your AWS credentials.

« Update your user-level NuGet configuration with a new entry for your NuGet package source.
The source that points to your CodeArtifact repository endpoint will be called domain_name/
repo_name.

Configure the nuget or dotnet CLI 234

https://docs.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference
https://docs.microsoft.com/en-us/dotnet/core/install/

CodeArtifact CodeArtifact User Guide

The default authorization period after calling 1ogin is 12 hours, and 1ogin must be called to
periodically refresh the token. For more information about the authorization token created with
the 1login command, see Tokens created with the 1ogin command.

After you create a repository and configure authentication you can use the nuget, dotnet, or
msbuild CLI clients to install and publish packages. For more information, see Consume NuGet
packages from CodeArtifact and Publish NuGet packages to CodeArtifact.

Method 3: Configure nuget or dotnet without the login command

For manual configuration, you must add a repository endpoint and authorization token to your
NuGet configuration file to enable nuget or dotnet to connect to your CodeArtifact repository.

Manually configure nuget or dotnet to connect to your CodeArtifact repository.

1. Determine your CodeArtifact repository endpoint by using the get-repository-endpoint
AWS CLI command.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format nuget

Example output:

"repositoryEndpoint": "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/nuget/my_repo/"

}

2. Get an authorization token to connect to your repository from your package manager by using
the get-authorization-token AWS CLI command.

aws codeartifact get-authorization-token --domain my_domain

Example output:

"authorizationToken": "eyJ2I...viOw",
"expiration": 1601616533.0
}

Configure the nuget or dotnet CLI 235

CodeArtifact CodeArtifact User Guide

3. Create the full repository endpoint URL by appending /v3/index. json to the URL returned by
get-repository-endpoint in step 3.

4. Configure nuget or dotnet to use the repository endpoint from Step 1 and authorization token
from Step 2.

(® Note

The source URL must end in /v3/index. json for nuget or dotnet to successfully
connect to a CodeArtifact repository.

dotnet

Linux and MacOS users: Because encryption is not supported on non-Windows platforms,
you must add the --store-password-in-clear-text flag to the following command.
Note that this will store your password as plain text in your configuration file.

dotnet nuget add source https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/nuget/my_repo/v3/index.json --name packageSourceName --
password eyJ2I...viOw --username aws

(® Note

To update an existing source, use the dotnet nuget update source command.

nuget

nuget sources add -name domain_name/repo_name -Source
https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
nuget/my_repo/v3/index.json -password eyJ2I...viOw -username aws

Example output:

Package source with Name: domain_name/repo_name added successfully.

Configure the nuget or dotnet CLI 236

CodeArtifact CodeArtifact User Guide

® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Consume NuGet packages from CodeArtifact

Once you have configured NuGet with CodeArtifact, you can consume NuGet packages that are

stored in your CodeArtifact repository or one of its upstream repositories.

To consume a package version from a CodeArtifact repository or one of its upstream repositories
with nuget or dotnet, run the following command replacing packageName with the name of
the package you want to consume and packageSourceName with the source name for your
CodeArtifact repository in your NuGet configuration file. If you used the 1ogin command to
configure your NuGet configuration, the source name is domain_name/repo_name.

(® Note

When a package is requested, the NuGet client caches which versions of that package
exists. Because of this behavior, an install may fail for a package that was previously
requested before the desired version became available. To avoid this failure and
successfully install a package that exists, you can either clear the NuGet cache ahead of an
install with nuget locals all --clear ordotnet nuget locals all --clear,
or avoid using the cache during install and restore commands by providing the -
NoCache option for nuget or the --no-cache option for dotnet.

dotnet
dotnet add package packageName --source packageSourceName
nuget

nuget install packageName -Source packageSourceName

To install a specific version of a package

Consume NuGet packages 237

https://docs.aws.amazon.com/codeartifact/latest/ug/nuget-cli.html

CodeArtifact CodeArtifact User Guide

dotnet

dotnet add package packageName --version 1.0.0 --source packageSourceName

nuget

nuget install packageName -Version 1.0.0 -Source packageSourceName

See Manage packages using the nuget.exe CLI or Install and manage packages using the dotnet CLI

in the Microsoft Documentation for more information.
Consume NuGet packages from NuGet.org

You can consume NuGet packages from NuGet.org through a CodeArtifact repository by
configuring the repository with an external connection to NuGet.org. Packages consumed from
NuGet.org are ingested and stored in your CodeArtifact repository. For more information about
adding external connections, see Connect a CodeArtifact repository to a public repository.

Publish NuGet packages to CodeArtifact

Once you have configured NuGet with CodeArtifact, you can use nuget or dotnet to publish

package versions to CodeArtifact repositories.

To push a package version to a CodeArtifact repository, run the following command with the full
path to your . nupkg file and the source name for your CodeArtifact repository in your NuGet
configuration file. If you used the 1ogin command to configure your NuGet configuration, the
source name is domain_name/repo_name.

(® Note

You can create a NuGet package if you do not have one to publish. For more information,
see Package creation workflow in the Microsoft documentation.

dotnet

dotnet nuget push path/to/nupkg/SamplePackage.1.0.0.nupkg --source packageSourceName

Publish NuGet packages 238

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-nuget-cli
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://www.nuget.org/
https://docs.aws.amazon.com/codeartifact/latest/ug/nuget-cli.html
https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

CodeArtifact CodeArtifact User Guide

nuget

nuget push path/to/nupkg/SamplePackage.1.0.0.nupkg -Source packageSourceName

CodeArtifact NuGet Credential Provider reference

The CodeArtifact NuGet Credential Provider makes it easy to configure and authenticate NuGet
with your CodeArtifact repositories.

CodeArtifact NuGet Credential Provider commands

This section includes the list of commands for the CodeArtifact NuGet Credential Provider. These
commands must be prefixed with dotnet codeartifact-creds like the following example.

dotnet codeartifact-creds command

« configure set profile profile: Configures the credential provider to use the provided
AWS profile.

« configure unset profile: Removes the configured profile if set.
« install: Copies the credential provider to the plugins folder.

e install --profile profile: Copies the credential provider to the plugins folder and
configures it to use the provided AWS profile.

« uninstall: Uninstalls the credential provider. This does not remove the changes to the
configuration file.

« uninstall --delete-configuration: Uninstalls the credential provider and removes all
changes to the configuration file.

CodeArtifact NuGet Credential Provider logs

To enable logging for the CodeArtifact NuGet Credential Provider, you must set the log file in your
environment. The credential provider logs contain helpful debugging information such as:

» The AWS profile used to make connections
« Any authentication errors

« If the endpoint provided is not a CodeArtifact URL

CodeArtifact NuGet Credential Provider reference 239

CodeArtifact CodeArtifact User Guide

Set the CodeArtifact NuGet Credential Provider log file

export AWS_CODEARTIFACT_NUGET_LOGFILE=/path/to/file

After the log file is set, any codeartifact-creds command will append its log output to the
contents of that file.

CodeArtifact NuGet Credential Provider versions

The following table contains version history information and download links for the CodeArtifact
NuGet Credential Provider.

Version Changes Date published Download link (S3)

1.0.2 (latest) Upgraded dependenc 06/26/2024 Download v1.0.2
ies

1.0.1 Added support for 03/05/2022 Download v1.0.1
net5, net6, and SSO
profiles

1.0.0 Initial CodeArtifact 11/20/2020 Download v1.0.0

NuGet Credential
Provider release

NuGet package name, version, and asset name normalization

CodeArtifact normalizes package and asset names and package versions before storing them,
which means the names or versions in CodeArtifact may be different than the ones provided when
the package or asset was published.

Package name normalization: CodeArtifact normalizes NuGet package names by converting all
letters to lowercase.

Package version normalization: CodeArtifact normalizes NuGet package versions using the same
pattern as NuGet. The following information is from Normalized version nhumbers from the NuGet

documentation.

CodeArtifact NuGet Credential Provider versions 240

https://d12ov9682v6hj.cloudfront.net/codeartifact-nuget-credentialprovider-v1.0.2.zip
https://a.co/cAIkhV1
https://a.co/8b2cENb
https://docs.microsoft.com/en-us/nuget/concepts/package-versioning#normalized-version-numbers

CodeArtifact CodeArtifact User Guide

» Leading zeroes are removed from version numbers:
« 1.00istreatedas 1.0
e« 1.01.1istreatedas1.1.1
+1.00.0.1istreatedas1.0.0.1

» A zero in the fourth part of the version number will be omitted:
e« 1.0.0.0istreatedas 1.0.0
«+1.0.01.0istreatedas1.0.1

« SemVer 2.0.0 build metadata is removed:

e 1.0.7+1r3456 istreatedas1.0.7

Package asset name normalization: CodeArtifact constructs the NuGet package asset name from
the normalized package name and package version.

The non-normalized package name and version name can be used with APl and CLI requests
because CodeArtifact performs normalization on the package name and version inputs for
those requests. For example, inputs of --package Newtonsoft.JSONand --version
12.0.03.0 would be normalized and return a package that has a normalized package name of
newtonsoft.json and version of 12.0.3.

You must use the normalized package asset name in APl and CLI requests as CodeArtifact does not
perform normalization on the --asset input.

You must use normalized names and versions in ARNSs.

To find the normalized name of a package, use the aws codeartifact list-packages
command. For more information, see List package names.

To find the non-normalized name of a package, use the aws codeartifact describe-
package-version command. The non-normalized name of the package is returned in the
displayName field. For more information, see View and update package version details and

dependencies.

NuGet compatibility

This guide contains information about CodeArtifact's compatibility with different NuGet tools and
versions.

NuGet compatibility 241

CodeArtifact CodeArtifact User Guide

Topics

o General NuGet compatibility

e NuGet command line support

General NuGet compatibility

AWS CodeArtifact supports NuGet 4.8 and higher.

AWS CodeArtifact only supports V3 of the NuGet HTTP protocol. This means that some CLI
commands that rely V2 of the protocol are not supported. See the nuget.exe command support

section for more information.

AWS CodeArtifact does not support PowerShellGet 2.x.

NuGet command line support
AWS CodeArtifact supports the NuGet (nuget.exe) and .NET Core (dotnet) CLI tools.

nuget.exe command support

Because CodeArtifact only supports V3 of NuGet's HTTP protocol, the following commands will not
work when used against CodeArtifact resources:

e list:The nuget list command displays a list of packages from a given source. To get a list of
packages in a CodeArtifact repository, you can use the List package names command from the
AWS CLI.

General NuGet compatibility 242

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Python

These topics describe how to use pip, the Python package manager, and twine, the Python
package publishing utility, with CodeArtifact.

Topics

» Configure and use pip with CodeArtifact

» Configure and use twine with CodeArtifact

» Python package name normalization

« Python compatibility

» Requesting Python packages from upstreams and external connections

Configure and use pip with CodeArtifact

pip is the package installer for Python packages. To use pip to install Python packages from your
CodeArtifact repository, you must first configure the pip client with your CodeArtifact repository
information and credentials.

pip can only be used to install Python packages. To publish Python packages, you can use twine.
For more information, see Configure and use twine with CodeArtifact.

Configure pip with the 1ogin command

First, configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact. Then, use the CodeArtifact 1ogin command to fetch credentials and configure pip
with them.

(® Note

If you are accessing a repository in a domain that you own, you don't need to include - -
domain-owner. For more information, see Cross-account domains.

To configure pip, run the following command.

Configure and use pip with CodeArtifact 243

https://pypi.org/project/pip/
https://pypi.org/project/twine/

CodeArtifact CodeArtifact User Guide

aws codeartifact login --tool pip --domain my_domain --domain-owner 111122223333 --
repository my_repo

login fetches an authorization token from CodeArtifact using your AWS credentials. The 1login
command will configure pip for use with CodeArtifact by editing ~/.config/pip/pip.conf to
set the index-url to the repository specified by the --repository option.

The default authorization period after calling 1ogin is 12 hours, and 1ogin must be called to
periodically refresh the token. For more information about the authorization token created with
the 1login command, see Tokens created with the 1ogin command.

Configure pip without the login command

If you cannot use the 1ogin command to configure pip, you can use pip config.

1. Use the AWS CLI to fetch a new authorization token.

(@ Note

If you are accessing a repository in a domain that you own, you do not need to include
the --domain-ownexr. For more information, see Cross-account domains.

CODEARTIFACT_AUTH_TOKEN="aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text’

2. Use pip config to set the CodeArtifact registry URL and credentials. The following
command will update the current environment configuration file only. To update the system-
wide configuration file, replace site with global.

pip config set site.index-url https://aws:
$CODEARTIFACT_AUTH_TOKEN@my_domain-
111122223333.d.codeartifact.region.amazonaws.com/pypi/my_repo/simple/

® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Configure pip without the login command 244

CodeArtifact CodeArtifact User Guide

/A Important

The registry URL must end with a forward slash (/). Otherwise, you cannot connect to the
repository.

Example pip configuration file

The following is an example of a pip. conf file after setting the CodeArtifact registry URL and
credentials.

[global]
index-url = https://aws:eyJ2ZX...e@my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/pypi/my_repo/simple/

Run pip

To run pip commands, you must configure pip with CodeArtifact. For more information, see the
following documentation.

1. Follow the steps in the Setting up with AWS CodeArtifact section to configure your AWS
account, tools, and permissions.

2. Configure twine by following the steps in Configure and use twine with CodeArtifact.

Assuming that a package is present in your repository or one of its upstream repositories, you can
install it with pip install. For example, use the following command to install the requests
package.

pip install requests

Use the -i option to temporarily revert to installing packages from https://pypi.org instead of
your CodeArtifact repository.

pip install -i https://pypi.org/simple requests

Run pip 245

https://pypi.org

CodeArtifact CodeArtifact User Guide

Configure and use twine with CodeArtifact

twine is a package publishing utility for Python packages. To use twine to publish Python packages
to your CodeArtifact repository, you must first configure twine with your CodeArtifact repository
information and credentials.

twine can only be used to publish Python packages. To install Python packages, you can use pip.
For more information, see Configure and use pip with CodeArtifact.

Configure twine with the 1login command

First, configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact. Then, use the CodeArtifact 1login command to fetch credentials and configure twine
with them.

® Note

If you are accessing a repository in a domain that you own, you don't need to include - -
domain-ownexr. For more information, see Cross-account domains.

To configure twine, run the following command.

aws codeartifact login --tool twine --domain my_domain --domain-owner 111122223333 --
repository my_repo

login fetches an authorization token from CodeArtifact using your AWS credentials. The 1login
command configures twine for use with CodeArtifact by editing ~/.pypirc to add the repository
specified by the --repository option with credentials.

The default authorization period after calling 1ogin is 12 hours, and 1ogin must be called to
periodically refresh the token. For more information about the authorization token created with
the 1login command, see Tokens created with the 1ogin command.

Configure twine without the 1login command

If you cannot use the 1ogin command to configure twine, you can use the ~/.pypirc file or
environment variables. To use the ~/.pypizrc file, add the following entries to it. The password
must be an auth token acquired by the get-authorization-token API.

Configure and use twine with CodeArtifact 246

https://pypi.org/project/twine/
https://pypi.org/project/pip/

CodeArtifact CodeArtifact User Guide

[distutils]
index-servers =
codeartifact
[codeartifact]
repository = https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/

pypi/my_repo/
password = auth-token
username = aws

(® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

To use environment variables, do the following.

(® Note

If you are accessing a repository in a domain that you own, you do not need to include the
--domain-owner. For more information, see Cross-account domains.

export TWINE_USERNAME=aws

export TWINE_PASSWORD=aws codeartifact get-authorization-token --domain my_domain --

domain-owner 111122223333 --query authorizationToken --output text’

export TWINE_REPOSITORY_URL=aws codeartifact get-repository-endpoint --

domain my_domain --domain-owner 111122223333 --repository my_repo --format pypi --query
repositoryEndpoint --output text’

Run twine

Before using twine to publish Python package assets, you must first configure CodeArtifact
permissions and resources.

1. Follow the steps in the Setting up with AWS CodeArtifact section to configure your AWS

account, tools, and permissions.

2. Configure twine by following the steps in Configure twine with the 1ogin command or
Configure twine without the 1ogin command.

Run twine 247

CodeArtifact CodeArtifact User Guide

After you configure twine, you can run twine commands. Use the following command to publish
Python package assets.

twine upload --repository codeartifact mypackage-1.0.tgz

For information about how to build and package your Python application, see Generating
Distribution Archives on the Python Packaging Authority website.

Python package name normalization

CodeArtifact normalizes package names before storing them, which means the package names in
CodeArtifact may be different than the name provided when the package was published.

For Python packages, when performing normalization the package name is lowercased and all
instances of the characters ., -, and _ are replaced with a single - character. So the package names
pigeon_cli and pigeon.cli are normalized and stored as pigeon-cli. The non-normalized
name can be used by pip and twine but the normalized name must be used in CodeArtifact CLI

or APl requests (such as 1ist-package-versions) and in ARNs. For more information about
Python package name normalization, see PEP 503 in the Python documentation.

Python compatibility
CodeArtifact does not support PyPI's XML-RPC or JSON APIs.

CodeArtifact supports PyPl's Legacy APIs, except the simple API. While CodeArtifact does not
support the /simple/ APl endpoint, it does support the /simple/<project>/ endpoint.

For more information, see the following on the Python Packaging Authority's GitHub repository.

o XML-RPC API
« JSON API

e Legacy API

pip command support

The following sections summarize the pip commands that are supported, by CodeArtifact
repositories, in addition to specific commands that are not supported.

Python package name normalization 248

https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://www.python.org/dev/peps/pep-0503/#normalized-names
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/xml-rpc.rst
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/json.rst
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/legacy.rst

CodeArtifact

CodeArtifact User Guide

Topics

» Supported commands that interact with a repository

» Supported client-side commands

Supported commands that interact with a repository

This section lists pip commands where the pip client makes one or more requests to the registry

it's been configured with. These commands have been verified to function correctly when invoked

against a CodeArtifact repository.

Command

install

download

Description
Install packages.

Download packages.

CodeArtifact does not implement pip search. If you have configured pip with a CodeArtifact
repository, running pip search will search and show packages from PyPI.

Supported client-side commands

These commands don't require any direct interaction with a repository, so CodeArtifact does not

need to do anything to support them.

Command
uninstall

freeze

list

show

check

Description
Uninstall packages.

Output installed packages in requirements
format.

List installed packages.
Show information about installed packages.

Verify installed packages have compatible
dependencies.

pip command support

249

https://pip.pypa.io/en/stable/reference/pip_install/
https://pip.pypa.io/en/stable/reference/pip_download/
https://pypi.org/
https://pip.pypa.io/en/stable/reference/pip_uninstall/
https://pip.pypa.io/en/stable/reference/pip_freeze/
https://pip.pypa.io/en/stable/reference/pip_list/
https://pip.pypa.io/en/stable/reference/pip_show/
https://pip.pypa.io/en/stable/reference/pip_check/

CodeArtifact CodeArtifact User Guide

Command Description

confi Manage local and global configuration.
wheel Build wheels from your requirements.
hash Compute hashes of package archives.
completion Helps with command completion.
debug Show information useful for debugging.
help Show help for commands.

Requesting Python packages from upstreams and external
connections

When importing a Python package version from pypi.org, CodeArtifact will import all the assets in
that package version. While most Python packages contain a small number of assets, some contain
over 100 assets, typically to support multiple hardware architectures and Python interpreters.

It's common for new assets to be published to pypi.org for an existing package version. For
example, some projects publish new assets when new versions of Python are released. When a
Python package is installed from CodeArtifact with pip install, package versions retained in
the CodeArtifact repository are updated to reflect the latest set of assets from pypi.org.

Similarly, if new assets are available for a package version in an upstream CodeArtifact repository
that are not present in the current CodeArtifact repository, they will be retained in the current
repository when pip install is run.

Yanked package versions

Some package versions in pypi.org are marked as yanked, which communicates to the package
installer (such as pip) that the version should not be installed unless it is the only one that matches
a version specifier (using either == or ===). See PEP_592 for more information.

If a package version in CodeArtifact was originally fetched from an external connection to pypi.org,
when you install the package version from a CodeArtifact repository, CodeArtifact ensures that the
updated yanked metadata of the package version is fetched from pypi.org.

Requesting Python packages from upstreams and external connections 250

https://pip.pypa.io/en/stable/reference/pip_config/
https://pip.pypa.io/en/stable/reference/pip_wheel/
https://pip.pypa.io/en/stable/reference/pip_hash/
https://pip.pypa.io/en/stable/user_guide/#command-completion
https://pip.pypa.io/en/stable/reference/pip_debug/
https://pypi.org/
https://peps.python.org/pep-0592/
https://pypi.org/

CodeArtifact CodeArtifact User Guide

How to know if a package version is yanked

To check if a package version is yanked in CodeArtifact, you can attempt to install it with pip
install packageName===packageVersion. If the package version is yanked, you will receive a
warning message similar to the following:

WARNING: The candidate selected for download or install is a yanked version

To check if a package version is yanked in pypi.org, you can visit the package version's pypi.org
listing at https://pypi.org/project/packageName/packageVersion/.

Setting yanked status on private packages

CodeArtifact does not support setting yanked metadata for packages published directly to
CodeArtifact repositories.

Why is CodeArtifact not fetching the latest yanked metadata or assets
for a package version?

Normally, CodeArtifact ensures that when a Python package version is fetched from a CodeArtifact
repository, the yanked metadata is up-to-date with the latest value on pypi.org. Additionally, the
list of assets in the package version are also kept updated with the latest set on pypi.org and any
upstream CodeArtifact repositories. This is true whether you're installing the package version for
the first time and CodeArtifact imports it from pypi.org into your CodeArtifact repository, or if
you've installed the package before. However, there are cases when the package manager client,
such as pip, won't pull the latest yanked metadata from pypi.org or upstream repositories. Instead,
CodeArtifact will return the data that is already stored in your repository. This section describes the
three ways this can occur:

Upstream configuration: If the external connection to pypi.org is removed from the repository or
its upstreams using disassociate-external-connection, yanked metadata will no longer be refreshed

from pypi.org. Similarly, if you remove an upstream repository, assets from the removed repository
and the removed repository's upstreams will no longer be available to the current repository. The
same is true if you use CodeArtifact package origin controls to prevent new versions of a specific
package from being pulled— setting upstream=BLOCK will block yanked metadata from being
refreshed.

Package version status: If you set the status of a package version to anything except Published
or Unlisted, yanked metadata and assets of the package version will not be refreshed. Similarly,

Why is CodeArtifact not fetching the latest yanked metadata or assets for a package version? 251

https://pypi.org/
https://pypi.org/

CodeArtifact CodeArtifact User Guide

if you are fetching a specific package version (say torch 2.0.1) and the same package version
is present in an upstream repository with a status that isn't Published or Unlisted, this will
also block yanked metadata and asset propagation from the upstream repository to the current
repository. This is because other package version statuses are an indication that the versions are
not meant to be consumed anymore in any repository.

Direct publishing: If you publish a specific package version directly into a CodeArtifact repository,
this will prevent yanked metadata and asset refresh for the package version from its upstream
repositories and pypi.org. For example, say you download an asset from the package version torch
2.0.1,suchastorch-2.0.1-cp31l1-none-macosx_11_0_arm64.whl, using a web browser
and then publish this to your CodeArtifact repository using twine as torch 2.0.1. CodeArtifact
tracks that the package version entered the domain by direct publishing to your repository, not
from an external connection to pypi.org or an upstream repository. In this case, CodeArtifact does
not keep the yanked metadata in sync with upstream repositories or pypi.org. The same is true

if you publish torch 2.0.1 into an upstream repository— the presence of the package version
will block propagation of yanked metadata and assets to repositories further down the upstream
graph.

Why is CodeArtifact not fetching the latest yanked metadata or assets for a package version? 252

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Ruby

These topics describe how to use the RubyGems and Bundler tools with CodeArtifact to install and
publish Ruby gems.

(@ Note

CodeArtifact recommends Ruby 3.3 or later and does not work with Ruby 2.6 or older.

Topics

» Configure and use RubyGems and Bundler with CodeArtifact

e RubyGems command support

« Bundler compatibility

Configure and use RubyGems and Bundler with CodeArtifact

After you create a repository in CodeArtifact, you can use RubyGems (gem) and Bundler (bundle)
to install and publish gems. This topic describes how to configure the package managers to
authenticate with and use a CodeArtifact repository.

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact

To use RubyGems (gem) or Bundler (bundle) to publish gems to or consume gems from AWS
CodeArtifact, you'll first need to configure them with your CodeArtifact repository information,
including credentials to access it. Follow the steps in one of the following procedure to configure
the gem and bundle CLI tools with your CodeArtifact repository endpoint information and
credentials.

Configure RubyGems and Bundler using the console instructions

You can use configuration instructions in the console to connect your Ruby package managers to
your CodeArtifact repository. The console instructions provide custom commands that you can run
to set up your package managers without needing to find and fill in your CodeArtifact information.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

Configure and use RubyGems and Bundler 253

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

2. Inthe navigation pane, choose Repositories, and then choose the repository that you want to
use for installing or pushing Ruby gems.

3. Choose View connection instructions.
4. Choose your operating system.

5. Choose the Ruby package manager client that you want to configure with your CodeArtifact
repository.

6. Follow the generated instructions to configure the package manager client to install Ruby
gems from or publish Ruby gems to the repository.

Configure RubyGems and Bundler manually

If you cannot or do not want to use the configuration instructions from the console, you can
use the following instructions to connect to your Ruby package managers to your CodeArtifact
repository manually.

1. Inacommand line, use the following command to fetch a CodeArtifact authorization token
and store it in an environment variable.

» Replace my_domain with your CodeArtifact domain name.

» Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

macOS and Linux

export CODEARTIFACT_AUTH_TOKEN="aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
text”

Windows

» Windows (using default command shell):

for /f %i in ('aws codeartifact get-authorization-token --domain my_domain --
domain-owner 111122223333 --query authorizationToken --output text') do set
CODEARTIFACT_AUTH_TOKEN=%i

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 254

CodeArtifact CodeArtifact User Guide

« Windows PowerShell:

$env:CODEARTIFACT_AUTH_TOKEN = aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --
output text

2. To publish Ruby gems to your repository, use the following command to fetch your
CodeArtifact repository's endpoint and storing it in the RUBYGEMS_HOST environment
variable. The gem CLI uses this environment variable to determine where gems are published.

® Note

Alternatively, instead of using the RUBYGEMS_HOST environment variable, you can
provide the repository endpoint with the --host option when using the gem push
command.

« Replace my_domain with your CodeArtifact domain name.

« Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

» Replace my_repo with your CodeArtifact repository name.

macOS and Linux

export RUBYGEMS_HOST='aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format ruby

--query repositoryEndpoint --output text | sed 's:/*$::

Windows

The following commands retrieve the repository endpoint, trim the trailing /, then store
them in an environment variable.

« Windows (using default command shell):

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 255

CodeArtifact CodeArtifact User Guide

for /f %i in ('aws codeartifact get-repository-endpoint --domain my_domain
--domain-owner 111122223333 --repository my_repo --format ruby --query
repositoryEndpoint --output text') do set RUBYGEMS_HOST=%i

set RUBYGEMS_HOST=%RUBYGEMS_HOST:~0, -15%

+ Windows PowerShell:

$env:RUBYGEMS_HOST = (aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format
ruby --query repositoryEndpoint --output text).TrimEnd("/")

The following URL is an example repository endpoint:

https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/ruby/my_repo/

(® Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

3. To publish Ruby gems to your repository, you must authenticate to CodeArtifact with
RubyGems by editing your ~/.gem/credentials file to include your auth token. Create a
~/.gem/ directory and a ~/.gem/credentials file if the directory or file doesn't exist.

macOS and Linux

echo ":codeartifact_api_key: Bearer $CODEARTIFACT_AUTH_TOKEN" >> ~/.gem/
credentials

Windows

« Windows (using default command shell):

echo :codeartifact_api_key: Bearer %CODEARTIFACT_AUTH_TOKEN% >> S%USERPROFILE
%/ .gem/credentials

« Windows PowerShell:

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 256

CodeArtifact CodeArtifact User Guide

echo ":codeartifact_api_key: Bearer $env:CODEARTIFACT_AUTH_TOKEN" | Add-
Content ~/.gem/credentials

4. To use gem to install Ruby gems from your repository, you must add the rep