
CodeArtifact User Guide

CodeArtifact

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

CodeArtifact CodeArtifact User Guide

CodeArtifact: CodeArtifact User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

CodeArtifact CodeArtifact User Guide

Table of Contents

What is AWS CodeArtifact? ... 1
How does CodeArtifact work? .. 1
Concepts ... 2

Asset ... 2
Domain .. 2
Repository ... 3
Package .. 3
Package group ... 3
Package namespace .. 3
Package version ... 4
Package version revision .. 4
Upstream repository ... 4

How do I get started with CodeArtifact? .. 4
Setting up .. 6

Sign up for AWS ... 6
Install or upgrade and then configure the AWS CLI ... 7
Provision an IAM user .. 8
Install your package manager or build tool ... 9

Next steps ... 10
Getting started .. 11

Prerequisites .. 11
Getting started using the console .. 12
Getting started using the AWS CLI .. 14

Working with repositories .. 21
Create a repository .. 21

Create a repository (console) ... 22
Create a repository (AWS CLI) .. 23
Create a repository with an upstream repository .. 24

Connect to a repository .. 25
Use a package manager client ... 25

Delete a repository .. 26
Delete a repository (console) ... 26
Delete a repository (AWS CLI) .. 26
Protect repositories from being deleted .. 27

iii

CodeArtifact CodeArtifact User Guide

List repositories .. 28
List repositories in an AWS account ... 29
List repositories in the domain .. 30

View or modify a repository configuration .. 32
View or modify a repository configuration (console) .. 32
View or modify a repository configuration (AWS CLI) .. 33

Repository policies .. 35
Create a resource policy to grant read access .. 35
Set a policy .. 37
Read a policy ... 38
Delete a policy ... 39
Grant read access to principals .. 39
Grant write access to packages ... 40
Grant write access to a repository .. 41
Interaction between repository and domain policies .. 42

Tag a repository ... 43
Tag repositories (CLI) ... 43
Tag repositories (console) ... 46

Working with upstream repositories .. 51
What's the difference between upstream repositories and external connections? 51
Add or remove upstream repositories ... 52

Add or remove upstream repositories (console) .. 52
Add or remove upstream repositories (AWS CLI) ... 53

Connect a CodeArtifact repository to a public repository ... 56
Connect to an external repository (console) ... 56
Connect to an external repository (CLI) ... 57
Supported external connection repositories ... 59
Remove an external connection (CLI) ... 59

Requesting a package version with upstream repositories ... 60
Package retention from upstream repositories .. 61
Fetch packages through an upstream relationship ... 61
Package retention in intermediate repositories ... 63

Requesting packages from external connections .. 64
Fetch packages from an external connection ... 65
External connection latency ... 66
CodeArtifact behavior when an external repository is not available ... 67

iv

CodeArtifact CodeArtifact User Guide

Availability of new package versions .. 67
Importing package versions with more than one asset .. 68

Upstream repository priority order .. 68
Simple priority order example ... 69
Complex priority order example .. 70

API behavior with upstream repositories .. 71
Working with packages ... 74

Packages overview ... 74
Supported package formats ... 75
Package publishing ... 75
Package version status .. 78
Package name, package version, and asset name normalization ... 79

List package names ... 79
List npm package names .. 81
List Maven package names ... 82
List Python package names .. 83
Filter by package name prefix ... 83
Supported search option combinations ... 84
Format output ... 85
Defaults and other options .. 85

List package versions .. 86
List npm package versions .. 88
List Maven package versions .. 88
Sort versions .. 88
Default display version .. 89
Format output ... 90

List package version assets .. 90
List assets of an npm package .. 92
List assets of a Maven package ... 92

Download package version assets .. 92
Copy packages between repositories ... 93

Required IAM permissions to copy packages .. 93
Copy package versions .. 95
Copy a package from upstream repositories .. 96
Copy a scoped npm package ... 96
Copy Maven package versions ... 96

v

CodeArtifact CodeArtifact User Guide

Versions that do not exist in the source repository .. 97
Versions that already exist in the destination repository ... 97
Specifying a package version revision .. 99
Copy npm packages ... 100

Delete a package or package version .. 100
Deleting a package (AWS CLI) ... 101
Deleting a package (console) ... 102
Deleting a package version (AWS CLI) ... 102
Deleting a package version (console) ... 103
Deleting an npm package or package version ... 103
Deleting a Maven package or package version .. 104
Best practices for deleting packages or package versions ... 104

View and update package version details and dependencies ... 105
View package version details ... 105
View npm package version details ... 106
View Maven package version details .. 107
View package version dependencies .. 108
View package version readme file .. 109

Update package version status ... 110
Updating package version status .. 110
Required IAM permissions to update a package version status .. 112
Updating status for a scoped npm package ... 112
Updating status for a Maven package ... 112
Specifying a package version revision ... 113
Using the expected status parameter .. 114
Errors with individual package versions .. 115
Disposing of package versions .. 116

Editing package origin controls .. 118
Common package access control scenarios .. 118
Package origin control settings ... 120
Default package origin control settings .. 121
How package origin controls interact with package group origin controls 122
Editing package origin controls ... 122
Publishing and upstream repositories .. 124

Working with package groups .. 125
Create a package group ... 126

vi

CodeArtifact CodeArtifact User Guide

Create a package group (console) ... 126
Create a package group (AWS CLI) ... 127

View or edit a package group ... 128
View or edit a package group (console) .. 128
View or edit a package group (AWS CLI) ... 128

Delete a package group ... 130
Delete a package group (console) ... 130
Delete a package group (AWS CLI) ... 130

Package group origin controls .. 131
Restriction settings ... 131
Allowed repository lists ... 133
Editing package group origin control settings ... 133
Package group origin control configuration examples ... 134
How package group origin control settings interact with package origin control settings .. 137

Package group definition syntax and matching behavior ... 137
Package group definition syntax and examples ... 137
Package group hierarchy and pattern specificity ... 139
Words, word boundaries, and prefix matching .. 139
Case sensitivity .. 140
Strong and weak match .. 141
Additional variations .. 141

Tag a package group .. 142
Tag package groups (CLI) ... 142

Working with domains .. 146
Domain overview ... 146

Cross-account domains .. 147
Types of AWS KMS keys supported in CodeArtifact ... 148

Create a domain ... 148
Create a domain (console) .. 149
Create a domain (AWS CLI) .. 149
Example AWS KMS key policy ... 151

Delete a domain ... 152
Restrictions on domain deletion ... 152
Delete a domain (console) .. 153
Delete a domain (AWS CLI) .. 153

Domain policies .. 154

vii

CodeArtifact CodeArtifact User Guide

Enable cross-account access to a domain ... 154
Domain policy example ... 156
Domain policy example with AWS Organizations ... 157
Set a domain policy ... 158
Read a domain policy .. 159
Delete a domain policy ... 159

Tag a domain .. 160
Tag domains (CLI) ... 160
Tag domains (console) ... 163

Using Cargo .. 167
Configure and use Cargo .. 167

Configure Cargo with CodeArtifact .. 167
Installing Cargo crates ... 172
Publishing Cargo crates ... 173

Cargo command support ... 173
Supported commands that require accessing the registry .. 173
Unsupported commands ... 174

Using Maven .. 175
Use CodeArtifact with Gradle ... 175

Fetch dependencies .. 176
Fetch plugins ... 177
Publish artifacts .. 178
Run a Gradle build in IntelliJ IDEA ... 180

Use CodeArtifact with mvn ... 184
Fetch dependencies .. 176
Publish artifacts .. 178
Publish third-party artifacts ... 189
Restrict Maven dependency downloads to a CodeArtifact repository 190
Apache Maven Project information .. 191

Use CodeArtifact with deps.edn ... 192
Fetch dependencies .. 192
Publish artifacts .. 193

Publishing with curl .. 194
Use Maven checksums ... 196

Checksum storage .. 197
Checksum mismatches during publishing ... 198

viii

CodeArtifact CodeArtifact User Guide

Recovering from checksum mismatches .. 199
Use Maven snapshots .. 199

Snapshot publishing in CodeArtifact ... 200
Consuming snapshot versions .. 202
Deleting snapshot versions .. 203
Snapshot publishing with curl ... 203
Snapshots and external connections .. 206
Snapshots and upstream repositories .. 206

Requesting Maven packages from upstreams and external connections 206
Importing standard asset names .. 206
Importing non-standard asset names .. 207
Checking asset origins ... 208
Importing new assets and package version status in upstream repositories 208

Maven troubleshooting ... 209
Disable parallel puts to fix error 429: Too Many Requests .. 209

Using npm .. 210
Configure and use npm .. 210

Configuring npm with the login command .. 210
Configuring npm without using the login command .. 211
Running npm commands .. 213
Verifying npm authentication and authorization .. 214
Changing back to the default npm registry ... 215
Troubleshooting slow installs with npm 8.x or higher ... 215

Configure and use Yarn .. 215
Configure Yarn 1.X with the aws codeartifact login command 216
Configure Yarn 2.X with the yarn config set command .. 217

npm command support .. 219
Supported commands that interact with a repository ... 219
Supported client-side commands ... 221
Unsupported commands ... 174

npm tag handling .. 225
Edit tags with the npm client .. 225
npm tags and the CopyPackageVersions API ... 225
npm tags and upstream repositories ... 226

Support for npm-compatible package managers ... 228
Using NuGet ... 229

ix

CodeArtifact CodeArtifact User Guide

Use CodeArtifact with Visual Studio ... 229
Configure Visual Studio with the CodeArtifact Credential Provider .. 230
Use the Visual Studio Package Manager console .. 231

Use CodeArtifact with nuget or dotnet .. 231
Configure the nuget or dotnet CLI ... 232
Consume NuGet packages .. 237
Publish NuGet packages ... 238
CodeArtifact NuGet Credential Provider reference ... 239
CodeArtifact NuGet Credential Provider versions .. 240

NuGet package name, version, and asset name normalization .. 240
NuGet compatibility .. 241

General NuGet compatibility ... 242
NuGet command line support ... 242

Using Python ... 243
Configure and use pip with CodeArtifact ... 243

Configure pip with the login command .. 243
Configure pip without the login command .. 244
Run pip ... 245

Configure and use twine with CodeArtifact ... 246
Configure twine with the login command ... 246
Configure twine without the login command ... 246
Run twine ... 247

Python package name normalization .. 248
Python compatibility ... 248

pip command support ... 248
Requesting Python packages from upstreams and external connections 250

Yanked package versions .. 250
Why is CodeArtifact not fetching the latest yanked metadata or assets for a package
version? ... 251

Using Ruby ... 253
Configure and use RubyGems and Bundler ... 253

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 253
Installing Ruby gems ... 259
Publishing Ruby gems ... 260

RubyGems command support ... 261
Bundler compatibility .. 261

x

CodeArtifact CodeArtifact User Guide

Bundler compatibility .. 261
Using Swift ... 263

Configure Swift with CodeArtifact ... 263
Configure Swift with the login command ... 263
Configure Swift without the login command ... 265

Consuming and publishing Swift packages .. 269
Consuming Swift packages .. 269
Consuming Swift packages in Xcode .. 270
Publishing Swift packages .. 271
Fetching Swift packages from GitHub and republishing to CodeArtifact 274

Swift package name and namespace normalization .. 276
Swift troubleshooting ... 276

I'm getting a 401 error in Xcode even after configuring the Swift Package Manager 277
Xcode hangs on CI machine due to keychain prompt for password .. 277

Using generic packages ... 280
Generic packages overview .. 280

Generic package constraints .. 280
Supported commands ... 281
Publishing and consuming generic packages .. 282

Publishing a generic package .. 282
Listing generic package assets .. 284
Downloading generic package assets ... 285

Using CodeArtifact with CodeBuild .. 287
Using npm packages in CodeBuild ... 287

Set up permissions with IAM roles ... 287
Log in and use npm ... 288

Using Python packages in CodeBuild .. 289
Set up permissions with IAM roles ... 289
Log in and use pip or twine ... 290

Using Maven packages in CodeBuild ... 292
Set up permissions with IAM roles ... 292
Use gradle or mvn .. 293

Using NuGet packages in CodeBuild ... 294
Set up permissions with IAM roles ... 295
Consume NuGet packages .. 296
Build with NuGet packages .. 297

xi

CodeArtifact CodeArtifact User Guide

Publish NuGet packages ... 299
Dependency caching ... 301

Monitoring CodeArtifact ... 302
Monitoring CodeArtifact events ... 302

CodeArtifact event format and example ... 303
Use an event to start a CodePipeline execution ... 308

Configure EventBridge permissions .. 308
Create the EventBridge rule ... 308
Create the EventBridge rule target ... 308

Use an event to run a Lambda function ... 309
Create the EventBridge rule ... 309
Create the EventBridge rule target ... 309
Configure EventBridge permissions .. 310

Security .. 311
Data protection .. 312

Data encryption .. 313
Traffic privacy ... 313

Monitoring ... 313
Logging CodeArtifact API calls with AWS CloudTrail .. 314

Compliance validation .. 318
Authentication and tokens .. 319

Tokens created with the login command ... 320
Permissions required to call the GetAuthorizationToken API .. 322
Tokens created with the GetAuthorizationToken API ... 322
Pass an auth token using an environment variable .. 323
Revoking CodeArtifact authorization tokens .. 324

Resilience ... 325
Infrastructure security ... 325
Dependency substitution attacks ... 325
Identity and Access Management .. 326

Audience ... 327
Authenticating with identities ... 327
Managing access using policies ... 331
How AWS CodeArtifact works with IAM .. 333
Identity-based policy examples ... 340
Using tags to control access to CodeArtifact resources ... 349

xii

CodeArtifact CodeArtifact User Guide

AWS CodeArtifact permissions reference .. 353
Troubleshooting .. 357

Working with VPC endpoints ... 359
Create VPC endpoints ... 359
Create the Amazon S3 gateway endpoint .. 361

Minimum Amazon S3 bucket permissions for AWS CodeArtifact ... 361
Use CodeArtifact from a VPC .. 363

Use the codeartifact.repositories endpoint without private DNS 364
Create a VPC endpoint policy ... 365

AWS CloudFormation resources ... 367
CodeArtifact and AWS CloudFormation templates .. 367
Preventing deletion of CodeArtifact resources .. 367
Learn more about AWS CloudFormation .. 368

Troubleshooting ... 369
I cannot view notifications .. 369

Tagging resources .. 370
CodeArtifact cost allocation with tags .. 371

Allocating data storage costs in CodeArtifact .. 371
Allocating request costs in CodeArtifact ... 371

Quotas in AWS CodeArtifact ... 372
Document history .. 375

xiii

CodeArtifact CodeArtifact User Guide

What is AWS CodeArtifact?

AWS CodeArtifact is a secure, highly scalable, managed artifact repository service that helps
organizations to store and share software packages for application development. You can use
CodeArtifact with popular build tools and package managers such as the NuGet CLI, Maven, Gradle,
npm, yarn, pip, and twine. CodeArtifact helps reduce the need for you to manage your own artifact
storage system or worry about scaling its infrastructure. There are no limits on the number or total
size of the packages that you can store in a CodeArtifact repository.

You can create a connection between your private CodeArtifact repository and an external, public
repository, such as npmjs.com or Maven Central. CodeArtifact will then fetch and store packages
on demand from the public repository when they're requested by a package manager. This makes it
more convenient to consume open-source dependencies used by your application and helps ensure
they're always available for builds and development. You can also publish private packages to a
CodeArtifact repository. This helps you share proprietary software components between multiple
applications and development teams in your organization.

For more information, see AWS CodeArtifact.

How does CodeArtifact work?

CodeArtifact stores software packages in repositories. Repositories are polyglot—a single
repository can contain packages of any supported type. Every CodeArtifact repository is a member
of a single CodeArtifact domain. We recommend that you use one production domain for your
organization with one or more repositories. For example, you might use each repository for a
different development team. Packages in your repositories can then be discovered and shared
across your development teams.

To add packages to a repository, configure a package manager such as npm or Maven to use the
repository endpoint (URL). You can then use the package manager to publish packages to the
repository. You can also import open-source packages into a repository by configuring it with an
external connection to a public repository such as npmjs, NuGet Gallery, Maven Central, or PyPI.
For more information, see Connect a CodeArtifact repository to a public repository.

You can make packages in one repository available to another repository in the same domain. To
do this, configure one repository as an upstream of the other. All package versions available to
the upstream repository are also available to the downstream repository. In addition, all packages
that are available to the upstream repository through an external connection to a public repository

How does CodeArtifact work? 1

https://aws.amazon.com/codeartifact/

CodeArtifact CodeArtifact User Guide

are available to the downstream repository. For more information, see Working with upstream
repositories in CodeArtifact.

CodeArtifact requires users to authenticate with the service in order to publish or consume package
versions. You must authenticate to the CodeArtifact service by creating an authorization token
using your AWS credentials. Packages in CodeArtifact repositories cannot be made publicly
available. For more information about authentication and access in CodeArtifact, see AWS
CodeArtifact authentication and tokens.

AWS CodeArtifact concepts

Here are some concepts and terms to know when you use CodeArtifact.

Topics

• Asset

• Domain

• Repository

• Package

• Package group

• Package namespace

• Package version

• Package version revision

• Upstream repository

Asset

An asset is an individual file stored in CodeArtifact that's associated with a package version, such as
an npm .tgz file or Maven POM and JAR files.

Domain

Repositories are aggregated into a higher-level entity known as a domain. All package assets and
metadata are stored in the domain, but they are consumed through repositories. A given package
asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's
present in. All of the assets and metadata in a domain are encrypted with the same AWS KMS key
(KMS key) stored in AWS Key Management Service (AWS KMS).

Concepts 2

CodeArtifact CodeArtifact User Guide

Each repository is a member of a single domain and can't be moved to a different domain.

Using a domain, you can apply an organizational policy across multiple repositories. With this
approach, you determine which accounts can access repositories in the domain, and which public
repositories can be used as the sources of packages.

Although an organization can have multiple domains, we recommend a single production domain
that contains all published artifacts. That way, teams can find and share packages across your
organization.

Repository

A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets.
Repositories are polyglot—a single repository can contain packages of any supported type. Each
repository exposes endpoints for fetching and publishing packages using tools like the nuget CLI,
the npm CLI, the Maven CLI (mvn), and pip. You can create up to 1,000 repositories per domain.

Package

A package is a bundle of software and the metadata that is required to resolve dependencies and
install the software. In CodeArtifact, a package consists of a package name, an optional namespace
such as @types in @types/node, a set of package versions, and package-level metadata such as
npm tags.

AWS CodeArtifact supports Cargo, generic, Maven, npm, NuGet, PyPI, Ruby, Swift package formats.

Package group

Package groups can be used to apply configuration to multiple packages that match a defined
pattern using package format, package namespace, and package name. You can use package
groups to more conveniently configure package origin controls for multiple packages. Package
origin controls are used to block or allow ingestion or publishing of new package versions, which
protects users from malicious actions known as dependency substitution attacks.

Package namespace

Some package formats support hierarchical package names to organize packages into logical
groups and help avoid name collisions. For example, npm supports scopes. For more information,
see the npm scopes documentation. The npm package @types/node has a scope of @types and
a name of node. There are many other package names in the @types scope. In CodeArtifact, the

Repository 3

https://docs.npmjs.com/cli/v7/using-npm/scope

CodeArtifact CodeArtifact User Guide

scope (“types”) is referred to as the package namespace and the name (“node”) is referred to as the
package name. For Maven packages, the package namespace corresponds to the Maven groupID.
The Maven package org.apache.logging.log4j:log4j has a groupID (package namespace) of
org.apache.logging.log4j and the artifactID (package name) log4j. For generic packages, a
namespace is required. Some package formats such as PyPI don't support hierarchical names with a
concept similar to npm scope or Maven groupID. Without a way to group package names, it can be
more difficult to avoid name collisions.

Package version

A package version identifies the specific version of a package, such as @types/node 12.6.9.
The version number format and semantics vary for different package formats. For example,
npm package versions must conform to the Semantic Versioning specification. In CodeArtifact,
a package version consists of the version identifier, package version level metadata, and a set of
assets.

Package version revision

A package version revision is a string that identifies a specific set of assets and metadata for a
package version. Each time a package version is updated, a new package version revision is created.
For example, you might publish a source distribution archive (sdist) for a Python package version,
and later add a Python wheel that contains compiled code to the same version. When you publish
the wheel, a new package version revision is created.

Upstream repository

One repository is upstream of another when the package versions in it can be accessed from the
repository endpoint of the downstream repository. This approach effectively merges the contents
of the two repositories from the point of view of a client. Using CodeArtifact, you can create an
upstream relationship between two repositories.

How do I get started with CodeArtifact?

We recommend that you complete the following steps:

1. Learn more about CodeArtifact by reading AWS CodeArtifact concepts.

2. Set up your AWS account, the AWS CLI, and an IAM user by following the steps in Setting up
with AWS CodeArtifact.

Package version 4

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PublishPackageVersion.html#namespace
https://semver.org/

CodeArtifact CodeArtifact User Guide

3. Use CodeArtifact by following the instructions in Getting started with CodeArtifact.

How do I get started with CodeArtifact? 5

CodeArtifact CodeArtifact User Guide

Setting up with AWS CodeArtifact

If you've already signed up for Amazon Web Services (AWS), you can start using AWS CodeArtifact
immediately. You can open the CodeArtifact console, choose Create a domain and repository, and
follow the steps in the launch wizard to create your first domain and repository.

If you haven't signed up for AWS yet, or need assistance creating your first domain and repository,
complete the following tasks to get set up to use CodeArtifact:

Topics

• Sign up for AWS

• Install or upgrade and then configure the AWS CLI

• Provision an IAM user

• Install your package manager or build tool

Sign up for AWS

When you sign up for Amazon Web Services (AWS), you are charged only for the services and
resources that you use, including AWS CodeArtifact.

If you already have an AWS account, skip to the next task, Install or upgrade and then configure the
AWS CLI. If you don't have an AWS account, use the following procedure to create one.

To create an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Sign up for AWS 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

CodeArtifact CodeArtifact User Guide

Install or upgrade and then configure the AWS CLI

To call CodeArtifact commands from the AWS Command Line Interface (AWS CLI) on a local
development machine, you must install the AWS CLI.

If you have an older version of the AWS CLI installed, you must upgrade it so the CodeArtifact
commands are available. CodeArtifact commands are available in the following AWS CLI versions:

1. AWS CLI 1: 1.18.77 and newer

2. AWS CLI 2: 2.0.21 and newer

To check the version, use the aws --version command.

To install and configure the AWS CLI

1. Install or upgrade the AWS CLI with the instructions in Installing the AWS Command Line
Interface.

2. Configure the AWS CLI, with the configure command, as follows.

aws configure

When prompted, specify the AWS access key and AWS secret access key of the IAM user that
you will use with CodeArtifact. When prompted for the default AWS Region name, specify the
Region where you will create the pipeline, such as us-east-2. When prompted for the default
output format, specify json.

Important

When you configure the AWS CLI, you are prompted to specify an AWS Region. Choose
one of the supported Regions listed in Region and Endpoints in the AWS General
Reference.

For more information, see Configuring the AWS Command Line Interface and Managing access
keys for IAM users.

3. To verify the installation or upgrade, call the following command from the AWS CLI.

Install or upgrade and then configure the AWS CLI 7

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/codeartifact.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html

CodeArtifact CodeArtifact User Guide

aws codeartifact help

If successful, this command displays a list of available CodeArtifact commands.

Next, you can create an IAM user and grant that user access to CodeArtifact. For more information,
see Provision an IAM user.

Provision an IAM user

Follow these instructions to prepare an IAM user to use CodeArtifact.

To provision anIAM user

1. Create an IAM user, or use one that is associated with your AWS account. For more information,
see Creating an IAM user and Overview of AWS IAM policies in the IAM User Guide.

2. Grant the IAM user access to CodeArtifact.

• Option 1: Create a custom IAM policy. With a custom IAM policy, you can provide the
minimum required permissions and change how long authentication tokens last. For more
information and example policies, see Identity-based policy examples for AWS CodeArtifact.

• Option 2: Use the AWSCodeArtifactAdminAccess AWS managed policy. The following
snippet shows the contents of this policy.

Important

This policy grants access to all CodeArtifact APIs. We recommend that you
always use the minimum permissions required to accomplish your task. For more
information, see IAM best practices in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:*"
],

Provision an IAM user 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

CodeArtifact CodeArtifact User Guide

 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Note

The sts:GetServiceBearerToken permission must be added to the IAM user or role
policy. While it can be added to a CodeArtifact domain or repository resource policy, the
permission will have no effect in resource policies.

The sts:GetServiceBearerToken permission is required to call the CodeArtifact
GetAuthorizationToken API. This API returns a token that must be used when using a package
manager such as npm or pip with CodeArtifact. To use a package manager with a CodeArtifact
repository, your IAM user or role must allow sts:GetServiceBearerToken as shown in the
preceding policy example.

If you haven't installed the package manager or build tool that you plan to use with CodeArtifact,
see Install your package manager or build tool.

Install your package manager or build tool

To publish or consume packages from CodeArtifact, you must use a package manager. There are
different package managers for each package type. The following list contains some package
managers that you can use with CodeArtifact. If you haven't already, install the package managers
for the package type you want to use.

Install your package manager or build tool 9

CodeArtifact CodeArtifact User Guide

• For npm, use the npm CLI or pnpm.

• For Maven, use either Apache Maven (mvn) or Gradle.

• For Python, use pip to install packages and twine to publish packages.

• For NuGet, use the Toolkit for Visual Studio in Visual Studio or the nuget or dotnet CLIs.

• For generic packages, use the AWS CLI or SDK to publish and download package contents.

Next steps

Your next steps will depend on which package type or types you are using with CodeArtifact, and
the state of your CodeArtifact resources.

If you are getting started with CodeArtifact for the first time for yourself, your team, or
organization, see the following documentation for general getting started information and help
creating the resources you will need.

• Getting started using the console

• Getting started using the AWS CLI

If your resources have already been created and you are ready to configure your package manager
to push packages to or install packages from a CodeArtifact repository, see the documentation that
corresponds to your package type or package manager.

• Using CodeArtifact with npm

• Using CodeArtifact with Python

• Using CodeArtifact with Maven

• Using CodeArtifact with NuGet

• Using CodeArtifact with generic packages

Next steps 10

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://pnpm.io/installation
https://maven.apache.org/install.html
https://gradle.org/install/
https://pip.pypa.io/en/stable/installation/
https://twine.readthedocs.io/en/stable/#installation
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html
https://learn.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference
https://learn.microsoft.com/en-us/dotnet/core/install/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

CodeArtifact CodeArtifact User Guide

Getting started with CodeArtifact

In this getting started tutorial, you use CodeArtifact to create the following:

• A domain called my-domain.

• A repository called my-repo that is contained in my-domain.

• A repository called npm-store that is contained in my-domain. The npm-store has an external
connection to the npm public repository. This connection is used to ingest an npm package into
the my-repo repository.

Before starting this tutorial, we recommend that you review CodeArtifact AWS CodeArtifact
concepts.

Note

This tutorial requires you to create resources that might result in charges to your AWS
account. For more information, see CodeArtifact pricing.

Topics

• Prerequisites

• Getting started using the console

• Getting started using the AWS CLI

Prerequisites

You can complete this tutorial using the AWS Management Console or the AWS Command Line
Interface (AWS CLI). To follow the tutorial, you must first complete the following prerequisites:

• Complete the steps in Setting up with AWS CodeArtifact.

• Install the npm CLI. For more information, see Downloading and installing Node.js and npm in
the npm documentation.

Prerequisites 11

https://aws.amazon.com/codeartifact/pricing/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

CodeArtifact CodeArtifact User Guide

Getting started using the console

Run the following steps to get started with CodeArtifact using the AWS Management Console. This
guide uses the npm package manager, if you are using a different package manager, you will need
to modify some of the following steps.

1. Sign in to the AWS Management Console and open the AWS CodeArtifact console at https://
console.aws.amazon.com/codesuite/codeartifact/start. For more information, see Setting up
with AWS CodeArtifact.

2. Choose Create repository.

3. In Repository name, enter my-repo.

4. (Optional) In Repository Description, enter an optional description for your repository.

5. In Public upstream repositories, select npm-store to create a repository connected to npmjs
that is upstream from your my-repo repository.

CodeArtifact assigns the name npm-store to this repository for you. All packages available in
the upstream repository npm-store are also available to its downstream repository, my-repo.

6. Choose Next.

7. In AWS account, choose This AWS account.

8. In Domain name, enter my-domain.

9. Expand Additional configuration.

10. You must use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an
AWS managed key or a KMS key that you manage:

• Choose AWS managed key if you want to use the default AWS managed key.

• Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed key and Customer managed key in the AWS Key
Management Service Developer Guide.

11. Choose Next.

12. In Review and create, review what CodeArtifact is creating for you.

• Package flow shows how my-domain, my-repo, and npm-store are related.

Getting started using the console 12

https://console.aws.amazon.com/codesuite/codeartifact/start
https://console.aws.amazon.com/codesuite/codeartifact/start
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

• Step 1: Create repository shows details about my-repo and npm-store.

• Step 2: Select domain shows details about my-domain.

When you're ready, choose Create repository.

13. On the my-repo page, choose View connection instructions, and then choose npm.

14. Use the AWS CLI to run the login command shown under Configure your npm client using
this AWS CLI CodeArtifact command.

aws codeartifact login --tool npm --repository my-repo --domain my-domain --domain-
owner 111122223333

You should receive output confirming your login succeeded.

Successfully configured npm to use AWS CodeArtifact repository https://my-
domain-111122223333.d.codeartifact.us-east-2.amazonaws.com/npm/my-repo/
Login expires in 12 hours at 2020-10-08 02:45:33-04:00

If you receive the error Could not connect to the endpoint URL, make sure that your
AWS CLI is configured and that your Default region name is set to the same Region where you
created your repository, see Configuring the AWS Command Line Interface.

For more information, see Configure and use npm with CodeArtifact

15. Use the npm CLI to install an npm package. For example, to install the popular npm package
lodash, use the following command.

npm install lodash

16. Return to the CodeArtifact console. If your my-repo repository is open, refresh the page.
Otherwise, in the navigation pane, choose Repositories, and then choose my-repo.

Under Packages, you should see the npm library, or package, that you installed. You can
choose the name of the package to view its version and status. You can choose its latest
version to view package details such as dependencies, assets, and more.

Getting started using the console 13

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

CodeArtifact CodeArtifact User Guide

Note

There may be a delay between when you install the package and when it is ingested
into your repository.

17. To avoid further AWS charges, delete the resources that you used during this tutorial:

Note

You cannot delete a domain that contains repositories, so you must delete my-repo
and npm-store before you delete my-domain.

a. From the navigation pane, choose Repositories.

b. Choose npm-store, choose Delete, and then follow the steps to delete the repository.

c. Choose my-repo, choose Delete, and then follow the steps to delete the repository.

d. From the navigation pane, choose Domains.

e. Choose my-domain, choose Delete, and then follow the steps to delete the domain.

Getting started using the AWS CLI

Run the following steps to get started with CodeArtifact using the AWS Command Line Interface
(AWS CLI). For more information, see Install or upgrade and then configure the AWS CLI. This guide
uses the npm package manager, if you are using a different package manager, you will need to
modify some of the following steps.

1. Use the AWS CLI to run the create-domain command.

aws codeartifact create-domain --domain my-domain

JSON-formatted data appears in the output with details about your new domain.

{
 "domain": {
 "name": "my-domain",
 "owner": "111122223333",

Getting started using the AWS CLI 14

CodeArtifact CodeArtifact User Guide

 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my-domain",
 "status": "Active",
 "createdTime": "2020-10-07T15:36:35.194000-04:00",
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
 "repositoryCount": 0,
 "assetSizeBytes": 0
 }
}

If you receive the error Could not connect to the endpoint URL, make sure that your
AWS CLI is configured and that your Default region name is set to the same Region where you
created your repository, see Configuring the AWS Command Line Interface.

2. Use the create-repository command to create a repository in your domain.

aws codeartifact create-repository --domain my-domain --domain-owner 111122223333
 --repository my-repo

JSON-formatted data appears in the output with details about your new repository.

{
 "repository": {
 "name": "my-repo",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",
 "upstreams": [],
 "externalConnections": []
 }
}

3. Use the create-repository command to create an upstream repository for your my-repo
repository.

aws codeartifact create-repository --domain my-domain --domain-owner 111122223333
 --repository npm-store

JSON-formatted data appears in the output with details about your new repository.

Getting started using the AWS CLI 15

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

CodeArtifact CodeArtifact User Guide

{
 "repository": {
 "name": "npm-store",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",
 "upstreams": [],
 "externalConnections": []
 }
}

4. Use the associate-external-connection command to add an external connection to the npm
public repository to your npm-store repository.

aws codeartifact associate-external-connection --domain my-domain --domain-
owner 111122223333 --repository npm-store --external-connection "public:npmjs"

JSON-formatted data appears in the output with details about the repository and its new
external connection.

{
 "repository": {
 "name": "npm-store",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",
 "upstreams": [],
 "externalConnections": [
 {
 "externalConnectionName": "public:npmjs",
 "packageFormat": "npm",
 "status": "AVAILABLE"
 }
]
 }
}

Getting started using the AWS CLI 16

CodeArtifact CodeArtifact User Guide

For more information, see Connect a CodeArtifact repository to a public repository.

5. Use the update-repository command to associate the npm-store repository as an upstream
repository to the my-repo repository.

aws codeartifact update-repository --repository my-repo --domain my-domain --
domain-owner 111122223333 --upstreams repositoryName=npm-store

JSON-formatted data appears in the output with details about your updated repository,
including its new upstream repository.

{
 "repository": {
 "name": "my-repo",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",
 "upstreams": [
 {
 "repositoryName": "npm-store"
 }
],
 "externalConnections": []
 }
}

For more information, see Add or remove upstream repositories (AWS CLI).

6. Use the login command to configure your npm package manager with your my-repo
repository.

aws codeartifact login --tool npm --repository my-repo --domain my-domain --domain-
owner 111122223333

You should receive output confirming your login succeeded.

Successfully configured npm to use AWS CodeArtifact repository https://my-
domain-111122223333.d.codeartifact.us-east-2.amazonaws.com/npm/my-repo/

Getting started using the AWS CLI 17

CodeArtifact CodeArtifact User Guide

Login expires in 12 hours at 2020-10-08 02:45:33-04:00

For more information, see Configure and use npm with CodeArtifact.

7. Use the npm CLI to install an npm package. For example, to install the popular npm package
lodash, use the following command.

npm install lodash

8. Use the list-packages command to view the package you just installed in your my-repo
repository.

Note

There may be a delay between when the npm install install command completes
and when the package is visible in your repository. For details on typical latency when
fetching packages from public repositories, see External connection latency.

aws codeartifact list-packages --domain my-domain --repository my-repo

JSON-formatted data appears in the output with the format and name of the package that
you installed.

{
 "packages": [
 {
 "format": "npm",
 "package": "lodash"
 }
]
}

You now have three CodeArtifact resources:

• The domain my-domain.

• The repository my-repo that is contained in my-domain. This repository has an npm
package available to it.

Getting started using the AWS CLI 18

CodeArtifact CodeArtifact User Guide

• The repository npm-store that is contained in my-domain. This repository has an external
connection to the public npm repository and is associated as an upstream repository with
the my-repo repository.

9. To avoid further AWS charges, delete the resources that you used during this tutorial:

Note

You cannot delete a domain that contains repositories, so you must delete my-repo
and npm-store before you delete my-domain.

a. Use the delete-repository command to delete the npm-store repository.

aws codeartifact delete-repository --domain my-domain --domain-
owner 111122223333 --repository my-repo

JSON-formatted data appears in the output with details about the deleted repository.

{
 "repository": {
 "name": "my-repo",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/my-repo",
 "upstreams": [
 {
 "repositoryName": "npm-store"
 }
],
 "externalConnections": []
 }
}

b. Use the delete-repository command to delete the npm-store repository.

aws codeartifact delete-repository --domain my-domain --domain-
owner 111122223333 --repository npm-store

Getting started using the AWS CLI 19

CodeArtifact CodeArtifact User Guide

JSON-formatted data appears in the output with details about the deleted repository.

{
 "repository": {
 "name": "npm-store",
 "administratorAccount": "111122223333",
 "domainName": "my-domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:repository/my-
domain/npm-store",
 "upstreams": [],
 "externalConnections": [
 {
 "externalConnectionName": "public:npmjs",
 "packageFormat": "npm",
 "status": "AVAILABLE"
 }
]
 }
}

c. Use the delete-domain command to delete the my-domain repository.

aws codeartifact delete-domain --domain my-domain --domain-owner 111122223333

JSON-formatted data appears in the output with details about the deleted domain.

{
 "domain": {
 "name": "my-domain",
 "owner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my-domain",
 "status": "Deleted",
 "createdTime": "2020-10-07T15:36:35.194000-04:00",
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
 "repositoryCount": 0,
 "assetSizeBytes": 0
 }
}

Getting started using the AWS CLI 20

CodeArtifact CodeArtifact User Guide

Working with repositories in CodeArtifact

These topics show you how to use the CodeArtifact console, AWS CLI, and CodeArtifact APIs to
create, list, update, and delete repositories.

Topics

• Create a repository

• Connect to a repository

• Delete a repository

• List repositories

• View or modify a repository configuration

• Repository policies

• Tag a repository in CodeArtifact

Create a repository

Because all packages in CodeArtifact are stored in repositories, to use CodeArtifact, you must
create one. You can create a repository using the CodeArtifact console, the AWS Command Line
Interface (AWS CLI), or AWS CloudFormation. Each repository is associated with the AWS account
that you use when you create it. You can have multiple repositories, and they are created and
grouped in domains. When you create a repository, it does not contain any packages. Repositories
are polyglot, which means that a single repository can contain packages of any supported type.

For information about CodeArtifact service limits, such as the maximum number of allowed
repositories in a single domain, see Quotas in AWS CodeArtifact. If you hit the maximum number of
allowed repositories, you can delete repositories to make room for more.

A repository can have one or more CodeArtifact repositories associated with it as upstream
repositories. This allows a package manager client to access the packages contained in more than
one repository using a single URL endpoint. For more information, see Working with upstream
repositories in CodeArtifact.

For more information about managing CodeArtifact repositories with CloudFormation, see Creating
CodeArtifact resources with AWS CloudFormation.

Create a repository 21

CodeArtifact CodeArtifact User Guide

Note

After you create a repository, you cannot change its name, associated AWS account, or
domain.

Topics

• Create a repository (console)

• Create a repository (AWS CLI)

• Create a repository with an upstream repository

Create a repository (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the navigation pane, choose Repositories, and then choose Create repository.

3. For Repository name, enter a name for your repository.

4. (Optional) In Repository description, enter an optional description for your repository.

5. (Optional) In Publish upstream repositories, add intermediate repositories that connect your
repositories to package authorities such as Maven Central or npmjs.com.

6. Choose Next.

7. In AWS account, choose This AWS account if you are signed in to the account that owns the
domain. Choose Different AWS account if another AWS account owns the domain.

8. In Domain, choose the domain that the repository will be created in.

If there are no domains in the account, you must create one. Enter the name for the new
domain in Domain name.

Expand Additional configuration.

You must use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an
AWS managed key or a KMS key that you manage:

Create a repository (console) 22

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Important

CodeArtifact only supports symmetric KMS keys. You cannot use an asymmetric KMS
key to encrypt your CodeArtifact domains. For help determining whether a KMS key is
symmetric or asymmetric, see Identifying symmetric and asymmetric KMS keys.

• Choose AWS managed key if you want to use the default AWS managed key.

• Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed keys and customer managed key in the AWS Key
Management Service Developer Guide.

9. Choose Next.

10. In Review and create, review what CodeArtifact is creating for you.

• Package flow shows how your domain and repositories are connected.

• Step 1: Create repository shows details about the repository and optional upstream
repositories that will be created.

• Step 2: Select domain shows details about my_domain.

When you're ready, choose Create repository.

Create a repository (AWS CLI)

Use the create-repository command to create a repository in your domain.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --description "My new repository"

Example output:

{
 "repository": {

Create a repository (AWS CLI) 23

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

 "name": "my_repo",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo",
 "description": "My new repository",
 "upstreams": "[]",
 "externalConnections"" "[]"
 }
}

A new repository doesn't contain any packages. Each repository is associated with the AWS account
that you're authenticated to when the repository is created.

Create a repository with tags

To create a repository with tags, add the --tags parameter to your create-domain command.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --tags key=k1,value=v1 key=k2,value=v2

Create a repository with an upstream repository

You can specify one or more upstream repositories when you create a repository.

aws codeartifact create-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --upstreams repositoryName=my-upstream-repo --repository-description "My new
 repository"

Example output:

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo",

Create a repository with an upstream repository 24

CodeArtifact CodeArtifact User Guide

 "description": "My new repository",
 "upstreams": [
 {
 "repositoryName": "my-upstream-repo"
 }
],
 "externalConnections"" "[]"
 }
}

Note

To create a repository with an upstream, you must have permission for the
AssociateWithDownstreamRepository action on the upstream repository.

To add an upstream to a repository after it's been created, see Add or remove upstream
repositories (console) and Add or remove upstream repositories (AWS CLI).

Connect to a repository

After you have configured your profile and credentials to authenticate to your AWS account, decide
which repository to use in CodeArtifact. You have the following options:

• Create a repository. For more information, see Creating a Repository.

• Use a repository that already exists in your account. You can use the list-repositories
command to find the repositories created in your AWS account. For more information, see List
repositories.

• Use a repository in a different AWS account. For more information, see Repository policies.

Use a package manager client

After you know which repository you want to use, see one of the following topics.

• Using CodeArtifact with Maven

• Using CodeArtifact with npm

• Using CodeArtifact with NuGet

Connect to a repository 25

CodeArtifact CodeArtifact User Guide

• Using CodeArtifact with Python

Delete a repository

You can delete a repository using the CodeArtifact console or the AWS CLI. After a repository has
been deleted, you can no longer push packages to it or pull packages from it. All packages in the
repository become permanently unavailable and cannot be restored. You can create a repository
with the same name, but its contents will be empty.

Important

Deleting a repository cannot be undone. After you delete a repository, you are no longer
able to recover it and it cannot be restored.

Topics

• Delete a repository (console)

• Delete a repository (AWS CLI)

• Protect repositories from being deleted

Delete a repository (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the navigation pane, choose Repositories, then choose the repository that you want to
delete.

3. Choose Delete and then follow the steps to delete the domain.

Delete a repository (AWS CLI)

Use the delete-repository command to delete a repository.

aws codeartifact delete-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

Delete a repository 26

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "123456789012",
 "arn": "arn:aws:codeartifact:region-
id:123456789012:repository/my_domain/my_repo",
 "description": "My new repository",
 "upstreams": [],
 "externalConnections": []
 }
}

Protect repositories from being deleted

You can prevent a repository from being accidentally deleted by including a domain policy similar
to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyRepositoryDeletion",
 "Action": [
 "codeartifact:DeleteRepository"
],
 "Effect": "Deny",
 "Resource": "*",
 "Principal": *
 }
]
}

This policy prevents all principals from deleting the repository, but if you decide later that you
need to delete the repository, you can do so by following these steps:

1. In the domain policy, update the policy to the following:

{
 "Version": "2012-10-17",

Protect repositories from being deleted 27

CodeArtifact CodeArtifact User Guide

 "Statement": [
 {
 "Sid": "DenyRepositoryDeletion",
 "Action": [
 "codeartifact:DeleteRepository"
],
 "Effect": "Deny",
 "NotResource": "repository-arn",
 "Principal": *
 }
]
}

Replace repository-arn with the ARN of the repository that you would like to delete.

2. In the AWS CodeArtifact console, choose Repositories and delete your chosen repository.

3. After you've deleted the repository, you can change the policy back to prevent acccidental
delections.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyRepositoryDeletion",
 "Action": [
 "codeartifact:DeleteRepository"
],
 "Effect": "Deny",
 "Resource": "*",
 "Principal": *
 }
]
}

Alternatively, you can include the same deny statement in a repository policy. This allow you to
have more flexibility to protect high-value repositories from deletion.

List repositories

Use the commands in this topic to list repositories in an AWS account or domain.

List repositories 28

CodeArtifact CodeArtifact User Guide

List repositories in an AWS account

Use this command to list all of the repositories in your AWS account.

aws codeartifact list-repositories

Sample output:

{
 "repositories": [
 {
 "name": "repo1",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "123456789012",
 "arn": "arn:aws:codeartifact:region-
id:123456789012:repository/my_domain/repo1",
 "description": "Description of repo1"
 },
 {
 "name": "repo2",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "123456789012",
 "arn": "arn:aws:codeartifact:region-
id:123456789012:repository/my_domain/repo2",
 "description": "Description of repo2"

 },
 {
 "name": "repo3",
 "administratorAccount": "123456789012",
 "domainName": "my_domain2",
 "domainOwner": "123456789012",
 "arn": "arn:aws:codeartifact:region-
id:123456789012:repository/my_domain2/repo3",
 "description": "Description of repo3"
 }
]
}

List repositories in an AWS account 29

CodeArtifact CodeArtifact User Guide

You can paginate the response from list-repositories using the --max-results and --
next-token parameters. For --max-results, specify an integer from 1 to 1000 to specify the
number of results returned in a single page. Its default is 50. To return subsequent pages, run
list-repositories again and pass the nextToken value received in the previous command
output to --next-token. When the --next-token option is not used, the first page of results is
always returned.

List repositories in the domain

Use list-repositories-in-domain to get a list of all the repositories in a domain.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 123456789012 --max-results 3

The output shows that some of the repositories are administered by different AWS accounts.

{
 "repositories": [
 {
 "name": "repo1",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repo1",
 "description": "Description of repo1"
 },
 {
 "name": "repo2",
 "administratorAccount": "444455556666",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repo2",
 "description": "Description of repo2"
 },
 {
 "name": "repo3",
 "administratorAccount": "444455556666",
 "domainName": "my_domain",
 "domainOwner": "111122223333",

List repositories in the domain 30

CodeArtifact CodeArtifact User Guide

 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/repo3",
 "description": "Description of repo3"
 }
]
}

You can paginate the response from list-repositories-in-domain using the --max-
results and --next-token parameters. For --max-results, specify an integer from 1 to 1000
to specify the number of results returned in a single page. Its default is 50. To return subsequent
pages, run list-repositories-in-domain again and pass the nextToken value received in
the previous command output to --next-token. When the --next-token option is not used,
the first page of results is always returned.

To output the repository names in a more compact list, try the following command.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 111122223333 \
 --query 'repositories[*].[name]' --output text

Sample output:

repo1
repo2
repo3

The following example outputs the account ID in addition to the repository name.

aws codeartifact list-repositories-in-domain --domain my_domain --domain-
owner 111122223333 \
 --query 'repositories[*].[name,administratorAccount]' --output text

Sample output:

repo1 710221105108
repo2 710221105108
repo3 532996949307

For more information about the --query parameter, see ListRepositories in the CodeArtifact API
Reference.

List repositories in the domain 31

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositories.html

CodeArtifact CodeArtifact User Guide

View or modify a repository configuration

You can view and update details about your repository using the CodeArtifact console or the AWS
Command Line Interface (AWS CLI).

Note

After you create a repository, you cannot change its name, associated AWS account, or
domain.

Topics

• View or modify a repository configuration (console)

• View or modify a repository configuration (AWS CLI)

View or modify a repository configuration (console)

You can view details about and update your repository using the CodeArtifact console.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Repositories, and then choose the repository name that you
want to view or modify.

3. Expand Details to see the following:

• The repository's domain. Choose the domain name to learn more about it.

• The repository's resource policy. Choose Apply a repository policy to add one.

• The repository's Amazon Resource Name (ARN).

• If your repository has an external connection, you can choose the connection to learn more
about it. A repository can have only one external connection. For more information, see
Connect a CodeArtifact repository to a public repository.

• If your repository has upstream repositories, you can choose one to see its details. A
repository can have up to 10 direct upstream repositories. For more information, see
Working with upstream repositories in CodeArtifact.

View or modify a repository configuration 32

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Note

A repository can have an external connection or upstream repositories, but not both.

4. In Packages, you can see any packages that are available to this repository. Choose a package
to learn more about it.

5. Choose View connection instructions, and then choose a package manager to learn how to
configure it with CodeArtifact.

6. Choose Apply repository policy to update or add a resource policy to your repository. For
more information, see Repository policies.

7. Choose Edit to add or update the following.

• The repository description.

• Tags associated with the repository.

• If your repository has an external connection, you can change which public repository
it connects to. Otherwise, you can add one or more existing repositories as upstream
repositories. Arrange them in the order you want them prioritized by CodeArtifact when a
package is requested. For more information, see Upstream repository priority order.

View or modify a repository configuration (AWS CLI)

To view a repository's current configuration in CodeArtifact, use the describe-repository
command.

aws codeartifact describe-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012,
 "domainName": "my_domain",
 "domainOwner": "111122223333",

View or modify a repository configuration (AWS CLI) 33

CodeArtifact CodeArtifact User Guide

 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo"
 "upstreams": [],
 "externalConnections": []
 }
}

Modify a repository upstream configuration

An upstream repository allows a package manager client to access the packages contained in
more than one repository using a single URL endpoint. To add or change a repository's upstream
relationship, use the update-repository command.

aws codeartifact update-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --upstreams repositoryName=my-upstream-repo

Example output:

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012,
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo"
 "upstreams": [
 {
 "repositoryName": "my-upstream-repo"
 }
],
 "externalConnections": []
 }
}

Note

To add an upstream repository, you must have permission for the
AssociateWithDownstreamRepository action on the upstream repository.

View or modify a repository configuration (AWS CLI) 34

CodeArtifact CodeArtifact User Guide

To remove a repository's upstream relationship, use an empty list as the argument to the --
upstreams option.

aws codeartifact update-repository --domain my_domain --domain-owner 111122223333 --
repository my_repo --upstreams []

Example output:

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012,
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo"
 "upstreams": [],
 "externalConnections": []
 }
}

Repository policies

CodeArtifact uses resource-based permissions to control access. Resource-based permissions let
you specify who has access to a repository and what actions they can perform on it. By default,
only the repository owner has access to a repository. You can apply a policy document that allows
other IAM principals to access your repository.

For more information, see Resource-Based Policies and Identity-Based Policies and Resource-Based
Policies.

Create a resource policy to grant read access

A resource policy is a text file in JSON format. The file must specify a principal (actor), one or more
actions, and an effect (Allow or Deny). For example, the following resource policy grants the
account 123456789012 permission to download packages from the repository.

{
 "Version": "2012-10-17",
 "Statement": [

Repository policies 35

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

CodeArtifact CodeArtifact User Guide

 {
 "Action": [
 "codeartifact:ReadFromRepository"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "*"
 }
]
}

Because the policy is evaluated only for operations against the repository that it's attached to,
you don't need to specify a resource. Because the resource is implied, you can set the Resource
to *. In order for a package manager to download a package from this repository, a domain
policy for cross-account access will also need to be created. The domain policy must grant at least
codeartifact:GetAuthorizationToken permission to the principal. For an example of a full
domain policy for granting cross-account access, see this Domain policy example.

Note

The codeartifact:ReadFromRepository action can only be used on a repository
resource. You cannot put a package's Amazon Resource Name (ARN) as a resource with
codeartifact:ReadFromRepository as the action to allow read access to a subset of
packages in a repository. A given principal can either read all the packages in a repository
or none of them.

Because the only action specified in the repository is ReadFromRepository, users and roles from
account 1234567890 can download packages from the repository. However, they can't perform
other actions on them (for example, listing package names and versions). Typically, you grant
permissions in the following policy in addition to ReadFromRepository because a user who
downloads packages from a repository needs to interact with it in other ways too.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

Create a resource policy to grant read access 36

CodeArtifact CodeArtifact User Guide

 "codeartifact:DescribePackageVersion",
 "codeartifact:DescribeRepository",
 "codeartifact:GetPackageVersionReadme",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ListPackages",
 "codeartifact:ListPackageVersions",
 "codeartifact:ListPackageVersionAssets",
 "codeartifact:ListPackageVersionDependencies",
 "codeartifact:ReadFromRepository"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "*"
 }
]
}

Set a policy

After you create a policy document, use the put-repository-permissions-policy command
to attach it to a repository:

aws codeartifact put-repository-permissions-policy --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo --policy-document file:///PATH/TO/policy.json

When you call put-repository-permissions-policy, the resource policy on the repository
is ignored when evaluating permissions. This ensures that the owner of a domain cannot lock
themselves out of the repository, which would prevent them from being able to update the
resource policy.

Note

You cannot grant permissions to another AWS account to update the resource policy on
a repository using a resource policy, since the resource policy is ignored when calling put-
repository-permissions-policy.

Sample output:

Set a policy 37

CodeArtifact CodeArtifact User Guide

{
 "policy": {
 "resourceArn": "arn:aws:codeartifact:region-
id:111122223333:repository/my_domain/my_repo",
 "document": "{ ...policy document content...}",
 "revision": "MQlyyTQRASRU3HB58gBtSDHXG7Q3hvxxxxxxx="
 }
}

The output of the command contains the Amazon Resource Name (ARN) of the repository resource,
the full contents of the policy document, and a revision identifier. You can pass the revision
identifier to put-repository-permissions-policy using the --policy-revision option.
This ensures that a known revision of the document is being overwritten, and not a newer version
set by another writer.

Read a policy

Use the get-repository-permissions-policy command to read an existing version
of a policy document. To format the output for readability, use the --output and --query
policy.document together with the Python json.tool module.

aws codeartifact get-repository-permissions-policy --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo --output text --query policy.document | python -m
 json.tool

Sample output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Action": [
 "codeartifact:DescribePackageVersion",
 "codeartifact:DescribeRepository",
 "codeartifact:GetPackageVersionReadme",

Read a policy 38

CodeArtifact CodeArtifact User Guide

 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ListPackages",
 "codeartifact:ListPackageVersions",
 "codeartifact:ListPackageVersionAssets",
 "codeartifact:ListPackageVersionDependencies",
 "codeartifact:ReadFromRepository"
],
 "Resource": "*"
 }
]
}

Delete a policy

Use the delete-repository-permissions-policy command to delete a policy from a
repository.

aws codeartifact delete-repository-permissions-policy --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo

The format of the output is the same as that of the get-repository-permissions-policy
command.

Grant read access to principals

When you specify the root user of an account as the principal in a policy document, you grant
access to all of the users and roles in that account. To limit access to selected users or roles, use
their ARN in the Principal section of the policy. For example, use the following to grant read
access to the IAM user bob in account 123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:ReadFromRepository"
],
 "Effect": "Allow",
 "Principal": {

Delete a policy 39

CodeArtifact CodeArtifact User Guide

 "AWS": "arn:aws:iam::123456789012:user/bob"
 },
 "Resource": "*"
 }
]
}

Grant write access to packages

The codeartifact:PublishPackageVersion action is used to control permission to publish
new versions of a package. The resource used with this action must be a package. The format of
CodeArtifact package ARNs is as follows.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/package-
format/package-namespace/package-name

The following example shows the ARN for an npm package with scope @parity and name ui in
the my_repo repository in domain my_domain.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/npm/parity/ui

The ARN for an npm package without a scope has the empty string for the namespace field. For
example, the following is the ARN for a package without a scope and with name react in the
my_repo repository in domain my_domain.

arn:aws:codeartifact:region-id:111122223333:package/my_domain/my_repo/npm//react

The following policy grants account 123456789012 permission to publish versions of @parity/
ui in the my_repo repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:PublishPackageVersion"
],
 "Effect": "Allow",
 "Principal": {

Grant write access to packages 40

CodeArtifact CodeArtifact User Guide

 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "arn:aws:codeartifact:region-
id:111122223333:package/my_domain/my_repo/npm/parity/ui"
 }
]
}

Important

To grant permission to publish Maven and NuGet package versions, add the following
permissions in addition to codeartifact:PublishPackageVersion.

1. NuGet: codeartifact:ReadFromRepository and specify the repository resource

2. Maven: codeartifact:PutPackageMetadata

Because this policy specifies a domain and repository as part of the resource, it allows publishing
only when attached to that repository.

Grant write access to a repository

You can use wildcards to grant write permission for all packages in a repository. For example,
use the following policy to grant an account permission to write to all packages in the my_repo
repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:PublishPackageVersion"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "arn:aws:codeartifact:region-
id:111122223333:package/my_domain/my_repo/*"
 }
]

Grant write access to a repository 41

CodeArtifact CodeArtifact User Guide

}

Interaction between repository and domain policies

CodeArtifact supports resource policies on domains and repositories. Resource policies are
optional. Each domain may have one policy and each repository in the domain may have its
own repository policy. If both a domain policy and a repository policy are present, then both are
evaluated when determining whether a request to a CodeArtifact repository is allowed or denied.
Domain and repository policies are evaluating using the following rules:

• No resource policies are evaluated when performing account-level operations such as
ListDomains or ListRepositories.

• No repository policies are evaluated when performing domain-level operations such as
DescribeDomain or ListRepositoriesInDomain.

• The domain policy is not evaluated when performing PutDomainPermissionsPolicy. Note that
this rule prevents lock-outs.

• The domain policy is evaluated when performing PutRepositoryPermissionsPolicy, but the
repository policy is not evaluated.

• An explicit deny in any policy overrides an allow in another policy.

• An explicit allow is only required in one resource policy. Omitting an action from a repository
policy will not result in an implicit deny if the domain policy allows the action.

• When no resource policy allows an action, the result is an implicit deny unless the calling
principal’s account is the domain owner or repository administrator account and an identity-
based policy allows the action.

Resource policies are optional when used to grant access in a single account scenario, where
the caller account used to access a repository is the same as the domain owner and repository
administrator account. Resource policies are required to grant access in a cross-account scenario
where the caller’s account is not the same as the domain owner or repository administrator
account. Cross-account access in CodeArtifact follows the general IAM rules for cross-account
access as described in Determining whether a cross-account request is allowed in the IAM User
Guide.

• A principal in the domain owner account may be granted access to any repository in the domain
through an identity-based policy. Note that in this case, no explicit allow is required in a domain
or repository policy.

Interaction between repository and domain policies 42

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListDomains.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositories.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DescribeDomain.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListRepositoriesInDomain.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PutDomainPermissionsPolicy.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PutRepositoryPermissionsPolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account

CodeArtifact CodeArtifact User Guide

• A principal in the domain owner account may be granted access to any repository through a
domain or repository policy. Note that in this case, no explicit allow is required in an identity-
based policy.

• A principal in the repository administrator account may be granted access to the repository
through an identity-based policy. Note that in this case, no explicit allow is required in a domain
or repository policy.

• A principal in another account is only granted access when allowed by at least one resource
policy and at least one identity-based policy, with no policy explicitly denying the action.

Tag a repository in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your repositories in
CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a repository. You can use the console or CLI
to add or remove tags, and update the values of tags in a repository. You can add up to 50 tags to
each repository.

Topics

• Tag repositories (CLI)

• Tag repositories (console)

Tag repositories (CLI)

You can use the CLI to manage repository tags.

Topics

• Add tags to a repository (CLI)

• View tags for a repository (CLI)

• Edit tags for a repository (CLI)

• Remove tags from a repository (CLI)

Tag a repository 43

CodeArtifact CodeArtifact User Guide

Add tags to a repository (CLI)

You can use the console or the AWS CLI to tag repositories.

To add a tag to a repository when you create it, see Create a repository.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line
Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the repository where you want to add tags and the key and value of the tag you
want to add.

Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

You can add more than one tag to a repository. For example, to tag a repository named my_repo in
a domain named my_domain with two tags, a tag key named key1 with the tag value of value1,
and a tag key named key2 with the tag value of value2:

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tags key=key1,value=value1
 key=key2,value=value2

If successful, this command has no output.

View tags for a repository (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a repository. If no tags have been
added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command.

Tag repositories (CLI) 44

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

CodeArtifact CodeArtifact User Guide

Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

For example, to view a list of tag keys and tag values for a repository named
my_repo in a domain named my_domain with the arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo ARN value:

aws codeartifact list-tags-for-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo

If successful, this command returns information similar to the following:

{
 "tags": {
 "key1": "value1",
 "key2": "value2"
 }
}

Edit tags for a repository (CLI)

Follow these steps to use the AWS CLI to edit a tag for a repository. You can change the value for
an existing key or add another key.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
repository where you want to update a tag and specify the tag key and tag value.

Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

Tag repositories (CLI) 45

CodeArtifact CodeArtifact User Guide

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tags key=key1,value=newvalue1

If successful, this command has no output.

Remove tags from a repository (CLI)

Follow these steps to use the AWS CLI to remove a tag from a repository.

Note

If you delete a repository, all tag associations are removed from the deleted repository. You
do not have to remove tags before you delete a repository.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
repository where you want to remove tags and the tag key of the tag you want to remove.

Note

To get the ARN of the repository, run the describe-repository command:

aws codeartifact describe-repository --domain my_domain --repository my_repo --
query repository.arn

For example, to remove multiple tags on a repository named my_repo in a domain named
my_domain with the tag keys key1 and key2:

aws codeartifact untag-resource --resource-arn arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo --tag-keys key1 key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the repository using the list-tags-for-resource command.

Tag repositories (console)

You can use the console or the CLI to tag resources.

Tag repositories (console) 46

CodeArtifact CodeArtifact User Guide

Topics

• Add tags to a repository (console)

• View tags for a repository (console)

• Edit tags for a repository (console)

• Remove tags from a repository (console)

Add tags to a repository (console)

You can use the console to add tags to an existing repository.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository that you want to add tags to.

3. Expand the Details section.

4. Under Repository tags, if there are no tags on the repository, choose Add repository tags. If
there are tags on the repository, choose View and edit repository tags.

5. Choose Add new tag.

6. In the Key and Value fields, enter the text for each tag you want to add. (The Value field is
optional.) For example, in Key, enter Name. In Value, enter Test.

Tag repositories (console) 47

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

7. (Optional) Choose Add tag to add more rows and enter more tags.

8. Choose Update repository.

Tag repositories (console) 48

CodeArtifact CodeArtifact User Guide

View tags for a repository (console)

You can use the console to list tags for existing repositories.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository where you want to view tags.

3. Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

Note

If there are no tags added to this repository, the console will read Add repository tags.

Edit tags for a repository (console)

You can use the console to edit tags that have been added to repository.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository where you want to update tags.

3. Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

Note

If there are no tags added to this repository, the console will read Add repository tags.

5. In the Key and Value fields, update the values in each field as needed. For example, for the
Name key, in Value, change Test to Prod.

6. Choose Update repository.

Remove tags from a repository (console)

You can use the console to delete tags from repositories.

Tag repositories (console) 49

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Repositories page, choose the repository where you want to remove tags.

3. Expand the Details section.

4. Under Repository tags, choose View and edit repository tags.

Note

If there are no tags added to this repository, the console will read Add repository tags.

5. Next to the key and value for each tag you want to delete, choose Remove.

6. Choose Update repository.

Tag repositories (console) 50

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Working with upstream repositories in CodeArtifact

A repository can have other AWS CodeArtifact repositories as upstream repositories. This enables
a package manager client to access the packages that are contained in more than one repository
using a single repository endpoint.

You can add one or more upstream repositories to an AWS CodeArtifact repository using the AWS
Management Console, AWS CLI, or SDK. To associate a repository with an upstream repository, you
must have permission for the AssociateWithDownstreamRepository action on the upstream
repository. For more information, see Create a repository with an upstream repository and Add or
remove upstream repositories.

If an upstream repository has an external connection to a public repository, the repositories that
are downstream from it can pull packages from that public repository. For example, suppose that
the repository my_repo has an upstream repository named upstream, and upstream has an
external connection to a public npm repository. In this case, a package manager that is connected
to my_repo can pull packages from the npm public repository. For more information about
requesting packages from upstream repositories or external connections, see Requesting a package
version with upstream repositories or Requesting packages from external connections.

Topics

• What's the difference between upstream repositories and external connections?

• Add or remove upstream repositories

• Connect a CodeArtifact repository to a public repository

• Requesting a package version with upstream repositories

• Requesting packages from external connections

• Upstream repository priority order

• API behavior with upstream repositories

What's the difference between upstream repositories and
external connections?

In CodeArtifact, upstream repositories and external connections behave mostly the same, but there
are a few important differences.

What's the difference between upstream repositories and external connections? 51

CodeArtifact CodeArtifact User Guide

1. You can add up to 10 upstream repositories to a CodeArtifact repository. You can only add one
external connection.

2. There are separate API calls to add an upstream repository or an external connection.

3. The package retention behavior is slightly different, as packages requested from upstream
repositories are retained in those repositories. For more information, see Package retention in
intermediate repositories.

Add or remove upstream repositories

Follow the steps in the following sections to add or remove upstream repositories to or from an
CodeArtifact repository. For more information about upstream repositories, see Working with
upstream repositories in CodeArtifact.

This guide contains information about configuring other CodeArtifact repositories as upstream
repositories. For information about configuring an external connection to public repositories like
npmjs.com, Nuget Gallery, Maven Central, or PyPI, see Add an external connection.

Add or remove upstream repositories (console)

Perform the steps in the following procedure to add a repository as an upstream repository using
the CodeArtifact console. For information about adding an upstream repository with the AWS CLI,
see Add or remove upstream repositories (AWS CLI).

To add an upstream repository using the CodeArtifact console

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.

3. Choose the name of your repository.

4. Choose Edit.

5. In Upstream repositories, choose Associate upstream repository and add the repository you
want to add as an upstream repository. You can only add repositories in the same domain as
upstream repositories.

6. Choose Update repository.

Add or remove upstream repositories 52

https://docs.aws.amazon.com/codeartifact/latest/ug/external-connection.html
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To remove an upstream repository using the CodeArtifact console

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.

3. Choose the name of your repository.

4. Choose Edit.

5. In Upstream repositories, find the list entry of the upstream repository you want to remove
and choose Disassociate.

Important

Once you remove an upstream repository from a CodeArtifact repository, package
managers will not have access to packages in the upstream repository or any of its
upstream repositories.

6. Choose Update repository.

Add or remove upstream repositories (AWS CLI)

You can add or remove a CodeArtifact repository's upstream repositories using the AWS Command
Line Interface (AWS CLI). To do this, use the update-repository command, and specify the
upstream repositories using the --upstreams parameter.

You can only add repositories in the same domain as upstream repositories.

To add upstream repositories (AWS CLI)

1. If you haven't, follow the steps in Setting up with AWS CodeArtifact to set up and configure
the AWS CLI with CodeArtifact.

2. Use the aws codeartifact update-repository command with the --upstreams flag to
add upstream repositories.

Note

Calling the update-repository command replaces the existing configured upstream
repositories with the list of repositories provided with the --upstreams flag. If you

Add or remove upstream repositories (AWS CLI) 53

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

want to add upstream repositories and keep the existing ones, you must include the
existing upstream repositories in the call.

The following example command adds two upstream repositories to a repository named
my_repo that is in a domain named my_domain. The order of the upstream repositories in
the --upstreams parameter determines their search priority when CodeArtifact requests a
package from the my_repo repository. For more information, see Upstream repository priority
order.

For information about connecting to public, external repositories such as npmjs.com or Maven
Central, see Connect a CodeArtifact repository to a public repository.

aws codeartifact update-repository \
 --repository my_repo \
 --domain my_domain \
 --domain-owner 111122223333 \
 --upstreams repositoryName=upstream-1 repositoryName=upstream-2

The output contains the upstream repositories, as follows.

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-
east-2:111122223333:repository/my_domain/my_repo",
 "upstreams": [
 {
 "repositoryName": "upstream-1"
 },
 {
 "repositoryName": "upstream-2"
 }
],
 "externalConnections": []
 }
 }

Add or remove upstream repositories (AWS CLI) 54

CodeArtifact CodeArtifact User Guide

To remove an upstream repository (AWS CLI)

1. If you haven't, follow the steps in Setting up with AWS CodeArtifact to set up and configure
the AWS CLI with CodeArtifact.

2. To remove upstream repositories from a CodeArtifact repository, use the update-
repository command with the --upstreams flag. The list of repositories provided to the
command will be the new set of upstream repositories for the CodeArtifact repository. Include
existing upstream repositories that you want to keep, and omit the upstream repositories you
want to remove.

To remove all upstream repositories from a repository, use the update-repository
command and include --upstreams without an argument. The following removes upstream
repositories from a repository named my_repo that is contained in a domain named
my_domain.

aws codeartifact update-repository \
 --repository my_repo \
 --domain my_domain \
 --domain-owner 111122223333 \
 --upstreams

The output shows that the list of upstreams is empty.

{
 "repository": {
 "name": "my_repo",
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-
east-2:111122223333:repository/my_domain/my_repo",
 "upstreams": [],
 "externalConnections": []
 }
 }

Add or remove upstream repositories (AWS CLI) 55

CodeArtifact CodeArtifact User Guide

Connect a CodeArtifact repository to a public repository

You can add a external connection between a CodeArtifact repository and an external, public
repository such as https://npmjs.com or the Maven Central repository. Then, when you request a
package from the CodeArtifact repository that's not already present in the repository, the package
can be fetched from the external connection. This makes it possible to consume open-source
dependencies used by your application.

In CodeArtifact, the intended way to use external connections is to have one repository per domain
with an external connection to a given public repository. For example, if you want to connect to
npmjs.com, configure one repository in your domain with an external connection to npmjs.com
and configure all the other repositories with an upstream to it. This way, all the repositories can
make use of the packages that have already been fetched from npmjs.com, rather than fetching
and storing them again.

Topics

• Connect to an external repository (console)

• Connect to an external repository (CLI)

• Supported external connection repositories

• Remove an external connection (CLI)

Connect to an external repository (console)

When you use the console to add a connection to an external repository, the following will occur:

1. A -store repository for the external repository will be created in your CodeArtifact domain
if one does not exist already. These -store repositories behave as intermediate repositories
between your repository and the external repository and allow you to connect to more than one
external repository.

2. The appropriate -store repository is added as an upstream to your repository.

The following list contains each -store repository in CodeArtifact and the respective external
repository they connect to.

1. cargo-store is connected to crates.io.

2. clojars-store is connected to Clojars Repository.

Connect a CodeArtifact repository to a public repository 56

https://npmjs.com
https://repo.maven.apache.org/maven2/

CodeArtifact CodeArtifact User Guide

3. commonsware-store is connected to CommonsWare Android Repository.

4. google-android-store is connected to Google Android.

5. gradle-plugins-store is connected to Gradle plugins.

6. maven-central-store is connected to Maven Central Repository.

7. npm-store is connected to npmjs.com.

8. nuget-store is connected to nuget.org.

9. pypi-store is connected to the Python Packaging Authority.

10.rubygems-store is connected to RubyGems.org.

To connect to an external repository (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain name that contains your
repository.

3. Choose the name of your repository.

4. Choose Edit.

5. In Upstream repositories, choose Associate upstream repository and add the appropriate -
store repository that is connected as an upstream.

6. Choose Update repository.

After the -store repository is added as an upstream repository, package managers connected to
your CodeArtifact repository can fetch packages from the respective external repository.

Connect to an external repository (CLI)

You can use the AWS CLI to connect your CodeArtifact repository to an external repository
by adding an external connection directly to the repository. This will allow users connected
to the CodeArtifact repository, or any of its downstream repositories, to fetch packages from
the configured external repository. Each CodeArtifact repository can only have one external
connection.

It is recommended to have one repository per domain with an external connection to a given public
repository. To connect other repositories to the public repository, add the repository with the
external connection as an upstream to them. If you or someone else in your domain has already

Connect to an external repository (CLI) 57

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

configured external connections in the console, your domain likely already has a -store repository
with an external connection to the public repository you want to connect to. For more information
about -store repositories and connecting with the console, see Connect to an external repository
(console).

To add an external connection to a CodeArtifact repository (CLI)

• Use associate-external-connection to add an external connection. The following
example connects a repository to the npm public registry, npmjs.com. For a list of supported
external repositories, see Supported external connection repositories.

aws codeartifact associate-external-connection --external-connection public:npmjs \
 --domain my_domain --domain-owner 111122223333 --repository my_repo

Example output:

{
 "repository": {
 "name": my_repo
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo",
 "description": "A description of my_repo",
 "upstreams": [],
 "externalConnections": [
 {
 "externalConnectionName": "public:npmjs",
 "packageFormat": "npm",
 "status": "AVAILABLE"
 }
]
 }
}

After adding an external connection, see Requesting packages from external connections for
information about requesting packages from an external repository with an external connection.

Connect to an external repository (CLI) 58

CodeArtifact CodeArtifact User Guide

Supported external connection repositories

CodeArtifact supports an external connection to the following public repositories. To use the
CodeArtifact CLI to specify an external connection, use the value in the Name column for the --
external-connection parameter when you run the associate-external-connection
command.

Repository type Description Name

Maven Clojars repository public:maven-cloja
rs

Maven CommonsWare Android repository public:maven-commo
nsware

Maven Google Android repository public:maven-googl
eandroid

Maven Gradle plugins repository public:maven-gradl
eplugins

Maven Maven Central public:maven-centr
al

npm npm public registry public:npmjs

NuGet NuGet Gallery public:nuget-org

Python Python Package Index public:pypi

Ruby RubyGems.org public:ruby-gems-o
rg

Rust Crates.io public:crates-io

Remove an external connection (CLI)

To remove an external connection that was added by using the associate-external-
connection command in the AWS CLI, use disassociate-external-connection.

Supported external connection repositories 59

CodeArtifact CodeArtifact User Guide

aws codeartifact disassociate-external-connection --external-connection public:npmjs \
 --domain my_domain --domain-owner 111122223333 --repository my_repo

Example output:

{
 "repository": {
 "name": my_repo
 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-
west-2:111122223333:repository/my_domain/my_repo",
 "description": "A description of my_repo",
 "upstreams": [],
 "externalConnections": []
 }
}

Requesting a package version with upstream repositories

When a client (for example, npm) requests a package version from a CodeArtifact repository
named my_repo that has multiple upstream repositories, the following can occur:

• If my_repo contains the requested package version, it is returned to the client.

• If my_repo does not contain the requested package version, CodeArtifact looks for it in
my_repo's upstream repositories. If the package version is found, a reference to it is copied to
my_repo, and the package version is returned to the client.

• If neither my_repo nor its upstream repositories contain the package version, an HTTP 404 Not
Found response is returned to the client.

When you add upstream repositories using the create-repository or update-repository
command, the order they are passed to the --upstreams parameter determines their priority
when a package version is requested. Specify upstream repositories with --upstreams in
the order that you want CodeArtifact to use when a package version is requested. For more
information, see Upstream repository priority order.

Requesting a package version with upstream repositories 60

CodeArtifact CodeArtifact User Guide

The maximum number of direct upstream repositories allowed for one repository is 10. Because
direct upstream repositories can also have direct upstream repositories of their own, CodeArtifact
can search more than 10 repositories for package versions. The maximum number of repositories
CodeArtifact looks in when a package version is requested is 25.

Package retention from upstream repositories

If a requested package version is found in an upstream repository, a reference to it is retained and
is always available from the downstream repository. The retained package version is not affected
by any of the following:

• Deleting the upstream repository.

• Disconnecting the upstream repository from the downstream repository.

• Deleting the package version from the upstream repository.

• Editing the package version in the upstream repository (for example, by adding a new asset to it).

Fetch packages through an upstream relationship

If a CodeArtifact repository has an upstream relationship with a repository that has an external
connection, requests for packages not in the upstream repository are copied from the external
repository. For example, consider the following configuration: a repository named repo-A has an
upstream repository named repo-B. repo-B has an external connection to https://npmjs.com.

If npm is configured to use the repo-A repository, running npm install triggers the copying of
packages from https://npmjs.com into repo-B. The versions installed are also pulled into repo-A.
The following example installs lodash.

$ npm config get registry
https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my-
downstream-repo/

Package retention from upstream repositories 61

https://npmjs.com
https://npmjs.com

CodeArtifact CodeArtifact User Guide

$ npm install lodash
+ lodash@4.17.20
added 1 package from 2 contributors in 6.933s

After running npm install, repo-A contains just the latest version (lodash 4.17.20) because
that's the version that was fetched by npm from repo-A.

aws codeartifact list-package-versions --repository repo-A --domain my_domain \
 --domain-owner 111122223333 --format npm --package lodash

Example output:

{
 "package": "lodash",
 "format": "npm",
 "versions": [
 {
 "version": "4.17.15",
 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 }
]
}

Because repo-B has an external connection to https://npmjs.com, all the package versions that
are imported from https://npmjs.com are stored in repo-B. These package versions could have
been fetched by any downstream repository with an upstream relationship to repo-B.

The contents of repo-B provide a way to see all the packages and package versions imported from
https://npmjs.com over time. For example, to see all the versions of the lodash package imported
over time, you can use list-package-versions, as follows.

aws codeartifact list-package-versions --repository repo-B --domain my_domain \
 --domain-owner 111122223333 --format npm --package lodash --max-results 5

Example output:

{
 "package": "lodash",

Fetch packages through an upstream relationship 62

https://npmjs.com
https://npmjs.com
https://npmjs.com

CodeArtifact CodeArtifact User Guide

 "format": "npm",
 "versions": [
 {
 "version": "0.10.0",
 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 },
 {
 "version": "0.2.2",
 "revision": "REVISION-2-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 },
 {
 "version": "0.2.0",
 "revision": "REVISION-3-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 },
 {
 "version": "0.2.1",
 "revision": "REVISION-4-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 },
 {
 "version": "0.1.0",
 "revision": "REVISION-5-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 }
],
 "nextToken": "eyJsaXN0UGFja2FnZVZlcnNpb25zVG9rZW4iOiIwLjIuMiJ9"
}

Package retention in intermediate repositories

CodeArtifact allows chaining upstream repositories. For example, repo-A can have repo-B as an
upstream and repo-B can have repo-C as an upstream. This configuration makes the package
versions in repo-B and repo-C available from repo-A.

Package retention in intermediate repositories 63

CodeArtifact CodeArtifact User Guide

When a package manager connects to repository repo-A and fetches a package version from
repository repo-C, the package version will not be retained in repository repo-B. The package
version will only be retained in the most-downstream repository, in this example, repo-A. It will
not be retained in any intermediate repositories. This is also true for longer chains; for example
if there were four repositories repo-A, repo-B, repo-C, and repo-D and a package manager
connected to repo-A fetched a package version from repo-D, the package version would be
retained in repo-A but not in repo-B or repo-C.

Package retention behavior is similar when pulling a package version from an external repository,
except that the package version is always retained in the repository that has the external
connection attached. For example, repo-A has repo-B as an upstream. repo-B has repo-C as an
upstream, and repo-C also has npmjs.com configured as an external connection; see the followng
diagram.

If a package manager connected to repo-A requests a package version, lodash 4.17.20 for
example, and the package version is not present in any of the three repositories, it will be fetched
from npmjs.com. When lodash 4.17.20 is fetched, it will be retained in repo-A as that is the most-
downstream repository and repo-C as it has the external connection to npmjs.com attached.
lodash 4.17.20 will not be retained in repo-B as that is an intermediate repository.

Requesting packages from external connections

The following sections describe how to request a package from an external connection and
expected CodeArtifact behavior when requesting a package.

Topics

• Fetch packages from an external connection

• External connection latency

• CodeArtifact behavior when an external repository is not available

• Availability of new package versions

• Importing package versions with more than one asset

Requesting packages from external connections 64

CodeArtifact CodeArtifact User Guide

Fetch packages from an external connection

To fetch packages from an external connection once you've added it to your CodeArtifact
repository as described in Connect a CodeArtifact repository to a public repository, configure your
package manager to use your repository and install the packages.

Note

The following instructions use npm, to view configuration and usage instructions for other
package types, see Using CodeArtifact with Maven, Using CodeArtifact with NuGet, or
Using CodeArtifact with Python.

To fetch packages from an external connection

1. Configure and authenticate your package manager with your CodeArtifact repository. For npm,
use the following aws codeartifact login command.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

2. Request the package from the public repository. For npm, use the following npm install
command, replacing lodash with the package you want to install.

npm install lodash

3. After the package has been copied into your CodeArtifact repository, you can use the list-
packages and list-package-versions commands to view it.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo

Example output:

{
 "packages": [
 {
 "format": "npm",
 "package": "lodash"
 }

Fetch packages from an external connection 65

CodeArtifact CodeArtifact User Guide

]
}

The list-package-versions command lists all versions of the package copied into your
CodeArtifact repository.

aws codeartifact list-package-versions --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm --package lodash

Example output:

{
 "defaultDisplayVersion: "1.2.5"
 "format": "npm",
 "package": "lodash",
 "namespace": null,
 "versions": [
 {
 "version": "1.2.5",
 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 }
]
}

External connection latency

When fetching a package from a public repository using an external connection, there is a delay
from when the package is fetched from the public repository and when it is stored in your
CodeArtifact repository. For example, say you have installed version 1.2.5 of the npm package
"lodash" as described in Fetch packages from an external connection. Although the npm install
lodash lodash command completed successfully, the package version might not appear in your
CodeArtifact repository yet. It typically takes around 3 minutes for the package version to appear
in your repository, although occasionally it can take longer.

Because of this latency, you might have successfully retrieved a package version, but might not
yet be able to see the version in your repository in the CodeArtifact console or when calling the
ListPackages and ListPackageVersions API operations. Once CodeArtifact has asynchronously
persisted the package version, it will be visible in the console and via API requests.

External connection latency 66

CodeArtifact CodeArtifact User Guide

CodeArtifact behavior when an external repository is not available

Occasionally, an external repository will experience an outage that means CodeArtifact cannot
fetch packages from it, or fetching packages is much slower than normal. When this occurs,
package versions already pulled from an external repository (e.g. npmjs.com) and stored in a
CodeArtifact repository will continue to be available for download from CodeArtifact. However,
packages that are not already stored in CodeArtifact may not be available, even when an external
connection to that repository has been configured. For example, your CodeArtifact repository
might contain the npm package version lodash 4.17.19 because that's what you have been
using in your application so far. When you want to upgrade to 4.17.20, normally CodeArtifact will
fetch that new version from npmjs.com and store it in your CodeArtifact repository. However, if
npmjs.com is experiencing an outage this new version will not be available. The only workaround is
to try again later once npmjs.com has recovered.

External repository outages can also affect publishing new package versions to CodeArtifact.
In a repository with an external connection configured, CodeArtifact will not permit publishing
a package version that is already present in the external repository. For more information, see
Packages overview. However, in rare cases, an external repository outage might mean that
CodeArtifact does not have up-to-date information on which packages and package versions are
present in an external repository. In this case, CodeArtifact might permit a package version to be
published that it would normally deny.

Availability of new package versions

For a package version in a public repository such as npmjs.com to be available through a
CodeArtifact repository, it must first be added to a Regional package metadata cache. This cache is
maintained by CodeArtifact in each AWS Region and contains metadata that describes the contents
of supported public repositories. Because of this cache, there is a delay between when a new
package version is published to a public repository and when it is available from CodeArtifact. This
delay varies by package type.

For npm, Python, and Nuget packages, there may be a delay of up to 30 minutes from when a
new package version is published to npmjs.com, pypi.org, or nuget.org and when it is available
for installation from a CodeArtifact repository. CodeArtifact automatically synchronizes metadata
from these two repositories to ensure that the cache is up to date.

For Maven packages, there may be a delay of up to 3 hours from when a new package version
is published to a public repository and when it is available for installation from a CodeArtifact
repository. CodeArtifact will check for new versions of a package at most once every 3 hours. The

CodeArtifact behavior when an external repository is not available 67

CodeArtifact CodeArtifact User Guide

first request for a given package name after the 3-hour cache lifetime has expired will cause all
new versions of that package to be imported into the Regional cache.

For Maven packages in common use, new versions will typically be imported every 3 hours because
the high rate of requests means that the cache will often be updated as soon as the cache lifetime
has expired. For infrequently used packages, the cache will not have the latest version until a
version of the package is requested from a CodeArtifact repository. On the first request, only
previously imported versions will be available from CodeArtifact, but this request will cause the
cache to be updated. On subsequent requests, the new versions of the package will be added to
the cache and will be available for download.

Importing package versions with more than one asset

Both Maven and Python packages can have multiple assets per package version. This makes
importing packages of these formats more complex than npm and NuGet packages, which only
have one asset per package version. For descriptions of which assets are imported for these
package types and how newly-added assets are made available, see Requesting Python packages
from upstreams and external connections and Requesting Maven packages from upstreams and
external connections.

Upstream repository priority order

When you request a package version from a repository with one or more upstream repositories,
their priority corresponds to the order that they were listed when calling the create-repository
or update-repository command. When the requested package version is found, the search
stops, even if it didn't search all upstream repositories. For more information, see Add or remove
upstream repositories (AWS CLI).

Use the describe-repository command to see the priority order.

aws codeartifact describe-repository --repository my_repo --domain my_domain --domain-
owner 111122223333

The result might be the following. It shows that the upstream repository priority is upstream-1
first, upstream-2 second, and upstream-3 third.

{
 "repository": {
 "name": "my_repo",

Importing package versions with more than one asset 68

CodeArtifact CodeArtifact User Guide

 "administratorAccount": "123456789012",
 "domainName": "my_domain",
 "domainOwner": "111122223333",
 "arn": "arn:aws:codeartifact:us-
east-1:111122223333:repository/my_domain/my_repo",
 "description": "My new repository",
 "upstreams": [
 {
 "repositoryName": "upstream-1"
 },
 {
 "repositoryName": "upstream-2"
 },
 {
 "repositoryName": "upstream-3"
 }
],
 "externalConnections": []
 }
}

Simple priority order example

In the following diagram, the my_repo repository has three upstream repositories. The priority
order of the upstream repositories is upstream-1, upstream-2, upstream-3.

A request for a package version in my_repo searches the repositories in the following order until it
is found, or until an HTTP 404 Not Found response is returned to the client:

1. my_repo

2. upstream-1

Simple priority order example 69

CodeArtifact CodeArtifact User Guide

3. upstream-2

4. upstream-3

If the package version is found, the search stops, even if it didn't look in all upstream repositories.
For example, if the package version is found in upstream-1, the search stops and CodeArtifact
doesn't look in upstream-2 or upstream-3.

When you use the AWS CLI command list-package-versions to list package versions in
my_repo, it looks only in my_repo. It does not list package versions in upstream repositories.

Complex priority order example

If an upstream repository has its own upstream repositories, the same logic is used to find a
package version before moving to the next upstream repository. For example, suppose that
your my_repo repository has two upstream repositories, A and B. If repository A has upstream
repositories, a request for a package version in my_repo first looks in my_repo, second in A, then
in the upstream repositories of A, and so on.

In the following diagram, the my_repo repository contains upstream repositories. Upstream
repository A has two upstream repositories, and D has one upstream repository. Upstream
repositories at the same level in the diagram appear in their priority order, left to right (repository
A has a higher priority order than repository B, and repository C has a higher priority order than
repository D).

Complex priority order example 70

CodeArtifact CodeArtifact User Guide

In this example, a request for a package version in my_repo looks in the repositories in the
following order until it is found, or until a package manager returns an HTTP 404 Not Found
response to the client:

1. my_repo

2. A

3. C

4. D

5. E

6. B

API behavior with upstream repositories

When you call certain CodeArtifact APIs on repositories that are connected to upstream
repositories, the behavior may be different depending on if the packages or package versions
are stored in the target repository or the upstream repository. The behavior of these APIs is
documented here.

API behavior with upstream repositories 71

CodeArtifact CodeArtifact User Guide

For more information on CodeArtifact APIs, see the CodeArtifact API Reference.

Most APIs that reference a package or package version will return a ResourceNotFound error if
the specified package version is not present in the target repository. This is true even if the package
or package version is present in an upstream repository. Effectively, upstream repositories are
ignored when calling these APIs. These APIs are:

• DeletePackageVersions

• DescribePackageVersion

• GetPackageVersionAsset

• GetPackageVersionReadme

• ListPackages

• ListPackageVersionAssets

• ListPackageVersionDependencies

• ListPackageVersions

• UpdatePackageVersionsStatus

To demonstrate this behavior, we have two repositories: target-repo and upstream-repo.
target-repo is empty and has upstream-repo configured as an upstream repository.
upstream-repo contains the npm package lodash.

When calling the DescribePackageVersion API on upstream-repo, which contains the
lodash package, we get the following output:

{
 "packageVersion": {
 "format": "npm",
 "packageName": "lodash",
 "displayName": "lodash",
 "version": "4.17.20",
 "summary": "Lodash modular utilities.",
 "homePage": "https://lodash.com/",
 "sourceCodeRepository": "https://github.com/lodash/lodash.git",
 "publishedTime": "2020-10-14T11:06:10.370000-04:00",
 "licenses": [
 {
 "name": "MIT"
 }

API behavior with upstream repositories 72

https://docs.aws.amazon.com/codeartifact/latest/APIReference/Welcome.html

CodeArtifact CodeArtifact User Guide

],
 "revision": "Ciqe5/9yicvkJT13b5/LdLpCyE6fqA7poa9qp+FilPs=",
 "status": "Published"
 }

When calling the same API on target-repo, which is empty but has upstream-repo configured
as an upstream, we get the following output:

An error occurred (ResourceNotFoundException) when calling the DescribePackageVersion
 operation:
Package not found in repository. RepoId: repo-id, Package =
 PackageCoordinate{packageType=npm, packageName=lodash},

The CopyPackageVersions API behaves differently. By default, CopyPackageVersions API
only copies package versions that are stored in the target repository. If a package version is
stored in the upstream repository but not in the target repository, it will not be copied. To include
package versions of packages that are stored only in the upstream repository, set the value of
includeFromUpstream to true in your API request.

For more information on the CopyPackageVersions API, see Copy packages between
repositories.

API behavior with upstream repositories 73

CodeArtifact CodeArtifact User Guide

Working with packages in CodeArtifact

The following topics show you how to perform actions on packages using the CodeArtifact CLI and
API.

Topics

• Packages overview

• List package names

• List package versions

• List package version assets

• Download package version assets

• Copy packages between repositories

• Delete a package or package version

• View and update package version details and dependencies

• Update package version status

• Editing package origin controls

Packages overview

A package is a bundle of software and the metadata that is required to resolve dependencies and
install the software. In CodeArtifact, a package consists of a package name, an optional namespace
such as @types in @types/node, a set of package versions, and package-level metadata such as
npm tags.

Contents

• Supported package formats

• Package publishing

• Publishing permissions

• Overwriting package assets

• Private packages and public repositories

• Publishing patched package versions

• Asset size limits for publishing

Packages overview 74

CodeArtifact CodeArtifact User Guide

• Publishing latency

• Package version status

• Package name, package version, and asset name normalization

Supported package formats

AWS CodeArtifact supports Cargo, generic, Maven, npm, NuGet, PyPI, Ruby, Swift package formats.

Package publishing

You can publish new versions of any supported package format to a CodeArtifact repository using
tools such as npm, twine, Maven, Gradle, nuget, and dotnet.

Publishing permissions

Your AWS Identity and Access Management (IAM) user or role must have permissions to publish to
the destination repository. The following permissions are required to publish packages:

• Cargo: codeartifact:PublishPackageVersion

• generic: codeartifact:PublishPackageVersion

• Maven: codeartifact:PublishPackageVersion and
codeartifact:PutPackageMetadata

• npm: codeartifact:PublishPackageVersion

• NuGet: codeartifact:PublishPackageVersion and
codeartifact:ReadFromRepository

• Python: codeartifact:PublishPackageVersion

• Ruby: codeartifact:PublishPackageVersion

• Swift: codeartifact:PublishPackageVersion

In the preceding list of permissions, your IAM policy must specify the
package resource for the codeartifact:PublishPackageVersion and
codeartifact:PutPackageMetadata permissions. It must also specify the repository
resource for the codeartifact:ReadFromRepository permission.

For more information about permissions in CodeArtifact, see AWS CodeArtifact permissions
reference.

Supported package formats 75

CodeArtifact CodeArtifact User Guide

Overwriting package assets

You can't republish a package asset that already exists with different content. For example,
suppose that you already published a Maven package with a JAR asset mypackage-1.0.jar.
You can only publish that asset again if the checksum of the old and new assets are identical. To
republish the same asset with new content, delete the package version using the delete-package-
versions command first. Trying to republish the same asset name with different content will result
in an HTTP 409 conflict error.

For package formats that support multiple assets (generic, PyPI and Maven), you can add new
assets with different names to an existing package version, assuming that you have the required
permissions. For generic packages, you can add new assets as long as the package version is in the
Unfinished state. Because npm only supports a single asset per package version, to modify a
published package version in any way, you must first delete it using delete-package-versions.

If you try to republish an asset that already exists (for example, mypackage-1.0.jar), and the
content of the published asset and the new asset are identical, the operation will succeed because
the operation is idempotent.

Private packages and public repositories

CodeArtifact does not publish packages stored in CodeArtifact repositories to public repositories
such as npmjs.com or Maven Central. CodeArtifact imports packages from public repositories to
a CodeArtifact repository, but it never moves packages in the other direction. Packages that you
publish to CodeArtifact repositories remain private and are only available to the AWS accounts,
roles, and users to which you have granted access.

Publishing patched package versions

Sometimes you might want to publish a modified package version, potentially one that is
available in a public repository. For example, you might have found a bug in a critical application
dependency called mydep 1.1, and you need to fix it sooner than the package vendor can review
and accept the change. As described previously, CodeArtifact prevents you from publishing mydep
1.1 in your CodeArtifact repository if the public repository is reachable from your CodeArtifact
repository via upstream repositories and an external connection.

To work around this, publish the package version to a different CodeArtifact repository where the
public repository isn't reachable. Then use the copy-package-versions API to copy the patched
version of mydep 1.1 to the CodeArtifact repository where you will consume it from.

Package publishing 76

CodeArtifact CodeArtifact User Guide

Asset size limits for publishing

The maximum size of a package asset that can be published is limited by the Asset file size
maximum quota shown in Quotas in AWS CodeArtifact. For example, you cannot publish a Maven
JAR or Python wheel larger than your current asset file size maximum quota. If you need to store
larger assets in CodeArtifact, request a quota increase.

In addition to the asset file size maximum quota, the maximum size of a publishing request for
npm packages is 2 GB. This limit is independent of the asset file size maximum quota and cannot
be raised with a quota increase. In an npm publishing request (HTTP PUT), package metadata
and the content of the npm package tar archive are bundled together. Because of this, the actual
maximum size of an npm package that can be published varies and depends on the size of the
included metadata.

Note

Published npm packages are limited to a maximum size less than 2 GB.

Publishing latency

Package versions published to a CodeArtifact repository are often available for download in less
than one second. For example, if you publish an npm package version to CodeArtifact with npm
publish, that version should be available to an npm install command in less than one second.
However, publishing can be inconsistent and can sometimes take longer. If you must use a package
version immediately after publishing, use retries to make sure that the download is reliable. For
example, after publishing the package version, repeat the download up to three times if the just-
published package version is not initially available on the first download attempt.

Note

Importing a package version from a public repository typically takes longer than
publishing. For more information, see External connection latency.

Package publishing 77

CodeArtifact CodeArtifact User Guide

Package version status

Every package version in CodeArtifact has a status that describes the current state and availability
of the package version. You can change the package version status in the AWS CLI and SDK. For
more information, see Update package version status.

The following are possible values for package version status:

• Published – The package version is successfully published and can be requested using a package
manager. The package version will be included in package versions lists returned to package
managers, for example, in the output of npm view <package-name> versions. All assets of
the package version are available from the repository.

• Unfinished – The client has uploaded one or more assets for a package version, but has not
finalized it by moving it into the Published state. Currently only generic and Maven package
versions can have a status of Unfinished. For Maven packages, this can occur when the client
uploads one or more assets for a package version but does not publish a maven-metadata.xml
file for the package that includes that version. When a Maven package version is Unfinished,
it will not be included in version lists returned to clients such mvn or gradle, so it cannot be
used as part of a build. Generic packages can be deliberately kept in the Unfinished state by
providing the unfinished flag when calling the PublishPackageVersion API. A generic package
can be changed to the Published state by omitting the unfinished flag, or by calling the
UpdatePackageVersionsStatus API.

• Unlisted – The package version's assets are available for download from the repository, but
the package version is not included in the list of versions returned to package managers. For
example, for an npm package, the output of npm view <package-name> versions will
not include the package version. This means that npm's dependency resolution logic will not
select the package version because the version does not appear in the list of available versions.
However, if the Unlisted package version is already referenced in an npm package-lock.json
file, it can still be downloaded and installed, for example, when running npm ci.

• Archived – The package version's assets can no longer be downloaded. The package version
will not be included in the list of versions returned to package managers. Because the assets
are not available, consumption of the package version by clients is blocked. If your application
build depends on a version that is updated to Archived, the build will break, assuming the
package version has not been locally cached. You cannot use a package manager or build
tool to re-publish an Archived package version because it is still present in the repository,
but you can change the package version's status back to Unlisted or Published with the
UpdatePackageVersionsStatus API.

Package version status 78

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PublishPackageVersion.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

• Disposed – The package version doesn't appear in listings and the assets cannot be downloaded
from the repository. They key difference between Disposed and Archived is that with a status
of Disposed, the assets of the package version will be permanently deleted by CodeArtifact.
For this reason, you cannot move a package version from Disposed to Archived, Unlisted, or
Published. The package version can no longer be used because the assets have been deleted.
After a package version has been marked as Disposed, you will no longer be billed for storage of
the package assets.

Package versions of all statuses will be returned by default when calling list-package-versions with
no --status parameter.

Apart from the states listed previously, a package version can also be deleted with the
DeletePackageVersions API. After being deleted, a package version is no longer in the repository
and you can freely re-publish that package version using a package manager or build tool. After a
package version has been deleted, you will no longer be billed for storage of that package version's
assets.

Package name, package version, and asset name normalization

CodeArtifact normalizes package names, package versions, and asset names before storing them,
which means the names or versions in CodeArtifact may be different than the name or version
provided when the package was published. For more information about how names and versions
are normalized in CodeArtifact for each package type, see the following documentation:

• Python package name normalization

• NuGet package name, version, and asset name normalization

CodeArtifact does not perform normalization on other package formats.

List package names

Use the list-packages command in CodeArtifact to get a list of all the package names in a
repository. This command returns only the package names, not the versions.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo

Package name, package version, and asset name normalization 79

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DeletePackageVersions.html

CodeArtifact CodeArtifact User Guide

Sample output:

{
 "nextToken": "eyJidWNrZXRJZCI6I...",
 "packages": [
 {
 "package": "acorn",
 "format": "npm",
 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 },
 {
 "package": "acorn-dynamic-import",
 "format": "npm",
 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 },
 {
 "package": "ajv",
 "format": "npm",
 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 },
 {
 "package": "ajv-keywords",
 "format": "npm",
 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 },
 {
 "package": "anymatch",
 "format": "npm",

List package names 80

CodeArtifact CodeArtifact User Guide

 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 },
 {
 "package": "ast",
 "namespace": "webassemblyjs",
 "format": "npm",
 "originConfiguration": {
 "restrictions": {
 "publish": "BLOCK",
 "upstream": "ALLOW"
 }
 }
]
}

List npm package names

To list only the names of npm packages, set the value of the --format option to npm.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --format npm

To list npm packages in a namespace (npm scope), use the --namespace and --format options.

Important

The value for the --namespace option should not include the leading @. To search for the
namespace @types, set the value to types.

Note

The --namespace option filters by namespace prefix. Any npm package with a scope that
starts with the value passed to the --namespace option will be returned in the list-
packages response.

List npm package names 81

CodeArtifact CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --format npm --namespace types

Sample output:

{
 "nextToken": "eyJidWNrZXRJZ...",
 "packages": [
 {
 "package": "3d-bin-packing",
 "namespace": "types",
 "format": "npm"

 },
 {
 "package": "a-big-triangle",
 "namespace": "types",
 "format": "npm"

 },
 {
 "package": "a11y-dialog",
 "namespace": "types",
 "format": "npm"

 }
]
}

List Maven package names

To list only the names of Maven packages, set the value of the --format option to maven. You
must also specify the Maven group ID in the --namespace option.

Note

The --namespace option filters by namespace prefix. Any npm package with a scope that
starts with the value passed to the --namespace option will be returned in the list-
packages response.

List Maven package names 82

CodeArtifact CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --format maven --namespace org.apache.commons

Sample output:

{
 "nextToken": "eyJidWNrZXRJZ...",
 "packages": [
 {
 "package": "commons-lang3",
 "namespace": "org.apache.commons",
 "format": "maven"

 },
 {
 "package": "commons-collections4",
 "namespace": "org.apache.commons",
 "format": "maven"

 },
 {
 "package": "commons-compress",
 "namespace": "org.apache.commons",
 "format": "maven"

 }
]
}

List Python package names

To list only the names of Python packages, set the value of the --format option to pypi.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --format pypi

Filter by package name prefix

To return packages that begin with a specified string, you can use the --package-prefix option.

List Python package names 83

CodeArtifact CodeArtifact User Guide

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --format npm --package-prefix pat

Sample output:

{
 "nextToken": "eyJidWNrZXRJZ...",
 "packages": [
 {
 "package": "path",
 "format": "npm"

 },
 {
 "package": "pat-test",
 "format": "npm"

 },
 {
 "package": "patch-math3",
 "format": "npm"

 }
]
}

Supported search option combinations

You can use the --format, --namespace, and --package-prefix options in any combination,
except that --namespace can't be used by itself. Searching for all npm packages with a scope that
starts with @types requires the --format option to be specified. Using --namespace by itself
results in an error.

Using none of the three options is also supported by list-packages and will return all packages
of all formats present in the repository.

Supported search option combinations 84

CodeArtifact CodeArtifact User Guide

Format output

You can use parameters that are available to all AWS CLI commands to make the list-packages
response compact and more readable. Use the --query parameter to specify the format of each
returned package version. Use the --output parameter to format the response as plaintext.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \
 --output text --query 'packages[*].[package]'

Sample output:

accepts
array-flatten
body-parser
bytes
content-disposition
content-type
cookie
cookie-signature

For more information, see Controlling command output from the AWS CLI in the AWS Command
Line Interface User Guide.

Defaults and other options

By default, the maximum number of results returned by list-packages is 100. You can change
this result limit by using the --max-results option.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo --max-results 20

The maximum allowed value of --max-results is 1,000. To allow listing packages in repositories
with more than 1,000 packages, list-packages supports pagination using the nextToken field
in the response. If the number of packages in the repository is more than the value of --max-
results, you can pass the value of nextToken to another invocation of list-packages to get
the next page of results.

aws codeartifact list-packages --domain my_domain --domain-owner 111122223333 --
repository my_repo \

Format output 85

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html

CodeArtifact CodeArtifact User Guide

 --next-token rO0ABXNyAEdjb...

List package versions

Use the list-package-versions command in AWS CodeArtifact to get a list of all of the
versions of a package name in a repository.

aws codeartifact list-package-versions --package kind-of \
--domain my_domain --domain-owner 111122223333 \
--repository my_repository --format npm

Sample output:

{
 "defaultDisplayVersion": "1.0.1",
 "format": "npm",
 "package": "kind-of",
 "versions": [
 {
 "version": "1.0.1",
 "revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
 },
 {
 "version": "1.0.0",
 "revision": "REVISION-SAMPLE-2-C752BEEF6D2CFC",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
 },
 {

List package versions 86

CodeArtifact CodeArtifact User Guide

 "version": "0.1.2",
 "revision": "REVISION-SAMPLE-3-654S65A5C5E1FC",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
 },
 {
 "version": "0.1.1",
 "revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC"",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
 },
 {
 "version": "0.1.0",
 "revision": "REVISION-SAMPLE-4-AF669139B772FC",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
 }
]
}

You can add the --status parameter to the list-package-versions call to filter the results
based on package version status. For more information about package version status, see Package
version status.

You can paginate the response from list-package-versions using the --max-results and
--next-token parameters. For --max-results, specify an integer from 1 to 1000 to specify
the number of results returned in a single page. Its default is 50. To return subsequent pages,
run list-package-versions again and pass the nextToken value received in the previous

List package versions 87

CodeArtifact CodeArtifact User Guide

command output to --next-token. When the --next-token option is not used, the first page
of results is always returned.

The list-package-versions command does not list package versions in upstream repositories.
However, references to package versions in an upstream repository that were copied to your
repository during a package version request are listed. For more information, see Working with
upstream repositories in CodeArtifact.

List npm package versions

To list all the package versions for an npm package, set the value of the --format option to npm.

aws codeartifact list-package-versions --package my_package --domain my_domain \
 --domain-owner 111122223333 --repository my_repo --format npm

To list npm package versions in a specific namespace (npm scope), use the --namespace option.
The value for the --namespace option should not include the leading @. To search for the
namespace @types, set the value to types.

aws codeartifact list-package-versions --package my_package --domain my_domain \
 --domain-owner 111122223333 --repository my_repo --format npm \
 --namespace types

List Maven package versions

To list all the package versions for a Maven package, set the value of the --format option to
maven. You must also specify the Maven group ID in the --namespace option.

aws codeartifact list-package-versions --package my_package --domain my_domain \
 --domain-owner 111122223333 --repository my_repo --format maven \
 --namespace org.apache.commons

Sort versions

list-package-versions can output versions sorted in descending order based on publish time
(the most-recently published versions are listed first). Use the --sort-by parameter with a value
of PUBLISHED_TIME, as follows.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
 --repository my_repository \

List npm package versions 88

CodeArtifact CodeArtifact User Guide

--format npm --package webpack --max-results 5 --sort-by PUBLISHED_TIME

Sample output:

{

 "defaultDisplayVersion": "4.41.2",
 "format": "npm",
 "package": "webpack",
 "versions": [
 {
 "version": "5.0.0-beta.7",
 "revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "status": "Published"
 },
 {
 "version": "5.0.0-beta.6",
 "revision": "REVISION-SAMPLE-2-C752BEEF6D2CFC",
 "status": "Published"
 },
 {
 "version": "5.0.0-beta.5",
 "revision": "REVISION-SAMPLE-3-654S65A5C5E1FC",
 "status": "Published"
 },
 {
 "version": "5.0.0-beta.4",
 "revision": "REVISION-SAMPLE-4-AF669139B772FC",
 "status": "Published"
 },
 {
 "version": "5.0.0-beta.3",
 "revision": "REVISION-SAMPLE-5-C752BEE9B772FC",
 "status": "Published"
 }
],
 "nextToken": "eyJsaXN0UGF...."
}

Default display version

The return value for defaultDisplayVersion depends on the package format:

Default display version 89

CodeArtifact CodeArtifact User Guide

• For generic, Maven, and PyPI packages, it's the most recently published package version.

• For npm packages, it's the version referenced by the latest tag. If the latest tag is not set, it's
the most recently published package version.

Format output

You can use parameters that are available to all AWS CLI commands to make the list-package-
versions response compact and more readable. Use the --query parameter to specify the
format of each returned package version. Use the --output parameter to format the response as
plain text.

aws codeartifact list-package-versions --package my-package-name --domain my_domain --
domain-owner 111122223333 \
--repository my_repo --format npm --output text --query 'versions[*].[version]'

Sample output:

0.1.1
0.1.2
0.1.0
3.0.0

For more information, see Controlling Command Output from the AWS CLI in the AWS Command
Line Interface User Guide.

List package version assets

An asset is an individual file (for example, an npm .tgz file or Maven POM or JAR file) stored in
CodeArtifact that is associated with a package version. You can use the list-package-version-
assets command to list the assets in each package version.

Run the list-package-version-assets command to return the following information about
each asset in your AWS account and your current AWS Region:

• Its name.

• Its size, in bytes.

• A set of hash values used for checksum validation.

Format output 90

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html

CodeArtifact CodeArtifact User Guide

For example, use the following command to list the assets of the Python package flatten-json,
version 0.1.7.

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo --format pypi --package flatten-json \
 --package-version 0.1.7

The following shows the output.

{
 "format": "pypi",
 "package": "flatten-json",
 "version": "0.1.7",
 "versionRevision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "assets": [
 {
 "name": "flatten_json-0.1.7-py3-none-any.whl",
 "size": 31520,
 "hashes": {
 "MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
 "SHA-1": "69b215c25dd4cda1d997a786ec6EXAMPLE-SHA-1",
 "SHA-256": "43f24850b7b7b7d79c5fa652418518fbdf427e602b1edabe6EXAMPLE-
SHA-256",
 "SHA-512":
 "3947382ac2c180ee3f2aba4f8788241527c8db9dfe9f4b039abe9fc560aaf5a1fced7bd1e80a0dca9ce320d95f0864e0dec3ac4f2f7b2b2cbEXAMPLE-
SHA-512"
 }
 },
 {
 "name": "flatten_json-0.1.7.tar.gz",
 "size": 2865,
 "hashes": {
 "MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
 "SHA-1": "69b215c25dd4cda1d997a786ec6EXAMPLE-SHA-1",
 "SHA-256": "43f24850b7b7b7d79c5fa652418518fbdf427e602b1edabe6EXAMPLE-
SHA-256",
 "SHA-512":
 "3947382ac2c180ee3f2aba4f8788241527c8db9dfe9f4b039abe9fc560aaf5a1fced7bd1e80a0dca9ce320d95f0864e0dec3ac4f2f7b2b2cbEXAMPLE-
SHA-512"
 }
 }
]

List package version assets 91

CodeArtifact CodeArtifact User Guide

}

List assets of an npm package

An npm package always has a single asset with a name of package.tgz. To list the assets of a
scoped npm package, include the scope in the --namespace option.

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo --format npm --package webpack \
 --namespace types --package-version 4.9.2

List assets of a Maven package

To list the assets of a Maven package, include the package namespace in the --namespace option.
To list the assets of the Maven package commons-cli:commons-cli:

aws codeartifact list-package-version-assets --domain my_domain --domain-
owner 111122223333 \
 --repository my_repo --format maven --package commons-cli \
 --namespace commons-cli --package-version 1.0

Download package version assets

An asset is an individual file (for example, an npm .tgz file or Maven POM or JAR file) stored in
CodeArtifact that is associated with a package version. You can download package assets using
the get-package-version-assets command. This allows you to retrieve assets without using
a package manager client such as npm or pip. To download an asset you must provide the asset's
name which can be obtained using the list-package-version-assets command, for more
information see List package version assets. The asset will be downloaded to local storage with a
file name that you specify.

The following example downloads the guava-27.1-jre.jar asset from the Maven package
com.google.guava:guava with version 27.1-jre.

aws codeartifact get-package-version-asset --domain my_domain --domain-
owner 111122223333 --repository my_repo \
 --format maven --namespace com.google.guava --package guava --package-version 27.1-
jre \

List assets of an npm package 92

CodeArtifact CodeArtifact User Guide

 --asset guava-27.1-jre.jar \
 guava-27.1-jre.jar

In this example, the file name was specified as guava-27.1-jre.jar by the last argument in the
preceding command, so the downloaded asset will be named guava-27.1-jre.jar.

The output of the command will be:

{
 "assetName": "guava-27.1-jre.jar",
 "packageVersion": "27.1-jre",
 "packageVersionRevision": "YGp9ck2tmy03PGSxioclfYzQ0BfTLR9zzhQJtERv62I="
}

Note

To download assets from a scoped npm package, include the scope in the --namespace
option. The @ symbol must be omitted when using --namespace. For example, if the
scope is @types, use --namespace types.

Downloading assets using get-package-version-asset requires
codeartifact:GetPackageVersionAsset permission on the package resource. For more
information about resource-based permission policies, see Resource-based policies in the AWS
Identity and Access Management User Guide.

Copy packages between repositories

You can copy package versions from one repository to another in CodeArtifact. This can be helpful
for scenarios such as package promotion workflows or sharing package versions between teams
or projects. The source and destination repositories must be in the same domain to copy package
versions.

Required IAM permissions to copy packages

To copy package versions in CodeArtifact, the calling user must have the required IAM permissions
and the resource-based policy attached to the source and destination repositories must have
the required permissions. For more information about resource-based permissions policies and
CodeArtifact repositories, see Repository policies.

Copy packages between repositories 93

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based

CodeArtifact CodeArtifact User Guide

The user calling copy-package-versions must have the ReadFromRepository permission on
the source repository and the CopyPackageVersions permission on the destination repository.

The source repository must have the ReadFromRepository permission and the destination
repository must have the CopyPackageVersions permission assigned to the IAM account or
user copying packages. The following policies are example repository policies to be added to the
source repository or destination repository with the put-repository-permissions-policy
command. Replace 111122223333 with the ID of the account calling copy-package-versions.

Note

Calling put-repository-permissions-policy will replace the current repository
policy if one exists. You can use the get-repository-permissions-policy command
to see if a policy exists, for more information see Read a policy. If a policy does exist, you
may want to add these permissions to it instead of replacing it.

Example source repository permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:ReadFromRepository"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Resource": "*"
 }
]
}

Example destination repository permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {

Required IAM permissions to copy packages 94

CodeArtifact CodeArtifact User Guide

 "Action": [
 "codeartifact:CopyPackageVersions"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Resource": "*"
 }
]
}

Copy package versions

Use the copy-package-versions command in CodeArtifact to copy one or more package
versions from a source repository to a destination repository in the same domain. The following
example will copy versions 6.0.2 and 4.0.0 of an npm package named my-package from the
my_repo repository to the repo-2 repository.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 --source-repository my_repo \
 --destination-repository repo-2 --package my-package --format npm \
 --versions 6.0.2 4.0.0

You can copy multiple versions of the same package name in a single operation. To copy versions
of different package names, you must call copy-package-versions for each one.

The previous command will produce the following output, assuming both versions could be copied
successfully.

{
 "successfulVersions": {
 "6.0.2": {
 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 },
 "4.0.0": {
 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 }
 },
 "failedVersions": {}

Copy package versions 95

CodeArtifact CodeArtifact User Guide

}

Copy a package from upstream repositories

Normally, copy-package-versions only looks in the repository specified by the --source-
repository option for versions to copy. However, you can copy versions from both the source
repository and its upstream repositories by using the --include-from-upstream option. If you
use the CodeArtifact SDK, call the CopyPackageVersions API with the includeFromUpstream
parameter set to true. For more information, see Working with upstream repositories in
CodeArtifact.

Copy a scoped npm package

To copy an npm package version in a scope, use the --namespace option to specify the scope. For
example, to copy the package @types/react, use --namespace types. The @ symbol must be
omitted when using --namespace.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 --source-repository repo-1 \
 --destination-repository repo-2 --format npm --namespace types \
 --package react --versions 0.12.2

Copy Maven package versions

To copy Maven package versions between repositories, specify the package to copy by passing the
Maven group ID with the --namespace option and the Maven artifactID with the --name option.
For example, to copy a single version of com.google.guava:guava:

 aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 \
 --source-repository my_repo --destination-repository repo-2 --format maven --
namespace com.google.guava \
 --package guava --versions 27.1-jre

If the package version is copied successfully, the output will be similar to the following.

{
 "successfulVersions": {
 "27.1-jre": {

Copy a package from upstream repositories 96

CodeArtifact CodeArtifact User Guide

 "revision": "REVISION-1-SAMPLE-6C81EFF7DA55CC",
 "status": "Published"
 }
 },
 "failedVersions": {}
}

Versions that do not exist in the source repository

If you specify a version that does not exist in the source repository, the copy will fail. If some
versions exist in the source repository and some do not, all versions will fail to copy. In the
following example, version 0.2.0 of the array-unique npm package is present in the source
repository, but version 5.6.7 is not:

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \
 --source-repository my_repo --destination-repository repo-2 --format npm \
 --package array-unique --versions 0.2.0 5.6.7

The output in this scenario will be similar to the following.

{
 "successfulVersions": {},
 "failedVersions": {
 "0.2.0": {
 "errorCode": "SKIPPED",
 "errorMessage": "Version 0.2.0 was skipped"
 },
 "5.6.7": {
 "errorCode": "NOT_FOUND",
 "errorMessage": "Could not find version 5.6.7"
 }
 }
}

The SKIPPED error code is used to indicate that the version was not copied to the destination
repository because another version was not able to be copied.

Versions that already exist in the destination repository

When a package version is copied to a repository where it already exists, CodeArtifact compares its
package assets and package version level metadata in the two repositories.

Versions that do not exist in the source repository 97

CodeArtifact CodeArtifact User Guide

If the package version assets and metadata are identical in the source and destination repositories,
a copy is not performed but the operation is considered successful. This means that copy-
package-versions is idempotent. When this occurs, the version that was already present in
both the source and destination repositories will not be listed in the output of copy-package-
versions.

In the following example, two versions of the npm package array-unique are present in the
source repository repo-1. Version 0.2.1 is also present in the destination repository dest-repo
and version 0.2.0 is not.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \
 --source-repository my_repo --destination-repository repo-2 --format npm --
package array-unique \
 --versions 0.2.1 0.2.0

The output in this scenario will be similar to the following.

{
 "successfulVersions": {
 "0.2.0": {
 "revision": "Yad+B1QcBq2kdEVrx1E1vSfHJVh8Pr61hBUkoWPGWX0=",
 "status": "Published"
 }
 },
 "failedVersions": {}
}

Version 0.2.0 is listed in successfulVersions because it was successfully copied from the source
to destination repository. Version 0.2.1 is not shown in the output as it was already present in the
destination repository.

If the package version assets or metadata differ in the source and destination repositories, the copy
operation will fail. You can use the --allow-overwrite parameter to force an overwrite.

If some versions exist in the destination repository and some do not, all versions will fail to copy.
In the following example, version 0.3.2 of the array-unique npm package is present in both the
source and destination repositories, but the contents of the package version are different. Version
0.2.1 is present in the source repository but not the destination.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333 \

Versions that already exist in the destination repository 98

CodeArtifact CodeArtifact User Guide

 --source-repository my_repo --destination-repository repo-2 --format npm --
package array-unique \
 --versions 0.3.2 0.2.1

The output in this scenario will be similar to the following.

{
 "successfulVersions": {},
 "failedVersions": {
 "0.2.1": {
 "errorCode": "SKIPPED",
 "errorMessage": "Version 0.2.1 was skipped"
 },
 "0.3.2": {
 "errorCode": "ALREADY_EXISTS",
 "errorMessage": "Version 0.3.2 already exists"
 }
 }
}

Version 0.2.1 is marked as SKIPPED because it was not copied to the destination repository. Is
was not copied because the copy of version 0.3.2 failed because it was already present in the
destination repository, but not identical in the source and destination repositories.

Specifying a package version revision

A package version revision is a string that specifies a specific set of assets and metadata for a
package version. You can specify a package version revision to copy package versions that are in a
specific state. To specify a package version revision, use the --version-revisions parameter to
pass one or more comma-separated package version and the package version revision pairs to the
copy-package-versions command.

Note

You must specify the --versions or the --version-revisions parameter with copy-
package-versions. You cannot specify both.

The following example will only copy version 0.3.2 of the package my-package if it is present in
the source repository with package version revision REVISION-1-SAMPLE-6C81EFF7DA55CC.

Specifying a package version revision 99

CodeArtifact CodeArtifact User Guide

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 --source-repository repo-1 \
 --destination-repository repo-2 --format npm --namespace my-namespace \
 --package my-package --version-revisions 0.3.2=REVISION-1-SAMPLE-6C81EFF7DA55CC

The following example copies two versions of package my-package, 0.3.2 and 0.3.13. The
copy will only succeed if in the source repository version 0.3.2 of my-package has revision
REVISION-1-SAMPLE-6C81EFF7DA55CC and version 0.3.13 has revision REVISION-2-
SAMPLE-55C752BEE772FC.

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 --source-repository repo-1 \
 --destination-repository repo-2 --format npm --namespace my-namespace \
 --package my-package --version-revisions 0.3.2=REVISION-1-
SAMPLE-6C81EFF7DA55CC,0.3.13=REVISION-2-SAMPLE-55C752BEE772FC

To find the revisions of a package version, use the describe-package-version or the list-
package-versions command.

For more information, see Package version revision and CopyPackageVersion in the CodeArtifact
API Reference.

Copy npm packages

For more information about copy-package-versions behavior with npm packages, see npm
tags and the CopyPackageVersions API.

Delete a package or package version

You can delete one or more package versions at a time using the delete-package-versions
command. To remove a package from a repository completely, including all associated versions and
configuration, use the delete-package command. A package can exist in a repository without
any package versions. This can happen when all versions are deleted using the delete-package-
versions command, or if the package was created without any versions using the put-package-
origin-configuration API operation (see Editing package origin controls).

Topics

• Deleting a package (AWS CLI)

Copy npm packages 100

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_CopyPackageVersions.html

CodeArtifact CodeArtifact User Guide

• Deleting a package (console)

• Deleting a package version (AWS CLI)

• Deleting a package version (console)

• Deleting an npm package or package version

• Deleting a Maven package or package version

• Best practices for deleting packages or package versions

Deleting a package (AWS CLI)

You can delete a package, including all of its package versions and configuration, using the
delete-package command. The following example deletes the PyPI package named my-
package in the repo my_repo in the my_domain domain:

aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi \
--package my-package

Sample output:

{
 "deletedPackage": {
 "format": "pypi",
 "originConfiguration": {
 "restrictions": {
 "publish": "ALLOW",
 "upstream": "BLOCK"
 }
 },
 "package": "my-package"
 }
}

You can confirm that the package was deleted by running describe-package for the same
package name:

aws codeartifact describe-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi --package my-package

Deleting a package (AWS CLI) 101

CodeArtifact CodeArtifact User Guide

Deleting a package (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Repositories.

3. Choose the Repository from which you want to delete a package.

4. Choose the Package you want to delete.

5. Choose Delete Package.

Deleting a package version (AWS CLI)

You can delete one or more package versions at a time using the delete-package-versions
command. The following example deletes versions 4.0.0, 4.0.1, and 5.0.0 of the PyPI package
named my-package in the my_repo in the my_domain domain:

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333
 \
--repository my_repo --format pypi \
--package my-package --versions 4.0.0 4.0.1 5.0.0

Sample output:

{
 "successfulVersions": {
 "4.0.0": {
 "revision": "oxwwYC9dDeuBoCt6+PDSwL6OMZ7rXeiXy44BM32Iawo=",
 "status": "Deleted"
 },
 "4.0.1": {
 "revision": "byaaQR748wrsdBaT+PDSwL6OMZ7rXeiBKM0551aqWmo=",
 "status": "Deleted"
 },
 "5.0.0": {
 "revision": "yubm34QWeST345ts+ASeioPI354rXeiSWr734PotwRw=",
 "status": "Deleted"
 }
 },
 "failedVersions": {}
}

Deleting a package (console) 102

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

You can confirm that the versions were deleted by running list-package-versions for the
same package name:

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format pypi --package my-package

Deleting a package version (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Repositories.

3. Choose the Repository from which you want to delete package versions.

4. Choose the Package from which you want to delete versions.

5. Select the Package Version that you want to delete.

6. Choose Delete.

Note

In the console, you can only delete one package version at a time. To delete more than
one at a time, use the CLI.

Deleting an npm package or package version

To delete an npm package or individual package versions, set the --format option to npm. To
delete a package version in a scoped npm package, use the --namespace option to specify the
scope. For example, to delete the package @types/react, use --namespace types. Omit the @
symbol when using --namespace.

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333
 \
--repository my_repo --format npm --namespace types \
--package react --versions 0.12.2

Deleting a package version (console) 103

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To delete the package @types/react, including all of its versions:

aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format npm --namespace types \
--package react

Deleting a Maven package or package version

To delete a Maven package or individual package versions, set the --format option to maven and
specify the package to delete by passing the Maven group ID with the --namespace option and
the Maven artifactID with the --name option. For example, the following shows how to delete a
single version of com.google.guava:guava:

 aws codeartifact delete-package-versions --domain my_domain --domain-
owner 111122223333 \
--repository my_repo --format maven --namespace com.google.guava \
--package guava --versions 27.1-jre

The following example shows how to delete the package com.google.guava:guava, including
all of its versions:

 aws codeartifact delete-package --domain my_domain --domain-owner 111122223333 \
--repository my_repo --format maven --namespace com.google.guava \
--package guava

Best practices for deleting packages or package versions

If you do need to a delete a package version, as a best practice it's recommended that you create
a repository to store a backup copy of the package version you'd like to delete. You can do this by
first calling copy-package-versions to the backup repository:

aws codeartifact copy-package-versions --domain my_domain --domain-owner 111122223333
 --source-repository my_repo \
 --destination-repository repo-2 --package my-package --format npm \
 --versions 6.0.2 4.0.0

Once you've copied the package version, you can then call delete-package-versions on
package or package version you'd like to delete.

Deleting a Maven package or package version 104

CodeArtifact CodeArtifact User Guide

aws codeartifact delete-package-versions --domain my_domain --domain-owner 111122223333
 \
--repository my_repo --format pypi \
--package my-package --versions 4.0.0 4.0.1 5.0.0

View and update package version details and dependencies

You can view information about a package version, including dependencies, in CodeArtifact. You
can also update the status of a package version. For more information on package version status,
see Package version status.

View package version details

Use the describe-package-version command to view details about package versions. Package
version details are extracted from a package when it is published to CodeArtifact. The details in
different packages vary and depend on their formats and how much information their authors
added to them.

Most information in the output of the describe-package-version command depends on
the package format. For example, describe-package-version extracts an npm package's
information from its package.json file. The revision is created by CodeArtifact. For more
information, see Specifying a package version revision.

Two package versions with the same name can be in the same repository if they each are in
different namespaces. Use the optional --namespace parameter to specify a namespace. For more
information, see View npm package version details or View Maven package version details.

The following example returns details about version 1.9.0 of a Python package named
pyhamcrest that is in the my_repo repository.

aws codeartifact describe-package-version --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format pypi --package pyhamcrest --package-version 1.9.0

The output might look like the following.

{
 "format": "pypi",
 "package": "PyHamcrest",

View and update package version details and dependencies 105

CodeArtifact CodeArtifact User Guide

 "displayName": "PyHamcrest",
 "version": "1.9.0",
 "summary": "Hamcrest framework for matcher objects",
 "homePage": "https://github.com/hamcrest/PyHamcrest",
 "publishedTime": 1566002944.273,
 "licenses": [
 {
 "id": "license-id",
 "name": "license-name"
 }
],
 "revision": "REVISION-SAMPLE-55C752BEE9B772FC"
}

Note

CodeArtifact fetches package version details such as package home page or package
license information from the metadata provided by the package author. If any of this
information exceeds 400 KB, which is the DynamoDB item size limit, CodeArtifact won't
be able to process such data and you may not see this information on the console or from
the response of describe-package-version. For example, a python package such
as https://pypi.org/project/rapyd-sdk/ has a very large license field, so this information
wouldn't be processed by CodeArtifact.

View npm package version details

To view details about an npm package version, set the value of the --format option to npm.
Optionally, include the package version namespace (npm scope) in the --namespace option. The
value for the --namespace option should not include the leading @. To search for the namespace
@types, set the value to types.

The following returns details about version 4.41.5 of an npm package named webpack in the
@types scope.

aws codeartifact describe-package-version --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package webpack --namespace types --package-version 4.41.5

The output might look like the following.

View npm package version details 106

https://pypi.org/project/rapyd-sdk/

CodeArtifact CodeArtifact User Guide

{
 "format": "npm",
 "namespace": "types",
 "package": "webpack",
 "displayName": "webpack",
 "version": "4.41.5",
 "summary": "Packs CommonJs/AMD modules for the browser. Allows ... further output
 omitted for brevity",
 "homePage": "https://github.com/webpack/webpack",
 "sourceCodeRepository": "https://github.com/webpack/webpack.git",
 "publishedTime": 1577481261.09,
 "licenses": [
 {
 "id": "license-id",
 "name": "license-name"
 }
],
 "revision": "REVISION-SAMPLE-55C752BEE9B772FC",
 "status": "Published",
 "origin": {
 "domainEntryPoint": {
 "externalConnectionName": "public:npmjs"
 },
 "originType": "EXTERNAL"
 }
}

View Maven package version details

To view details about a Maven package version, set the value of the --format option to maven
and include the package version namespace in the --namespace option.

The following example returns details about version 1.2 of a Maven package named commons-
rng-client-api that is in the org.apache.commons namespace and the my_repo repository.

aws codeartifact describe-package-version --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format maven --namespace org.apache.commons --package commons-rng-client-api --
package-version 1.2

The output might look like the following.

View Maven package version details 107

CodeArtifact CodeArtifact User Guide

{
 "format": "maven",
 "namespace": "org.apache.commons",
 "package": "commons-rng-client-api",
 "displayName": "Apache Commons RNG Client API",
 "version": "1.2",
 "summary": "API for client code that uses random numbers generators.",
 "publishedTime": 1567920624.849,
 "licenses": [],
 "revision": "REVISION-SAMPLE-55C752BEE9B772FC"
}

Note

CodeArtifact does not extract package version detail information from parent POM files.
The metadata for a given package version will only include information in the POM for that
exact package version, not for the parent POM or any other POM referenced transitively
using the POM parent tag. This means that the output of describe-package-version
will omit metadata (such as license information) for Maven package versions that rely on a
parent reference to contain this metadata.

View package version dependencies

Use the list-package-version-dependencies command to get a list of a package version's
dependencies. The following command lists the dependencies of an npm package named my-
package, version 4.41.5, in the my_repo repository, in the my_domain domain.

aws codeartifact list-package-version-dependencies --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package my-package --package-version 4.41.5

The output might look like the following.

{
 "dependencies": [
 {
 "namespace": "webassemblyjs",
 "package": "ast",

View package version dependencies 108

CodeArtifact CodeArtifact User Guide

 "dependencyType": "regular",
 "versionRequirement": "1.8.5"
 },
 {
 "namespace": "webassemblyjs",
 "package": "helper-module-context",
 "dependencyType": "regular",
 "versionRequirement": "1.8.5"
 },
 {
 "namespace": "webassemblyjs",
 "package": "wasm-edit",
 "dependencyType": "regular",
 "versionRequirement": "1.8.5"
 }
],
 "versionRevision": "REVISION-SAMPLE-55C752BEE9B772FC"
}

For the range of supported values for the dependencyType field, see the PackageDependency data
type in the CodeArtifact API.

View package version readme file

Some package formats, such as npm, include a README file. Use the get-package-version-
readme to get the README file of a package version. The following command returns the README
file of an npm package named my-package, version 4.41.5, in the my_repo repository, in the
my_domain domain.

Note

CodeArtifact does not support displaying readme files from generic or Maven packages.

aws codeartifact get-package-version-readme --domain my_domain --domain-
owner 111122223333 --repository my_repo \
--format npm --package my-package --package-version 4.41.5

The output might look like the following.

{

View package version readme file 109

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_PackageDependency.html

CodeArtifact CodeArtifact User Guide

 "format": "npm",
 "package": "my-package",
 "version": "4.41.5"
 "readme": "<div align=\"center\">\n <a href=\https://github.com/webpack/webpack
\"> ... more content ... \n",
 "versionRevision": "REVISION-SAMPLE-55C752BEE9B772FC"
}

Update package version status

Every package version in CodeArtifact has a status that describes the current state and availability
of the package version. You can change the package version status using both the AWS CLI and the
console.

Note

For more information on package version status, including a list of the available statuses,
see Package version status.

Updating package version status

Setting the status of a package version allows controlling how a package version can be used
without deleting it completely from the repository. For example, when a package version has a
status of Unlisted, it can still be downloaded as normal, but it will not appear in package version
lists returned to commands such as npm view. The UpdatePackageVersionsStatus API allows
setting the package version status of multiple versions of the same package in a single API call. For
a description of the different statuses, see Packages overview.

Use the update-package-versions-status command to change the status of a package
version to Published, Unlisted, or Archived. To see the required IAM permissions to use
the command, see Required IAM permissions to update a package version status. The following
example sets the status of version 4.1.0 of the npm package chalk to Archived.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 --target-status Archived

Sample output:

Update package version status 110

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

{
 "successfulVersions": {
 "4.1.0": {
 "revision": "+Oz8skWbwY3k8M6SrNIqNj6bVH/ax+CxvkJx+No5j8I=",
 "status": "Archived"
 }
 },
 "failedVersions": {}
}

This example uses an npm package, but the command works identically for other formats. Multiple
versions can be moved to the same target status using a single command, see the following
example.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 4.1.1 --target-status Archived

Sample output:

{
 "successfulVersions": {
 "4.1.0": {
 "revision": "25/UjBleHs1DZewk+zozoeqH/R80Rc9gL1P8vbzVMJ4=",
 "status": "Archived"
 },
 "4.1.1": {
 "revision": "+Oz8skWbwY3k8M6SrNIqNj6bVH/ax+CxvkJx+No5j8I=",
 "status": "Archived"
 }
 },
 "failedVersions": {}
}

Note that once published, a package version cannot be moved back to the Unfinished state, so
this status is not permitted as a value for the --target-status parameter. To move the package
version to the Disposed state, use the dispose-package-versions command instead as
described below.

Updating package version status 111

CodeArtifact CodeArtifact User Guide

Required IAM permissions to update a package version status

To call update-package-versions-status for a package, you must have the
codeartifact:UpdatePackageVersionsStatus permission on the package resource. This
means you can grant permission to call update-package-versions-status on a per-package
basis. For example, an IAM policy that grants permission to call update-package-versions-
status on the npm package chalk would include a statement like the following.

{
 "Action": [
 "codeartifact:UpdatePackageVersionsStatus"
],
 "Effect": "Allow",
 "Resource": "arn:aws:codeartifact:us-east-1:111122223333:package/my_domain/my_repo/
npm//chalk"
}

Updating status for a scoped npm package

To update the package version status of an npm package version with a scope, use the --
namespace parameter. For example, to unlist version 8.0.0 of @nestjs/core, use the following
command.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format npm --namespace nestjs
--package core --versions 8.0.0 --target-status Unlisted

Updating status for a Maven package

Maven packages always have a group ID, which is referred to as a namespace in CodeArtifact.
Use the --namespace parameter to specify the Maven group ID when calling update-
package-versions-status. For example, to archive version 2.13.1 of the Maven package
org.apache.logging.log4j:log4j, use the following command.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format maven
--namespace org.apache.logging.log4j --package log4j
--versions 2.13.1 --target-status Archived

Required IAM permissions to update a package version status 112

CodeArtifact CodeArtifact User Guide

Specifying a package version revision

A package version revision is a string that specifies a specific set of assets and metadata for a
package version. You can specify a package version revision to update the status of package
versions that are in a specific state. To specify a package version revision, use the --version-
revisions parameter to pass one or more comma-separated package versions and the package
version revision pairs. The status of a package version will only be updated if the current revision of
the package version matches the value specified.

Note

The —-versions parameter must also be defined when using the --version-
revisions parameter.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format npm --package chalk
 --version-revisions "4.1.0=25/UjBleHs1DZewk+zozoeqH/R80Rc9gL1P8bzVMJ4="
 --versions 4.1.0 --target-status Archived

To update multiple versions with a single command, pass a comma-separated list of version and
version revision pairs to the --version-revisions options. The following example command
defines two different package version and package version revision pairs.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format npm
 --package chalk
 --version-revisions "4.1.0=25/UjBleHs1DZewk+zozoeqH/
R80Rc9gL1P8vbzVMJ4=,4.0.0=E3lhBp0RObRTut4pkjV5c1AQGkgSA7Oxtil6hMMzelc="
 --versions 4.1.0 4.0.0 --target-status Published

Sample output:

{
 "successfulVersions": {
 "4.0.0": {
 "revision": "E3lhBp0RObRTut4pkjV5c1AQGkgSA7Oxtil6hMMzelc=",
 "status": "Published"
 },

Specifying a package version revision 113

CodeArtifact CodeArtifact User Guide

 "4.1.0": {
 "revision": "25/UjBleHs1DZewk+zozoeqH/R80Rc9gL1P8vbzVMJ4=",
 "status": "Published"
 }
 },
 "failedVersions": {}
}

When updating multiple package versions, the versions passed to --version-revisions must
be the same as the versions passed to --versions. If a revision is specified incorrectly, that
version will not have its status updated.

Using the expected status parameter

The update-package-versions-status command provides the --expected-status
parameter that supports specifying the expected current status of a package version. If the current
status does not match the value passed to --expected-status, the status of that package
version will not be updated.

For example, in my_repo, versions 4.0.0 and 4.1.0 of the npm package chalk currently have a
status of Published. A call to update-package-versions-status that specifies an expected
status of Unlisted will fail to update both package versions because of the status mismatch.

aws codeartifact update-package-versions-status --domain my_domain
--domain-owner 111122223333 --repository my_repo --format npm --package chalk
--versions 4.1.0 4.0.0 --target-status Archived --expected-status Unlisted

Sample output:

{
 "successfulVersions": {},
 "failedVersions": {
 "4.0.0": {
 "errorCode": "MISMATCHED_STATUS",
 "errorMessage": "current status: Published, expected status: Unlisted"
 },
 "4.1.0": {
 "errorCode": "MISMATCHED_STATUS",
 "errorMessage": "current status: Published, expected status: Unlisted"
 }
 }

Using the expected status parameter 114

CodeArtifact CodeArtifact User Guide

}

Errors with individual package versions

There are multiple reasons why the status of a package version will not be updated when calling
update-package-versions-status. For example, the package version revision may have
been specified incorrectly, or the expected status does not match the current status. In these
cases, the version will be included in the failedVersions map in the API response. If one
version fails, other versions specified in the same call to update-package-versions-status
might be skipped and not have their status updated. Such versions will also be included in the
failedVersions map with an errorCode of SKIPPED.

In the current implementation of update-package-versions-status, if one or more versions
cannot have their status changed, all other versions will be skipped. That is, either all versions
are updated successfully or no versions are updated. This behavior is not guaranteed in the API
contract; in the future, some versions might succeed while other versions fail in a single call to
update-package-versions-status.

The following example command includes an version status update failure caused by a package
version revision mismatch. That update failure causes another version status update call to be
skipped.

aws codeartifact update-package-versions-status --domain my_domain
 --domain-owner 111122223333 --repository my_repo
 --format npm --package chalk
 --version-revisions "4.1.0=25/UjBleHs1DZewk+zozoeqH/
R80Rc9gL1P8vbzVMJ=,4.0.0=E3lhBp0RObRTut4pkjV5c1AQGkgSA7Oxtil6hMMzelc="
 --versions 4.1.0 4.0.0 --target-status Archived

Sample output:

{
 "successfulVersions": {},
 "failedVersions": {
 "4.0.0": {
 "errorCode": "SKIPPED",
 "errorMessage": "version 4.0.0 is skipped"
 },
 "4.1.0": {
 "errorCode": "MISMATCHED_REVISION",

Errors with individual package versions 115

CodeArtifact CodeArtifact User Guide

 "errorMessage": "current revision: 25/UjBleHs1DZewk+zozoeqH/
R80Rc9gL1P8vbzVMJ4=, expected revision: 25/UjBleHs1DZewk+zozoeqH/R80Rc9gL1P8vbzVMJ="
 }
 }
}

Disposing of package versions

The Disposed package status has similar behavior to Archived, except that the package assets
will be permanently deleted by CodeArtifact so that the domain owner’s account will no longer
be billed for the asset storage. For more information about each package version status, see
Package version status. To change the status of a package version to Disposed, use the dispose-
package-versions command. This capability is separate from update-package-versions-
status because disposing of a package version is not reversible. Because the package assets will
be deleted, the version’s status cannot be changed back to Archived, Unlisted, or Published.
The only action that can be taken on a package version that has been disposed is for it to be
deleted using the delete-package-versions command.

To call dispose-package-versions successfully, the calling IAM principal must have the
codeartifact:DisposePackageVersions permission on the package resource.

The behavior of the dispose-package-versions command is similar to update-package-
versions-status, including the behavior of the --version-revisions and --expected-
status options that are described in the version revision and expected status sections. For
example, the following command attempts to dispose a package version but fails due to a
mismatched expected status.

aws codeartifact dispose-package-versions —domain my_domain --domain-
owner 111122223333
--repository my_repo --format npm --package chalk --versions 4.0.0
--expected-status Unlisted

Sample output:

{
 "successfulVersions": {},
 "failedVersions": {
 "4.0.0": {
 "errorCode": "MISMATCHED_STATUS",
 "errorMessage": "current status: Published, expected status: Unlisted"

Disposing of package versions 116

CodeArtifact CodeArtifact User Guide

 }
 }
}

If the same command is run again with an --expected-status of Published, the disposal will
succeed.

aws codeartifact dispose-package-versions —domain my_domain --domain-
owner 111122223333
--repository my_repo --format npm --package chalk --versions 4.0.0
--expected-status Published

Sample output:

{
 "successfulVersions": {
 "4.0.0": {
 "revision": "E3lhBp0RObRTut4pkjV5c1AQGkgSA7Oxtil6hMMzelc=",
 "status": "Disposed"
 }
 },
 "failedVersions": {}
}

Disposing of package versions 117

CodeArtifact CodeArtifact User Guide

Editing package origin controls

In AWS CodeArtifact, package versions can be added to a repository by directly publishing them,
pulling them down from an upstream repository, or ingesting them from an external, public
repository. Allowing package versions of a package to be added both by direct publishing and
ingesting from public repositories makes you vulnerable to a dependency substitution attack. For
more information, see Dependency substitution attacks. To protect yourself against a dependency
substitution attack, you can configure package origin controls on a package in a repository to limit
how versions of that package can be added to the repository.

Configuring package origin controls should be considered by any team that wants to allow new
versions of different packages to come from both internal sources, such as direct publishing, and
external sources, such as public repositories. By default, package origin controls will be configured
based on how the first version of a package is added to the repository. For information about the
package origin control settings and their default values, see Package origin control settings.

To remove the package record after using the put-package-origin-configuration API
operation, use delete-package (see Delete a package or package version).

Common package access control scenarios

This section includes some common scenarios when a package version is added to a CodeArtifact
repository. Package origin control settings will be set for new packages depending on how the first
package version is added.

In the following scenarios, an internal package is a package that is published directly from a
package manager to your repository, such as a package that you or your team authors and
maintains. An external package is a package that exists in a public repository that can be ingested
into your repository with an external connection.

An external package version is published for an existing internal package

In this scenario, consider an internal package, packageA. Your team publishes the first package
version for packageA to a CodeArtifact repository. Because this is the first package version for
that package, the package origin control settings are automatically set to Publish: Allow and
Upstream: Block. After the package exists in your repository, a package with the same name is
published to a public repository that is connected to your CodeArtifact repository. This could be
an attempted dependency substitution attack against the internal package, or it could just be a

Editing package origin controls 118

CodeArtifact CodeArtifact User Guide

coincidence. Regardless, package origin controls are configured to block the ingestion of the new
external version to protect themselves against a potential attack.

In the following image, repoA is your CodeArtifact repository with an external connection to a
public repository. Your repository contains versions 1.1 and 2.1 of packageA, but version 3.0 is
published to the public repository. Normally, repoA would ingest version 3.0 after the package
was requested by a package manager. Because package ingestion is set to Block, version 3.0 is not
ingested into your CodeArtifact repository and is not available to package managers connected to
it.

An internal package version is published for an existing external package

In this scenario, a package, packageB exists externally in a public repository that you have
connected to your repository. When a package manager connected to your repository requests
packageB, the package version is ingested into your repository from the public repository. Because
this is the first package version of packageB added to your repository, the package origin settings
are configured to Publish: BLOCK and Upstream: ALLOW. Later, you try to publish a version
with the same package name to the repository. Either you are not aware of the public package
and trying to publish an unrelated package under the same name, or you are trying to publish a
patched version, or you are trying to directly publish the exact package version that already exists
externally. CodeArtifact will reject the version you are trying to publish, but allow you to explicitly
override the rejection and publish the version if necessary.

In the following image, repoA is your CodeArtifact repository with an external connection to a
public repository. Your repository contains version 3.0 that it ingested from the public repository.
You want to publish version 1.1 to your repository. Normally, you could publish version 1.2 to
repoA, but because publishing is set to Block, version 1.2 cannot be published.

Common package access control scenarios 119

CodeArtifact CodeArtifact User Guide

Publishing a patched package version of an existing external package

In this scenario, a package, packageB exists externally in a public repository that you have
connected to your repository. When a package manager connected to your repository requests
packageB, the package version is ingested into your repository from the public repository. Because
this is the first package version of packageB added to your repository, the package origin settings
are configured to Publish: BLOCK and Upstream: ALLOW. Your team decides that it needs to
publish patched package versions of this package to the repository. To be able to publish package
versions directly, your team changes the package origin control settings to Publish: ALLOW and
Upstream: BLOCK. Versions of this package can now be published directly to your repository and
ingested from public repositories. After your team publishes the patched package versions, your
team reverts the package origin settings to Publish: BLOCK and Upstream: ALLOW.

Package origin control settings

With package origin controls, you can configure how package versions can be added to a
repository. The following lists include the available package origin control settings and values.

Note

The available settings and values are different when configuring origin controls on package
groups. For more information, see Package group origin controls.

Publish

This setting configures whether package versions can be published directly to the repository using
package managers or similar tools.

• ALLOW: Package versions can be published directly.

Package origin control settings 120

CodeArtifact CodeArtifact User Guide

• BLOCK: Package versions cannot be published directly.

Upstream

This setting configures whether package versions can be ingested from external, public
repositories, or retained from upstream repositories when requested by a package manager.

• ALLOW: Any package version can be retained from other CodeArtifact repositories configured as
upstream repositories or ingested from a public source with an external connection.

• BLOCK: Package versions cannot be retained from other CodeArtifact repositories configured as
upstream repositories or ingested from a public source with an external connection.

Default package origin control settings

The default package origin control settings are configured based on the package's associated
package group's origin control settings. For more information about package groups and package
group origin controls, see Working with package groups in CodeArtifact and Package group origin
controls.

If a package is associated with a package group with restriction settings of ALLOW for every
restriction type, the default package origin controls for a package will be based on how the first
version of that package is added to the repository.

• If the first package version is published direcly by a package manager, the settings will be
Publish: ALLOW and Upstream: BLOCK.

• If the first package version is ingested from a public source, the settings will be Publish: BLOCK
and Upstream: ALLOW.

Note

Packages that existed in CodeArtifact repositories prior to around May 2022 will have a
default package origin controls of Publish: ALLOW and Upstream: ALLOW. Package origin
controls must be set manually for such packages. The current default values have been set
on new packages since that time, and started being enforced when the feature launched
on July 14, 2022. For more information about setting package origin controls, see Editing
package origin controls.

Default package origin control settings 121

CodeArtifact CodeArtifact User Guide

Otherwise, if a package is associated with a package group that has at least one restriction setting
of BLOCK or ALLOW_SPECIFIC_REPOSITORIES, then the default origin control settings for that
package will be set to Publish: ALLOW and Upstream: ALLOW.

How package origin controls interact with package group origin
controls

Because packages have origin control settings, and their associated package groups have origin
control settings, it's important to understand how those two different settings interact with one
another.

The interaction between the two settings is that a setting of BLOCK always wins over a setting of
ALLOW. The following table lists some example configurations and their effective origin control
settings.

Package origin control
setting

Package group origin control
setting

Effective origin control
setting

PUBLISH: ALLOW

UPSTREAM: ALLOW

PUBLISH: ALLOW

UPSTREAM: ALLOW

PUBLISH: ALLOW

UPSTREAM: ALLOW

PUBLISH: BLOCK

UPSTREAM: ALLOW

PUBLISH: ALLOW

UPSTREAM: ALLOW

PUBLISH: BLOCK

UPSTREAM: ALLOW

PUBLISH: ALLOW

UPSTREAM: ALLOW

PUBLISH: ALLOW

UPSTREAM: BLOCK

PUBLISH: ALLOW

UPSTREAM: BLOCK

What this means is that a package with origin settings of Publish: ALLOW and Upstream: ALLOW,
then it is effectively deferring to the associated package group's origin control settings.

Editing package origin controls

Package origin controls are configured automatically based on how the first package version of
a package is added to the repository, for more information see Default package origin control
settings. To add or edit package origin controls for a package in a CodeArtifact repository, perform
the steps in the following procedure.

How package origin controls interact with package group origin controls 122

CodeArtifact CodeArtifact User Guide

To add or edit package origin controls (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Repositories, and choose the repository that contains the
package you want to edit.

3. In the Packages table, search for and select the package you want to edit.

4. From the package summary page, in Origin controls, choose Edit.

5. In Edit origin controls, choose the package origin controls you want to set for this package.
Both package origin control settings, Publish and Upstream, must be set at the same time.

• To allow publishing package versions directly, in Publish, choose Allow. To block publishing
of package versions, choose Block.

• To allow ingestion of packages from external repositories and pulling packages from
upstream repositories, in Upstream sources, choose Allow. To block all ingestion and pulling
of package versions from external and upstream repositories, choose Block.

To add or edit package origin controls (AWS CLI)

1. If you haven't, configure the AWS CLI by following the steps in Setting up with AWS
CodeArtifact.

2. Use the put-package-origin-configuration command to add or edit package origin
controls. Replace the following fields:

• Replace my_domain with the CodeArtifact domain that contains the package you want to
update.

• Replace my_repo with the CodeArtifact repository that contains the package you want to
update.

• Replace npm with the package format of the package you want to update.

• Replace my_package with the name of the package you want to update.

• Replace ALLOW and BLOCK with your desired package origin control settings.

aws codeartifact put-package-origin-configuration --domain my_domain \
--repository my_repo --format npm --package my_package \
--restrictions publish=ALLOW,upstream=BLOCK

Editing package origin controls 123

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Publishing and upstream repositories

CodeArtifact doesn't allow publishing package versions that are present in reachable upstream
repositories or public repositories. For example, suppose that you want to publish a Maven
package com.mycompany.mypackage:1.0 to a repository myrepo, and myrepo has an upstream
repository with an external connection to Maven Central. Consider the following scenarios.

1. The package origin control settings on com.mycompany.mypackage are Publish:
ALLOW and Upstream: ALLOW. If com.mycompany.mypackage:1.0 is present in the
upstream repository or in Maven Central, CodeArtifact rejects any attempt to publish to
it in myrepo with a 409 conflict error. You could still publish a different version, such as
com.mycompany.mypackage:1.1.

2. The package origin control settings on com.mycompany.mypackage are Publish: ALLOW
and Upstream: BLOCK. You can publish any version of com.mycompany.mypackage to your
repository that do not already exist because package versions are not reachable.

3. The package origin control settings on com.mycompany.mypackage are Publish: BLOCK and
Upstream: ALLOW. You cannot publish any package versions directly to your repository.

Publishing and upstream repositories 124

CodeArtifact CodeArtifact User Guide

Working with package groups in CodeArtifact

Package groups can be used to apply configuration to multiple packages that match a defined
pattern using package format, package namespace, and package name. You can use package
groups to more conveniently configure package origin controls for multiple packages. Package
origin controls are used to block or allow ingestion or publishing of new package versions, which
protects users from malicious actions known as dependency substitution attacks.

Every domain in CodeArtifact automatically contains a root package group. This root package
group, /*, contains all packages, and allows package versions to enter repositories in the domain
from all origin types by default. The root package group can be modified, but cannot be deleted.

The Package Group Configuration feature operates in an eventually consistent manner when
creating a new package group or deleting an existing package group. This means that upon
creating or deleting a package group, the origin controls will be applied to the expected associated
packages, but with some delay due to the eventual consistent behavior. The time to reach eventual
consistency depends on the number of package groups in the domain as well as the number of
packages in the domain. There may be a brief period where the origin controls are not immediately
reflected on the associated packages after a package group creation or deletion.

Additionally, updates to package group origin controls are effective almost immediately. Unlike the
creation or deletion of package groups, changes to the origin controls of an existing package group
are reflected on the associated packages without the same delay.

These topics contain information about package groups in AWS CodeArtifact.

Topics

• Create a package group

• View or edit a package group

• Delete a package group

• Package group origin controls

• Package group definition syntax and matching behavior

• Tag a package group in CodeArtifact

125

CodeArtifact CodeArtifact User Guide

Create a package group

You can create a package group using the CodeArtifact console, the AWS Command Line Interface
(AWS CLI), or AWS CloudFormation. For more information about managing CodeArtifact package
groups with CloudFormation, see Creating CodeArtifact resources with AWS CloudFormation.

Create a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain in which you want to
create a package group.

3. Choose Package groups, and choose Create package group.

4. In Package group definition, enter the package group definition for your package group. The
package group definition determines which packages are associated with the group. You can
enter the package group definition manually with text, or you can use the visual mode to make
selections and the package group definition will be created automatically.

5. To use the visual mode to create the package group definition:

a. Choose Visual to switch to the visual mode..

b. In Package format, choose the format of the packages to be associated with this group.

c. In Namespace (Scope), choose the namespace criteria to match on.

• Equals: Match the specified namespace exactly. If chosen, enter the namespace to
match on.

• Blank: Match packages with no namespace.

• Starts with word: Match namespaces that begin with a specified word. If chosen, enter
the prefix word to match on. For more information about words and word boundaries,
see Words, word boundaries, and prefix matching.

• All: Match packages in all namespaces.

d. If Equals, Blank, or Starts with word is selected, in Package name, choose the package
name criteria to match on.

• Exactly equals: Match the specified package name exactly. If chosen, enter the package
name to match on.

• Starts with prefix: Match packages that start with the specified prefix.

Create a package group 126

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

• Starts with word: Match packages that begin with a specified word. If chosen, enter the
prefix word to match on. For more information about words and word boundaries, see
Words, word boundaries, and prefix matching.

• All: Match all packages.

e. Choose Next to review the definition.

6. To enter the package group definition with text:

a. Choose Text to switch to the text mode.

b. In Package group definition, enter the package group definition. For more information
about package group definition syntax, see Package group definition syntax and matching
behavior.

c. Choose Next to review the definition.

7. In Review definition, review the packages that will be included in the new package group
based on the definition provided previously. After reviewing, choose Next.

8. In Package group information, optionally add a description and contact email for the package
group. Choose Next.

9. In Package origin controls, configure the origin controls to be applied to the packages in the
group. For more information about package group origin controls, see Package group origin
controls.

10. Choose Create package group.

Create a package group (AWS CLI)

Use the create-package-group command to create a package group in your domain. For the
--package-group option, enter the package group definition that determines which packages
are associated with the group. For more information about package group definition syntax, see
Package group definition syntax and matching behavior.

If you haven't, configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

aws codeartifact create-package-group \
 --domain my_domain \
 --package-group '/nuget/*' \
 --domain-owner 111122223333 \
 --contact-info contact@email.com \
 --description "a new package group" \

Create a package group (AWS CLI) 127

CodeArtifact CodeArtifact User Guide

 --tags key=key1,value=value1

View or edit a package group

You can view a list of all package groups, view details of a specific package group, or edit a
package group's details or configuration using the CodeArtifact console or the AWS Command Line
Interface (AWS CLI).

View or edit a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain that contains the
package group you want to view or edit.

3. Choose Package groups, and choose the package group you want to view or edit.

4. In Details, view information about the package group including its parent group, description,
ARN, contact email, and package origin controls.

5. In Subgroups, view a list of package groups that have this group as a parent group. The
package groups in this list can inherit settings from this package group. For more information,
see Package group hierarchy and pattern specificity.

6. In Packages, view the packages that belong to this package group based on the package group
definition. In the Strength column, you can see the strength of the package association. For
more information, see Package group hierarchy and pattern specificity.

7. To edit package group information, choose Edit package group.

a. In Information, update the package group's description or contact information. You
cannot edit a package group's definition.

b. In Package group origin controls, update the package group's origin control settings,
which determine how associated packages can enter repositories in the domain. For more
information, see Package group origin controls.

View or edit a package group (AWS CLI)

Use the following commands to view or edit package groups with the AWS CLI. If you haven't,
configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

View or edit a package group 128

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

To view all package groups in a domain, use the list-package-groups command.

aws codeartifact list-package-groups \
 --domain my_domain \
 --domain-owner 111122223333

To view details about a package group, use the describe-package-group command. For more
information about package group definitions, see Package group definition syntax and examples.

aws codeartifact describe-package-group \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group '/nuget/*'

To view the child package groups of a package group, use the list-sub-package-groups
command.

aws codeartifact list-sub-package-groups \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group '/nuget/*' \

To view the package group that is associated to a package, use the get-associated-package-
group command. You must use the normalized package name and namespace for the NuGet,
Python, and Swift package formats. For more information about how the package names and
namespaces are normalized, see the NuGet, Python, and Swift name normalization documentation.

aws codeartifact get-associated-package-group \
 --domain my_domain \
 --domain-owner 111122223333 \
 --format npm \
 --package packageName \
 --namespace scope

To edit a package group, use the update-package-group command. This command is used to
update a package group's contact information or description. For information about package group
origin control settings, and adding or editing them, see Package group origin controls. For more
information about package group definitions, see Package group definition syntax and examples

aws codeartifact update-package-group \

View or edit a package group (AWS CLI) 129

CodeArtifact CodeArtifact User Guide

 --domain my_domain \
 --package-group '/nuget/*' \
 --domain-owner 111122223333 \
 --contact-info contact@email.com \
 --description "updated package group description"

Delete a package group

You can delete a package group using the CodeArtifact console or the AWS Command Line
Interface (AWS CLI).

Note the following behavior when deleting package groups:

• The root package group, /*, cannot be deleted.

• The packages and package versions that are associated with that package group are not deleted.

• When a package group is deleted, the direct child package groups will become children of the
package group's direct parent package group. Therefore, if any of the child groups are inheriting
any settings from the parent, those settings could change.

Delete a package group (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose the domain that contains the
package group you want to view or edit.

3. Choose Package groups.

4. Choose the package group you want to delete and choose Delete.

5. Enter delete in the field and choose Delete.

Delete a package group (AWS CLI)

To delete a package group, use the delete-package-group command.

aws codeartifact delete-package-group \
 --domain my_domain \
 --domain-owner 111122223333 \

Delete a package group 130

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

 --package-group '/nuget/*'

Package group origin controls

Package origin controls are used to configure how package versions can enter a domain. You can
set up origin controls on a package group to configure how versions of every package associated
with the package group can enter specified repositories in the domain.

Package group origin control settings consist of the following:

• Restriction settings: These settings define if packages can enter a repository in CodeArtifact from
publishing, internal upstreams, or external, public repositories.

• Allowed repository lists: Each restriction setting can be set to allow specific repositories. If a
restriction setting is set to allow specific repositories, that restriction will have a corresponding
allowed repository list.

Note

Origin control settings for package groups are slightly different than the origin control
settings for individual packages. For more information about origin control settings for
packages, see Package origin control settings.

Restriction settings

The restriction settings of a package group's origin control settings determine how the packages
associated with that group can enter repositories in the domain.

PUBLISH

The PUBLISH setting configures whether package versions can be published directly to any
repository in the domain using package managers or similar tools.

• ALLOW: Package versions can be published directly to all repositories.

• BLOCK: Package versions cannot be published directly to any repository.

• ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be published directly to
repositories specified in the allowed repository list for publishing.

Package group origin controls 131

CodeArtifact CodeArtifact User Guide

• INHERIT: The PUBLISH setting is inherited from the first parent package group with a setting
that is not INHERIT.

EXTERNAL_UPSTREAM

The EXTERNAL_UPSTREAM setting configures whether package versions can be ingested from
external, public repositories when requested by a package manager. For a list of supported external
repositories, see Supported external connection repositories.

• ALLOW: Any package version can be ingested into all repositories from a public source with an
external connection.

• BLOCK: Package versions cannot be ingested into any repository from a public source with an
external connection.

• ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be ingested from a public source
into repositories specified in the allowed repository list for external upstreams.

• INHERIT: The EXTERNAL_UPSTREAM setting is inherited from the first parent package group
with a setting that is not INHERIT.

INTERNAL_UPSTREAM

The INTERNAL_UPSTREAM setting configures whether package versions can be retained from
internal upstream repositories in the same CodeArtifact domain when requested by a package
manager.

• ALLOW: Any package version can be retained from other CodeArtifact repositories configured as
upstream repositories.

• BLOCK: Package versions cannot be retained from other CodeArtifact repositories configured as
upstream repositories.

• ALLOW_SPECIFIC_REPOSITORIES: Package versions can only be retained from other
CodeArtifact respositories configured as upstream repositories into repositories specified in the
allowed repository list for internal upstreams.

• INHERIT: The INTERNAL_UPSTREAM setting is inherited from the first parent package group
with a setting that is not INHERIT.

Restriction settings 132

CodeArtifact CodeArtifact User Guide

Allowed repository lists

When a restriction setting is configured as ALLOW_SPECIFIC_REPOSITORIES, the package group
contains an accompanying allowed repositories list which contains a list of repositories allowed
for that restriction setting. Therefore, a package group contains anywhere from 0 to 3 allowed
repository lists, one for each setting configured as ALLOW_SPECIFIC_REPOSITORIES.

When you add a repository to a package group's allowed repository list, you must specify which
allowed repository list to add it to.

The possible allowed repository lists are as follows:

• EXTERNAL_UPSTREAM: Allow or block ingestion of package versions from external repositories in
the added repository.

• INTERNAL_UPSTREAM: Allow or block pulling package versions from another CodeArtifact
repository in the added repository.

• PUBLISH: Allow or block direct publishing of package versions from package managers to the
added repository.

Editing package group origin control settings

To add or edit origin controls for a package group, perform the steps in the following procedure.
For information about the package group origin control settings, see Restriction settings and
Allowed repository lists.

To add or edit package group origin controls (CLI)

1. If you haven't, configure the AWS CLI by following the steps in Setting up with AWS
CodeArtifact.

2. Use the update-package-group-origin-configuration command to add or edit
package origin controls.

• For --domain, enter the CodeArtifact domain that contains the package group you want to
update.

• For --domain-owner, enter the account number of the owner of the domain.

• For --package-group, enter the package group you want to update.

• For --restrictions, enter key-value pairs that represent the origin control restrictions.

Allowed repository lists 133

CodeArtifact CodeArtifact User Guide

• For --add-allowed-repositories, enter a JSON object containing the restriction type
and repository name to add to the corresponding allowed repositories list for the restriction.

• For --remove-allowed-repositories, enter a JSON object containing the restriction
type and repository name to remove from the corresponding allowed repositories list for the
restriction.

aws codeartifact update-package-group-origin-configuration \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group '/nuget/*' \
 --restrictions INTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES \
 --add-allowed-repositories
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo \
 --remove-allowed-repositories
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo2

The following example adds multiple restrictions, and multiple repositories in one command.

aws codeartifact update-package-group-origin-configuration \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group '/nuget/*' \
 --
restrictions PUBLISH=BLOCK,EXTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES,INTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES
 \
 --add-allowed-repositories
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo2 \
 --remove-allowed-repositories
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=my_repo2

Package group origin control configuration examples

The following examples show package origin control configurations for common package
management scenarios.

Allowing packages with private names to be published, but not ingested

This scenario is likely a common scenario in package management:

Package group origin control configuration examples 134

CodeArtifact CodeArtifact User Guide

• Allow packages with private names to be published to repositories in your domain from package
managers, and block them from being ingested to repositories in your domain from external,
public repositories.

• Allow all other packages to be ingested to repositories in your domain from external, public
repositories, and block them from being published to repositories in your domain from package
managers.

To achieve this, you should configure a package group with a pattern that includes the private
name(s), and origin settings of PUBLISH: ALLOW, EXTERNAL_UPSTREAM: BLOCK, and
INTERNAL_UPSTREAM: ALLOW. This will ensure packages with private names can be published
directly, but cannot be ingested from external repositories.

The following AWS CLI commands create and configure a package group with origin restriction
settings that match the desired behavior:

To create the package group:

aws codeartifact create-package-group \
 --domain my_domain \
 --package-group /npm/space/anycompany~ \
 --domain-owner 111122223333 \
 --contact-info contact@email.com | URL \
 --description "my package group"

To update the package group's origin configuration:

aws codeartifact update-package-group-origin-configuration \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group '/npm/space/anycompany~' \
 --restrictions PUBLISH=ALLOW,EXTERNAL_UPSTREAM=BLOCK,INTERNAL_UPSTREAM=ALLOW

Allowing ingestion from external repositories through one repository

In this scenario, your domain has multiple repositories. Of those repositories, repoA has an
upstream connection to repoB, which has an external connection to the public repository,
npmjs.com, as shown:

repoA --> repoB --> npmjs.com

Package group origin control configuration examples 135

CodeArtifact CodeArtifact User Guide

You want to allow ingestion of packages from a specific package group, /npm/space/
anycompany~ from npmjs.com into repoA, but only through repoB. You also want to block
ingestion of packages associated with the package group into any other repositories in your
domain, and block direct publishing of packages with package managers. To achieve this, you
create and configure the package group as follows:

Origin restriction settings of PUBLISH: BLOCK, and EXTERNAL_UPSTREAM:
ALLOW_SPECIFIC_REPOSITORIES, and INTERNAL_UPSTREAM:
ALLOW_SPECIFIC_REPOSITORIES.

repoA and repoB added to the appropriate allowed repository list:

• repoA should be added to the INTERNAL_UPSTREAM list, as it will get packages from its internal
upstream, repoB.

• repoB should be added to the EXTERNAL_UPSTREAM list, as it will get packages from the
external repository, npmjs.com.

The following AWS CLI commands create and configure a package group with origin restriction
settings that match the desired behavior:

To create the package group:

aws codeartifact create-package-group \
 --domain my_domain \
 --package-group /npm/space/anycompany~ \
 --domain-owner 111122223333 \
 --contact-info contact@email.com | URL \
 --description "my package group"

To update the package group's origin configuration:

aws codeartifact update-package-group-origin-configuration \
 --domain my_domain \
 --domain-owner 111122223333 \
 --package-group /npm/space/anycompany~ \
 --
restrictions PUBLISH=BLOCK,EXTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES,INTERNAL_UPSTREAM=ALLOW_SPECIFIC_REPOSITORIES
 \

Package group origin control configuration examples 136

CodeArtifact CodeArtifact User Guide

 --add-allowed-repositories
 originRestrictionType=INTERNAL_UPSTREAM,repositoryName=repoA
 originRestrictionType=EXTERNAL_UPSTREAM,repositoryName=repoB

How package group origin control settings interact with package origin
control settings

Because packages have origin control settings, and their associated package groups have origin
control settings, it's important to understand how those two different settings interact with one
another. For information about the interaction between the settings, see How package origin
controls interact with package group origin controls.

Package group definition syntax and matching behavior

This topic contains information about defining package groups, pattern matching behavior,
package association strength, and package group hierarchy.

Contents

• Package group definition syntax and examples

• Package group definition and normalization

• Namespaces in package group definitions

• Package group hierarchy and pattern specificity

• Words, word boundaries, and prefix matching

• Case sensitivity

• Strong and weak match

• Additional variations

Package group definition syntax and examples

The pattern syntax for defining package groups closely follows the formatting of package paths. A
package path is created from a package's coordinate components (format, namespace, and name)
by adding a forward slash to the start and separating each of the components with a forward slash.
For example, the package path for the npm package named anycompany-ui-components in the
namespace space is /npm/space/anycompany-ui-components.

How package group origin control settings interact with package origin control settings 137

CodeArtifact CodeArtifact User Guide

A package group pattern follows the same structure as a package path, except components that
are not specified as part of the group definition are omitted, and the pattern is terminated with a
suffix. The suffix that is included determines the matching behavior of the pattern, as follows:

• A $ suffix will match the full package coordinate.

• A ~ suffix will match a prefix.

• A * suffix will match all values of the previously defined component.

Here are example patterns for each of the allowed combinations:

1. All package formats: /*

2. A specific package format: /npm/*

3. Package format and namespace prefix: /maven/com.anycompany~

4. Package format and namespace: /npm/space/*

5. Package format, namespace, and name prefix: /npm/space/anycompany-ui~

6. Package format, namespace, and name: /maven/org.apache.logging.log4j/log4j-core
$

As shown in the examples above, the ~ suffix is added to the end of a namespace or name to
represent a prefix match and * comes after a forward slash when used to match all values for the
next component in the path (either all formats, all namespaces, or all names).

Package group definition and normalization

CodeArtifact normalizes NuGet, Python, and Swift package names, and normalizes Swift package
namespaces before storing them. CodeArtifact uses these normalized names when matching
packages with package group definitions. Therefore, package groups that contain a namespace or
name in these formats must use the normalized namespace and name. For more information about
how the package names and namespaces are normalized, see the NuGet, Python, and Swift name
normalization documentation.

Namespaces in package group definitions

For packages or package formats without a namespace (Python and NuGet), package groups must
not contain a namespace. The package group definition for these package groups contain a blank

Package group definition syntax and examples 138

CodeArtifact CodeArtifact User Guide

namespace section. For example, the path for the Python package named requests is /python//
requests.

For packages or package formats with a namespace (Maven, generic, and Swift), the namespace
must be included if the package name is included. For the Swift package format, the normalized
package namespace will be used. For more information about how Swift package namespaces are
normalized, see Swift package name and namespace normalization.

Package group hierarchy and pattern specificity

The packages that are “in” or “associated with” a package group are packages with a package
path that matches the group’s pattern but do not match a more specific group’s pattern. For
example, given the package groups /npm/* and /npm/space/*, the package path /npm//react
is associated with the first group (/npm/*) while /npm/space/aui.components and /npm/space/
amplify-ui-core are associated with the second group (/npm/space/*). Even though a package
may match multiple groups, each package is only associated with a single group, the most specific
match, and only that one group’s configuration applies to the package.

When a package path matches multiple patterns, the “more specific” pattern can be thought of
as the longest matching pattern. Alternatively, the more specific pattern is the one that matches
a proper subset of the packages that match the less specific pattern. From our earlier example,
every package that matches /npm/space/* also matches /npm/*, but the reverse is not true,
which makes /npm/space/* the more specific pattern because it is a proper subset of /npm/*.
Because one group is a subset of another group, it creates a hierarchy, in which /npm/space/* is a
subgroup of the parent group, /npm/*.

Though only the most specific package group’s configuration applies to a package, that group may
be configured to inherit from its parent group’s configuration.

Words, word boundaries, and prefix matching

Before discussing prefix matching, let's define some key terms:

• A word a letter or number followed by zero or more letters, numbers, or mark characters (such as
accents, umlauts, etc.).

• A word boundary is at the end of a word, when a non-word character is reached. Non-word
characters are punctuation characters such as ., -, and _.

Package group hierarchy and pattern specificity 139

CodeArtifact CodeArtifact User Guide

Specifically, the regex pattern for a word is [\p{L}\p{N}][\p{L}\p{N}\p{M}]*, which can be
broken down as follows:

• \p{L} represents any letter.

• \p{N} represents any number.

• \p{M} represents any mark character, such as accents, umlauts, etc.

Therefore, [\p{L}\p{N}] represents a number or letter, and [\p{L}\p{N}\p{M}]* represents
zero or more letters, numbers, or mark characters and a word boundary is at the end of each match
of this regex pattern.

Note

Word boundary matching is based on this definition of a “word”. It is not based on words
defined in a dictionary, or CameCase. For example, there is no word boundary in oneword
or OneWord.

Now that word and word boundary are defined, we can use them to describe prefix matching in
CodeArtifact. To indicate a prefix match on a word boundary, a match character (~) is used after a
word character. For example, the pattern /npm/space/foo~ matches the package paths /npm/
space/foo and /npm/space/foo-bar, but not /npm/space/food or /npm/space/foot.

A wildcard (*) is required to be used instead of ~ when following a non-word character, such as in
the pattern /npm/*.

Case sensitivity

Package group definitions are case sensitive, which means that patterns that differ only by case
can exist as separate package groups. For example, a user can create separate package groups with
the patterns /npm//AsyncStorage$, /npm//asyncStorage$, and /npm//asyncstorage$
for the three separate packages that exist on the npm Public Registry: AsyncStorage, asyncStorage,
asyncstorage that differ only by case.

While case matters, CodeArtifact still associates packages to a package group if the package has a
variation of the pattern that differs by case. If a user creates the /npm//AsyncStorage$ package
group without creating the other two groups shown above, then all case variations of the name
AsyncStorage, including asyncStorage and asyncstorage, will be associated with the package group.

Case sensitivity 140

CodeArtifact CodeArtifact User Guide

But, as described in the next section, Strong and weak match, these variations will be handled
differently than AsyncStorage, which exactly matches the pattern.

Strong and weak match

The information in the previous section, Case sensitivity, states that package groups are case
sensitive, and then goes on to explain they are case insensitive. This is because package group
definitions in CodeArtifact have a concept of strong match (or exact match) and a weak match
(or variation match). A strong match is when the package matches the pattern exactly, without
any variation. A weak match is when the package matches a variation of the pattern, such as
different letter case. Weak match behavior prevents packages that are variations of a package
group’s pattern from rolling up to a more general package group. When a package is a variation
(weak match) of the most specific matching group’s pattern, then the package is associated with
the group but the package is blocked instead of applying the group’s origin control configuration,
preventing any new versions of the package from being pulled from upstreams or published. This
behavior reduces the risk of supply chain attacks resulting from dependency confusion of packages
with nearly identical names.

To illustrate weak match behavior, suppose package group /npm/* allows ingestion and blocks
publishing. A more specific package group, /npm//anycompany-spicy-client$, is configured
to block ingestion and allow publish. The package named anycompany-spicy-client is a strong
match of the package group, which allows package versions to be published and blocks ingestion
of package versions. The only casing of the package name that is allowed to be published is
anycompany-spicy-client, since it is a strong match for the package definition pattern. A different
case variation, such as AnyCompany-spicy-client is blocked from publishing because it is a weak
match. More importantly, the package group blocks ingestion of all case variations, not just the
lowercase name used in the pattern, reducing the risk of a dependency confusion attack.

Additional variations

In addition to case differences, weak matching also ignores differences in sequences of dash -,
dot ., underscore _, and confusable characters (such as similar looking characters from separate
alphabets). During normalization used for weak matching, CodeArtifact performs casefolding
(similar to converting to lowercase), replaces sequences of dash, dot, and underscore characters
with a single dot, and normalizes confusable characters.

Weak matching treats dashes, dots, and underscores as equivalent but does not completely ignore
them. This means that foo-bar, foo.bar, foo..bar, and foo_bar are all weak match equivalents, but

Strong and weak match 141

CodeArtifact CodeArtifact User Guide

foobar is not. Although several public repositories implement steps to prevent these types of
varations, the protection provided by public repositories does not make this feature of package
groups unnecessary. For example, public repositories such as the npm Public Registry registry will
only prevent new variations of the package named my-package if my-package is already published
to it. If my-package is an internal package and package group /npm//my-package$ is created that
allows publish and blocks ingestion, you likely don't want to publish my-package to the npm Public
Registry in order to prevent a variant such as my.package from being allowed.

While some package formats such as Maven treat these characters differently (Maven treats . as a
namespace hierarchy separator but not - or _), something like com.act-on could still be confused
with com.act.on.

Note

Note that whenever multiple variations are associated with a package group, an
administrator may create a new package group for a specific variation to configure
different behavior for that variation.

Tag a package group in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your package groups
in CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a package group or add, remove, or update the
value of tags of an existing package group.

Tag package groups (CLI)

You can use the CLI to manage package group tags.

If you haven't, configure the AWS CLI by following the steps in Setting up with AWS CodeArtifact.

Tip

To add tags, you must provide the Amazon Resource Name (ARN) of the package group. To
get the ARN of the package group, run the describe-package-group command:

Tag a package group 142

CodeArtifact CodeArtifact User Guide

aws codeartifact describe-package-group \
 --domain my_domain \
 --package-group /npm/scope/anycompany~ \
 --query packageGroup.arn

Topics

• Add tags to a package group (CLI)

• View tags for a package group (CLI)

• Edit tags for a package group (CLI)

• Remove tags from a package group (CLI)

Add tags to a package group (CLI)

You can add tags to package groups when they are created, or to an existing package group. For
information about adding tags to a package group when you create it, see Create a package group.

To add a tag to an existing package group with the AWS CLI, at the terminal or command line, run
the tag-resource command, specifying the Amazon Resource Name (ARN) of the package group
where you want to add tags and the key and value of the tag you want to add. For information
about package group ARNs, see Package group ARNs.

You can add more than one tag to a package group. For example, to tag a package group, /npm/
scope/anycompany~ with two tags, a tag key named key1 with the tag value of value1, and a
tag key named key2 with the tag value of value2:

aws codeartifact tag-resource \
 --resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \
 --tags key=key1,value=value1 key=key2,value=value2

If successful, this command has no output.

View tags for a package group (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a package group. If no tags have
been added, the returned list is empty.

Tag package groups (CLI) 143

CodeArtifact CodeArtifact User Guide

At the terminal or command line, run the list-tags-for-resource command with the Amazon
Resource Name (ARN) of the package group. For information about package group ARNs, see
Package group ARNs.

For example, to view a list of tag keys and tag values for a package group, /npm/
scope/anycompany~ named with an ARN value of arn:aws:codeartifact:us-
west-2:123456789012:package-group/my_domain/npm/scope/anycompany~

aws codeartifact list-tags-for-resource \
 --resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~

If successful, this command returns information similar to the following:

{
 "tags": {
 "key1": "value1",
 "key2": "value2"
 }
}

Edit tags for a package group (CLI)

Follow these steps to use the AWS CLI to edit a tag for a package group. You can change the value
for an existing key or add another key. You can also remove tags from a package group, as shown
in the next section.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
package group where you want to update a tag and specify the tag key and tag value. For
information about package group ARNs, see Package group ARNs.

aws codeartifact tag-resource \
 --resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \
 --tags key=key1,value=newvalue1

If successful, this command has no output.

Remove tags from a package group (CLI)

Follow these steps to use the AWS CLI to remove a tag from a package group.

Tag package groups (CLI) 144

CodeArtifact CodeArtifact User Guide

Note

If you delete a package group, all tag associations are removed from the deleted package
group. You do not have to remove tags before you delete a package group.

At the terminal or command line, run the untag-resource command, specifying the ARN of the
package group where you want to remove tags and the tag key of the tag you want to remove. For
information about package group ARNs, see Package group ARNs.

For example, to remove multiple tags on a package group, /npm/scope/anycompany~, with the
tag keys key1 and key2:

aws codeartifact untag-resource \
 --resource-arn arn:aws:codeartifact:us-west-2:123456789012:package-
group/my_domain/npm/scope/anycompany~ \
 --tag-keys key1 key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the package group using the list-tags-for-resource command.

Tag package groups (CLI) 145

CodeArtifact CodeArtifact User Guide

Working with domains in CodeArtifact

CodeArtifact domains make it easier to manage multiple repositories across an organization. You
can use a domain to apply permissions across many repositories owned by different AWS accounts.
An asset is stored only once in a domain, even if it's available from multiple repositories.

Although you can have multiple domains, we recommend a single production domain that contains
all published artifacts so that your development teams can find and share packages. You can use a
second preproduction domain to test changes to the production domain configuration.

These topics describe how to use the CodeArtifact console, the AWS CLI, and AWS CloudFormation
to create or configure CodeArtifact domains.

Topics

• Domain overview

• Create a domain

• Delete a domain

• Domain policies

• Tag a domain in CodeArtifact

Domain overview

When you're working with CodeArtifact, domains are useful for the following:

• Deduplicated storage: An asset only needs to be stored once in a domain, even if it's available in
1 or 1,000 repositories. That means you only pay for storage once.

• Fast copying: When you pull packages from an upstream CodeArtifact repository into a
downstream or use the CopyPackageVersions API, only metadata records must be updated. No
assets are copied. This makes it fast to set up a new repository for staging or testing. For more
information, see Working with upstream repositories in CodeArtifact.

• Easy sharing across repositories and teams: All of the assets and metadata in a domain are
encrypted with a single AWS KMS key (KMS key). You don't need to manage a key for each
repository or grant multiple accounts access to a single key.

• Apply policy across multiple repositories: The domain administrator can apply policy across
the domain. This includes restricting which accounts have access to repositories in the domain,

Domain overview 146

CodeArtifact CodeArtifact User Guide

and who can configure connections to public repositories to use as sources of packages. For more
information, see Domain policies.

• Unique repository names: The domain provides a namespace for repositories. Repository names
only need to be unique within the domain. You should use meaningful names that are easy to
understand.

Domain names must be unique within an account.

You cannot create a repository without a domain. When you use the CreateRepository API to create
a repository, you must specify a domain name. You cannot move a repository from one domain to
another.

A repository can be owned by the same AWS account that owns the domain, or a different
account. If the owning accounts are different, the repository-owning account must be granted the
CreateRepository permission on the domain resource. You can do this by adding a resource
policy to the domain using the PutDomainPermissionsPolicy command.

Although an organization can have multiple domains, the recommendation is to have a single
production domain that contains all published artifacts so that development teams can find and
share packages across their organization. A second pre-production domain can be useful for testing
changes to the production domain configuration.

Cross-account domains

Domain names only need to be unique within an account, which means there could be multiple
domains within a region that have the same name. Because of this, if you want to access a domain
that is owned by an account you are not authenticated to, you must provide the domain owner ID
along with the domain name in both the CLI and the console. See the following CLI examples.

Access a domain owned by an account you are authenticated to:

When accessing a domain within the account you're authenticated to, you only need to specify the
domain name. The following example lists packages in the my_repo repository in the my_domain
domain that is owned by your account.

aws codeartifact list-packages --domain my_domain --repository my_repo

Access a domain owned by an account that you are not authenticated to:

Cross-account domains 147

CodeArtifact CodeArtifact User Guide

When accessing a domain that is owned by an account that you're not authenticated to, you need
to specify the domain owner as well as the domain name. The following example lists packages in
the other-repo repository in the other-domain domain that is owned by an account that you
are not authenticated to. Notice the addition of the --domain-owner parameter.

aws codeartifact list-packages --domain other-domain --domain-owner 111122223333 --
repository other-repo

Types of AWS KMS keys supported in CodeArtifact

CodeArtifact supports only symmetric KMS keys. You can't use an asymmetric KMS key to encrypt
your CodeArtifact domains. For more information, see Identifying symmetric and asymmetric KMS
keys. To learn how to create a new customer managed key, see Creating symmetric encryption KMS
keys in the AWS Key Management Service Developer Guide.

CodeArtifact supports AWS KMS External Key Stores (XKS). You are responsible for the availability,
durability, and latency of key operations with XKS keys, which can affect availability, durability, and
latency with CodeArtifact. Some examples of effects of using XKS keys with CodeArtifact:

• Because every asset of a requested package and all of its dependencies is subject to decryption
latency, build latency can be increased substantially with an increase in XKS operation latency.

• Because all assets are encrypted in CodeArtifact, a loss of XKS key materials will result in a loss
of all assets associated with the domain using the XKS key.

For more information about XKS keys, see External key stores in the AWS Key Management Service
Developer Guide.

Create a domain

You can create a domain using the CodeArtifact console, the AWS Command Line Interface (AWS
CLI), or AWS CloudFormation. When you create a domain, it does not contain any repositories. For
more information, see Create a repository. For more information about managing CodeArtifact
domains with CloudFormation, see Creating CodeArtifact resources with AWS CloudFormation.

Topics

• Create a domain (console)

• Create a domain (AWS CLI)

Types of AWS KMS keys supported in CodeArtifact 148

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/keystore-external.html

CodeArtifact CodeArtifact User Guide

• Example AWS KMS key policy

Create a domain (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, and then choose Create domain.

3. In Name, enter a name for your domain.

4. Expand Additional configuration.

5. Use an AWS KMS key (KMS key) to encrypt all assets in your domain. You can use an AWS
managed KMS key or a KMS key that you manage. For more information about the supported
types of KMS keys in CodeArtifact, see Types of AWS KMS keys supported in CodeArtifact.

• Choose AWS managed key if you want to use the default AWS managed key.

• Choose Customer managed key if you want to use a KMS key that you manage. To use a
KMS key that you manage, in Customer managed key ARN, search for and choose the KMS
key.

For more information, see AWS managed key and Customer managed key in the AWS Key
Management Service Developer Guide.

6. Choose Create domain.

Create a domain (AWS CLI)

To create a domain with the AWS CLI, use the create-domain command. You must use an AWS
KMS key (KMS key) to encrypt all assets in your domain. You can use an AWS managed KMS key or
a KMS key that you manage. If you use an AWS managed KMS key, do not use the --encryption-
key parameter.

For more information about the supported types of KMS keys in CodeArtifact, see Types of AWS
KMS keys supported in CodeArtifact. For more information about KMS keys, see AWS managed key
and Customer managed key in the AWS Key Management Service Developer Guide.

aws codeartifact create-domain --domain my_domain

Create a domain (console) 149

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

CodeArtifact CodeArtifact User Guide

JSON-formatted data appears in the output with details about your new domain.

{
 "domain": {
 "name": "my_domain",
 "owner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
 "status": "Active",
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
 "repositoryCount": 0,
 "assetSizeBytes": 0,
 "createdTime": "2020-10-12T16:51:18.039000-04:00"
 }
}

If you use a KMS key that you manage, include its Amazon Resource Name (ARN) with the --
encryption-key parameter.

aws codeartifact create-domain --domain my_domain --encryption-key arn:aws:kms:us-
west-2:111122223333:key/your-kms-key

JSON-formatted data appears in the output with details about your new domain.

{
 "domain": {
 "name": "my_domain",
 "owner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
 "status": "Active",
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
 "repositoryCount": 0,
 "assetSizeBytes": 0,
 "createdTime": "2020-10-12T16:51:18.039000-04:00"
 }
}

Create a domain with tags

To create a domain with tags, add the --tags parameter to your create-domain command.

Create a domain (AWS CLI) 150

CodeArtifact CodeArtifact User Guide

aws codeartifact create-domain --domain my_domain --tags key=k1,value=v1
 key=k2,value=v2

Example AWS KMS key policy

When you create a domain in CodeArtifact, you use a KMS key to encrypt all assets in the domain.
You can choose an AWS managed KMS key, or a customer managed key that you manage. For more
information about KMS keys, see the AWS Key Management Service Developer Guide.

To use a customer managed key, your KMS key must have a key policy that grants access to
CodeArtifact. A key policy is a resource policy for an AWS KMS key and are the primary way to
control access to KMS keys. Every KMS key must have exactly one key policy. The statements in the
key policy determine who has permission to use the KMS key and how they can use it.

The following example key policy statement allows AWS CodeArtifact to create grants and
view key details on behalf of authorized users. This policy statement limits the permission to
CodeArtifact acting on the specified account ID’s behalf by using the kms:ViaService and
kms:CallerAccount condition keys. It also grants all AWS KMS permissions to the IAM root user,
so the key can be managed after it is created.

{
 "Version": "2012-10-17",
 "Id": "key-consolepolicy-3",
 "Statement": [
 {
 "Sid": "Allow access through AWS CodeArtifact for all principals in the
 account that are authorized to use CodeArtifact",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "111122223333",
 "kms:ViaService": "codeartifact.us-west-2.amazonaws.com"
 }

Example AWS KMS key policy 151

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

CodeArtifact CodeArtifact User Guide

 }
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 }
]
}

Delete a domain

You can delete a domain using the CodeArtifact console or the AWS Command Line Interface (AWS
CLI).

Topics

• Restrictions on domain deletion

• Delete a domain (console)

• Delete a domain (AWS CLI)

Restrictions on domain deletion

Normally, you can't delete a domain that contains repositories. Before you delete the domain, you
must first delete its repositories. For more information, see Delete a repository.

However, if CodeArtifact no longer has access to the domain's KMS key, you can delete the domain
even if it still contains repositories. This situation will occur if you delete the domain's KMS key or
revoke the KMS grant that CodeArtifact uses to access the key. In this state, you cannot access the
repositories in the domain or the packages stored in them. Listing and deleting of repositories is
also not possible when CodeArtifact cannot access the domain's KMS key. For this reason, domain
deletion doesn't check whether the domain contains repositories when the domain's KMS key is
inaccessible.

Delete a domain 152

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

CodeArtifact CodeArtifact User Guide

Note

When a domain that still contains repositories is deleted, CodeArtifact will asynchronously
delete the repositories within 15 minutes. After the domain is deleted, the repositories will
still be visible in the CodeArtifact console and in the output of the list-repositories
command until the automatic repository cleanup occurs.

Delete a domain (console)

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. In the navigation pane, choose Domains, then choose the domain that you want to delete.

3. Choose Delete.

Delete a domain (AWS CLI)

Use the delete-domain command to delete a domain.

aws codeartifact delete-domain --domain my_domain --domain-owner 111122223333

JSON-formatted data appears in the output with details about the deleted domain.

{
 "domain": {
 "name": "my_domain",
 "owner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/my_domain",
 "status": "Active",
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/your-kms-key",
 "repositoryCount": 0,
 "assetSizeBytes": 0,
 "createdTime": "2020-10-12T16:51:18.039000-04:00"
 }
}

Delete a domain (console) 153

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Domain policies

CodeArtifact supports using resource-based permissions to control access. Resource-based
permissions let you specify who has access to a resource and which actions they can perform on it.
By default, only the AWS account that owns the domain can create and access repositories in the
domain. You can apply a policy document to a domain to allow other IAM principals to access it.

For more information, see Policies and Permissions and Identity-Based Policies and Resource-Based
Policies.

Topics

• Enable cross-account access to a domain

• Domain policy example

• Domain policy example with AWS Organizations

• Set a domain policy

• Read a domain policy

• Delete a domain policy

Enable cross-account access to a domain

A resource policy is a text file in JSON format. The file must specify a principal (actor), one or
more actions, and an effect (Allow or Deny). To create a repository in a domain owned by another
account, the principal must be granted the CreateRepository permission on the domain
resource.

For example, the following resource policy grants the account 123456789012 permission to create
a repository in the domain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:CreateRepository"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"

Domain policies 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

CodeArtifact CodeArtifact User Guide

 },
 "Resource": "*"
 }
]
}

To allow creating repositories with tags, you must include the codeartifact:TagResource
permission. This will also give the account access to add tags to the domain and all repositories in
it.

The domain policy is evaluated for all operations against the domain and all resources
within the domain. This means the domain policy may be used to apply permissions to
repositories and packages in the domain. When the Resource element is set to *, then the
statement applies to all resources in the domain. For example, if the policy above also included
codeartifact:DescribeRepository in the list of allowed IAM actions, then the policy would
allow calling DescribeRepository on every repository in the domain. A domain policy may be
used to apply permissions to specific resources in the domain by using specific resource ARNs in the
Resource element.

Note

Both domain and repository policies may be used to configure permissions. When both
policies are present, then both policies will be evaluated and an action is allowed if allowed
by either policy. For more information, see Interaction between repository and domain
policies.

To access packages in a domain owned by another account, a principal must be granted the
GetAuthorizationToken permission on the domain resource. This allows the domain owner to
exercise control over which accounts can read the contents of repositories in the domain.

For example, the following resource policy grants the account 123456789012 permission to
retrieve an auth token for any repository in the domain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

Enable cross-account access to a domain 155

CodeArtifact CodeArtifact User Guide

 "codeartifact:GetAuthorizationToken"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 },
 "Resource": "*"
 }
]
}

Note

A principal who wants to fetch packages from a repository endpoint must be granted
the ReadFromRepository permission on the repository resource in addition to the
GetAuthorizationToken permission on the domain. Similarly, a principal who wants to
publish packages to a repository endpoint must be granted the PublishPackageVersion
permission in addition to GetAuthorizationToken.
For more information about the ReadFromRepository and PublishPackageVersion
permissions, see Repository Policies.

Domain policy example

When multiple accounts are using a domain, the accounts should be granted a basic set of
permissions to allow full use of the domain. The following resource policy lists a set of permissions
that allow full use of the domain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BasicDomainPolicy",
 "Action": [
 "codeartifact:GetDomainPermissionsPolicy",
 "codeartifact:ListRepositoriesInDomain",
 "codeartifact:GetAuthorizationToken",
 "codeartifact:DescribeDomain",
 "codeartifact:CreateRepository"
],
 "Effect": "Allow",

Domain policy example 156

CodeArtifact CodeArtifact User Guide

 "Resource": "*",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 }
 }
]
}

Note

You don't need to create a domain policy if a domain and all its repositories are owned by a
single account and only need to be used from that account.

Domain policy example with AWS Organizations

You can use the aws:PrincipalOrgID condition key to grant access to an CodeArtifact domain
from all accounts in your organization, as follows.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "DomainPolicyForOrganization",
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "codeartifact:GetDomainPermissionsPolicy",
 "codeartifact:ListRepositoriesInDomain",
 "codeartifact:GetAuthorizationToken",
 "codeartifact:DescribeDomain",
 "codeartifact:CreateRepository"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": { "aws:PrincipalOrgID":["o-xxxxxxxxxxx"]}
 }
 }
}

For more information about using the aws:PrincipalOrgID condition key, see AWS Global
Condition Context Keys in the IAM User Guide.

Domain policy example with AWS Organizations 157

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

CodeArtifact CodeArtifact User Guide

Set a domain policy

You can use the put-domain-permissions-policy command to attach a policy to a domain.

aws codeartifact put-domain-permissions-policy --domain my_domain --domain-
owner 111122223333 \
 --policy-document file://</PATH/TO/policy.json>

When you call put-domains-permissions-policy, the resource policy on the domain is
ignored when evaluting permissions. This ensures that the owner of a domain cannot lock
themselves out of the domain, which would prevent them from being able to update the resource
policy.

Note

You cannot grant permissions to another AWS account to update the resource policy on
a domain using a resource policy, since the resource policy is ignored when calling put-
domain-permissions-policy.

Sample output:

{
 "policy": {
 "resourceArn": "arn:aws:codeartifact:region-id:111122223333:domain/my_domain",
 "document": "{ ...policy document content...}",
 "revision": "MQlyyTQRASRU3HB58gBtSDHXG7Q3hvxxxxxxx="
 }
}

The output of the command contains the Amazon Resource Name (ARN) of the domain resource,
the full contents of the policy document, and a revision identifier. The revision identifier can be
passed to put-domain-permissions-policy using the --policy-revision option. This
ensures that a known revision of the document is being overwritten, and not a newer version set by
another writer.

Set a domain policy 158

CodeArtifact CodeArtifact User Guide

Read a domain policy

To read an existing version of a policy document, use the get-domain-permissions-
policy command. To format the output for readability, use the --output and --query
policy.document together with the Python json.tool module, as follows.

aws codeartifact get-domain-permissions-policy --domain my_domain --domain-
owner 111122223333 \
 --output text --query policy.document | python -m json.tool

Sample output:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BasicDomainPolicy",
 "Action": [
 "codeartifact:GetDomainPermissionsPolicy",
 "codeartifact:ListRepositoriesInDomain",
 "codeartifact:GetAuthorizationToken",
 "codeartifact:CreateRepository"
],
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 }
 }
]
}

Delete a domain policy

Use the delete-domain-permissions-policy command to delete a policy from a domain.

aws codeartifact delete-domain-permissions-policy --domain my_domain --domain-
owner 111122223333

The format of the output is the same as that of the get-domain-permissions-policy and
delete-domain-permissions-policy commands.

Read a domain policy 159

CodeArtifact CodeArtifact User Guide

Tag a domain in CodeArtifact

Tags are key-value pairs associated with AWS resources. You can apply tags to your domains in
CodeArtifact. For information about CodeArtifact resource tagging, use cases, tag key and value
constraints, and supported resource types, see Tagging resources.

You can use the CLI to specify tags when you create a domain. You can use the console or CLI to
add or remove tags, and update the values of tags in a domain. You can add up to 50 tags to each
domain.

Topics

• Tag domains (CLI)

• Tag domains (console)

Tag domains (CLI)

You can use the CLI to manage domain tags.

Topics

• Add tags to a domain (CLI)

• View tags for a domain (CLI)

• Edit tags for a domain (CLI)

• Remove tags from a domain (CLI)

Add tags to a domain (CLI)

You can use the console or the AWS CLI to tag domains.

To add a tag to a domain when you create it, see Create a repository.

In these steps, we assume that you have already installed a recent version of the AWS CLI or
updated to the current version. For more information, see Installing the AWS Command Line
Interface.

At the terminal or command line, run the tag-resource command, specifying the Amazon Resource
Name (ARN) of the domain where you want to add tags and the key and value of the tag you want
to add.

Tag a domain 160

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

CodeArtifact CodeArtifact User Guide

Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

You can add more than one tag to a domain. For example, to tag a domain named my_domain with
two tags, a tag key named key1 with the tag value of value1, and a tag key named key2 with the
tag value of value2:

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tags key=key1,value=value1 key=key2,value=value2

If successful, this command has no output.

View tags for a domain (CLI)

Follow these steps to use the AWS CLI to view the AWS tags for a domain. If no tags have been
added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command with the Amazon
Resource Name (ARN) of the domain.

Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

For example, to view a list of tag keys and tag values for a domain named my_domain with the
arn:aws:codeartifact:us-west-2:123456789012:domain/my_domain ARN value:

aws codeartifact list-tags-for-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain

If successful, this command returns information similar to the following:

Tag domains (CLI) 161

CodeArtifact CodeArtifact User Guide

{
 "tags": {
 "key1": "value1",
 "key2": "value2"
 }
}

Edit tags for a domain (CLI)

Follow these steps to use the AWS CLI to edit a tag for a domain. You can change the value for an
existing key or add another key. You can also remove tags from a domain, as shown in the next
section.

At the terminal or command line, run the tag-resource command, specifying the ARN of the
domain where you want to update a tag and specify the tag key and tag value:

Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

aws codeartifact tag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tags key=key1,value=newvalue1

If successful, this command has no output.

Remove tags from a domain (CLI)

Follow these steps to use the AWS CLI to remove a tag from a domain.

Note

If you delete a domain, all tag associations are removed from the deleted domain. You do
not have to remove tags before you delete a domain.

Tag domains (CLI) 162

CodeArtifact CodeArtifact User Guide

At the terminal or command line, run the untag-resource command, specifying the ARN of the
domain where you want to remove tags and the tag key of the tag you want to remove.

Note

To get the ARN of the domain, run the describe-domain command:

aws codeartifact describe-domain --domain my_domain --query domain.arn

For example, to remove multiple tags on a domain named mydomain with the tag keys key1 and
key2:

aws codeartifact untag-resource --resource-arn arn:aws:codeartifact:us-
west-2:123456789012:domain/my_domain --tag-keys key1 key2

If successful, this command has no output. After removing tags, you can view the remaining tags
on the domain using the list-tags-for-resource command.

Tag domains (console)

You can use the console or the CLI to tag resources.

Topics

• Add tags to a domain (console)

• View tags for a domain (console)

• Edit tags for a domain (console)

• Remove tags from a domain (console)

Add tags to a domain (console)

You can use the console to add tags to an existing domain.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Domains page, choose the domain that you want to add tags to.

Tag domains (console) 163

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

3. Expand the Details section.

4. Under Domain tags, choose Add domain tags if there are no tags on the domain, or choose
View and edit domain tags if there are.

5. Choose Add new tag.

6. In the Key and Value fields, enter the text for each tag you want to add. (The Value field is
optional.) For example, in Key, enter Name. In Value, enter Test.

7. (Optional) Choose Add tag to add more rows and enter more tags.

8. Choose Update domain.

View tags for a domain (console)

You can use the console to list tags for existing domains.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Domains page, choose the domain where you want to view tags.

3. Expand the Details section.

4. Under Domain tags, choose View and edit domain tags.

Tag domains (console) 164

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Note

If there are no tags added to this domain, the console will read Add domain tags.

Edit tags for a domain (console)

You can use the console to edit tags that have been added to domain.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Domains page, choose the domain where you want to update tags.

3. Expand the Details section.

4. Under Domain tags, choose View and edit domain tags.

Note

If there are no tags added to this domain, the console will read Add domain tags.

5. In the Key and Value fields, update the values in each field as needed. For example, for the
Name key, in Value, change Test to Prod.

6. Choose Update domain.

Remove tags from a domain (console)

You can use the console to delete tags from domains.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

2. On the Domains page, choose the domain where you want to remove tags.

3. Expand the Details section.

4. Under Domain tags, choose View and edit domain tags.

Tag domains (console) 165

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

Note

If there are no tags added to this domain, the console will read Add domain tags.

5. Next to the key and value for each tag you want to delete, choose Remove.

6. Choose Update domain.

Tag domains (console) 166

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Cargo

These topics describe how to use Cargo, the Rust package manager, with CodeArtifact.

Note

CodeArtifact only supports Cargo 1.74.0 and higher. Cargo 1.74.0 is the earliest version
that supports authentication on a CodeArtifact repository.

Topics

• Configure and use Cargo with CodeArtifact

• Cargo command support

Configure and use Cargo with CodeArtifact

You can use Cargo to publish and download crates from CodeArtifact repositories or to fetch crates
from crates.io, the Rust community's crate registry. This topic describes how to configure Cargo to
authenticate with and use a CodeArtifact repository.

Configure Cargo with CodeArtifact

To use Cargo to install and publish crates from AWS CodeArtifact, you'll first need to configure
them with your CodeArtifact repository information. Follow the steps in one of the following
procedure to configure Cargo with your CodeArtifact repository endpoint information and
credentials.

Configure Cargo using the console instructions

You can use configuration instructions in the console to connect Cargo to your CodeArtifact
repository. The console instructions provide a Cargo configuration customized for your
CodeArtifact repository. You can use this custom configuration to set up Cargo without needing to
find and fill in your CodeArtifact information.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

Configure and use Cargo 167

https://crates.io/
https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

2. In the navigation pane, choose Repositories, and then choose a repository to connect to
Cargo.

3. Choose View connection instructions.

4. Choose your operating system.

5. Choose Cargo.

6. Follow the generated instructions to connect Cargo to your CodeArtifact repository.

Configure Cargo manually

If you cannot or do not want to use the configuration instructions from the console, you can use
the following instructions to connect Cargo to your CodeArtifact repository manually.

macOS and Linux

In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact repository
as a registry in the Cargo configuration and provide credentials.

• Replace my_registry with your registry name.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

Copy the configuration to publish and download Cargo packages to your repository and
save it in the ~/.cargo/config.toml file for a system-level configuration or .cargo/
config.toml for a project-level configuration:

[registries.my_registry]
index = "sparse+https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/cargo/my_repo/"
credential-provider = "cargo:token-from-stdout aws codeartifact get-authorization-
token --domain my_domain --domain-owner 111122223333 --region us-west-2 --query
 authorizationToken --output text"

[registry]
default = "my_registry"

Configure Cargo with CodeArtifact 168

CodeArtifact CodeArtifact User Guide

[source.crates-io]
replace-with = "my_registry"

Windows: Download packages only

In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact repository
as a registry in the Cargo configuration and provide credentials.

• Replace my_registry with your registry name.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

Copy the configuration to only download Cargo packages from your repository and save it in
the %USERPROFILE%\.cargo\config.toml file for a system-level configuration or .cargo
\config.toml for a project-level configuration:

[registries.my_registry]
index = "sparse+https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/cargo/my_repo/"
credential-provider = "cargo:token-from-stdout aws codeartifact get-authorization-
token --domain my_domain --domain-owner 111122223333 --region us-west-2 --query
 authorizationToken --output text"

[registry]
default = "my_registry"

[source.crates-io]
replace-with = "my_registry"

Windows: Publish and download packages

1. In order to configure Cargo with CodeArtifact, you need to define your CodeArtifact
repository as a registry in the Cargo configuration and provide credentials.

• Replace my_registry with your registry name.

• Replace my_domain with your CodeArtifact domain name.

Configure Cargo with CodeArtifact 169

CodeArtifact CodeArtifact User Guide

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

Copy the configuration to publish and download Cargo packages to your repository
and save it in the %USERPROFILE%\.cargo\config.toml file for a system-level
configuration or .cargo\config.toml for a project-level configuration.

It is recommended that you use the credential provider cargo:token, which uses the
credentials stored in your ~/.cargo/credentials.toml file. You may run into an error
during cargo publish if you use cargo:token-from-stdout because the Cargo client
doesn't trim the authorization token properly during cargo publish.

[registries.my_registry]
index = "sparse+https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/cargo/my_repo/"
credential-provider = "cargo:token"

[registry]
default = "my_registry"

[source.crates-io]
replace-with = "my_registry"

2. To publish Cargo packages to your repository with Windows, you must use the CodeArtifact
get-authorization-token command and Cargo login command to fetch an
authorization token and your credentials.

• Replace my_registry with your registry name as defined in
[registries.my_registry].

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

Configure Cargo with CodeArtifact 170

CodeArtifact CodeArtifact User Guide

aws codeartifact get-authorization-token --domain my_domain --domain-
owner 111122223333 --region us-west-2 --query authorizationToken --output text |
 cargo login --registry my_registry

Note

The authorization token generated is valid for 12 hours. You will need to create a
new one if 12 hours have passed since a token was created.

The [registries.my_registry] section in the preceding example defines a registry with
my_registry and provides index and credential-provider information.

• index specifies the URL of the index for your registry, which is the CodeArtifact repository
endpoint that ends with a /. The sparse+ prefix is required for registries that are not Git
repositories.

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

• credential-provider specifies the credential provider for the given registry. If credential-
provider isn't set, the providers in registry.global-credential-providers will be used.
By setting credential-provider to cargo:token-from-stdout, the Cargo client will fetch
new authorization token automatically when publishing or downloading from your CodeArtifact
repository, therefore you don't need to manually refresh the authorization token every 12 hours.

The [registry] section defines the default registry used.

• default specifies the name of the registry defined in [registries.my_registry], to use by
default when publishing or downloading from your CodeArtifact repository.

The [source.crates-io] section defines the default registry used when one isn't specified.

Configure Cargo with CodeArtifact 171

CodeArtifact CodeArtifact User Guide

• replace-with = "my_registry" replaces the public registry, crates.io with your
CodeArtifact repository defined in [registries.my_registry]. This configuration is
recommended if you need to request packages from the external connection such as crates.io.

To get all of the benefits of CodeArtifact, such as the package origin control that prevents
dependency confusion attacks, it is recommended that you use source replacement. With the
source replacement, CodeArtifact proxies all requests to the external connection and copies the
package from the external connection to your repository. Without the source replacement, the
Cargo client will directly retrieve the package based on the configuration in your Cargo.toml
file in your project. If a dependency is not marked with registry=my_registry, the Cargo
client will retrieve it directly from crates.io without communicating with your CodeArtifact
repository.

Note

If you start using source replacement and then update your configuration file to not use
source replacement, you may encounter errors. The opposite scenario may also lead to
errors. Therefore, it is recommended that you avoid changing the configuration for your
project.

Installing Cargo crates

Use the following procedures to install Cargo crates from a CodeArtifact repository or from
crates.io.

Install Cargo crates from CodeArtifact

You can use the Cargo (cargo) CLI to quickly install a specific version of a Cargo crate from your
CodeArtifact repository.

To install Cargo crates from a CodeArtifact repository with cargo

1. If you haven't, follow the steps in Configure and use Cargo with CodeArtifact to configure the
cargo CLI to use your CodeArtifact repository with proper credentials.

2. Use the following command to install Cargo crates from CodeArtifact:

cargo add my_cargo_package@1.0.0

Installing Cargo crates 172

https://crates.io/

CodeArtifact CodeArtifact User Guide

For more information, see cargo add in The Cargo Book.

Publishing Cargo crates to CodeArtifact

Use the following procedure to publish Cargo crates to a CodeArtifact repository using the cargo
CLI.

1. If you haven't, follow the steps in Configure and use Cargo with CodeArtifact to configure the
cargo CLI to use your CodeArtifact repository with proper credentials.

2. Use the following command to publish Cargo crates to a CodeArtifact repository:

cargo publish

For more information, see cargo publish in The Cargo Book.

Cargo command support

The following sections summarize the Cargo commands that are supported by CodeArtifact
repositories, in addition to specific commands that are not supported.

Contents

• Supported commands that require accessing the registry

• Unsupported commands

Supported commands that require accessing the registry

This section lists Cargo commands where the Cargo client requires access to the registry it's been
configured with. These commands have been verified to function correctly when invoked against a
CodeArtifact repository.

Command Description

build Builds local packages and their dependencies.

Publishing Cargo crates 173

https://doc.rust-lang.org/cargo/commands/cargo-add.html
https://doc.rust-lang.org/cargo/commands/cargo-publish.html
https://doc.rust-lang.org/cargo/commands/cargo-build.html

CodeArtifact CodeArtifact User Guide

Command Description

check Checks local packages and their dependencies
for errors.

fetch Fetches the dependencies of a package.

publish Publishes a package to the registry.

Unsupported commands

These Cargo commands are not supported by CodeArtifact repositories.

Command Description

owner Manages the owners of the
crate on the registry.

search Searches for packages in the
registry.

Unsupported commands 174

https://doc.rust-lang.org/cargo/commands/cargo-check.html
https://doc.rust-lang.org/cargo/commands/cargo-fetch.html
https://doc.rust-lang.org/cargo/commands/cargo-publish.html
https://doc.rust-lang.org/cargo/commands/cargo-owner.html
https://doc.rust-lang.org/cargo/commands/cargo-search.html

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Maven

The Maven repository format is used by many different languages, including Java, Kotlin, Scala, and
Clojure. It's supported by many different build tools, including Maven, Gradle, Scala SBT, Apache
Ivy, and Leiningen.

We have tested and confirmed compatibility with CodeArtifact for the following versions:

• Latest Maven version: 3.6.3.

• Latest Gradle version: 6.4.1. 5.5.1 has also been tested.

• Latest Clojure version: 1.11.1 has also been tested.

Topics

• Use CodeArtifact with Gradle

• Use CodeArtifact with mvn

• Use CodeArtifact with deps.edn

• Publishing with curl

• Use Maven checksums

• Use Maven snapshots

• Requesting Maven packages from upstreams and external connections

• Maven troubleshooting

Use CodeArtifact with Gradle

After you have the CodeArtifact auth token in an environment variable as described in Pass an auth
token using an environment variable, follow these instructions to consume Maven packages from,
and publish new packages to, a CodeArtifact repository.

Topics

• Fetch dependencies

• Fetch plugins

• Publish artifacts

• Run a Gradle build in IntelliJ IDEA

Use CodeArtifact with Gradle 175

CodeArtifact CodeArtifact User Guide

Fetch dependencies

To fetch dependencies from CodeArtifact in a Gradle build, use the following procedure.

To fetch dependencies from CodeArtifact in a Gradle build

1. If you haven't, create and store a CodeArtifact auth token in an environment variable by
following the procedure in Pass an auth token using an environment variable.

2. Add a maven section to the repositories section in the project build.gradle file.

maven {
 url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username "aws"
 password System.env.CODEARTIFACT_AUTH_TOKEN
 }
}

The url in the preceding example is your CodeArtifact repository's endpoint. Gradle uses
the endpoint to connect to your repository. In the sample, my_domain is the name of your
domain, 111122223333 is the ID of the owner of the domain, and my_repo is the name of
your repository. You can retrieve a repository's endpoint by using the get-repository-
endpoint AWS CLI command.

For example, with a repository named my_repo inside a domain named my_domain, the
command is as follows:

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format maven

The get-repository-endpoint command will return the repository endpoint:

url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'

The credentials object in the preceding example includes the CodeArtifact auth token you
created in Step 1 that Gradle uses to authenticate to CodeArtifact.

Fetch dependencies 176

CodeArtifact CodeArtifact User Guide

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

3. (Optional) - To use the CodeArtifact repository as the only source for your project
dependencies, remove any other sections in repositories from build.gradle. If you have
more than one repository, Gradle searches each repository for dependencies in the order they
are listed.

4. After you configure the repository, you can add project dependencies to the dependencies
section with standard Gradle syntax.

dependencies {
 implementation 'com.google.guava:guava:27.1-jre'
 implementation 'commons-cli:commons-cli:1.4'
 testImplementation 'org.testng:testng:6.14.3'
}

Fetch plugins

By default Gradle will resolve plugins from the public Gradle Plugin Portal. To pull plugins from a
CodeArtifact repository, use the following procedure.

To pull plugins from a CodeArtifact repository

1. If you haven't, create and store a CodeArtifact auth token in an environment variable by
following the procedure in Pass an auth token using an environment variable.

2. Add a pluginManagement block to your settings.gradle file. The pluginManagement
block must appear before any other statements in settings.gradle, see the following
snippet:

pluginManagement {
 repositories {
 maven {
 name 'my_repo'
 url
 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {

Fetch plugins 177

https://plugins.gradle.org/

CodeArtifact CodeArtifact User Guide

 username 'aws'
 password System.env.CODEARTIFACT_AUTH_TOKEN
 }
 }
 }
}

This will ensure that Gradle resolves plugins from the specified repository. The repository must
have an upstream repository with an external connection to the Gradle Plugin Portal (e.g. gradle-
plugins-store) so that commonly-required Gradle plugins are available to the build. For more
information, see the Gradle documentation.

Publish artifacts

This section describes how to publish a Java library built with Gradle to a CodeArtifact repository.

First, add the maven-publish plugin to the plugins section of the project's build.gradle file.

plugins {
 id 'java-library'
 id 'maven-publish'
}

Next, add a publishing section to the project build.gradle file.

publishing {
 publications {
 mavenJava(MavenPublication) {
 groupId = 'group-id'
 artifactId = 'artifact-id'
 version = 'version'
 from components.java
 }
 }
 repositories {
 maven {
 url 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username "aws"
 password System.env.CODEARTIFACT_AUTH_TOKEN

Publish artifacts 178

https://docs.gradle.org/current/userguide/plugins.html#sec:custom_plugin_repositories

CodeArtifact CodeArtifact User Guide

 }
 }
 }
}

The maven-publish plugin generates a POM file based on the groupId, artifactId, and
version specified in the publishing section.

After these changes to build.gradle are complete, run the following command to build the
project and upload it to the repository.

./gradlew publish

Use list-package-versions to check that the package was successfully published.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
 --repository my_repo --format maven\
 --namespace com.company.framework --package my-package-name

Sample output:

{
 "format": "maven",
 "namespace": "com.company.framework",
 "package": "example",
 "versions": [
 {
 "version": "1.0",
 "revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "status": "Published"
 }
]
}

For more information, see these topics on the Gradle website:

• Building Java Libraries

• Publishing a project as a module

Publish artifacts 179

https://guides.gradle.org/building-java-libraries/
https://docs.gradle.org/current/userguide/publishing_setup.html

CodeArtifact CodeArtifact User Guide

Run a Gradle build in IntelliJ IDEA

You can run a Gradle build in IntelliJ IDEA that pulls dependencies from CodeArtifact. To
authenticate with CodeArtifact, you must provide Gradle with a CodeArtifact authorization token.
There are three methods to provide an auth token.

• Method 1: Storing the auth token in gradle.properties. Use this method if you are able to
overwrite or add to the contents of the gradle.properties file.

• Method 2: Storing the auth token in a separate file. Use this method if you do not want to
modify your gradle.properties file.

• Method 3: Generating a new auth token for each run by running aws as an inline script in
build.gradle. Use this method if you want the Gradle script to fetch a new token on each run.
The token won't be stored on the file system.

Token stored in gradle.properties

Method 1: Storing the auth token in gradle.properties

Note

The example shows the gradle.properties file located in GRADLE_USER_HOME.

1. Update your build.gradle file with the following snippet:

repositories {
 maven {
 url
 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username "aws"
 password "$codeartifactToken"
 }
 }
}

Run a Gradle build in IntelliJ IDEA 180

CodeArtifact CodeArtifact User Guide

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
 repositories {
 maven {
 name 'my_repo'
 url
 'https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username 'aws'
 password "$codeartifactToken"
 }
 }
 }
}

3. Fetch a CodeArtifact auth token:

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text --profile profile-name`

4. Write the auth token into the gradle.properties file:

echo "codeartifactToken=$CODEARTIFACT_AUTH_TOKEN" > ~/.gradle/gradle.properties

Token stored in separate file

Method 2: Storing the auth token in a separate file

1. Update your build.gradle file with the following snippet:

def props = new Properties()
file("file").withInputStream { props.load(it) }

repositories {

 maven {

Run a Gradle build in IntelliJ IDEA 181

CodeArtifact CodeArtifact User Guide

 url
 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username "aws"
 password props.getProperty("codeartifactToken")
 }
 }
}

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
 def props = new Properties()
 file("file").withInputStream { props.load(it) }
 repositories {
 maven {
 name 'my_repo'
 url
 'https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username 'aws'
 password props.getProperty("codeartifactToken")
 }
 }
 }
}

3. Fetch a CodeArtifact auth token:

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text --profile profile-name`

4. Write the auth token into the file that was specified in your build.gradle file:

echo "codeartifactToken=$CODEARTIFACT_AUTH_TOKEN" > file

Run a Gradle build in IntelliJ IDEA 182

CodeArtifact CodeArtifact User Guide

Token generated for each run in build.gradle

Method 3: Generating a new auth token for each run by running aws as an inline script in
build.gradle

1. Update your build.gradle file with the following snippet:

def codeartifactToken = "aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text --profile profile-name".execute().text
 repositories {
 maven {
 url
 'https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username "aws"
 password codeartifactToken
 }
 }
 }

2. To fetch plugins from CodeArtifact, add a pluginManagement block to your
settings.gradle file. The pluginManagement block must appear before any other
statements in settings.gradle.

pluginManagement {
 def codeartifactToken = "aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text --profile profile-name".execute().text
 repositories {
 maven {
 name 'my_repo'
 url
 'https://my_domain-111122223333.codeartifact.region.amazonaws.com/
maven/my_repo/'
 credentials {
 username 'aws'
 password codeartifactToken
 }
 }
 }

Run a Gradle build in IntelliJ IDEA 183

CodeArtifact CodeArtifact User Guide

}

Use CodeArtifact with mvn

You use the mvn command to execute Maven builds. This section shows how to configure mvn to
use a CodeArtifact repository.

Topics

• Fetch dependencies

• Publish artifacts

• Publish third-party artifacts

• Restrict Maven dependency downloads to a CodeArtifact repository

• Apache Maven Project information

Fetch dependencies

To configure mvn to fetch dependencies from a CodeArtifact repository, you must edit the Maven
configuration file, settings.xml, and optionally, your project's POM.

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your
CodeArtifact repository.

2. In settings.xml (typically found at ~/.m2/settings.xml), add a <servers> section with
a reference to the CODEARTIFACT_AUTH_TOKEN environment variable so that Maven passes
the token in HTTP requests.

<settings>
...
 <servers>
 <server>
 <id>codeartifact</id>
 <username>aws</username>
 <password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
 </server>
 </servers>
...

Use CodeArtifact with mvn 184

CodeArtifact CodeArtifact User Guide

</settings>

3. Add the URL endpoint for your CodeArtifact repository in a <repository> element. You can
do this in settings.xml or your project's POM file.

You can retrieve your repository's endpoint by using the get-repository-endpoint AWS
CLI command.

For example, with a repository named my_repo inside a domain named my_domain, the
command is as follows:

aws codeartifact get-repository-endpoint --domain my_domain --repository my_repo --
format maven

The get-repository-endpoint command will return the repository endpoint:

url 'https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/'

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Add the repository endpoint to settings.xml as follows.

<settings>
...
 <profiles>
 <profile>
 <id>default</id>
 <repositories>
 <repository>
 <id>codeartifact</id>
 <url>https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/</url>
 </repository>
 </repositories>
 </profile>
 </profiles>

Fetch dependencies 185

CodeArtifact CodeArtifact User Guide

 <activeProfiles>
 <activeProfile>default</activeProfile>
 </activeProfiles>
 ...
</settings>

Or, you can add the <repositories> section to a project POM file to use CodeArtifact for
that project only.

<project>
...
 <repositories>
 <repository>
 <id>codeartifact</id>
 <name>codeartifact</name>
 <url>https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/</url>
 </repository>
 </repositories>
...
</project>

Important

You can use any value in the <id> element, but it must be the same in both the <server>
and <repository> elements. This enables the specified credentials to be included in
requests to CodeArtifact.

After you make these configuration changes, you can build the project.

mvn compile

Maven logs the full URL of all the dependencies it downloads to the console.

[INFO] ------------------< com.example.example:myapp >-------------------
[INFO] Building myapp 1.0
[INFO] --------------------------------[jar]---------------------------------
Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.pom

Fetch dependencies 186

CodeArtifact CodeArtifact User Guide

Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.pom (11 kB at 3.9 kB/s)
Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom
Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom
Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/org/apache/commons/commons-parent/42/commons-parent-42.pom (68 kB at 123
 kB/s)
Downloading from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.jar
Downloaded from codeartifact: https://<domain>.d.codeartifact.us-west-2.amazonaws.com/
maven/myrepo/commons-cli/commons-cli/1.4/commons-cli-1.4.jar (54 kB at 134 kB/s)

Publish artifacts

To publish a Maven artifact with mvn to a CodeArtifact repository, you must also edit ~/.m2/
settings.xml and the project POM.

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your
CodeArtifact repository.

2. Add a <servers> section to settings.xml with a reference to the
CODEARTIFACT_AUTH_TOKEN environment variable so that Maven passes the token in HTTP
requests.

<settings>
...
 <servers>
 <server>
 <id>codeartifact</id>
 <username>aws</username>
 <password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
 </server>
 </servers>
...
</settings>

3. Add a <distributionManagement> section to your project's pom.xml.

<project>

Publish artifacts 187

CodeArtifact CodeArtifact User Guide

...
 <distributionManagement>
 <repository>
 <id>codeartifact</id>
 <name>codeartifact</name>
 <url>https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/</url>
 </repository>
 </distributionManagement>
...
</project>

After you make these configuration changes, you can build the project and publish it to the
specified repository.

mvn deploy

Use list-package-versions to check that the package was successfully published.

aws codeartifact list-package-versions --domain my_domain --domain-owner 111122223333
 --repository my_repo --format maven \
 --namespace com.company.framework --package my-package-name

Sample output:

{
 "defaultDisplayVersion": null,
 "format": "maven",
 "namespace": "com.company.framework",
 "package": "my-package-name",
 "versions": [
 {
 "version": "1.0",
 "revision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "status": "Published"
 }
]
}

Publish artifacts 188

CodeArtifact CodeArtifact User Guide

Publish third-party artifacts

You can publish third-party Maven artifacts to a CodeArtifact repository with mvn
deploy:deploy-file. This can be helpful to users that want to publish artifacts and only have
JAR files and don't have access to package source code or POM files.

The mvn deploy:deploy-file command will generate a POM file based on the information
passed in the command line.

Publish third-party Maven artifacts

1. If you haven't, create and store a CodeArtifact auth token in an environment variable as
described in Pass an auth token using an environment variable to set up authentication to your
CodeArtifact repository.

2. Create a ~/.m2/settings.xml file with the following contents:

<settings>
 <servers>
 <server>
 <id>codeartifact</id>
 <username>aws</username>
 <password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
 </server>
 </servers>
</settings>

3. Run the mvn deploy:deploy-file command:

mvn deploy:deploy-file -DgroupId=commons-cli \
-DartifactId=commons-cli \
-Dversion=1.4 \
-Dfile=./commons-cli-1.4.jar \
-Dpackaging=jar \
-DrepositoryId=codeartifact \
-Durl=https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/repo-name/

Publish third-party artifacts 189

CodeArtifact CodeArtifact User Guide

Note

The example above publishes commons-cli 1.4. Modify the groupId, artifactID,
version, and file arguments to publish a different JAR.

These instructions are based on examples in the Guide to deploying 3rd party JARs to remote
repository from the Apache Maven documentation.

Restrict Maven dependency downloads to a CodeArtifact repository

If a package cannot be fetched from a configured repository, by default, the mvn command fetches
it from Maven Central. Add the mirrors element to settings.xml to make mvn always use your
CodeArtifact repository.

<settings>
 ...
 <mirrors>
 <mirror>
 <id>central-mirror</id>
 <name>CodeArtifact Maven Central mirror</name>
 <url>https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
 ...
</settings>

If you add a mirrors element, you must also have a pluginRepository element in your
settings.xml or pom.xml. The following example fetches application dependencies and Maven
plugins from a CodeArtifact repository.

<settings>
...
 <profiles>
 <profile>
 <pluginRepositories>
 <pluginRepository>
 <id>codeartifact</id>

Restrict Maven dependency downloads to a CodeArtifact repository 190

https://maven.apache.org/guides/mini/guide-3rd-party-jars-remote.html
https://maven.apache.org/guides/mini/guide-3rd-party-jars-remote.html

CodeArtifact CodeArtifact User Guide

 <name>CodeArtifact Plugins</name>
 <url>https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_repo/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
...
</settings>

The following example fetches application dependencies from a CodeArtifact repository and
fetches Maven plugins from Maven Central.

<profiles>
 <profile>
 <id>default</id>
 ...
 <pluginRepositories>
 <pluginRepository>
 <id>central-plugins</id>
 <name>Central Plugins</name>
 <url>https://repo.maven.apache.org/maven2/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 </profile>
 </profiles>

Apache Maven Project information

For more information about Maven, see these topics on the Apache Maven Project website:

Apache Maven Project information 191

CodeArtifact CodeArtifact User Guide

• Setting up Multiple Repositories

• Settings Reference

• Distribution Management

• Profiles

Use CodeArtifact with deps.edn

You use deps.edn with clj to manage dependencies for Clojure projects. This section shows how
to configure deps.edn to use a CodeArtifact repository.

Topics

• Fetch dependencies

• Publish artifacts

Fetch dependencies

To configure Clojure to fetch dependencies from a CodeArtifact repository, you must edit the
Maven configuration file, settings.xml.

1. In settings.xml, add a <servers> section with a reference to the
CODEARTIFACT_AUTH_TOKEN environment variable so that Clojure passes the token in HTTP
requests.

Note

Clojure expects the settings.xml file to be located at ~/.m2/settings.xml. If
elsewhere, create the file in this location.

<settings>
...
 <servers>
 <server>
 <id>codeartifact</id>
 <username>aws</username>
 <password>${env.CODEARTIFACT_AUTH_TOKEN}</password>
 </server>

Use CodeArtifact with deps.edn 192

https://maven.apache.org/guides/mini/guide-multiple-repositories.html
https://maven.apache.org/settings.html
https://maven.apache.org/pom.html#Distribution_Management
https://maven.apache.org/pom.html#Profiles

CodeArtifact CodeArtifact User Guide

 </servers>
...
</settings>

2. If you do not have one already, generate a POM xml for your project using clj -Spom.

3. In your deps.edn configuration file, add a repository matching the server id from Maven
settings.xml.

:mvn/repos {
 "clojars" nil
 "central" nil
 "codeartifact" {:url "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/"}
}

Note

• tools.deps guarantees that the central and clojars repositories will be
checked first for Maven libraries. Afterward, the other repositories listed in
deps.edn will be checked.

• To prevent downloading from Clojars and Maven Central directly, central and
clojars need to be set to nil.

Make sure you have the CodeArtifact Auth token in an environment variable (see Pass an
auth token using an environment variable). When building the package after these changes,
dependencies in deps.edn will be fetched from CodeArtifact.

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Publish artifacts

1. Update your Maven settings and deps.edn to include CodeArtifact as a maven-recognized
server (see Fetch dependencies). You can use a tool such as deps-deploy to upload artifacts to
CodeArtifact.

Publish artifacts 193

https://github.com/slipset/deps-deploy

CodeArtifact CodeArtifact User Guide

2. In your build.clj, add a deploy task to upload required artifacts to the previously setup
codeartifact repository.

(ns build
(:require [deps-deploy.deps-deploy :as dd]))

(defn deploy [_]
 (dd/deploy {:installer :remote
 :artifact "PATH_TO_JAR_FILE.jar"
 :pom-file "pom.xml" ;; pom containing artifact coordinates
 :repository "codeartifact"}))

3. Publish the artifact by running the command: clj -T:build deploy

For more information on modifying default repositories, see Modifying the default repositories in
the Clojure Deps and CLI Reference Rationale.

Publishing with curl

This section shows how to use the HTTP client curl to publish Maven artifacts to a CodeArtifact
repository. Publishing artifacts with curl can be useful if you do not have or want to install the
Maven client in your environments.

Publish a Maven artifact with curl

1. Fetch a CodeArtifact authorization token by following the steps in Pass an auth token using an
environment variable and return to these steps.

2. Use the following curl command to publish the JAR to a CodeArtifact repository:

In each of the curl commands in this procedure, replace the following placeholders:

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the ID of the owner of your CodeArtifact domain.

• Replace us-west-2 with the region in which your CodeArtifact domain is located.

• Replace my_repo with your CodeArtifact repository name.

curl --request PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/com/mycompany/app/my-app/1.0/my-app-1.0.jar \

Publishing with curl 194

https://clojure.org/reference/deps_and_cli#_modifying_the_default_repositories

CodeArtifact CodeArtifact User Guide

 --user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
 --data-binary @my-app-1.0.jar

Important

You must prefix the value of the --data-binary parameter with a @ character. When
putting the value in quotation marks, the @ must be included inside the quotation
marks.

3. Use the following curl command to publish the POM to a CodeArtifact repository:

curl --request PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_repo/com/mycompany/app/my-app/1.0/my-app-1.0.pom \
 --user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
 --data-binary @my-app-1.0.pom

4. At this point, the Maven artifact will be in your CodeArtifact repository with a status of
Unfinished. To be able to consume the package, it must be in the Published state. You
can move the package from Unfinished to Published by either uploading a maven-
metadata.xml file to your package, or calling the UpdatePackageVersionsStatus API to
change the status.

a. Option 1: Use the following curl command to add a maven-metadata.xml file to your
package:

curl --request PUT
 https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
maven/my_repo/com/mycompany/app/my-app/maven-metadata.xml \
 --user "aws:$CODEARTIFACT_AUTH_TOKEN" --header "Content-Type: application/
octet-stream" \
 --data-binary @maven-metadata.xml

The following is an example of the contents of a maven-metadata.xml file:

<metadata modelVersion="1.1.0">
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <versioning>

Publishing with curl 195

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

 <latest>1.0</latest>
 <release>1.0</release>
 <versions>
 <version>1.0</version>
 </versions>
 <lastUpdated>20200731090423</lastUpdated>
 </versioning>
</metadata>

b. Option 2: Update the package status to Published with the
UpdatePackageVersionsStatus API.

aws codeartifact update-package-versions-status \
 --domain my_domain \
 --domain-owner 111122223333 \
 --repository my_repo \
 --format maven \
 --namespace com.mycompany.app \
 --package my-app \
 --versions 1.0 \
 --target-status Published

If you only have an artifact's JAR file, you can publish a consumable package version to a
CodeArtifact repository using mvn. This can be useful if you do not have access to the artifact's
source code or POM. See Publish third-party artifacts for details.

Use Maven checksums

When a Maven artifact is published to an AWS CodeArtifact repository, the checksum associated
with each asset or file in the package is used to validate the upload. Examples of assets are jar,
pom, and war files. For each asset, the Maven artifact contains multiple checksum files that use the
asset name with an additional extension, such as md5 or sha1. For example, the checksum files for
a file named my-maven-package.jar might be my-maven-package.jar.md5 and my-maven-
package.jar.sha1.

Note

Maven uses the term artifact. In this guide, a Maven package is the same as a Maven
artifact. For more information, see AWS CodeArtifact package.

Use Maven checksums 196

https://docs.aws.amazon.com/codeartifact/latest/ug/welcome.html#welcome-concepts-package

CodeArtifact CodeArtifact User Guide

Checksum storage

CodeArtifact does not store Maven checksums as assets. This means that checksums do not
appear as individual assets in the output of the ListPackageVersionAssets API. Instead, checksums
computed by CodeArtifact are available for each asset in all supported checksum types. For
example, part of the response of calling ListPackageVersionAssets on the Maven package version
commons-lang:commons-lang 2.1 is:

{
 "name": "commons-lang-2.1.jar",
 "size": 207723,
 "hashes": {
 "MD5": "51591549f1662a64543f08a1d4a0cf87",
 "SHA-1": "4763ecc9d78781c915c07eb03e90572c7ff04205",
 "SHA-256": "2ded7343dc8e57decd5e6302337139be020fdd885a2935925e8d575975e480b9",
 "SHA-512":
 "a312a5e33b17835f2e82e74ab52ab81f0dec01a7e72a2ba58bb76b6a197ffcd2bb410e341ef7b3720f3b595ce49fdd9994ea887ba08ff6fe21b2c714f8c405af"
 }
},
{
 "name": "commons-lang-2.1.pom",
 "size": 9928,
 "hashes": {
 "MD5": "8e41bacdd69de9373c20326d231c8a5d",
 "SHA-1": "a34d992202615804c534953aba402de55d8ee47c",
 "SHA-256": "f1a709cd489f23498a0b6b3dfbfc0d21d4f15904791446dec7f8a58a7da5bd6a",
 "SHA-512":
 "1631ce8fe4101b6cde857f5b1db9b29b937f98ba445a60e76cc2b8f2a732ff24d19b91821a052c1b56b73325104e9280382b2520edda4e7696698165c7e09161"
 }
},
 {
 "name": "maven-metadata.xml",
 "size": 121,
 "hashes": {
 "MD5": "11bb3d48d984f2f49cea1e150b6fa371",
 "SHA-1": "7ef872be17357751ce65cb907834b6c5769998db",
 "SHA-256": "d04d140362ea8989a824a518439246e7194e719557e8d701831b7f5a8228411c",
 "SHA-512":
 "001813a0333ce4b2a47cf44900470bc2265ae65123a8c6b5ac5f2859184608596baa4d8ee0696d0a497755dade0f6bf5e54667215a06ceae1effdfb7a8d30f88"
 }
}

Checksum storage 197

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListPackageVersionAssets.html

CodeArtifact CodeArtifact User Guide

Even though checksums are not stored as assets, Maven clients can still publish and download
checksums at the expected locations. For example, if commons-lang:commons-lang 2.1 was in
a repository called maven-repo, the URL path for the SHA-256 checksum of the JAR file would be:

/maven/maven-repo/commons-lang/commons-lang/2.1/commons-lang-2.1.jar.sha256

If you're uploading existing Maven packages (for example, packages previously stored in Amazon
S3) to CodeArtifact using a generic HTTP client such as curl, it's not necessary to upload the
checksums. CodeArtifact will generate them automatically. If you want to verify that the assets
have been uploaded correctly, you can use the ListPackageVersionAssets API operation to compare
the checksums in the response to the original checksum values for each asset.

Checksum mismatches during publishing

Apart from assets and checksums, Maven artifacts also contain a maven-metadata.xml file. The
normal publishing sequence for a Maven package is for all assets and checksums to be uploaded
first, followed by maven-metadata.xml. For example, the publishing sequence for the Maven
package version commons-lang 2.1 described previously, assuming the client was configured to
publish SHA-256 checksum files, would be:

PUT commons-lang-2.1.jar
PUT commons-lang-2.1.jar.sha256
PUT commons-lang-2.1.pom
PUT commons-lang-2.1.pom.sha256
PUT maven-metadata.xml
PUT maven-metadata.xml.sha256

When uploading the checksum file for an asset, such as a JAR file, the checksum upload request
will fail with a 400 (Bad Request) response if there's a mismatch between the uploaded checksum
value and the checksum value calculated by CodeArtifact. If the corresponding asset doesn't exist,
the request will fail with a 404 (Not Found) response. To avoid this error, you must first upload the
asset, and then upload the checksum.

When maven-metadata.xml is uploaded, CodeArtifact normally changes the status of the Maven
package version from Unfinished to Published. If a checksum mismatch is detected for any
asset, CodeArtifact will return a 400 (Bad Request) in response to the maven-metadata.xml
publishing request. This error may cause the client to stop uploading files for that package version.
If this occurs, and the maven-metadata.xml file is not uploaded, any assets of the package

Checksum mismatches during publishing 198

CodeArtifact CodeArtifact User Guide

version already uploaded cannot be downloaded. This is because the package version’s status is not
set to Published and remains Unfinished.

CodeArtifact allows adding further assets to a Maven package version even after maven-
metadata.xml has been uploaded and the package version status has been set to Published. In
this status, a request to upload a mismatched checksum file will also fail with a 400 (Bad Request)
response. However, because the package version status has already been set to Published, you
can download any asset from the package, including those for which the checksum file upload
failed. When downloading a checksum for an asset where the checksum file upload failed, the
checksum value that the client receives will be the checksum value calculated by CodeArtifact
based on the uploaded asset data.

CodeArtifact checksum comparisons are case sensitive, and the checksums
calculated by CodeArtifact are formatted in lowercase. Therefore, if the checksum
909FA780F76DA393E992A3D2D495F468 is uploaded, it will fail with a checksum mismatch
because CodeArtifact does not treat it as equal to 909fa780f76da393e992a3d2d495f468.

Recovering from checksum mismatches

If a checksum upload fails as a result of a checksum mismatch, try one of the following to recover:

• Run the command that publishes the Maven artifact again. This might work if a network issue
corrupted the checksum file. If this resolves the network issue, the checksum matches and the
download is successful.

• Delete the package version and then republish it. For more information, see
DeletePackageVersions in the AWS CodeArtifact API Reference.

Use Maven snapshots

A Maven snapshot is a special version of a Maven package that refers to the latest production
branch code. It is a development version that precedes the final release version. You can identify
a snapshot version of a Maven package by the suffix SNAPSHOT that's appended to the package
version. For example, the snapshot of version 1.1 is 1.1-SNAPSHOT. For more information, see
What is a SNAPSHOT version? on the Apache Maven Project website.

AWS CodeArtifact supports publishing and consuming Maven snapshots. Unique snapshots that
use a time-based version number are the only snapshots that are supported. CodeArtifact doesn't

Recovering from checksum mismatches 199

https://docs.aws.amazon.com/dms/latest/APIReference/API_DeletePackageVersions.html
https://maven.apache.org/guides/getting-started/index.html#What_is_a_SNAPSHOT_version

CodeArtifact CodeArtifact User Guide

support non-unique snapshots that are generated by Maven 2 clients. You can publish a supported
Maven snapshot to any CodeArtifact repository.

Topics

• Snapshot publishing in CodeArtifact

• Consuming snapshot versions

• Deleting snapshot versions

• Snapshot publishing with curl

• Snapshots and external connections

• Snapshots and upstream repositories

Snapshot publishing in CodeArtifact

AWS CodeArtifact supports the request patterns that clients, such as mvn, use when publishing
snapshots. Because of this, you can follow the documentation for your build tool or package
manager without having a detailed understanding of how Maven snapshots are published. If
you’re doing something more complex, this section describes in detail how CodeArtifact handles
snapshots.

When a Maven snapshot is published to a CodeArtifact repository, its previous version is preserved
in a new version called a build. Each time a Maven snapshot is published, a new build version is
created. All previous versions of a snapshot are maintained in its build versions. When a Maven
snapshot is published, its package version status is set to Published and the status of the build
that contains the previous version is set to Unlisted. This behavior applies only to Maven package
versions where the package version has -SNAPSHOT as a suffix.

For example, snapshot versions of a maven package called com.mycompany.myapp:pkg-1 are
uploaded to a CodeArtifact repository called my-maven-repo. The snapshot version is 1.0-
SNAPSHOT. So far, no versions of com.mycompany.myapp:pkg-1 have been published. First, the
assets of the initial build are published at these paths:

PUT maven/my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210728.194552-1.jar
PUT maven/my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210728.194552-1.pom

Snapshot publishing in CodeArtifact 200

CodeArtifact CodeArtifact User Guide

Note that the timestamp 20210728.194552-1 is generated by the client publishing the snapshot
builds.

After the .pom and .jar files are uploaded, the only version of com.mycompany.myapp:pkg-1
that exists in the repository is 1.0-20210728.194552-1. This happens even though the version
specified in the preceding path is 1.0-SNAPSHOT. The package version status at this point is
Unfinished.

aws codeartifact list-package-versions --domain my-domain --repository \
 my-maven-repo --package pkg-1 --namespace com.mycompany.myapp --format maven
{
 "versions": [
 {
 "version": "1.0-20210728.194552-1",
 "revision": "GipMW+599JmwTcTLaXo9YvDsVQ2bcrrk/02rWJhoKUU=",
 "status": "Unfinished"
 }
],
 "defaultDisplayVersion": null,
 "format": "maven",
 "package": "pkg-1",
 "namespace": "com.mycompany.myapp"
}

Next, the client uploads the maven-metadata.xml file for the package version:

PUT my-maven-repo/com/mycompany/myapp/pkg-1/1.0-SNAPSHOT/maven-metadata.xml

When the maven-metadata.xml file is uploaded successfully, CodeArtifact creates the 1.0-
SNAPSHOT package version and sets the 1.0-20210728.194552-1 version to Unlisted.

aws codeartifact list-package-versions --domain my-domain --repository \
 my-maven-repo --package pkg-1 --namespace com.mycompany.myapp --format maven
{
 "versions": [
 {
 "version": "1.0-20210728.194552-1",
 "revision": "GipMW+599JmwTcTLaXo9YvDsVQ2bcrrk/02rWJhoKUU=",
 "status": "Unlisted"
 },
 {
 "version": "1.0-SNAPSHOT",

Snapshot publishing in CodeArtifact 201

CodeArtifact CodeArtifact User Guide

 "revision": "tWu8n3IX5HR82vzVZQAxlwcvvA4U/+S80edWNAkil24=",
 "status": "Published"
 }
],
 "defaultDisplayVersion": "1.0-SNAPSHOT",
 "format": "maven",
 "package": "pkg-1",
 "namespace": "com.mycompany.myapp"
}

At this point, the snapshot version 1.0-SNAPSHOT can be consumed in a build. While there are two
versions of com.mycompany.myapp:pkg-1 in the repository my-maven-repo, they both contain
the same assets.

aws codeartifact list-package-version-assets --domain my-domain --repository \
 my-maven-repo --format maven --namespace com.mycompany.myapp \
 --package pkg-1 --package-version 1.0-SNAPSHOT--query 'assets[*].name'
[
 "pkg-1-1.0-20210728.194552-1.jar",
 "pkg-1-1.0-20210728.194552-1.pom"
]

Running the same list-package-version-assets command as shown previously with the
--package-version parameter changed to 1.0-20210728.194552-1 results in an identical
output.

As additional builds of 1.0-SNAPSHOT are added to the repository, a new Unlisted package
version is created for each new build. The assets of the version 1.0-SNAPSHOT are updated each
time so that the version always refers to the latest build for that version. Updating the 1.0-
SNAPSHOT with the latest assets is initiated by uploading the maven-metadata.xml file for the
new build.

Consuming snapshot versions

If you request a snapshot, the version with the status Published is returned. This is always
the most recent version of the Maven snapshot. You can also request a particular build of a
snapshot using the build version number (for example, 1.0-20210728.194552-1) instead of
the snapshot version (for example, 1.0-SNAPSHOT) in the URL path. To see the build versions of a
Maven snapshot, use the ListPackageVersions API in the CodeArtifact API Guide and set the status
parameter to Unlisted.

Consuming snapshot versions 202

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListPackageVersions.html

CodeArtifact CodeArtifact User Guide

Deleting snapshot versions

To delete all build versions of a Maven snapshot, use the DeletePackageVersions API, specifying the
versions that you want to delete.

Snapshot publishing with curl

If you have existing snapshot versions stored in Amazon Simple Storage Service (Amazon S3)
or another artifact repository product, you may want to republish them to AWS CodeArtifact.
Because of how CodeArtifact supports Maven snapshots (see Snapshot publishing in CodeArtifact),
publishing snapshots with a generic HTTP client such as curl is more complex than publishing
Maven release versions as described in Publishing with curl. Note that this section isn’t relevant if
you’re building and deploying snapshot versions with a Maven client such as mvn or gradle. You
need to follow the documentation for that client.

Publishing a snapshot version involves publishing one or more builds of a snapshot version. In
CodeArtifact, if there are n builds of a snapshot version, there will be n + 1 CodeArtifact versions:
n build versions all with a status of Unlisted, and one snapshot version (the latest published
build) with a status of Published. The snapshot version (that is, the version with a version string
that contains “-SNAPSHOT”) contains an identical set of assets to the latest published build. The
simplest way to create this structure using curl is as follows:

1. Publish all assets of all builds using curl.

2. Publish the maven-metadata.xml file of the last build (that is, the build with the most-recent
date-time stamp) with curl. This will create a version with “-SNAPSHOT” in the version string
and with the correct set of assets.

3. Use the UpdatePackageVersionsStatus API to set the status of all the non-latest build versions
to Unlisted.

Use the following curl commands to publish snapshot assets (such as .jar and .pom files) for the
snapshot version 1.0-SNAPSHOT of a package com.mycompany.app:pkg-1:

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
 \
 -X PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210729.171330-2.jar \
 --data-binary @pkg-1-1.0-20210728.194552-1.jar

Deleting snapshot versions 203

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DeletePackageVersions.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_UpdatePackageVersionsStatus.html

CodeArtifact CodeArtifact User Guide

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
 \
 -X PUT https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/
pkg-1-1.0-20210729.171330-2.pom \
 --data-binary @pkg-1-1.0-20210728.194552-1.pom

When using these examples:

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of your CodeArtifact domain.

• Replace us-west-2 with the AWS Region in which your CodeArtifact domain is located.

• Replace my_maven_repo with your CodeArtifact repository name.

Important

You must prefix the value of the --data-binary parameter with the @ character. When
putting the value in quotation marks, the @ must be included inside the quotation marks.

You may have more than two assets to upload for each build. For example, there might be Javadoc
and source JAR files in addition to the main JAR and pom.xml. It is not necessary to publish
checksum files for the package version assets because CodeArtifact automatically generates
checksums for each uploaded asset. To verify the assets were uploaded correctly, fetch the
generated checksums using the list-package-version-assets command and compare
those to the original checksums. For more information about how CodeArtifact handles Maven
checksums, see Use Maven checksums.

Use the following curl command to publish the maven-metadata.xml file for the latest build
version:

curl --user "aws:$CODEARTIFACT_AUTH_TOKEN" -H "Content-Type: application/octet-stream"
 \
 -X PUT https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
maven/my_maven_repo/com/mycompany/app/pkg-1/1.0-SNAPSHOT/maven-metadata.xml \
 --data-binary @maven-metadata.xml

Snapshot publishing with curl 204

CodeArtifact CodeArtifact User Guide

The maven-metadata.xml file must reference at least one of the assets in the latest build version
in the <snapshotVersions> element. In addition, the <timestamp> value must be present and
must match the timestamp in the asset file names. For example, for the 20210729.171330-2
build published previously, the contents of maven-metadata.xml would be:

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <groupId>com.mycompany.app</groupId>
 <artifactId>pkg-1</artifactId>
 <version>1.0-SNAPSHOT</version>
 <versioning>
 <snapshot>
 <timestamp>20210729.171330</timestamp>
 <buildNumber>2</buildNumber>
 </snapshot>
 <lastUpdated>20210729171330</lastUpdated>
 <snapshotVersions>
 <snapshotVersion>
 <extension>jar</extension>
 <value>1.0-20210729.171330-2</value>
 <updated>20210729171330</updated>
 </snapshotVersion>
 <snapshotVersion>
 <extension>pom</extension>
 <value>1.0-20210729.171330-2</value>
 <updated>20210729171330</updated>
 </snapshotVersion>
 </snapshotVersions>
 </versioning>
</metadata>

After maven-metadata.xml has been published, the last step is to set all the other build versions
(that is, all the build versions apart from the latest build) to have a package version status of
Unlisted. For example, if the 1.0-SNAPSHOT version has two builds, with the first build being
20210728.194552-1, the command to set that build to Unlisted is:

aws codeartifact update-package-versions-status --domain my-domain --domain-owner
 111122223333 \
 --repository my-maven-repo --format maven --namespace com.mycompany.app --package
 pkg-1 \
 --versions 1.0-20210728.194552-1 --target-status Unlisted

Snapshot publishing with curl 205

CodeArtifact CodeArtifact User Guide

Snapshots and external connections

Maven snapshots cannot be fetched from a Maven public repository through an external
connection. AWS CodeArtifact only supports importing Maven release versions.

Snapshots and upstream repositories

In general, Maven snapshots work in the same way as Maven release versions when used with
upstream repositories, but there is a limitation if you plan on publishing snapshots of the same
package version to two repositories which have an upstream relationship. For example, say that
there are two repositories in an AWS CodeArtifact domain, R and U, where U is an upstream of
R. If you publish a new build in R, when a Maven client requests the latest build of that snapshot
version, CodeArtifact returns the latest version from U. This can be unexpected since the latest
version is now in R, not U. There are two ways to avoid this:

1. Don't publish builds of a snapshot version such as 1.0-SNAPSHOT in R, if 1.0-SNAPSHOT exists
in U.

2. Use CodeArtifact package origin controls to disable upstreams on that package in R. The latter
will allow you to publish builds of1.0-SNAPSHOT in R, but it will also prevent R from getting
any other versions of that package from U that aren't already retained.

Requesting Maven packages from upstreams and external
connections

Importing standard asset names

When importing a Maven package version from a public repository, such as Maven Central, AWS
CodeArtifact attempts to import all the assets in that package version. As described in Requesting
a package version with upstream repositories, importing occurs when:

• A client requests a Maven asset from a CodeArtifact repository.

• The package version is not already present in the repository or its upstreams.

• There is a reachable external connection to a public Maven repository.

Even though the client may have only requested one asset, CodeArtifact attempts to import all the
assets it can find for that package version. How CodeArtifact discovers which assets are available

Snapshots and external connections 206

CodeArtifact CodeArtifact User Guide

for a Maven package version depends on the particular public repository. Some public Maven
repositories support requesting a list of assets, but others do not. For repositories that do not
provide a way to list assets, CodeArtifact generates a set of asset names that are likely to exist. For
example, when any asset of the Maven package version junit 4.13.2 is requested, CodeArtifact
will attempt to import the following assets:

• junit-4.13.2.pom

• junit-4.13.2.jar

• junit-4.13.2-javadoc.jar

• junit-4.13.2-sources.jar

Importing non-standard asset names

When a Maven client requests an asset that doesn’t match one of the patterns described above,
CodeArtifact checks to see if that asset is present in the public repository. If the asset is present,
it will be imported and added to the existing package version record, if one exists. For example,
the Maven package version com.android.tools.build:aapt2 7.3.1-8691043 contains the
following assets:

• aapt2-7.3.1-8691043.pom

• aapt2-7.3.1-8691043-windows.jar

• aapt2-7.3.1-8691043-osx.jar

• aapt2-7.3.1-8691043-linux.jar

When a client requests the POM file, if CodeArtifact is unable to list the package version’s assets,
the POM will be the only asset imported. This is because none of the other assets match the
standard asset name patterns. However, when the client requests one of the JAR assets, that asset
will be imported and added to the existing package version stored in CodeArtifact. The package
versions in both the most-downstream repository (the repository the client made the request
against) and the repository with the external connection attached will be updated to contain the
new asset, as described in Package retention from upstream repositories.

Normally, once a package version is retained in a CodeArtifact repository, it is not affected by
changes in upstream repositories. For more information, see Package retention from upstream
repositories. However, the behavior for Maven assets with non-standard names described earlier
is an exception to this rule. While the downstream package version won’t change without an

Importing non-standard asset names 207

CodeArtifact CodeArtifact User Guide

additional asset being requested by a client, in this situation, the retained package version is
modified after initially being retained and so is not immutable. This behavior is necessary because
Maven assets with non-standard names would otherwise not be accessible through CodeArtifact.
The behavior also enables if they are added to a Maven package version on a public repository
after the package version was retained in a CodeArtifact repository.

Checking asset origins

When adding a new asset to a previously retained Maven package version, CodeArtifact confirms
the origin of the retained package version is the same as origin of the new asset. This prevents
creating a “mixed” package version where different assets originate from different public
repositories. Without this check, asset mixing could occur if a Maven package version is published
to more than one public repository and those repositories are part of a CodeArtifact repository’s
upstream graph.

Importing new assets and package version status in upstream
repositories

The package version status of package versions in upstream repositories can prevent CodeArtifact
from retaining those versions in downstream repositories.

For example, let's say a domain has three repositories: repo-A, repo-B, and repo-C, where repo-
B is an upsteam of repo-A and repo-C is upstream of repo-B.

Package version 7.3.1 of Maven package com.android.tools.build:aapt2 is present in
repo-B and has a status of Published. It is not present in repo-A. If a client requests an asset
of this package version from repo-A, the response will be a 200 (OK) and Maven package version
7.3.1 will be retained in repo-A. However, if the status of package version 7.3.1 in repo-B
is Archived or Disposed, the response will be 404 (Not Found) because the assets of package
versions in those two statuses are not downloadable.

Note that setting the package origin control to upstream=BLOCK for
com.android.tools.build:aapt2 in repo-A, repo-B, and repo-C will prevent new assets

Checking asset origins 208

CodeArtifact CodeArtifact User Guide

from being fetched for all versions of that package from repo-A, regardless of the package version
status.

Maven troubleshooting

The following information might help you troubleshoot common issues with Maven and
CodeArtifact.

Disable parallel puts to fix error 429: Too Many Requests

Starting with version 3.9.0, Maven uploads package artifacts in parallel (up to 5 files at a time).
This can cause CodeArtifact to occassionally respond with an error response code 429 (Too Many
Requests). If you encounter this error, you can disable parallel puts to fix it.

To disable parallel puts, set the aether.connector.basic.parallelPut property to false in
your profile in your settings.xml file as shown by the following example:

<settings>
 <profiles>
 <profile>
 <id>default</id>
 <properties>
 <aether.connector.basic.parallelPut>false</
aether.connector.basic.parallelPut>
 </properties>
 </profile>
 </profiles>
<settings>

For more information, see Artifact Resolver Configuration Options in the Maven documentation.

Maven troubleshooting 209

https://maven.apache.org/resolver/configuration.html

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with npm

These topics describe how to use npm, the Node.js package manager, with CodeArtifact.

Note

CodeArtifact supports node v4.9.1 and later and npm v5.0.0 and later.

Topics

• Configure and use npm with CodeArtifact

• Configure and use Yarn with CodeArtifact

• npm command support

• npm tag handling

• Support for npm-compatible package managers

Configure and use npm with CodeArtifact

After you create a repository in CodeArtifact, you can use the npm client to install and publish
packages. The recommended method for configuring npm with your repository endpoint and
authorization token is by using the aws codeartifact login command. You can also configure
npm manually.

Contents

• Configuring npm with the login command

• Configuring npm without using the login command

• Running npm commands

• Verifying npm authentication and authorization

• Changing back to the default npm registry

• Troubleshooting slow installs with npm 8.x or higher

Configuring npm with the login command

Use the aws codeartifact login command to fetch credentials for use with npm.

Configure and use npm 210

CodeArtifact CodeArtifact User Guide

Note

If you are accessing a repository in a domain that you own, you don't need to include --
domain-owner. For more information, see Cross-account domains.

Important

If you are using npm 10.x or newer, you must use AWS CLI version 2.9.5 or newer to
successfully run the aws codeartifact login command.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

This command makes the following changes to your ~/.npmrc file:

• Adds an authorization token after fetching it from CodeArtifact using your AWS credentials.

• Sets the npm registry to the repository specified by the --repository option.

• For npm 6 and lower: Adds "always-auth=true" so the authorization token is sent for every
npm command.

The default authorization period after calling login is 12 hours, and login must be called to
periodically refresh the token. For more information about the authorization token created with
the login command, see Tokens created with the login command.

Configuring npm without using the login command

You can configure npm with your CodeArtifact repository without the aws codeartifact login
command by manually updating the npm configuration.

To configure npm without using the login command

1. In a command line, fetch a CodeArtifact authorization token and store it in an environment
variable. npm will use this token to authenticate with your CodeArtifact repository.

Configuring npm without using the login command 211

CodeArtifact CodeArtifact User Guide

Note

The following command is for macOS or Linux machines. For information on
configuring environment variables on a Windows machine, see Pass an auth token
using an environment variable.

CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

2. Get your CodeArtifact repository's endpoint by running the following command. Your
repository endpoint is used to point npm to your repository to install or publish packages.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm

The following URL is an example repository endpoint.

https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/

Important

The registry URL must end with a forward slash (/). Otherwise, you cannot connect to
the repository.

3. Use the npm config set command to set the registry to your CodeArtifact repository.
Replace the URL with the repository endpoint URL from the previous step.

Configuring npm without using the login command 212

CodeArtifact CodeArtifact User Guide

npm config set
 registry=https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/
npm/my_repo/

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

4. Use the npm config set command to add your authorization token to your npm
configuration.

npm config set //my_domain-111122223333.d.codeartifact.region.amazonaws.com/
npm/my_repo/:_authToken=$CODEARTIFACT_AUTH_TOKEN

For npm 6 or lower: To make npm always pass the auth token to CodeArtifact, even for GET
requests, set the always-auth configuration variable with npm config set.

npm config set //my_domain-111122223333.d.codeartifact.region.amazonaws.com/
npm/my_repo/:always-auth=true

Example npm configuration file (.npmrc)

The following is an example .npmrc file after following the preceding instructions to set the
CodeArtifact registry endpoint, add an authentication token, and configure always-auth.

registry=https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my-
cli-repo/
//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/
my_repo/:_authToken=eyJ2ZX...
//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/:always-
auth=true

Running npm commands

After you configure the npm client, you can run npm commands. Assuming that a package is
present in your repository or one of its upstream repositories, you can install it with npm install.
For example, use the following to install the lodash package.

Running npm commands 213

CodeArtifact CodeArtifact User Guide

npm install lodash

Use the following command to publish a new npm package to a CodeArtifact repository.

npm publish

For information about how to create npm packages, see Creating Node.js Modules on the npm
documentation website. For a list of npm commands supported by CodeArtifact, see npm
Command Support.

Verifying npm authentication and authorization

Invoking the npm ping command is a way to verify the following:

• You have correctly configured your credentials so that you can authenticate to an CodeArtifact
repository.

• The authorization configuration grants you the ReadFromRepository permission.

The output from a successful invocation of npm ping looks like the following.

$ npm -d ping
npm info it worked if it ends with ok
npm info using npm@6.4.1
npm info using node@v9.5.0
npm info attempt registry request try #1 at 4:30:59 PM
npm http request GET https://<domain>.d.codeartifact.us-west-2.amazonaws.com/npm/
shared/-/ping?write=true
npm http 200 https:///npm/shared/-/ping?write=true
Ping success: {}
npm timing npm Completed in 716ms
npm info ok

The -d option causes npm to print additional debug information, including the repository URL.
This information makes it easy to confirm that npm is configured to use the repository you expect.

Verifying npm authentication and authorization 214

https://docs.npmjs.com/getting-started/creating-node-modules

CodeArtifact CodeArtifact User Guide

Changing back to the default npm registry

Configuring npm with CodeArtifact sets the npm registry to the specified CodeArtifact repository.
You can run the following command to set the npm registry back to its default registry when you're
done connecting to CodeArtifact.

npm config set registry https://registry.npmjs.com/

Troubleshooting slow installs with npm 8.x or higher

There is a known issue in npm versions 8.x and greater where if a request is made to a package
repository, and the repository redirects the client to Amazon S3 instead of streaming the assets
directly, the npm client can hang for several minutes per dependency.

Because CodeArtifact repositories are designed to always redirect the request to Amazon S3,
sometimes this issue occurs, which causes long build times due to long npm install times. Instances
of this behavior will present themselves as a progress bar showing for several minutes.

To avoid this issue, use either the --no-progress or progress=false flags with npm cli
commands, as shown in the following example.

npm install lodash --no-progress

Configure and use Yarn with CodeArtifact

After you create a repository, you can use the Yarn client to manage npm packages.

Note

Yarn 1.X reads and uses information from your npm configuration file (.npmrc), while
Yarn 2.X does not. The configuration for Yarn 2.X must be defined in the .yarnrc.yml
file.

Contents

• Configure Yarn 1.X with the aws codeartifact login command

• Configure Yarn 2.X with the yarn config set command

Changing back to the default npm registry 215

CodeArtifact CodeArtifact User Guide

Configure Yarn 1.X with the aws codeartifact login command

For Yarn 1.X, you can configure Yarn with CodeArtifact using the aws codeartifact login
command. The login command will configure your ~/.npmrc file with your CodeArtifact
repository endpoint information and credentials. With Yarn 1.X, yarn commands use the
configuration information from the ~/.npmrc file.

To configure Yarn 1.X with the login command

1. If you haven't done so already, configure your AWS credentials for use with the AWS CLI, as
described in Getting started with CodeArtifact.

2. To run the aws codeartifact login command successfully, npm must be installed. See
Downloading and installing Node.js and npm in the npm documentation for installation
instructions.

3. Use the aws codeartifact login command to fetch CodeArtifact credentials and
configure your ~/.npmrc file.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333 --
repository my_repo

The login command makes the following changes to your ~/.npmrc file:

• Adds an authorization token after fetching it from CodeArtifact using your AWS credentials.

• Sets the npm registry to the repository specified by the --repository option.

• For npm 6 and lower: Adds "always-auth=true" so the authorization token is sent for
every npm command.

The default authorization period after calling login is 12 hours, and login must be called
to refresh the token periodically. For more information about the authorization token created
with the login command, see Tokens created with the login command.

Configure Yarn 1.X with the aws codeartifact login command 216

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm/

CodeArtifact CodeArtifact User Guide

4. For npm 7.X and 8.X, you must add always-auth=true to your ~/.npmrc file to use Yarn.

• Open your ~/.npmrc file in a text editor and add always-auth=true on a new line.

You can use the yarn config list command to check that Yarn is using the correct
configuration. After running the command, check the values in the info npm config section.
The contents should look similar to the following snippet.

info npm config
{
 registry: 'https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/
my_repo/',
 '//my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/
my_repo/:_authToken': 'eyJ2ZXI...',
 'always-auth': true
}

Configure Yarn 2.X with the yarn config set command

The following procedure details how to configure Yarn 2.X by updating your .yarnrc.yml
configuration from the command line with the yarn config set command.

To update the yarnrc.yml configuration from the command line

1. If you haven't done so already, configure your AWS credentials for use with the AWS CLI, as
described in Getting started with CodeArtifact.

2. Use the aws codeartifact get-repository-endpoint command to get your
CodeArtifact repository's endpoint.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format npm

Configure Yarn 2.X with the yarn config set command 217

CodeArtifact CodeArtifact User Guide

3. Update the npmRegistryServer value in your .yarnrc.yml file with your repository endpoint.

yarn config set npmRegistryServer
 "https://my_domain-111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"

4. Fetch a CodeArtifact authorization token and store it in an environment variable.

Note

The following command is for macOS or Linux machines. For information on
configuring environment variables on a Windows machine, see Pass an auth token
using an environment variable.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

5. Use the yarn config set command to add your CodeArtifact authentication token to
your .yarnrc.yml file. Replace the URL in the following command with your repository endpoint
URL from Step 2.

yarn config set
 'npmRegistries["https://my_domain-
111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"].npmAuthToken'
 "${CODEARTIFACT_AUTH_TOKEN}"

6. Use the yarn config set command to set the value of npmAlwaysAuth to true. Replace
the URL in the following command with your repository endpoint URL from Step 2.

yarn config set
 'npmRegistries["https://my_domain-

Configure Yarn 2.X with the yarn config set command 218

CodeArtifact CodeArtifact User Guide

111122223333.d.codeartifact.region.amazonaws.com/npm/my_repo/"].npmAlwaysAuth'
 "true"

After configuring, your .yarnrc.yml configuration file should have contents similar to the following
snippet.

npmRegistries:
 "https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/npm/my_repo/":
 npmAlwaysAuth: true
 npmAuthToken: eyJ2ZXI...

npmRegistryServer: "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/npm/my_repo/"

You can also use the yarn config command to check the values of npmRegistries and
npmRegistryServer.

npm command support

The following sections summarize the npm commands that are supported, by CodeArtifact
repositories, in addition to specific commands that are not supported.

Contents

• Supported commands that interact with a repository

• Supported client-side commands

• Unsupported commands

Supported commands that interact with a repository

This section lists npm commands where the npm client makes one or more requests to the registry
it's been configured with (for example, with npm config set registry). These commands
have been verified to function correctly when invoked against a CodeArtifact repository.

Command Description

bugs Tries to guess the location of a package’s bug
tracker URL, and then tries to open it.

npm command support 219

https://docs.npmjs.com/cli/bugs

CodeArtifact CodeArtifact User Guide

Command Description

ci Installs a project with a clean slate.

deprecate Deprecates a version of a package.

dist-tag Modifies package distribution tags.

docs Tries to guess the location of a package’s
documentation URL, and then tries to open it
using the --browser config parameter.

doctor Runs a set of checks to ensure that your npm
installation has what it needs to manage your
JavaScript packages.

install Installs a package.

install-ci-test Installs a project with a clean slate and runs
tests. Alias: npm cit. This command runs
an npm ci followed immediately by an npm
test.

install-test Installs package and runs tests. Runs an npm
install followed immediately by an npm
test.

outdated Checks the configured registry to see if any
installed packages are currently outdated.

ping Pings the configured or given npm registry
and verifies authentication.

publish Publishes a package version to the registry.

update Guesses the location of a package’s repositor
y URL, and then tries to open it using the --
browser config parameter.

Supported commands that interact with a repository 220

https://docs.npmjs.com/cli/ci
https://docs.npmjs.com/cli/deprecate
https://docs.npmjs.com/cli/dist-tag
https://docs.npmjs.com/cli/docs
https://docs.npmjs.com/cli/doctor
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install-ci-test
https://docs.npmjs.com/cli/install-test
https://docs.npmjs.com/cli/outdated
https://docs.npmjs.com/cli/ping
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/cli/update

CodeArtifact CodeArtifact User Guide

Command Description

view Displays package metadata. Can be used to
print metadata properties.

Supported client-side commands

These commands don't require any direct interaction with a repository, so CodeArtifact does not
need to do anything to support them.

Command Description

build Builds a package.

cache Manipulates the packages cache.

completion Enables tab completion in all npm commands.

config Updates the contents of the user and global
npmrc files.

dedupe Searches the local package tree and
attempts to simplify the structure by moving
dependencies further up the tree, where they
can be more effectively shared by multiple
dependent packages.

edit Edits an installed package. Selects a
dependency in the current working directory
and opens the package folder in the default
editor.

explore Browses an installed package. Spawns a
subshell in the directory of the installed
package specified. If a command is specified
, then it is run in the subshell, which then
immediately terminates.

Supported client-side commands 221

https://docs.npmjs.com/cli/view
https://docs.npmjs.com/cli/v6/commands/npm-build
https://docs.npmjs.com/cli/cache
https://docs.npmjs.com/cli/completion
https://docs.npmjs.com/cli/config
https://docs.npmjs.com/cli/dedupe
https://docs.npmjs.com/cli/edit
https://docs.npmjs.com/cli/explore

CodeArtifact CodeArtifact User Guide

Command Description

help Gets help on npm.

help-search Searches npm help documentation.

init Creates a package.json file.

link Symlinks a package folder.

ls Lists installed packages.

pack Creates a tarball from a package.

prefix Displays prefix. This is the closest parent
directory to contain a package.json file
unless -g is also specified.

prune Removes packages that are not listed on the
parent package's dependencies list.

rebuild Runs the npm build command on the
matched folders.

restart Runs a package's stop, restart, and start scripts
and associated pre- and post- scripts.

root Prints the effective node_modules folder to
standard out.

run-script Runs arbitrary package scripts.

shrinkwrap Locks down dependency versions for publicati
on.

uninstall Uninstalls a package.

Unsupported commands

These npm commands are not supported by CodeArtifact repositories.

Unsupported commands 222

https://docs.npmjs.com/cli/help
https://docs.npmjs.com/cli/help-search
https://docs.npmjs.com/cli/init
https://docs.npmjs.com/cli/link
https://docs.npmjs.com/cli/ls
https://docs.npmjs.com/cli/pack
https://docs.npmjs.com/cli/prefix
https://docs.npmjs.com/cli/prune
https://docs.npmjs.com/cli/rebuild
https://docs.npmjs.com/cli/restart
https://docs.npmjs.com/cli/root
https://docs.npmjs.com/cli/run-script
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/uninstall

CodeArtifact CodeArtifact User Guide

Command Description Notes

access Sets the access level on
published packages.

CodeArtifact uses a permissio
n model that is different from
the public npmjs repository.

adduser Adds a registry user account CodeArtifact uses a user
model that is different from
the public npmjs repository.

audit Runs a security audit. CodeArtifact does not
currently vend security
vulnerability data.

hook Manages npm hooks,
including adding, removing,
listing, and updating.

CodeArtifact does not
currently support any kind
of change notification
mechanism.

login Authenticates a user. This is
an alias for npm adduser.

CodeArtifact uses an
authentication model
that is different from the
public npmjs repository. For
information, see Authentic
ation with npm.

logout Signs out of the registry. CodeArtifact uses an
authentication model that
is different from the public
npmjs repository. There is
no way to sign out from
a CodeArtifact repository,
but authentication tokens
expire after their configurable
expiration time. The default
token duration is 12 hours.

Unsupported commands 223

https://docs.npmjs.com/cli/access
https://docs.npmjs.com/cli/adduser
https://docs.npmjs.com/cli/audit
https://docs.npmjs.com/cli/hook
https://docs.npmjs.com/cli-commands/adduser.html
https://docs.npmjs.com/cli/logout

CodeArtifact CodeArtifact User Guide

Command Description Notes

owner Manages package owners. CodeArtifact uses a permissio
ns model that is different
from the public npmjs
repository.

profile Changes settings on your
registry profile.

CodeArtifact uses a user
model that is different from
the public npmjs repository.

search Searches the registry for
packages matching the search
terms.

CodeArtifact supports limited
search functionality with the
list-packages command.

star Marks your favorite packages. CodeArtifact currently does
not support any kind of
favorites mechanism.

stars Views packages marked as
favorites.

CodeArtifact currently does
not support any kind of
favorites mechanism.

team Manages organization teams
and team memberships.

CodeArtifact uses a user and
group membership model
that is different from the
public npmjs repository. For
information, see Identities
(Users, Groups, and Roles) in
the IAM User Guide.

token Manages your authentication
tokens.

CodeArtifact uses a different
model for getting authentic
ation tokens. For information,
see Authentication with npm.

Unsupported commands 224

https://docs.npmjs.com/cli/owner
https://docs.npmjs.com/cli/profile
https://docs.npmjs.com/cli/search
https://docs.npmjs.com/cli/star
https://docs.npmjs.com/cli/stars
https://docs.npmjs.com/cli/team
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.npmjs.com/cli/token

CodeArtifact CodeArtifact User Guide

Command Description Notes

unpublish Removes a package from the
registry.

CodeArtifact does not
support removing a package
version from a repository
using the npm client. You can
use the delete-package-ver
sion command.

whoami Displays the npm user name. CodeArtifact uses a user
model that is different from
the public npmjs repository.

npm tag handling

npm registries support tags, which are string aliases for package versions. You can use tags to
provide an alias instead of version numbers. For example, you might have a project with multiple
streams of development and use a different tag (for example, stable, beta, dev, canary) for
each stream. For more information, see dist-tag on the npm website.

By default, npm uses the latest tag to identify the current version of a package. npm install
pkg (without @version or @tag specifier) installs the latest tag. Typically, projects use the latest
tag for stable release versions only. Other tags are used for unstable or prerelease versions.

Edit tags with the npm client

The three npm dist-tag commands (add, rm, and ls) function identically in CodeArtifact
repositories as they do in the default npm registry.

npm tags and the CopyPackageVersions API

When you use the CopyPackageVersions API to copy an npm package version, all tags aliasing
that version are copied to the destination repository. When a version that is being copied has a
tag that is also present in the destination, the copy operation sets the tag value in the destination
repository to match the value in the source repository.

For example, say both repository S and repository D contain a single version of the web-helper
package with the latest tag set as shown in this table.

npm tag handling 225

https://docs.npmjs.com/cli/unpublish
https://docs.npmjs.com/cli/whoami
https://docs.npmjs.com/cli/dist-tag
https://registry.npmjs.com/

CodeArtifact CodeArtifact User Guide

Repository Package name Package tags

S web-helper latest (alias for version 1.0.1)

D web-helper latest (alias for version 1.0.0)

CopyPackageVersions is invoked to copy web-helper 1.0.1 from S to D. After the operation is
complete, the latest tag on web-helper in repository D aliases 1.0.1, not 1.0.0.

If you need to change tags after copying, use the npm dist-tag command to modify tags directly
in the destination repository. For more information about the CopyPackageVersions API, see
Copying Packages Between Repositories.

npm tags and upstream repositories

When npm requests the tags for a package and versions of that package are also present in
an upstream repository, CodeArtifact merges the tags before returning them to the client. For
example, a repository named R has an upstream repository named U. The following table shows
the tags for a package named web-helper that's present in both repositories.

Repository Package name Package tags

R web-helper latest (alias for version 1.0.0)

U web-helper alpha (alias for version 1.0.1)

In this case, when the npm client fetches the tags for the web-helper package from repository R,
it receives both the latest and alpha tags. The versions the tags point to won't change.

When the same tag is present on the same package in both the upstream and downstream
repository, CodeArtifact uses the tag that is present in the upstream repository. For example,
suppose that the tags on webhelper have been modified to look like the following.

Repository Package name Package tags

R web-helper latest (alias for version 1.0.0)

npm tags and upstream repositories 226

CodeArtifact CodeArtifact User Guide

Repository Package name Package tags

U web-helper latest (alias for version 1.0.1)

In this case, when the npm client fetches the tags for package web-helper from repository R, the
latest tag will alias the version 1.0.1 because that's what's in the upstream repository. This makes
it easy to consume new package versions in an upstream repository that are not yet present in a
downstream repository by running npm update.

Using the tag in the upstream repository can be problematic when publishing new versions of a
package in a downstream repository. For example, say that the latest tag on the package web-
helper is the same in both R and U.

Repository Package name Package tags

R web-helper latest (alias for version 1.0.1)

U web-helper latest (alias for version 1.0.1)

When version 1.0.2 is published to R, npm updates the latest tag to 1.0.2.

Repository Package name Package tags

R web-helper latest (alias for version 1.0.2)

U web-helper latest (alias for version 1.0.1)

However, the npm client never sees this tag value because the value of latest in U is 1.0.1. Running
npm install against repository R immediately after publishing 1.0.2 installs 1.0.1 instead of the
version that was just published. To install the most recently published version, you must specify the
exact package version, as follows.

npm install web-helper@1.0.2

npm tags and upstream repositories 227

CodeArtifact CodeArtifact User Guide

Support for npm-compatible package managers

These other package managers are compatible with CodeArtifact and work with the npm package
format and npm wire protocol:

• pnpm package manager. The latest version confirmed to work with CodeArtifact is 3.3.4, which
was released on May 18, 2019.

• Yarn package manager. The latest version confirmed to work with CodeArtifact is 1.21.1, which
was released on December 11, 2019.

Note

We recommend using Yarn 2.x with CodeArtifact. Yarn 1.x does not have HTTP retries,
which means it is more susceptible to intermittent service faults which result in 500-level
status codes or errors. There is no way to configure a different retry strategy for Yarn 1.x,
but this has been added in Yarn 2.x. You can use Yarn 1.x, but you may need to add higher-
level retries in build scripts. For example, running your yarn command in a loop so that it
will retry if downloading packages fails.

Support for npm-compatible package managers 228

https://pnpm.js.org
https://yarnpkg.com/

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with NuGet

These topics describe how to consume and publish NuGet packages using CodeArtifact.

Note

AWS CodeArtifact only supports NuGet.exe version 4.8 and higher.

Topics

• Use CodeArtifact with Visual Studio

• Use CodeArtifact with the nuget or dotnet CLI

• NuGet package name, version, and asset name normalization

• NuGet compatibility

Use CodeArtifact with Visual Studio

You can consume packages from CodeArtifact directly in Visual Studio with the CodeArtifact
Credential Provider. The credential provider simplifies the setup and authentication of your
CodeArtifact repositories in Visual Studio and is available in the AWS Toolkit for Visual Studio.

Note

The AWS Toolkit for Visual Studio is not available for Visual Studio for Mac.

To configure and use NuGet with CLI tools, see Use CodeArtifact with the nuget or dotnet CLI.

Topics

• Configure Visual Studio with the CodeArtifact Credential Provider

• Use the Visual Studio Package Manager console

Use CodeArtifact with Visual Studio 229

https://docs.microsoft.com/en-us/nuget/release-notes/nuget-4.8-rtm
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html

CodeArtifact CodeArtifact User Guide

Configure Visual Studio with the CodeArtifact Credential Provider

The CodeArtifact Credential Provider simplifies the setup and continued authentication between
CodeArtifact and Visual Studio. CodeArtifact authentication tokens are valid for a maximum of 12
hours. To avoid having to manually refresh the token while working in Visual Studio, the credential
provider periodically fetches a new token before the current token expires.

Important

To use the credential provider, ensure that any existing AWS CodeArtifact credentials are
cleared from your nuget.config file that may have been added manually or by running
aws codeartifact login to configure NuGet previously.

Use CodeArtifact in Visual Studio with the AWS Toolkit for Visual Studio

1. Install the AWS Toolkit for Visual Studio using the following steps. The toolkit is compatible
with Visual Studio 2017 and 2019 using these steps. AWS CodeArtifact does not support
Visual Studio 2015 and earlier.

1. The Toolkit for Visual Studio for Visual Studio 2017 and Visual Studio 2019 is distributed
in the Visual Studio Marketplace. You can also install and update the toolkit within Visual
Studio by using Tools ≫ Extensions and Updates (Visual Studio 2017) or Extensions ≫
Manage Extensions (Visual Studio 2019).

2. After the toolkit has been installed, open it by choosing AWS Explorer from the View menu.

2. Configure the Toolkit for Visual Studio with your AWS credentials by following the steps in
Providing AWS Credentials in the AWS Toolkit for Visual Studio User Guide.

3. (Optional) Set the AWS profile you want to use with CodeArtifact. If not set, CodeArtifact will
use the default profile. To set the profile, go to Tools > NuGet Package Manager > Select
CodeArtifact AWS Profile.

4. Add your CodeArtifact repository as a package source in Visual Studio.

1. Navigate to your repository in the AWS Explorer window, right click and select Copy NuGet
Source Endpoint.

2. Use the Tools > Options command and scroll to NuGet Package Manager.

3. Select the Package Sources node.

Configure Visual Studio with the CodeArtifact Credential Provider 230

https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html

CodeArtifact CodeArtifact User Guide

4. Select +, edit the name, and paste the repository URL endpoint copied in Step 3a in the
Source box, and select Update.

5. Select the checkbox for your newly added package source to enable it.

Note

We recommend adding an external connection to NuGet.org to your CodeArtifact
repository and disabling the nuget.org package source in Visual Studio. When using
an external connection, all of the packages fetched from NuGet.org will be stored
in your CodeArtifact repository. If NuGet.org becomes unavailable, your application
dependencies will still be available for CI builds and local development. For more
information about external connections, see Connect a CodeArtifact repository to a
public repository.

5. Restart Visual Studio for the changes to take effect.

After configuration, Visual Studio can consume packages from your CodeArtifact repository, any of
its upstream repositories, or from NuGet.org if you have added an external connection. For more
information about browsing and installing NuGet packages in Visual Studio, see Install and manage
packages in Visual Studio using the NuGet Package Manager in the NuGet documentation.

Use the Visual Studio Package Manager console

The Visual Studio Package Manager console will not use the Visual Studio version of the
CodeArtifact Credential Provider. To use it, you will have to configure the command-line credential
provider. See Use CodeArtifact with the nuget or dotnet CLI for more information.

Use CodeArtifact with the nuget or dotnet CLI

You can use CLI tools like nuget and dotnet to publish and consume packages from CodeArtifact.
This document provides information about configuring the CLI tools and using them to publish or
consume packages.

Topics

• Configure the nuget or dotnet CLI

• Consume NuGet packages from CodeArtifact

Use the Visual Studio Package Manager console 231

https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-visual-studio
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-visual-studio

CodeArtifact CodeArtifact User Guide

• Publish NuGet packages to CodeArtifact

• CodeArtifact NuGet Credential Provider reference

• CodeArtifact NuGet Credential Provider versions

Configure the nuget or dotnet CLI

You can configure the nuget or dotnet CLI with the CodeArtifact NuGet Credential Provider, with
the AWS CLI, or manually. Configuring NuGet with the credential provider is highly recommended
for simplified setup and continued authentication.

Method 1: Configure with the CodeArtifact NuGet Credential Provider

The CodeArtifact NuGet Credential Provider simplifies the authentication and configuration of
CodeArtifact with NuGet CLI tools. CodeArtifact authentication tokens are valid for a maximum of
12 hours. To avoid having to manually refresh the token while using the nuget or dotnet CLI, the
credential provider periodically fetches a new token before the current token expires.

Important

To use the credential provider, ensure that any existing AWS CodeArtifact credentials are
cleared from your nuget.config file that may have been added manually or by running
aws codeartifact login to configure NuGet previously.

Install and configure the CodeArtifact NuGet Credential Provider

dotnet

1. Download the latest version of the AWS.CodeArtifact.NuGet.CredentialProvider tool from
NuGet.org with the following dotnet command.

dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider

2. Use the codeartifact-creds install command to copy the credential provider to the
NuGet plugins folder.

dotnet codeartifact-creds install

Configure the nuget or dotnet CLI 232

https://www.nuget.org/packages/AWS.CodeArtifact.NuGet.CredentialProvider
https://www.nuget.org/packages/AWS.CodeArtifact.NuGet.CredentialProvider

CodeArtifact CodeArtifact User Guide

3. (Optional): Set the AWS profile you want to use with the credential provider. If not set, the
credential provider will use the default profile. For more information on AWS CLI profiles, see
Named profiles.

dotnet codeartifact-creds configure set profile profile_name

nuget

Perform the following steps to use the NuGet CLI to install the CodeArtifact NuGet Credential
Provider from an Amazon S3 bucket and configure it. The credential provider will use the
default AWS CLI profile, for more information on profiles, see Named profiles.

1. Download the latest version of the CodeArtifact NuGet Credential Provider (codeartifact-
nuget-credentialprovider.zip) from an Amazon S3 bucket.

To view and download earlier versions, see CodeArtifact NuGet Credential Provider versions.

2. Unzip the file.

3. Copy the AWS.CodeArtifact.NuGetCredentialProvider folder from the netfx folder to
%user_profile%/.nuget/plugins/netfx/ on Windows or ~/.nuget/plugins/netfx
on Linux or MacOS.

4. Copy the AWS.CodeArtifact.NuGetCredentialProvider folder from the netcore folder to
%user_profile%/.nuget/plugins/netcore/ on Windows or ~/.nuget/plugins/
netcore on Linux or MacOS.

After you create a repository and configure the credential provider you can use the nuget or
dotnet CLI tools to install and publish packages. For more information, see Consume NuGet
packages from CodeArtifact and Publish NuGet packages to CodeArtifact.

Method 2: Configure nuget or dotnet with the login command

The codeartifact login command in the AWS CLI adds a repository endpoint and
authorization token to your NuGet configuration file enabling nuget or dotnet to connect to your
CodeArtifact repository. This will modify the user-level NuGet configuration which is located at
%appdata%\NuGet\NuGet.Config for Windows and ~/.config/NuGet/NuGet.Config
or ~/.nuget/NuGet/NuGet.Config for Mac/Linux. For more information about NuGet
configurations, see Common NuGet configurations.

Configure the nuget or dotnet CLI 233

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://a.co/dbGqKq7
https://a.co/dbGqKq7
https://docs.microsoft.com/en-us/nuget/consume-packages/configuring-nuget-behavior

CodeArtifact CodeArtifact User Guide

Configure nuget or dotnet with the login command

1. Configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact.

2. Ensure that the NuGet CLI tool (nuget or dotnet) has been properly installed and configured.
For instructions, see the nuget or dotnet documentation.

3. Use the CodeArtifact login command to fetch credentials for use with NuGet.

Note

If you are accessing a repository in a domain that you own, you don't need to include
--domain-owner. For more information, see Cross-account domains.

dotnet

Important

Linux and MacOS users: Because encryption is not supported on non-Windows
platforms, your fetched credentials will be stored as plain text in your configuration
file.

aws codeartifact login --tool dotnet --domain my_domain --domain-
owner 111122223333 --repository my_repo

nuget

aws codeartifact login --tool nuget --domain my_domain --domain-
owner 111122223333 --repository my_repo

The login command will:

• Fetch an authorization token from CodeArtifact using your AWS credentials.

• Update your user-level NuGet configuration with a new entry for your NuGet package source.
The source that points to your CodeArtifact repository endpoint will be called domain_name/
repo_name.

Configure the nuget or dotnet CLI 234

https://docs.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference
https://docs.microsoft.com/en-us/dotnet/core/install/

CodeArtifact CodeArtifact User Guide

The default authorization period after calling login is 12 hours, and login must be called to
periodically refresh the token. For more information about the authorization token created with
the login command, see Tokens created with the login command.

After you create a repository and configure authentication you can use the nuget, dotnet, or
msbuild CLI clients to install and publish packages. For more information, see Consume NuGet
packages from CodeArtifact and Publish NuGet packages to CodeArtifact.

Method 3: Configure nuget or dotnet without the login command

For manual configuration, you must add a repository endpoint and authorization token to your
NuGet configuration file to enable nuget or dotnet to connect to your CodeArtifact repository.

Manually configure nuget or dotnet to connect to your CodeArtifact repository.

1. Determine your CodeArtifact repository endpoint by using the get-repository-endpoint
AWS CLI command.

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format nuget

Example output:

{
 "repositoryEndpoint": "https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/nuget/my_repo/"
}

2. Get an authorization token to connect to your repository from your package manager by using
the get-authorization-token AWS CLI command.

aws codeartifact get-authorization-token --domain my_domain

Example output:

{
 "authorizationToken": "eyJ2I...viOw",
 "expiration": 1601616533.0
}

Configure the nuget or dotnet CLI 235

CodeArtifact CodeArtifact User Guide

3. Create the full repository endpoint URL by appending /v3/index.json to the URL returned by
get-repository-endpoint in step 3.

4. Configure nuget or dotnet to use the repository endpoint from Step 1 and authorization token
from Step 2.

Note

The source URL must end in /v3/index.json for nuget or dotnet to successfully
connect to a CodeArtifact repository.

dotnet

Linux and MacOS users: Because encryption is not supported on non-Windows platforms,
you must add the --store-password-in-clear-text flag to the following command.
Note that this will store your password as plain text in your configuration file.

dotnet nuget add source https://my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/nuget/my_repo/v3/index.json --name packageSourceName --
password eyJ2I...viOw --username aws

Note

To update an existing source, use the dotnet nuget update source command.

nuget

nuget sources add -name domain_name/repo_name -Source
 https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
nuget/my_repo/v3/index.json -password eyJ2I...viOw -username aws

Example output:

Package source with Name: domain_name/repo_name added successfully.

Configure the nuget or dotnet CLI 236

CodeArtifact CodeArtifact User Guide

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Consume NuGet packages from CodeArtifact

Once you have configured NuGet with CodeArtifact, you can consume NuGet packages that are
stored in your CodeArtifact repository or one of its upstream repositories.

To consume a package version from a CodeArtifact repository or one of its upstream repositories
with nuget or dotnet, run the following command replacing packageName with the name of
the package you want to consume and packageSourceName with the source name for your
CodeArtifact repository in your NuGet configuration file. If you used the login command to
configure your NuGet configuration, the source name is domain_name/repo_name.

Note

When a package is requested, the NuGet client caches which versions of that package
exists. Because of this behavior, an install may fail for a package that was previously
requested before the desired version became available. To avoid this failure and
successfully install a package that exists, you can either clear the NuGet cache ahead of an
install with nuget locals all --clear or dotnet nuget locals all --clear,
or avoid using the cache during install and restore commands by providing the -
NoCache option for nuget or the --no-cache option for dotnet.

dotnet

dotnet add package packageName --source packageSourceName

nuget

nuget install packageName -Source packageSourceName

To install a specific version of a package

Consume NuGet packages 237

https://docs.aws.amazon.com/codeartifact/latest/ug/nuget-cli.html

CodeArtifact CodeArtifact User Guide

dotnet

dotnet add package packageName --version 1.0.0 --source packageSourceName

nuget

nuget install packageName -Version 1.0.0 -Source packageSourceName

See Manage packages using the nuget.exe CLI or Install and manage packages using the dotnet CLI
in the Microsoft Documentation for more information.

Consume NuGet packages from NuGet.org

You can consume NuGet packages from NuGet.org through a CodeArtifact repository by
configuring the repository with an external connection to NuGet.org. Packages consumed from
NuGet.org are ingested and stored in your CodeArtifact repository. For more information about
adding external connections, see Connect a CodeArtifact repository to a public repository.

Publish NuGet packages to CodeArtifact

Once you have configured NuGet with CodeArtifact, you can use nuget or dotnet to publish
package versions to CodeArtifact repositories.

To push a package version to a CodeArtifact repository, run the following command with the full
path to your .nupkg file and the source name for your CodeArtifact repository in your NuGet
configuration file. If you used the login command to configure your NuGet configuration, the
source name is domain_name/repo_name.

Note

You can create a NuGet package if you do not have one to publish. For more information,
see Package creation workflow in the Microsoft documentation.

dotnet

dotnet nuget push path/to/nupkg/SamplePackage.1.0.0.nupkg --source packageSourceName

Publish NuGet packages 238

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-nuget-cli
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://www.nuget.org/
https://docs.aws.amazon.com/codeartifact/latest/ug/nuget-cli.html
https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

CodeArtifact CodeArtifact User Guide

nuget

nuget push path/to/nupkg/SamplePackage.1.0.0.nupkg -Source packageSourceName

CodeArtifact NuGet Credential Provider reference

The CodeArtifact NuGet Credential Provider makes it easy to configure and authenticate NuGet
with your CodeArtifact repositories.

CodeArtifact NuGet Credential Provider commands

This section includes the list of commands for the CodeArtifact NuGet Credential Provider. These
commands must be prefixed with dotnet codeartifact-creds like the following example.

dotnet codeartifact-creds command

• configure set profile profile: Configures the credential provider to use the provided
AWS profile.

• configure unset profile: Removes the configured profile if set.

• install: Copies the credential provider to the plugins folder.

• install --profile profile: Copies the credential provider to the plugins folder and
configures it to use the provided AWS profile.

• uninstall: Uninstalls the credential provider. This does not remove the changes to the
configuration file.

• uninstall --delete-configuration: Uninstalls the credential provider and removes all
changes to the configuration file.

CodeArtifact NuGet Credential Provider logs

To enable logging for the CodeArtifact NuGet Credential Provider, you must set the log file in your
environment. The credential provider logs contain helpful debugging information such as:

• The AWS profile used to make connections

• Any authentication errors

• If the endpoint provided is not a CodeArtifact URL

CodeArtifact NuGet Credential Provider reference 239

CodeArtifact CodeArtifact User Guide

Set the CodeArtifact NuGet Credential Provider log file

export AWS_CODEARTIFACT_NUGET_LOGFILE=/path/to/file

After the log file is set, any codeartifact-creds command will append its log output to the
contents of that file.

CodeArtifact NuGet Credential Provider versions

The following table contains version history information and download links for the CodeArtifact
NuGet Credential Provider.

Version Changes Date published Download link (S3)

1.0.2 (latest) Upgraded dependenc
ies

06/26/2024 Download v1.0.2

1.0.1 Added support for
net5, net6, and SSO
profiles

03/05/2022 Download v1.0.1

1.0.0 Initial CodeArtifact
NuGet Credential
Provider release

11/20/2020 Download v1.0.0

NuGet package name, version, and asset name normalization

CodeArtifact normalizes package and asset names and package versions before storing them,
which means the names or versions in CodeArtifact may be different than the ones provided when
the package or asset was published.

Package name normalization: CodeArtifact normalizes NuGet package names by converting all
letters to lowercase.

Package version normalization: CodeArtifact normalizes NuGet package versions using the same
pattern as NuGet. The following information is from Normalized version numbers from the NuGet
documentation.

CodeArtifact NuGet Credential Provider versions 240

https://d12ov9682v6hj.cloudfront.net/codeartifact-nuget-credentialprovider-v1.0.2.zip
https://a.co/cAIkhV1
https://a.co/8b2cENb
https://docs.microsoft.com/en-us/nuget/concepts/package-versioning#normalized-version-numbers

CodeArtifact CodeArtifact User Guide

• Leading zeroes are removed from version numbers:

• 1.00 is treated as 1.0

• 1.01.1 is treated as 1.1.1

• 1.00.0.1 is treated as 1.0.0.1

• A zero in the fourth part of the version number will be omitted:

• 1.0.0.0 is treated as 1.0.0

• 1.0.01.0 is treated as 1.0.1

• SemVer 2.0.0 build metadata is removed:

• 1.0.7+r3456 is treated as 1.0.7

Package asset name normalization: CodeArtifact constructs the NuGet package asset name from
the normalized package name and package version.

The non-normalized package name and version name can be used with API and CLI requests
because CodeArtifact performs normalization on the package name and version inputs for
those requests. For example, inputs of --package Newtonsoft.JSON and --version
12.0.03.0 would be normalized and return a package that has a normalized package name of
newtonsoft.json and version of 12.0.3.

You must use the normalized package asset name in API and CLI requests as CodeArtifact does not
perform normalization on the --asset input.

You must use normalized names and versions in ARNs.

To find the normalized name of a package, use the aws codeartifact list-packages
command. For more information, see List package names.

To find the non-normalized name of a package, use the aws codeartifact describe-
package-version command. The non-normalized name of the package is returned in the
displayName field. For more information, see View and update package version details and
dependencies.

NuGet compatibility

This guide contains information about CodeArtifact's compatibility with different NuGet tools and
versions.

NuGet compatibility 241

CodeArtifact CodeArtifact User Guide

Topics

• General NuGet compatibility

• NuGet command line support

General NuGet compatibility

AWS CodeArtifact supports NuGet 4.8 and higher.

AWS CodeArtifact only supports V3 of the NuGet HTTP protocol. This means that some CLI
commands that rely V2 of the protocol are not supported. See the nuget.exe command support
section for more information.

AWS CodeArtifact does not support PowerShellGet 2.x.

NuGet command line support

AWS CodeArtifact supports the NuGet (nuget.exe) and .NET Core (dotnet) CLI tools.

nuget.exe command support

Because CodeArtifact only supports V3 of NuGet's HTTP protocol, the following commands will not
work when used against CodeArtifact resources:

• list: The nuget list command displays a list of packages from a given source. To get a list of
packages in a CodeArtifact repository, you can use the List package names command from the
AWS CLI.

General NuGet compatibility 242

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Python

These topics describe how to use pip, the Python package manager, and twine, the Python
package publishing utility, with CodeArtifact.

Topics

• Configure and use pip with CodeArtifact

• Configure and use twine with CodeArtifact

• Python package name normalization

• Python compatibility

• Requesting Python packages from upstreams and external connections

Configure and use pip with CodeArtifact

pip is the package installer for Python packages. To use pip to install Python packages from your
CodeArtifact repository, you must first configure the pip client with your CodeArtifact repository
information and credentials.

pip can only be used to install Python packages. To publish Python packages, you can use twine.
For more information, see Configure and use twine with CodeArtifact.

Configure pip with the login command

First, configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact. Then, use the CodeArtifact login command to fetch credentials and configure pip
with them.

Note

If you are accessing a repository in a domain that you own, you don't need to include --
domain-owner. For more information, see Cross-account domains.

To configure pip, run the following command.

Configure and use pip with CodeArtifact 243

https://pypi.org/project/pip/
https://pypi.org/project/twine/

CodeArtifact CodeArtifact User Guide

aws codeartifact login --tool pip --domain my_domain --domain-owner 111122223333 --
repository my_repo

login fetches an authorization token from CodeArtifact using your AWS credentials. The login
command will configure pip for use with CodeArtifact by editing ~/.config/pip/pip.conf to
set the index-url to the repository specified by the --repository option.

The default authorization period after calling login is 12 hours, and login must be called to
periodically refresh the token. For more information about the authorization token created with
the login command, see Tokens created with the login command.

Configure pip without the login command

If you cannot use the login command to configure pip, you can use pip config.

1. Use the AWS CLI to fetch a new authorization token.

Note

If you are accessing a repository in a domain that you own, you do not need to include
the --domain-owner. For more information, see Cross-account domains.

CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

2. Use pip config to set the CodeArtifact registry URL and credentials. The following
command will update the current environment configuration file only. To update the system-
wide configuration file, replace site with global.

pip config set site.index-url https://aws:
$CODEARTIFACT_AUTH_TOKEN@my_domain-
111122223333.d.codeartifact.region.amazonaws.com/pypi/my_repo/simple/

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Configure pip without the login command 244

CodeArtifact CodeArtifact User Guide

Important

The registry URL must end with a forward slash (/). Otherwise, you cannot connect to the
repository.

Example pip configuration file

The following is an example of a pip.conf file after setting the CodeArtifact registry URL and
credentials.

[global]
index-url = https://aws:eyJ2ZX...@my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/pypi/my_repo/simple/

Run pip

To run pip commands, you must configure pip with CodeArtifact. For more information, see the
following documentation.

1. Follow the steps in the Setting up with AWS CodeArtifact section to configure your AWS
account, tools, and permissions.

2. Configure twine by following the steps in Configure and use twine with CodeArtifact.

Assuming that a package is present in your repository or one of its upstream repositories, you can
install it with pip install. For example, use the following command to install the requests
package.

pip install requests

Use the -i option to temporarily revert to installing packages from https://pypi.org instead of
your CodeArtifact repository.

pip install -i https://pypi.org/simple requests

Run pip 245

https://pypi.org

CodeArtifact CodeArtifact User Guide

Configure and use twine with CodeArtifact

twine is a package publishing utility for Python packages. To use twine to publish Python packages
to your CodeArtifact repository, you must first configure twine with your CodeArtifact repository
information and credentials.

twine can only be used to publish Python packages. To install Python packages, you can use pip.
For more information, see Configure and use pip with CodeArtifact.

Configure twine with the login command

First, configure your AWS credentials for use with the AWS CLI, as described in Getting started with
CodeArtifact. Then, use the CodeArtifact login command to fetch credentials and configure twine
with them.

Note

If you are accessing a repository in a domain that you own, you don't need to include --
domain-owner. For more information, see Cross-account domains.

To configure twine, run the following command.

aws codeartifact login --tool twine --domain my_domain --domain-owner 111122223333 --
repository my_repo

login fetches an authorization token from CodeArtifact using your AWS credentials. The login
command configures twine for use with CodeArtifact by editing ~/.pypirc to add the repository
specified by the --repository option with credentials.

The default authorization period after calling login is 12 hours, and login must be called to
periodically refresh the token. For more information about the authorization token created with
the login command, see Tokens created with the login command.

Configure twine without the login command

If you cannot use the login command to configure twine, you can use the ~/.pypirc file or
environment variables. To use the ~/.pypirc file, add the following entries to it. The password
must be an auth token acquired by the get-authorization-token API.

Configure and use twine with CodeArtifact 246

https://pypi.org/project/twine/
https://pypi.org/project/pip/

CodeArtifact CodeArtifact User Guide

[distutils]
index-servers =
 codeartifact
[codeartifact]
repository = https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
pypi/my_repo/
password = auth-token
username = aws

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

To use environment variables, do the following.

Note

If you are accessing a repository in a domain that you own, you do not need to include the
--domain-owner. For more information, see Cross-account domains.

export TWINE_USERNAME=aws
export TWINE_PASSWORD=`aws codeartifact get-authorization-token --domain my_domain --
domain-owner 111122223333 --query authorizationToken --output text`
export TWINE_REPOSITORY_URL=`aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format pypi --query
 repositoryEndpoint --output text`

Run twine

Before using twine to publish Python package assets, you must first configure CodeArtifact
permissions and resources.

1. Follow the steps in the Setting up with AWS CodeArtifact section to configure your AWS
account, tools, and permissions.

2. Configure twine by following the steps in Configure twine with the login command or
Configure twine without the login command.

Run twine 247

CodeArtifact CodeArtifact User Guide

After you configure twine, you can run twine commands. Use the following command to publish
Python package assets.

twine upload --repository codeartifact mypackage-1.0.tgz

For information about how to build and package your Python application, see Generating
Distribution Archives on the Python Packaging Authority website.

Python package name normalization

CodeArtifact normalizes package names before storing them, which means the package names in
CodeArtifact may be different than the name provided when the package was published.

For Python packages, when performing normalization the package name is lowercased and all
instances of the characters ., -, and _ are replaced with a single - character. So the package names
pigeon_cli and pigeon.cli are normalized and stored as pigeon-cli. The non-normalized
name can be used by pip and twine but the normalized name must be used in CodeArtifact CLI
or API requests (such as list-package-versions) and in ARNs. For more information about
Python package name normalization, see PEP 503 in the Python documentation.

Python compatibility

CodeArtifact does not support PyPI's XML-RPC or JSON APIs.

CodeArtifact supports PyPI's Legacy APIs, except the simple API. While CodeArtifact does not
support the /simple/ API endpoint, it does support the /simple/<project>/ endpoint.

For more information, see the following on the Python Packaging Authority's GitHub repository.

• XML-RPC API

• JSON API

• Legacy API

pip command support

The following sections summarize the pip commands that are supported, by CodeArtifact
repositories, in addition to specific commands that are not supported.

Python package name normalization 248

https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://www.python.org/dev/peps/pep-0503/#normalized-names
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/xml-rpc.rst
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/json.rst
https://github.com/pypi/warehouse/blob/main/docs/dev/api-reference/legacy.rst

CodeArtifact CodeArtifact User Guide

Topics

• Supported commands that interact with a repository

• Supported client-side commands

Supported commands that interact with a repository

This section lists pip commands where the pip client makes one or more requests to the registry
it's been configured with. These commands have been verified to function correctly when invoked
against a CodeArtifact repository.

Command Description

install Install packages.

download Download packages.

CodeArtifact does not implement pip search. If you have configured pip with a CodeArtifact
repository, running pip search will search and show packages from PyPI.

Supported client-side commands

These commands don't require any direct interaction with a repository, so CodeArtifact does not
need to do anything to support them.

Command Description

uninstall Uninstall packages.

freeze Output installed packages in requirements
format.

list List installed packages.

show Show information about installed packages.

check Verify installed packages have compatible
dependencies.

pip command support 249

https://pip.pypa.io/en/stable/reference/pip_install/
https://pip.pypa.io/en/stable/reference/pip_download/
https://pypi.org/
https://pip.pypa.io/en/stable/reference/pip_uninstall/
https://pip.pypa.io/en/stable/reference/pip_freeze/
https://pip.pypa.io/en/stable/reference/pip_list/
https://pip.pypa.io/en/stable/reference/pip_show/
https://pip.pypa.io/en/stable/reference/pip_check/

CodeArtifact CodeArtifact User Guide

Command Description

config Manage local and global configuration.

wheel Build wheels from your requirements.

hash Compute hashes of package archives.

completion Helps with command completion.

debug Show information useful for debugging.

help Show help for commands.

Requesting Python packages from upstreams and external
connections

When importing a Python package version from pypi.org, CodeArtifact will import all the assets in
that package version. While most Python packages contain a small number of assets, some contain
over 100 assets, typically to support multiple hardware architectures and Python interpreters.

It’s common for new assets to be published to pypi.org for an existing package version. For
example, some projects publish new assets when new versions of Python are released. When a
Python package is installed from CodeArtifact with pip install, package versions retained in
the CodeArtifact repository are updated to reflect the latest set of assets from pypi.org.

Similarly, if new assets are available for a package version in an upstream CodeArtifact repository
that are not present in the current CodeArtifact repository, they will be retained in the current
repository when pip install is run.

Yanked package versions

Some package versions in pypi.org are marked as yanked, which communicates to the package
installer (such as pip) that the version should not be installed unless it is the only one that matches
a version specifier (using either == or ===). See PEP_592 for more information.

If a package version in CodeArtifact was originally fetched from an external connection to pypi.org,
when you install the package version from a CodeArtifact repository, CodeArtifact ensures that the
updated yanked metadata of the package version is fetched from pypi.org.

Requesting Python packages from upstreams and external connections 250

https://pip.pypa.io/en/stable/reference/pip_config/
https://pip.pypa.io/en/stable/reference/pip_wheel/
https://pip.pypa.io/en/stable/reference/pip_hash/
https://pip.pypa.io/en/stable/user_guide/#command-completion
https://pip.pypa.io/en/stable/reference/pip_debug/
https://pypi.org/
https://peps.python.org/pep-0592/
https://pypi.org/

CodeArtifact CodeArtifact User Guide

How to know if a package version is yanked

To check if a package version is yanked in CodeArtifact, you can attempt to install it with pip
install packageName===packageVersion. If the package version is yanked, you will receive a
warning message similar to the following:

WARNING: The candidate selected for download or install is a yanked version

To check if a package version is yanked in pypi.org, you can visit the package version's pypi.org
listing at https://pypi.org/project/packageName/packageVersion/.

Setting yanked status on private packages

CodeArtifact does not support setting yanked metadata for packages published directly to
CodeArtifact repositories.

Why is CodeArtifact not fetching the latest yanked metadata or assets
for a package version?

Normally, CodeArtifact ensures that when a Python package version is fetched from a CodeArtifact
repository, the yanked metadata is up-to-date with the latest value on pypi.org. Additionally, the
list of assets in the package version are also kept updated with the latest set on pypi.org and any
upstream CodeArtifact repositories. This is true whether you’re installing the package version for
the first time and CodeArtifact imports it from pypi.org into your CodeArtifact repository, or if
you've installed the package before. However, there are cases when the package manager client,
such as pip, won’t pull the latest yanked metadata from pypi.org or upstream repositories. Instead,
CodeArtifact will return the data that is already stored in your repository. This section describes the
three ways this can occur:

Upstream configuration: If the external connection to pypi.org is removed from the repository or
its upstreams using disassociate-external-connection, yanked metadata will no longer be refreshed
from pypi.org. Similarly, if you remove an upstream repository, assets from the removed repository
and the removed repository’s upstreams will no longer be available to the current repository. The
same is true if you use CodeArtifact package origin controls to prevent new versions of a specific
package from being pulled— setting upstream=BLOCK will block yanked metadata from being
refreshed.

Package version status: If you set the status of a package version to anything except Published
or Unlisted, yanked metadata and assets of the package version will not be refreshed. Similarly,

Why is CodeArtifact not fetching the latest yanked metadata or assets for a package version? 251

https://pypi.org/
https://pypi.org/

CodeArtifact CodeArtifact User Guide

if you are fetching a specific package version (say torch 2.0.1) and the same package version
is present in an upstream repository with a status that isn’t Published or Unlisted, this will
also block yanked metadata and asset propagation from the upstream repository to the current
repository. This is because other package version statuses are an indication that the versions are
not meant to be consumed anymore in any repository.

Direct publishing: If you publish a specific package version directly into a CodeArtifact repository,
this will prevent yanked metadata and asset refresh for the package version from its upstream
repositories and pypi.org. For example, say you download an asset from the package version torch
2.0.1, such as torch-2.0.1-cp311-none-macosx_11_0_arm64.whl, using a web browser
and then publish this to your CodeArtifact repository using twine as torch 2.0.1. CodeArtifact
tracks that the package version entered the domain by direct publishing to your repository, not
from an external connection to pypi.org or an upstream repository. In this case, CodeArtifact does
not keep the yanked metadata in sync with upstream repositories or pypi.org. The same is true
if you publish torch 2.0.1 into an upstream repository— the presence of the package version
will block propagation of yanked metadata and assets to repositories further down the upstream
graph.

Why is CodeArtifact not fetching the latest yanked metadata or assets for a package version? 252

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Ruby

These topics describe how to use the RubyGems and Bundler tools with CodeArtifact to install and
publish Ruby gems.

Note

CodeArtifact recommends Ruby 3.3 or later and does not work with Ruby 2.6 or older.

Topics

• Configure and use RubyGems and Bundler with CodeArtifact

• RubyGems command support

• Bundler compatibility

Configure and use RubyGems and Bundler with CodeArtifact

After you create a repository in CodeArtifact, you can use RubyGems (gem) and Bundler (bundle)
to install and publish gems. This topic describes how to configure the package managers to
authenticate with and use a CodeArtifact repository.

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact

To use RubyGems (gem) or Bundler (bundle) to publish gems to or consume gems from AWS
CodeArtifact, you'll first need to configure them with your CodeArtifact repository information,
including credentials to access it. Follow the steps in one of the following procedure to configure
the gem and bundle CLI tools with your CodeArtifact repository endpoint information and
credentials.

Configure RubyGems and Bundler using the console instructions

You can use configuration instructions in the console to connect your Ruby package managers to
your CodeArtifact repository. The console instructions provide custom commands that you can run
to set up your package managers without needing to find and fill in your CodeArtifact information.

1. Open the AWS CodeArtifact console at https://console.aws.amazon.com/codesuite/
codeartifact/home.

Configure and use RubyGems and Bundler 253

https://console.aws.amazon.com/codesuite/codeartifact/home
https://console.aws.amazon.com/codesuite/codeartifact/home

CodeArtifact CodeArtifact User Guide

2. In the navigation pane, choose Repositories, and then choose the repository that you want to
use for installing or pushing Ruby gems.

3. Choose View connection instructions.

4. Choose your operating system.

5. Choose the Ruby package manager client that you want to configure with your CodeArtifact
repository.

6. Follow the generated instructions to configure the package manager client to install Ruby
gems from or publish Ruby gems to the repository.

Configure RubyGems and Bundler manually

If you cannot or do not want to use the configuration instructions from the console, you can
use the following instructions to connect to your Ruby package managers to your CodeArtifact
repository manually.

1. In a command line, use the following command to fetch a CodeArtifact authorization token
and store it in an environment variable.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

macOS and Linux

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

Windows

• Windows (using default command shell):

for /f %i in ('aws codeartifact get-authorization-token --domain my_domain --
domain-owner 111122223333 --query authorizationToken --output text') do set
 CODEARTIFACT_AUTH_TOKEN=%i

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 254

CodeArtifact CodeArtifact User Guide

• Windows PowerShell:

$env:CODEARTIFACT_AUTH_TOKEN = aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --
output text

2. To publish Ruby gems to your repository, use the following command to fetch your
CodeArtifact repository's endpoint and storing it in the RUBYGEMS_HOST environment
variable. The gem CLI uses this environment variable to determine where gems are published.

Note

Alternatively, instead of using the RUBYGEMS_HOST environment variable, you can
provide the repository endpoint with the --host option when using the gem push
command.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

macOS and Linux

export RUBYGEMS_HOST=`aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format ruby
 --query repositoryEndpoint --output text | sed 's:/*$::'`

Windows

The following commands retrieve the repository endpoint, trim the trailing /, then store
them in an environment variable.

• Windows (using default command shell):

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 255

CodeArtifact CodeArtifact User Guide

for /f %i in ('aws codeartifact get-repository-endpoint --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format ruby --query
 repositoryEndpoint --output text') do set RUBYGEMS_HOST=%i

set RUBYGEMS_HOST=%RUBYGEMS_HOST:~0,-1%

• Windows PowerShell:

$env:RUBYGEMS_HOST = (aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format
 ruby --query repositoryEndpoint --output text).TrimEnd("/")

The following URL is an example repository endpoint:

https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/ruby/my_repo/

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

3. To publish Ruby gems to your repository, you must authenticate to CodeArtifact with
RubyGems by editing your ~/.gem/credentials file to include your auth token. Create a
~/.gem/ directory and a ~/.gem/credentials file if the directory or file doesn't exist.

macOS and Linux

echo ":codeartifact_api_key: Bearer $CODEARTIFACT_AUTH_TOKEN" >> ~/.gem/
credentials

Windows

• Windows (using default command shell):

echo :codeartifact_api_key: Bearer %CODEARTIFACT_AUTH_TOKEN% >> %USERPROFILE
%/.gem/credentials

• Windows PowerShell:

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 256

CodeArtifact CodeArtifact User Guide

echo ":codeartifact_api_key: Bearer $env:CODEARTIFACT_AUTH_TOKEN" | Add-
Content ~/.gem/credentials

4. To use gem to install Ruby gems from your repository, you must add the repository endpoint
information and auth token to your .gemrc file. You can add it to the global file (~/.gemrc)
or your project .gemrc file. The CodeArtifact information you must add to the .gemrc is a
combination of the repository endpoint and auth token. It is formatted as follows:

https://aws:${CODEARTIFACT_AUTH_TOKEN}@my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/ruby/my_repo/

• For the authentication token, you can use the CODEARTIFACT_AUTH_TOKEN environment
variable that was set in an earlier step.

• To fetch the repository endpoint, you can read the value of the RUBYGEMS_HOST
environment variable that was set earlier, or you can use the following get-repository-
endpoint command, replacing the values as necessary:

aws codeartifact get-repository-endpoint --domain my_domain --domain-
owner 111122223333 --repository my_repo --format ruby --query repositoryEndpoint
 --output text

After you have the endpoint, use a text editor to add aws:${CODEARTIFACT_AUTH_TOKEN}@
in the appropriate position. Once you have the repository endpoint and auth token string
created, add it to the :sources: section of your .gemrc file with the echo command as
follows:

Warning

CodeArtifact does not support adding repositories as sources using the gem sources
-add command. You must add the source directly to the file.

macOS and Linux

echo ":sources:

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 257

CodeArtifact CodeArtifact User Guide

 - https://aws:
${CODEARTIFACT_AUTH_TOKEN}@my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/ruby/my_repo/" > ~/.gemrc

Windows

• Windows (using default command shell):

echo ":sources:
 - https://aws:%CODEARTIFACT_AUTH_TOKEN
%@my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/ruby/my_repo/"
 > "%USERPROFILE%\.gemrc"

• Windows PowerShell:

echo ":sources:
 - https://aws:
$env:CODEARTIFACT_AUTH_TOKEN@my_domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/ruby/my_repo/" | Add-Content ~/.gemrc

5. To use Bundler, you must configure Bundler with your repository endpoint URL and
authentication token by running the following bundle config command:

macOS and Linux

bundle config $RUBYGEMS_HOST aws:$CODEARTIFACT_AUTH_TOKEN

Windows

• Windows (using default command shell):

bundle config %RUBYGEMS_HOST% aws:%CODEARTIFACT_AUTH_TOKEN%

• Windows PowerShell:

bundle config $Env:RUBYGEMS_HOST aws:$Env:CODEARTIFACT_AUTH_TOKEN

Now that you've configured RubyGems (gem) and Bundler (bundle) with your CodeArtifact
repository, you can use them to publish and consume Ruby gems to and from it.

Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact 258

CodeArtifact CodeArtifact User Guide

Installing Ruby gems from CodeArtifact

Use the following procedures to install Ruby gems from an CodeArtifact repository with the gem or
bundle CLI tools.

Install Ruby gems with gem

You can use the RubyGems (gem) CLI to quickly install a specific version of a Ruby gem from your
CodeArtifact repository.

To install Ruby gems from a CodeArtifact repository with gem

1. If you haven't, follow the steps in Configure RubyGems (gem) and Bundler (bundle) with
CodeArtifact to configure the gem CLI to use your CodeArtifact repository with proper
credentials.

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Use the following command to install Ruby gems from CodeArtifact:

gem install my_ruby_gem --version 1.0.0

Install Ruby gems with bundle

You can use the Bundler (bundle) CLI to install the Ruby gems that are configured in your
Gemfile.

To install Ruby gems from a CodeArtifact repository with bundle

1. If you haven't, follow the steps in Configure RubyGems (gem) and Bundler (bundle) with
CodeArtifact to configure the bundle CLI to use your CodeArtifact repository with proper
credentials.

Installing Ruby gems 259

CodeArtifact CodeArtifact User Guide

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Add your CodeArtifact repository endpoint URL to your Gemfile as a source to install
configured Ruby gems from your CodeArtifact repository and its upstreams.

source "https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
ruby/my_repo/"

gem 'my_ruby_gem'

3. Use the following command to install the Ruby gems as specified in your Gemfile:

bundle install

Publishing Ruby gems to CodeArtifact

Use the following procedure to publish Ruby gems to a CodeArtifact repository using the gem CLI.

1. If you haven't, follow the steps in Configure RubyGems (gem) and Bundler (bundle) with
CodeArtifact to configure the gem CLI to use your CodeArtifact repository with proper
credentials.

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Use the following command to publish Ruby gems to a CodeArtifact repository. Note
that if you did not set the RUBYGEMS_HOST environment variable, you must provide your
CodeArtifact repository endpoint in the --host option.

gem push --key codeartifact_api_key my_ruby_gem-0.0.1.gem

Publishing Ruby gems 260

CodeArtifact CodeArtifact User Guide

RubyGems command support

CodeArtifact supports the gem install and gem push commands. CodeArtifact does not
support the following gem commands:

• gem fetch

• gem info --remote

• gem list --remote

• gem mirror

• gem outdated

• gem owner

• gem query

• gem search

• gem signin

• gem signout

• gem sources --add

• gem sources --update

• gem specification --remote

• gem update

• gem yank

Bundler compatibility

This guide contains information about CodeArtifact's compatibility with Bundler.

Bundler compatibility

AWS CodeArtifact recommends Bundler 2.4.11 or higher. If you encounter issues with installation,
update the Bundler CLI to the latest version.

Bundler version support

In Bundler versions lower than 2.4.11, there is a limit of 500 dependencies that can be defined in
the Gemfile before Bundler decides to query the full index, specs.4.8.gz. Since CodeArtifact

RubyGems command support 261

CodeArtifact CodeArtifact User Guide

does not support the full index, specifying more than 500 dependencies will not work with
CodeArtifact when using Bundler versions lower than 2.4.11.

To define more than 500 dependencies in your Gemfile with CodeArtifact, update Bundler to
version 2.4.11 or higher.

Bundler operations support

CodeArtifact's support for RubyGems does not include the Bundler Compact Index APIs (the /
versions API is not supported). CodeArtifact only supports the Dependencies API.

Additionally, CodeArtifact does not support the various spec APIs, such as specs.4.8.gz.

Bundler compatibility 262

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with Swift

These topics describe how to use the Swift Package Manager with CodeArtifact to install and
publish Swift packages.

Note

CodeArtifact supports Swift 5.8 and later and Xcode 14.3 and later.
CodeArtifact recommends Swift 5.9 and later and Xcode 15 and later.

Topics

• Configure the Swift Package Manager with CodeArtifact

• Consuming and publishing Swift packages

• Swift package name and namespace normalization

• Swift troubleshooting

Configure the Swift Package Manager with CodeArtifact

To use the Swift Package Manager to publish packages to or consume packages from AWS
CodeArtifact, you'll first need to set up credentials to access your CodeArtifact repository. The
recommended method for configuring the Swift Package Manager CLI with your CodeArtifact
credentials and repository endpoint is by using the aws codeartifact login command. You
can also configure the Swift Package Manager manually.

Configure Swift with the login command

Use the aws codeartifact login command to configure the Swift Package Manager with
CodeArtifact.

Note

To use the login command, Swift 5.8 or later is required and Swift 5.9 or later is
recommended.

Configure Swift with CodeArtifact 263

CodeArtifact CodeArtifact User Guide

The aws codeartifact login command will do the following:

1. Fetch an authentication token from CodeArtifact and store it in your environment. How the
credentials are stored depends on the operating system of the environment:

a. macOS: An entry is created in the macOS Keychain application.

b. Linux and Windows: An entry is created in the ~/.netrc file.

In all operating systems, if a credentials entry exists, this command replaces that entry with a
new token.

2. Fetch your CodeArtifact repository endpoint URL and add it to your Swift configuration file. The
command adds the repository endpoint URL to the project level configuration file located at /
path/to/project/.swiftpm/configuration/registries.json.

Note

The aws codeartifact login command calls swift package-registry commands
that must be run from the directory that contains the Package.swift file. Because of this,
aws codeartifact login command must be run from within the Swift project.

To configure Swift with the login command

1. Navigate to the Swift project directory that contains your project's Package.swift file.

2. Run the following aws codeartifact login command.

If you are accessing a repository in a domain that you own, you don't need to include --
domain-owner. For more information, see Cross-account domains.

aws codeartifact login --tool swift --domain my_domain \
--domain-owner 111122223333 --repository my_repo \
[--namespace my_namespace]

The --namespace option configures the application to only consume packages from your
CodeArtifact repository if they're in the designated namespace. CodeArtifact namespaces are
synonymous with scopes, and are used to organize code into logical groups and to prevent name
collisions that can occur when your code base includes multiple libraries.

Configure Swift with the login command 264

CodeArtifact CodeArtifact User Guide

The default authorization period after calling login is 12 hours, and login must be called to
periodically refresh the token. For more information about the authorization token created with
the login command, see Tokens created with the login command.

Configure Swift without the login command

While it is recommended that you configure Swift with the aws codeartifact login command,
you can also configure the Swift Package Manager without the login command by manually
updating the Swift Package Manager configuration.

In the following procedure, you will use the AWS CLI to do the following:

1. Fetch an authentication token from CodeArtifact and store it in your environment. How the
credentials are stored depends on the operating system of the environment:

a. macOS: An entry is created in the macOS Keychain application.

b. Linux and Windows: An entry is created in the ~/.netrc file.

2. Fetch your CodeArtifact repository endpoint URL.

3. In the ~/.swiftpm/configuration/registries.json configuration file, add an entry with
your repository endpoint URL and authentication type.

To configure the Swift without the login command

1. In a command line, use the following command to fetch a CodeArtifact authorization token
and store it in an environment variable.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

macOS and Linux

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

Configure Swift without the login command 265

CodeArtifact CodeArtifact User Guide

Windows

• Windows (using default command shell):

for /f %i in ('aws codeartifact get-authorization-token --domain my_domain --
domain-owner 111122223333 --query authorizationToken --output text') do set
 CODEARTIFACT_AUTH_TOKEN=%i

• Windows PowerShell:

$env:CODEARTIFACT_AUTH_TOKEN = aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --
output text

2. Get your CodeArtifact repository's endpoint by running the following command. Your
repository endpoint is used to point the Swift Package Manager to your repository to consume
or publish packages.

• Replace my_domain with your CodeArtifact domain name.

• Replace 111122223333 with the AWS account ID of the owner of the domain. If you are
accessing a repository in a domain that you own, you don't need to include --domain-
owner. For more information, see Cross-account domains.

• Replace my_repo with your CodeArtifact repository name.

macOS and Linux

export CODEARTIFACT_REPO=`aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format swift
 --query repositoryEndpoint --output text`

Windows

• Windows (using default command shell):

for /f %i in ('aws codeartifact get-repository-endpoint --domain my_domain
 --domain-owner 111122223333 --repository my_repo --format swift --query
 repositoryEndpoint --output text') do set CODEARTIFACT_REPO=%i

• Windows PowerShell:

Configure Swift without the login command 266

CodeArtifact CodeArtifact User Guide

$env:CODEARTIFACT_REPO = aws codeartifact get-repository-endpoint --
domain my_domain --domain-owner 111122223333 --repository my_repo --format
 swift --query repositoryEndpoint --output text

The following URL is an example repository endpoint.

https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com/
swift/my_repo/

Note

To use a dualstack endpoint, use the codeartifact.region.on.aws endpoint.

Important

You must append login onto the end of the repository URL endpoint when used to
configure the Swift Package Manager. This is done for you in the commands of this
procedure.

3. With these two values stored in environment variables, pass them to Swift using the swift
package-registry login command as follows:

macOS and Linux

swift package-registry login ${CODEARTIFACT_REPO}login --token
 ${CODEARTIFACT_AUTH_TOKEN}

Windows

• Windows (using default command shell):

swift package-registry login %CODEARTIFACT_REPO%login --token
 %CODEARTIFACT_AUTH_TOKEN%

• Windows PowerShell:

Configure Swift without the login command 267

CodeArtifact CodeArtifact User Guide

swift package-registry login $Env:CODEARTIFACT_REPO+"login" --token
 $Env:CODEARTIFACT_AUTH_TOKEN

4. Next, update the package registry used by your application so that any dependency will be
pulled from your CodeArtifact repository. This command must be run in the project directory
where you are trying to resolve the package dependency:

macOS and Linux

$ swift package-registry set ${CODEARTIFACT_REPO} [--scope my_scope]

Windows

• Windows (using default command shell):

$ swift package-registry set %CODEARTIFACT_REPO% [--scope my_scope]

• Windows PowerShell:

$ swift package-registry set $Env:CODEARTIFACT_REPO [--scope my_scope]

The --scope option configures the application to only consume packages from your
CodeArtifact repository if they're in the designated scope. Scopes are synonymous with
CodeArtifact namespaces, and are used to organize code into logical groups and to prevent
name collisions that can occur when your code base includes multiple libraries.

5. You can confirm the configuration has been set up correctly by viewing the contents of the
project level .swiftpm/configuration/registries.json file by running the following
command in your project directory:

$ cat .swiftpm/configuration/registries.json
{
 "authentication" : {

 },
 "registries" : {
 "[default]" : {
 "url" : "https://my-domain-111122223333.d.codeartifact.us-
west-2.amazonaws.com/swift/my-repo/"

Configure Swift without the login command 268

CodeArtifact CodeArtifact User Guide

 }
 },
 "version" : 1
}

Now that you've configured the Swift Package Manager with your CodeArtifact repository, you can
use it to publish and consume Swift packages to and from it. For more information, see Consuming
and publishing Swift packages.

Consuming and publishing Swift packages

Consuming Swift packages from CodeArtifact

Use the following procedure to consume Swift packages from an AWS CodeArtifact repository.

To consume Swift packages from a CodeArtifact repository

1. If you haven't, follow the steps in Configure the Swift Package Manager with CodeArtifact
to configure the Swift Package Manager to use your CodeArtifact repository with proper
credentials.

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Edit the Package.swift file in your application project folder to update the package
dependencies to be used by your project.

a. If the Package.swift file does not contain a dependencies section, add one.

b. In the dependencies section of the Package.swift file, add the package you want
to use by adding its package identifier. The package identifier consists of the scope and
package name separated by a period. See the code snippet following a later step for an
example.

Consuming and publishing Swift packages 269

CodeArtifact CodeArtifact User Guide

Tip

To find the package identifier, you can use the CodeArtifact console. Find the
specific package version you want to use and reference the Install shortcut
instructions on the package version page.

c. If the Package.swift file does not contain a targets section, add one.

d. In the targets section, add the targets that will need to use the dependency.

The following snippet is an example snippet showing configured dependencies and
targets sections in a Package.swift file:

...
],
 dependencies: [
 .package(id: "my_scope.package_name", from: "1.0.0")
],
 targets: [
 .target(
 name: "MyApp",
 dependencies: ["package_name"]
),...
],
...

3. Now that everything is configured, use the following command to download the package
dependencies from CodeArtifact.

swift package resolve

Consuming Swift packages from CodeArtifact in Xcode

Use the following procedure to consume Swift packages from a CodeArtifact repository in Xcode.

To consume Swift packages from a CodeArtifact repository in Xcode

1. If you haven't, follow the steps in Configure the Swift Package Manager with CodeArtifact
to configure the Swift Package Manager to use your CodeArtifact repository with proper
credentials.

Consuming Swift packages in Xcode 270

CodeArtifact CodeArtifact User Guide

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Add the packages as a dependency in your project in Xcode.

a. Choose File > Add Packages.

b. Search for your package using the search bar. Your search must be in the form
package_scope.package_name.

c. Once found, choose the package and choose Add Package.

d. Once the package is verified, choose the package products you want to add as a
dependency, and choose Add Package.

If you run into problems using your CodeArtifact repository with Xcode, see Swift troubleshooting
for common issues and possible fixes.

Publishing Swift packages to CodeArtifact

CodeArtifact recommends Swift 5.9 or later and using the swift package-registry publish
command to publish Swift packages. If you are using an earlier version, you must use a Curl
command to publish Swift packages to CodeArtifact.

Publishing CodeArtifact packages with the swift package-registry publish
command

Use the following procedure with Swift 5.9 or later to publish Swift packages to a CodeArtifact
repository with the Swift Package Manager.

1. If you haven't, follow the steps in Configure the Swift Package Manager with CodeArtifact
to configure the Swift Package Manager to use your CodeArtifact repository with proper
credentials.

Publishing Swift packages 271

CodeArtifact CodeArtifact User Guide

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since it was created.

2. Navigate to the Swift project directory that contains the Package.swift file for your
package.

3. Run the following swift package-registry publish command to publish the package.
The command creates a package source archive and publishes it to your CodeArtifact
repository.

swift package-registry publish packageScope.packageName packageVersion

For example:

swift package-registry publish myScope.myPackage 1.0.0

4. You can confirm that the package was published and exists in the repository by checking in the
console or using the aws codeartifact list-packages command as follows:

aws codeartifact list-packages --domain my_domain --repository my_repo

You can list the single version of the package using the aws codeartifact list-
package-versions command as follows:

aws codeartifact list-package-versions --domain my_domain --repository my_repo \
--format swift --namespace my_scope --package package_name

Publishing CodeArtifact packages with Curl

While it is recommended to use the swift package-registry publish command that comes
with Swift 5.9 or later, you can also use Curl to publish Swift packages to CodeArtifact.

Use the following procedure to publish Swift packages to an AWS CodeArtifact repository with
Curl.

Publishing Swift packages 272

CodeArtifact CodeArtifact User Guide

1. If you haven't, create and update the CODEARTIFACT_AUTH_TOKEN and
CODEARTIFACT_REPO environment variables by following the steps in Configure the Swift
Package Manager with CodeArtifact.

Note

The authorization token is valid for 12 hours. You will need to refresh your
CODEARTIFACT_AUTH_TOKEN environment variable with new credentials if 12 hours
have passed since it was created.

2. First, if you do not have a Swift package created, you can do so by running the following
commands:

mkdir testDir && cd testDir
swift package init
git init .
swift package archive-source

3. Use the following Curl command to publish your Swift package to CodeArtifact:

macOS and Linux

curl -X PUT --user "aws:$CODEARTIFACT_AUTH_TOKEN" \
-H "Accept: application/vnd.swift.registry.v1+json" \
-F source-archive="@test_dir_package_name.zip" \
"${CODEARTIFACT_REPO}my_scope/package_name/packageVersion"

Windows

curl -X PUT --user "aws:%CODEARTIFACT_AUTH_TOKEN%" \
-H "Accept: application/vnd.swift.registry.v1+json" \
-F source-archive="@test_dir_package_name.zip" \
"%CODEARTIFACT_REPO%my_scope/package_name/packageVersion"

4. You can confirm that the package was published and exists in the repository by checking in the
console or using the aws codeartifact list-packages command as follows:

aws codeartifact list-packages --domain my_domain --repository my_repo

Publishing Swift packages 273

CodeArtifact CodeArtifact User Guide

You can list the single version of the package using the aws codeartifact list-
package-versions command as follows:

aws codeartifact list-package-versions --domain my_domain --repository my_repo \
--format swift --namespace my_scope --package package_name

Fetching Swift packages from GitHub and republishing to CodeArtifact

Use the following procedure to fetch a Swift package from GitHub and republish it to a
CodeArtifact repository.

To fetch a Swift package from GitHub and republish it to CodeArtifact

1. If you haven't, follow the steps in Configure the Swift Package Manager with CodeArtifact
to configure the Swift Package Manager to use your CodeArtifact repository with proper
credentials.

Note

The authorization token generated is valid for 12 hours. You will need to create a new
one if 12 hours have passed since a token was created.

2. Clone the git repository of the Swift package you want to fetch and republish by using the
following git clone command. For information about cloning GitHub repositories, see
Cloning a repository in the GitHub Docs.

git clone repoURL

3. Navigate to the repository that you just cloned:

cd repoName

4. Create the package and publish it to CodeArtifact.

a. Recommended: If you are using Swift 5.9 or later, you can use the following swift
package-registry publish command to create the package and publish it to your
configured CodeArtifact repository.

Fetching Swift packages from GitHub and republishing to CodeArtifact 274

https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository

CodeArtifact CodeArtifact User Guide

swift package-registry publish packageScope.packageName versionNumber

For example:

swift package-registry publish myScope.myPackage 1.0.0

b. If you're using a Swift version that is older than 5.9, you must use the swift archive-
source command to create the package and then use a Curl command to publish it.

i. If you haven't configured the CODEARTIFACT_AUTH_TOKEN and
CODEARTIFACT_REPO environment variables, or it's been over 12 hours since you
have, follow the steps in Configure Swift without the login command.

ii. Create the Swift package by using the swift package archive-source
command:

swift package archive-source

If successful, you will see Created package_name.zip in the command line.

iii. Use the following Curl command to publish the Swift package to CodeArtifact:

macOS and Linux

curl -X PUT --user "aws:$CODEARTIFACT_AUTH_TOKEN" \
-H "Accept: application/vnd.swift.registry.v1+json" \
-F source-archive="@package_name.zip" \
"${CODEARTIFACT_REPO}my_scope/package_name/packageVersion"

Windows

curl -X PUT --user "aws:%CODEARTIFACT_AUTH_TOKEN%" \
-H "Accept: application/vnd.swift.registry.v1+json" \
-F source-archive="@package_name.zip" \
"%CODEARTIFACT_REPO%my_scope/package_name/packageVersion"

5. You can confirm that the package was published and exists in the repository by checking in the
console or using the aws codeartifact list-packages command as follows:

aws codeartifact list-packages --domain my_domain --repository my_repo

Fetching Swift packages from GitHub and republishing to CodeArtifact 275

CodeArtifact CodeArtifact User Guide

You can list the single version of the package using the aws codeartifact list-
package-versions command as follows:

aws codeartifact list-package-versions --domain my_domain --repository my_repo \
--format swift --namespace my_scope --package package_name

Swift package name and namespace normalization

CodeArtifact normalizes package names and namespaces before storing them, which means the
names in CodeArtifact may be different than the ones provided when the package was published.

Package name and namespace normalization: CodeArtifact normalizes Swift package names and
namespaces by converting all letters to lowercase.

Package version normalization: CodeArtifact does not normalize Swift package versions. Note
that CodeArtifact only supports Semantic Versioning 2.0 version patterns, for more information
about Semantic Versioning, see Semantic Versioning 2.0.0.

The non-normalized package name and namespace can be used with API and CLI requests because
CodeArtifact performs normalization on the inputs for those requests. For example, inputs of --
package myPackage and --namespace myScope would be normalized and return a package
that has a normalized package name of mypackage and namespace of myscope.

You must use normalized names in ARNs, such as in IAM policies.

To find the normalized name of a package, use the aws codeartifact list-packages
command. For more information, see List package names.

Swift troubleshooting

The following information might help you troubleshoot common issues with Swift and
CodeArtifact.

Swift package name and namespace normalization 276

https://semver.org/spec/v2.0.0.html

CodeArtifact CodeArtifact User Guide

I'm getting a 401 error in Xcode even after configuring the Swift
Package Manager

Problem: When you are trying to add a package from your CodeArtifact repository as a
dependency to your Swift project in Xcode, you are getting a 401 unauthorized error even after you
have followed the instructions for connecting Swift to CodeArtifact.

Possible fixes: This can be caused by an issue with the macOS Keychain application, where your
CodeArtifact credentials are stored. To fix this, we recommend opening the Keychain application
and deleting all of the CodeArtifact entries and configuring the Swift Package Manager with
your CodeArtifact repository again by following the instructions in Configure the Swift Package
Manager with CodeArtifact.

Xcode hangs on CI machine due to keychain prompt for password

Problem: When you are trying to pull Swift packages from CodeArtifact as part of an Xcode
build on a continuous integration (CI) server, such as with GitHub Actions, authentication with
CodeArtifact can hang and eventually fail with an error message similar to the following:

Failed to save credentials for
\'https://my_domain-111122223333.d.codeartifact.us-west-2.amazonaws.com\'
to keychain: status -60008

Possible fixes: This is caused by credentials not being saved to the keychain on CI machines, and
Xcode only supporting credentials saved in Keychain. To fix this, we recommend creating the
keychain entry manually using the following steps:

1. Prepare the keychain.

KEYCHAIN_PASSWORD=$(openssl rand -base64 20)
KEYCHAIN_NAME=login.keychain
SYSTEM_KEYCHAIN=/Library/Keychains/System.keychain

if [-f $HOME/Library/Keychains/"${KEYCHAIN_NAME}"-db]; then
 echo "Deleting old ${KEYCHAIN_NAME} keychain"
 security delete-keychain "${KEYCHAIN_NAME}"
fi
echo "Create Keychain"
security create-keychain -p "${KEYCHAIN_PASSWORD}" "${KEYCHAIN_NAME}"

I'm getting a 401 error in Xcode even after configuring the Swift Package Manager 277

CodeArtifact CodeArtifact User Guide

EXISTING_KEYCHAINS=($(security list-keychains | sed -e 's/ *//' | tr '\n' ' ' |
 tr -d '"'))
sudo security list-keychains -s "${KEYCHAIN_NAME}" "${EXISTING_KEYCHAINS[@]}"

echo "New keychain search list :"
security list-keychain

echo "Configure keychain : remove lock timeout"
security unlock-keychain -p "${KEYCHAIN_PASSWORD}" "${KEYCHAIN_NAME}"
security set-keychain-settings "${KEYCHAIN_NAME}"

2. Get a CodeArtifact authentication token and your repository endpoint.

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token \
 --region us-west-2 \
 --domain my_domain \
 --domain-owner 111122223333 \
 --query authorizationToken \
 --output text`

export CODEARTIFACT_REPO=`aws codeartifact get-repository-endpoint \
 --region us-west-2 \
 --domain my_domain \
 --domain-owner 111122223333 \
 --format swift \
 --repository my_repo \
 --query repositoryEndpoint \
 --output text`

3. Manually create the Keychain entry.

SERVER=$(echo $CODEARTIFACT_REPO | sed 's/https:\/\///g' | sed 's/.com.*$/.com/g')
AUTHORIZATION=(-T /usr/bin/security -T /usr/bin/codesign -T /usr/bin/xcodebuild -
T /usr/bin/swift \
 -T /Applications/Xcode-15.2.app/Contents/Developer/usr/bin/
xcodebuild)

security delete-internet-password -a token -s $SERVER -r htps "${KEYCHAIN_NAME}"

security add-internet-password -a token \
 -s $SERVER \
 -w $CODEARTIFACT_AUTH_TOKEN \

Xcode hangs on CI machine due to keychain prompt for password 278

CodeArtifact CodeArtifact User Guide

 -r htps \
 -U \
 "${AUTHORIZATION[@]}" \
 "${KEYCHAIN_NAME}"

security set-internet-password-partition-list \
 -a token \
 -s $SERVER \
 -S "com.apple.swift-
package,com.apple.security,com.apple.dt.Xcode,apple-tool:,apple:,codesign" \
 -k "${KEYCHAIN_PASSWORD}" "${KEYCHAIN_NAME}"

security find-internet-password "${KEYCHAIN_NAME}"

For more information about this error and the solution, see https://github.com/apple/swift-
package-manager/issues/7236.

Xcode hangs on CI machine due to keychain prompt for password 279

https://github.com/apple/swift-package-manager/issues/7236
https://github.com/apple/swift-package-manager/issues/7236

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with generic packages

These topics show you how to consume and publish for generic packages using AWS CodeArtifact.

Topics

• Generic packages overview

• Supported commands for generic packages

• Publishing and consuming generic packages

Generic packages overview

Using the generic package format, you can upload any type of file to create a package in a
CodeArtifact repository. Generic packages aren't associated with any specific programming
language, file type, or package management ecosystem. This can be useful for storing and
versioning arbitrary build artifacts, such as application installers, machine learning models,
configuration files, and others.

A generic package consists of a package name, namespace, version, and one or more assets (or
files). Generic packages can exist alongside packages of other formats in a single CodeArtifact
repository.

You can use the AWS CLI or SDK to work with generic packages. For a full list of AWS CLI
commands that work with generic packages, see Supported commands for generic packages.

Generic package constraints

• They are never fetched from upstream repositories. They can only be obtained from the
repository to which they were published.

• They cannot declare dependencies to be returned from ListPackageVersionDependencies or
displayed in the AWS Management Console .

• They can store README and LICENSE files, but they're not interpreted by CodeArtifact.
Information in these files is not returned from GetPackageVersionReadme or
DescribePackageVersion, and doesn't appear in the AWS Management Console.

• Like all packages in CodeArtifact, there are limits to asset size and the number of assets per
package. For more information about limits and quotas in CodeArtifact, see Quotas in AWS
CodeArtifact.

Generic packages overview 280

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_ListPackageVersionDependencies.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_GetPackageVersionReadme.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_DescribePackageVersion.html

CodeArtifact CodeArtifact User Guide

• The asset names that they contain must follow these rules:

• Asset names can use Unicode letters and numbers. Specifically, these Unicode character
categories are allowed: Lowercase Letter (Ll), Modifier Letter (Lm), Other Letter (Lo), Titlecase
Letter (Lt), Uppercase Letter (Lu), Letter Number (Nl), and Decimal Number (Nd).

• The following special characters are allowed: ~!@^&()-_+[]{};,.

• Assets cannot be named . or ..

• Spaces are the only allowed whitespace character. Asset names cannot start or end with a
space character, or include consecutive spaces.

Supported commands for generic packages

You can use the AWS CLI or SDK to work with generic packages. The following CodeArtifact
commands work with generic packages:

• copy-package-versions (see Copy packages between repositories)

• delete-package (see Deleting a package (AWS CLI))

• delete-package-versions (see Deleting a package version (AWS CLI))

• describe-package

• describe-package-version (see View and update package version details and dependencies)

• dispose-package-versions (see Disposing of package versions)

• get-package-version-asset (see Download package version assets)

• list-package-version-assets (see List package version assets)

• list-package-versions (see List package versions)

• list-packages (see List package names)

• publish-package-version (see Publishing a generic package)

• put-package-origin-configuration (see Editing package origin controls)

Note

You can use the publish origin control setting to allow or block publishing of a generic
package name in a repository. However, the upstream setting does not apply to generic
packages because they cannot be fetched from an upstream repository.

• update-package-versions-status (see Updating package version status)

Supported commands 281

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/copy-package-versions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/delete-package.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/delete-package-versions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/describe-package.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/describe-package-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/dispose-package-versions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/get-package-version-asset.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/list-package-version-assets.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/list-package-versions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/list-packages.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/publish-package-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/put-package-origin-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/codeartifact/update-package-versions-status.html

CodeArtifact CodeArtifact User Guide

Publishing and consuming generic packages

To publish a generic package version and its related assets, use the publish-package-version
command. You can list a generic package's assets using the list-package-version-asset
command and download them using get-package-version-asset. The following topic
contains step-by-step instructions to publish generic packages or download generic package assets
using these commands.

Publishing a generic package

A generic package consists of a package name, namespace, version, and one or more assets (or
files). This topic demonstrates how to publish a package named my-package, with the namespace
my-ns, version 1.0.0, and containing one asset named asset.tar.gz.

Prerequisites:

• Set up and configure the AWS Command Line Interface with CodeArtifact (see Setting up with
AWS CodeArtifact)

• Have a CodeArtifact domain and repository (see Getting started using the AWS CLI)

To publish a generic package

1. Use the following command to generate the SHA256 hash for each file you want to upload
to a package version, and place the value in an environment variable. This value is used as an
integrity check to verify that the file contents have not changed after they were originally sent.

Linux

export ASSET_SHA256=$(sha256sum asset.tar.gz | awk '{print $1;}')

macOS

export ASSET_SHA256=$(shasum -a 256 asset.tar.gz | awk '{print $1;}')

Windows

for /f "tokens=*" %G IN ('certUtil -hashfile asset.tar.gz SHA256 ^| findstr /v
 "hash"') DO SET "ASSET_SHA256=%G"

Publishing and consuming generic packages 282

CodeArtifact CodeArtifact User Guide

2. Call publish-package-version to upload the asset and create a new package version.

Note

If your package contains more than one asset, you can call publish-package-
version once for each asset to upload. Include the --unfinished argument for
each call to publish-package-version, except for when uploading the final asset.
Omitting --unfinished will set the package version's status to Published, and
prevent additional assets from being uploaded to it.
Alternatively, include --unfinished for every call to publish-package-version,
then set the package version's status to Published using the update-package-
versions-status command.

Linux/macOS

aws codeartifact publish-package-version --domain my_domain --repository my_repo
 \
 --format generic --namespace my-ns --package my-package --package-
version 1.0.0 \
 --asset-content asset.tar.gz --asset-name asset.tar.gz \
 --asset-sha256 $ASSET_SHA256

Windows

aws codeartifact publish-package-version --domain my_domain --repository my_repo
 ^
 --format generic --namespace my-ns --package my-package --package-
version 1.0.0 ^
 --asset-content asset.tar.gz --asset-name asset.tar.gz ^
 --asset-sha256 %ASSET_SHA256%

The following shows the output.

{
 "format": "generic",
 "namespace": "my-ns",
 "package": "my-package",
 "version": "1.0.0",

Publishing a generic package 283

CodeArtifact CodeArtifact User Guide

 "versionRevision": "REVISION-SAMPLE-1-C7F4S5E9B772FC",
 "status": "Published",
 "asset": {
 "name": "asset.tar.gz",
 "size": 11,
 "hashes": {
 "MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
 "SHA-1": "69b215c25dd4cda1d997a786ec6EXAMPLE-SHA-1",
 "SHA-256": "43f24850b7b7b7d79c5fa652418518fbdf427e602b1edabe6EXAMPLE-
SHA-256",
 "SHA-512":
 "3947382ac2c180ee3f2aba4f8788241527c8db9dfe9f4b039abe9fc560aaf5a1fced7bd1e80a0dca9ce320d95f0864e0dec3ac4f2f7b2b2cbEXAMPLE-
SHA-512"
 }
 }
}

Listing generic package assets

To list the assets contained in a generic package, use the list-package-version-assets
command. For more information, see List package version assets.

The following example lists the assets of version 1.0.0 of package my-package.

To list package version assets

• Call list-package-version-assets to list the assets contained in a generic package.

Linux/macOS

aws codeartifact list-package-version-assets --domain my_domain \
 --repository my_repo --format generic --namespace my-ns \
 --package my-package --package-version 1.0.0

Windows

aws codeartifact list-package-version-assets --domain my_domain ^
 --repository my_repo --format generic --namespace my-ns ^
 --package my-package --package-version 1.0.0

Listing generic package assets 284

CodeArtifact CodeArtifact User Guide

The following shows the output.

{
 "assets": [
 {
 "name": "asset.tar.gz",
 "size": 11,
 "hashes": {
 "MD5": "41bba98d5b9219c43089eEXAMPLE-MD5",
 "SHA-1": "69b215c25dd4cda1d997a786ec6EXAMPLE-SHA-1",
 "SHA-256":
 "43f24850b7b7b7d79c5fa652418518fbdf427e602b1edabe6EXAMPLE-SHA-256",
 "SHA-512":
 "3947382ac2c180ee3f2aba4f8788241527c8db9dfe9f4b039abe9fc560aaf5a1fced7bd1e80a0dca9ce320d95f0864e0dec3ac4f2f7b2b2cbEXAMPLE-
SHA-512"
 }
 }
],
 "package": "my-package",
 "format": "generic",
 "namespace": "my-ns",
 "version": "1.0.0",
 "versionRevision": "REVISION-SAMPLE-1-C7F4S5E9B772FC"
}

Downloading generic package assets

To download the assets from a generic package, use the get-package-version-asset
command. For more information, see Download package version assets.

The following example downloads the asset asset.tar.gz from version 1.0.0 of the package
my-package to the current working directory into a file also named asset.tar.gz.

To download package version assets

• Call get-package-version-asset to download assets from a generic package.

Linux/macOS

aws codeartifact get-package-version-asset --domain my_domain \

Downloading generic package assets 285

CodeArtifact CodeArtifact User Guide

 --repository my_repo --format generic --namespace my-ns --package my-package \
 --package-version 1.0.0 --asset asset.tar.gz \
 asset.tar.gz

Windows

aws codeartifact get-package-version-asset --domain my_domain ^
 --repository my_repo --format generic --namespace my-ns --package my-package ^
 --package-version 1.0.0 --asset asset.tar.gz ^
 asset.tar.gz

The following shows the output.

{
 "assetName": "asset.tar.gz",
 "packageVersion": "1.0.0",
 "packageVersionRevision": "REVISION-SAMPLE-1-C7F4S5E9B772FC"
}

Downloading generic package assets 286

CodeArtifact CodeArtifact User Guide

Using CodeArtifact with CodeBuild
These topics describe how to use packages in a CodeArtifact repository in an AWS CodeBuild build
project.

Topics

• Using npm packages in CodeBuild

• Using Python packages in CodeBuild

• Using Maven packages in CodeBuild

• Using NuGet packages in CodeBuild

• Dependency caching

Using npm packages in CodeBuild

The following steps have been tested with the operating systems listed in Docker images provided
by CodeBuild.

Set up permissions with IAM roles

These steps are required when using npm packages from CodeArtifact in CodeBuild.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles. On the Roles page, edit the role used by your CodeBuild
build project. This role must have the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["codeartifact:GetAuthorizationToken",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ReadFromRepository"
],
 "Resource": "*"
 },
 {

Using npm packages in CodeBuild 287

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

CodeArtifact CodeArtifact User Guide

 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Important

If you also want to use CodeBuild to publish packages, add the
codeartifact:PublishPackageVersion permission.

For information, see Modifying a Role in the IAM User Guide.

Log in and use npm

To use npm packages from CodeBuild, run the login command from the pre-build section of
your project's buildspec.yaml to configure npm to fetch packages from CodeArtifact. For more
information, see Authentication with npm.

After login has run successfully, you can run npm commands from the build section to install
npm packages.

Linux

Note

It is only necessary to upgrade the AWS CLI with pip3 install awscli --upgrade --
user if you are using an older CodeBuild image. If you are using the latest image versions,
you can remove that line.

pre_build:

Log in and use npm 288

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

CodeArtifact CodeArtifact User Guide

 commands:
 - pip3 install awscli --upgrade --user
 - aws codeartifact login --tool npm --domain my_domain --domain-owner 111122223333
 --repository my_repo
build:
 commands:
 - npm install

Windows

version: 0.2
phases:
 install:
 commands:
 - '[Net.ServicePointManager]::SecurityProtocol = "Tls12"; Invoke-WebRequest
 https://awscli.amazonaws.com/AWSCLIV2.msi -OutFile $env:TEMP/AWSCLIV2.msi'
 - Start-Process -Wait msiexec "/i $env:TEMP\AWSCLIV2.msi /quiet /norestart"
 pre_build:
 commands:
 - '&"C:\Program Files\Amazon\AWSCLIV2\aws" codeartifact login --tool npm --
domain my_domain --domain-owner 111122223333 --repository my_repo'
 build:
 commands:
 - npm install

Using Python packages in CodeBuild

The following steps have been tested with the operating systems listed in the Docker images
provided by CodeBuild.

Set up permissions with IAM roles

These steps are required when using Python packages from CodeArtifact in CodeBuild.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles. On the Roles page, edit the role used by your CodeBuild
build project. This role must have the following permissions.

{

Using Python packages in CodeBuild 289

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

CodeArtifact CodeArtifact User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["codeartifact:GetAuthorizationToken",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ReadFromRepository"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Important

If you also want to use CodeBuild to publish packages, add the
codeartifact:PublishPackageVersion permission.

For information, see Modifying a Role in the IAM User Guide.

Log in and use pip or twine

To use Python packages from CodeBuild, run the login command from the pre-build section
of your project's buildspec.yaml file to configure pip to fetch packages from CodeArtifact. For
more information, see Using CodeArtifact with Python.

After login has run successfully, you can run pip commands from the build section to install or
publish Python packages.

Log in and use pip or twine 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

CodeArtifact CodeArtifact User Guide

Linux

Note

It is only necessary to upgrade the AWS CLI with pip3 install awscli --upgrade --
user if you are using an older CodeBuild image. If you are using the latest image versions,
you can remove that line.

To install Python packages using pip:

pre_build:
 commands:
 - pip3 install awscli --upgrade --user
 - aws codeartifact login --tool pip --domain my_domain --domain-owner 111122223333
 --repository my_repo
build:
 commands:
 - pip install requests

To publish Python packages using twine:

pre_build:
 commands:
 - pip3 install awscli --upgrade --user
 - aws codeartifact login --tool twine --domain my_domain --domain-
owner 111122223333 --repository my_repo
build:
 commands:
 - twine upload --repository codeartifact mypackage

Windows

To install Python packages using pip:

version: 0.2
phases:
 install:
 commands:
 - '[Net.ServicePointManager]::SecurityProtocol = "Tls12"; Invoke-WebRequest
 https://awscli.amazonaws.com/AWSCLIV2.msi -OutFile $env:TEMP/AWSCLIV2.msi'

Log in and use pip or twine 291

CodeArtifact CodeArtifact User Guide

 - Start-Process -Wait msiexec "/i $env:TEMP\AWSCLIV2.msi /quiet /norestart"
 pre_build:
 commands:
 - '&"C:\Program Files\Amazon\AWSCLIV2\aws" codeartifact login --tool pip --
domain my_domain --domain-owner 111122223333 --repository my_repo'
 build:
 commands:
 - pip install requests

To publish Python packages using twine:

version: 0.2
phases:
 install:
 commands:
 - '[Net.ServicePointManager]::SecurityProtocol = "Tls12"; Invoke-WebRequest
 https://awscli.amazonaws.com/AWSCLIV2.msi -OutFile $env:TEMP/AWSCLIV2.msi'
 - Start-Process -Wait msiexec "/i $env:TEMP\AWSCLIV2.msi /quiet /norestart"
 pre_build:
 commands:
 - '&"C:\Program Files\Amazon\AWSCLIV2\aws" codeartifact login --tool twine --
domain my_domain --domain-owner 111122223333 --repository my_repo'
 build:
 commands:
 - twine upload --repository codeartifact mypackage

Using Maven packages in CodeBuild

Set up permissions with IAM roles

These steps are required when using Maven packages from CodeArtifact in CodeBuild.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles. On the Roles page, edit the role used by your CodeBuild
build project. This role must have the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [

Using Maven packages in CodeBuild 292

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

CodeArtifact CodeArtifact User Guide

 {
 "Effect": "Allow",
 "Action": ["codeartifact:GetAuthorizationToken",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ReadFromRepository"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Important

If you also want to use CodeBuild to publish packages,
add the codeartifact:PublishPackageVersion and
codeartifact:PutPackageMetadata permissions.

For information, see Modifying a Role in the IAM User Guide.

Use gradle or mvn

To use Maven packages with gradle or mvn, store the CodeArtifact auth token in an environment
variable, as described in Pass an auth token in an environment variable. The following is an
example.

Use gradle or mvn 293

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

CodeArtifact CodeArtifact User Guide

Note

It is only necessary to upgrade the AWS CLI with pip3 install awscli --upgrade --
user if you are using an older CodeBuild image. If you are using the latest image versions,
you can remove that line.

pre_build:
 commands:
 - pip3 install awscli --upgrade --user
 - export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output text`

To use Gradle:

If you referenced the CODEARTIFACT_AUTH_TOKEN variable in your Gradle build.gradle
file as described in Using CodeArtifact with Gradle, you can invoke your Gradle build from the
buildspec.yaml build section.

build:
 commands:
 - gradle build

To use mvn:

You must configure your Maven configuration files (settings.xml and pom.xml) following the
instructions in Using CodeArtifact with mvn.

Using NuGet packages in CodeBuild

The following steps have been tested with the operating systems listed in the Docker images
provided by CodeBuild.

Topics

• Set up permissions with IAM roles

• Consume NuGet packages

• Build with NuGet packages

• Publish NuGet packages

Using NuGet packages in CodeBuild 294

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html

CodeArtifact CodeArtifact User Guide

Set up permissions with IAM roles

These steps are required when using NuGet packages from CodeArtifact in CodeBuild.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles. On the Roles page, edit the role used by your CodeBuild
build project. This role must have the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["codeartifact:GetAuthorizationToken",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ReadFromRepository"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Important

If you also want to use CodeBuild to publish packages, add the
codeartifact:PublishPackageVersion permission.

For information, see Modifying a Role in the IAM User Guide.

Set up permissions with IAM roles 295

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

CodeArtifact CodeArtifact User Guide

Consume NuGet packages

To consume NuGet packages from CodeBuild, include the following in your project's
buildspec.yaml file.

1. In the install section, install the CodeArtifact Credential Provider to configure command line
tools such as msbuild and dotnet to build and publish packages to CodeArtifact.

2. In the pre-build section, add your CodeArtifact repository to your NuGet configuration.

See the following buildspec.yaml examples. For more information, see Using CodeArtifact with
NuGet.

After the credential provider is installed and your repository source is added, you can run NuGet CLI
tool commands from the build section to consume NuGet packages.

Linux

To consume NuGet packages using dotnet:

version: 0.2

phases:
 install:
 runtime-versions:
 dotnet: latest
 commands:
 - export PATH="$PATH:/root/.dotnet/tools"
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact $(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)"v3/index.json"
 build:
 commands:
 - dotnet add package <packageName> --source codeartifact

Windows

To consume NuGet packages using dotnet:

Consume NuGet packages 296

CodeArtifact CodeArtifact User Guide

version: 0.2

phases:
 install:
 commands:
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact "$(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)v3/index.json"
 build:
 commands:
 - dotnet add package <packageName> --source codeartifact

Build with NuGet packages

To build with NuGet packages from CodeBuild, include the following in your project's
buildspec.yaml file.

1. In the install section, install the CodeArtifact Credential Provider to configure command line
tools such as msbuild and dotnet to build and publish packages to CodeArtifact.

2. In the pre-build section, add your CodeArtifact repository to your NuGet configuration.

See the following buildspec.yaml examples. For more information, see Using CodeArtifact with
NuGet.

After the credential provider is installed and your repository source is added, you can run NuGet CLI
tool commands like dotnet build from the build section.

Linux

To build NuGet packages using dotnet:

version: 0.2

phases:
 install:
 runtime-versions:

Build with NuGet packages 297

CodeArtifact CodeArtifact User Guide

 dotnet: latest
 commands:
 - export PATH="$PATH:/root/.dotnet/tools"
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact $(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)"v3/index.json"
 build:
 commands:
 - dotnet build

To build NuGet packages using msbuild:

version: 0.2

phases:
 install:
 runtime-versions:
 dotnet: latest
 commands:
 - export PATH="$PATH:/root/.dotnet/tools"
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact $(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)"v3/index.json"
 build:
 commands:
 - msbuild -t:Rebuild -p:Configuration=Release

Windows

To build NuGet packages using dotnet:

version: 0.2

phases:
 install:

Build with NuGet packages 298

CodeArtifact CodeArtifact User Guide

 commands:
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact "$(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)v3/index.json"
 build:
 commands:
 - dotnet build

To build NuGet packages using msbuild:

version: 0.2

phases:
 install:
 commands:
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact "$(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)v3/index.json"
 build:
 commands:
 - msbuild -t:Rebuild -p:Configuration=Release

Publish NuGet packages

To publish NuGet packages from CodeBuild, include the following in your project's
buildspec.yaml file.

1. In the install section, install the CodeArtifact Credential Provider to configure command line
tools such as msbuild and dotnet to build and publish packages to CodeArtifact.

2. In the pre-build section, add your CodeArtifact repository to your NuGet configuration.

See the following buildspec.yaml examples. For more information, see Using CodeArtifact with
NuGet.

Publish NuGet packages 299

CodeArtifact CodeArtifact User Guide

After the credential provider is installed and your repository source is added, you can run NuGet CLI
tool commands from the build section and publish your NuGet packages.

Linux

To publish NuGet packages using dotnet:

version: 0.2

phases:
 install:
 runtime-versions:
 dotnet: latest
 commands:
 - export PATH="$PATH:/root/.dotnet/tools"
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact $(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)"v3/index.json"
 build:
 commands:
 - dotnet pack -o .
 - dotnet nuget push *.nupkg -s codeartifact

Windows

To publish NuGet packages using dotnet:

version: 0.2

phases:
 install:
 commands:
 - dotnet tool install -g AWS.CodeArtifact.NuGet.CredentialProvider
 - dotnet codeartifact-creds install
 pre_build:
 commands:
 - dotnet nuget add source -n codeartifact "$(aws codeartifact get-repository-
endpoint --domain my_domain --domain-owner 111122223333 --repository my_repo --format
 nuget --query repositoryEndpoint --output text)v3/index.json"

Publish NuGet packages 300

CodeArtifact CodeArtifact User Guide

 build:
 commands:
 - dotnet pack -o .
 - dotnet nuget push *.nupkg -s codeartifact

Dependency caching

You can enable local caching in CodeBuild to reduce the number of dependencies that need to be
fetched from CodeArtifact for each build. For information, see Build Caching in AWS CodeBuild in
the AWS CodeBuild User Guide. After you enable a custom local cache, add the cache directory to
your project's buildspec.yaml file.

For example, if you are using mvn, use the following.

cache:
 paths:
 - '/root/.m2/**/*'

For other tools, use the cache folders shown in this table.

Tool Cache directory

mvn /root/.m2/**/*

gradle /root/.gradle/caches/**/*

pip /root/.cache/pip/**/*

npm /root/.npm/**/*

nuget /root/.nuget/**/*

yarn (classic) /root/.cache/yarn/**/*

Dependency caching 301

https://docs.aws.amazon.com/codebuild/latest/userguide/build-caching.html

CodeArtifact CodeArtifact User Guide

Monitoring CodeArtifact

Monitoring is an important part of maintaining the reliability, availability, and performance of
CodeArtifact and your other AWS solutions. AWS provides the following monitoring tools to watch
CodeArtifact, report when something is wrong, and take automatic actions when appropriate:

• You can use Amazon EventBridge to automate your AWS services and respond automatically
to system events, such as application availability issues or resource changes. Events from AWS
services are delivered to EventBridge in near real time. You can write simple rules to indicate
which events are of interest to you and which automated actions to take when an event matches
a rule. For more information, see Amazon EventBridge User Guide and CodeArtifact event format
and example.

• You can use Amazon CloudWatch metrics to view CodeArtifact usage by operation. CloudWatch
metrics includes all requests made to CodeArtifact, and requests are shown by account. You
can view these metrics in CloudWatch metrics by navigating to the Usage/By AWS Resource
AWS namespace. For more information, see Use Amazon CloudWatch metrics in the Amazon
CloudWatch User Guide.

Topics

• Monitoring CodeArtifact events

• Use an event to start a CodePipeline execution

• Use an event to run a Lambda function

Monitoring CodeArtifact events

CodeArtifact is integrated with Amazon EventBridge, a service that automates and responds
to events, including changes in a CodeArtifact repository. You can create rules for events
and configure what happens when an event matches a rule. EventBridge was formerly called
CloudWatch Events.

The following actions can be triggered by an event:

• Invoking an AWS Lambda function.

• Activating an AWS Step Functions state machine.

• Notifying an Amazon SNS topic or an Amazon SQS queue.

Monitoring CodeArtifact events 302

https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

CodeArtifact CodeArtifact User Guide

• Starting a pipeline in AWS CodePipeline.

CodeArtifact creates an event when a package version is created, modified, or deleted. The
following are examples of CodeArtifact events:

• Publishing a new package version (for example, by running npm publish).

• Adding a new asset to an existing package version (for example, by pushing a new JAR file to an
existing Maven package).

• Copying a package version from one repository to another using copy-package-versions. For
more information, see Copy packages between repositories.

• Deleting package versions using delete-package-versions. For more information, see
Delete a package or package version.

• Deleting a package versions using delete-package. One event will be published for each
version of the deleted package. For more information, see Delete a package or package version.

• Retaining a package version in a downstream repository when it has been fetched from
an upstream repository. For more information, see Working with upstream repositories in
CodeArtifact.

• Ingesting a package version from an external repository into a CodeArtifact repository. For more
information, see Connect a CodeArtifact repository to a public repository.

Events are delivered to both the account that owns the domain and the account that administers
the repository. For example, suppose that account 111111111111 owns the domain my_domain.
Account 222222222222 creates a repository in my_domain called repo2. When a new package
version is published to repo2, both accounts receive the EventBridge events. The domain-owning
account (111111111111) receives events for all repositories in the domain. If a single account
owns both the domain and the repository within it, only a single event is delivered.

The following topics describe the CodeArtifact event format. They show you how to configure
CodeArtifact events, and how to use events with other AWS services. For more information, see
Getting Started with Amazon EventBridge in the Amazon EventBridge User Guide.

CodeArtifact event format and example

The following are event fields and descriptions along with an example of a CodeArtifact event.

CodeArtifact event format and example 303

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html

CodeArtifact CodeArtifact User Guide

CodeArtifact event format

All CodeArtifact events include the following fields.

Event field Description

version The version of the event format. There is
currently only a single version, 0.

id A unique identifier for the event.

detail-type The type of event. This determines the fields
in the detail object. The one detail-ty
pe currently supported is CodeArtifact
Package Version State Change.

source The source of the event. For CodeArtifact, it
will be aws.codeartifact .

account The AWS account ID of the account that
receives the event.

time The exact time the event was triggered.

region The region where the event was triggered.

resources A list that contains the ARN of the package
that changed. The list contains one entry. For
information about package ARN format, see
Grant write access to packages.

domainName The domain that contains the repository that
contains the package.

domainOwner The AWS account ID of the owner of the
domain.

repositoryName The repository that contains the package.

CodeArtifact event format and example 304

CodeArtifact CodeArtifact User Guide

Event field Description

repositoryAdministrator The AWS account ID of the administrator of
the repository.

packageFormat The format of the package that triggered the
event.

packageNamespace The namespace of the package that triggered
the event.

packageName The name of the package that triggered the
event.

packageVersion The version of the package that triggered the
event.

packageVersionState The state of the package version when the
event was triggered. Possible values are
Unfinished , Published , Unlisted,
Archived, and Disposed.

packageVersionRevision A value that uniquely identifies the state
of the assets and metadata of the package
version when the event was triggered. If the
package version is modified (for example, by
adding another JAR file to a Maven package),
the packageVersionRevision changes.

changes.assetsAdded The number of assets added to a package that
triggered an event. Examples of an asset are a
Maven JAR file or a Python wheel.

changes.assetsRemoved The number of assets removed from a
package that triggered an event.

changes.assetsUpdated The number of assets modified in the package
that triggered the event.

CodeArtifact event format and example 305

CodeArtifact CodeArtifact User Guide

Event field Description

changes.metadataUpdated A boolean value that is set to true if the
event includes modified package-level
metadata. For example, an event might
modify a Maven pom.xml file.

changes.statusChanged A boolean value that is set to true if
the event's packageVersionStatus
is modified(for example, if packageVe
rsionStatus changes from Unfinished
to Published).

operationType Describes the high-level type of the package
version change. The possible values are
Created, Updated, and Deleted.

sequenceNumber An integer that specifies an event number
for a package. Each event on a package
increments the sequenceNumber so events
can be arranged sequentially. An event can
increment the sequenceNumber by any
integer number.

Note

EventBridge events might be received
out of order. sequenceNumber can
be used to determine their actual
order.

eventDeduplicationId An ID used to differentiate duplicate EventBrid
ge events. In rare cases, EventBridge might
trigger the same rule more than once for a
single event or scheduled time. Or, it might
invoke the same target more than once for a
given triggered rule.

CodeArtifact event format and example 306

CodeArtifact CodeArtifact User Guide

CodeArtifact event example

The following is an example of a CodeArtifact event that might be triggered when an npm package
is published.

{
 "version":"0",
 "id":"73f03fec-a137-971e-6ac6-07c8ffffffff",
 "detail-type":"CodeArtifact Package Version State Change",
 "source":"aws.codeartifact",
 "account":"123456789012",
 "time":"2019-11-21T23:19:54Z",
 "region":"us-west-2",
 "resources":["arn:aws:codeartifact:us-west-2:111122223333:package/my_domain/
myrepo/npm//mypackage"],
 "detail":{
 "domainName":"my_domain",
 "domainOwner":"111122223333",
 "repositoryName":"myrepo",
 "repositoryAdministrator":"123456789012",
 "packageFormat":"npm",
 "packageNamespace":null,
 "packageName":"mypackage",
 "packageVersion":"1.0.0",
 "packageVersionState":"Published",
 "packageVersionRevision":"0E5DE26A4CD79FDF3EBC4924FFFFFFFF",
 "changes":{
 "assetsAdded":1,
 "assetsRemoved":0,
 "metadataUpdated":true,
 "assetsUpdated":0,
 "statusChanged":true
 },
 "operationType":"Created",
 "sequenceNumber":1,
 "eventDeduplicationId":"2mEO0A2Ke07rWUTBXk3CAiQhdTXF4N94LNaT/ffffff="
 }
 }

CodeArtifact event format and example 307

CodeArtifact CodeArtifact User Guide

Use an event to start a CodePipeline execution

This example demonstrates how to configure an Amazon EventBridge rule so that an AWS
CodePipeline execution starts when a package version in a CodeArtifact repository is published,
modified, or deleted.

Topics

• Configure EventBridge permissions

• Create the EventBridge rule

• Create the EventBridge rule target

Configure EventBridge permissions

You must add permissions for EventBridge to use CodePipeline to invoke the rule that you create.
To add these permissions using the AWS Command Line Interface (AWS CLI), follow step 1 in
Create a CloudWatch Events Rule for a CodeCommit Source (CLI) in the AWS CodePipeline User
Guide.

Create the EventBridge rule

To create the rule, use the put-rule command with the --name and --event-pattern
parameters. The event pattern specifies values that are matched against the contents of each
event. The target is triggered if the pattern matches the event. For example, the following pattern
matches CodeArtifact events from the myrepo repository in the my_domain domain.

aws events put-rule --name MyCodeArtifactRepoRule --event-pattern \
 '{"source":["aws.codeartifact"],"detail-type":["CodeArtifact Package Version State
 Change"],
 "detail":{"domainName":["my_domain"],"domainOwner":
["111122223333"],"repositoryName":["myrepo"]}}'

Create the EventBridge rule target

The following command adds a target to the rule so that when an event matches the rule, a
CodePipeline execution is triggered. For the RoleArn parameter, specify the Amazon Resource
Name (ARN) of the role created earlier in this topic.

aws events put-targets --rule MyCodeArtifactRepoRule --targets \

Use an event to start a CodePipeline execution 308

https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-trigger-source-repo-changes-cli.html

CodeArtifact CodeArtifact User Guide

 'Id=1,Arn=arn:aws:codepipeline:us-west-2:111122223333:pipeline-name,
 RoleArn=arn:aws:iam::123456789012:role/MyRole'

Use an event to run a Lambda function

This example shows you how to configure an EventBridge rule that starts an AWS Lambda function
when a package version in a CodeArtifact repository is published, modified, or deleted.

For more information, see Tutorial: Schedule AWS Lambda Functions Using EventBridge in the
Amazon EventBridge User Guide.

Topics

• Create the EventBridge rule

• Create the EventBridge rule target

• Configure EventBridge permissions

Create the EventBridge rule

To create a rule that starts a Lambda function, use the put-rule command with the --name and
--event-pattern options. The following pattern specifies npm packages in the @types scope in
any repository in the my_domain domain.

aws events put-rule --name "MyCodeArtifactRepoRule" --event-pattern \
 '{"source":["aws.codeartifact"],"detail-type":["CodeArtifact Package Version State
 Change"],
 "detail":{"domainName":["my_domain"],"domainOwner":
["111122223333"],"packageNamespace":["types"],"packageFormat":["npm"]}}'

Create the EventBridge rule target

The following command adds a target to the rule that runs the Lambda function when an event
matches the rule. For the arn parameter, specify the Amazon Resource Name (ARN) of the Lambda
function.

aws events put-targets --rule MyCodeArtifactRepoRule --targets \
 Id=1,Arn=arn:aws:lambda:us-west-2:111122223333:function:MyLambdaFunction

Use an event to run a Lambda function 309

https://docs.aws.amazon.com/eventbridge/latest/userguide/run-lambda-schedule.html

CodeArtifact CodeArtifact User Guide

Configure EventBridge permissions

Use the add-permission command to grant permissions for the rule to invoke a Lambda
function. For the --source-arn parameter, specify the ARN of the rule that you created earlier in
this example.

aws lambda add-permission --function-name MyLambdaFunction \\
 --statement-id my-statement-id --action 'lambda:InvokeFunction' \\
 --principal events.amazonaws.com \\
 --source-arn arn:aws:events:us-west-2:111122223333:rule/MyCodeArtifactRepoRule

Configure EventBridge permissions 310

CodeArtifact CodeArtifact User Guide

Security in CodeArtifact

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to CodeArtifact, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using CodeArtifact. The following topics show you how to configure CodeArtifact to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your CodeArtifact resources.

Topics

• Data protection in AWS CodeArtifact

• Monitoring CodeArtifact

• Compliance validation for AWS CodeArtifact

• AWS CodeArtifact authentication and tokens

• Resilience in AWS CodeArtifact

• Infrastructure security in AWS CodeArtifact

• Dependency substitution attacks

• Identity and Access Management for AWS CodeArtifact

311

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

CodeArtifact CodeArtifact User Guide

Data protection in AWS CodeArtifact

The AWS shared responsibility model applies to data protection in AWS CodeArtifact. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with CodeArtifact or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data protection 312

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

CodeArtifact CodeArtifact User Guide

Data encryption

Encryption is an important part of CodeArtifact security. Some encryption, such as for data in
transit, is provided by default and does not require you to do anything. Other encryption, such as
for data at rest, you can configure when you create your project or build.

• Encryption of data at rest - All assets stored in CodeArtifact are encrypted by using AWS KMS
keys (KMS keys). This includes all assets in all packages in all repositories. One KMS key is used
for each domain to encrypt all its assets. By default, an AWS managed KMS key is used, so you
do not need to create a KMS key. If you want, you can use a customer-managed KMS key that
you create and configure. For more information, see Creating keys and AWS Key Management
Service concepts in the AWS Key Management Service User Guide. You can specify a customer-
managed KMS key when you create a domain. For more information, see Working with domains
in CodeArtifact.

• Encryption of data in transit - All communication between customers and CodeArtifact and
between CodeArtifact and its downstream dependencies protected using TLS encryption.

Traffic privacy

You can improve the security of your CodeArtifact domains and the assets that they contain by
configuring CodeArtifact to use an interface virtual private cloud (VPC) endpoint. To do this, you
don't need an internet gateway, NAT device, or virtual private gateway. For more information,
see Working with Amazon VPC endpoints. For more information about AWS PrivateLink and VPC
endpoints, see AWS PrivateLink and Accessing AWS Services Through PrivateLink.

Monitoring CodeArtifact

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
CodeArtifact and your AWS solutions. You should collect monitoring data from all of the parts
of your AWS solution so that you can more easily debug a multi-point failure, if one occurs. AWS
provides the following for monitoring your CodeArtifact resources and for responding to potential
incidents:

Topics

• Logging CodeArtifact API calls with AWS CloudTrail

Data encryption 313

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html#what-is-privatelink

CodeArtifact CodeArtifact User Guide

Logging CodeArtifact API calls with AWS CloudTrail

CodeArtifact is integrated with AWS CloudTrail, a service that provides a record of actions taken by
a user, role, or an AWS service in CodeArtifact. CloudTrail captures all API calls for CodeArtifact as
events, including calls from package manager clients.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon Simple
Storage Service (Amazon S3) bucket, including events for CodeArtifact. If you don't configure a
trail, you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to CodeArtifact,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

CodeArtifact information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
CodeArtifact, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for CodeArtifact, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
You can also configure other AWS services to further analyze and act upon the event data collected
in CloudTrail logs. For more information, see the following topics:

• Creating a Trail for Your AWS Account

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to CodeArtifact actions
are tracked in CloudTrail log files, where they are written with other AWS service records.
CloudTrail determines when to create and write to a new file based on a time period and file size.

All CodeArtifact actions are logged by CloudTrail. For example, calls to the ListRepositories
(in the AWS CLI, aws codeartifact list-repositories), CreateRepository (aws

Logging CodeArtifact API calls with AWS CloudTrail 314

https://aws.amazon.com/cloudtrail
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html

CodeArtifact CodeArtifact User Guide

codeartifact create-repository), and ListPackages (aws codeartifact list-
packages) actions generate entries in the CloudTrail log files, in addition to package manager
client commands. Package manager client commands typically make more than one HTTP request
to the server. Each request generates a separate CloudTrail log event.

Cross-account delivery of CloudTrail logs

Up to three separate accounts receive CloudTrail logs for a single API call:

• The account that made the request—for example, the account that called
GetAuthorizationToken.

• The repository administrator account—for example, the account that administers the repository
that ListPackages was called on.

• The domain owner's account—for example, the account that owns the domain that contains the
repository that an API was called on.

For APIs like ListRepositoriesInDomain that are actions against a domain and not a specific
repository, only the calling account and the domain owner's account receive the CloudTrail log. For
APIs like ListRepositories that are not authorized against any resource, only the account of the
caller receives the CloudTrail log.

Understanding CodeArtifact log file entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted
events. A log event represents a single request from any source and includes information about the
requested action, the date and time of the action, request parameters, and so on. Log entries are
not an ordered stack trace of the public API calls, so they do not appear in any specific order.

Topics

• Example: A log entry for calling the GetAuthorizationToken API

• Example: A log entry for fetching an npm package version

Example: A log entry for calling the GetAuthorizationToken API

A log entry created by GetAuthorizationToken includes the domain name in the
requestParameters field.

{

Logging CodeArtifact API calls with AWS CloudTrail 315

https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_GetAuthorizationToken.html

CodeArtifact CodeArtifact User Guide

 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/Console/example",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-12-11T13:31:37Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Console",
 "accountId": "123456789012",
 "userName": "Console"
 }
 }
 },
 "eventTime": "2018-12-11T13:31:37Z",
 "eventSource": "codeartifact.amazonaws.com",
 "eventName": "GetAuthorizationToken",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.50",
 "userAgent": "aws-cli/1.16.37 Python/2.7.10 Darwin/16.7.0 botocore/1.12.27",
 "requestParameters": {
 "domainName": "example-domain"
 "domainOwner": "123456789012"
 },
 "responseElements": {
 "sessionToken": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "requestID": "6b342fc0-5bc8-402b-a7f1-ffffffffffff",
 "eventID": "100fde01-32b8-4c2b-8379-ffffffffffff",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Logging CodeArtifact API calls with AWS CloudTrail 316

CodeArtifact CodeArtifact User Guide

Example: A log entry for fetching an npm package version

Requests made by all package manager clients, including the npm client, have additional
data logged including the domain name, repository name, and package name in
the requestParameters field. The URL path and HTTP method are logged in the
additionalEventData field.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/Console/example",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIJIOBJIBSREXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-12-17T02:05:16Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Console",
 "accountId": "123456789012",
 "userName": "Console"
 }
 }
 },
 "eventTime": "2018-12-17T02:05:46Z",
 "eventSource": "codeartifact.amazonaws.com",
 "eventName": "ReadFromRepository",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.50",
 "userAgent": "npm/6.14.15 node/v12.22.9 linux x64 ci/custom",
 "requestParameters": {
 "domainName": "example-domain",
 "domainOwner": "123456789012",
 "repositoryName": "example-repo",
 "packageName": "lodash",
 "packageFormat": "npm",
 "packageVersion": "4.17.20"
 },

Logging CodeArtifact API calls with AWS CloudTrail 317

CodeArtifact CodeArtifact User Guide

 "responseElements": null,
 "additionalEventData": {
 "httpMethod": "GET",
 "requestUri": "/npm/lodash/-/lodash-4.17.20.tgz"
 },
 "requestID": "9f74b4f5-3607-4bb4-9229-ffffffffffff",
 "eventID": "c74e40dd-8847-4058-a14d-ffffffffffff",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Compliance validation for AWS CodeArtifact

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

Compliance validation 318

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

CodeArtifact CodeArtifact User Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

AWS CodeArtifact authentication and tokens

CodeArtifact requires users to authenticate with the service in order to publish or consume
package versions. You must authenticate to the CodeArtifact service by creating an authorization
token using your AWS credentials. In order to create an authorization token, you must have
the correct permissions. For the permissions needed to create an authorization token, see the
GetAuthorizationToken entry in the AWS CodeArtifact permissions reference. For more general
information on CodeArtifact permissions, see How AWS CodeArtifact works with IAM.

To fetch an authorization token from CodeArtifact, you must call the GetAuthorizationToken
API. Using the AWS CLI, you can call GetAuthorizationToken with the login or get-
authorization-token command.

Note

Root users cannot call GetAuthorizationToken.

• aws codeartifact login: This command makes it easy to configure common package
managers to use CodeArtifact in a single step. Calling login fetches a token with
GetAuthorizationToken and configures your package manager with the token and correct
CodeArtifact repository endpoint. The support package managers are as follows:

Authentication and tokens 319

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_GetAuthorizationToken.html
https://docs.aws.amazon.com/codeartifact/latest/APIReference/API_GetAuthorizationToken.html

CodeArtifact CodeArtifact User Guide

• dotnet

• npm

• nuget

• pip

• swift

• twine

• aws codeartifact get-authorization-token: For package managers not supported by
login, you can call get-authorization-token directly and then configure your package
manager with the token as required, for example, by adding it to a configuration file or storing it
an environment variable.

CodeArtifact authorization tokens are valid for a default period of 12 hours. Tokens can be
configured with a lifetime between 15 minutes and 12 hours. When the lifetime expires, you must
fetch another token. The token lifetime begins after login or get-authorization-token is
called.

If login or get-authorization-token is called while assuming a role, you can configure the
lifetime of the token to be equal to the remaining time in the session duration of the role by
setting the value of --duration-seconds to 0. Otherwise, the token lifetime is independent
of the maximum session duration of the role. For example, suppose that you call sts assume-
role and specify a session duration of 15 minutes, and then call login to fetch a CodeArtifact
authorization token. In this case, the token is valid for the full 12-hour period even though this is
longer than the 15-minute session duration. For information about controlling session duration,
see Using IAM Roles in the IAM User Guide.

Tokens created with the login command

The aws codeartifact login command will fetch a token with GetAuthorizationToken
and configure your package manager with the token and correct CodeArtifact repository endpoint.

The following table describes the parameters for the login command.

Tokens created with the login command 320

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

CodeArtifact CodeArtifact User Guide

Parameter Required Description

--tool Yes The package manager to authentic
ate to. Possible values are dotnet,
npm, nuget, pip, swift and twine.

--domain Yes The domain name that the repositor
y belongs to.

--domain-owner No The ID of the owner of the domain.
This parameter is required if
accessing a domain that is owned
by an AWS account that you are not
authenticated to. For more informati
on, see Cross-account domains.

--repository Yes The name of the repository to
authenticate to.

--duration-seconds No The time, in seconds, that the login
information is valid. The minimum
value is 900* and maximum value is
43200.

--namespace No Associates a namespace with your
repository tool.

--dry-run No Only print the commands that
would be executed to connect
your tool with your repository
without making any changes to your
configuration.

*A value of 0 is also valid when calling login while assuming a role. Calling login with --
duration-seconds 0 creates a token with a lifetime equal to the remaining time in the
session duration of an assumed role.

The following example shows how to fetch an authorization token with the login command.

Tokens created with the login command 321

CodeArtifact CodeArtifact User Guide

aws codeartifact login \
 --tool dotnet | npm | nuget | pip | swift | twine \
 --domain my_domain \
 --domain-owner 111122223333 \
 --repository my_repo

For specific guidance on how to use the login command with npm, see Configure and use npm
with CodeArtifact. For Python, see Using CodeArtifact with Python.

Permissions required to call the GetAuthorizationToken API

Both the sts:GetServiceBearerToken and the codeartifact:GetAuthorizationToken
permissions are required to call the CodeArtifact GetAuthorizationToken API.

To use a package manager with a CodeArtifact repository, your IAM user or role must allow
sts:GetServiceBearerToken. While sts:GetServiceBearerToken can be added to a
CodeArtifact domain resource policy, the permission will have no effect in that policy.

Tokens created with the GetAuthorizationToken API

You can call get-authorization-token to fetch an authorization token from CodeArtifact.

aws codeartifact get-authorization-token \
 --domain my_domain \
 --domain-owner 111122223333 \
 --query authorizationToken \
 --output text

You can change how long a token is valid using the --duration-seconds argument. The
minimum value is 900 and the maximum value is 43200. The following example creates a token
that will last for 1 hour (3600 seconds).

aws codeartifact get-authorization-token \
 --domain my_domain \
 --domain-owner 111122223333 \
 --query authorizationToken \
 --output text \
 --duration-seconds 3600

Permissions required to call the GetAuthorizationToken API 322

CodeArtifact CodeArtifact User Guide

If calling get-authorization-token while assuming a role the token lifetime is independent
of the maximum session duration of the role. You can configure the token to expire when the
assumed role's session duration expires by setting --duration-seconds to 0.

aws codeartifact get-authorization-token \
 --domain my_domain \
 --domain-owner 111122223333 \
 --query authorizationToken \
 --output text \
 --duration-seconds 0

See the following documentation for more information:

• For guidance on tokens and environment variables, see Pass an auth token using an environment
variable.

• For Python users, see Configure pip without the login command or Configure and use twine with
CodeArtifact.

• For Maven users, see Use CodeArtifact with Gradle or Use CodeArtifact with mvn.

• For npm users, see Configuring npm without using the login command.

Pass an auth token using an environment variable

AWS CodeArtifact uses authorization tokens vended by the GetAuthorizationToken API
to authenticate and authorize requests from build tools such as Maven and Gradle. For more
information on these auth tokens, see Tokens created with the GetAuthorizationToken API.

You can store these auth tokens in an environment variable that can be read by a build tool to
obtain the token it needs to fetch packages from a CodeArtifact repository or publish packages to
it.

For security reasons, this approach is preferable to storing the token in a file where it might be read
by other users or processes, or accidentally checked into source control.

1. Configure your AWS credentials as described in Install or upgrade and then configure the AWS
CLI.

2. Set the CODEARTIFACT_AUTH_TOKEN environment variable:

Pass an auth token using an environment variable 323

CodeArtifact CodeArtifact User Guide

Note

In some scenarios, you don't need to include the --domain-owner argument. For
more information, see Cross-account domains.

• macOS or Linux:

export CODEARTIFACT_AUTH_TOKEN=`aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text`

• Windows (using default command shell):

for /f %i in ('aws codeartifact get-authorization-token --domain my_domain --
domain-owner 111122223333 --query authorizationToken --output text') do set
 CODEARTIFACT_AUTH_TOKEN=%i

• Windows PowerShell:

$env:CODEARTIFACT_AUTH_TOKEN = aws codeartifact get-authorization-token --
domain my_domain --domain-owner 111122223333 --query authorizationToken --output
 text

Revoking CodeArtifact authorization tokens

When an authenticated user creates a token to access CodeArtifact resources, that token lasts
until its customizable access period has ended. The default access period is 12 hours. In some
circumstances, you might want to revoke access to a token before the access period has expired.
You can revoke access to CodeArtifact resources by following these instructions.

If you created the access token using temporary security credentials, such as assumed roles
or federated user access, you can revoke access by updating an IAM policy to deny access. For
information, see Disabling Permissions for Temporary Security Credentials in the IAM User Guide.

If you used long-term IAM user credentials to create the access token, you must modify the user's
policy to deny access, or delete the IAM user. For more information, see Changing Permissions for
an IAM User or Deleting an IAM User.

Revoking CodeArtifact authorization tokens 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_disable-perms.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting

CodeArtifact CodeArtifact User Guide

Resilience in AWS CodeArtifact

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. AWS CodeArtifact operates
in multiple Availability Zones and stores artifact data and metadata in Amazon S3 and Amazon
DynamoDB. Your encrypted data is redundantly stored across multiple facilities and multiple
devices in each facility, making it highly available and highly durable.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS CodeArtifact

As a managed service, AWS CodeArtifact is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access CodeArtifact through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Dependency substitution attacks

Package managers simplify the process of packaging and sharing reusable code. These packages
may be private packages developed by an organization for use in their applications, or they may be
public, typically open-source packages that are developed outside an organization and distributed
by public package repositories. When requesting packages, developers rely on their package

Resilience 325

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

CodeArtifact CodeArtifact User Guide

manager to fetch new versions of their dependencies. Dependency substitution attacks, also known
as dependency confusion attacks, exploit the fact that a package manager typically has no way to
distinguish legitimate versions of a package from malicious versions.

Dependency substitution attacks belong to a subset of hacks known as software supply chain
attacks. A software supply chain attack is an attack that takes advantage of vulnerabilities
anywhere in the software supply chain.

A dependency substitution attack can target anyone who uses both internally developed packages
and packages fetched from public repositories. The attackers identify internal package names
and then strategically place malicious code with the same name in public package repositories.
Typically, the malicious code is published in a package with a high version number. Package
managers fetch the malicious code from these public feeds because they believe that the malicious
packages are the latest versions of the package. This causes a "confusion" or "substitution" between
the desired package and the malicious package, leading to the code being compromised.

To prevent dependency substitution attacks, AWS CodeArtifact provides package origin controls.
Package origin controls are settings that control how packages can be added to your repositories.
The controls can be used to ensure package versions cannot be both published directly to your
repository and ingested from public sources, protecting you from dependency substitution attacks.
Origin controls can be set on individual packages and multiple packages by setting origin controls
on package groups. For more information about package origin controls and how to change them,
see Editing package origin controls and Package group origin controls.

Identity and Access Management for AWS CodeArtifact

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use CodeArtifact resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS CodeArtifact works with IAM

• Identity-based policy examples for AWS CodeArtifact

Identity and Access Management 326

CodeArtifact CodeArtifact User Guide

• Using tags to control access to CodeArtifact resources

• AWS CodeArtifact permissions reference

• Troubleshooting AWS CodeArtifact identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in CodeArtifact.

Service user – If you use the CodeArtifact service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more CodeArtifact features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
CodeArtifact, see Troubleshooting AWS CodeArtifact identity and access.

Service administrator – If you're in charge of CodeArtifact resources at your company, you
probably have full access to CodeArtifact. It's your job to determine which CodeArtifact features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
CodeArtifact, see How AWS CodeArtifact works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to CodeArtifact. To view example CodeArtifact identity-based
policies that you can use in IAM, see Identity-based policy examples for AWS CodeArtifact.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 327

CodeArtifact CodeArtifact User Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 328

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

CodeArtifact CodeArtifact User Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

Authenticating with identities 329

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

CodeArtifact CodeArtifact User Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 330

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

CodeArtifact CodeArtifact User Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 331

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

CodeArtifact CodeArtifact User Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached

Managing access using policies 332

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

CodeArtifact CodeArtifact User Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS CodeArtifact works with IAM

Before you use IAM to manage access to CodeArtifact, learn what IAM features are available to use
with CodeArtifact.

IAM features you can use with AWS CodeArtifact

IAM feature CodeArtifact support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) No

ACLs No

ABAC (tags in policies) Partial

How AWS CodeArtifact works with IAM 333

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

CodeArtifact CodeArtifact User Guide

IAM feature CodeArtifact support

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles No

To get a high-level view of how CodeArtifact and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for CodeArtifact

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for CodeArtifact

To view examples of CodeArtifact identity-based policies, see Identity-based policy examples for
AWS CodeArtifact.

Resource-based policies within CodeArtifact

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

How AWS CodeArtifact works with IAM 334

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

CodeArtifact CodeArtifact User Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for CodeArtifact

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of CodeArtifact actions, see Actions defined by AWS CodeArtifact in the Service
Authorization Reference.

Policy actions in CodeArtifact use the following prefix before the action:

codeartifact

To specify multiple actions in a single statement, separate them with commas.

"Action": [

How AWS CodeArtifact works with IAM 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-actions-as-permissions

CodeArtifact CodeArtifact User Guide

 "codeartifact:action1",
 "codeartifact:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "codeartifact:Describe*"

To view examples of CodeArtifact identity-based policies, see Identity-based policy examples for
AWS CodeArtifact.

Policy resources for CodeArtifact

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of CodeArtifact resource types and their ARNs, see Resources defined by AWS
CodeArtifact in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions defined by AWS CodeArtifact. To see examples of specifying
CodeArtifact resource ARNs in policies, see AWS CodeArtifact resources and operations.

Policy condition keys for CodeArtifact

Supports service-specific policy condition keys: No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How AWS CodeArtifact works with IAM 336

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-actions-as-permissions

CodeArtifact CodeArtifact User Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Note

AWS CodeArtifact does not support the following AWS Global Condition Context Keys:

• Referer

• UserAgent

To see a list of CodeArtifact condition keys, see Condition keys for AWS CodeArtifact in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by AWS CodeArtifact.

To view examples of CodeArtifact identity-based policies, see Identity-based policy examples for
AWS CodeArtifact.

ACLs in CodeArtifact

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

How AWS CodeArtifact works with IAM 337

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-referer
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-useragent
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-actions-as-permissions

CodeArtifact CodeArtifact User Guide

ABAC with CodeArtifact

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

For more information about tagging CodeArtifact resources, including example identity-based
policies for limiting access to a resource based on the tags on that resource, see Using tags to
control access to CodeArtifact resources.

Using temporary credentials with CodeArtifact

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then

How AWS CodeArtifact works with IAM 338

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

CodeArtifact CodeArtifact User Guide

switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for CodeArtifact

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

There are two CodeArtifact API actions that require the calling principal to have permissions in
other services:

1. GetAuthorizationToken requires sts:GetServiceBearerToken along with
codeartifact:GetAuthorizationToken.

2. CreateDomain, when providing a non-default encryption key, requires both
kms:DescribeKey and kms:CreateGrant on the KMS key along with
codeartifact:CreateDomain.

For more information about required permissions and resources for actions in CodeArtifact, see
AWS CodeArtifact permissions reference.

Service roles for CodeArtifact

Supports service roles: No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

How AWS CodeArtifact works with IAM 339

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

CodeArtifact CodeArtifact User Guide

Warning

Changing the permissions for a service role might break CodeArtifact functionality. Edit
service roles only when CodeArtifact provides guidance to do so.

Service-linked roles for CodeArtifact

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS CodeArtifact

By default, users and roles don't have permission to create or modify CodeArtifact resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by CodeArtifact, including the format of
the ARNs for each of the resource types, see Actions, resources, and condition keys for AWS
CodeArtifact in the Service Authorization Reference.

Topics

• Policy best practices

• Using the CodeArtifact console

• AWS managed (predefined) policies for AWS CodeArtifact

• Allow a user to view their own permissions

Identity-based policy examples 340

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html

CodeArtifact CodeArtifact User Guide

• Allow a user to get information about repositories and domains

• Allow a user to get information about specific domains

• Allow a user to get information about specific repositories

• Limit authorization token duration

Policy best practices

Identity-based policies determine whether someone can create, access, or delete CodeArtifact
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API

Identity-based policy examples 341

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

CodeArtifact CodeArtifact User Guide

operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the CodeArtifact console

To access the AWS CodeArtifact console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the CodeArtifact resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the CodeArtifact console, also attach the
AWSCodeArtifactAdminAccess or AWSCodeArtifactReadOnlyAccess AWS managed policy
to the entities. For more information, see Adding permissions to a user in the IAM User Guide.

AWS managed (predefined) policies for AWS CodeArtifact

AWS addresses many common use cases by providing standalone IAM policies that are created and
administered by AWS. These AWS managed policies grant necessary permissions for common use
cases so you can avoid having to investigate what permissions are needed. For more information,
see AWS Managed Policies in the IAM User Guide.

The following AWS managed policies, which you can attach to users in your account, are specific to
AWS CodeArtifact.

• AWSCodeArtifactAdminAccess – Provides full access to CodeArtifact including permissions to
administrate CodeArtifact domains.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

Identity-based policy examples 342

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

CodeArtifact CodeArtifact User Guide

 "codeartifact:*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

• AWSCodeArtifactReadOnlyAccess – Provides read-only access to CodeArtifact.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "codeartifact:Describe*",
 "codeartifact:Get*",
 "codeartifact:List*",
 "codeartifact:ReadFromRepository"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]

Identity-based policy examples 343

CodeArtifact CodeArtifact User Guide

}

To create and manage CodeArtifact service roles, you must also attach the AWS managed policy
named IAMFullAccess.

You can also create your own custom IAM policies to allow permissions for CodeArtifact actions
and resources. You can attach these custom policies to the IAM users or groups that require those
permissions.

Allow a user to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"

Identity-based policy examples 344

CodeArtifact CodeArtifact User Guide

],
 "Resource": "*"
 }
]
}

Allow a user to get information about repositories and domains

The following policy allows an IAM user or role to list and describe any type of CodeArtifact
resource, including domains, repositories, packages, and assets. The policy also includes the
codeArtifact:ReadFromRepository permission, which allows the principal to fetch packages
from a CodeArtifact repository. It does not allow creating new domains or repositories and does
not allow publishing new packages.

The codeartifact:GetAuthorizationToken and sts:GetServiceBearerToken
permissions are required to call the GetAuthorizationToken API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeartifact:List*",
 "codeartifact:Describe*",
 "codeartifact:Get*",
 "codeartifact:Read*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Identity-based policy examples 345

CodeArtifact CodeArtifact User Guide

Allow a user to get information about specific domains

The following shows an example of a permissions policy that allows a user to list domains only in
the us-east-2 region for account 123456789012 for any domain that starts with the name my.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codeartifact:ListDomains",
 "Resource": "arn:aws:codeartifact:us-east-2:123456789012:domain/my*"
 }
]
}

Allow a user to get information about specific repositories

The following shows an example of a permissions policy that allows a user to get information
about repositories that end with test, including information about the packages in them. The user
will not be able to publish, create, or delete resources.

The codeartifact:GetAuthorizationToken and sts:GetServiceBearerToken
permissions are required to call the GetAuthorizationToken API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeartifact:List*",
 "codeartifact:Describe*",
 "codeartifact:Get*",
 "codeartifact:Read*"
],
 "Resource": "arn:aws:codeartifact:*:*:repository/*/*test"
 },
 {
 "Effect": "Allow",
 "Action": [
 "codeartifact:List*",

Identity-based policy examples 346

CodeArtifact CodeArtifact User Guide

 "codeartifact:Describe*"
],
 "Resource": "arn:aws:codeartifact:*:*:package/*/*test/*/*/*"
 },
 {
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "codeartifact:GetAuthorizationToken",
 "Resource": "*"
 }
]
}

Limit authorization token duration

Users must authenticate to CodeArtifact with authorization tokens to publish or consume package
versions. Authorization tokens are valid only during their configured lifetime. Tokens have a
default lifetime of 12 hours. For more information on authorization tokens, see AWS CodeArtifact
authentication and tokens.

When fetching a token, users can configure the lifetime of the token. Valid values for the lifetime
of an authorization token are 0, and any number between 900 (15 minutes) and 43200 (12 hours).
A value of 0 will create a token with a duration equal to the user's role's temporary credentials.

Administrators can limit the valid values for the lifetime of an authorization token by using the
sts:DurationSeconds condition key in the permissions policy attached to the user or group. If
the user attempts to create an authorization token with a lifetime outside of the valid values, the
token creation will fail.

The following example policies limit the possible durations of an authorization token created by
CodeArtifact users.

Example policy: Limit token lifetime to exactly 12 hours (43200 seconds)

Identity-based policy examples 347

CodeArtifact CodeArtifact User Guide

With this policy, users will only be able to create authorization tokens with a lifetime of 12 hours.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codeartifact:*",
 "Resource": "*"
 },
 {
 "Sid": "sts",
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "NumericEquals": {
 "sts:DurationSeconds": 43200
 },
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Example policy: Limit token lifetime between 15 minutes and 1 hour, or equal to the user's
temporary credentials period

With this policy, users will be able to create tokens that are valid between 15 minutes and 1 hour.
Users will also be able to create a token that lasts the duration of their role's temporary credentials
by specifying 0 for --durationSeconds.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "codeartifact:*",
 "Resource": "*"
 },

Identity-based policy examples 348

CodeArtifact CodeArtifact User Guide

 {
 "Sid": "sts",
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "*",
 "Condition": {
 "NumericLessThanEquals": {
 "sts:DurationSeconds": 3600
 },
 "StringEquals": {
 "sts:AWSServiceName": "codeartifact.amazonaws.com"
 }
 }
 }
]
}

Using tags to control access to CodeArtifact resources

Conditions in IAM user policy statements are part of the syntax that you use to specify permissions
to resources required by CodeArtifact actions. Using tags in conditions is one way to control access
to resources and requests. For information about tagging CodeArtifact resources, see Tagging
resources. This topic discusses tag-based access control.

When you design IAM policies, you might be setting granular permissions by granting access to
specific resources. As the number of resources that you manage grows, this task becomes more
difficult. Tagging resources and using tags in policy statement conditions can make this task easier.
You grant access in bulk to any resource with a certain tag. Then you repeatedly apply this tag to
relevant resources, during creation or later.

Tags can be attached to the resource or passed in the request to services that support tagging. In
CodeArtifact, resources can have tags, and some actions can include tags. When you create an IAM
policy, you can use tag condition keys to control:

• Which users can perform actions on a domain or repository resource, based on tags that it
already has.

• Which tags can be passed in an action's request.

• Whether specific tag keys can be used in a request.

Using tags to control access to CodeArtifact resources 349

CodeArtifact CodeArtifact User Guide

For the complete syntax and semantics of tag condition keys, see Controlling Access Using Tags in
the IAM User Guide.

Important

When using tags on resources to limit actions, the tags must be on the resource in which
the action operates on. For example, to deny DescribeRepository permissions with
tags, the tags must be on each repository and not the domain. See AWS CodeArtifact
permissions reference for a list of actions in CodeArtifact and which resources they operate
on.

Tag-based access control examples

The following examples demonstrate how to specify tag conditions in policies for CodeArtifact
users.

Example 1: Limit actions based on tags in the request

The AWSCodeArtifactAdminAccess managed user policy gives users unlimited permission to
perform any CodeArtifact action on any resource.

The following policy limits this power and denies unauthorized users permission to create
repositories unless the request contains certain tags. To do that, it denies the CreateRepository
action if the request does not specify a tag named costcenter with one of the values 1 or 2. A
customer's administrator must attach this IAM policy to unauthorized IAM users, in addition to the
managed user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "codeartifact:CreateRepository",
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/costcenter": "true"
 }
 }
 },

Using tags to control access to CodeArtifact resources 350

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

CodeArtifact CodeArtifact User Guide

 {
 "Effect": "Deny",
 "Action": "codeartifact:CreateRepository",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringNotEquals": {
 "aws:RequestTag/costcenter": [
 "1",
 "2"
]
 }
 }
 }
]
}

Example 2: Limit actions based on resource tags

The AWSCodeArtifactAdminAccess managed user policy gives users unlimited permission to
perform any CodeArtifact action on any resource.

The following policy limits this power and denies unauthorized users permission to perform actions
on repositories in specified domains. To do that, it denies some actions if the resource has a tag
named Key1 with one of the values Value1 or Value2. (The aws:ResourceTag condition key
is used to control access to the resources based on the tags on those resources.) A customer's
administrator must attach this IAM policy to unauthorized IAM users, in addition to the managed
user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "codeartifact:TagResource",
 "codeartifact:UntagResource",
 "codeartifact:DescribeDomain",
 "codeartifact:DescribeRepository",
 "codeartifact:PutDomainPermissionsPolicy",
 "codeartifact:PutRepositoryPermissionsPolicy",
 "codeartifact:ListRepositoriesInDomain",
 "codeartifact:UpdateRepository",

Using tags to control access to CodeArtifact resources 351

CodeArtifact CodeArtifact User Guide

 "codeartifact:ReadFromRepository",
 "codeartifact:ListPackages",
 "codeartifact:ListTagsForResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Key1": ["Value1", "Value2"]
 }
 }
 }
]
}

Example 3: Allow actions based on resource tags

The following policy grants users permission to perform actions on, and get information about,
repositories and packages in CodeArtifact.

To do that, it allows specific actions if the repository has a tag named Key1 with the value Value1.
(The aws:RequestTag condition key is used to control which tags can be passed in an IAM
request.) The aws:TagKeys condition ensures tag key case sensitivity. This policy is useful for
IAM users who don't have the AWSCodeArtifactAdminAccess managed user policy attached.
The managed policy gives users unlimited permission to perform any CodeArtifact action on any
resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeartifact:UpdateRepository",
 "codeartifact:DeleteRepository",
 "codeartifact:ListPackages"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Key1": "Value1"
 }
 }

Using tags to control access to CodeArtifact resources 352

CodeArtifact CodeArtifact User Guide

 }
]
}

Example 4: Allow actions based on tags in the request

The following policy grants users permission to create repositories in specified domains in
CodeArtifact.

To do that, it allows the CreateRepository and TagResource actions if the create resource
API in the request specifies a tag named Key1 with the value Value1. (The aws:RequestTag
condition key is used to control which tags can be passed in an IAM request.) The aws:TagKeys
condition ensures tag key case sensitivity. This policy is useful for IAM users who don't have the
AWSCodeArtifactAdminAccess managed user policy attached. The managed policy gives users
unlimited permission to perform any CodeArtifact action on any resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codeartifact:CreateRepository",
 "codeartifact:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Key1": "Value1"
 }
 }
 }
]
}

AWS CodeArtifact permissions reference

AWS CodeArtifact resources and operations

In AWS CodeArtifact, the primary resource is a domain. In a policy, you use an Amazon Resource
Name (ARN) to identify the resource the policy applies to. Repositories are also resources and have

AWS CodeArtifact permissions reference 353

CodeArtifact CodeArtifact User Guide

ARNs associated with them. For more information, see Amazon Resource Names (ARNs) in the
Amazon Web Services General Reference.

Resource type ARN format

Domain arn:aws:codeartifact: region-ID :account-I
D :domain/my_domain

Repository arn:aws:codeartifact: region-ID :account-I
D :repository/ my_domain /my_repo

Package group arn:aws:codeartifact: region-ID :account-I
D :package-group/ my_domain /encoded_package_gr
oup_pattern

Package with a
namespace

arn:aws:codeartifact: region-ID :account-
ID :package/ my_domain /my_repo/package-f
ormat /namespace /my_package

Package without a
namespace

arn:aws:codeartifact: region-ID :account-
ID :package/ my_domain /my_repo/package-f
ormat //my_package

All CodeArtifact
resources

arn:aws:codeartifact:*

All CodeArtifact
resources owned by the
specified account in the
specified AWS Region

arn:aws:codeartifact: region-ID :account-ID :*

Which resource ARN you specify depends on which action or actions you want to control access to.

You can indicate a specific domain (myDomain) in your statement using its ARN as follows.

"Resource": "arn:aws:codeartifact:us-east-2:123456789012:domain/myDomain"

You can indicate a specific repository (myRepo) in your statement using its ARN as follows.

AWS CodeArtifact permissions reference 354

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

CodeArtifact CodeArtifact User Guide

"Resource": "arn:aws:codeartifact:us-east-2:123456789012:domain/myDomain/myRepo"

To specify multiple resources in a single statement, separate their ARNs with commas. The
following statement applies to all packages and repositories in a specific domain.

"Resource": [
 "arn:aws:codeartifact:us-east-2:123456789012:domain/myDomain",
 "arn:aws:codeartifact:us-east-2:123456789012:repository/myDomain/*",
 "arn:aws:codeartifact:us-east-2:123456789012:package/myDomain/*"
]

Note

Many AWS services treat a colon (:) or a forward slash (/) as the same character in ARNs.
However, CodeArtifact uses an exact match in resource patterns and rules. Be sure to use
the correct characters when you create event patterns so that they match the ARN syntax in
the resource.

AWS CodeArtifact API operations and permission

You can use the following table as a reference when you are setting up access control and writing
permissions policies that you can attach to an IAM identity (identity-based policies).

You can use AWS-wide condition keys in your AWS CodeArtifact policies to express conditions. For a
list, see IAM JSON Policy Elements Reference in the IAM User Guide.

You specify the actions in the policy's Action field. To specify an action, use
the codeartifact: prefix followed by the API operation name (for example,
codeartifact:CreateDomain and codeartifact:AssociateExternalConnection).
To specify multiple actions in a single statement, separate them with
commas (for example, "Action": ["codeartifact:CreateDomain",
"codeartifact:AssociateExternalConnection"]).

Using wildcard characters

You specify an ARN, with or without a wildcard character (*), as the resource value in the policy's
Resource field. You can use a wildcard to specify multiple actions or resources. For example,

AWS CodeArtifact permissions reference 355

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

CodeArtifact CodeArtifact User Guide

codeartifact:* specifies all CodeArtifact actions and codeartifact:Describe* specifies all
CodeArtifact actions that begin with the word Describe.

Package group ARNs

Note

This section about how package group ARNs and pattern encoding is informational.
It is recommended to copy ARNs from the console, or fetch ARNs using the
DescribePackageGroup API instead of encoding patterns and constructing ARNs.

IAM policies use the wildcard character, *, to match multiple IAM actions or multiple resources.
Package group patterns also use the * character. In order to more easily write IAM policies that
match a single package group, the package group ARN format uses an encoded version of the
package group pattern.

Specifically, the package group ARN format is as follows:

arn:aws:codeartifact:region:account-ID:package-
group/my_domain/encoded_package_group_pattern

Where the encoded package group pattern is the package group pattern, with certain special
characters replaced with their percent-encoded values. The following list contains the characters
and their corresponding percent-encoded values:

• * : %2a

• $: %24

• % : %25

For example, the ARN for a root package group of a domain, (/*), would be:

arn:aws:codeartifact:us-east-1:111122223333:package-group/my_domain/%2a

Note that characters not included in the list can not be encoded, and ARNs are case-sensitive, so *
must be encoded as %2a and not %2A.

AWS CodeArtifact permissions reference 356

CodeArtifact CodeArtifact User Guide

Troubleshooting AWS CodeArtifact identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with CodeArtifact and IAM.

Topics

• I am not authorized to perform an action in CodeArtifact

• I want to allow people outside of my AWS account to access my CodeArtifact resources

I am not authorized to perform an action in CodeArtifact

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
codeartifact:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 codeartifact:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the codeartifact:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my CodeArtifact
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether CodeArtifact supports these features, see How AWS CodeArtifact works with
IAM.

Troubleshooting 357

CodeArtifact CodeArtifact User Guide

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 358

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

CodeArtifact CodeArtifact User Guide

Working with Amazon VPC endpoints

You can configure CodeArtifact to use an interface virtual private cloud (VPC) endpoint to improve
the security of your VPC.

VPC endpoints use AWS PrivateLink, a service that makes it possible for you to access CodeArtifact
APIs through private IP addresses. AWS PrivateLink restricts all network traffic between your VPC
and CodeArtifact to the AWS network. When you use an interface VPC endpoint, you don't need an
internet gateway, NAT device, or virtual private gateway. For more information, see VPC Endpoints
in the Amazon Virtual Private Cloud User Guide.

Important

• VPC endpoints do not support cross-AWS Region requests. Make sure that you create
your endpoint in the same AWS Region where you plan to issue your API calls to
CodeArtifact.

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If
you want to use your own DNS, you can use conditional DNS forwarding. For more
information, see DHCP Option Sets in the Amazon Virtual Private Cloud User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on
port 443 from the private subnet of the VPC.

Topics

• Create VPC endpoints for CodeArtifact

• Create the Amazon S3 gateway endpoint

• Use CodeArtifact from a VPC

• Create a VPC endpoint policy for CodeArtifact

Create VPC endpoints for CodeArtifact

To create virtual private cloud (VPC) endpoints for CodeArtifact, use the Amazon EC2 create-
vpc-endpoint AWS CLI command. For more information, see Interface VPC Endpoints (AWS
PrivateLink) in the Amazon Virtual Private Cloud User Guide.

Create VPC endpoints 359

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

CodeArtifact CodeArtifact User Guide

Two VPC endpoints are required so that all requests to CodeArtifact are in the AWS network. The
first endpoint is used to call CodeArtifact APIs (for example, GetAuthorizationToken and
CreateRepository).

com.amazonaws.region.codeartifact.api

The second endpoint is used to access CodeArtifact repositories using package managers and build
tools (for example, npm and Gradle).

com.amazonaws.region.codeartifact.repositories

The following command creates an endpoint to access CodeArtifact repositories.

aws ec2 create-vpc-endpoint --vpc-id vpcid --vpc-endpoint-type Interface \
 --service-name com.amazonaws.region.codeartifact.api --subnet-ids subnetid \
 --security-group-ids groupid --private-dns-enabled

The following command creates an endpoint to access package managers and build tools.

aws ec2 create-vpc-endpoint --vpc-id vpcid --vpc-endpoint-type Interface \
 --service-name com.amazonaws.region.codeartifact.repositories --subnet-ids subnetid \
 --security-group-ids groupid --private-dns-enabled

Note

When you create a codeartifact.repositories endpoint, you must create a private
DNS hostname using the --private-dns-enabled option. If you can't or do not want
to create a private DNS hostname when you create the codeartifact.repositories
endpoint, you must follow an extra configuration step to use your package manager with
CodeArtifact from a VPC. See Use the codeartifact.repositories endpoint without
private DNS for more information.

After creating VPC endpoints, you may need to do more configuration with security group rules to
use the endpoints with CodeArtifact. For more information about security groups in Amazon VPC,
see Security groups.

If you are having issues connecting to CodeArtifact, you can use the VPC Reachability Analyzer tool
to debug the issue. For more information, see What is VPC Reachability Analyzer?

Create VPC endpoints 360

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoints-security-groups
https://docs.aws.amazon.com/vpc/latest/reachability/what-is-reachability-analyzer.html

CodeArtifact CodeArtifact User Guide

Create the Amazon S3 gateway endpoint

CodeArtifact uses Amazon Simple Storage Service (Amazon S3) to store package assets. To pull
packages from CodeArtifact, you must create a gateway endpoint for Amazon S3. When your build
or deployment process downloads packages from CodeArtifact, it must access CodeArtifact to get
package metadata and Amazon S3 to download package assets (for example, Maven .jar files).

Note

An Amazon S3 endpoint is not needed when using Python or Swift package formats.

To create the Amazon S3 gateway endpoint for CodeArtifact, use the Amazon EC2 create-vpc-
endpoint AWS CLI command. When you create the endpoint, you must select the route tables for
your VPC. For more information, see Gateway VPC Endpoints in the Amazon Virtual Private Cloud
User Guide.

The following command creates an Amazon S3 endpoint.

aws ec2 create-vpc-endpoint --vpc-id vpcid --service-name com.amazonaws.region.s3 \
 --route-table-ids routetableid

Minimum Amazon S3 bucket permissions for AWS CodeArtifact

The Amazon S3 gateway endpoint uses an IAM policy document to limit access to the service.
To allow only the minimum Amazon S3 bucket permissions for CodeArtifact, restrict access to
the Amazon S3 bucket that CodeArtifact uses when you create the IAM policy document for the
endpoint.

The following table describes the Amazon S3 buckets you should reference in your policies to allow
access to CodeArtifact in each region.

Region Amazon S3 Bucket ARN

us-east-1 arn:aws:s3:::assets-193858265520-us-east-1

us-east-2 arn:aws:s3:::assets-250872398865-us-east-2

us-west-2 arn:aws:s3:::assets-787052242323-us-west-2

Create the Amazon S3 gateway endpoint 361

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-gateway.html

CodeArtifact CodeArtifact User Guide

Region Amazon S3 Bucket ARN

eu-west-1 arn:aws:s3:::assets-438097961670-eu-west-1

eu-west-2 arn:aws:s3:::assets-247805302724-eu-west-2

eu-west-3 arn:aws:s3:::assets-762466490029-eu-west-3

eu-north-1 arn:aws:s3:::assets-611884512288-eu-north-1

eu-south-1 arn:aws:s3:::assets-484130244270-eu-south-1

eu-central-1 arn:aws:s3:::assets-769407342218-eu-
central-1

ap-northeast-1 arn:aws:s3:::assets-660291247815-ap-
northeast-1

ap-southeast-1 arn:aws:s3:::assets-421485864821-ap-
southeast-1

ap-southeast-2 arn:aws:s3:::assets-860415559748-ap-
southeast-2

ap-south-1 arn:aws:s3:::assets-681137435769-ap-south-1

You can use the aws codeartifact describe-domain command to fetch the Amazon S3
bucket used by a CodeArtifact domain.

aws codeartifact describe-domain --domain mydomain

{
 "domain": {
 "name": "mydomain",
 "owner": "111122223333",
 "arn": "arn:aws:codeartifact:us-west-2:111122223333:domain/mydomain",
 "status": "Active",
 "createdTime": 1583075193.861,
 "encryptionKey": "arn:aws:kms:us-west-2:111122223333:key/a73que8sq-ba...",

Minimum Amazon S3 bucket permissions for AWS CodeArtifact 362

CodeArtifact CodeArtifact User Guide

 "repositoryCount": 13,
 "assetSizeBytes": 513830295,
 "s3BucketArn": "arn:aws:s3:::assets-787052242323-us-west-2"
 }
}

Example

The following example illustrates how to provide access to the Amazon S3 buckets required for
CodeArtifact operations in the us-east-1 region. For other regions, update the Resource entry
with the correct permission ARN for your region based on the table above.

{
 "Statement": [
 {
 "Sid": "Access-to-specific-bucket-only",
 "Principal": "*",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::assets-193858265520-us-east-1/*"]
 }
]
}

Use CodeArtifact from a VPC

If you cannot or do not want to enable private DNS on your
com.amazonaws.region.codeartifact.repositories VPC endpoint that you created
in Create VPC endpoints for CodeArtifact, you must use a different configuration for the
repositories endpoint to use CodeArtifact from a VPC. Follow the instructions in Use the
codeartifact.repositories endpoint without private DNS to configure CodeArtifact if the
com.amazonaws.region.codeartifact.repositories endpoint does not have private DNS
enabled.

Use CodeArtifact from a VPC 363

CodeArtifact CodeArtifact User Guide

Use the codeartifact.repositories endpoint without private DNS

If you cannot or do not want to enable private DNS on your
com.amazonaws.region.codeartifact.repositories VPC endpoint that you created
in Create VPC endpoints for CodeArtifact, you must follow these instructions to configure your
package manager with the correct CodeArtifact URL.

1. Run the following command to find a VPC endpoint to use to override the hostname.

$ aws ec2 describe-vpc-endpoints --filters Name=service-
name,Values=com.amazonaws.region.codeartifact.repositories \
 --query 'VpcEndpoints[*].DnsEntries[*].DnsName'

The output looks like the following.

[
 [
 "vpce-0743fe535b883ffff-76ddffff.d.codeartifact.us-west-2.vpce.amazonaws.com"
]
]

2. Update the VPC endpoint path to include the package format, your CodeArtifact domain
name, and CodeArtifact repository name. See the following example.

https://vpce-0743fe535b883ffff-76ddffff.d.codeartifact.us-
west-2.vpce.amazonaws.com/format/d/domain_name-domain_owner/repo_name

Replace the following fields from the example endpoint.

• format: Replace with a valid CodeArtifact package format, for example, npm or pypi.

• domain_name: Replace with the CodeArtifact domain that contains the CodeArtifact
repository that hosts your packages.

• domain_owner: Replace with the ID of the owner of the CodeArtifact domain, for example,
111122223333.

• repo_name: Replace with the CodeArtifact repository that hosts your packages.

The following URL is an example npm repository endpoint.

Use the codeartifact.repositories endpoint without private DNS 364

CodeArtifact CodeArtifact User Guide

https://vpce-0dc4daf7fca331ed6-et36qa1d.d.codeartifact.us-
west-2.vpce.amazonaws.com/npm/d/domainName-111122223333/repoName

3. Configure your package manager to use the updated VPC endpoint from the previous step.
You must configure the package manager without using the CodeArtifact login command.
For configuration instructions for each package format, see the following documentation.

• npm: Configuring npm without using the login command

• nuget: Configure nuget or dotnet without the login command

• pip: Configure pip without the login command

• twine: Configure and use twine with CodeArtifact

• Gradle: Use CodeArtifact with Gradle

• mvn: Use CodeArtifact with mvn

Create a VPC endpoint policy for CodeArtifact

To create a VPC endpoint policy for CodeArtifact, specify the following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources that can have actions performed on them.

The following example policy specifies that principals in the account 123456789012 can call the
GetAuthorizationToken API and fetch packages from a CodeArtifact repository.

{
 "Statement": [
 {
 "Action": [
 "codeartifact:GetAuthorizationToken",
 "codeartifact:GetRepositoryEndpoint",
 "codeartifact:ReadFromRepository",
 "sts:GetServiceBearerToken"
],
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {

Create a VPC endpoint policy 365

CodeArtifact CodeArtifact User Guide

 "AWS": "arn:aws:iam::123456789012:root"
 }
 }
]
}

Create a VPC endpoint policy 366

CodeArtifact CodeArtifact User Guide

Creating CodeArtifact resources with AWS
CloudFormation

CodeArtifact is integrated with AWS CloudFormation, a service that helps you model and set up
your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want, and AWS
CloudFormation takes care of provisioning and configuring those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your CodeArtifact
resources consistently and repeatedly. Just describe your resources once and then provision the
same resources over and over in multiple accounts and AWS Regions.

CodeArtifact and AWS CloudFormation templates

To provision and configure resources for CodeArtifact and related services, you must understand
AWS CloudFormation templates. Templates are formatted text files in JSON or YAML. These
templates describe the resources that you want to provision in your AWS CloudFormation stacks.
If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

CodeArtifact supports creating domains, repositories, and package groups in AWS CloudFormation.
For more information, including examples of JSON and YAML templates, see the following topics in
the AWS CloudFormation User Guide:

• AWS::CodeArtifact::Domain

• AWS::CodeArtifact::Repository

• AWS::CodeArtifact::PackageGroup

Preventing deletion of CodeArtifact resources

CodeArtifact repositories contain critical aplication dependencies that may not be easy to recreate
if lost. To protect CodeArtifact resources against accidential deletion when managing CodeArtifact
resources with CloudFormation, include the DeletionPolicy and UpdateRetainPolicy
attributes with a value of Retain on all domains and respositories. This will prevent deletion if

CodeArtifact and AWS CloudFormation templates 367

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codeartifact-domain.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codeartifact-repository.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codeartifact-packagegroup.html

CodeArtifact CodeArtifact User Guide

the resource is removed from the stack template, or the entire stack is accidentially deleted. The
following YAML snippet shows a basic domain and repository with these attributes:

Resources:
 MyCodeArtifactDomain:
 Type: 'AWS::CodeArtifact::Domain'
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 DomainName: "my-domain"

 MyCodeArtifactRepository:
 Type: 'AWS::CodeArtifact::Repository'
 DeletionPolicy: Retain
 UpdateReplacePolicy: Retain
 Properties:
 RepositoryName: "my-repo"
 DomainName: !GetAtt MyCodeArtifactDomain.Name

For more information about these attributes, see DeletionPolicy and UpdateReplacePolicy in the
AWS CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation Command Line Interface User Guide

Learn more about AWS CloudFormation 368

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatereplacepolicy.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

CodeArtifact CodeArtifact User Guide

Troubleshooting AWS CodeArtifact

The following information might help you troubleshoot common issues with CodeArtifact.

For information about troubleshooting format-specific issues, see the following topics:

• Maven troubleshooting

• Swift troubleshooting

I cannot view notifications

Problem: When you are in the Developer Tools console and choose Notifications under Settings,
you see a permissions error.

Possible fixes: While notifications are a feature of the Developer Tools console, CodeArtifact
does not currently support notifications. None of the managed policies for CodeArtifact include
permissions that allow users to view or manage notifications. If you use other services in the
Developer Tools console, and those services support notifications, the managed policies for those
services include the permissions required to view and manage notifications for those services.

I cannot view notifications 369

CodeArtifact CodeArtifact User Guide

Tagging resources

A tag is a custom attribute label that you or AWS assigns to an AWS resource. Each AWS tag has
two parts:

• A tag key (for example, CostCenter, Environment, Project, or Secret). Tag keys are case
sensitive.

• An optional field known as a tag value (for example, 111122223333, Production, or a team
name). Omitting the tag value is the same as using an empty string. Like tag keys, tag values are
case sensitive.

Together these are known as key-value pairs.

Tags help you identify and organize your AWS resources. Many AWS services support tagging, so
you can assign the same tag to resources from different services to indicate that the resources
are related. For example, you can assign the same tag to a repository that you assign to an AWS
CodeBuild project.

For tips and best practices for using tags, see the Best Practices for Tagging AWS Resources
Whitepaper.

You can tag the following resource types in CodeArtifact:

• Tag a repository in CodeArtifact

• Tag a domain in CodeArtifact

You can use the console, AWS CLI, CodeArtifact APIs, or AWS SDKs to:

• Add tags to a domain or repository when you create it*.

• Add, manage, and remove tags for a domain or repository.

* You cannot add tags to a domain or repository when you create it in the console.

In addition to identifying, organizing, and tracking your resource with tags, you can use tags in IAM
policies to help control who can view and interact with your resource. For examples of tag-based
access policies, see Using tags to control access to CodeArtifact resources.

370

https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html

CodeArtifact CodeArtifact User Guide

CodeArtifact cost allocation with tags

You can use tags to allocate both storage and request costs in CodeArtifact.

Allocating data storage costs in CodeArtifact

Data storage costs are tied to domains, therefore to allocate your CodeArtifact storage costs, you
can use any tags that are applied to your domains. For information about adding tags to domains,
see Tag a domain in CodeArtifact.

Allocating request costs in CodeArtifact

Most request usage is tied to repositories, therefore to allocate your CodeArtifact requests costs,
you can use any tags that are applied to your repositories. For information about adding tags to
repositories, see Tag a repository in CodeArtifact.

Some request types are associated with domains rather than repositories, so the request usage
and costs related to the requests will be allocated to the tags on the domain. The best way to
determine if a request type is associated with a domain or a repository is to use the Actions
defined by AWS CodeArtifact table in the Service Authorization Reference. Find the request type
in the Actions column, and look at the value in the corresponding Resources types column. If the
resource type is domain, requests of that type will be billed to the domain. If the resource type is
repository or package, requests of that type will be billed to the repository. Some actions show
both resource types, for those actions the billed resource depends on what value is passed in the
request.

CodeArtifact cost allocation with tags 371

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscodeartifact.html#awscodeartifact-actions-as-permissions

CodeArtifact CodeArtifact User Guide

Quotas in AWS CodeArtifact

The following table describes resource quotas in CodeArtifact. To view the resource quotas along
with the list of service endpoints for CodeArtifact, see AWS service quotas in the Amazon Web
Services General Reference.

You can request a service quota increase for the following CodeArtifact resource quotas. For more
information about requesting a service quota increase, see AWS Service Quotas.

Name Default Adjustabl
e

Description

Asset file size Each supported
Region: 5
Gigabytes

Yes The maximum file size
per asset.

Assets per package version Each supported
Region: 150

No The maximum number
of assets per package
version.

CopyPackageVersions requests per
second

Each supported
Region: 5

Yes The maximum number
of calls that can be made
to CopyPackageVersions
per second.

Direct upstreams per repository Each supported
Region: 10

No The maximum number of
direct upstream repositor
ies per repository.

Domains per AWS account Each supported
Region: 10

Yes The maximum number
of domains that can be
created per AWS account.

GetAuthorizationToken requests per
second

Each supported
Region: 40

Yes The maximum number
of authorization tokens
retrieved per second.

372

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-AA0DC56D
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-308A4050
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-DD7208D3
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-0B362111

CodeArtifact CodeArtifact User Guide

Name Default Adjustabl
e

Description

GetPackageVersionAsset requests per
second

Each supported
Region: 50

Yes The maximum number of
calls that can be made to
GetPackageVersionAsset
per second.

ListPackageVersionAssets requests per
second

Each supported
Region: 200

Yes The maximum number of
calls that can be made to
ListPackageVersionAssets
per second.

ListPackageVersions requests per
second

Each supported
Region: 200

Yes The maximum number of
calls that can be made to
ListPackageVersions per
second.

ListPackages requests per second Each supported
Region: 200

Yes The maximum number of
calls that can be made to
ListPackages per second.

PublishPackageVersion requests per
second

Each supported
Region: 10

Yes The maximum number of
calls that can be made to
PublishPackageVersion
per second.

Read requests per second from a single
AWS account

Each supported
Region: 800

Yes The maximum number of
read requests from one
AWS account per second.

Repositories per domain Each supported
Region: 1,000

Yes The maximum number of
repositories that can be
created per domain.

373

https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-6C12FB34
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-3072382D
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-CBBCDF5C
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-6010CAF9
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-3E27C79F
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-F39CF68A
https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-86608C96

CodeArtifact CodeArtifact User Guide

Name Default Adjustabl
e

Description

Requests per second using a single
authentication token

Each supported
Region: 1,200

No The maximum number
of requests per second
using a single authentic
ation token.

Requests without authentication token
per IP address

Each supported
Region: 600

No The maximum number
of requests per second
without an authentic
ation token from a single
IP address.

Upstream repositories searched Each supported
Region: 25

No The maximum number
of upstream repositories
searched when resolving
a package.

Write requests per second from a single
AWS account

Each supported
Region: 100

Yes The maximum number of
write requests from one
AWS account per second.

Note

In general, each read request made to CodeArtifact counts as one request counted against
a quota. However, for the Ruby package format, a single read request to the /api/v1/
dependencies operation can request data about multiple packages.
For example, the request can look like https://${CODEARTIFACT_REPO_ENDPOINT}/
api/v1/dependencies?gems=gem1,gem2.gem3. In this example, the request counts as
three requests against the quota.
Note that the multiple requests only applies to service quotas, not billing. In the example,
you will be billed only for one request, although it counts as three requests towards the
service quota.

374

https://console.aws.amazon.com/servicequotas/home/services/codeartifact/quotas/L-A649E766

CodeArtifact CodeArtifact User Guide

AWS CodeArtifact user guide document history

The following table describes important changes to the documentation for CodeArtifact.

Change Description Date

Added documentation for
configuring and using Cargo
with CodeArtifact

CodeArtifact now supports
Cargo crates. Added
documentation with guidance
on configuring Cargo to use
CodeArtifact repositories. For
more information, see Using
CodeArtifact with Cargo.

June 20, 2024

Added documentation for
configuring and using Ruby
with CodeArtifact

CodeArtifact now supports
Ruby gems. Added
documentation with guidance
on configuring Ruby package
managers to use CodeArtif
act repositories. For more
information, see Using
CodeArtifact with Ruby.

April 30, 2024

Added an example key policy
for creating domains with a
customer managed AWS KMS
key

Added an example key policy
that can be used to create
a customer managed KMS
key for encrypting assets
in CodeArtifact domains.
For more information, see
Example AWS KMS key policy.

April 18, 2024

Added documentation
to support the launch of
package groups.

Added documentation about
managing and using package
groups in CodeArtifact.
For more information, see
Working with package groups
in CodeArtifact.

March 21, 2024

375

CodeArtifact CodeArtifact User Guide

Added additional valid
package managers to
documentation about the aws
codeartifact login command.

Added dotnet, nuget, and
swift to the list of valid
package managers to use
with the aws codeartif
act login command. For
more information, see AWS
CodeArtifact authentication
and tokens.

February 18, 2024

Added an entry to the Swift
troubleshooting documenta
tion about Xcode hanging on
CI machines

Added information, including
a solution, about an issue that
can cause Xcode to hang on
CI machines due to keychain
prompt for password. For
more information, see Xcode
hangs on CI machine due
to keychain prompt for
password.

February 6, 2024

Added information about
troubleshooting slow npm
package install times with
npm 8.x or higher

Added information about
working around slow npm
package install times from
CodeArtifact, which could
cause slow build times.
For more information, see
Troubleshooting slow installs
with npm 8.x or higher.

December 29, 2023

Updated information about
Python package asset
and metadata behavior in
CodeArtifact

Updated information about
how CodeArtifact repositor
ies retain and refresh Python
package version assets and
metadata. For more informati
on, see Requesting Python
packages from upstreams and
external connections.

December 14, 2023

376

CodeArtifact CodeArtifact User Guide

Reorganized documentation
about monitoring CodeArtif
act

Reorganized information
about monitoring CodeArtif
act events, and added
information about viewing
CodeArtifact requests with
Amazon CloudWatch metrics.
For more information, see
Monitoring CodeArtifact.

December 14, 2023

Added more information
about managing CodeArtif
act resources with AWS
CloudFormation

Added references and links
to documentation about
managing CodeArtifact
resources with CloudForm
ation, including a section
about preventing deletion
of CodeArtifact resources
managed with CloudForm
ation. For more information,
see Preventing deletion of
CodeArtifact resources.

December 7, 2023

Added documentation
detailing CodeArtifact's
support of AWS KMS External
Key Stores (XKS)

Added a section with
information about CodeArtif
act's support of KMS keys,
including using XKS keys
with CodeArtifact. For more
information, see Types of
AWS KMS keys supported in
CodeArtifact.

October 31, 2023

377

CodeArtifact CodeArtifact User Guide

Updated existing and
added new troubleshooting
documentation

Added a Maven troublesh
ooting topic and included
links to Swift and Maven
troubleshooting documenta
tion in the general troublesh
ooting topic. For more
information, see Troublesh
ooting AWS CodeArtifact.

September 28, 2023

Updated documentation to
include the Swift Package
Manager publish command

Swift 5.9 introduced a swift
package-registry
publish command to create
and publish a Swift package
to a package repository.
Updated the Swift documenta
tion to include instructions
for using that command. For
more information, see Using
CodeArtifact with Swift.

September 25, 2023

Added documentation for
configuring CodeArtifact with
Swift

CodeArtifact now supports
Swift packages. Added
documentation with guidance
on configuring Swift to use
CodeArtifact repositories. For
more information, see Using
CodeArtifact with Swift.

September 20, 2023

Added guidance on how
CodeArtifact handles yanked
Python package versions

Added documentation with
information about how to tell
if a Python package version
is yanked, how CodeArtif
act handles yanked package
versions, and answers to
common questions. For more
information, see Yanked
package versions.

August 2, 2023

378

CodeArtifact CodeArtifact User Guide

Fixed incorrect command line
command in Yarn documenta
tion

Fixed an incorrect command
line command that fetches
a CodeArtifact authoriza
tion token and stores it in an
environment variable in the
Yarn documentation.

July 20, 2023

Minor additions and small
bug fix to Python documenta
tion

Added pip and twine
information in their respective
documentation and corrected
what happens when using
the codeartifact login
command with twine. For
more information, see
Configure and use pip with
CodeArtifact and Configure
and use twine with CodeArtif
act.

July 14, 2023

Fixed incorrect dotnet
commands in CodeBuild
documentation

Corrected the dotnet add
package commands in the
Using NuGet packages in
CodeBuild documentation.

July 13, 2023

Updated AWS CodeArtifact
and AWS Identity and Access
Management documentation

Overhauled the IAM in
CodeArtifact documentation
to add clarity and consistency
with documentation for other
AWS services. See Identity
and Access Management for
AWS CodeArtifact.

May 24, 2023

379

CodeArtifact CodeArtifact User Guide

Added information about
yanked Python package
versions

Added information about how
CodeArtifact retains yanked
Python package version
metadata, For more informati
on, see Yanked package
versions.

April 11, 2023

Added information on Clojure
support

Added information about
Clojure support, including
managing dependencies
for Clojure projects. For
more information, see Use
CodeArtifact with deps.edn.

March 21, 2023

Added information on generic
package publishing

Added information about
generic packages and how
to publish and download
package contents with the
AWS CLI. For more informati
on, see Using CodeArtif
act with generic packages,
Publishing and consuming
generic packages, and
Supported commands for
generic packages.

March 10, 2023

Added information on asset
size limits for publishing

Added a section to Package
publishing to explain the
asset size limits for publishin
g.

June 21, 2022

380

CodeArtifact CodeArtifact User Guide

Refactored the external
connection documentation

Moved the external connectio
n documentation and
reorganized it to focus on
the end goal of the user,
which is to connect their
CodeArtifact repository to
public package repositories.
Also added more guidance
and information around
the different methods for
achieving that goal. For more
information, see Connect a
CodeArtifact repository to a
public repository.

May 9, 2022

Updated the CodeArtif
act event information for
Amazon CloudWatch Events

Added more information to
the account field and added
the repositoryAdminist
rator field. For more
information, see CodeArtifact
event format and example.

March 7, 2022

Added configuration instructi
ons for using CodeArtifact
from a VPC without private
DNS

If you cannot or do not
want to enable private
DNS on your codeartif
act.repositories VPC
endpoint, you must use a
different configuration for
the repositories endpoint
to use CodeArtifact from a
VPC. See Use the codeartif
act.repositories
endpoint without private DNS
for more information.

February 8, 2022

381

CodeArtifact CodeArtifact User Guide

Added in-depth documenta
tion for updating the status of
package versions

Expanded the update package
version status documenta
tion into its own topic. Added
documentation for updating
a package version's status,
including required IAM
permissions, example AWS
CLI commands for various
scenarios, and possible errors.
See Update package version
status for more information.

September 1, 2021

Updated the copy package
versions documentation with
more in-depth permissions
information

Added more information
about the required IAM
and resource-based policy
permissions for calling the
aws codeartifact
copy-package-versi
ons command to copy
package versions from
one repository to another
within the same domain in
CodeArtifact. Along with
more information, there are
now examples of the required
resource-based policies for
the source and destination
repository. See Required IAM
permissions to copy packages
for more information.

August 25, 2021

382

CodeArtifact CodeArtifact User Guide

Updated documentation for
running a Gradle build in
IntelliJ IDEA

Updated the documentation
for running a Gradle build
in IntelliJ IDEA with steps
for configuring Gradle to
fetch plugins from CodeArtif
act. Also added an option
to create a new CodeArtif
act authorization token for
each new run with an inline
call to aws codeartifact
get-authorization-
token . See Run a Gradle
build in IntelliJ IDEA for more
information.

August 23, 2021

Added documentation for
configuring and using Yarn
with AWS CodeArtifact

Added documentation for
configuring and using Yarn
1.X and Yarn 2.X to manage
npm packages with CodeArtif
act. See Configure and use
Yarn with CodeArtifact for
more information.

July 30, 2021

AWS CodeArtifact now
supports NuGet packages

CodeArtifact users can now
publish and consume NuGet
packages. Added documenta
tion for configuring and
using both Visual Studio and
NuGet command line tools
like nuget and dotnet with
CodeArtifact repositories.
See Using CodeArtifact with
NuGet for more information.

November 19, 2020

383

CodeArtifact CodeArtifact User Guide

Tagging resources in AWS
CodeArtifact

Added documentation about
tagging repositories and
domains in AWS CodeArtifact.
See Tagging resources.

October 30, 2020

CodeArtifact now supports
AWS CloudFormation

CodeArtifact users can
now use AWS CloudForm
ation templates to create
CodeArtifact repositories
and domains. See Creating
CodeArtifact resources with
AWS CloudFormation for
more information and to get
started.

October 8, 2020

Add information about
creating Amazon S3 gateway
endpoints to use CodeArtifact
with Amazon VPC

Added information about
creating Amazon S3 gateway
endpoints with the Amazon
EC2 AWS CLI command. This
documentation also contains
information about the specific
permissions that CodeArtif
act requires to be used with
Amazon VPC environments.
See Create the Amazon S3
gateway endpoint.

August 12, 2020

Publishing Maven artifacts
with curl and publishing
third-party Maven artifacts

Added guidance for Publishin
g with curl and Publish third-
party artifacts.

August 10, 2020

General Availability (GA)
release

Initial version of the CodeArtif
act User Guide.

June 10, 2020

384

	CodeArtifact
	Table of Contents
	What is AWS CodeArtifact?
	How does CodeArtifact work?
	AWS CodeArtifact concepts
	Asset
	Domain
	Repository
	Package
	Package group
	Package namespace
	Package version
	Package version revision
	Upstream repository

	How do I get started with CodeArtifact?

	Setting up with AWS CodeArtifact
	Sign up for AWS
	Install or upgrade and then configure the AWS CLI
	Provision an IAM user
	Install your package manager or build tool
	Next steps

	Getting started with CodeArtifact
	Prerequisites
	Getting started using the console
	Getting started using the AWS CLI

	Working with repositories in CodeArtifact
	Create a repository
	Create a repository (console)
	Create a repository (AWS CLI)
	Create a repository with tags

	Create a repository with an upstream repository

	Connect to a repository
	Use a package manager client

	Delete a repository
	Delete a repository (console)
	Delete a repository (AWS CLI)
	Protect repositories from being deleted

	List repositories
	List repositories in an AWS account
	List repositories in the domain

	View or modify a repository configuration
	View or modify a repository configuration (console)
	View or modify a repository configuration (AWS CLI)
	Modify a repository upstream configuration

	Repository policies
	Create a resource policy to grant read access
	Set a policy
	Read a policy
	Delete a policy
	Grant read access to principals
	Grant write access to packages
	Grant write access to a repository
	Interaction between repository and domain policies

	Tag a repository in CodeArtifact
	Tag repositories (CLI)
	Add tags to a repository (CLI)
	View tags for a repository (CLI)
	Edit tags for a repository (CLI)
	Remove tags from a repository (CLI)

	Tag repositories (console)
	Add tags to a repository (console)
	View tags for a repository (console)
	Edit tags for a repository (console)
	Remove tags from a repository (console)

	Working with upstream repositories in CodeArtifact
	What's the difference between upstream repositories and external connections?
	Add or remove upstream repositories
	Add or remove upstream repositories (console)
	Add or remove upstream repositories (AWS CLI)

	Connect a CodeArtifact repository to a public repository
	Connect to an external repository (console)
	Connect to an external repository (CLI)
	Supported external connection repositories
	Remove an external connection (CLI)

	Requesting a package version with upstream repositories
	Package retention from upstream repositories
	Fetch packages through an upstream relationship
	Package retention in intermediate repositories

	Requesting packages from external connections
	Fetch packages from an external connection
	External connection latency
	CodeArtifact behavior when an external repository is not available
	Availability of new package versions
	Importing package versions with more than one asset

	Upstream repository priority order
	Simple priority order example
	Complex priority order example

	API behavior with upstream repositories

	Working with packages in CodeArtifact
	Packages overview
	Supported package formats
	Package publishing
	Publishing permissions
	Overwriting package assets
	Private packages and public repositories
	Publishing patched package versions
	Asset size limits for publishing
	Publishing latency

	Package version status
	Package name, package version, and asset name normalization

	List package names
	List npm package names
	List Maven package names
	List Python package names
	Filter by package name prefix
	Supported search option combinations
	Format output
	Defaults and other options

	List package versions
	List npm package versions
	List Maven package versions
	Sort versions
	Default display version
	Format output

	List package version assets
	List assets of an npm package
	List assets of a Maven package

	Download package version assets
	Copy packages between repositories
	Required IAM permissions to copy packages
	Copy package versions
	Copy a package from upstream repositories
	Copy a scoped npm package
	Copy Maven package versions
	Versions that do not exist in the source repository
	Versions that already exist in the destination repository
	Specifying a package version revision
	Copy npm packages

	Delete a package or package version
	Deleting a package (AWS CLI)
	Deleting a package (console)
	Deleting a package version (AWS CLI)
	Deleting a package version (console)
	Deleting an npm package or package version
	Deleting a Maven package or package version
	Best practices for deleting packages or package versions

	View and update package version details and dependencies
	View package version details
	View npm package version details
	View Maven package version details
	View package version dependencies
	View package version readme file

	Update package version status
	Updating package version status
	Required IAM permissions to update a package version status
	Updating status for a scoped npm package
	Updating status for a Maven package
	Specifying a package version revision
	Using the expected status parameter
	Errors with individual package versions
	Disposing of package versions

	Editing package origin controls
	Common package access control scenarios
	Package origin control settings
	Default package origin control settings
	How package origin controls interact with package group origin controls
	Editing package origin controls
	Publishing and upstream repositories

	Working with package groups in CodeArtifact
	Create a package group
	Create a package group (console)
	Create a package group (AWS CLI)

	View or edit a package group
	View or edit a package group (console)
	View or edit a package group (AWS CLI)

	Delete a package group
	Delete a package group (console)
	Delete a package group (AWS CLI)

	Package group origin controls
	Restriction settings
	PUBLISH
	EXTERNAL_UPSTREAM
	INTERNAL_UPSTREAM

	Allowed repository lists
	Editing package group origin control settings
	Package group origin control configuration examples
	Allowing packages with private names to be published, but not ingested
	Allowing ingestion from external repositories through one repository

	How package group origin control settings interact with package origin control settings

	Package group definition syntax and matching behavior
	Package group definition syntax and examples
	Package group definition and normalization
	Namespaces in package group definitions

	Package group hierarchy and pattern specificity
	Words, word boundaries, and prefix matching
	Case sensitivity
	Strong and weak match
	Additional variations

	Tag a package group in CodeArtifact
	Tag package groups (CLI)
	Add tags to a package group (CLI)
	View tags for a package group (CLI)
	Edit tags for a package group (CLI)
	Remove tags from a package group (CLI)

	Working with domains in CodeArtifact
	Domain overview
	Cross-account domains
	Types of AWS KMS keys supported in CodeArtifact

	Create a domain
	Create a domain (console)
	Create a domain (AWS CLI)
	Create a domain with tags

	Example AWS KMS key policy

	Delete a domain
	Restrictions on domain deletion
	Delete a domain (console)
	Delete a domain (AWS CLI)

	Domain policies
	Enable cross-account access to a domain
	Domain policy example
	Domain policy example with AWS Organizations
	Set a domain policy
	Read a domain policy
	Delete a domain policy

	Tag a domain in CodeArtifact
	Tag domains (CLI)
	Add tags to a domain (CLI)
	View tags for a domain (CLI)
	Edit tags for a domain (CLI)
	Remove tags from a domain (CLI)

	Tag domains (console)
	Add tags to a domain (console)
	View tags for a domain (console)
	Edit tags for a domain (console)
	Remove tags from a domain (console)

	Using CodeArtifact with Cargo
	Configure and use Cargo with CodeArtifact
	Configure Cargo with CodeArtifact
	Configure Cargo using the console instructions
	Configure Cargo manually

	Installing Cargo crates
	Install Cargo crates from CodeArtifact

	Publishing Cargo crates to CodeArtifact

	Cargo command support
	Supported commands that require accessing the registry
	Unsupported commands

	Using CodeArtifact with Maven
	Use CodeArtifact with Gradle
	Fetch dependencies
	Fetch plugins
	Publish artifacts
	Run a Gradle build in IntelliJ IDEA

	Use CodeArtifact with mvn
	Fetch dependencies
	Publish artifacts
	Publish third-party artifacts
	Restrict Maven dependency downloads to a CodeArtifact repository
	Apache Maven Project information

	Use CodeArtifact with deps.edn
	Fetch dependencies
	Publish artifacts

	Publishing with curl
	Use Maven checksums
	Checksum storage
	Checksum mismatches during publishing
	Recovering from checksum mismatches

	Use Maven snapshots
	Snapshot publishing in CodeArtifact
	Consuming snapshot versions
	Deleting snapshot versions
	Snapshot publishing with curl
	Snapshots and external connections
	Snapshots and upstream repositories

	Requesting Maven packages from upstreams and external connections
	Importing standard asset names
	Importing non-standard asset names
	Checking asset origins
	Importing new assets and package version status in upstream repositories

	Maven troubleshooting
	Disable parallel puts to fix error 429: Too Many Requests

	Using CodeArtifact with npm
	Configure and use npm with CodeArtifact
	Configuring npm with the login command
	Configuring npm without using the login command
	Running npm commands
	Verifying npm authentication and authorization
	Changing back to the default npm registry
	Troubleshooting slow installs with npm 8.x or higher

	Configure and use Yarn with CodeArtifact
	Configure Yarn 1.X with the aws codeartifact login command
	Configure Yarn 2.X with the yarn config set command

	npm command support
	Supported commands that interact with a repository
	Supported client-side commands
	Unsupported commands

	npm tag handling
	Edit tags with the npm client
	npm tags and the CopyPackageVersions API
	npm tags and upstream repositories

	Support for npm-compatible package managers

	Using CodeArtifact with NuGet
	Use CodeArtifact with Visual Studio
	Configure Visual Studio with the CodeArtifact Credential Provider
	Use the Visual Studio Package Manager console

	Use CodeArtifact with the nuget or dotnet CLI
	Configure the nuget or dotnet CLI
	Method 1: Configure with the CodeArtifact NuGet Credential Provider
	Method 2: Configure nuget or dotnet with the login command
	Method 3: Configure nuget or dotnet without the login command

	Consume NuGet packages from CodeArtifact
	Consume NuGet packages from NuGet.org

	Publish NuGet packages to CodeArtifact
	CodeArtifact NuGet Credential Provider reference
	CodeArtifact NuGet Credential Provider commands
	CodeArtifact NuGet Credential Provider logs

	CodeArtifact NuGet Credential Provider versions

	NuGet package name, version, and asset name normalization
	NuGet compatibility
	General NuGet compatibility
	NuGet command line support
	nuget.exe command support

	Using CodeArtifact with Python
	Configure and use pip with CodeArtifact
	Configure pip with the login command
	Configure pip without the login command
	Run pip

	Configure and use twine with CodeArtifact
	Configure twine with the login command
	Configure twine without the login command
	Run twine

	Python package name normalization
	Python compatibility
	pip command support
	Supported commands that interact with a repository
	Supported client-side commands

	Requesting Python packages from upstreams and external connections
	Yanked package versions
	How to know if a package version is yanked
	Setting yanked status on private packages

	Why is CodeArtifact not fetching the latest yanked metadata or assets for a package version?

	Using CodeArtifact with Ruby
	Configure and use RubyGems and Bundler with CodeArtifact
	Configure RubyGems (gem) and Bundler (bundle) with CodeArtifact
	Configure RubyGems and Bundler using the console instructions
	Configure RubyGems and Bundler manually

	Installing Ruby gems from CodeArtifact
	Install Ruby gems with gem
	Install Ruby gems with bundle

	Publishing Ruby gems to CodeArtifact

	RubyGems command support
	Bundler compatibility
	Bundler compatibility
	Bundler version support
	Bundler operations support

	Using CodeArtifact with Swift
	Configure the Swift Package Manager with CodeArtifact
	Configure Swift with the login command
	Configure Swift without the login command

	Consuming and publishing Swift packages
	Consuming Swift packages from CodeArtifact
	Consuming Swift packages from CodeArtifact in Xcode
	Publishing Swift packages to CodeArtifact
	Publishing CodeArtifact packages with the swift package-registry publish command
	Publishing CodeArtifact packages with Curl

	Fetching Swift packages from GitHub and republishing to CodeArtifact

	Swift package name and namespace normalization
	Swift troubleshooting
	I'm getting a 401 error in Xcode even after configuring the Swift Package Manager
	Xcode hangs on CI machine due to keychain prompt for password

	Using CodeArtifact with generic packages
	Generic packages overview
	Generic package constraints

	Supported commands for generic packages
	Publishing and consuming generic packages
	Publishing a generic package
	Listing generic package assets
	Downloading generic package assets

	Using CodeArtifact with CodeBuild
	Using npm packages in CodeBuild
	Set up permissions with IAM roles
	Log in and use npm
	Linux
	Windows

	Using Python packages in CodeBuild
	Set up permissions with IAM roles
	Log in and use pip or twine
	Linux
	Windows

	Using Maven packages in CodeBuild
	Set up permissions with IAM roles
	Use gradle or mvn

	Using NuGet packages in CodeBuild
	Set up permissions with IAM roles
	Consume NuGet packages
	Linux
	Windows

	Build with NuGet packages
	Linux
	Windows

	Publish NuGet packages
	Linux
	Windows

	Dependency caching

	Monitoring CodeArtifact
	Monitoring CodeArtifact events
	CodeArtifact event format and example
	CodeArtifact event format
	CodeArtifact event example

	Use an event to start a CodePipeline execution
	Configure EventBridge permissions
	Create the EventBridge rule
	Create the EventBridge rule target

	Use an event to run a Lambda function
	Create the EventBridge rule
	Create the EventBridge rule target
	Configure EventBridge permissions

	Security in CodeArtifact
	Data protection in AWS CodeArtifact
	Data encryption
	Traffic privacy

	Monitoring CodeArtifact
	Logging CodeArtifact API calls with AWS CloudTrail
	CodeArtifact information in CloudTrail
	Cross-account delivery of CloudTrail logs

	Understanding CodeArtifact log file entries
	Example: A log entry for calling the GetAuthorizationToken API
	Example: A log entry for fetching an npm package version

	Compliance validation for AWS CodeArtifact
	AWS CodeArtifact authentication and tokens
	Tokens created with the login command
	Permissions required to call the GetAuthorizationToken API
	Tokens created with the GetAuthorizationToken API
	Pass an auth token using an environment variable
	Revoking CodeArtifact authorization tokens

	Resilience in AWS CodeArtifact
	Infrastructure security in AWS CodeArtifact
	Dependency substitution attacks
	Identity and Access Management for AWS CodeArtifact
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS CodeArtifact works with IAM
	Identity-based policies for CodeArtifact
	Identity-based policy examples for CodeArtifact

	Resource-based policies within CodeArtifact
	Policy actions for CodeArtifact
	Policy resources for CodeArtifact
	Policy condition keys for CodeArtifact
	ACLs in CodeArtifact
	ABAC with CodeArtifact
	Using temporary credentials with CodeArtifact
	Cross-service principal permissions for CodeArtifact
	Service roles for CodeArtifact
	Service-linked roles for CodeArtifact

	Identity-based policy examples for AWS CodeArtifact
	Policy best practices
	Using the CodeArtifact console
	AWS managed (predefined) policies for AWS CodeArtifact
	Allow a user to view their own permissions
	Allow a user to get information about repositories and domains
	Allow a user to get information about specific domains
	Allow a user to get information about specific repositories
	Limit authorization token duration

	Using tags to control access to CodeArtifact resources
	Tag-based access control examples

	AWS CodeArtifact permissions reference
	AWS CodeArtifact resources and operations
	AWS CodeArtifact API operations and permission
	Package group ARNs

	Troubleshooting AWS CodeArtifact identity and access
	I am not authorized to perform an action in CodeArtifact
	I want to allow people outside of my AWS account to access my CodeArtifact resources

	Working with Amazon VPC endpoints
	Create VPC endpoints for CodeArtifact
	Create the Amazon S3 gateway endpoint
	Minimum Amazon S3 bucket permissions for AWS CodeArtifact
	Example

	Use CodeArtifact from a VPC
	Use the codeartifact.repositories endpoint without private DNS

	Create a VPC endpoint policy for CodeArtifact

	Creating CodeArtifact resources with AWS CloudFormation
	CodeArtifact and AWS CloudFormation templates
	Preventing deletion of CodeArtifact resources
	Learn more about AWS CloudFormation

	Troubleshooting AWS CodeArtifact
	I cannot view notifications

	Tagging resources
	CodeArtifact cost allocation with tags
	Allocating data storage costs in CodeArtifact
	Allocating request costs in CodeArtifact

	Quotas in AWS CodeArtifact
	AWS CodeArtifact user guide document history

