Developer Guide

AWS Cloud Development Kit (AWS CDK) v2

Version 2

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS Cloud Development Kit (AWS CDK) v2: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Table of Contents

.. XXi
WHhat is the AWS CDK?eeeeeeeeiiiiiieeiniineneessssssssssssssesses 1
BENEFits Of the AWS CDK ...ttt ettt te st e stesae s e e e s s e s s s e s e s b et et e bassaesa e e esaesaansansanean 2
EXQMPLE OF the AWS CDK ...ttt te e ste st e e e e e s e e saeste st e stesse s e e e e s et esaassessesaassassasnnenseneanean 4
AWS CDK TEATUIES ...ttt ettt cte et e s e e e e e et et et e st e st e st e ssaeseesaess et et asansassassassesssensansensanean 9
The AWS CDK GItHUD FEPOSITOIY ..ceeeeeeeeeeeeeteeeceeee sttt e et tesaesaeste s e e sa e s e snaaans 9
The AWS CDK API FEFEIENCE ...ttt ae e sa et sae st e sse s e e e s sneaenantans 10
The Construct Programming MOAEL ...ttt sae s e ae s 10
THE CONSEIUCT HUD ..ottt ettt e et e e e s e e e st e st e ae s b e sseess e e e e ennansansans 10
INEXE SEEPS ettt ettt s rte e st e s ae s s e e st e e s e e s ae s ssaesae e st essse s saesssassstesssessssensseesstesssessseessassseanns 10
LOAIN IMIOKE .ttt tee sttt sttt e st e st e s s et s st e s ae e s st e s sbe e saeesseessaessse e saessseesstesssessssessseesseesssessseessesssaenns 10
CDK COF@ CONCEPLES cerveeiirrecirnesienresctrsescrssessessesstssssssessesssssssssssssssessssssssssssssssssessssssssssssssssssssssessssnes 12
AWS CDK QN TQC ettt ettt e testeste s e s te s e e e e s e s e s e st e sessessassaesaassassassansansansassassnessansansansan 12
AWS CDK and AWS CloUdFOrMAtionc.cceeeeiecieiecieceeeeeeseeseee e stesae e sseeee s ssaesaessessessassesssssasnsaneens 12
AWS CDK and abStraCtionscccceeieieieieeeteetesee ettt ste e e ettt e st e sae s e s e e e e a e aeaeaenes 13
Learn more about core AWS CDK CONCEPLS ..c.eecveererrereeeeieterecee e stesteeeeeeeeseesaessessessessesseesssssessesanes 13
Programming LANQUAGEScuecuiieeieeeieeeciectectestee et e e e stestestestessessa s e e s et e ssessessessassassassassssssensansansansen 14
LIDIAIIES .ttt ettt e st e s te s te st e e e e e e e e et e s be st e b et e e seere e e et e tentebesseeseereera et ententantan 16
THE AWS CDK LIDFAIY oottt ettt e testestestesse s e s e eae s e s et et e tessassassasssssasnsansansensansansans 16
The AWS CONSErUCE LIDIary ..ottt ae st st saesre s e s a e a e ae s 17
The CONSEIUCES LIDIAry ..ottt st ae e e e s et saesaestessessaesnennns 17
The AWS CDK API FEFEIENCE ...ttt ve e sa et e sae st e sse s e e e ssneaeaentans 17
LEAIN MO ittt et e et e s st ese st e s e satese st e sessaesssseasessaessssasssssasssssesssaessssaesssseessseessrseessnnes 17
PrOJECLS ettt sttt s st e s e e s e e e e a e s r e e e b e e a e e e b e e s e e et e e Rt e e b e e st e b e e st eesaeesseessraeseans 18
Universal files @nd FOLAEIS ...ttt st sa et a e aa s 18
Language-specific files and FOLAEIS ...t eens 19
AAPPS oottt ettt et e e s te e e s e e e s st e s s at e s s ae e s e bt e e e bt e e a e e s b e e e a e e e R e e e e Rt e e e st e s e s e e e et e e b aeessaaeesraeeessaeeeraanes 31
HOW 10 Create @ CDK QPP wiiciieveiriirieictinieestestessreessteesstesssessseesssessseesssesssessssessssssssesssaesssassssassassnes 31
THE CONSIIUCT LI .ttt et et e st e st e e e s sa e e et et e stastasaessessessnennannans 33
CDK SEACKS ettt st e et e e et e st et e st e e seese e e e e e s et e aessesseesaesee st essansassassansenseesaensansenaantantans 35
ADOUL the STACK AP ...ttt ettt e st e te st s e e e e e et e st et e aestassassesseesaennensansans 43
WOIKING WIth STACKS ...eeeeieieteeeeee ettt et st e s te s e s e e e s e e et e sae s e sassasseesnennans 45
CDK SEQGES .eiveiieiettecteecie ettt este st es e e e st e s te s saesstesssaessae s saesssassatassse s st e sseesseesssessaessseestassaessseesaaensaans 54
CONSEIUCES ettt sttt e st e s ae s s e e s s e e st e s ae s st e e ae e st e s sae s st essseessaasssesssaesssessssesssennnes 71

Version 2 iii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

IMPOrt aNd USE CONSEIUCES .uviiiiiieeeceeeeeetetete ettt ettt e st e s e e e s e e e e s e e et e b et e saessassessnennans 71
CONSEIUCE LEVELS ..ttt ettt ettt s s b st e s s et et s e b et e e basbenesnessanssnees 72
DEfiNING CONSTIUCES ..ottt et et e st e st e st e et e e e s e e s st et e st essessasseesessnensansansansan 73
WOrking With CONSEIUCES ..uoviieeeceeeeeee ettt ettt sae s e s e e e e e e nenanes 82
Working with third-party CONSIUCESecviiiieeeeeeeeeeee et 88
LA IMOKE .ttt ettt st ettt st s st st e st e s st e st e eae st e e st e s see b esstsesesabesatessasnsassenns 98
ENVIFONIMIENTS ...ttt ettt st st st st sb e st a e s b st e st s b e st e eae s b esntesaeesesssenness 98
LA IMOKE .ttt ettt ettt et a et e st s s st e e st e b e st e e st s ne s b e st e saeebe st esesasasstessaane 100
BOOTSTFAPPING ettt ettt st e st e e e st e s sse e s e e s sae e st e s aa e st e e saa s e s s e s saaessae e aaessaannns 100
What iS DOOtSLrAPPING? ..ottt ste e s te e e e e e e e st e st e st e saesbassessa e e ennenaenaanes 100
How does bootStrapping WOIK?eceeieiecieieceeeeeeeetetete e este e e se e s st e saessesse s e e e s s eaesaeeans 101
LA IMOKE .ttt ettt ettt et a et e st s s st e e st e b e st e e st s ne s b e st e saeebe st esesasasstessaane 101
RESOUICES ..ttt ettt s b st a e st s b st e et s b e st e st e s be st e st s ba st e s st esbesssasnesnsannes 101
Configuring resources USIiNG CONSEIUCEScciviiierereeeeectetecte e s e e saestesaessesse s e e e e e ennens 101
REFEIENCING FESOUICTEScuveeveteeeteeeetete et te e s e e e e e e s e saestestesbesse s e e seesaeaesbetessessassasssessansensensanes 104
ResSoUrce PhYSICAl NAMIES ..ottt sae st e st e se s e e e s e e a e s e aenaansans 114
Passing unique resource identifiers ... 116
Granting permissions DEtWEEN FESOUICEScceeeeveceeriererteceeeee e et estestestesse s e eee e e ssesaessesansenns 119
Resource Metrics and Qlarmms ...ttt ettt sa s s st e nan 122
NEEWOIK TrATFIC ettt sttt sb e sttt se s s b e e snas 125
EVENT NANALING .ottt sttt e e e e e a e st et e b e st e b e e e e e e e e a et esetanes 129
REMOVAL POLICIES ..ttt ettt e s e s et e e sa et et et et e s bassessassasnaennenaanes 130
[AENEITIEIS ettt sttt s b st et s b et et e e st et e e e s e bestssessassensesansans 135
CONSEIUCT IDS ..ttt ettt st ettt st s st s b st et s b st e s st s ebe st e e st e sbesabe st snasnnes 135
PRI ettt ettt b et e s b et et e aesae st e e e sente st eseean 138
UNIQUE IDS ettt estessreese e s et e stessaessseessaesssaesssasssaesssessssasssassssesssessssesssessssessseesseesssessssesnses 139
LOGICAL IDS ettt et e s te st e st et e s te e e s e e s et e s tesaesaa s e e saeseese e s esaentassansessaesaesesnsenaansansanean 141
TOKENS ..ttt sttt sttt et e s et e s bt et e e b et e e b et et e R et et e se e s et et e R et et e seese b e e eses 141
TOKEN EXAMIPLE ..ttt e e et e st e s te st et e s s e e e e e e e e e et et e tessassassasseensanaansansan 142
PASSING TOKENS ...ttt te st e s ve e e e e e e s et et e st e besbe e s e e se e e e st essetantassassassessnenaansans 146
How token enNCOdiNgs WOTKcceiieiiieieiececee ettt steste e e e e e e e saesaestasbesaa s e s snennennenes 153
How to check for toKeNS iN YOUI QPP ittt ettt e e nenens 154
Working with string-encoded tOKENS ...t 159
Working with list-encoded tOKENS ...ttt naan 161
Working with number-encoded tOKENS ... 161
LAZY VALUES ..ottt te ettt s et e st et e st e b e s b e e se e e e e et et e ste st e besseesaeseennensansensansanes 183

Version 2 iv

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CONVErtING 10 JSON ..ottt sre st s b e s st e s b e s sa e s sae et e s ae s saesssaessnasssasssaesnses 186
PAFAMELELS ...ttt sttt s e s a st s s s e s bt ae e b e st s b e et e et e b e et e e ne e sneeneas 187
ADOUL PATAMIELENS ..ottt cte e testeste e e e e e e e ae st e st e stessesse s e e e e e esaansessansansassessaessensensansanes 187
LA IMOKE .ttt ettt ettt et ae et s s b e st e s st e b e et e e st s ene st e s st e saeebe st esesasasntensasnne 188
TGS ettt ettt et s e ettt e st e st e e b e e b e e b e e b e s b e e e b e e At e e b e e e b e et e e s e e aeeaa e e aee st e e teesraesreeseassraanne 188
USING TGS ittt sttt s st e s st e s ste s se e s sae s se e s saessseesssassseasssesssaesssessseesssessssesssesssaesssennn 188
TAQG PLIOTITIES ceeeeieeeeecteeteectee ettt st e st st e s sae e st e s s ae e st e s saeessae s sa s s st eessaessaesssasssaessseesseesssessssenssens 190
OPLiONAL PrOPEILIESecveieteteceeeeeeet ettt e st e stestesbeese e e e e e e e saesbe st essessassesssesaansensansanes 191
EXAIMIPLE ettt e et ettt et e b e e e e reea e et e e et et e seereeseeneenaentensentantans 195
Tagging SINGLE CONSIIUCES ...ooviiiiiceeeeeeee ettt e s e e e e e et e st e sae s aessasbe s e esnesaennennan 198
ASSEIES ..ttt sttt b e et b e et e b et e Rt e b e et e st e b e et e e st et e et e st e be s st ens 201
ASSELS N ELAIL ..ottt ettt s b et s st a e et e e s ae e e aenes 201
ASSEE TYPIES ettt ettt ettt s e a e s s e e e b s s e e e b e e s e e e b e e s e e et e e st e e seeesaesraenaans 202
AMAZON S3 ASSELS ...ttt sttt ettt st a e et b e st et a e et e et e b e st e st e aeens 202
DOCKEN IMAQGE @SSEES ..ottt ettt et te st e it et e st e st e st e st e s se s e sse et et et asassassassaesaensanean 215
AWS CloudFormation resource Metadatac.ccceveeviiirenininenenineneneeeeseste s se e ssesaeesaens 226
POITNISSIONS .ttt ettt et e e st s st st e e st s b e et e s s s b e s st e st s b e et e ssesbesstasaeesasatensenns 227
PrINCIPALS ettt ettt et e st e st e st e s e e e e ss e e et et e ste st e sessasseeseenaensensensansans 227
GFANTS ettt ettt st s s a e et et b e st e st s bt et e et e eb e s b e e st s b e et e e st e b e st e eat e be et e saeenenn 228
ROLES .ottt ettt ettt ettt et e e s b e st e e b et et s ae st et e e b et e st e s et et e et et e e sse b et eaaaantenaen 230
RESOUICE POLICIES vttt te st e e e e e e e e s et e st e st e st e s s e e se e e e s esaessesasassassassaessensanean 237
USiNG XterNal TAM ODJECLS ...cvieeeeeeeeeeceer ettt ettt et s s e e e e e e b e saesaaaan 238
CONTEXE VALUES ..ottt ettt ettt st ettt e s b et e e s sasae st esassasbesassessansenassanes 239
SOUICES OF CONEXE VALUES ..ottt ettt st ettt e e b e se s basae e s e nan 240
CONEEXE MELNOAS ...ttt sttt ettt e s et e s e st et e e saasaesaenans 241
Viewing and managing CONTEXE ...ttt ae e s re e e a e nes 242
AWS CDK Toolkit ==CoONteXt flag .ottt saeaens 243
EXQIMIPLE ottt et e et ettt et e e s e e e et et e be st e teeseeseeaeenaentensentantans 244
FEATUIE TLAGS ..ottt ettt s ettt e b e st e s b e st e s e e se e e e e et et et esaessessesneennanes 248
ReVErting t0 V1 DERNAVION ...ttt s st a e a et sa e a e 249
AASPECES ettt ettt ettt et e st et st e st e e s a e s b s a e e et e e s st e s e e s s e e et e e Rt e e st e s Rt et e e st e e sessseesstaeaeesnsasane 250
ASPECES IN ETAIL vttt e st e e s s e e e e sa et et e besaasreeaneneenaens 251
EXAIMIPLE ottt ettt e ettt e st et a e e e e s e e e et e aesbe st et e reeseeseenaentensentantans 252
Prer@QUISITES .ociiiiiiiieeeeneiiiiiiieieiiieeneeesssnesssssssseessassns 256
Set UP YOUEF AWS QCCOUNT ...ttt st et ee et s st e s see s st esaesssaesssassssasssesssaesssessssasssessssessessnnens 256
Install and coNfigure the AWS CLI ...ttt ettt s s s n s 256

Version 2 v

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Install Node.js and programming language prerequUISItesceeceeceeceereeneseneseeeeeeeeseesaenens 257
INEXE SEEPS ettt sttt e st e st e s et s s se e s sae e s st e s b e s sa e s aeessaessseessaesssassaesssassssesssaesstesssesssaesssens 258
Getting StArtedccciiiiiiiieerreeiiiiieeiiiiiiineeeeaseeiisiseeeettss 259
PrErEGQUISITES .eeieieereieteect ettt ettt e st s it e s st e st e ssae e s b e s aa e s b e sssaessae e st asssesssaesssesssaesssesssaesssassseens 259
INSEALl ThE AWS CDK CLI .ottt sttt ste st et s e sae st et sve st et e e sestesassass et ssassessesassassessesansen 259
Verify a successful CDK CLI iNSTAllationcc.coeeoieeeeeeeeeeesesesee ettt 260
CoNfIGUIE the AWS CDK CLI ..ottt ctecte e ste e e e e e e e e e aesaestessesse s e s e e s e s esesaesaessassassessnannan 260
(Optional) Install additional AWS CDK tOOLScceeeeieieiitereteteseseseeee et cte e sae e e e e eneanas 260
Create YOUr firSt CDK QPP cuiciceeereeieeeieietetectesese ettt e st et e stestestesse s e e e e s e e e s et essessessassessaesaensansanes 261
Create YOUr firSt CDK QPP cuiciceeereeieeeieietetectesese ettt e st et e stestestesse s e e e e s e e e s et essessessassessaesaensansanes 261
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 261
ADOUL ThiS TULOMIAL .ttt sa e sttt st e a e e sbe st e e s e sse st esassans 261
Step 1: Create your CDK PrOJECT ...ttt este st estessreesstessaessaesssessssessanssssessssessnasssnanns 262
Step 2: Configure your AWS enVIrONMENTccocoieiiiieeieeeceeeeeeeeee et se e e s sae st sae s nns 270
Step 3: Bootstrap your AWS enVIirONMENTcooviiiiirieirieetrteeseecseessresseesseeesseessaessssessaessanenns 274
Step 4: BUild YOUr CDK QPP wicoiieiieeereeeeeetetectetestes e e e e e e sesesaessessesses e e s eaeaessessassessassassasnsensanes 274
Step 5: List the CDK Stacks iN YOUI @PP cocvcceeiererereeeeeete ettt eee e aesaestessesse s e s e esaeneneens 275
Step 6: Define your Lambda fUNCLION ...t 276
Step 7: Define your Lambda fuNCtion URL ..ottt aenenens 282
Step 8: Synthesize a CloudFormation temMPLAte ... 286
Step 9: Deploy YOUr CDK STACKcecieieieeteeee ettt e e saestestesae s e s e s e e e s s e saesaaneans 290
Step 10: Interact with your application 0n AWS ...t 292
Step 11: Modify your appliCation ...ttt nan 292
Step 12: Delete your appliCation ...ttt 298
NEXE SEEPS ettt ettt te et te s sae e s e e s sae e s e e s st essaessaa e s st e s seesssesssaesssesssessssesssessssassseesseennses 299
Work with the CDK LIDrary ...eiiiiiiiiiiiiiieeeiiiiiiiiiiiiiieesssssiiiiiisssssssssssssssssssssssssssssssss 300
IMPOrt the AWS CDK LIDFArY ...oececeeeeeceeeetetetetete et e e e eseeee s s saesaessessessa s e e e s s e saesaesaesaassanean 300
Using the AWS CDK APl REFEIEINCEueveeeeeeeeteeteeee ettt ste e e e st saesae s sa s saennan 301
Interfaces compared With CONSEIUCE CLAaSSES ...couiruieuieieiceeee ettt sre s 302
Managing dEPENUENCIESecueeueeeeeeietetetececese et e e steste s e s e e se e e e e e saestesbessassassasseessessensansansansan 303
Comparing AWS CDK in TypeScript with other [anguagesccceeeeeeereeceeceeceeeeeee e 304
IMPOrtiNg @ MOAULE ...ttt e et e st e st e st e s b e s e e e e s e e e b estestessassnsseennassansans 304
INStANtIating @ CONSTIUCT ...ttt te s sae e s e e s sae e s a e s sesssnessaaesanessaaanns 308
ACCESSING MEIMIDETS ...ttt rtee ettt et e e s te s teste s e s e s s e s e tessessassesseessessessessansassassansassaesnassansans 311
ENUM CONSTANTS ..ttt ettt st et b e st s b st b e s e e se s b e st e neeane 312
ODJECE INEEITACES ..ottt e et e st e st e st e st e s e s e ssa et et estestassassassaesesnsensansansans 312

Version 2 vi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

[N TYPESCIIPT ettt et s e e s et e s e e s st e s sa e s b e e s st e s sbesssaesssaessaasssassseesssessstasssessaennees 314
Get started With TYPESCIIPL ..ttt sttt e aesae s s e e e e e e e e aesaatans 314
Creating @ PrOJECT ..ottt st s e e s s e e st e s sre e s ae s sa e s be e saassbe s saesssassnnesssenases 315
USING LOCAl £SC AN CAK vttt st r e s s e s n e aenes 315
Managing AWS Construct Library Modules ...ttt e e e e seenens 316
Managing dependencies iN TYPESCIIPT ..ottt ste e s re s e s e saesaeseens 318
AWS CDK idioms iN TYPESCIIPL .ottt ste e steste s e e e se e e e s e saesaestessessae e e s esnannanes 321
BUIld @Nd run CDK QPPS coviciieieieeeeeeteeeteseestesiestestessessee e st essessestessessessesssesssssessessassassassessessssssennans 322

[N JAVASCEIPT ottt ettt e e re s s st e s b e s se e s ae s ssaessbesssaessessaaesssasssesssessseesssessaesssens 323
Get started With JAVASCIIPL ..ttt a ettt a e s e s a s 323
Creating @ PrOJECT ...ttt et s e s re e st e s s ae e s ae s sa e s ssesssaesbesnsesssasnsesssenanes 323
USING LOCAL CAK ittt ettt st e st e st e s e s e s e et e et e st et e s b e sassassaesaenaensanean 324
Managing AWS Construct Library Modules ...ttt see e e e eesnens 325
Managing dependencies iN JAVASCIIPT ..ot see st st sae s ae e 326
AWS CDK idioms iN JAVASCIIPL ..ottt sresae s e e e e se st e s e saessessassessas e s s esaenaanes 330
Using TypeScript examples With JavaSCript ...t 331
MiIgrating O TYPESCIIPT .eeuiicieeiertececctest ettt s e st e s e st e s e e saeste st esaessaesaessesssessnassasssanes 335

[N PYERON ettt ettt et e e e et et e st e st et e s b e s s e e s e e e et et e be st e s beebeereene e s ententansantans 335
Get started With PYthon ...ttt sa e 336
Creating @ PrOJECT ..uiiiieeteeteectertee ettt st te et e st esae st e s e s st e s e e s e e st e s s essessaes st asssassesssessasssassean 337
Managing AWS Construct Library Modulesiiiecieneeeseeeseeesteeecve e sae e e e ssesnens 338
Managing dependencies iN PYTNON ...ttt n et 340
AWS CDK idioms iN PYtRON ...ttt ste st sa et et sa e s aesaas 342

TN JAVA e b e s at e b s at e aesane 345
Get STArted WIth JAVA ..ottt ettt sa ettt ss et e s s e s e e saen 345
Creating @ PrOJECT ..uiviiiiteeteectesteee ettt st te st e st e s e e st e s e e st e s e e s saesae s s esseessesstasssessasssesseassassean 346
Managing AWS Construct Library Modules ...t sae e e e eenens 346
Managing dependencies iN JAVAc.cocoeeieieienicececeeeeee ettt ste s e s e e ss e saesaesaesbessa s e ssnennan 347
AWS CDK idiOMS iN JAVA ettt eessesse st s esse st e e s e sse e s e ssessesassassestesessessenassensensns 348
Build and run CDK @ppliCAtioNs ...ttt saesaesaesae e e s s s e sa e e e 350

[N G ettt ettt sttt s b et s b et e A et et R e b et e e R et et e R et et e ae s et et sense st eneaen 350
GEL STArtEd WIth CH ...ttt sttt st et b et et b et s e s s 351
Creating @ PrOJECT ..ocviiiiteeteectert ettt ae st e st esae st e s aa e st e s e e saeesae s s e saesaessaasssessasssessasssannean 351
Managing AWS Construct Library Modulesiiieciineeeseeeseeesreeesve e se e eeseens 351
Managing dependencies IN CHcoiicieereeeceeteeete et sre e sa e st e st e saesaesaesse s e e e s sassnenaanes 352
AWS CDK GdiOMS iN CH ..ttt ettt et s be st e e s et e st s e sse st s e ssesaesassassensesassan 356

Version 2 vii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Build and run CDK @ppliCRtioNsc.cceeeeieecieeeetetetete ettt stesaesae e s e e s sa e et aas 358

TN G0 ettt ettt et et b e s e et e bt et e e Rt s ae et e st e b e et e e seesae et e st ebennt 358
GEL STArtEA WIth GO ettt sttt ettt e s st e st e s e b e e s e sasnenas 358
Creating @ PrOJECT ..ottt st s e e s s e e st e s sre e s ae s sa e s be e saassbe s saesssassnnesssenases 359
Managing AWS Construct Library modules ...ttt 359
Managing dependencCies iN GOccccceceeeeeeiecictetetete e ste s e e e e e e e et e saesaessessesse s e s e eae s esassensanes 360
AWS CDK idiOMS IN GO weouiriirieiiirienietrestenteesestesteesseste st ssesse st e e ssessesessassessesassessessssessessessssassesseseses 360
Building, synthesizing, and deploying ...ttt 362
BESt PraCtiCeS «.cceeiiiiiiinnnnnnnniiiiiiieiniineneessessssssseeesssasss 364
Organization DESt PraCliCes ...ttt s ae e eeaenes 366
COAING DEST PraCiCeS ...veeeeeeeeeeeeetee ettt e et et e e et e st et e besae b e s saese e e esaessensensansaneans 367
CONSEIUCE DEST PraCliCeS ..eveeeeieeeeee ettt s e e et et a e s s e s e e e e e e e enaanes 370
ApPPLICAtion DSt PraCtiCeS ...cuivuieeeeeeeeeeetetec ettt ettt et e e s e e e e e e e s e s et esae st e saessessessesnnenaennans 372
SEOUNILY cuuteeitieieicteete ettt st st e et e st e s st e st e e sae e ssae s sa e saaesaeasssessa e saasssaesssasssaesssassstesssessstenssessseesssesssaensees 376
Follow IAM security DSt PractiCesceceeeeeeiiieicteeectestestes ettt stesae s e a e se e aesaa s 377
Manage permissions for the AWS CDK ...ttt e e saestesaesaesse e e s esennens 377
Migrating from AWS CDK V1 t0 AWS CDK V2cciiieeeeeeenciisiccceinnnnessssssssssssssssscsssssssssssssssssssssssss 383
NEW PrEIrEGUISITES ...veeeiieeieeieiiieeieesteestesetessteesteesaesssaessseesseesssesssaesssessssesssesssaesssessseesssessssesssessseesssessnes 385
Upgrading from AWS CDK v2 DeVELOPEr PreVIEWc.cceeeeiecieciecieceeeeeeeeeerestessesvesseseeeeaesennas 385
Migrating from AWS CDK VT t0 CDK V2 ...ttt ve e e e et stesaestesse s s e s s s esaessansans 386
UPating t0 @ FECENT VT ..ttt et et e stesae s e e sse e s et et et et e s b e se s e s saesaensensenean 386
Updating fEAtUIE flags ...ttt te st s s ae s e a e et nes 387
CDK Toolkit cOmMPAtiDility ..c.cccveeeeeeieeieeeeeeeee ettt a e saesaesaaaans 387
Updating dependencies and iMPOItSc.cciviieierenieeeceeeeteste e e e s sae st saesaesses e ssassnennens 388
Testing your migrated app before deploying ... 393
TrOUDLESNOOTING ..ottt e et st e s ae st e et e s se e e e e e e et e st e stessessaeseensensansansans 394
FINAING VT SEACKS .ttt ettt et e st e st s e e e e e s e e et e st e b e s s e sesse e e e sae e enaensanean 395
Migrate to the AWS CDKceeciiiiiiiiiiiiinneeesssensssssscesesss 396
HOW MIGration WOTKScoueeuieiieeeictectctectec ettt e testestestesse e e e e e e e s et e sesaassessassassesssesssnsensensansans 396
BeNefits Of CDK MIGIate ...ttt ettt et et e st e e s e e se e s e e e s et e s et e bessessessneraennans 397
CONSIAEIALIONS ..ottt ettt st st e st et s st e st e e s et et e e s s et e e s sesbe st esassassestesansensenassansessesans 397
GENErAl CONSIAEIAIONS ...voviiviiiieeetetretccer ettt sttt ettt e s et et s e b et e e s sa s esaesansan 397
Considerations when migrating from an AWS CloudFormation templateccccocueveunnee.e. 398
Considerations when migrating from deployed reSoUrcescooeeeeveeeeceeceeceeceecececee e 399
PrErEGQUISITES .ottt ettt ettt s st e s st e e st e st e ssae s s saeessaessbesssaessaeesssasssesssaesssessssesssessseesssansseens 399
Get started With CDK MiIgrate ...ttt ettt teste s e e e e s sae st e aasae s e sse s e ssnennanes 399

Version 2 viii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrate from an AWS CloudFormation Stackccceeeeiecieiecieneeeeeeee et 400
Migrate from an AWS CloudFormation temMPLlate ... 401
Migrate from an AWS SAM teMPLAte ... st 402
Migrate from deployed FESOUICESccicueeeeeeecececeetete ettt st e aeste s s e e sa e e e nesaesaenes 402
USE FILLEIS ettt ettt ettt et s bbb b e st et et et e s b et e e eaesae st eneaans 402
Scanning for resources With 1aC geNErator ...t 403
RESOLVE WIite-0NlYy PrOPEITIES ...c.eeieeeieteeeceeeeee et ettt e aesre s e e e e e e e et esaebasans 403
The MIGrate.SON FIlE ettt et e st sse e s e e e e e e e e aesbeneans 405
Manage and deploy YOUr CDK @PP .iccceeeerierierierierieseeeeeeeeseestestessessessesseeasssessessessessassessessessesssensenes 406
Prepare for dePlOYMENT ... ettt sttt sa e s e e e s e e e e a et enaan 406
DEPLOY YOUT CDK QPP ceririrerierieeieeieeetetectestestesaesseseesestesaessessessessassesssessessessessassensassassessesssensensensen 406
Configure security Credentialscccccceeeeeeeciiiiiieiiiiinnnnnesnnisiisiieceninsess 408
PrErEGQUISITES .oeieiiereeeteeeertere ettt e st s e e e ae e st e s sae e s b e s sa e st e sssaessaesssnasssessaesssassssesssessseessensseens 408
How to configure security credentials ...ttt nesaenens 408
Configure and manage security credentials for IAM Identity Center usersccccevevvvecvecvevennee. 409
Configure and manage security credentials for IAM USErSc.eoevieviecieceeciececececeeee e 410
Additional iNFOrMAtioNccueiiinieieecreee ettt st sa s sae st e e sse s e e s asans 410
Example: Authenticate with IAM Identity Center automatic token refresh ... 411
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 411
Step 1: ConfiguIre the AWS CLI ...ttt et saesteste e e e e e s e sa e aessasaaeens 411
Step 2: Use the AWS CLI to generate security credentialsccocveeveeececeneneeieeceeeereeee. 413
StEP 3: USE Tthe CDK CLI ettt et et aestesteste s e e e e e e e et essesaesbessassassassnennansansans 413
Configure eNVIFONMENTScccuueiiiiiiiieiiiinnneeeesseessssessesesse 415
Where you can specify environments from ...t 415
Credentials and configuration fileS ... 415
env property of the Stack CONSTIUCTco it nnens 415
Environment precedence wWith the AWS CDK ...ttt sve e e s sae s snens 416
When to SPecify ENVIFONMENTScouiiuieeeceeeeeeeeres ettt stesae e ere e e sae st e saesaesse s e s e e aennans 416
Specify environments at template SYNthESISc.ooviieieceeeeee e 416
Specify environments at stack deployment ... 417
How to specify environments with the AWS CDK ...ttt 417
Specify hard-coded environments for each stack ... 417
Specify environments using environment variables ... 420
Specify environments from your credentials and configuration files with the CDK CLI 423
Considerations when configuring environments with the AWS CDKccoooioeeeneeierceeveeceeeenee. 423
EXQIMIPLES ..ottt ettt et et et et et e st e st e et e e e e e et et e st et e b e s b e e seesaesae st et et e ta st aeseeseeneensententantan 423

Version 2 ix

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Synthesize an environment-agnostic CloudFormation template from a CDK stack 423
Use logic to determine environment information at template synthesiscccceveenneee. 427
AWS CDK tElEMELIY ...ccciiiiiiireeeenneiiiiiiceeiieenasasssssssssssssesses 432
Configure usage data rEPOItING ...ttt e e e e s e st e st e saesbe s e e seesaesaenean 432
What is CDK library usage data reporting?eeceeececeeeee et ere e s s saesaesens 432
What usage data is COLECLOA? ...ttt e 432
How the CDK collects application usage dataccceeeereceneceeceeeeee e 434
How to opt out or opt in to usage data reportingcccceeeeeeceeeeceecececeece e 434
EXQIMIPLES ..ttt ettt ve e e e e et et e st et e st e s b e e seeseese e e et estentesbassesseereeseentensententensanes 437
Configure CDK CLI tELEMELIY ...ocue ettt cte e te e e e s e s e sa et e aessessasse s e s e e s essensansansans 439
What iS CDK CLI tELEMELIY? ...ttt te e e e et e st st e st e s aessasse s e e aenaenneaenes 439
How to opt out of CDK CLI tElEMELIY ...ttt st 439
Send telemetry data to @ LOCAl fil@ .ot 441
BOOtStrap YOUr @NVIFONMENTciiiiiiiiiieeeeenniiiiiseceeisnessass 442
How to bootstrap your ENVIFONMENT ..ottt ettt e stestesae s e s e e e e s e e e saessesaesaasaens 442
When to bootstrap your eNVIFONMENT ..ottt cae e sae s e e e sa e s e saessanaens 445
Default resources created during bootStrappingcccceeceeiececececececeeeeee et 446
Permissions to use when bootstrapping your environmentcccoceecieeevecenieneseereeceeceeceeceenen 447
CUSEOMIZE DOOLSTIAPPING «ecuviveeeeieeieeetetetertete ettt e te st e s se et e e e e e et et e s testesaassessaeseesnensansansansan 448
Bootstrapping With CDK PIiPELINEScueueeeeeeeeeeeeee ettt te e ns 448
Bootstrap template Version NiStOrY ...ttt st s ae e s ae e nnens 449
Upgrade from legacy to modern bootstrap templatecccceeeeeeeeeciececcceeeeeee e 455
Address Security HUD FINAINGScooviiiieeeeeeeeteteeteses ettt saeste s e sse s e s e s e s s e sa et esaesaanaans 456
CONSIAEIALIONS ..ottt ettt et st e sttt e st e e s st e e e e st et e e ssesse st esassassesessassensenassansessasans 459
CUSEOMIZE DOOLSTIAPPING «ecuviveieeieeeeeeeetetetete ettt e te s te st e e e e e e e e s et e s testesaesseeseeseennensansansansan 459
Use the CDK CLI to customize bootStrappingccccceeeeeeeeeeieeceeeeecee et 459
Modify the default bootstrap tEMPLAtEccooceeeeieeeeeeeeee e 462
Follow the bootStrap CONLIACT ...ttt s a e s e nens 463
Create and apply permissions BOUNAArIEScccceeieieieceecieceeceseee sttt a e e nan 465
When to use permissions boundaries with the AWS CDKc.cceeiriecieceecerececeeeeeeee e 465
How to apply permissions boundaries with the AWS CDKccceieieceneneneneeeeeereceecnenens 465
LA MO .ottt ettt ettt et et a e st et e b et e st s ebe st e e st e b e et e st sbe s st e st ensasntessesasannnen 466
Troubleshoot BOOTSErAPPING ..ottt sttt et e s ae s e s e e e e e e e ennan 466
When bootstrapping using the default template, you get a 'CREATE_FAILED' error for the
AMAZON S3 DUCKEL ...ttt ettt st ettt et et e e s e st e e s s e s e s s e ssasaanaen 467
Develop AWS CDK appliCationsccccciiiieeeeeeneiciiiccinininnneeesesssssssssscessses 474

Version 2 x

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

PrErEGQUISITES .oeieeeereeeteectetere ettt et e st s it e s s re e st e s sae e s b e s sa e s b e sssaessbe s st asssesssaessseessaasssessssesssassseens 474
Developing AWS CDK appliCationNs OVEIVIEWcccceeeeeeerieicretectectesesseereeeeseessesaessessessesssssesseens 474
Get started with developing CDK appliCationsc.coeeeeieieieceeceieseceee et 474
Import and use the AWS CDK LiDrary ...ttt sa et sae s 474
NEXE STEPS ittt e et e e st e s s sar e s e s e e s s saessssaesssseessssaassssaasssseasssseessssaessssessssseesssneessnesns 475
CUSTOMIZE CONSTIUCTES ..ttt ettt ettt et s b st et sbe s e e s st sbe st e sntesnesbesnesas 475
USE €SCAPE NALCNES ...ttt e e st et et a e s be s e e e e s e e et eaabantans 475
USE UN-€SCAPE NALCRES ...ttt st sttt sttt 482
USE FAW OVEITIAES ..ottt et esae st et s et et s e sse st s e sae st et ssesaestesassessenassessassessssasseseesensessases 483
USE CUSTOM FESOUICESeeiuieuieieeniereeiteeteeuesteetesaeestestessesssesstesseessesstessessasstessesssesstessesssasstessesssanns 486
GEt ENVIFONMENT VALUE ..ttt ettt ae st sttt e st s e s b et e e ssa s e e s e ssasnenas 487
Use CloudFormation PAr@mELers ... ceceeeeicectereetete et e e e st st e saessessesse e s e e s e aesaaaanes 488
Define parameters in YOUr CDK @PP wiccoieieieieiiieiesiecesese e et e seestesaesaessessesseeae s esnesaessessesaenes 488
USE PAFAMETLELS ...eeiiieiieeteeceeeteesteste s st es e s st e s aessseessteesatessesssaesssassstesssesssaesssessseesssessssessseesssesssenns 489
Deploy CDK apps coNtaining ParamELerscceeeieceecierieceeeseeee e e sesaesae s e ssessesseessesaesseneas 492
Import an AWS CloudFormation teMPLAte ... r e resae e 496
Import an AWS CloudFormation temMPplate ...t 496
ACCESS IMPOITEA FESOUITEScveveereeieeieeteiteiteste e seeee e e e e stestessessessessessesssessessesessansassessaesesssensensanes 502
REPLACE PArAMIELENSoceveeeeeeiecieeeeeete et ete e e e e e e et et e st e tessesseese e e e s astestesbassassessassasnsansansansansanes 504
Import other template EleMENTS ...t aan 505
IMPOIrt NESTEA SEACKS .ttt e s ae s a s e e e e a e aeaeaas 507
GEL SSM VALUE ..ttt ettt sttt sa e st et s st et s st e st e s b e st et e sasbe st esassensenassansessesans 510
Read Systems Manager values at deployment time ..., 511
Read Systems Manager values at synthesis time ... 513
Write values to SYStEMS MANQAQENccueoeeieieieieececee ettt ste e e e e e et e saestesaassesse e e e e ens 514
Get SECretS MANAGEr VALUEoeeeeeeeeeeeteteteeteete ettt et et e saeste st et s e e e s et e s be st e saessessessa e e esaessansanes 515
Set CLoUAWAtCR @larmm ...ttt ettt a et b e s sa et sb b e ene 518
USE AN eXiSTING METFIC cuviieiiieteeceereectetee ettt st s e st e s e e s ssa e s sae e s e e s ba s saessneessnasssasssnesnss 518
Create YOUN OWN MELIIC ..ottt sre st s te st e s sae s sre e s sae s seessaesssaessaassseesssesssaesssasssesnnes 518
Create The Qlarm ..ttt sttt sb et a e e a e nan 520
GEL CONTEXE VALUE ..ttt ettt ettt sb e sttt e st e s b et e e s aasae st ssassassentnas 522
SPeCify CONTEXE VAIADLES ..ottt e st st e s s sn s 522
Retrieve context variable VALUES ...ttt ettt sa e saens 523
Use resources from the CloudFormation Public RegiStryccceceeeeeeeeeeeeeceeeceeeeeee e 525
Activate a third-party resource in your account and Regioncccceeeeerevveereeceeceeceeceeceennns 525
Add a resource from the AWS CloudFormation Public Registry to your CDK app 527

Version 2 xi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Define permissions for L2 CONSEIUCESciiiiieiieecececeeetete ettt st s te e s ss e nnens 529
Use grant methods to define PermiSSIONSc.cceoeeieiececiecececee ettt aenens 529
Manually create and USE TAM FOLESoueveeeeeeeceetete ettt ste e e e e e s e saesaeneans 536

Configure and perform SYNtheSisuuiiiiiiiiiiiiinnnnnniiiiiiiiiiiiiieeessiiiiiitsssssssssssssssssssanes 540

How synthesis and bootstrapping Work together ... 540

How to configure CDK stack SYNtRESIScuouiuieieeeeeeeee et 540

HoW t0 SYNthesize @ CDK STACKccueeieeiiicicteeetec ettt ste e e e st et esaesse s se e nanns 545

How synthesis Works by default ...ttt a e e 546

Customize CDK Stack SYNTRESIS ..c..eveeuieieeeeee ettt s e e a et s 557

CUSEOMIZE CDK SYNTRESIS ...ttt ettt e s e s e e e e e e e e e e ae st e saasaessessaennensenaansansans 557
Customize the DefaultStackSyNtheSizZeT e 558
Use CliCredentialsStackSyntheSizZerT e 568
Use LegacyStaCkSYNtRESIZET ettt sae s s snens 574

Deploy AWS CDK appliCationsccccceeeeeeeccsisncecnnnnnnnesss 576

How AWS CDK deployMeEnts WOTKcociiiiiiiniinireeectctctetestesresre s et saesaessesae s e ssssa s s esaessasaanes 576

Prerequisites for CDK deployMENTS ...ttt ste e sse e se e s s saesaesaesaessassesnnens 576

CDK QPP SYNERESIS ..ttt sttt st st esae st e st e s ae s e et e s et e e esbaseassassassasnnesaanaans 577

DePloy YOUr QPPLICATION ..ocviieieeeeceeteeetetectestertes ettt e st e sae s s e s sesse e e st e s e saasbessasbessessassassnanean 581

POLICY VAlIAQEION ..ottt sttt s a e s b e st e st e st s s e st e s et e aesbassessasnaans 583
Policy validation at synthesis time ... 583
FOr appliCation AEVELOPELS ...ttt ettt st se st sa e st s a e saessesbe e e aesnenan 584
FOr PLUGIN @UENOIS ...ttt st st s a e s a et st st e s s e s e s aea e ae s 587

Create CDK PIPELINEScoueeiieeieietetcctestereses sttt ste st esteste s e s e s e et e sa et e saessessessassessaessessassessassessassesnsanes 589
Bootstrap your AWS enVIFONMENTScoceiiiriineniintereeiteseesresstest e s steseesaessaesseessesssesssessesssessees 589
INITIAlIZE @ PIrOJECT ettt et sa e st e st e st e s s e s e e s e e sa e aesaesaasbasseeseesaensanean 592
DEfiNE @ PIPELINE ..ttt ettt r et st e s e s e e s e e e e st e sa e e e s b e sasaeesesanennanes 594
APPLICATION SEAGES ..ttt s s s e e st et a e b e ae s e e st e e e e e e saeaeaabantans 603
TeStiNg dEPLOYMENTSoiiieieeeececeecre sttt ste s e s e s e e st e e e s b e s b e st e sbesaessaea e s esaansanes 615
SECUNEY NMOTES ettt ettt ae st s st e s e e s e s st e st e s s e s b e s e e sae s b e s st essesssasssessasssesssassasssessasns 624
TrOUDBLESNOOTING ..ottt st s e st et e e st e sae b e s e s se e e s snesnasaasaenean 625

Build and deploy container iMage QSSELScciveririiieiiitetecteeseses ettt sae s e s e s e s e e s e saesaeean 626
Example: Build and publish a container image asset with the AWS CDKcccceevevirenurennee. 626
How to replace Docker with another container management toolcceceeeeevenvenciiciecnenen, 628
Supported Docker drop-in replacement ENGINEScccceeererenerieieereeseesese e se e ss e sae s 629

Troubleshoot CDK deployMENtSccuecuicieeinininineiteeetetesrestese e e e s e s saessesaessesse s e s e e s esaesaassanes 629
Incorrect service principals are being created at deploymentcccceeeveveneneniinvenceeceecnennen, 629

Version 2 xii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configure constructs with CDK BLUEPFINES ...ccciiieeeeeeeeeiiiiiiicciiininnneesssnsssssssscsesssssssssssssssssssssssssans 631
Key components Of BLUEPIINES ...ttt ettt e e e sa e sa et saesnens 631
Common USe €aSES FOr BLUBPIINTScccveieieeececeeeetete ettt sa et saesteste s se e s a e s e s e saenean 631
Getting started With BLUEPIINTS ...ttt st 632
BOST PrACLICES ettt et s ae e s ae s ra e s b e s sa e s sae e s aa e e b e s s sa e e e e e st e e beesraeeraenntans 634

CoNFIGUIE PLUGINS ...ceeeeeeeiiiiiiiiiiiiiinnnennesisisiecetetsesssnas 587
HOW 10 Create PLUGINS ...ttt ettt steste s e e e e e e e e b e stebe st e s be s e esaenaenaanean 635
How to load plugins With the CDK CLI ...ttt e ettt ne 637

Load plugins in code with the CDK Toolkit Library ... 638
Implementing credential provider PLUGINS ..ottt 639
LM MO .ttt ettt sttt sttt s b e et s b e et e et s ae st e eat e sae s b e saeeasessbesntesasnbasens 646

Use the CDK TOOLKit LIDrary ...cccciiciiiiiiiieeenncniiiiicciiiiineeessssssssssssscsss 647
Understanding the CDK TOOLKit LIDIary ...ttt sae e e e e snesaenas 647
Choosing when to use the CDK TooLlkit LIBrary ...ttt 648
Using the CDK TOOLKIt LIDFAry ...ttt s e e e e e st saesaesaesae s e e e e ne s e e e saanaaaans 648
INEXE SEEPS ettt et sttt e st e st e s sae s sae e s st e e ssa e s b e s sa e s seessaessseessaesssasssaesssesssessseesstesssesssaesssens 649
LA MO .ttt ettt et sttt st s b e et s e s e et e et s ese st e s st e sae e b esnesssessbesntensasntasens 649
GELEING SEAMEA ..ottt et e st e st e s e e e e e et e b et e s te s e seesaeseeneesaessantansansas 649

PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 649
Step 1: Installing the CDK ToolKit LiDrary ...ttt 650
Step 2: Initializing the CDK TOOLKit LIDrary ..ottt e e s saesaeseens 650
Step 3: Creating a cloud assembly source for your CDK @pp ..ccccceeeeeeeeeeeeceesieseeseseeeeeeeenns 650
Step 4: Defining programmatic actions for your CDK @pp ...cccceeeeeeerveseeceeceeceeciececteeeeeeeeenens 651
Step 5: Customizing the CDK Toolkit fUrther ... 651
AdAItiONAl FESOUICESveviieeirieieteeretet ettt sttt et s et se s e st et s e sse st e e s sassesassassansenassessensesens 651
Configure programmatic @CHIONScc.coeeieecccee et s e st e e e aenes 651
Generating cloud assemblies With SYNth ... 652
Viewing stack information With List ... 653
Provisioning infrastructure With deploy ... 653
Reverting failed deployments with rollback ... 654
Monitoring changes With WatCh ...t aeaens 655
Removing infrastructure With destroy ... 655
Configure the CDK TOOLKItc..ccveeieieeeeeeeeeete ettt et este s e s e e e e e e et et e sae s e sa e s e e e ennanes 656
Configuring YOUr AWS Profile .ottt st et s ae st asaeaan 656
Configuring STACk SELECTIONoeeeeeeeee ettt sa et es 657
Configuring €rror NANAUINGc.eeeeeceee ettt s te b st sn e aenes 658

Version 2 xiii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configuring TOOLKit QCLIONS ...cveveeeeeeeee ettt e e e a et sa et nns 659
Managing cloud asSembBLY SOUIMCEScucouieieieieiceeeececese ettt ettt s naens 660
Selecting a cloud aSSEMDBLY SOUICEc.uevieeieeieeceeeceteeee et steste e s e aesnenaens 660
Configuring your cloud asSemMbBLly SOUICEcoueeuieieieieecieeceece ettt saesaeaan 661
Working with cached cloud assembBLIESoueveieeeeeeceeeeeeeree et 663
Best practices for cloud assembly SOUICEScoeeieieieciececeecee e 666
RESOLVING POLENTIAL ISSUBSeveneeeteieeeeeeetetee ettt ettt te st s ve e e sa et et e sesse s e e e e e e aennaneans 667
Configuring messages and iNtEraCtioNscccciceeeeieeccecece ettt e e e saenan 668
UsSiNg the ITOHOST iNTEIrTACe .ottt ettt s anens 669
Message levels and reQUESE tYPES ..ottt sre e se et saesresaesse s e s e s s enennens 669
Basic ITOHOST implementation ...ttt sve e s e e snens 670
Default ITOHOST DERAVION ...ttt sa et 671
Advanced i0 host impPLlemMENtAtion ... saes 671
Integrating with different enviroNMENts ..o 672
Best practices for io host implementation ... 674
TrOUDBLESNOOTING .ot st s s et st ae e e st e s e e b e s e s se e e s e eaaaassanean 675
AdVANCEA EXAMPLES ..ottt te e st s e e e et e s ae st e st e st e st essessaesa st e s essessessassessassessesssessansans 676
INEGIAtiNg FEATUIES ..ottt sa e st e st et e s e s e s e s e e s e nesaaseans 676
Tracking deploYMENT PrOgreESScciiiicieciiriererererte et see e stese e s e s e s e s s e s e saestessassessassassssssensanes 678
Handling errors With rECOVEIY ...ttt ettt sae s s s a s 680
Integrating With ClI/CD PIPELINESeeeeueeeeteeeetete ettt e st st eebesae s se s e e s sasse e ns 681
AdAItioNAl FESOUICESeoveeeieeiieteeeteteteertet ettt ettt et s st et s sse st e e sesse st s e ssessensssessensesens 683
Test AWS CDK appliCationscccceeeeeeeeciisiecceeininnamsssssssssssssscssses 684
GELEING SLAMTEA ..ttt st e st e st e s s s e e et e b et e st e st e sessaesa e st estensansansansan 684
THE @XAMPLE SEACK ettt s e st s e e e e e e b e b e ae s s e s se e e e saennanes 687
The Lambda fUNCHION ..ottt ettt re sttt s s e e e e ssesae e s 695
RUNNING TESTS ittt st ettt st e st sae st st e s s e s b e s e s te s b e st e b e s b e s st e aesbassaessasssasssensesssennes 695
FINE-graiN@d @SSEITIONSccuieiieiiriieiiteectetestesestese e s st et et e st e stestessessessa s e e s estessessessessassessasssansensansan 696
SNAPSNOT LSS .t sttt et s a e st s b s e e et st e e e ae b e aeeaeenaenes 713
THPS FOI LSS ettt st e st s e et et e s b e st e st e st e s sesseesa et et et e aessesseesassnenaanes 718
LOCAL tESTING ettt sttt et et s e st et e st e s e s e e ae s re et et et e te st e b e s saeaeeree s et ententan 718
GELEING STAMTEA .ottt et et et e b e s b e st e s se s e e sa et et esaesaessassessassaennans 719
LOCAL tSTING .ttt ettt et e st s e s e s e st et et e st e b e s b e s ba s s e e sa e st et e aaeesaassesseennensanes 722
BUILAING ettt ettt sttt a e b s e e s e e s b e s e e e e e et e st e e e besaessessaesaesaaseessansansansan 723
AWS CDK CLI ref@rencCecccciieiieiiiiiiiisssssssssssssssssssssssssssnsss 725
CDK CLI COMMIANGS ..uoviriiriinieieeeienteteentestetsrestestssessesteessestesessesse st ssessessessssassentesessessesessessensesessenseneene 725

Version 2 xiv

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Specify options and their VALUES ...ttt ettt st s a e 725
BUILE-IN NLP ettt ettt e st e et e e e et e st e st e st e s s e s s e e e e st e e et e tassansassessaeseanaensanean 726
VEISION FEPOMTING «.eiiiiieieieieeieecteese ettt e e st e st e s st e st e s saeessaessseestesssaessaessssasssesssaesssesssaesssessssesssassseens 727
AUthentication WIth AWS ...ttt sttt e s st e st s s et s e ssa s e s ssaaans 727
Start an AWS access POrtal SESSIONcccceeeceeieicecectetete et te e s e e e e e aesa e sae s 728
Specify Region and other configuration ... 729
Specify the apP COMMIANA ...ttt st et e s ae s s e s sessa e e s e enneaeneans 730
SPECITY SLACKS vttt et et e st e st e st e s b e e e e e e e s et et e bessesseeseeseeneenaententanean 731
Bootstrap your AWS €nVIFONMENTccuiioiiiiiiieecteeiecct e et estessreessae e st esssesssaesssessseesssessssesssasssnans 732
Create @ NEW QPP coiirieiiiirieeritrrtessie sttt e st e s ste s st e s sae s s st e s ssesssaesbesssaesssesssaesssesssessssesssaesssessseesssessseesssans 733
LIST STACKS wuveveiiieienieieestetet ettt et st ettt e st e st e st et e s e b et e sa s b et e e ssesaestesassanbesaesesantensssensensesassans 734
SYNTNESIZE STACKS .ttt ettt ae e e a e et e st e ste s e besseeneesnennennanes 735
SPECITY CONTEXL VALUES ...ttt ettt st te st e v e e e e e s et e st e sa s e sa e e e neaennan 735
SpecCify diSPlay fOrMAL ...ttt ettt s ae s nennens 736
Specify the OULPUL AIrECLOMY ...ttt te s aeaan 736
DEPLOY SEACKS ..ttt ettt et te st e st s e e et et e st e b e s te st e e seeseenae s et e betanraeseenaenes 736
SKIP SYNENESIS .ottt ettt e te s e e e e e e e st e st e st et e s s e s e s se e e e sa et et essessensassassaessaseensansan 737
DiSADLE FOLLDACK ..ottt ettt a e sttt sa et e a e nas 737
HOT SWAPPING ettt ettt st s et e e ae s s e e s sae s st e s aa s st e s saaesssesseessaessassssessseasssessseenseens 737
WATCN MOAE ..ttt ettt et ettt et st et e e s se b et e e se s enans 738
Specify AWS CloudFormation Parametersceeieciececeeeceeee ettt sre e e e sse e s s 739
SPECITY OULPULS TIlE ettt sa et ettt st s aeesa e aenes 739
Approve security-related CHANGES ...ttt a e st aesaa s 740
COMIPAIE SEACKS .ttt et e st e st et e s e e e e e e e e et et e saesaessasseeneensessensansanes 740
Import existing resources iNt0 @ SLACKcc.ccveieciecieceeececeeeeee ettt s ns 742
Configuration (CAK . JSOMN) couiieeeceeeeteeeree ettt se e e st e st e s be s b e s e s e e e e sae s e aanaanaan 743
AWS CDK CLI command referencecccceieiiiiiiicinissnsss 748
USQQGE ittt et e st et e st e st e s s ae s st e e bt e ae e s s e e st e e s et e et e e s e e e b e e st e e Rt e e Rt e e b e e Rt e e b e e s e e e raesntassseeentennres 748
COMMIANGS ..ttt ettt et ettt e ste st et s et et e e s s et et sse s e st ssessestesassasestesassansensesessestesesensenteses 748
GLODAL OPLIONS .ttt ettt e e e e st e ae st e st e s s e s s e s se s e e e esaestessasbessassaesssnsansansansans 750
Providing and configuring OPLiONScoeiieiiieeeeeeee ettt et saesae s e s e s sesnennan 755
Passing options at the comMmMaNd lINE ...t 756
CAK @CK ettt ettt et e st e st e st e e e s e e e et et et e s b e st e et e e e e se et e s et et e teeseeseesaese et enaententensanes 756
USQQE ittt st esste e st e s ste s st e s se s st e s sse s se e s s e s ae e s s e s s e e e b e e st e s b e e st e a e e st e et e e s e et e e st e st aeaaesntannres 756
ATGUIMIENTS .ottt eeeteeeste e s steeessseesesaae s s st e sssseesensesssssasssssesssssessssaessssasssssesssssesssssessssnasssssases 757
OPLIONS ittt st rte e st e s te s st e st e s st e s tessseessse s seesssessssesssassseasssessssesssessseesssessseesssesssnessaennn 757

Version 2 xv

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

EXQIMIPLES <.ttt s te e e e e e e et et e st et et e e et e e a e e e et et e ba b e saeseeseeaaeneententetentans 757
(e | QN oo Yo} o3 ub o= o OO O R TSRS 758
USQQE ..ttt st e et e st e s ste s s e e s se s st e s sessse e s s e s ae e s be s s e e e b e s st e e b e e st e a e e a e e et e e s e e b e e st e st assaesntanares 758
ATGUIMIENTS ..ceiiieieieeeeeteesesete st es e e e st e seessseessaessseesssesssassssesssessssessseesssasssessssessssesssessseesssessseesseesssesns 758
OPLIONS ettt e rte e st e s te s s e e st e s sae e s tesssaesbe s seesssessssesssassseasssesseesssessseesssessseesssesssaesssannns 759
EXQIMIPLES ettt ettt s e e e e e e et et st e st e st e e s e e a e e e et e b e ba b et e e seeaeenee e ententetentans 764
CAK CONMEEXT ettt sttt et ettt s b et e e s s e b et e e saetesassassentensssansanees 765
USQQE c.ieeiiteeieeeteerereitee e e st e s ste s st e s ae s s st e s bessseesssessseessbe s s e e e b e s st e st e s st e b e e st et e s s e et e s ae e srassaeenaannres 766
OPTIONS ettt ettt et ste st e s e s st e s e e st e st e st e s sa e be s e e st e sa s st e saasasssesseesseessessaessesssesseessesaanns 766
CAK AEPLOY ettt st s s s e e e st e s e e st e s b e s s e s s e e sa st e s et estesaasaassassnasaanaans 766
USQQE c.ieiiieeeeeeeteeeesete st e et e s st s st e sse s st e sse s st esss e s st essse s st eessessses st e s s e e s se s st et e s s e et e s aee st esneesnsananes 767
ATGUIMIENTS ..ottt eete st ee e st e s eesse e st esssessssesssassnsesssessssessssesssasssessssessssssssesssessssessssesssesssnsnns 767
OPTIONS ettt ettt st e st e st e st e s e e st e st e st e s s e e be s e e ae e bas st e seessasssesseesseessesssessesssesseesseeaenns 767
EXQIMIPLES ettt ettt st e st e s e s e s e e st et e b e st et e s e e b e e st e Rt et et e e et e teeseeae e st ensentenaentansans 775
CAK AESTTOY ittt ettt s b et sa e st s et e e e e e b e b et e s b e bessesseesteseensassansansanes 778
USQQE ..ieiiiieeieeeteeeeseee st s et e s et st e s se s st e s se s st e s s e s st essse s st e e se s st e et e s st e s e e st e et e s sa et e s st e ntesneesnnananes 778
ATGUIMIENTS ..ttt st e et e st e st e s st e stessaessssesssesssees st esssesssessssassssssssesssessssessssesssesssessssesssnanns 778
OPTIONS ettt ettt ettt e st e st s st e st e s st e st e st esae e se s st e seessasstesseessasssasseesseessesssessesssesseessassaanes 778
EXQIMIPLES ettt ettt s e s et e e et sb e st et e s b e e b e e Rt e e et e e e ae b e s teeseeaeeaee st enteaetentans 779
CAK I T ettt sttt st ettt s bt et sbe s s e et e s et senens 779
USQQE ..ttt et et st e st s et e s e e st e s s e s st e e s e s st e s s e s s e e e e e s st e et e s s e e e s e e st e et e e sa et e s neeentesneeennananes 779
AFGUIMIENTS ..ttt e et et e st e e st e s st s e e s se s st e s st e s s e s se e st essse e ssesaseessessssssssessnessnsessnanns 779
OPTIONS ettt ettt s rte e st e s sae s s e e st e e sae e s be s sa e s s e e saaessesaseesssasssaaassessaeessaessaenssesssaesssesssaessennss 779
EXQIMIPLES ..ottt rte et e te et e e e te e s e s e e se s b e s saesse e s asss e seessesss e seensessaensessesssensesnsansaensanns 781
CAK AOCS ettt sttt ettt s b s b s s et et et e s b e b e ssassesse e st e st et essassassassassesnsanes 783
L8 ST T TSRO 783
OPTIONS ettt ettt et e st s st e s e e st esa e st e s se s se st e se e sas st esseessasasesstessasnsesssesesssessesssassanns 783
EXQIMIPLES ettt st s e sttt b et e e e e et e e et et et e st e s aesaeeae et et etetaneans 783
CAK AOCEOT ettt ettt ettt s e s st e e et et e s b e s b e saesaessa s st e s et esbessassassasanasesnnans 783
L ST T TR 784
OPTIONS ettt ettt s st st e st st e st e s e s se s e e se e sa st e s e essasasesstessasnsesseessesssassesssassanns 784
EXQIMIPLES ettt sttt s e st s ettt e b e s b s et et et et et et e b e s aesaeeaa et et e netenrans 784
CAK I a T ettt ettt ettt st et e sba st et sasba st esassansansens 784
L ST T TR 785
Y (o T80 1T 1 TR 785
OPTIONS ettt ettt st st s et e et e st s s be s b e st s b e et e st e ssas st esstessesnsesseesesasesseessasnanns 786

Version 2 xvi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

EXQIMIPLES <.ttt s te e e e e e e et et e st et et e e et e e a e e e et et e ba b e saeseeseeaaeneententetentans 786
(e | QR S =Y 1O OO 787
USQQE ..ttt st e et e st e s ste s s e e s se s st e s sessse e s s e s ae e s be s s e e e b e s st e e b e e st e a e e a e e et e e s e e b e e st e st assaesntanares 787
ATGUIMIENTS ..ceiiieieieeeeeteesesete st es e e e st e seessseessaessseesssesssassssesssessssessseesssasssessssessssesssessseesssessseesseesssesns 788
OPLIONS ettt e rte e st e s te s s e e st e s sae e s tesssaesbe s seesssessssesssassseasssesseesssessseesssessseesssesssaesssannns 788
EXQIMIPLES ettt ettt s e e e e e e et et st e st e st e e s e e a e e e et e b e ba b et e e seeaeenee e ententetentans 789
CAK G0 ettt ettt et e s e st e st st e b e s e e e et et et et e ae e b e e b e e st e e et e e et et e tantesseeaaeseenaans 792
USQQE c.ieeiiteeieeeteerereitee e e st e s ste s st e s ae s s st e s bessseesssessseessbe s s e e e b e s st e st e s st e b e e st et e s s e et e s ae e srassaeenaannres 793
ATGUIMIENTS ..ottt sete st ee e e e st eseessse e st esssessssesssassssessssssssessessssesssessssessssesssesssessssessssesssesssesns 793
OPTIONS ettt ettt et ste st e s e s st e s e e st e st e st e s sa e be s e e st e sa s st e saasasssesseesseessessaessesssesseessesaanns 793
EXQIMIPLES ettt ettt e st e e e ettt et et e e s e e st e R e et et et et e beeseese e st et eseenaentantans 796
CAK AMPOTT ottt ettt e st e st e st s e s e e et e s e e st e b e s aessessa s st e s astestessassassessnasaasaans 796
USQQE ettt rete st s et e s ste s st e s se s s st e s se s st e s s e s st essse s st e s s e s se e e s e s s e e s e s se e et e s s e et e s st e st essneesnnananes 798
ATGUIMIENTS ..ottt eete st eete st e s eesse e st essseesssesssassssessssssssessssesssassssssssessssssssesssessssessssesssesssnsnns 798
OPTIONS ettt sttt st e st e s e st e s e e st e st e st e s s e e be s e e ae e bas st e saessasssesstesseessasssessesssesseessasaanns 798
CAK ENIE ettt ettt sttt s et et b et et s s et et s s e s et et s et e e sesse st e e eaanes 799
USQQE ..ieiiiieeieeeteeeeseee st s et e s et st e s se s st e s se s st e s s e s st essse s st e e se s st e et e s st e s e e st e et e s sa et e s st e ntesneesnnananes 800
ATGUIMIENTS ..ttt st e et e st e st e s st e stessaessssesssesssees st esssesssessssassssssssesssessssessssesssesssessssesssnanns 800
OPTIONS ettt ettt ettt e st e st s st e st e s st e st e st esae e se s st e seessasstesseessasssasseesseessesssessesssesseessassaanes 800
EXQIMIPLES ettt ettt s e s et e e et sb e st et e s b e e b e e Rt e e et e e e ae b e s teeseeaeeaee st enteaetentans 801
CAK LIS ettt ettt st ettt e b et et s et et e s e s et et s et et sesse e e e enenes 801
USQQE ..ttt et et st e st s et e s e e st e s s e s st e e s e s st e s s e s s e e e e e s st e et e s s e e e s e e st e et e e sa et e s neeentesneeennananes 801
AFGUIMIENTS ..ttt e et et e st e e st e s st s e e s se s st e s st e s s e s se e st essse e ssesaseessessssssssessnessnsessnanns 801
OPTIONS ettt ettt s rte e st e s sae s s e e st e e sae e s be s sa e s s e e saaessesaseesssasssaaassessaeessaessaenssesssaesssesssaessennss 802
EXQIMIPLES ..ottt rte et e te et e e e te e s e s e e se s b e s saesse e s asss e seessesss e seensessaensessesssensesnsansaensanns 802
CAK METAAATA oottt ettt et s s e s s e st e st e e et e st e saesaesaaenaesaennan 803
L8 ST T TSRO 803
ATGUITIENTS ..ttt sttt et b st a s b st e b e s b s b e bt s be st e bt s be s b e st ssesnsessaessann 803
OPTIONS ettt ettt et s e st st e s e et esae st e s se s se st e ae e sasstesseesasssesstessasssesssessesssesseessassanns 803
CAK MALGT AT ettt ettt b ettt st s e s e b et e se st e e se s et eaessenseneen 804
L ST T TSR 804
OPTIONS ettt ettt s st st st et s st e et e s e s se st e se e s e st esseessesssesstessasssesssessesssessesssasaanns 804
EXQIMIPLES ettt sttt s e st s ettt e b e s b s et et et et et et e b e s aesaeeaa et et e netenrans 807
CAK NMOTICES ettt ettt et st s e st s e e st e st e b e s s e sasse s st s st et e s esaessansanes 808
L ST T TR 808
OPTIONS ettt ettt st st s et e et e st s s be s b e st s b e et e st e ssas st esstessesnsesseesesasesseessasnanns 808

Version 2 xvii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

EXQIMIPLES <.ttt s te e e e e e e et et e st et et e e et e e a e e e et et e ba b e saeseeseeaaeneententetentans 809
CAK TOLIDACK ettt ettt re ettt e st e st e s s e s b e e e s e e s et et e b e sessessaesasananaan 810
USQQE ..ttt st e et e st e s ste s s e e s se s st e s sessse e s s e s ae e s be s s e e e b e s st e e b e e st e a e e a e e et e e s e e b e e st e st assaesntanares 811
ATGUIMIENTS ..ceiiieieieeeeeteesesete st es e e e st e seessseessaessseesssesssassssesssessssessseesssasssessssessssesssessseesssessseesseesssesns 811
OPLIONS ettt e rte e st e s te s s e e st e s sae e s tesssaesbe s seesssessssesssassseasssesseesssessseesssessseesssesssaesssannns 811
CAK SYNERN ettt ettt e e st e s e e e e et et e st et e st e st e s e eseesee e et et antassessessesseenaanes 812
USQQE ..ttt st e s e e st e s sre s st e s se s st e s se s se e s s e s ae e s be s s e e e b e s s e e et e e st e b e e ae e et e e s e et e e st e st asaaesntanares 813
ATGUIMIENTS ..ottt sete st est e e st e seessse e st essaeesssesssassssesssessssessseesssassseesssessssesssessseesssessssesssesssesns 813
OPLIONS ettt ettt rte e st e s ee s st e st e s s st s s be s seessse s seesssessseesssassseasssessseesssessseesssessssenssesssaesssennns 813
EXQIMIPLES ettt st e st e e e e s e a st et e st et et e e s e e ae e e e e e b et et e beebeeaeeseeneententetantans 814
CAK WATCR ettt sttt et ettt et s s b e st et e sa b et e e ssassenans 814
USQQE c.ieeiiteeieeeteerereitee e e st e s ste s st e s ae s s st e s bessseesssessseessbe s s e e e b e s st e st e s st e b e e st et e s s e et e s ae e srassaeenaannres 815
ATGUIMIENTS ..ottt sete st ee e e e st eseessse e st esssessssesssassssessssssssessessssesssessssessssesssesssessssessssesssesssesns 815
OPTIONS ettt ettt ettt e ste st e st s st e s e e st e e st e st e s s e e be s st e sa e sas st e saessesssesssesaessesssassesssesseesseeaanes 816
EXQIMIPLES ettt ettt e st e e e e st e et et e st et et et e e b e e e e e et et et et e beeseeaeesee s entenaentantans 818
AWS CDK ref@r@NCE ...cceerriiississsssssssssssnnesss 820
AP TEFEIEINCE .ttt ettt sttt st et a et e et et b et e e sse st et saasse st esassessensesansan 820
VEISIONING .veiieiiieieiitenteseestestesteeste st e s e sste st essesstesstessasssessaassessesstessessessasssesssasstessesssessasssessesssessesssessanns 820
AWS CDK CLI cOMPAtIDIlIty cvecveereeiieeieececieceesesese ettt e e sa e sae st sre b s e e s s nesae s 820
AWS Construct Library VErsioningcccccececierenienienieeeseeseestestesseseseseessssessessessessessessessssssssens 821
Language binding Stability ...ttt sa e aenaens 822
SUPPOItEd NOGE VEISIONSocuviveieeiieteectctectestesteste e e se s e e e e stestestestessessesses s e s esaessestassassassessasssessensansn 823
Node.js version SUPPOIt tIMELINE ..ottt sa e e es 823
VIAEO FESOUICESevviierenirierteteestestetesestesteesseste e ssesse st ssessestesassessestesessestesassessensesesensessssessessesensensesesses 824
Infrastructure is Code with the AWS CDK ...ttt sresse e sessesaesens 824
Deep dive into AWS Cloud Development Kit (AWS CDK) ...coeeereeieiecierrerienieseneseeeseeeessenens 824
Contributing to the AWS Construct LiDrary ...t eeesee st sae e sseseeaenens 824
Faster deployments with CDK PiPELINESc.coeeeeiiieiieieiecesestesee ettt sre e essnesaesseseens 824
How to contribute to the AWS CDK using GitPodcccociveiinenenererectcreeceeesese e 824
Tutorials and eXAMPLES ...eueeiiiiiiiiiiiiiiinneniiiiiiiieeiiiensess 825
Tutorial: Serverless Hello World application ...ttt 825
PrErEQUISITES .couveeieeieitertcetecteetese sttt ste st s e st e st e sae s st e s e e ste st e s e e sbasbe st essesssessaessesssesssansesnsesseenses 826
Step T: Create @ CDK PrOJECT ...ooviiviieieeetertesestest e sreste st saessaesessae st e s e e saesaessassaessaessnessesssassaans 827
Step 2: Create your Lambda fUNCLION ...ttt 834
Step 3: Define YOUr CONSEIUCES ..ottt ettt ae st e sresre e s s e snennens 836
Step 4: Prepare your application for deployment ... 849

Version 2 xviii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Step 5: Deploy your appliCation ...ttt e et nae s 857
Step 6: Interact with your appLliCAtioN ... 858
Step 7: Delete your appliCation ...ttt s aas 858
TrOUBLESNOOTING ...ttt te e e ettt e st e st e s be s e e sa e e e e e a e s entanean 859
Example: CDK app With mMULtiple StACKSccueueeeeeeeeeeeeee e 860
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 861
Create @ CDK PrOJECT ...ttt sttt e st e s ae s s e e s sae s sa e s ae s saessbasssnassesssaesssassneans 861
Add an optioNal PAraMIELEL ...ttt a e sttt nean 862
Defing the STACK CLASS ..cueoviiiieeeeeet ettt ettt sttt a s es 865
Create tWO StACK INSTANCEScccevuiviiirieietrcictecret ettt et st te st s s st e s e b et s e sassenane 869
Synthesize and deploy the STACK ...ttt 873
(@ =Y o I U o TR OO SRRR 873
Example: Create @ FArgate SEIVICE ...ttt e et st aestessesse e e s e e s e aeaeaan 873
Create @ CDK PrOJECT ...ttt s st et e st e st e s s e e s sae s sa e s aesssaessbaesanasssassaessseenseans 875
Create @ FArgate SEIVICE ...ttt st see st e s sae s s e e st e s saeassaesssaesssesssaasssessssesssessseanns 876
CLEAN UP ittt ettt et e et e st e st e st e e e e e e s et et et e st e s s e s asseesaeaaessastassansansassaeseesaessansantantansanes 881
Use tools With the CDKccciiiiiiiiiiiiiiiiiiiiniinsisses 882
AWS Toolkit for Visual StUAIo COAE ...ttt st et sae st sae e sas 882
AWS SAM INEEGIATION ..ottt et s e e st e e e e st e s sae e s e e s saesssaesssaessnasssassssesssaesssesssennns 882
SECUNITY ceiiiiiiieeennniiiieiienitineneesssssssssssseessesss 883
Identity and access MANAGEMENT ..ottt e st este e e s e e e e e e s e saesaaaans 883
AUAIENCE ..ttt sttt et s b et st s b et et s b et e e s s et et s sa b et e st ssa s e st esessansesessansensenanns 883
Authenticating With identities ...ttt nnens 884
ComPLiANCe ValiIdAtioN ...ttt sttt aesae st e s b e e e e e e e e aeaantans 887
RESILIEICE .ttt ettt ettt s e s b et et s s et et e e b et esa s s et e st esassaseesesanseneans 888
INFrasStrUCTUIE SECUNILY c.uviiieeteeceeee ettt ettt ste st e s e e e e e e e e e e b e sae b e saa s s e s seesaesaeaensesansans 889
AWS CDK troubleShootingccciiiiiiiiiiiieenenneiiiiiiciininnnneesssssssssssesses 890
After updating the AWS CDK, the AWS CDK Toolkit (CLI) reports a mismatch with the AWS
CONSEIUCE LIDIAIY oottt ettt et et e st e st e s e e e e e e e et et et e tasessassasseesaenaensanean 890
When deploying my AWS CDK stack, | receive a NoSuchBucket erroroceeveeveveeveeceecvecnenene 891
When deploying my AWS CDK stack, | receive a forbidden: null messageceenunene. 892
When synthesizing an AWS CDK stack, | get the message --app is required either in
command-1line, in cdk.json or in ~/.cCdK.JSON e 892

When synthesizing an AWS CDK stack, | receive an error because the AWS CloudFormation
template contains t00 MANY FESOUICEScccccviciiriirerenenertet et este e seesresses e s e e s e stessesaessessessassesssenean 893

Version 2 xix

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

| specified three (or more) Availability Zones for my Auto Scaling group or VPC, but it was

ONLY AEPLOYEA IN WO ettt e et st e s ae s ae st e s s e e s e e e e s et e tassassessaesnennans 894
My S3 bucket, DynamoDB table, or other resource is not deleted when | issue cdk

QO STETOY ittt ettt st e st e st e st s e et a e e et e e e b e b et et e s b e e aaesaesa e st et et e bentasbeeraereesee e ententantan 895

OPENPGP KEYS ..uciiiiiiineeennnnsissssseeeniisesss 898

CUITEINT KBYS ettt s et e steste st e st e s e e e e e e e e s e st e st e b assessessaesessaessansansansassassassesssensansansansansansans 898

AWS CDK OPENPGP KEY ...ttt ste e stestesve e e aesaesae st essessessasssesaessesaessensassassassesssenean 898

JSIT OPENPGP KEY ...eeeietetetesieeeeeete et este e stesteste s e st e saessessessassessessas e essesaassassessansessasssesssssessansansans 899

HISTOMICAL KEYS ettt sttt sttt e e te s e st e e e st e st e st e s b e s e s e e e s st essetastessassassassaessansansansansans 900

AWS CDK OpenPGP KeY (2022-04-07) ccecevererereeerirrererresenssestssessssesessesessssesessesessesessssessssesessesesens 901

jSii OPENPGP KeY (2022-04-07) coccveeeeereeeeeeeetiteitestestestesseseseesaessessessessessessessessessasssessessessessessasses 902

AWS CDK OpenPGP Key (20T8-06-T9) ...ccccerererrrerirreirreenrsenisseseseeessesesssseessesessesessssessssesessesasens 903

jsii OpeNPGP key (2018-08-06)ccceevererereeriieirerienrenteseseeeesessessessessessessessessessssssessessessessessesses 904

(0o Yel 1Ty 4 T=T o A 1 T o] o PR 906

Version 2 xx

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

This is the AWS CDK v2 Developer Guide. The older CDK v1 entered maintenance on June 1, 2022
and ended support on June 1, 2023.

Version 2 xxi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

What is the AWS CDK?

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework
for defining cloud infrastructure in code and provisioning it through AWS CloudFormation.

The AWS CDK consists of two primary parts:

o AWS CDK Construct Library — A collection of pre-written modular and reusable pieces of code,
called constructs, that you can use, modify, and integrate to develop your infrastructure quickly.
The goal of the AWS CDK Construct Library is to reduce the complexity required to define and
integrate AWS services together when building applications on AWS.

« AWS CDK Toolkit - Tools that you can use to manage and interact with your CDK apps, such as
performing synthesis or deployment. The CDK Toolkit consists of a command line tool (CDK CLI)
and a programmatic library (CDK Toolkit Library).

The AWS CDK supports TypeScript, JavaScript, Python, Java, C#/.Net, and Go. You can use
any of these supported programming languages to define reusable cloud components known
as constructs. You compose these together into stacks and apps. Then, you deploy your CDK
applications through AWS CloudFormation to provision or update your resources.

Version 2 1

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Construct Construct

Q@Q Amazon 505 Amazon 53
./ Queue Bucket

TypeScript ("
ypescrip AWS Lambda =3, Amazon
JavaScript 0 FLnction DynamoDB
Python |] | Table

Java

Ci#/.NET

AWS
CloudFormation .

Cloudformation

template
Resources

Benefits of the AWS CDK

Use the AWS CDK to develop reliable, scalable, cost-effective applications in the cloud with the
considerable expressive power of a programming language. This approach yields many benefits,
including:

Develop and manage your infrastructure as code (laC)

Practice infrastructure as code to create, deploy, and maintain infrastructure in a programmatic,
descriptive, and declarative way. With 1aC, you treat infrastructure the same way developers
treat code. This results in a scalable and structured approach to managing infrastructure.

To learn more about 1aC, see Infrastructure as code in the Introduction to DevOps on AWS

Whitepaper.

Benefits of the AWS CDK Version 2 2

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

With the AWS CDK, you can put your infrastructure, application code, and configuration all in
one place, ensuring that you have a complete, cloud-deployable system at every milestone.

Employ software engineering best practices such as code reviews, unit tests, and source control
to make your infrastructure more robust.

Define your cloud infrastructure using general-purpose programming languages

With the AWS CDK, you can use any of the following programming languages to define your
cloud infrastructure: TypeScript, JavaScript, Python, Java, C#/.Net, and Go. Choose your
preferred language and use programming elements like parameters, conditionals, loops,
composition, and inheritance to define the desired outcome of your infrastructure.

Use the same programming language to define your infrastructure and your application logic.

Receive the benefits of developing infrastructure in your preferred IDE (Integrated Development
Environment), such as syntax highlighting and intelligent code completion.

=Tai- 5 > B ck nstructor > skimageQptions > /2 image

f/ import * as

.Cluster(, "MyCluster”, {

a load-balanced Fa service and make it public
.ApplicationLo rgateService(. "MyFargateService", {

Benefits of the AWS CDK Version 2 3

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Deploy infrastructure through AWS CloudFormation

AWS CDK integrates with AWS CloudFormation to deploy and provision your infrastructure on
AWS. AWS CloudFormation is a managed AWS service that offers extensive support of resource
and property configurations for provisioning services on AWS. With AWS CloudFormation,

you can perform infrastructure deployments predictably and repeatedly, with rollback on
error. If you are already familiar with AWS CloudFormation, you don't have to learn a new laC
management service when getting started with the AWS CDK.

Get started developing your application quickly with constructs

Develop faster by using and sharing reusable components called constructs. Use low-level
constructs to define individual AWS CloudFormation resources and their properties. Use high-
level constructs to quickly define larger components of your application, with sensible, secure
defaults for your AWS resources, defining more infrastructure with less code.

Create your own constructs that are customized for your unique use cases and share them
across your organization or even with the public.

Example of the AWS CDK

The following is an example of using the AWS CDK Constructs Library to create an Amazon Elastic
Container Service (Amazon ECS) service with AWS Fargate launch type. For more details of this
example, see Example: Create an AWS Fargate service using the AWS CDK.

Example
TypeScript

export class MyEcsConstructStack extends Stack {
constructor(scope: App, id: string, props?: StackProps) {
super(scope, id, props);

const vpc = new ec2.Vpc(this, "MyVpc", {
maxAzs: 3 // Default is all AZs in region
});

const cluster = new ecs.Cluster(this, "MyCluster", {
vpc: vpc

1)

Example of the AWS CDK Version 2 4

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Create a load-balanced Fargate service and make it public
new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",

cluster: cluster, // Required

cpu: 512, // Default is 256

desiredCount: 6, // Default is 1

taskImageOptions: { image: ecs.ContainerImage.fromRegistry('"amazon/amazon-ecs-
sample") 1},

memoryLimitMiB: 2048, // Default is 512

publicLoadBalancer: true // Default is false

18

JavaScript

class MyEcsConstructStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

const vpc = new ec2.Vpc(this, "MyVpc", {
maxAzs: 3 // Default is all AZs in region
1)

const cluster = new ecs.Cluster(this, "MyCluster", {
vpc: vpc

1)

// Create a load-balanced Fargate service and make it public
new ecs_patterns.ApplicationLoadBalancedFargateService(this, "MyFargateService",

cluster: cluster, // Required

cpu: 512, // Default is 256

desiredCount: 6, // Default is 1

taskImageOptions: { image: ecs.ContainerImage.fromRegistry('"amazon/amazon-ecs-
sample") 3},

memoryLimitMiB: 2048, // Default is 512

publicLoadBalancer: true // Default is false

1)

Example of the AWS CDK Version 2 5

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

module.exports = { MyEcsConstructStack }

Python

class MyEcsConstructStack(Stack):

def __init_ (self, scope: Construct, id: str, **kwargs) -> None:
super().__init_ (scope, id, **kwargs)

vpc = ec2.Vpc(self, "MyVpc", max_azs=3) # default is all AZs in region
cluster = ecs.Cluster(self, "MyCluster", vpc=vpc)

ecs_patterns.ApplicationLoadBalancedFargateService(self, "MyFargateService",

cluster=cluster, # Required
cpu=512, # Default is 256
desired_count=6, # Default is 1

task_image_options=ecs_patterns.ApplicationLoadBalancedTaskImageOptions(
image=ecs.ContainerImage.from_registry('"amazon/amazon-ecs-sample")),

memory_limit_mib=2048, # Default is 512

public_load_balancer=True) # Default is False

Java

public class MyEcsConstructStack extends Stack {

public MyEcsConstructStack(final Construct scope, final String id) {
this(scope, id, null);

public MyEcsConstructStack(final Construct scope, final String id,
StackProps props) {
super(scope, id, props);

Vpc vpc = Vpc.Builder.create(this, "MyVpc").maxAzs(3).build();

Cluster cluster = Cluster.Builder.create(this, "MyCluster")
.vpc(vpc).build();

ApplicationLoadBalancedFargateService.Builder.create(this, "MyFargateService")
.cluster(cluster)
.cpu(512)
.desiredCount(6)

Example of the AWS CDK Version 2 6

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

.taskImageOptions(
ApplicationLoadBalancedTaskImageOptions.buildexr()
.image(ContainerImage
.fromRegistry("amazon/amazon-ecs-sample"))
.build()).memoryLimitMiB(2048)
.publiclLoadBalancer(true).build();

CH

public class MyEcsConstructStack : Stack
{

public MyEcsConstructStack(Construct scope, string id, IStackProps props=null)
base(scope, id, props)

{

var vpc = new Vpc(this, "MyVpc", new VpcProps

{
MaxAzs = 3

1)

var cluster = new Cluster(this, "MyCluster", new ClusterProps

{
Vpc = vpc

1)

new ApplicationLoadBalancedFargateService(this, "MyFargateService",
new ApplicationLoadBalancedFargateServiceProps

{
Cluster = cluster,
Cpu = 512,
DesiredCount = 6,
TaskImageOptions = new ApplicationLoadBalancedTaskImageOptions
{

Image = ContainerImage.FromRegistry("amazon/amazon-ecs-sample")

},
MemoryLimitMiB = 2048,
PublicLoadBalancer = true,

1)

}

Example of the AWS CDK Version 2 7

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

func NewMyEcsConstructStack(scope constructs.Construct, id string, props
*MyEcsConstructStackProps) awscdk.Stack {

var sprops awscdk.StackProps
if props != nil {

sprops = props.StackProps

}

stack := awscdk.NewStack(scope, &id, &sprops)

vpc := awsec2.NewVpc(stack, jsii.String("MyVpc"), &awsec2.VpcProps{
MaxAzs: jsii.Number(3), // Default is all AZs in region

)

cluster := awsecs.NewCluster(stack, jsii.String("MyCluster"), &awsecs.ClusterProps{
Vpc: vpc,

)

awsecspatterns.NewApplicationLoadBalancedFargateService(stack,
jsii.String("MyFargateService"),
&awsecspatterns.ApplicationLoadBalancedFargateServiceProps{
Cluster: cluster, // required
Cpu: jsii.Number(512), // default is 256
DesiredCount: jsii.Numbex(5), // default is 1
MemoryLimitMiB: jsii.Number(2048), // Default is 512
TaskImageOptions: &awsecspatterns.ApplicationLoadBalancedTaskImageOptions{
Image: awsecs.ContainerImage_FromRegistry(jsii.String("amazon/amazon-ecs-
sample"), nil),
1,
PublicLoadBalancer: jsii.Bool(true), // Default is false
)

return stack

This class produces an AWS CloudFormation template of more than 500 lines. Deploying the AWS
CDK app produces more than 50 resources of the following types:

Example of the AWS CDK Version 2 8

https://github.com/awsdocs/aws-cdk-guide/blob/main/doc_source/my_ecs_construct-stack.yaml

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

AWS: :EC2: :EIP

AWS: :EC2::InternetGateway

AWS: :EC2: :NatGateway

AWS: :EC2: :Route

AWS: :EC2::RouteTable

AWS: :EC2::SecurityGroup

AWS::EC2: :Subnet

AWS: :EC2: :SubnetRouteTableAssociation
AWS: :EC2: :VPCGatewayAttachment

AWS: :EC2: :VPC

AWS: :ECS: :Cluster

AWS: :ECS: :Service

AWS: :ECS: :TaskDefinition
AWS::ElasticloadBalancingV2::Listener
AWS::ElasticloadBalancingV2::LoadBalancer
AWS::ElasticlLoadBalancingV2::TargetGroup
AWS: :TAM: :Policy

AWS: :TAM: :Role

AWS: :Logs: :LogGroup

AWS CDK features

The AWS CDK GitHub repository

For the official AWS CDK GitHub repository, see aws-cdk. Here, you can submit issues, view our

license, track releases, and more.

Because the AWS CDK is open-source, the team encourages you to contribute to make it an even

better tool. For details, see Contributing to the AWS Cloud Development Kit (AWS CDK).

AWS CDK features

Version 2 9

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-eip.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-internetgateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-natgateway.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-route.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-routetable.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet-route-table-assoc.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc-gateway-attachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-service.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-taskdefinition.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-logs-loggroup.html
https://github.com/aws/aws-cdk
https://github.com/aws/aws-cdk/issues
https://github.com/aws/aws-cdk/blob/main/LICENSE
https://github.com/aws/aws-cdk/releases
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK API reference

The AWS CDK Construct Library provides APIs to define your CDK application and add CDK
constructs to the application. For more information, see the AWS CDK API Reference.

The Construct Programming Model

The Construct Programming Model (CPM) extends the concepts behind the AWS CDK into
additional domains. Other tools using the CPM include:

o CDK for Terraform (CDKtf)
o CDK for Kubernetes (CDK8s)

« Projen, for building project configurations

The Construct Hub

The Construct Hub is an online registry where you can find, publish, and share open-source AWS
CDK libraries.

Next steps

To get started with using the AWS CDK, see Getting started with the AWS CDK.

Learn more

To continue learning about the AWS CDK, see the following:

» Learn AWS CDK core concepts — Important concepts and terms for the AWS CDK.
o AWS CDK Workshop - Hands-on workshop to learn and use the AWS CDK.

« AWS CDK Patterns — Open-source collection of AWS serverless architecture patterns, built for
the AWS CDK by AWS experts.

« AWS CDK code examples — GitHub repository of example AWS CDK projects.

« cdk.dev — Community-driven hub for the AWS CDK, including a community Slack workspace.

« Awesome CDK - GitHub repository containing a curated list of AWS CDK open-source projects,

guides, blogs, and other resources.

The AWS CDK API reference Version 2 10

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://www.terraform.io/docs/cdktf/index.html
https://cdk8s.io/
https://github.com/projen/projen
https://constructs.dev/
https://cdkworkshop.com/
https://cdkpatterns.com/
https://github.com/aws-samples/aws-cdk-examples
https://cdk.dev/
https://github.com/kalaiser/awesome-cdk

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

« AWS Solutions Constructs - Vetted, configuration infrastructure as code (IaC) patterns that can
easily be assembled into production-ready applications.

« AWS Developer Tools Blog - Blog posts filtered for the AWS CDK.

« AWS CDK on Stack Overflow - Questions tagged with aws-cdk on Stack Overflow.

« AWS CDK tutorial for AWS Cloud9 - Tutorial on using the AWS CDK with the AWS Cloud9
development environment.

To learn more about related topics to the AWS CDK, see the following:

o AWS CloudFormation concepts — Since the AWS CDK is built to work with AWS CloudFormation,
we recommend that you learn and understand key AWS CloudFormation concepts.

« AWS Glossary - Definitions of key terms used across AWS.

To learn more about tools related to the AWS CDK that can be used to simplify serverless
application development and deployment, see the following:

o AWS Serverless Application Model — An open-source developer tool that simplifies and
improves the experience of building and running serverless applications on AWS.

o AWS Chalice - A framework for writing serverless apps in Python.

Learn more Version 2 11

https://aws.amazon.com/solutions/constructs/
https://aws.amazon.com/blogs/developer/category/developer-tools/aws-cloud-development-kit/
https://stackoverflow.com/questions/tagged/aws-cdk
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-cdk.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html
https://aws.amazon.com/serverless/sam/
https://github.com/aws/chalice

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Learn AWS CDK core concepts

Learn core concepts behind the AWS Cloud Development Kit (AWS CDK).

AWS CDK and laC

The AWS CDK is an open-source framework that you can use to manage your AWS infrastructure
using code. This approach is known as infrastructure as code (laC). By managing and provisioning
your infrastructure as code, you treat your infrastructure in the same way that developers treat
code. This provides many benefits, such as version control and scalability. To learn more about laC,
see What is Infrastructure as Code?

AWS CDK and AWS CloudFormation

The AWS CDK is tightly integrated with AWS CloudFormation. AWS CloudFormation is a fully
managed service that you can use to manage and provision your infrastructure on AWS. With

AWS CloudFormation, you define your infrastructure in templates and deploy them to AWS
CloudFormation. The AWS CloudFormation service then provisions your infrastructure according to
the configuration defined on your templates.

AWS CloudFormation templates are declarative, meaning they declare the desired state or outcome
of your infrastructure. Using JSON or YAML, you declare your AWS infrastructure by defining

AWS resources and properties. Resources represent the many services on AWS and properties
represent your desired configuration of those services. When you deploy your template to AWS
CloudFormation, your resources and their configured properties are provisioned as described on
your template.

With the AWS CDK, you can manage your infrastructure imperatively, using general-purpose
programming languages. Instead of just defining a desired state declaratively, you can define the
logic or sequence necessary to reach the desired state. For example, you can use if statements or
conditional loops that determine how to reach a desired end state for your infrastructure.

Infrastructure created with the AWS CDK is eventually translated, or synthesized into AWS
CloudFormation templates and deployed using the AWS CloudFormation service. So while the AWS
CDK offers a different approach to creating your infrastructure, you still receive the benefits of AWS
CloudFormation, such as extensive AWS resource configuration support and robust deployment
processes.

AWS CDK and laC Version 2 12

https://aws.amazon.com/what-is/iac/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To learn more about AWS CloudFormation, see What is AWS CloudFormation? in the AWS
CloudFormation User Guide.

AWS CDK and abstractions

With AWS CloudFormation, you must define every detail of how your resources are configured. This
provides the benefit of having complete control over your infrastructure. However, this requires
you to learn, understand, and create robust templates that contain resource configuration details
and relationships between resources, such as permissions and event-driven interactions.

With the AWS CDK, you can have the same control over your resource configurations. However, the
AWS CDK also offers powerful abstractions, which can speed up and simplify the infrastructure
development process. For example, the AWS CDK includes constructs that provide sensible

default configurations and helper methods that generate boilerplate code for you. The AWS CDK
also offers tools, such as the AWS CDK Command Line Interface (AWS CDK CLI), that perform
infrastructure management actions for you.

Learn more about core AWS CDK concepts
Interacting with the AWS CDK

When using with the AWS CDK, you will primarily interact with the AWS Construct Library and
the AWS CDK CLI.

Developing with the AWS CDK

The AWS CDK can be written in any supported programming language. You start with a CDK
project, which contains a structure of folders and files, including assets. Within the project,

you create a CDK application. Within the app, you define a stack, which directly represents a
CloudFormation stack. Within the stack, you define your AWS resources and properties using

constructs.

Deploying with the AWS CDK

You deploy CDK apps into an AWS environment. Before deploying, you must perform a one-
time bootstrapping to prepare your environment.

AWS CDK and abstractions Version 2 13

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Learn more

To learn more about AWS CDK core concepts, see the topics in this section.

Supported programming languages for the AWS CDK

The AWS Cloud Development Kit (AWS CDK) has first-class support for the following general-
purpose programming languages:

o TypeScript
» JavaScript
« Python

» Java

. C#

« Go

Other JVM and .NET CLR languages may also be used in theory, but we do not offer official support
at this time.

The AWS CDK is developed in one language, TypeScript. To support the other languages, the AWS
CDK utilizes a tool called JSII to generate language bindings.

We attempt to offer each language’s usual conventions to make development with the AWS CDK as
natural and intuitive as possible. For example, we distribute AWS Construct Library modules using
your preferred language’s standard repository, and you install them using the language's standard
package manager. Methods and properties are also named using your language's recommended
naming patterns.

The following are a few code examples:
Example

TypeScript

const bucket = new s3.Bucket(this, 'amzn-s3-demo-bucket', {
bucketName: 'amzn-s3-demo-bucket',
versioned: true,
websiteRedirect: {hostName: 'aws.amazon.com'l}});

Programming languages Version 2 14

https://github.com/aws/jsii

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const bucket = new s3.Bucket(this, 'amzn-s3-demo-bucket', {
bucketName: 'amzn-s3-demo-bucket',
versioned: true,
websiteRedirect: {hostName: 'aws.amazon.com'l}});

Python

bucket = s3.Bucket("amzn-s3-demo-bucket", bucket_name="amzn-s3-demo-bucket",

versioned=True,
website_redirect=s3.RedirectTarget(host_name="aws.amazon.com"))

Java

Bucket bucket = Bucket.Builder.create(self, "amzn-s3-demo-bucket")
.bucketName("amzn-s3-demo-bucket")
.versioned(true)
.websiteRedirect(new RedirectTarget.Builder()
.hostName("aws.amazon.com").build())
Lbuild();

C#

var bucket = new Bucket(this, "amzn-s3-demo-bucket", new BucketProps {
BucketName = "amzn-s3-demo-bucket",
Versioned = true,
WebsiteRedirect = new RedirectTarget {
HostName = "aws.amazon.com"

13);
Go

bucket := awss3.NewBucket(scope, jsii.String('"amzn-s3-demo-bucket"),
&awss3.BucketProps {
BucketName: jsii.String("amzn-s3-demo-bucket"),
Versioned: jsii.Bool(true),
WebsiteRedirect: &awss3.RedirectTarget {
HostName: jsii.String("aws.amazon.com"),
1,
D)

Programming languages Version 2 15

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note

These code snippets are intended for illustration only. They are incomplete and won't run
as they are.

The AWS Construct Library is distributed using each language’s standard package management
tools, including NPM, PyPi, Maven, and NuGet. We also provide a version of the AWS CDK API
Reference for each language.

To help you use the AWS CDK in your preferred language, this guide includes the following topics
for supported languages:

» Working with the AWS CDK in TypeScript

» Working with the AWS CDK in JavaScript

« Working with the AWS CDK in Python

« Working with the AWS CDK in Java

» Working with the AWS CDK in C#

» Working with the AWS CDK in Go

TypeScript was the first language supported by the AWS CDK, and much of the AWS CDK example
code is written in TypeScript. This guide includes a topic specifically to show how to adapt
TypeScript AWS CDK code for use with the other supported languages. For more information, see
Comparing AWS CDK in TypeScript with other languages.

The AWS CDK libraries

Learn about the core libraries that you will use with the AWS Cloud Development Kit (AWS CDK).

The AWS CDK Library

The AWS CDK Library, also referred to as aws-cdk-1ib, is the main library that you will use to
develop applications with the AWS CDK. It is developed and maintained by AWS. This library
contains base classes, such as App and Stack. It also contains the libraries you will use to define

your infrastructure through constructs.

Libraries Version 2 16

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS Construct Library

The AWS Construct Library is a part of the AWS CDK Library. It contains a collection of constructs
that are developed and maintained by AWS. It is organized into various modules for each AWS
service. Each module includes constructs that you can use to define your AWS resources and
properties.

The Constructs library

The Constructs library, commonly referred to as constructs, is a library for defining and
composing cloud infrastructure components. It contains the core Construct class, which
represents the construct building block. This class is the foundational base class of all constructs
from the AWS Construct Library. The Constructs library is a separate general-purpose library that is
used by other construct-based tools such as CDK for Terraform and CDK for Kubernetes.

The AWS CDK API reference

The AWS CDK API reference contains official reference documentation for the AWS CDK Library,
including the AWS Construct Library and Constructs library. A version of the API reference is

provided for each supported programming language.

» For AWS CDK Library (aws-cdk-1ib) documentation, see aws-cdk-lib module.

» Documentation for constructs in the AWS Construct Library are organized by AWS service in
the following format: aws-cdk-1ib.<service>. For example, construct documentation for
Amazon Simple Storage Service (Amazon S3), can be found at aws-cdk-lib.aws_s3 module.

» For Constructs library (constructs) documentation, see constructs module.

Contribute to the AWS CDK API reference

The AWS CDK is open-source and we welcome you to contribute. Community contributions
positively impact and improve the AWS CDK. For instructions on contributing specifically to AWS
CDK API reference documentation, see Documentation in the aws-cdk GitHub repository.

Learn more

For instructions on importing and using the CDK Library, see Work with the CDK library.

The AWS Construct Library Version 2 17

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/constructs-readme.html
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md#documentation

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK projects

An AWS Cloud Development Kit (AWS CDK) project represents the files and folders that contain
your CDK code. Contents will vary based on your programming language.

You can create your AWS CDK project manually or with the AWS CDK Command Line Interface
(AWS CDK CLI) cdk init command. In this topic, we will refer to the project structure and naming
conventions of files and folders created by the AWS CDK CLI. You can customize and organize your
CDK projects to fit your needs.

(® Note

Project structure created by the AWS CDK CLI may vary across versions over time.

Universal files and folders
.git

If you have git installed, the AWS CDK CLI automatically initializes a Git repository for your
project. The .git directory contains information about the repository.

.gitignore

Text file used by Git to specify files and folders to ignore.

README . md

Text file that provides you with basic guidance and important information for managing your
AWS CDK project. Modify this file as necessary to document important information regarding
your CDK project.

cdk.json

Configuration file for the AWS CDK. This file provides instruction to the AWS CDK CLI regarding
how to run your app.

Projects Version 2 18

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Language-specific files and folders

The following files and folders are unique to each supported programming language.

Example

TypeScr

ipt

The following is an example project created in the my-cdk-ts-project directory using the

cdk init --language typescript command:

my -
Hit#
Hit#
Hit#
Hit#
Hit#
#

Hit#
Hit#
Hit#
#

Hit#
Hit#
Hit#
Hit#
#

Hit#

cdk-ts-project

.git

.gitignore

.npmignore

README . md

bin

my-cdk-ts-project.ts

cdk. json

jest.config.js

lib

my-cdk-ts-project-stack.ts
node_modules
package-lock.json
package.json

test

my-cdk-ts-project.test.ts
tsconfig.json

.npmignore

File that specifies which files and folders to ignore when publishing a package to the npm

registry. This file is similar to .gitignore, but is specific to npm packages.

bin/my-cdk-ts-project.ts

The application file defines your CDK app. CDK projects can contain one or more application

files. Application files are stored in the bin folder.

The following is an example of a basic application file that defines a CDK app:

#!/usr/bin/env node

import 'source-map-support/register’;

Language-specific files and folders

Version 2 19

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as cdk from 'aws-cdk-1lib';
import { MyCdkTsProjectStack } from '../lib/my-cdk-ts-project-stack';

const app = new cdk.App();
new MyCdkTsProjectStack(app, 'MyCdkTsProjectStack');

jest.config.js

Configuration file for Jest. Jest is a popular JavaScript testing framework.
lib/my-cdk-ts-project-stack.ts

The stack file defines your CDK stack. Within your stack, you define AWS resources and
properties using constructs.

The following is an example of a basic stack file that defines a CDK stack:

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs';

export class MyCdkTsProjectStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// code that defines your resources and properties go here

}
}

node_modules

Common folder in Node.js projects that contain dependencies for your project.

package-lock. json

Metadata file that works with the package. json file to manage versions of dependencies.
package.json
Metadata file that is commonly used in Node.js projects. This file contains information about

your CDK project such as the project name, script definitions, dependencies, and other
import project-level information.

test/my-cdk-ts-project.test.ts

A test folder is created to organize tests for your CDK project. A sample test file is also
created.

Language-specific files and folders Version 2 20

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can write tests in TypeScript and use Jest to compile your TypeScript code before
running tests.

tsconfig. json

Configuration file used in TypeScript projects that specifies compiler options and project
settings.

JavaScript

The following is an example project created in the my-cdk-js-project directory using the
cdk init --language javascript command:

my-cdk-js-project
.git
.gitignore
.npmignore
README.md
bin
my-cdk-js-project.js
cdk.json
jest.config.js
1ib
my-cdk-js-project-stack.js
node_modules
package-lock.json
package.json
test
my-cdk-js-project.test.js

.npmignore

File that specifies which files and folders to ignore when publishing a package to the npm
registry. This file is similar to .gitignore, but is specific to npm packages.

bin/my-cdk-js-project.js

The application file defines your CDK app. CDK projects can contain one or more application
files. Application files are stored in the bin folder.

The following is an example of a basic application file that defines a CDK app:

#!/usr/bin/env node

Language-specific files and folders Version 2 21

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const cdk = require('aws-cdk-1ib');
const { MyCdkJsProjectStack } = require('../lib/my-cdk-js-project-stack');

const app = new cdk.App();
new MyCdkJsProjectStack(app, 'MyCdkJsProjectStack');

jest.config.js

Configuration file for Jest. Jest is a popular JavaScript testing framework.

lib/my-cdk-js-project-stack.js

The stack file defines your CDK stack. Within your stack, you define AWS resources and
properties using constructs.

The following is an example of a basic stack file that defines a CDK stack:

const { Stack, Duration } = require('aws-cdk-1ib');

class MyCdkJsProjectStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// code that defines your resources and properties go here

}
}

module.exports = { MyCdkJsProjectStack }

node_modules

Common folder in Node.js projects that contain dependencies for your project.

package-lock. json

Metadata file that works with the package. json file to manage versions of dependencies.
package.json
Metadata file that is commonly used in Node.js projects. This file contains information about

your CDK project such as the project name, script definitions, dependencies, and other
import project-level information.

Language-specific files and folders Version 2 22

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

test/my-cdk-js-project.test.js

A test folder is created to organize tests for your CDK project. A sample test file is also
created.

You can write tests in JavaScript and use Jest to compile your JavaScript code before
running tests.

Python

The following is an example project created in the my-cdk-py-project directory using the
cdk init --language python command:

my-cdk-py-project
.git
.gitignore
.venv
README.md
app.py
cdk.json
my_cdk_py_project
__init__ .py
my_cdk_py_project_stack.py
requirements-dev.txt
requirements.txt
source.bat
tests
__init__ .py
unit

.venv

The CDK CLI automatically creates a virtual environment for your project. The .venv
directory refers to this virtual environment.

app.py

The application file defines your CDK app. CDK projects can contain one or more application
files.

The following is an example of a basic application file that defines a CDK app:

Language-specific files and folders Version 2 23

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

#!/usr/bin/env python3
import os

import aws_cdk as cdk
from my_cdk_py_project.my_cdk_py_project_stack import MyCdkPyProjectStack

app = cdk.App()
MyCdkPyProjectStack(app, "MyCdkPyProjectStack")

app.synth()

my_cdk_py_project

Directory that contains your stack files. The CDK CLI creates the following here:
« __init__.py - An empty Python package definition file.

« my_cdk_py_project - File that defines your CDK stack. You then define AWS resources
and properties within the stack using constructs.

The following is an example of a stack file:

from aws_cdk import Stack

from constructs import Construct

class MyCdkPyProjectStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:

super().__init_ (scope, construct_id, **kwargs)

code that defines your resources and properties go here

requirements-dev.txt

File similar to requirements. txt, but used to manage dependencies specifically for
development purposes rather than production.

requirements.txt

Common file used in Python projects to specify and manage project dependencies.

source.bat

Batch file for Windows that is used to set up the Python virtual environment.

Language-specific files and folders Version 2 24

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

tests
Directory that contains tests for your CDK project.

The following is an example of a unit test:

import aws_cdk as core
import aws_cdk.assertions as assertions

from my_cdk_py_project.my_cdk_py_project_stack import MyCdkPyProjectStack

def test_sqs_queue_created():
app = core.App()
stack = MyCdkPyProjectStack(app, "my-cdk-py-project")
template = assertions.Template.from_stack(stack)

template.has_resource_properties("AWS: :5QS: :Queue", {
"VisibilityTimeout": 300
)

Java

The following is an example project created in the my-cdk-java-project directory using the
cdk init --language java command:

my-cdk-java-project
.git
.gitignore
README.md
cdk.json
pom.xml
src
main
test

pom. xml

File that contains configuration information and metadata about your CDK project. This file
is a part of Maven.

Language-specific files and folders Version 2 25

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

src/main
Directory containing your application and stack files.

The following is an example application file:

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

import java.util.Arrays;

public class MyCdkJavaProjectApp {
public static void main(final String[] args) {
App app = new App();

new MyCdkJavaProjectStack(app, "MyCdkJavaProjectStack", StackProps.builder()
.build());

app.synth();
}
}

The following is an example stack file:

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

public class MyCdkJavaProjectStack extends Stack {

public MyCdkJavaProjectStack(final Construct scope, final String id) {
this(scope, id, null);

}

public MyCdkJavaProjectStack(final Construct scope, final String id, final
StackProps props) {

super(scope, id, props);

// code that defines your resources and properties go here

Language-specific files and folders Version 2 26

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}
}

src/test

Directory containing your test files. The following is an example:

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.assertions.Template;
import java.io.IOException;

import java.util.HashMap;
import org.junit.jupiter.api.Test;
public class MyCdkJavaProjectTest {

@Test
public void testStack() throws IOException {

App app = new App();
MyCdkJavaProjectStack stack = new MyCdkJavaProjectStack(app, "test");

Template template = Template.fromStack(stack);

template.hasResourceProperties("AWS: :SQS: :Queue", new HashMap<String, Number>()
{{
put("VisibilityTimeout", 300);
1)
}
}

CH#

The following is an example project created in the my-cdk-csharp-project directory using
the cdk init --language csharp command:

my-cdk-csharp-project
.git

.gitignore

README.md

Language-specific files and folders Version 2 27

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

cdk.json
src
MyCdkCsharpProject
MyCdkCsharpProject.sln

src/MyCdkCsharpProject
Directory containing your application and stack files.

The following is an example application file:

using Amazon.CDK;

using System;

using System.Collections.Generic;
using System.Ling;

namespace MyCdkCsharpProject

{
sealed class Program
{
public static void Main(string[] args)
{
var app = new App();
new MyCdkCsharpProjectStack(app, "MyCdkCsharpProjectStack", new StackProps{});
app.Synth();
}
}
}

The following is an example stack file:

using Amazon.CDK;
using Constructs;

namespace MyCdkCsharpProject

{
public class MyCdkCsharpProjectStack : Stack

{

internal MyCdkCsharpProjectStack(Construct scope, string id, IStackProps props

= null) : base(scope, id, props)
{

// code that defines your resources and properties go here

}

Language-specific files and folders

Version 2 28

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}
}

This directory also contains the following:

» GlobalSuppressions.cs - File used to suppress specific compiler warnings or errors
across your project.

e .csproj - XML-based file used to define project settings, dependencies, and build
configurations. ---

src/MyCdkCsharpProject.sln

Microsoft Visual Studio Solution File used to organize and manage related projects.

Go

The following is an example project created in the my-cdk-go-project directory using the
cdk init --language go command:

my-cdk-go-project

.git

.gitignore

README.md

cdk.json

go.mod

my-cdk-go-project.go

my-cdk-go-project_test.go

go.mod

File that contains module information and is used to manage dependencies and versioning
for your Go project.

my-cdk-go-project.go
File that defines your CDK application and stacks.

The following is an example:

package main
import (

Language-specific files and folders Version 2 29

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

type MyCdkGoProjectStackProps struct {
awscdk.StackProps

}

func NewMyCdkGoProjectStack(scope constructs.Construct, id string, props
*MyCdkGoProjectStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)
// The code that defines your resources and properties go here

return stack

func main() {
defer jsii.Close()
app := awscdk.NewApp(nil)
NewMyCdkGoProjectStack(app, "MyCdkGoProjectStack", &MyCdkGoProjectStackProps{
awscdk.StackProps{
Env: env(),

1,
i)
app.Synth(nil)
}

func env() *awscdk.Environment {

return nil

}

my-cdk-go-project_test.go
File that defines a sample test.

The following is an example:

package main

Language-specific files and folders Version 2 30

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import (
"testing"

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/assertions"”
"github.com/aws/jsii-runtime-go"

)
func TestMyCdkGoProjectStack(t *testing.T) {

// GIVEN
app := awscdk.NewApp(nil)

// WHEN
stack := NewMyCdkGoProjectStack(app, "MyStack", nil)

// THEN
template := assertions.Template_FromStack(stack, nil)
template.HasResourceProperties(jsii.String("AWS: :SQS: :Queue"),
map[string]interface{}{
"VisibilityTimeout": 300,
b
}

AWS CDK apps

The AWS Cloud Development Kit (AWS CDK) application or app is a collection of one or more
CDK stacks. Stacks are a collection of one or more constructs, which define AWS resources and
properties. Therefore, the overall grouping of your stacks and constructs are known as your CDK
app.

How to create a CDK app

You create an app by defining an app instance in the application file of your project. To do this,
you import and use the App construct from the AWS Construct Library. The App construct doesn't
require any initialization arguments. It is the only construct that can be used as the root.

The App and Stack classes from the AWS Construct Library are unique constructs. Compared
to other constructs, they don't configure AWS resources on their own. Instead, they are used to
provide context for your other constructs. All constructs that represent AWS resources must be

Apps Version 2 31

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

defined, directly or indirectly, within the scope of a Stack construct. Stack constructs are defined
within the scope of an App construct.

Apps are then synthesized to create AWS CloudFormation templates for your stacks. The following
is an example:

Example
TypeScript
const app = new App();

new MyFirstStack(app, 'hello-cdk');
app.synth();

JavaScript
const app = new App();
new MyFirstStack(app, 'hello-cdk');

app.synth();

Python

app = App()
MyFirstStack(app, "hello-cdk")
app.synth()

Java

App app = new App();
new MyFirstStack(app, "hello-cdk");
app.synth();

CH#

var app = new App();
new MyFirstStack(app, "hello-cdk");
app.Synth();

Go

app := awscdk.NewApp(nil)

How to create a CDK app Version 2 32

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

MyFirstStack(app, "MyFirstStack", &MyFirstStackProps{
awscdk.StackProps{
Env: env(),

}I
1)

app.Synth(nil)

Stacks within a single app can easily refer to each other's resources and properties. The AWS CDK
infers dependencies between stacks so that they can be deployed in the correct order. You can
deploy any or all of the stacks within an app with a single cdk deploy command.

The construct tree

Constructs are defined inside of other constructs using the scope argument that is passed to
every construct, with the App class as the root. In this way, an AWS CDK app defines a hierarchy of
constructs known as the construct tree.

The root of this tree is your app, which is an instance of the App class. Within the app, you
instantiate one or more stacks. Within stacks, you instantiate constructs, which may themselves
instantiate resources or other constructs, and so on down the tree.

Constructs are always explicitly defined within the scope of another construct, which creates
relationships between constructs. Almost always, you should pass this (in Python, self) as the
scope, indicating that the new construct is a child of the current construct. The intended pattern
is that you derive your construct from Construct, then instantiate the constructs it uses in its
constructor.

Passing the scope explicitly allows each construct to add itself to the tree, with this behavior
entirely contained within the Construct base class. It works the same way in every language
supported by the AWS CDK and does not require additional customization.

/A Important

Technically, it's possible to pass some scope other than this when instantiating a
construct. You can add constructs anywhere in the tree, or even in another stack in the
same app. For example, you could write a mixin-style function that adds constructs to a
scope passed in as an argument. The practical difficulty here is that you can't easily ensure

The construct tree Version 2 33

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

that the IDs you choose for your constructs are unique within someone else's scope. This
practice also makes your code more difficult to understand, maintain, and reuse. Therefore,
we recommend that you use the general structure of the construct tree.

The AWS CDK uses the IDs of all constructs in the path from the tree's root to each child construct
to generate the unique IDs required by AWS CloudFormation. This approach means that construct
IDs only need to be unique within their scope, rather than within the entire stack as in native AWS
CloudFormation. However, if you move a construct to a different scope, its generated stack-unique
ID changes, and AWS CloudFormation won't consider it the same resource.

The construct tree is separate from the constructs that you define in your AWS CDK code. However,
it's accessible through any construct’s node attribute, which is a reference to the node that
represents that construct in the tree. Each node is a Node instance, the attributes of which provide
access to the tree's root and to the node’s parent scopes and children.

1. node.children - The direct children of the construct.

. hode. id - The identifier of the construct within its scope.

. node.path - The full path of the construct including the IDs of all of its parents.

. node.root - The root of the construct tree (the app).

. node.scope - The scope (parent) of the construct, or undefined if the node is the root.

. node.scopes - All parents of the construct, up to the root.

N oo o AN

. node.uniqueld - The unique alphanumeric identifier for this construct within the tree (by
default, generated from node. path and a hash).

The construct tree defines an implicit order in which constructs are synthesized to resources in the
final AWS CloudFormation template. Where one resource must be created before another, AWS
CloudFormation or the AWS Construct Library generally infers the dependency. They then make
sure that the resources are created in the right order.

You can also add an explicit dependency between two nodes by using node . addDependency ().
For more information, see Dependencies in the AWS CDK API Reference.

The AWS CDK provides a simple way to visit every node in the construct tree and perform an
operation on each one. For more information, see Aspects and the AWS CDK.

The construct tree Version 2 34

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Node.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html#dependencies

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Introduction to AWS CDK stacks

An AWS CDK stack is the smallest single unit of deployment. It represents a collection of AWS
resources that you define using CDK constructs. When you deploy CDK apps, the resources within
a CDK stack are deployed together as an AWS CloudFormation stack. To learn more about AWS
CloudFormation stacks, see Managing AWS resources as a single unit with AWS CloudFormation
stacks in the AWS CloudFormation User Guide.

You define a stack by extending or inheriting from the Stack construct. The following example is a
common pattern for defining a CDK stack on a separate file, known as a stack file. Here, we extend
or inherit the Stack class and define a constructor that accepts scope, id, and props. Then, we
invoke the base Stack class constructor using super with the received scope, id, and props:

Example

TypeScript

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs';

export class MyCdkStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {

super(scope, id, props);

// Define your constructs here

JavaScript

const { Stack } = require('aws-cdk-1ib');
class MyCdkStack extends Stack {
constructor(scope, id, props) {

super(scope, id, props);

// Define your constructs here

CDK stacks Version 2 35

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

module.exports = { MyCdkStack }

Python

from aws_cdk import (
Stack,
)

from constructs import Construct
class MyCdkStack(Stack):
def __init__ (self,

scope: Construct,

construct_id:

str, **kwargs) -> None:

super().__init_ (scope, construct_id, **kwargs)

Define your constructs here

Java

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

public class MyCdkStack extends Stack {
public MyCdkStack(final Construct scope,
this(scope, id, null);

public MyCdkStack(final Construct scope,
{

super(scope, id, props);

// Define your constructs here

}

CH#

using Amazon.CDK;
using Constructs;

final String id) {

final String id, final StackProps props)

CDK stacks

Version 2 36

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

namespace MyCdk
{
public class MyCdkStack : Stack

{
internal MyCdkStack(Construct scope, string id, IStackProps props = null)

base(scope, id, props)
{

// Define your constructs here

}

Go

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

type CdkDemoAppStackProps struct {
awscdk.StackProps
}

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// The code that defines your stack goes here

return stack

}

func main() {
defer jsii.Close()

CDK stacks Version 2 37

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

app := awscdk.NewApp(nil)

NewCdkDemoAppStack(app, "CdkDemoAppStack", &CdkDemoAppStackProps{

awscdk.StackProps{
Env: env(),

iy
1)

app.Synth(nil)
}

e o

The previous example has only defined a stack. To create the stack, it must be instantiated within
the context of your CDK app. A common pattern is to define your CDK app and initialize your stack

on a separate file, known as an application file.

The following is an example that creates a CDK stack named MyCdkStack. Here, the CDK app is

created and MyCdkStack is instantiated in the context of the app:

Example
TypeScript
#1/usr/bin/env node
import 'source-map-support/register’;
import * as cdk from 'aws-cdk-1lib';
import { MyCdkStack } from '../lib/my-cdk-stack"';
const app = new cdk.App();

new MyCdkStack(app, 'MyCdkStack',6 {
1DF

JavaScript

#!/usr/bin/env node

const cdk = require('aws-cdk-1ib');
const { MyCdkStack } = require('../lib/my-cdk-stack');

const app = new cdk.App();
new MyCdkStack(app, 'MyCdkStack', {

CDK stacks

Version 2 38

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Python

Located in app.py:

#1/usr/bin/env python3
import os

import aws_cdk as cdk

from my_cdk.my_cdk_stack import MyCdkStack
app = cdk.App()

MyCdkStack(app, "MyCdkStack",)

app.synth()

Java

package com.myorg;
import software.amazon.awscdk.App;

import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

import java.util.Arrays;

public class MyCdkApp {
public static void main(final String[] args) {
App app = new App();

new MyCdkStack(app, "MyCdkStack", StackProps.builder()
.build());

app.synth();
}

CH#

using Amazon.CDK;

CDK stacks Version 2 39

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using System;
using System.Collections.Generic;
using System.Ling;

namespace MyCdk
{

sealed class Program

{

public static void Main(string[] args)

{
var app = new App();

new MyCdkStack(app, "MyCdkStack", new StackProps
{1
app.Synth();

Go

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

// ...

func main() {
defer jsii.Close()

app := awscdk.NewApp(nil)

NewMyCdkStack(app, "MyCdkStack", &MyCdkStackProps{
awscdk.StackProps{
Env: env(),

}I
1)

app.Synth(nil)

CDK stacks Version 2 40

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Y coo

The following example creates a CDK app that contains two stacks:

Example

TypeScript

const app = new App();

new MyFirstStack(app, 'stackl');
new MySecondStack(app, 'stack2');

app.synth();

JavaScript

const app = new App();

new MyFirstStack(app, 'stackl');
new MySecondStack(app, 'stack2');

app.synth();

Python

app = App()

MyFirstStack(app, 'stackl')
MySecondStack(app, 'stack2')

app.synth()

Java

App app = new App();

new MyFirstStack(app, "stackl");
new MySecondStack(app, "stack2");

CDK stacks Version 2 41

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

app.synth();

C#
var app = new App();
new MyFirstStack(app, "stackl");
new MySecondStack(app, "stack2");
app.Synth();

Go

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

type MyFirstStackProps struct {
awscdk.StackProps

}

func NewMyFirstStack(scope constructs.Construct, id string, props
*MyFirstStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

}

myFirstStack := awscdk.NewStack(scope, &id, &sprops)

// The code that defines your stack goes here

return myFirstStack

}

type MySecondStackProps struct {
awscdk.StackProps

}

CDK stacks Version 2 42

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

func NewMySecondStack(scope constructs.Construct, id string, props
*MySecondStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

}
mySecondStack := awscdk.NewStack(scope, &id, &sprops)

// The code that defines your stack goes here

return mySecondStack

}

func main() {
defer jsii.Close()

app := awscdk.NewApp(nil)

NewMyFirstStack(app, "MyFirstStack", &MyFirstStackProps{
awscdk.StackProps{
Env: env(),

.

)

NewMySecondStack(app, "MySecondStack", &MySecondStackProps{
awscdk.StackProps{
Env: env(),

.

)

app.Synth(nil)
}

Y coo

About the stack API

The Stack object provides a rich API, including the following:

o Stack.of(construct) - A static method that returns the Stack in which a construct is
defined. This is useful if you need to interact with a stack from within a reusable construct. The
call fails if a stack cannot be found in scope.

About the stack API Version 2 43

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

stack.stackName (Python: stack_name) — Returns the physical name of the stack. As
mentioned previously, all AWS CDK stacks have a physical name that the AWS CDK can resolve
during synthesis.

stack.region and stack.account — Return the AWS Region and account, respectively, into
which this stack will be deployed. These properties return one of the following:

» The account or Region explicitly specified when the stack was defined

» A string-encoded token that resolves to the AWS CloudFormation pseudo parameters for
account and Region to indicate that this stack is environment agnostic

For information about how environments are determined for stacks, see Environments for the
AWS CDK.

stack.addDependency(stack) (Python: stack.add_dependency(stack)) - Can be used
to explicitly define dependency order between two stacks. This order is respected by the cdk
deploy command when deploying multiple stacks at once.

stack.tags — Returns a TagManager that you can use to add or remove stack-level tags. This
tag manager tags all resources within the stack, and also tags the stack itself when it's created
through AWS CloudFormation.

stack.partition, stack.urlSuffix (Python:url_suffix), stack.stackId (Python:
stack_id), and stack.notificationArn (Python: notification_arn) - Return tokens
that resolve to the respective AWS CloudFormation pseudo parameters, such as { "Ref":
"AWS::Partition" }.These tokens are associated with the specific stack object so that the
AWS CDK framework can identify cross-stack references.

stack.availabilityZones (Python: availability_zones) - Returns the set of Availability
Zones available in the environment in which this stack is deployed. For environment-agnostic
stacks, this always returns an array with two Availability Zones. For environment-specific stacks,
the AWS CDK queries the environment and returns the exact set of Availability Zones available in
the Region that you specified.

stack.parseArn(arn) and stack.formatArn(comps) (Python: parse_arn, format_azrn)
— Can be used to work with Amazon Resource Names (ARNS).

stack.toJsonString(obj) (Python: to_json_string) - Can be used to format an arbitrary
object as a JSON string that can be embedded in an AWS CloudFormation template. The object
can include tokens, attributes, and references, which are only resolved during deployment.

stack.templateOptions (Python: template_options) - Use to specify AWS
CloudFormation template options, such as Transform, Description, and Metadata, for your stack.

About the stack API Version 2 44

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.TagManager.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with stacks

Stacks are deployed as an AWS CloudFormation stack into an AWS environment. The environment
covers a specific AWS account and AWS Region.

When you run the cdk synth command for an app with multiple stacks, the cloud assembly
includes a separate template for each stack instance. Even if the two stacks are instances of the
same class, the AWS CDK emits them as two individual templates.

You can synthesize each template by specifying the stack name in the cdk synth command. The
following example synthesizes the template for stackl:

$ cdk synth <stackl>

This approach is conceptually different from how AWS CloudFormation templates are normally
used, where a template can be deployed multiple times and parameterized through AWS
CloudFormation parameters. Although AWS CloudFormation parameters can be defined in the AWS
CDK, they are generally discouraged because AWS CloudFormation parameters are resolved only

during deployment. This means that you cannot determine their value in your code.

For example, to conditionally include a resource in your app based on a parameter value, you must
set up an AWS CloudFormation condition and tag the resource with it. The AWS CDK takes an
approach where concrete templates are resolved at synthesis time. Therefore, you can use an if
statement to check the value to determine whether a resource should be defined or some behavior
should be applied.

(@ Note

The AWS CDK provides as much resolution as possible during synthesis time to enable
idiomatic and natural usage of your programming language.

Like any other construct, stacks can be composed together into groups. The following code shows
an example of a service that consists of three stacks: a control plane, a data plane, and monitoring
stacks. The service construct is defined twice: once for the beta environment and once for the
production environment.

Working with stacks Version 2 45

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/conditions-section-structure.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

import { App, Stack } from 'aws-cdk-1lib';
import { Construct } from 'constructs';

interface EnvProps {
prod: boolean;

// imagine these stacks declare a bunch of related resources
class ControlPlane extends Stack {}

class DataPlane extends Stack {}

class Monitoring extends Stack {3}

class MyService extends Construct {
constructor(scope: Construct, id: string, props?: EnvProps) {
super(scope, id);
// we might use the prod argument to change how the service is configured
new ControlPlane(this, "cp");

new DataPlane(this, "data");
new Monitoring(this, "mon"); }

const app = new App();
new MyService(app, "beta");
new MyService(app, "prod", { prod: true });

app.synth();

JavaScript

const { App, Stack } = require('aws-cdk-1lib');
const { Construct } = require('constructs');

// imagine these stacks declare a bunch of related resources
class ControlPlane extends Stack {}

class DataPlane extends Stack {}

class Monitoring extends Stack {}

Working with stacks Version 2 46

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class MyService extends Construct {
constructor(scope, id, props) {
super(scope, id);
// we might use the prod argument to change how the service is configured
new ControlPlane(this, "cp");

new DataPlane(this, "data");
new Monitoring(this, "mon");

const app = new App();
new MyService(app, "beta");
new MyService(app, "prod", { prod: true });

app.synth();

Python

from aws_cdk import App, Stack
from constructs import Construct

imagine these stacks declare a bunch of related resources
class ControlPlane(Stack): pass

class DataPlane(Stack): pass

class Monitoring(Stack): pass

class MyService(Construct):
def __init_ (self, scope: Construct, id: str, *, prod=False):
super().__init__ (scope, id)
we might use the prod argument to change how the service is configured
ControlPlane(self, "cp")
DataPlane(self, "data")

Monitoring(self, "mon")

app = App();
MyService(app, "beta")

Working with stacks Version 2 47

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

MyService(app, "prod", prod=True)

app.synth()

Java

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Stack;
import software.constructs.Construct;

public class MyApp {

// imagine these stacks declare a bunch of related resources
static class ControlPlane extends Stack {
ControlPlane(Construct scope, String id) {
super(scope, id);

static class DataPlane extends Stack {
DataPlane(Construct scope, String id) {
super(scope, id);

static class Monitoring extends Stack {
Monitoring(Construct scope, String id) {
super(scope, id);

static class MyService extends Construct {
MyService(Construct scope, String id) {
this(scope, id, false);

MyService(Construct scope, String id, boolean prod) {

super(scope, id);

// we might use the prod argument to change how the service is
configured

Working with stacks Version 2 48

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new ControlPlane(this, "cp");
new DataPlane(this, "data");
new Monitoring(this, "mon");

public static void main(final String argv[]) {
App app = new App();

new MyService(app, "beta");
new MyService(app, "prod", true);

app.synth();

CH#

using Amazon.CDK;
using Constructs;

// imagine these stacks declare a bunch of related resources
public class ControlPlane : Stack {
public ControlPlane(Construct scope, string id=null) : base(scope, id) { }

public class DataPlane : Stack {
public DataPlane(Construct scope, string id=null) : base(scope, id) { }

}
public class Monitoring : Stack
{
public Monitoring(Construct scope, string id=null) : base(scope, id) { }
}
public class MyService : Construct
{
public MyService(Construct scope, string id, Boolean prod=false) : base(scope,
id)

{
// we might use the prod argument to change how the service is configured
new ControlPlane(this, "cp");
new DataPlane(this, "data");

Working with stacks Version 2 49

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Go

new Monitoring(this, "mon");

}
}
class Program
{
static void Main(string[] args)
{
var app = new App();
new MyService(app, "beta");
new MyService(app, "prod", prod: true);
app.Synth();
}
}

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

type ControlPlaneStackProps struct {
awscdk.StackProps
}

func NewControlPlaneStack(scope constructs.Construct, id string, props
*ControlPlaneStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

}

ControlPlaneStack := awscdk.NewStack(scope, jsii.String(id), &sprops)

// The code that defines your stack goes here

return ControlPlaneStack

}

Working with stacks

Version 2 50

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

type DataPlaneStackProps struct {
awscdk.StackProps

}

func NewDataPlaneStack(scope constructs.Construct, id string, props
*DataPlaneStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
DataPlaneStack := awscdk.NewStack(scope, jsii.String(id), &sprops)

// The code that defines your stack goes here

return DataPlaneStack

}

type MonitoringStackProps struct {
awscdk.StackProps

}

func NewMonitoringStack(scope constructs.Construct, id string, props
*MonitoringStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}

MonitoringStack := awscdk.NewStack(scope, jsii.String(id), &sprops)
// The code that defines your stack goes here

return MonitoringStack

}

type MyServiceStackProps struct {
awscdk.StackProps
Prod bool

}

func NewMyServiceStack(scope constructs.Construct, id string, props
*MyServiceStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

Working with stacks Version 2 51

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}
MyServiceStack := awscdk.NewStack(scope, jsii.String(id), &sprops)

NewControlPlaneStack(MyServiceStack, "cp", &ControlPlaneStackProps{
StackProps: sprops,

1)
NewDataPlaneStack(MyServiceStack, "data", &DataPlaneStackProps{

StackProps: sprops,
b

NewMonitoringStack(MyServiceStack, "mon", &MonitoringStackProps{
StackProps: sprops,
1)

return MyServiceStack

}

func main() {
defer jsii.Close()

app := awscdk.NewApp(nil)

betaProps := MyServiceStackProps{
StackProps: awscdk.StackProps{
Env: env(),

I
Prod: false,

}

NewMyServiceStack(app, "beta", &betaProps)

prodProps := MyServiceStackProps{
StackProps: awscdk.StackProps{
Env: env(),

I
Prod: true,
}
NewMyServiceStack(app, "prod", &prodProps)

app.Synth(nil)
}

// ...

Working with stacks Version 2 52

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

This AWS CDK app eventually consists of six stacks, three for each environment:

$ cdk 1s

betacpDA8372D3
betadataE23DB2BA
betamon632BD457
prodcpl87264CE
proddataF7378CE5
prodmon631A1083

The physical names of the AWS CloudFormation stacks are automatically determined by the AWS
CDK based on the stack’s construct path in the tree. By default, a stack’s name is derived from
the construct ID of the Stack object. However, you can specify an explicit name by using the

stackName prop (in Python, stack_name), as follows.

Example
TypeScript

new MyStack(this, 'not:a:stack:name', { stackName: 'this-is-stack-name' });
JavaScript

new MyStack(this, 'not:a:stack:name', { stackName: 'this-is-stack-name' });
Python

MyStack(self, "not:a:stack:name", stack_name="this-is-stack-name")
Java

new MyStack(this, "not:a:stack:name", StackProps.builder()
.StackName("this-is-stack-name").build());

CH#

new MyStack(this, "not:a:stack:name", new StackProps

{

StackName = "this-is-stack-name"

1)

Working with stacks

Version 2 53

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with nested stacks

A nested stack is a CDK stack that you create inside another stack, known as the parent stack. You
create nested stacks using the NestedStack construct.

By using nested stacks, you can organize resources across multiple stacks. Nested stacks also offer
a way around the AWS CloudFormation 500-resource limit for stacks. A nested stack counts as only
one resource in the stack that contains it. However, it can contain up to 500 resources, including
additional nested stacks.

The scope of a nested stack must be a Stack or NestedStack construct. The nested stack doesn't
need to be declared lexically inside its parent stack. It is necessary only to pass the parent stack

as the first parameter (scope) when instantiating the nested stack. Aside from this restriction,
defining constructs in a nested stack works exactly the same as in an ordinary stack.

At synthesis time, the nested stack is synthesized to its own AWS CloudFormation template, which
is uploaded to the AWS CDK staging bucket at deployment. Nested stacks are bound to their parent
stack and are not treated as independent deployment artifacts. They aren’t listed by cdk 1list,
and they can't be deployed by cdk deploy.

References between parent stacks and nested stacks are automatically translated to stack
parameters and outputs in the generated AWS CloudFormation templates, as with any cross-stack
reference.

/A Warning

Changes in security posture are not displayed before deployment for nested stacks. This
information is displayed only for top-level stacks.

Introduction to AWS CDK stages

An AWS Cloud Development Kit (AWS CDK) stage represents a group of one or more CDK stacks
that are configured to deploy together. Use stages to deploy the same grouping of stacks to
multiple environments, such as development, testing, and production.

To configure a CDK stage, import and use the Stage construct.

The following is a basic example that defines a CDK stage named MyAppStage. We add two CDK
stacks, named AppStack and DatabaseStack to our stage. For this example, AppStack contains

CDK stages Version 2 54

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.NestedStack.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stage.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

application resources and DatabaseStack contains database resources. We then create two
instances of MyAppStage, for development and production environments:

Example
TypeScript

In cdk-demo-app/lib/app-stack.ts:

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';

// Define the app stack
export class AppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);
// The code that defines your application goes here

}

In cdk-demo-app/lib/database-stack.ts:

import * as cdk from 'aws-cdk-lib';
import { Construct } from 'constructs';

// Define the database stack
export class DatabaseStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);
// The code that defines your database goes here
}

In cdk-demo-app/lib/my-stage.ts:

import * as cdk from 'aws-cdk-1lib';

import { Construct } from 'constructs';

import { Stage } from 'aws-cdk-1lib';

import { AppStack } from './app-stack';

import { DatabaseStack } from './database-stack';

// Define the stage
export class MyAppStage extends Stage {

CDK stages Version 2 55

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

constructor(scope: Construct, id: string, props?: cdk.StageProps) {

super(scope, id, props);

// Add both stacks to the stage
new AppStack(this, 'AppStack');
new DatabaseStack(this, 'DatabaseStack');

In cdk-demo-app/bin/cdk-demo-app.ts:

#!/usr/bin/env node

import 'source-map-support/register’;

import * as cdk from 'aws-cdk-1lib';

import { MyAppStage } from '../lib/my-stage’;

// Create a CDK app
const app = new cdk.App();

// Create the development stage
new MyAppStage(app, 'Dev', {
env: {
account: '123456789012',
region: 'us-east-1'
}
18

// Create the production stage
new MyAppStage(app, 'Prod', {
env: {
account: '098765432109',
region: 'us-east-1'
}
18

JavaScript
In cdk-demo-app/lib/app-stack.js:
const { Stack } = require('aws-cdk-1ib');

class AppStack extends Stack {
constructor(scope, id, props) {

CDK stages

Version 2 56

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

super(scope, id, props);

// The code that defines your application goes here

}

module.exports = { AppStack }

In cdk-demo-app/lib/database-stack.js:

const { Stack } = require('aws-cdk-1ib');

class DatabaseStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// The code that defines your database goes here

}

module.exports = { DatabaseStack }

In cdk-demo-app/lib/my-stage.js:

const { Stage } = require('aws-cdk-1ib');
const { AppStack } = require('./app-stack');
const { DatabaseStack } = require('./database-stack');

// Define the stage
class MyAppStage extends Stage {
constructor(scope, id, props) {
super(scope, id, props);

// Add both stacks to the stage
new AppStack(this, 'AppStack');
new DatabaseStack(this, 'DatabaseStack');

module.exports = { MyAppStage };

In cdk-demo-app/bin/cdk-demo-app.js:

CDK stages Version 2 57

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

#!/usr/bin/env node

const cdk = require('aws-cdk-1ib');
const { MyAppStage } = require('../lib/my-stage');

// Create the CDK app
const app = new cdk.App();

// Create the development stage
new MyAppStage(app, 'Dev', {
env: {
account: '123456789012',
region: 'us-east-1',
},
1)

// Create the production stage
new MyAppStage(app, 'Prod', {
env: {
account: '098765432109',
region: 'us-east-1',
},
1)

Python

In cdk-demo-app/cdk_demo_app/app_stack.py:

from aws_cdk import Stack
from constructs import Construct

Define the app stack
class AppStack(Stack):
def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:

super().__init_ (scope, construct_id, **kwargs)

The code that defines your application goes here

In cdk-demo-app/cdk_demo_app/database_stack.py:

from aws_cdk import Stack
from constructs import Construct

CDK stages Version 2 58

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Define the database stack
class DatabaseStack(Stack):
def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

The code that defines your database goes here

In cdk-demo-app/cdk_demo_app/my_stage.py:

from aws_cdk import Stage

from constructs import Construct

from .app_stack import AppStack

from .database_stack import DatabaseStack

Define the stage
class MyAppStage(Stage):
def __init_ (self, scope: Construct, id: str, **kwargs) -> None:
super().__init_ (scope, id, **kwargs)

Add both stacks to the stage

AppStack(self, "AppStack")
DatabaseStack(self, "DatabaseStack")

In cdk-demo-app/app.py:

#1/usr/bin/env python3
import os

import aws_cdk as cdk
from cdk_demo_app.my_stage import MyAppStage

Create a CDK app
app = cdk.App()

Create the development stage
MyAppStage(app, 'Dev',
env=cdk.Environment(account="'123456789012', region='us-east-1"'),

)

Create the production stage
MyAppStage(app, 'Prod',

CDK stages Version 2 59

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

env=cdk.Environment(account="'098765432109', region='us-east-1"'),

)

app.synth()

Java

In cdk-demo-app/src/main/java/com/myorg/AppStack. java:

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

public class AppStack extends Stack {
public AppStack(final Construct scope, final String id) {
this(scope, id, null);

}
public AppStack(final Construct scope, final String id, final StackProps props)
{
super(scope, id, props);
// The code that defines your application goes here
}
}

In cdk-demo-app/src/main/java/com/myorg/DatabaseStack. java:

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

public class DatabaseStack extends Stack {
public DatabaseStack(final Construct scope, final String id) {
this(scope, id, null);

public DatabaseStack(final Construct scope, final String id, final StackProps
props) {

CDK stages Version 2 60

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

super(scope, id, props);

// The code that defines your database goes here

In cdk-demo-app/src/main/java/com/myorg/MyAppStage. java:

package com.myorg;

import software.amazon.awscdk.Stage;
import software.amazon.awscdk.StageProps;
import software.constructs.Construct;

// Define the stage
public class MyAppStage extends Stage {
public MyAppStage(final Construct scope, final String id, final
software.amazon.awscdk.Environment env) {
super(scope, id, StageProps.builder().env(env).build());

// Add both stacks to the stage

new AppStack(this, "AppStack");
new DatabaseStack(this, "DatabaseStack");

In cdk-demo-app/src/main/java/com/myorg/CdkDemoAppApp. java:

package com.myorg;

import software.amazon.awscdk.App;

import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

import java.util.Arrays;

public class CdkDemoAppApp {
public static void main(final String[] args) {

// Create a CDK app
App app = new App();

// Create the development stage

CDK stages Version 2 61

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new MyAppStage(app, "Dev'", Environment.builder()
.account("123456789012")
.region("us-east-1")
.build());

// Create the production stage

new MyAppStage(app, "Prod", Environment.builder()
.account("098765432109")

.region("us-east-1")

.build());

app.synth();

C#

In cdk-demo-app/src/CdkDemoApp/AppStack.cs:

using Amazon.CDK;
using Constructs;

namespace CdkDemoApp

{
public class AppStack : Stack

{
internal AppStack(Construct scope, string id, IStackProps props = null)
base(scope, id, props)
{

// The code that defines your application goes here

In cdk-demo-app/src/CdkDemoApp/DatabaseStack.cs:

using Amazon.CDK;
using Constructs;

namespace CdkDemoApp

{
public class DatabaseStack : Stack

{

CDK stages Version 2 62

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

internal DatabaseStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{

// The code that defines your database goes here

In cdk-demo-app/src/CdkDemoApp/MyAppStage.cs:

using Amazon.CDK;
using Constructs;

namespace CdkDemoApp
{
// Define the stage
public class MyAppStage : Stage
{
internal MyAppStage(Construct scope, string id, Environment env)
base(scope, id, new StageProps { Env = env })

{

// Add both stacks to the stage

new AppStack(this, "AppStack");

new DatabaseStack(this, "DatabaseStack");
}

In cdk-demo-app/sxrc/CdkDemoApp/program.cs:

using Amazon.CDK;

using System;

using System.Collections.Generic;
using System.Ling;

namespace CdkDemoApp
{

sealed class Program

{

public static void Main(string[] args)

{
// Create a CDK app
var app = new App();

CDK stages Version 2 63

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Create the development stage
new MyAppStage(app, "Dev", new Amazon.CDK.Environment

{
Account = "123456789012",

Region = "us-east-1"

1)

// Create the production stage
new MyAppStage(app, "Prod", new Amazon.CDK.Environment

{
Account = "098765432109",

Region = "us-east-1"

1)

app.Synth();

Go

In cdk-demo-app/cdk-demo-app.go:

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

// Define the app stack

type AppStackProps struct {
awscdk.StackProps

}

func NewAppStack(scope constructs.Construct, id string, props *AppStackProps)
awscdk.Stack {
stack := awscdk.NewStack(scope, &id, &props.StackProps)

// The code that defines your application goes here

return stack

CDK stages Version 2 64

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

// Define the database stack
type DatabaseStackProps struct {
awscdk.StackProps

}

func NewDatabaseStack(scope constructs.Construct, id string, props
*DatabaseStackProps) awscdk.Stack {
stack := awscdk.NewStack(scope, &id, &props.StackProps)

// The code that defines your database goes here

return stack

}

// Define the stage

type MyAppStageProps struct {
awscdk.StageProps

}

func NewMyAppStage(scope constructs.Construct, id string, props *MyAppStageProps)
awscdk.Stage {
stage := awscdk.NewStage(scope, &id, &props.StageProps)

// Add both stacks to the stage
NewAppStack(stage, "AppStack", &AppStackProps{
StackProps: awscdk.StackProps{
Env: props.Env,
1,
b

NewDatabaseStack(stage, "DatabaseStack", &DatabaseStackProps{
StackProps: awscdk.StackProps{

Env: props.Env,

I
)

return stage

}

func main() {
defer jsii.Close()

CDK stages Version 2 65

AWS Clo

ud Development Kit (AWS CDK) v2

Developer Guide

}

..F

}

// Create a CDK app
app := awscdk.NewApp(nil)

// Create the development stage
NewMyAppStage(app, "Dev'", &MyAppStageProps{
StageProps: awscdk.StageProps{
Env: &awscdk.Environment{
Account: jsii.String("123456789012"),
Region: jsii.String("us-east-1"),
.
},
)

// Create the production stage
NewMyAppStage(app, "Prod", &MyAppStageProps{
StageProps: awscdk.StageProps{
Env: &awscdk.Environment{
Account: jsii.String("@98765432109"),
Region: jsii.String("us-east-1"),
.
},
D)

app.Synth(nil)

unc env() *awscdk.Environment {
return nil

When we run cdk synth, two cloud assemblies are created in cdk.out. These two cloud

assemblies contain the synthesized AWS CloudFormation template and assets for each stage. The

following is snippet of our project directory:

Example
TypeScript
cdk-demo-app
bin
cdk-demo-app.ts
cdk.out

CDK stages

Version 2 66

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

HOoH OHF OHF OHF OH OHF O OH OH O OB H R

HH##

assembly-Dev

H OH O OB B

HHt#

HOH F O B O

lib
HHt#
HH##
HHt#

JavaScript

cdk-demo-app

HHt#
#
HHt#

HOH OHF OHF OH OHF OHF O OH OH O OB OH R

HH##

bin
#H#

cdk.

HH##

H OH OHF OB H

HHt#

HOoH F O B R

lib
HHt#
HH##
HHt#

HHt#
HH##
HHt#
HH##
HHt#
HH##

DevAppStack<unique-hash>.assets.json
DevAppStack<unique-hash>.template. json
DevDatabaseStack<unique-hash>.assets.json
DevDatabaseStack<unique-hash>.template. json
cdk.out

manifest.json

assembly-Prod

HH##
HHt#
HH##
HHt#
HH##
HHt#

app-

ProdAppStack<unique-hash>.assets.json
ProdAppStack<unique-hash>.template. json
ProdDatabaseStack<unique-hash>.assets.json
ProdDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

stack.ts

database-stack.ts
my-stage.ts

cdk-

out

demo-app.js

assembly-Dev

HHt#
HH##
HHt#
HH##
HHt#
HH##

DevAppStack<unique-hash>.assets.json
DevAppStack<unique-hash>.template. json
DevDatabaseStack<unique-hash>.assets.json
DevDatabaseStack<unique-hash>.template. json
cdk.out

manifest.json

assembly-Prod

HH##
HHt#
HH##
HHt#
HH##
HHt#

app-

ProdAppStack<unique-hash>.assets.json
ProdAppStack<unique-hash>.template. json
ProdDatabaseStack<unique-hash>.assets.json
ProdDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

stack.js

database-stack.js
my-stage.js

CDK stages

Version 2 67

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Python

cdk-demo-app

app.py

cdk.out

assembly-Dev

DevAppStack<unique-hash>.assets.json

DevAppStack<unique-hash>.template.json

DevDatabaseStack<unique-hash>.assets.json

DevDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

assembly-Prod

ProdAppStack<unique-hash>.assets.json

ProdAppStack<unique-hash>.template.json

ProdDatabaseStack<unique-hash>.assets.json
ProdDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

cdk.out

manifest.json

tree.json

cdk_demo_app
__init__ .py
app_stack.py
database_stack.py
my_stage.py

Java

cdk-demo-app
cdk.out
assembly-Dev

#

DevAppStack<unique-hash>.assets.json

DevAppStack<unique-hash>.template.json

DevDatabaseStack<unique-hash>.assets.json
DevDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

assembly-Prod

ProdAppStack<unique-hash>.assets.json

ProdAppStack<unique-hash>.template.json

#

ProdDatabaseStack<unique-hash>.assets.json

CDK stages

Version 2 68

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

HOH F O B O

CH#

cdk-demo-app

HH##
HHt#
HH##

cdk.

ProdDatabaseStack<unique-hash>.template. json
cdk.out

manifest.json

out

manifest.json
tree.json
src

main

HH##

cdk.out
assembly-Dev

HOoH HF OHF OHF OH O O OH OH O OH OH O O H R

HH##
HHt#
HH##
HHt#
HH##
HHt#

HOoH F O B R

java
com
myorg
AppStack.java
CdkDemoAppApp.java
DatabaseStack.java
MyAppStage.java

DevAppStack<unique-hash>.assets.json
DevAppStack<unique-hash>.template.json
DevDatabaseStack<unique-hash>.assets.json
DevDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

assembly-Prod

HHt#
HH##
HHt#
HH##
HHt#
HH##

H OH OHF OB H

cdk.

ProdAppStack<unique-hash>.assets.json
ProdAppStack<unique-hash>.template. json
ProdDatabaseStack<unique-hash>.assets.json
ProdDatabaseStack<unique-hash>.template. json
cdk.out

manifest.json

out

manifest.json
tree.json

src
CdkDemoApp

HH##
HHt#
HH##
HHt#

AppStack.cs
DatabaseStack.cs
MyAppStage.cs
Program.cs

CDK stages

Version 2 69

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Go

cdk-demo-app

cdk-demo-app.go

cdk.
HH##

H OH O OB B

HHt#

HOH F O B O

HH##
HHt#
HH##

When we list our stacks with cdk 1ist, we see a total of four stacks:

$ cdk list

out

assembly-Dev

HHt#
HH##
HHt#
HH##
HHt#
HH##

DevAppStack<unique-hash>.assets.json
DevAppStack<unique-hash>.template. json
DevDatabaseStack<unique-hash>.assets.json
DevDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

assembly-Prod

HH##
HHt#
HH##
HHt#
HH##
HHt#

cdk.

ProdAppStack<unique-hash>.assets.json
ProdAppStack<unique-hash>.template.json
ProdDatabaseStack<unique-hash>.assets.json
ProdDatabaseStack<unique-hash>.template.json
cdk.out

manifest.json

out

manifest.json
tree.json

Dev/AppStack (Dev-AppStack)
Dev/DatabaseStack (Dev-DatabaseStack)
Prod/AppStack (Prod-AppStack)
Prod/DatabaseStack (Prod-DatabaseStack)

To deploy a specific stage, we run cdk deploy and provide the stacks to deploy. The following is

an example that uses the /* wildcard to deploy both stacks in our Dev stage:

$ cdk deploy <"Dev/*">

Synthesis time: 3.18s

Dev/AppStack (Dev-AppStack)
Dev/AppStack (Dev-AppStack): deploying... [1/2]

CDK stages

Version 2 70

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Dev/AppStack (Dev-AppStack)
Deployment time: 1.11s

Stack ARN:

Total time: 4.29s

Dev/DatabaseStack (Dev-DatabaseStack)
Dev/DatabaseStack (Dev-DatabaseStack): deploying... [2/2]

Dev/DatabaseStack (Dev-DatabaseStack)
Deployment time: 1.09s

Stack ARN:

Total time: 4.27s

AWS CDK Constructs

Constructs are the basic building blocks of AWS Cloud Development Kit (AWS CDK) applications. A
construct is a component within your application that represents one or more AWS CloudFormation
resources and their configuration. You build your application, piece by piece, by importing and
configuring constructs.

Import and use constructs

Constructs are classes that you import into your CDK applications from the AWS Construct Library.
You can also create and distribute your own constructs, or use constructs created by third-party
developers.

Constructs are part of the Construct Programming Model (CPM). They are available to use with
other tools such as CDK for Terraform (CDKtf), CDK for Kubernetes (CDK8s), and Projen.

Numerous third parties have also published constructs compatible with the AWS CDK. Visit
Construct Hub to explore the AWS CDK construct partner ecosystem.

Constructs Version 2 71

https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&offset=0

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Construct levels

Constructs from the AWS Construct Library are categorized into three levels. Each level offers an
increasing level of abstraction. The higher the abstraction, the easier to configure, requiring less
expertise. The lower the abstraction, the more customization available, requiring more expertise.

Level 1 (L1) constructs

L1 constructs, also known as CFN resources, are the lowest-level construct and offer no
abstraction. Each L1 construct maps directly to a single AWS CloudFormation resource. With L1
constructs, you import a construct that represents a specific AWS CloudFormation resource. You
then define the resource’s properties within your construct instance.

L1 constructs are great to use when you are familiar with AWS CloudFormation and need
complete control over defining your AWS resource properties.

In the AWS Construct Library, L1 constructs are named starting with Cfn, followed by an
identifier for the AWS CloudFormation resource that it represents. For example, the CfnBucket
construct is an L1 construct that represents an AWS: :S3: :Bucket AWS CloudFormation
resource.

L1 constructs are generated from the AWS CloudFormation resource specification. If a resource
exists in AWS CloudFormation, it'll be available in the AWS CDK as an L1 construct. New
resources or properties may take up to a week to become available in the AWS Construct

Library. For more information, see AWS resource and property types reference in the AWS
CloudFormation User Guide.

Level 2 (L2) constructs

L2 constructs, also known as curated constructs, are thoughtfully developed by the CDK team
and are usually the most widely used construct type. L2 constructs map directly to single AWS
CloudFormation resources, similar to L1 constructs. Compared to L1 constructs, L2 constructs
provide a higher-level abstraction through an intuitive intent-based API. L2 constructs include
sensible default property configurations, best practice security policies, and generate a lot of

the boilerplate code and glue logic for you.

L2 constructs also provide helper methods for most resources that make it simpler and quicker
to define properties, permissions, event-based interactions between resources, and more.

Construct levels Version 2 72

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.CfnBucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The s3.Bucket class is an example of an L2 construct for an Amazon Simple Storage Service
(Amazon S3) bucket resource.

The AWS Construct Library contains L2 constructs that are designated stable and ready for
production use. For L2 constructs under development, they are designated as experimental and
offered in a separate module.

Level 3 (L3) constructs

L3 constructs, also known as patterns, are the highest-level of abstraction. Each L3 construct
can contain a collection of resources that are configured to work together to accomplish a
specific task or service within your application. L3 constructs are used to create entire AWS
architectures for particular use cases in your application.

To provide complete system designs, or substantial parts of a larger system, L3 constructs
offer opinionated default property configurations. They are built around a particular approach
toward solving a problem and providing a solution. With L3 constructs, you can create and
configure multiple resources quickly, with the fewest amount of input and code.

The ecsPatterns.ApplicationLoadBalancedFargateService classis an example of an
L3 construct that represents an AWS Fargate service running on an Amazon Elastic Container
Service (Amazon ECS) cluster and fronted by an application load balancer.

Similar to L2 constructs, L3 constructs that are ready for production use are included in the AWS
Construct Library. Those under development are offered in separate modules.

Defining constructs

Composition

Composition is the key pattern for defining higher-level abstractions through constructs. A high-
level construct can be composed from any number of lower-level constructs. From a bottom-up
perspective, you use constructs to organize the individual AWS resources that you want to deploy.
You use whatever abstractions are convenient for your purpose, with as many levels as you need.

With composition, you define reusable components and share them like any other code. For
example, a team can define a construct that implements the company’s best practice for an
Amazon DynamoDB table, including backup, global replication, automatic scaling, and monitoring.
The team can share the construct internally with other teams, or publicly.

Defining constructs Version 2 73

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs_patterns.ApplicationLoadBalancedFargateService.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Teams can use constructs like any other library package. When the library is updated, developers
get access to the new version’s improvements and bug fixes, similar to any other code library.

Initialization

Constructs are implemented in classes that extend the Construct base class. You define a
construct by instantiating the class. All constructs take three parameters when they are initialized:

» scope — The construct’s parent or owner. This can either be a stack or another construct. Scope
determines the construct’s place in the construct tree. You should usually pass this (self in

Python), which represents the current object, for the scope.

 id — An identifier that must be unique within the scope. The identifier serves as a namespace for
everything that's defined within the construct. It's used to generate unique identifiers, such as
resource names and AWS CloudFormation logical IDs.

Identifiers need only be unique within a scope. This lets you instantiate and reuse constructs
without concern for the constructs and identifiers they might contain, and enables composing
constructs into higher-level abstractions. In addition, scopes make it possible to refer to groups
of constructs all at once. Examples include for tagging, or specifying where the constructs will be
deployed.

« props - A set of properties or keyword arguments, depending on the language, that define the
construct’s initial configuration. Higher-level constructs provide more defaults, and if all prop
elements are optional, you can omit the props parameter completely.

Configuration

Most constructs accept props as their third argument (or in Python, keyword arguments), a name/
value collection that defines the construct’s configuration. The following example defines a bucket
with AWS Key Management Service (AWS KMS) encryption and static website hosting enabled.
Since it does not explicitly specify an encryption key, the Bucket construct defines a new kms . Key
and associates it with the bucket.

Example

TypeScript

new s3.Bucket(this, 'MyEncryptedBucket', {
encryption: s3.BucketEncryption.KMS,
websiteIndexDocument: 'index.html'

Defining constructs Version 2 74

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tag.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

JavaScript

new s3.Bucket(this, 'MyEncryptedBucket', {
encryption: s3.BucketEncryption.KMS,
websiteIndexDocument: 'index.html'

1)
Python

s3.Bucket(self, "MyEncryptedBucket", encryption=s3.BucketEncryption.KMS,
website_index_document="index.html")

Java

Bucket.Builder.create(this, "MyEncryptedBucket")
.encryption(BucketEncryption.KMS_MANAGED)
.websiteIndexDocument("index.html").build();

CH#

new Bucket(this, "MyEncryptedBucket", new BucketProps

{
Encryption = BucketEncryption.KMS_MANAGED,
WebsiteIndexDocument = "index.html"

1)
Go

awss3.NewBucket(stack, jsii.String("MyEncryptedBucket"), &awss3.BucketProps{
Encryption: awss3.BucketEncryption_KMS,
WebsiteIndexDocument: jsii.String("index.html"),

1)

Interacting with constructs

Constructs are classes that extend the base Construct class. After you instantiate a construct, the
construct object exposes a set of methods and properties that let you interact with the construct
and pass it around as a reference to other parts of the system.

Defining constructs Version 2 75

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK framework doesn't put any restrictions on the APIs of constructs. Authors can define
any APl they want. However, the AWS constructs that are included with the AWS Construct Library,
such as s3.Bucket, follow guidelines and common patterns. This provides a consistent experience
across all AWS resources.

Most AWS constructs have a set of grant methods that you can use to grant AWS Identity and
Access Management (IAM) permissions on that construct to a principal. The following example
grants the IAM group data-science permission to read from the Amazon S3 bucket raw-data.

Example

TypeScript

const rawData = new s3.Bucket(this, 'raw-data');
const dataScience = new iam.Group(this, 'data-science');
rawData.grantRead(dataScience);

JavaScript

const rawData = new s3.Bucket(this, 'raw-data');
const dataScience = new iam.Group(this, 'data-science');
rawData.grantRead(dataScience);

Python

raw_data = s3.Bucket(self, 'raw-data')
data_science = iam.Group(self, 'data-science')
raw_data.grant_read(data_science)

Java

Bucket rawData = new Bucket(this, "raw-data");
Group dataScience = new Group(this, "data-science");
rawData.grantRead(dataScience);

CH

var rawData = new Bucket(this, "raw-data");
var dataScience = new Group(this, "data-science");
rawData.GrantRead(dataScience);

Defining constructs Version 2 76

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

rawData := awss3.NewBucket(stack, jsii.String("raw-data"), nil)
dataScience := awsiam.NewGroup(stack, jsii.String("data-science"), nil)
rawData.GrantRead(dataScience, nil)

Another common pattern is for AWS constructs to set one of the resource’s attributes from data
supplied elsewhere. Attributes can include Amazon Resource Names (ARNs), names, or URLs.

The following code defines an AWS Lambda function and associates it with an Amazon Simple
Queue Service (Amazon SQS) queue through the queue’s URL in an environment variable.

Example

TypeScript

const jobsQueue = new sqgs.Queue(this, 'jobs');
const createJobLambda = new lambda.Function(this, 'create-job', {
runtime: lambda.Runtime.NODEJS_18_X,
handler: 'index.handler',
code: lambda.Code.fromAsset('./create-job-lambda-code'),
environment: {
QUEUE_URL: jobsQueue.queueUrl
}
1)

JavaScript

const jobsQueue = new sqgs.Queue(this, 'jobs');
const createJobLambda = new lambda.Function(this, 'create-job', {
runtime: lambda.Runtime.NODEJS_18_X,
handler: 'index.handler',
code: lambda.Code.fromAsset('./create-job-lambda-code'),
environment: {
QUEUE_URL: jobsQueue.queueUrl
}
});

Python

jobs_queue = sqs.Queue(self, "jobs")

Defining constructs Version 2 77

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

create_job_lambda = lambda_.Function(self, "create-job",
runtime=lambda_.Runtime.NODEJS_18_X,
handler="index.handler",
code=lambda_.Code.from_asset("./create-job-lambda-code"),
environment=dict(
QUEUE_URL=jobs_queue.queue_url

Java

final Queue jobsQueue = new Queue(this, "jobs");

Function createJobLambda = Function.Builder.create(this, "create-job")
.handler("index.handler")
.code(Code.fromAsset("./create-job-lambda-code"))
.environment(java.util.Map.of(// Map.of is Java 9 or later

"QUEUE_URL", jobsQueue.getQueueUrl()))
.build();

CH#

var jobsQueue = new Queue(this, "jobs");
var createJoblLambda = new Function(this, '"create-job", new FunctionProps
{

Runtime = Runtime.NODEJS_18_X,

Handler = "index.handler",

Code = Code.FromAsset(@".\create-job-lambda-code"),

Environment = new Dictionary<string, string>

{

["QUEUE_URL"] = jobsQueue.QueueUrl

1)

Go

createJoblLambda := awslambda.NewFunction(stack, jsii.String("create-job"),
&awslambda.FunctionProps{
Runtime: awslambda.Runtime_NODEJS_18_X(),
Handler: jsii.String("index.handler"),
Code: awslambda.Code_FromAsset(jsii.String(".\\create-job-lambda-code"), nil),
Environment: &map[string]l*string{
"QUEUE_URL": jsii.String(*jobsQueue.QueueUrl()),

Defining constructs Version 2 78

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}I
1)

For information about the most common API patterns in the AWS Construct Library, see Resources
and the AWS CDK.

The app and stack construct

The App and Stack classes from the AWS Construct Library are unique constructs. Compared

to other constructs, they don’t configure AWS resources on their own. Instead, they are used to
provide context for your other constructs. All constructs that represent AWS resources must be
defined, directly or indirectly, within the scope of a Stack construct. Stack constructs are defined
within the scope of an App construct.

To learn more about CDK apps, see AWS CDK apps. To learn more about CDK stacks, see
Introduction to AWS CDK stacks.

The following example defines an app with a single stack. Within the stack, an L2 construct is used
to configure an Amazon S3 bucket resource.

Example

TypeScript

import { App, Stack, StackProps } from 'aws-cdk-1lib';
import * as s3 from 'aws-cdk-lib/aws-s3';

class HelloCdkStack extends Stack {
constructor(scope: App, id: string, props?: StackProps) {
super(scope, id, props);

new s3.Bucket(this, 'MyFirstBucket', {
versioned: true
1)
}
}

const app = new App();
new HelloCdkStack(app, "HelloCdkStack");

Defining constructs Version 2 79

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const { App , Stack } = require('aws-cdk-1ib');
const s3 = require('aws-cdk-1lib/aws-s3');

class HelloCdkStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

new s3.Bucket(this, 'MyFirstBucket',6 {
versioned: true

1)

const app = new App();
new HelloCdkStack(app, "HelloCdkStack");

Python

from aws_cdk import App, Stack
import aws_cdk.aws_s3 as s3
from constructs import Construct

class HelloCdkStack(Stack):

def __init_ (self, scope: Construct, id: str, **kwargs) -> None:
super().__init_ (scope, id, **kwargs)

s3.Bucket(self, "MyFirstBucket", versioned=True)

app = App()
HelloCdkStack(app, "HelloCdkStack")

Java

Stack defined in HelloCdkStack. java file:

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.services.s3.*;

Defining constructs Version 2 80

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);

public HelloCdkStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

Bucket.Builder.create(this, "MyFirstBucket")
.versioned(true).build();

App defined in Hel1loCdkApp. java file:

import software.amazon.awscdk.App;
import software.amazon.awscdk.StackProps;

public class HelloCdkApp {
public static void main(final String[] args) {

App app = new App();

new HelloCdkStack(app, "HelloCdkStack", StackProps.builder()
.build());

app.synth();

C#

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

namespace HelloCdkApp
{

internal static class Program

{

public static void Main(string[] args)

{
var app = new App();

Defining constructs Version 2 81

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new HelloCdkStack(app, "HelloCdkStack");
app.Synth();

public class HelloCdkStack : Stack
{
public HelloCdkStack(Construct scope, string id, IStackProps props=null) :
base(scope, id, props)
{

new Bucket(this, "MyFirstBucket", new BucketProps { Versioned = true });

Go

func NewHelloCdkStack(scope constructs.Construct, id string, props
*HelloCdkStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

}

stack := awscdk.NewStack(scope, &id, &sprops)

awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
Versioned: jsii.Bool(true),

1)

return stack

}

Working with constructs

Working with L1 constructs

L1 constructs map directly to individual AWS CloudFormation resources. You must provide the
resource’s required configuration.

In this example, we create a bucket object using the CfnBucket L1 construct:

Working with constructs Version 2 82

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example
TypeScript
const bucket = new s3.CfnBucket(this, "amzn-s3-demo-bucket", {

bucketName: "amzn-s3-demo-bucket"

1)

JavaScript

const bucket = new s3.CfnBucket(this, "amzn-s3-demo-bucket", {
bucketName: "amzn-s3-demo-bucket"

1)

Python

bucket = s3.CfnBucket(self, "amzn-s3-demo-bucket", bucket_name="amzn-s3-demo-
bucket")

Java

CfnBucket bucket = new CfnBucket.Builder().bucketName("amzn-s3-demo-
bucket").build();

C#

var bucket = new CfnBucket(this, "amzn-s3-demo-bucket", new CfnBucketProps

{

BucketName= "amzn-s3-demo-bucket"

1)
Go

awss3.NewCfnBucket(stack, jsii.String("amzn-s3-demo-bucket"),
&awss3.CfnBucketProps{
BucketName: jsii.String("amzn-s3-demo-bucket"),

1

Construct properties that aren’t simple Booleans, strings, numbers, or containers are handled
differently in the supported languages.

Working with constructs Version 2 83

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

const bucket = new s3.CfnBucket(this, "amzn-s3-demo-bucket", {
bucketName: "amzn-s3-demo-bucket",
corsConfiguration: {
corsRules: [{
allowedOrigins: ["*"],
allowedMethods: ["GET"]
1]
}
1);

JavaScript

const bucket = new s3.CfnBucket(this, "amzn-s3-demo-bucket", {
bucketName: "amzn-s3-demo-bucket",
corsConfiguration: {
corsRules: [{
allowedOrigins: ["*"],
allowedMethods: ["GET"]
1]
}
K7

Python

In Python, these properties are represented by types defined as inner classes of the L1
construct. For example, the optional property cors_configuration of a CfnBucket
requires a wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
cors_configuration ona CfnBucket instance.

bucket = CfnBucket(self, "amzn-s3-demo-bucket", bucket_name="amzn-s3-demo-bucket",
cors_configuration=CfnBucket.CorsConfigurationProperty(
cors_rules=[CfnBucket.CorsRuleProperty(
allowed_origins=["*"],
allowed_methods=["GET"]
)]

Working with constructs Version 2 84

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

In Java, these properties are represented by types defined as inner classes of the L1 construct.
For example, the optional property corsConfiguration of a CfnBucket requires a
wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
corsConfiguration on a CfnBucket instance.

CfnBucket bucket = CfnBucket.Builder.create(this, "amzn-s3-demo-bucket")
.bucketName("amzn-s3-demo-bucket")
.corsConfiguration(new
CfnBucket.CorsConfigurationProperty.Builder()
.corsRules(Arrays.asList(new
CfnBucket.CorsRuleProperty.Builder()
.allowedOrigins(Arrays.asList("*"))
.allowedMethods(Arrays.asList("GET"))
.build()))
.build())
.build();

CH#

In C#, these properties are represented by types defined as inner classes of the L1 construct.
For example, the optional property CorsConfiguration of a CfnBucket requires a
wrapper of type CfnBucket.CorsConfigurationProperty. Here we are defining
CorsConfiguration ona CfnBucket instance.

var bucket = new CfnBucket(this, "amzn-s3-demo-bucket", new CfnBucketProps

{

BucketName = "amzn-s3-demo-bucket",
CorsConfiguration = new CfnBucket.CorsConfigurationProperty
{

CorsRules = new object[] {
new CfnBucket.CorsRuleProperty

{

AllowedOrigins = new string[] { "*" },
AllowedMethods = new string[] { "GET" 3},

1)

Working with constructs Version 2 85

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

In Go, these types are named using the name of the L1 construct, an underscore, and the
property name. For example, the optional property CorsConfiguration of a CfnBucket
requires a wrapper of type CfnBucket_CorsConfigurationProperty. Here we are defining
CorsConfiguration on a CfnBucket instance.

awss3.NewCfnBucket(stack, jsii.String("amzn-s3-demo-bucket"),
&awss3.CfnBucketProps{
BucketName: jsii.String("amzn-s3-demo-bucket"),
CorsConfiguration: &awss3.CfnBucket_CorsConfigurationProperty{
CorsRules: [Jawss3.CorsRule{
awss3.CorsRule{
AllowedOrigins: jsii.Strings("*"),
AllowedMethods: &[Jawss3.HttpMethods{"GET"},
1,
.
},
1)

/A Important

You can't use L2 property types with L1 constructs, or vice versa. When working with L1
constructs, always use the types defined for the L1 construct you're using. Do not use types
from other L1 constructs (some may have the same name, but they are not the same type).
Some of our language-specific API references currently have errors in the paths to L1
property types, or don't document these classes at all. We hope to fix this soon. In the
meantime, remember that such types are always inner classes of the L1 construct they are
used with.

Working with L2 constructs

In the following example, we define an Amazon S3 bucket by creating an object from the Bucket
L2 construct:

Working with constructs Version 2 86

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

import * as s3 from 'aws-cdk-lib/aws-s3';

// "this" is HelloCdkStack
new s3.Bucket(this, 'MyFirstBucket', {
versioned: true

1)
JavaScript

const s3 = require('aws-cdk-1lib/aws-s3');

// "this" is HelloCdkStack
new s3.Bucket(this, 'MyFirstBucket',6 {
versioned: true

1)
Python

import aws_cdk.aws_s3 as s3

"self" is HelloCdkStack
s3.Bucket(self, "MyFirstBucket", versioned=True)

Java

import software.amazon.awscdk.services.s3.*;

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);

public HelloCdkStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

Bucket.Builder.create(this, "MyFirstBucket")
.versioned(true).build();

Working with constructs Version 2 87

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}
}
CH
using Amazon.CDK.AWS.S3;
// "this" is HelloCdkStack
new Bucket(this, "MyFirstBucket", new BucketProps
{
Versioned = true
1)
Go
import (

"github.com/aws/aws-cdk-go/awscdk/v2/awss3"
"github.com/aws/jsii-runtime-go"

)

// stack is HelloCdkStack
awss3.NewBucket(stack, jsii.String("MyFirstBucket"), &awss3.BucketProps{
Versioned: jsii.Bool(true),

1)

MyFirstBucket is not the name of the bucket that AWS CloudFormation creates. It is a logical
identifier given to the new construct within the context of your CDK app. The physicalName value
will be used to name the AWS CloudFormation resource.

Working with third-party constructs

Construct Hub is a resource to help you discover additional constructs from AWS, third parties, and

the open-source CDK community.
Writing your own constructs

In addition to using existing constructs, you can also write your own constructs and let anyone use
them in their apps. All constructs are equal in the AWS CDK. Constructs from the AWS Construct
Library are treated the same as a construct from a third-party library published via NPM, Maven,

Working with third-party constructs Version 2 88

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Resource.html#physicalname
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&sort=downloadsDesc&offset=0

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

or PyPI. Constructs published to your company’s internal package repository are also treated in the
same way.

To declare a new construct, create a class that extends the Construct base class, in the
constructs package, then follow the pattern for initializer arguments.

The following example shows how to declare a construct that represents an Amazon S3 bucket.
The S3 bucket sends an Amazon Simple Notification Service (Amazon SNS) notification every time
someone uploads a file into it.

Example

TypeScript

export interface NotifyingBucketProps {
prefix?: string;

}

export class NotifyingBucket extends Construct {
constructor(scope: Construct, id: string, props: NotifyingBucketProps = {}) {
super(scope, id);
const bucket = new s3.Bucket(this, 'bucket');
const topic = new sns.Topic(this, 'topic');
bucket.addObjectCreatedNotification(new s3notify.SnsDestination(topic),
{ prefix: props.prefix });

JavaScript

class NotifyingBucket extends Construct {
constructor(scope, id, props = {}) {
super(scope, id);
const bucket = new s3.Bucket(this, 'bucket');
const topic = new sns.Topic(this, 'topic');
bucket.addObjectCreatedNotification(new s3notify.SnsDestination(topic),
{ prefix: props.prefix });

module.exports = { NotifyingBucket }

Working with third-party constructs Version 2 89

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

class NotifyingBucket(Construct):

def __init_ (self, scope: Construct, id: str, *, prefix=None):
super().__init_ (scope, id)
bucket = s3.Bucket(self, "bucket")
topic = sns.Topic(self, "topic")
bucket.add_object_created_notification(s3notify.SnsDestination(topic),
s3.NotificationKeyFilter(prefix=prefix))

Java

public class NotifyingBucket extends Construct {

public NotifyingBucket(final Construct scope, final String id) {
this(scope, id, null, null);

public NotifyingBucket(final Construct scope, final String id, final BucketProps

props) {
this(scope, id, props, null);

public NotifyingBucket(final Construct scope, final String id, final String
prefix) {
this(scope, id, null, prefix);

public NotifyingBucket(final Construct scope, final String id, final BucketProps
props, final String prefix) {
super(scope, id);

Bucket bucket = new Bucket(this, "bucket");
Topic topic = new Topic(this, "topic");
if (prefix != null)
bucket.addObjectCreatedNotification(new SnsDestination(topic),
NotificationKeyFilter.buildexr().prefix(prefix).build());

Working with third-party constructs Version 2 90

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CH#

Go

public class NotifyingBucketProps : BucketProps

{
public string Prefix { get; set; }

public class NotifyingBucket : Construct
{
public NotifyingBucket(Construct scope, string id, NotifyingBucketProps props =
null) : base(scope, id)
{
var bucket = new Bucket(this, "bucket");
var topic = new Topic(this, "topic");
bucket.AddObjectCreatedNotification(new SnsDestination(topic), new
NotificationKeyFilter
{
Prefix = props?.Prefix

1)

type NotifyingBucketProps struct {
awss3.BucketProps
Prefix *string

}

func NewNotifyingBucket(scope constructs.Construct, id *string, props
*NotifyingBucketProps) awss3.Bucket {
var bucket awss3.Bucket
if props == nil {
bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), nil)
} else {
bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), &props.BucketProps)
}
topic := awssns.NewTopic(scope, jsii.String(*id+"Topic"), nil)
if props == nil {
bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic))
} else {
bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic),
&awss3.NotificationKeyFilter{

Working with third-party constructs Version 2 91

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Prefix: props.Prefix,
D)
}

return bucket

}

(@ Note

Our NotifyingBucket construct inherits not from Bucket but rather from Construct.
We are using composition, not inheritance, to bundle an Amazon S3 bucket and an Amazon

SNS topic together. In general, composition is preferred over inheritance when developing

AWS CDK constructs.

The NotifyingBucket constructor has a typical construct signature: scope, id, and props. The
last argument, props, is optional (gets the default value {}) because all props are optional. (The
base Construct class does not take a props argument.) You could define an instance of this

construct in your app without props, for example:

Example

TypeScript

new NotifyingBucket(this, 'MyNotifyingBucket');

JavaScript

new NotifyingBucket(this, 'MyNotifyingBucket');

Python

NotifyingBucket(self, "MyNotifyingBucket")

Java

new NotifyingBucket(this, "MyNotifyingBucket");

Working with third-party constructs

Version 2 92

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CH#

new NotifyingBucket(this, "MyNotifyingBucket");

Go

NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"), nil)

Or you could use props (in Java, an additional parameter) to specify the path prefix to filter on, for
example:

Example

TypeScript

new NotifyingBucket(this, 'MyNotifyingBucket',6 { prefix: 'images/' });
JavaScript

new NotifyingBucket(this, 'MyNotifyingBucket',6 { prefix: 'images/' });
Python

NotifyingBucket(self, "MyNotifyingBucket", prefix="images/")
Java

new NotifyingBucket(this, "MyNotifyingBucket", "/images");
C#

new NotifyingBucket(this, "MyNotifyingBucket", new NotifyingBucketProps
{
Prefix = "/images"

1)
Go

NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"), &NotifyingBucketProps{
Prefix: jsii.String("images/"),

Working with third-party constructs Version 2 93

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Typically, you would also want to expose some properties or methods on your constructs. It's not
very useful to have a topic hidden behind your construct, because users of your construct aren’t
able to subscribe to it. Adding a topic property lets consumers access the inner topic, as shown in
the following example:

Example

TypeScript

export class NotifyingBucket extends Construct {
public readonly topic: sns.Topic;

constructor(scope: Construct, id: string, props: NotifyingBucketProps) {
super(scope, id);
const bucket = new s3.Bucket(this, 'bucket');
this.topic = new sns.Topic(this, 'topic');
bucket.addObjectCreatedNotification(new s3notify.SnsDestination(this.topic),
{ prefix: props.prefix });
}

JavaScript

class NotifyingBucket extends Construct {

constructor(scope, id, props) {
super(scope, id);
const bucket = new s3.Bucket(this, 'bucket');
this.topic = new sns.Topic(this, 'topic');
bucket.addObjectCreatedNotification(new s3notify.SnsDestination(this.topic),
{ prefix: props.prefix });
}

module.exports = { NotifyingBucket };

Python

class NotifyingBucket(Construct):

Working with third-party constructs Version 2 94

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

def __init_ (self, scope: Construct, id: str, *, prefix=None, **kwargs):
super().__init_ (scope, id)
bucket = s3.Bucket(self, "bucket")
self.topic = sns.Topic(self, "topic")
bucket.add_object_created_notification(s3notify.SnsDestination(self.topic),
s3.NotificationKeyFilter(prefix=prefix))

Java

public class NotifyingBucket extends Construct {
public Topic topic = null;

public NotifyingBucket(final Construct scope, final String id) {
this(scope, id, null, null);

public NotifyingBucket(final Construct scope, final String id, final BucketProps

props) {
this(scope, id, props, null);

public NotifyingBucket(final Construct scope, final String id, final String
prefix) {
this(scope, id, null, prefix);

public NotifyingBucket(final Construct scope, final String id, final BucketProps
props, final String prefix) {
super(scope, id);

Bucket bucket = new Bucket(this, "bucket");
topic = new Topic(this, "topic");
if (prefix != null)
bucket.addObjectCreatedNotification(new SnsDestination(topic),
NotificationKeyFilter.builder().prefix(prefix).build());

CH#

public class NotifyingBucket : Construct

Working with third-party constructs Version 2 95

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

{

public readonly Topic topic;

public NotifyingBucket(Construct scope, string id, NotifyingBucketProps props =
null) : base(scope, id)
{
var bucket = new Bucket(this, "bucket");
topic = new Topic(this, "topic");
bucket.AddObjectCreatedNotification(new SnsDestination(topic), new
NotificationKeyFilter
{
Prefix = props?.Prefix

1)

Go

To do this in Go, we'll need a little extra plumbing. Our original NewNotifyingBucket
function returned an awss3.Bucket. We'll need to extend Bucket to include a topic member
by creating a NotifyingBucket struct. Our function will then return this type.

type NotifyingBucket struct {
awss3.Bucket
topic awssns.Topic

}

func NewNotifyingBucket(scope constructs.Construct, id *string, props
*NotifyingBucketProps) NotifyingBucket {

var bucket awss3.Bucket

if props == nil {
bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), nil)

} else {

bucket = awss3.NewBucket(scope, jsii.String(*id+"Bucket"), &props.BucketProps)
}

topic := awssns.NewTopic(scope, jsii.String(*id+"Topic"), nil)

if props == nil {
bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic))
} else {
bucket.AddObjectCreatedNotification(awss3notifications.NewSnsDestination(topic),
&awss3.NotificationKeyFilter{
Prefix: props.Prefix,

1)

Working with third-party constructs Version 2 96

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

}

var nbucket NotifyingBucket
nbucket.Bucket = bucket
nbucket.topic = topic
return nbucket

Now, consumers can subscribe to the topic, for example:
Example

TypeScript
const queue = new sqs.Queue(this, 'NewImagesQueue');
const images = new NotifyingBucket(this, '/images');
images.topic.addSubscription(new sns_sub.SqsSubscription(queue));
JavaScript
const queue = new sqgs.Queue(this, 'NewImagesQueue');

const images = new NotifyingBucket(this, '/images');
images.topic.addSubscription(new sns_sub.SgsSubscription(queue));

Python

queue = sqgs.Queue(self, "NewImagesQueue'")
images = NotifyingBucket(self, prefix="Images")
images.topic.add_subscription(sns_sub.SqsSubscription(queue))

Java

NotifyingBucket images = new NotifyingBucket(this, "MyNotifyingBucket", "/images");

images.topic.addSubscription(new SqsSubscription(queue));

CH

var queue = new Queue(this, "NewImagesQueue");

var images = new NotifyingBucket(this, "MyNotifyingBucket", new NotifyingBucketProps

{
Prefix = "/images"

1)

Working with third-party constructs

Version 2 97

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

images.topic.AddSubscription(new SgsSubscription(queue));

Go

queue := awssqs.NewQueue(stack, jsii.String("NewImagesQueue"), nil)

images := NewNotifyingBucket(stack, jsii.String("MyNotifyingBucket"),

&NotifyingBucketProps{

Prefix: jsii.String("/images"),

b

images.topic.AddSubscription(awssnssubscriptions.NewSqsSubscription(queue, nil))
Learn more

The following video provides a comprehensive overview of CDK constructs, and explains how you
can use them in your CDK apps.

Environments for the AWS CDK

An environment consists of the AWS account and AWS Region that you deploy an AWS Cloud
Development Kit (AWS CDK) stack to.

AWS account

When you create an AWS account, you receive an account ID. This ID is a 12-digit number, such
as 012345678901, that uniquely identifies your account. To learn more, see View AWS account
identifiers in the AWS Account Management Reference Guide.

AWS Region

AWS Regions are named by using a combination of geographical location and a number that
represents an Availability Zone in the Region. For example, us-east-1 represents an Availability
Zone in the US East (N. Virginia) Region. To learn more about AWS Regions, see Regions and
Availability Zones. For a list of Region codes, see Regional endpoints in the AWS General
Reference Reference Guide.

The AWS CDK can determine environments from your credentials and configuration files. These
files can be created and managed with the AWS Command Line Interface (AWS CLI). The following
is a basic example of these files:

Learn more Version 2 98

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Credentials file

[default]
aws_access_key_id=ASTAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

aws_session_token =
IQ0JIb3JpZ21uX2IQoIb3IpZ21uX2IQoIb3]IpZ21uX2IQoIb3IpZ21uX2IQoIb3IpZVERYLONGSTRINGEXAMPLE

[userl]
aws_access_key_id=ASTAI44QH8DHBEXAMPLE
aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

aws_session_token =
fcZib3IpZ21uX2I1QoIb3JpZ21uX2IQolb3IpZ21uX2IQoIb3IpZ21uX2IQoIb3IpZVERYLONGSTRINGEXAMPLE

Configuration file

[default]
region=us-west-2
output=json

[profile userl]
region=us-east-1
output=text

You can pass environment information from these files in your CDK code through environment
variables that are provided by the CDK. When you run a CDK CLI command, such as cdk deploy,
you then provide the profile from your credentials and configuration files to gather environment
information from.

The following is an example of specifying these environment variables in your CDK code:

new MyDevStack(app, 'dev', {
env: {
account: process.env.CDK_DEFAULT_ACCOUNT,
region: process.env.CDK_DEFAULT_REGION

13);

The following is an example of passing values associated with the userl profile from your
credentials and configuration files to the CDK CLI using the --profile option. Values from these
files will be passed to your environment variables:

Environments Version 2 99

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ cdk deploy <myStack> --profile <userl>

Instead of using values from the credentials and configuration files, you can also hard-code
environment values in your CDK code. The following is an example:

const enveEU = { account: '238383838383', region: 'eu-west-1' };
const envUSA = { account: '837873873873', region: 'us-west-2' };

new MyFirstStack(app, 'first-stack-us', { env: envUSA });
new MyFirstStack(app, 'first-stack-eu', { env: envkEU });

Learn more

To get started with using environments with the AWS CDK, see Configure environments to use with
the AWS CDK.

AWS CDK bootstrapping

Bootstrapping is the process of preparing your AWS environment for usage with the AWS Cloud
Development Kit (AWS CDK). Before you deploy a CDK stack into an AWS environment, the
environment must first be bootstrapped.

What is bootstrapping?

Bootstrapping prepares your AWS environment by provisioning specific AWS resources in your
environment that are used by the AWS CDK. These resources are commonly referred to as your
bootstrap resources. They include the following:

« Amazon Simple Storage Service (Amazon S3) bucket — Used to store your CDK project files,
such as AWS Lambda function code and assets.

« Amazon Elastic Container Registry (Amazon ECR) repository — Used primarily to store Docker
images.

o AWS Identity and Access Management (IAM) roles — Configured to grant permissions needed by
the AWS CDK to perform deployments. For more information about the IAM roles created during
bootstrapping, see IAM roles created during bootstrapping.

Learn more Version 2 100

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

How does bootstrapping work?

Resources and their configuration that are used by the CDK are defined in an AWS CloudFormation
template. This template is created and managed by the CDK team. For the latest version of this
template, see bootstrap-template.yaml in the aws-cdk-cli GitHub repository.

To bootstrap an environment, you use the AWS CDK Command Line Interface (AWS CDK CLI) cdk
bootstrap command. The CDK CLI retrieves the template and deploys it to AWS CloudFormation
as a stack, known as the bootstrap stack. By default, the stack name is CDKToolkit. By deploying
this template, CloudFormation provisions the resources in your environment. After deployment,
the bootstrap stack will appear in the AWS CloudFormation console of your environment.

You can also customize bootstrapping by modifying the template or by using CDK CLI options with
the cdk bootstrap command.

AWS environments are independent. Each environment that you want to use with the AWS CDK
must first be bootstrapped.

Learn more

For instructions on bootstrapping your environment, see Bootstrap your environment for use with
the AWS CDK.

Resources and the AWS CDK

Resources are what you configure to use AWS services in your applications. Resources are a feature
of AWS CloudFormation. By configuring resources and their properties in a AWS CloudFormation
template, you can deploy to AWS CloudFormation to provision your resources. With the AWS Cloud
Development Kit (AWS CDK), you can configure resources through constructs. You then deploy
your CDK app, which involves synthesizing a AWS CloudFormation template and deploying to AWS
CloudFormation to provision your resources.

Configuring resources using constructs

As described in AWS CDK Constructs, the AWS CDK provides a rich class library of constructs, called
constructs, that represent all AWS resources.

To create an instance of a resource using its corresponding construct, pass in the scope as the
first argument, the logical ID of the construct, and a set of configuration properties (props).

How does bootstrapping work? Version 2 101

https://github.com/aws/aws-cdk-cli/blob/main/packages/aws-cdk/lib/api/bootstrap/bootstrap-template.yaml

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For example, here's how to create an Amazon SQS queue with AWS KMS encryption using the
sgs . Queue construct from the AWS Construct Library.

Example

TypeScript

import * as sqs from '@aws-cdk/aws-sqgs';
new sqgs.Queue(this, 'MyQueue', {

encryption: sqs.QueueEncryption.KMS_MANAGED
1)

JavaScript

const sqs = require('@aws-cdk/aws-sqs');
new sgs.Queue(this, 'MyQueue', {

encryption: sqs.QueueEncryption.KMS_MANAGED
1)

Python

import aws_cdk.aws_sqs as sqgs

sgs.Queue(self, "MyQueue", encryption=sqs.QueueEncryption.KMS_MANAGED)
Java

import software.amazon.awscdk.services.sqgs.*;

Queue.Builder.create(this, "MyQueue").encryption(
QueueEncryption.KMS_MANAGED).build();

CH#

using Amazon.CDK.AWS.SQS;

new Queue(this, "MyQueue", new QueueProps
{
Encryption = QueueEncryption.KMS_MANAGED

Configuring resources using constructs Version 2 102

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_sqs.Queue.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Go

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
sqs "github.com/aws/aws-cdk-go/awscdk/v2/awssqgs"
)

sqgs.NewQueue(stack, jsii.String("MyQueue"), &sqs.QueueProps{
Encryption: sqgs.QueueEncryption_KMS_MANAGED,

D

Some configuration props are optional, and in many cases have default values. In some cases, all
props are optional, and the last argument can be omitted entirely.

Resource attributes

Most resources in the AWS Construct Library expose attributes, which are resolved at deployment
time by AWS CloudFormation. Attributes are exposed in the form of properties on the resource
classes with the type name as a prefix. The following example shows how to get the URL of an
Amazon SQS queue using the queueUrl (Python: queue_url) property.

Example
TypeScript
import * as sqs from 'Eaws-cdk/aws-sqgs';

const queue = new sqgs.Queue(this, 'MyQueue');
const url = queue.queueUrl; // => A string representing a deploy-time value

JavaScript

const sqs require('@aws-cdk/aws-sqs');

const queue = new sqgs.Queue(this, 'MyQueue');
const url = queue.queueUrl; // => A string representing a deploy-time value

Configuring resources using constructs Version 2 103

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

import aws_cdk.aws_sqs as sqgs

queue = sqgs.Queue(self, "MyQueue")
url = queue.queue_url # => A string representing a deploy-time value

Java

Queue queue = new Queue(this, "MyQueue");
String url = queue.getQueuelUrl(); // => A string representing a deploy-time value

CH#

var queue = new Queue(this, "MyQueue");
var url = queue.QueueUrl; // => A string representing a deploy-time value

Go

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
sqs "github.com/aws/aws-cdk-go/awscdk/v2/awssqgs"

)
queue := sqgs.NewQueue(stack, jsii.String("MyQueue"), &sqs.QueueProps{})
url := queue.QueueUrl() // => A string representing a deploy-time value

See Tokens and the AWS CDK for information about how the AWS CDK encodes deploy-time
attributes as strings.

Referencing resources

When configuring resources, you will often have to reference properties of another resource. The
following are examples:

« An Amazon Elastic Container Service (Amazon ECS) resource requires a reference to the cluster
on which it runs.

« An Amazon CloudFront distribution requires a reference to the Amazon Simple Storage Service
(Amazon S3) bucket containing the source code.

Referencing resources Version 2 104

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can reference resources in any of the following ways:

» By passing a resource defined in your CDK app, either in the same stack or in a different one

» By passing a proxy object referencing a resource defined in your AWS account, created from a
unique identifier of the resource (such as an ARN)

If the property of a construct represents a construct for another resource, its type is that of the
interface type of the construct. For example, the Amazon ECS construct takes a property cluster
of type ecs.ICluster. Another example, is the CloudFront distribution construct that takes a
property sourceBucket (Python: source_bucket) of type s3.IBucket.

You can directly pass any resource object of the proper type defined in the same AWS CDK app.
The following example defines an Amazon ECS cluster and then uses it to define an Amazon ECS
service.

Example
TypeScript

const cluster = new ecs.Cluster(this, 'Cluster', { /*...*/ });

const service = new ecs.Ec2Service(this, 'Service', { cluster: cluster });
JavaScript

const cluster = new ecs.Cluster(this, 'Cluster', { /*...*/ });

const service = new ecs.Ec2Service(this, 'Service', { cluster: cluster });

Python

cluster ecs.Cluster(self, "Cluster")

service = ecs.Ec2Service(self, "Service", cluster=cluster)

Java

Cluster cluster = new Cluster(this, "Cluster");
Ec2Service service = new Ec2Service(this, "Service",
new Ec2ServiceProps.Builder().cluster(cluster).build());

Referencing resources Version 2 105

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CH#

var cluster = new Cluster(this, "Cluster");
var service new Ec2Service(this, "Service", new Ec2ServiceProps { Cluster =
cluster 1});

Go
import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
ecs "github.com/aws/aws-cdk-go/awscdk/v2/awsecs"
)
cluster := ecs.NewCluster(stack, jsii.String("MyCluster"), &ecs.ClusterProps{})
service := ecs.NewEc2Service(stack, jsii.String("MyService"), &ecs.Ec2ServiceProps{
Cluster: cluster,
b

Referencing resources in a different stack

You can refer to resources in a different stack as long as they are defined in the same app and are
in the same AWS environment. The following pattern is generally used:

« Store a reference to the construct as an attribute of the stack that produces the resource. (To get
a reference to the current construct’s stack, use Stack.of(this).)

» Pass this reference to the constructor of the stack that consumes the resource as a parameter or
a property. The consuming stack then passes it as a property to any construct that needs it.

The following example defines a stack stack1l. This stack defines an Amazon S3 bucket and stores
a reference to the bucket construct as an attribute of the stack. Then the app defines a second
stack, stack2, which accepts a bucket at instantiation. stack2 might, for example, define an AWS
Glue Table that uses the bucket for data storage.

Example

TypeScript

const prod = { account: '123456789012', region: 'us-east-1' };

Referencing resources Version 2 106

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const stackl = new StackThatProvidesABucket(app, 'Stackl', { env: prod });
// stack2 will take a property { bucket: IBucket }
const stack2 = new StackThatExpectsABucket(app, 'Stack2', {

bucket: stackl.bucket,

env: prod

1)

JavaScript

const prod = { account: '123456789012', region: 'us-east-1' };

const stackl = new StackThatProvidesABucket(app, 'Stackl', { env: prod });
// stack2 will take a property { bucket: IBucket }

const stack2 = new StackThatExpectsABucket(app, 'Stack2',6 {

bucket: stackl.bucket,
env: prod

1});

Python

prod = core.Environment(account="123456789012", region="us-east-1")
stackl = StackThatProvidesABucket(app, "Stackl", env=prod)

stack2 will take a property "bucket"
stack2 = StackThatExpectsABucket(app, "Stack2", bucket=stackl.bucket, env=prod)

Java

// Helper method to build an environment
static Environment makeEnv(String account, String region) {
return Environment.builder().account(account).region(region)
.build();

App app = new App();

Environment prod = makeEnv("123456789012", "us-east-1");

Referencing resources Version 2 107

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

StackThatProvidesABucket stackl = new StackThatProvidesABucket(app, "Stackl",
StackProps.builder().env(prod).build());

// stack2 will take an argument "bucket"
StackThatExpectsABucket stack2 = new StackThatExpectsABucket(app, "Stack,",
StackProps.builder().env(prod).build(), stackl.bucket);

CH

Amazon.CDK.Environment makeEnv(string account, string region)

{

return new Amazon.CDK.Environment { Account = account, Region = region };

var prod = makeEnv(account: "123456789012", region: "us-east-1");

var stackl = new StackThatProvidesABucket(app, "Stackl", new StackProps { Env =
prod });

// stack2 will take a property "bucket"
var stack2 = new StackThatExpectsABucket(app, "Stack2", new StackProps { Env = prod,
bucket = stackl.Bucket});

If the AWS CDK determines that the resource is in the same environment, but in a different
stack, it automatically synthesizes AWS CloudFormation exports in the producing stack and an
Fn::ImportValue in the consuming stack to transfer that information from one stack to the
other.

Resolving dependency deadlocks

Referencing a resource from one stack in a different stack creates a dependency between the two
stacks. This makes sure that they're deployed in the right order. After the stacks are deployed, this
dependency is concrete. After that, removing the use of the shared resource from the consuming
stack can cause an unexpected deployment failure. This happens if there is another dependency
between the two stacks that force them to be deployed in the same order. It can also happen
without a dependency if the producing stack is simply chosen by the CDK Toolkit to be deployed
first. The AWS CloudFormation export is removed from the producing stack because it's no longer
needed, but the exported resource is still being used in the consuming stack because its update is
not yet deployed. Therefore, deploying the producer stack fails.

Referencing resources Version 2 108

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-exports.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To break this deadlock, remove the use of the shared resource from the consuming stack. (This
removes the automatic export from the producing stack.) Next, manually add the same export

to the producing stack using exactly the same logical ID as the automatically generated export.
Remove the use of the shared resource in the consuming stack and deploy both stacks. Then,
remove the manual export (and the shared resource if it's no longer needed) and deploy both
stacks again. The stack’s exportValue() method is a convenient way to create the manual export
for this purpose. (See the example in the linked method reference.)

Referencing resources in your AWS account

Suppose you want to use a resource already available in your AWS account in your AWS CDK

app. This might be a resource that was defined through the console, an AWS SDK, directly with
AWS CloudFormation, or in a different AWS CDK application. You can turn the resource’s ARN (or
another identifying attribute, or group of attributes) into a proxy object. The proxy object serves as
a reference to the resource by calling a static factory method on the resource’s class.

When you create such a proxy, the external resource does not become a part of your AWS CDK
app. Therefore, changes you make to the proxy in your AWS CDK app do not affect the deployed
resource. The proxy can, however, be passed to any AWS CDK method that requires a resource of
that type.

The following example shows how to reference a bucket based on an existing bucket with the ARN
arn:aws:s3:::amzn-s3-demo-bucketl, and an Amazon Virtual Private Cloud based on an
existing VPC having a specific ID.

Example

TypeScript

// Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.fromBucketName(this, 'MyBucket', 'amzn-s3-demo-bucketl');

// Construct a proxy for a bucket by its full ARN (can be another account)
s3.Bucket.fromBucketArn(this, 'MyBucket', 'arn:aws:s3:::amzn-s3-demo-bucketl');

// Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.fromVpcAttributes(this, 'MyVpc', {

vpcId: 'vpc-1234567890abcde’,
19F

Referencing resources Version 2 109

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#exportwbrvalueexportedvalue-options

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

JavaScript

// Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.fromBucketName(this, 'MyBucket', 'amzn-s3-demo-bucketl');

// Construct a proxy for a bucket by its full ARN (can be another account)

s3.Bucket.fromBucketArn(this, 'MyBucket', 'arn:aws:s3:::amzn-s3-demo-bucketl');

// Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.fromVpcAttributes(this, 'MyVpc', {

vpcId: 'vpc-1234567890abcde’
1)

Python

Construct a proxy for a bucket by its name (must be same account)
s3.Bucket.from_bucket_name(self, "MyBucket", "amzn-s3-demo-bucketl")

Construct a proxy for a bucket by its full ARN (can be another account)

s3.Bucket.from_bucket_arn(self, "MyBucket", "arn:aws:s3:::amzn-s3-demo-bucketl")

Construct a proxy for an existing VPC from its attribute(s)
ec2.Vpc.from_vpc_attributes(self, "MyVpc", vpc_id="vpc-1234567890abcdef")

Java

// Construct a proxy for a bucket by its name (must be same account)
Bucket.fromBucketName(this, "MyBucket", "amzn-s3-demo-bucketl");

// Construct a proxy for a bucket by its full ARN (can be another account)
Bucket.fromBucketArn(this, "MyBucket",
"arn:aws:s3:::amzn-s3-demo-bucketl");

// Construct a proxy for an existing VPC from its attribute(s)

Vpc.fromVpcAttributes(this, "MyVpc", VpcAttributes.builder()
.vpcId("vpc-1234567890@abcdef").build());

CH#

// Construct a proxy for a bucket by its name (must be same account)
Bucket.FromBucketName(this, "MyBucket", "amzn-s3-demo-bucketl");

Referencing resources

Version 2 110

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Construct a proxy for a bucket by its full ARN (can be another account)
Bucket.FromBucketArn(this, "MyBucket", "arn:aws:s3:::amzn-s3-demo-bucketl");

// Construct a proxy for an existing VPC from its attribute(s)
Vpc.FromVpcAttributes(this, "MyVpc", new VpcAttributes
{

VpcId = "vpc-1234567890Qabcdef"

1)
Go

// Define a proxy for a bucket by its name (must be same account)
s3.Bucket_FromBucketName(stack, jsii.String("MyBucket"), jsii.String("amzn-s3-demo-
bucketl1"))

// Define a proxy for a bucket by its full ARN (can be another account)
s3.Bucket_FromBucketArn(stack, jsii.String("MyBucket"),
jsii.String("arn:aws:s3:::amzn-s3-demo-bucketl"))

// Define a proxy for an existing VPC from its attributes

ec2.Vpc_FromVpcAttributes(stack, jsii.String("MyVpc"), &ec2.VpcAttributes{
VpcId: jsii.String("vpc-1234567890@abcde"),

)

Let's take a closer look at the Vpc. fromLookup() method. Because the ec2.Vpc construct is

complex, there are many ways you might want to select the VPC to be used with your CDK app. To
address this, the VPC construct has a fromLookup static method (Python: from_lookup) that lets
you look up the desired Amazon VPC by querying your AWS account at synthesis time.

To use Vpc.fromLookup(), the system that synthesizes the stack must have access to the account
that owns the Amazon VPC. This is because the CDK Toolkit queries the account to find the right
Amazon VPC at synthesis time.

Furthermore, Vpc. fromLookup () works only in stacks that are defined with an explicit account
and region (see Environments for the AWS CDK). If the AWS CDK tries to look up an Amazon VPC
from an environment-agnostic stack, the CDK Toolkit doesn't know which environment to query to
find the VPC.

You must provide Vpc . fromLookup() attributes sufficient to uniquely identify a VPC in your AWS
account. For example, there can only ever be one default VPC, so it's sufficient to specify the VPC
as the default.

Referencing resources Version 2 111

https://docs.aws.amazon.com/cdk/api/v1/docs/@aws-cdk_aws-ec2.Vpc.html#static-fromwbrlookupscope-id-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

ec2.Vpc.fromLookup(this, 'DefaultVpc', {
isDefault: true

1)
JavaScript

ec2.Vpc.fromLookup(this, 'DefaultVpc', {
isDefault: true

1)
Python

ec2.Vpc.from_lookup(self, "DefaultVpc", is_default=True)
Java

Vpc.fromLookup(this, "DefaultVpc", VpcLookupOptions.builder()
.isDefault(true).build());

Cc#
Vpc.FromLookup(this, id = "DefaultVpc", new VpcLookupOptions { IsDefault = true });
Go

ec2.Vpc_FromLookup(this, jsii.String("DefaultVpc"), &ec2.VpclLookupOptions{
IsDefault: jsii.Bool(true),

1)

You can also use the tags property to query for VPCs by tag. You can add tags to the Amazon
VPC at the time of its creation by using AWS CloudFormation or the AWS CDK. You can edit tags
at any time after creation by using the AWS Management Console, the AWS CLI, or an AWS SDK.
In addition to any tags you add yourself, the AWS CDK automatically adds the following tags to all
VPCs it creates.

Referencing resources Version 2 112

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

« Name - The name of the VPC.
« aws-cdk:subnet-name - The name of the subnet.

« aws-cdk:subnet-type — The type of the subnet: Public, Private, or Isolated.

Example

TypeScript

ec2.Vpc.fromLookup(this, 'PublicVpc',
{tags: {'aws-cdk:subnet-type': "Public"}});

JavaScript

ec2.Vpc.fromLookup(this, 'PublicVpc',
{tags: {'aws-cdk:subnet-type': "Public"}});

Python

ec2.Vpc.from_lookup(self, "PublicVpc",
tags={"aws-cdk:subnet-type": "Public"})

Java

Vpc.fromLookup(this, "PublicVpc", VpcLookupOptions.builder()
.tags(java.util.Map.of("aws-cdk:subnet-type", "Public")) // Java 9 or later

.build());
C#
Vpc.FromLookup(this, id: "PublicVpc", new VpclLookupOptions
{
Tags = new Dictionary<string, string> { ["aws-cdk:subnet-type"] = "Public" }
1)
Go

ec2.Vpc_FromLookup(this, jsii.String("DefaultVpc"), &ec2.VpcLookupOptions{
Tags: &map[string]*string{"aws-cdk:subnet-type": jsii.String("Public")},

Referencing resources Version 2 113

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Results of Vpc.fromLookup() are cached in the project's cdk.context. json file. (See Context
values and the AWS CDK.) Commit this file to version control so that your app will continue to
refer to the same Amazon VPC. This works even if you later change the attributes of your VPCs in
a way that would result in a different VPC being selected. This is particularly important if you're
deploying the stack in an environment that doesn’t have access to the AWS account that defines
the VPC, such as CDK Pipelines.

Although you can use an external resource anywhere you'd use a similar resource defined in your
AWS CDK app, you cannot modify it. For example, calling addToResourcePolicy (Python:
add_to_resource_policy) on an external s3.Bucket does nothing.

Resource physical names

The logical names of resources in AWS CloudFormation are different from the names of resources
that are shown in the AWS Management Console after they're deployed by AWS CloudFormation.
The AWS CDK calls these final names physical names.

For example, AWS CloudFormation might create the Amazon S3 bucket with the logical
ID Stack2MyBucket4DD88B4F and the physical name stack2MyBucket4dd88b4f -
iuvlrbv9z3to.

You can specify a physical name when creating constructs that represent resources by using the
property <resourceType>Name. The following example creates an Amazon S3 bucket with the
physical name amzn-s3-demo-bucket.

Example

TypeScript

const bucket new s3.Bucket(this, 'MyBucket', {

bucketName: 'amzn-s3-demo-bucket',

1)

JavaScript

const bucket new s3.Bucket(this, 'MyBucket', {
bucketName: 'amzn-s3-demo-bucket'

Resource physical names Version 2 114

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Python
bucket = s3.Bucket(self, "MyBucket", bucket_name="amzn-s3-demo-bucket")
Java

Bucket bucket = Bucket.Builder.create(this, '"MyBucket")
.bucketName("amzn-s3-demo-bucket").build();

CH#

var bucket = new Bucket(this, "MyBucket", new BucketProps { BucketName = "amzn-s3-
demo-bucket" 1});

Go

bucket := s3.NewBucket(this, jsii.String("MyBucket"), &s3.BucketProps{
BucketName: jsii.String("amzn-s3-demo-bucket"),

1)

Assigning physical names to resources has some disadvantages in AWS CloudFormation. Most
importantly, any changes to deployed resources that require a resource replacement, such as
changes to a resource's properties that are immutable after creation, will fail if a resource has
a physical name assigned. If you end up in that state, the only solution is to delete the AWS
CloudFormation stack, then deploy the AWS CDK app again. See the AWS CloudFormation
documentation for details.

In some cases, such as when creating an AWS CDK app with cross-environment references, physical
names are required for the AWS CDK to function correctly. In those cases, if you don't want to
bother with coming up with a physical name yourself, you can let the AWS CDK name it for you. To
do so, use the special value PhysicalName.GENERATE_IF_NEEDED, as follows.

Example

TypeScript

const bucket = new s3.Bucket(this, 'MyBucket',6 {

Resource physical names Version 2 115

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

bucketName: core.PhysicalName.GENERATE_IF_NEEDED,
1);

JavaScript

const bucket = new s3.Bucket(this, 'MyBucket', {
bucketName: core.PhysicalName.GENERATE_IF_NEEDED

1)
Python

bucket = s3.Bucket(self, "MyBucket",
bucket_name=core.PhysicalName.GENERATE_IF_NEEDED)

Java

Bucket bucket = Bucket.Builder.create(this, "MyBucket")
.bucketName(PhysicalName.GENERATE_IF_NEEDED).build();

CH

var bucket = new Bucket(this, "MyBucket", new BucketProps
{ BucketName = PhysicalName.GENERATE_IF_NEEDED });

Go

bucket := s3.NewBucket(this, jsii.String("MyBucket"), &s3.BucketProps{
BucketName: awscdk.PhysicalName_GENERATE_IF_NEEDED(),

1

Passing unique resource identifiers

Whenever possible, you should pass resources by reference, as described in the previous section.
However, there are cases where you have no other choice but to refer to a resource by one of its
attributes. Example use cases include the following:

« When you are using low-level AWS CloudFormation resources.

« When you need to expose resources to the runtime components of an AWS CDK application, such
as when referring to Lambda functions through environment variables.

Passing unique resource identifiers Version 2 116

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

These identifiers are available as attributes on the resources, such as the following.
Example

TypeScript

bucket.bucketName
lambdaFunc.functionArn
securityGroup.groupAzn

JavaScript

bucket.bucketName
lambdaFunc.functionArn
securityGroup.groupAzn

Python

bucket.bucket_name
lambda_func.function_arn
security_group_azrn

Java

The Java AWS CDK binding uses getter methods for attributes.

bucket.getBucketName()
lambdaFunc.getFunctionAxrn()
securityGroup.getGroupArn()

CH

bucket.BucketName
lambdaFunc.FunctionArn
securityGroup.GroupAzrn

Go

bucket.BucketName()

Passing unique resource identifiers Version 2 117

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

fn.FunctionAzrn()

The following example shows how to pass a generated bucket name to an AWS Lambda function.
Example

TypeScript

const bucket = new s3.Bucket(this, 'Bucket');

new lambda.Function(this, 'MyLambda', {
// ...

environment: {
BUCKET_NAME: bucket.bucketName,

}I
1});

JavaScript

const bucket = new s3.Bucket(this, 'Bucket');
new lambda.Function(this, 'MyLambda', {

// ...

environment: {
BUCKET_NAME: bucket.bucketName
}

1)
Python

bucket = s3.Bucket(self, "Bucket")

lambda.Function(self, "MyLambda", environment=dict(BUCKET_NAME=bucket.bucket_name))

Java

final Bucket bucket = new Bucket(this, "Bucket");

Function.Builder.create(this, "MyLambda")
.environment(java.util.Map.of(// Java 9 or later
"BUCKET_NAME", bucket.getBucketName()))

Passing unique resource identifiers Version 2 118

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

.build();
c#

var bucket = new Bucket(this, "Bucket");

new Function(this, "MyLambda", new FunctionProps

{

Environment = new Dictionary<string, string>

{
["BUCKET_NAME"] = bucket.BucketName

1)
Go

bucket := s3.NewBucket(this, jsii.String("Bucket"), &s3.BucketProps{})
lambda.NewFunction(this, jsii.String("MyLambda"), &lambda.FunctionProps{
Environment: &map[string]*string{"BUCKET_NAME": bucket.BucketName()},

H

Granting permissions between resources

Higher-level constructs make least-privilege permissions achievable by offering simple, intent-
based APIs to express permission requirements. For example, many L2 constructs offer grant
methods that you can use to grant an entity (such as an IAM role or user) permission to work with
the resource, without having to manually create IAM permission statements.

The following example creates the permissions to allow a Lambda function’s execution role to read
and write objects to a particular Amazon S3 bucket. If the Amazon S3 bucket is encrypted with

an AWS KMS key, this method also grants permissions to the Lambda function’s execution role to
decrypt with the key.

Example

TypeScript

if (bucket.grantReadWrite(func).success) {

// ...

Granting permissions between resources Version 2 119

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

JavaScript

if (bucket.grantReadWrite(func).success) {
// ...
}

Python

if bucket.grant_read_write(func).success:
...

Java

if (bucket.grantReadWrite(func).getSuccess()) {

// ...
}
C#
if (bucket.GrantReadWrite(func).Success)
{
// ...
}
Go

if *bucket.GrantReadWrite(function, nil).Success() {
// ...
}

The grant methods return an iam.Grant object. Use the success attribute of the Grant object
to determine whether the grant was effectively applied (for example, it may not have been applied
on external resources). You can also use the assertSuccess (Python: assert_success) method

of the Grant object to enforce that the grant was successfully applied.

If a specific grant method isn't available for the particular use case, you can use a generic grant
method to define a new grant with a specified list of actions.

Granting permissions between resources Version 2 120

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The following example shows how to grant a Lambda function access to the Amazon DynamoDB
CreateBackup action.

Example

TypeScript

table.grant(func, 'dynamodb:CreateBackup');

JavaScript

table.grant(func, 'dynamodb:CreateBackup');

Python

table.grant(func, "dynamodb:CreateBackup")

Java

table.grant(func, "dynamodb:CreateBackup");

C#

table.Grant(func, "dynamodb:CreateBackup");

Go

table := dynamodb.NewTable(this, jsii.String("MyTable"), &dynamodb.TableProps{})
table.Grant(function, jsii.String("dynamodb:CreateBackup"))

Many resources, such as Lambda functions, require a role to be assumed when executing code. A
configuration property enables you to specify an iam.IRole. If no role is specified, the function
automatically creates a role specifically for this use. You can then use grant methods on the
resources to add statements to the role.

The grant methods are built using lower-level APIs for handling with IAM policies. Policies
are modeled as PolicyDocument objects. Add statements directly to roles (or a construct’s

Granting permissions between resources Version 2 121

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyDocument.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

attached role) using the addToRolePolicy method (Python: add_to_role_policy), or
to a resource’s policy (such as a Bucket policy) using the addToResourcePolicy (Python:
add_to_resource_policy) method.

Resource metrics and alarms

Many resources emit CloudWatch metrics that can be used to set up monitoring dashboards and
alarms. Higher-level constructs have metric methods that let you access the metrics without
looking up the correct name to use.

The following example shows how to define an alarm when the
ApproximateNumberOfMessagesNotVisible of an Amazon SQS queue exceeds 100.

Example

TypeScript

import * as cw from '@aws-cdk/aws-cloudwatch';
import * as sqs from '@aws-cdk/aws-sqgs';
import { Duration } from 'eaws-cdk/core';

const queue = new sqgs.Queue(this, 'MyQueue');

const metric = queue.metricApproximateNumberOfMessagesNotVisible({
label: 'Messages Visible (Approx)',
period: Duration.minutes(5),
// ...

h))5

metric.createAlarm(this, 'TooManyMessagesAlarm', {
comparisonOperator: cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
threshold: 100,
// ...

});

JavaScript

const cw = require('@aws-cdk/aws-cloudwatch');
const sqs = require('@aws-cdk/aws-sqs');
const { Duration } = require('eaws-cdk/core');

const queue = new sqgs.Queue(this, 'MyQueue');

Resource metrics and alarms Version 2 122

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const metric = queue.metricApproximateNumberOfMessagesNotVisible({
label: 'Messages Visible (Approx)',
period: Duration.minutes(5)
// ...

18

metric.createAlarm(this, 'TooManyMessagesAlarm', {
comparisonOperator: cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
threshold: 100
// ...

1);

Python

import aws_cdk.aws_cloudwatch as cw
import aws_cdk.aws_sqs as sqs
from aws_cdk.core import Duration

queue = sgs.Queue(self, "MyQueue")

metric = queue.metric_approximate_number_of_messages_not_visible(
label="Messages Visible (Approx)",
period=Duration.minutes(5),
...

)

metric.create_alarm(self, "TooManyMessagesAlarm",
comparison_operator=cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
threshold=100,
...

Java

import software.amazon.awscdk.core.Duration;

import software.amazon.awscdk.services.sqs.Queue;

import software.amazon.awscdk.services.cloudwatch.Metric;

import software.amazon.awscdk.services.cloudwatch.MetricOptions;
import software.amazon.awscdk.services.cloudwatch.CreateAlarmOptions;
import software.amazon.awscdk.services.cloudwatch.ComparisonOperator;

Queue queue = new Queue(this, "MyQueue");

Metric metric = queue
.metricApproximateNumberOfMessagesNotVisible(MetricOptions.builder()

Resource metrics and alarms Version 2 123

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CH#

Go

.label("Messages Visible (Approx)")
.period(Duration.minutes(5)).build());

metric.createAlarm(this, "TooManyMessagesAlarm", CreateAlarmOptions.builder()
.comparisonOperator(ComparisonOperator.GREATER_THAN_THRESHOLD)
.threshold(100)

// ...
.build());

using cdk = Amazon.CDK;
using cw = Amazon.CDK.AWS.CloudWatch;
using sqs = Amazon.CDK.AWS.SQS;

var queue = new sqgs.Queue(this, "MyQueue");

var metric = queue.MetricApproximateNumberOfMessagesNotVisible(new cw.MetricOptions
{
Label = "Messages Visible (Approx)",
Period = cdk.Duration.Minutes(5),
// ...
1);
metric.CreateAlarm(this, "TooManyMessagesAlarm", new cw.CreateAlarmOptions
{
ComparisonOperator = cw.ComparisonOperator.GREATER_THAN_THRESHOLD,
Threshold = 100,
// ..
1);

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
cw "github.com/aws/aws-cdk-go/awscdk/v2/awscloudwatch"
sqs "github.com/aws/aws-cdk-go/awscdk/v2/awssqgs"

queue := sqgs.NewQueue(this, jsii.String("MyQueue"), &sqs.QueueProps{})

metric := queue.MetricApproximateNumberOfMessagesNotVisible(&cw.MetricOptions{
Label: jsii.String("Messages Visible (Approx)"),
Period: awscdk.Duration_Minutes(jsii.Numbexr(5)),

1)

Resource metrics and alarms Version 2 124

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

metric.CreateAlarm(this, jsii.String("TooManyMessagesAlarm"),
&cw.CreateAlarmOptions{
ComparisonOperator: cw.ComparisonOperator_GREATER_THAN_THRESHOLD,
Threshold: jsii.Number(100),

1)

If there is no method for a particular metric, you can use the general metric method to specify the
metric name manually.

Metrics can also be added to CloudWatch dashboards. See CloudWatch.

Network traffic

In many cases, you must enable permissions on a network for an application to work, such as when
the compute infrastructure needs to access the persistence layer. Resources that establish or listen
for connections expose methods that enable traffic flows, including setting security group rules or
network ACLs.

IConnectable resources have a connections property that is the gateway to network traffic rules
configuration.

You enable data to flow on a given network path by using allow methods. The following example
enables HTTPS connections to the web and incoming connections from the Amazon EC2 Auto
Scaling group fleet?2.

Example

TypeScript

import * as asg from 'e@aws-cdk/aws-autoscaling';
import * as ec2 from 'Eaws-cdk/aws-ec2';

const fleetl: asg.AutoScalingGroup = asg.AutoScalingGroup(/*...*/);
// Allow surfing the (secure) web
fleetl.connections.allowTo(new ec2.Peer.anyIpv4(), new ec2.Port({ fromPort: 443,

toPort: 443 }));

const fleet2: asg.AutoScalingGroup = asg.AutoScalingGroup(/*...*/);

Network traffic Version 2 125

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_cloudwatch-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.IConnectable.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

fleetl.connections.allowFrom(fleet2, ec2.Port.AllTraffic());

JavaScript

const asg = require('eaws-cdk/aws-autoscaling');

const ec2 = require('@aws-cdk/aws-ec2');

const fleetl = asg.AutoScalingGroup();

// Allow surfing the (secure) web

fleetl.connections.allowTo(new ec2.Peer.anyIpv4(), new ec2.Port({ fromPort:

toPort: 443 1}));

const fleet2 = asg.AutoScalingGroup();
fleetl.connections.allowFrom(fleet2, ec2.Port.AllTraffic());

Python

Java

import aws_cdk.aws_autoscaling as asg
import aws_cdk.aws_ec2 as ec2

fleetl = asg.AutoScalingGroup(...)

Allow surfing the (secure) web
fleetl.connections.allow_to(ec2.Peer.any_ipv4(),
ec2.Port(PortProps(from_port=443, to_port=443)))

fleet2 = asg.AutoScalingGroup(...)
fleetl.connections.allow_from(fleet2, ec2.Port.all_traffic())

import software.amazon.awscdk.services.autoscaling.AutoScalingGroup;
import software.amazon.awscdk.services.ec2.Peer;
import software.amazon.awscdk.services.ec2.Port;

AutoScalingGroup fleetl = AutoScalingGroup.Builder.create(this, "MyFleet")
/* ... */.build();

// Allow surfing the (secure) Web
fleetl.getConnections().allowTo(Peer.anyIpv4(),
Port.Builder.create().fromPort(443).toPort(443).build());

443,

Network traffic

Version 2 126

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AutoScalingGroup fleet2 = AutoScalingGroup.Builder.create(this, "MyFleet2")
/* ... */.build();
fleetl.getConnections().allowFrom(fleet2, Port.allTraffic());

CH#

using cdk Amazon.CDK;
using asg = Amazon.CDK.AWS.AutoScaling;
using ec2 = Amazon.CDK.AWS.EC2;

// Allow surfing the (secure) Web

var fleetl = new asg.AutoScalingGroup(this, "MyFleet", new asg.AutoScalingGroupProps
/7 .../ 1,

fleetl.Connections.AllowTo(ec2.Peer.AnyIpv4(), new ec2.Port(new ec2.PortProps
{ FromPort = 443, ToPort = 443 }));

var fleet2 = new asg.AutoScalingGroup(this, "MyFleet2", new
asg.AutoScalingGroupProps { /* ... */ });
fleetl.Connections.AllowFrom(fleet2, ec2.Port.AllTraffic());

Go

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
autoscaling "github.com/aws/aws-cdk-go/awscdk/v2/awsautoscaling"
ec2 "github.com/aws/aws-cdk-go/awscdk/v2/awsec2"

fleetl := autoscaling.NewAutoScalingGroup(this, jsii.String("MyFleetl"),
&autoscaling.AutoScalingGroupProps{})
fleetl.Connections().AllowTo(ec2.Peer_AnyIpv4(),ec2.NewPort(&ec2.PortProps{ FromPort:
jsii.Number(443), ToPort: jsii.Number(443) }),jsii.String("secure web"))

fleet2 := autoscaling.NewAutoScalingGroup(this, jsii.String("MyFleet2"),
&autoscaling.AutoScalingGroupProps{})

fleetl.Connections().AllowFrom(fleet2, ec2.Port_AllTraffic(),jsii.String("all
traffic"))

Certain resources have default ports associated with them. Examples include the listener
of a load balancer on the public port, and the ports on which the database engine

Network traffic Version 2 127

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

accepts connections for instances of an Amazon RDS database. In such cases, you can
enforce tight network control without having to manually specify the port. To do so,
use the allowDefaultPortFromand allowToDefaultPort methods (Python:
allow_default_port_from, allow_to_default_port).

The following example shows how to enable connections from any IPV4 address, and a connection
from an Auto Scaling group to access a database.

Example

TypeScript

listener.connections.allowDefaultPortFromAnyIpv4('Allow public access');

fleet.connections.allowToDefaultPort(rdsDatabase, 'Fleet can access database');

JavaScript

listener.connections.allowDefaultPortFromAnyIpv4('Allow public access');

fleet.connections.allowToDefaultPort(rdsDatabase, 'Fleet can access database');

Python

listener.connections.allow_default_port_from_any_ipv4("Allow public access")

fleet.connections.allow_to_default_port(rds_database, "Fleet can access database")

Java

listener.getConnections().allowDefaultPortFromAnyIpv4("Allow public access");

fleet.getConnections().AllowToDefaultPort(rdsDatabase, "Fleet can access database");

CH#

listener.Connections.AllowDefaultPortFromAnyIpv4("Allow public access");

fleet.Connections.AllowToDefaultPort(rdsDatabase, "Fleet can access database");

Network traffic Version 2 128

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Go

listener.Connections().AllowDefaultPortFromAnyIpv4(jsii.String("Allow public

Access"))

fleet.Connections().AllowToDefaultPort(rdsDatabase, jsii.String("Fleet can access

database"))

Event handling

Some resources can act as event sources. Use the addEventNotification method (Python:
add_event_notification) to register an event target to a particular event type emitted by
the resource. In addition to this, addXxxNotification methods offer a simple way to register a
handler for common event types.

The following example shows how to trigger a Lambda function when an object is added to an
Amazon S3 bucket.

Example

TypeScript

import * as s3nots from 'eaws-cdk/aws-s3-notifications';

const handler = new lambda.Function(this, 'Handler', { /*..*/ });
const bucket = new s3.Bucket(this, 'Bucket');
bucket.addObjectCreatedNotification(new s3nots.LambdaDestination(handler));

JavaScript

const s3nots = require('e@aws-cdk/aws-s3-notifications');

const handler = new lambda.Function(this, 'Handler', { /*..*/ });
const bucket = new s3.Bucket(this, 'Bucket');
bucket.addObjectCreatedNotification(new s3nots.LambdaDestination(handler));

Python

import aws_cdk.aws_s3_notifications as s3_nots

handler = lambda_.Function(self, "Handler", ...)

Event handling

Version 2 129

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Java

CH#

Go

bucket = s3.Bucket(self, "Bucket")
bucket.add_object_created_notification(s3_nots.LambdaDestination(handler))

import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.s3.notifications.LambdaDestination;

Function handler = Function.Builder.create(this, "Handler")/* ... */.build();
Bucket bucket = new Bucket(this, "Bucket");
bucket.addObjectCreatedNotification(new LambdaDestination(handler));

using lambda = Amazon.CDK.AWS.Lambda;
using s3 = Amazon.CDK.AWS.S3;
using s3Nots = Amazon.CDK.AWS.S3.Notifications;

var handler = new lambda.Function(this, "Handler", new lambda.FunctionProps { ..

var bucket = new s3.Bucket(this, "Bucket");
bucket.AddObjectCreatedNotification(new s3Nots.LambdaDestination(handler));

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
s3 "github.com/aws/aws-cdk-go/awscdk/v2/awss3"
s3nots "github.com/aws/aws-cdk-go/awscdk/v2/awss3notifications"”

handler := lambda.NewFunction(this, jsii.String("MyFunction"),
&lambda.FunctionProps{})
bucket := s3.NewBucket(this, jsii.String("Bucket"), &s3.BucketProps{})

1)

bucket.AddObjectCreatedNotification(s3nots.NewLambdaDestination(handler), nil)

Removal policies

Resources that maintain persistent data, such as databases, Amazon S3 buckets, and Amazon ECR

registries, have a removal policy. The removal policy indicates whether to delete persistent objects

Removal policies

Version 2 130

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

when the AWS CDK stack that contains them is destroyed. The values specifying the removal policy
are available through the RemovalPolicy enumeration in the AWS CDK core module.

@ Note

Resources besides those that store data persistently might also have a removalPolicy
that is used for a different purpose. For example, a Lambda function version uses a
removalPolicy attribute to determine whether a given version is retained when a new
version is deployed. These have different meanings and defaults compared to the removal
policy on an Amazon S3 bucket or DynamoDB table.

Value Meaning

RemovalPolicy.RETAIN Keep the contents of the resource when
destroying the stack (default). The resource
is orphaned from the stack and must be
deleted manually. If you attempt to re-deploy
the stack while the resource still exists, you
will receive an error message due to a name
conflict.

RemovalPolicy.DESTROY The resource will be destroyed along with the
stack.

AWS CloudFormation does not remove Amazon S3 buckets that contain files even if their removal
policy is set to DESTROY. Attempting to do so is an AWS CloudFormation error. To have the AWS
CDK delete all files from the bucket before destroying it, set the bucket's autoDeleteObjects
property to true.

Following is an example of creating an Amazon S3 bucket with RemovalPolicy of DESTROY and
autoDeleteOjbects setto true.

Example
TypeScript

import * as cdk from 'e@aws-cdk/core';

Removal policies Version 2 131

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as s3 from 'eaws-cdk/aws-s3';

export class CdkTestStack extends cdk.Stack {

constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

const bucket = new s3.Bucket(this, 'Bucket', {
removalPolicy: cdk.RemovalPolicy.DESTROY,
autoDeleteObjects: true

1)

JavaScript

const cdk = require('eaws-cdk/core');
const s3 = require('eaws-cdk/aws-s3');

class CdkTestStack extends cdk.Stack {
constructor(scope, id, props) {
super(scope, id, props);

const bucket = new s3.Bucket(this, 'Bucket', {
removalPolicy: cdk.RemovalPolicy.DESTROY,
autoDeleteObjects: true

1)

module.exports = { CdkTestStack }

Python

import aws_cdk.core as cdk
import aws_cdk.aws_s3 as s3

class CdkTestStack(cdk.stack):
def __init_ (self, scope: cdk.Construct, id: str, **kwargs):
super().__init_ (scope, id, **kwargs)

bucket = s3.Bucket(self, "Bucket",
removal_policy=cdk.RemovalPolicy.DESTROY,
auto_delete_objects=True)

Removal policies Version 2 132

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Java

CH#

Go

software.amazon.awscdk.core.*;
import software.amazon.awscdk.services.s3.*;

public class CdkTestStack extends Stack {
public CdkTestStack(final Construct scope, final String id) {
this(scope, id, null);

public CdkTestStack(final Construct scope, final String id, final StackProps

props) {
super(scope, id, props);

Bucket.Builder.create(this, "Bucket")
.removalPolicy(RemovalPolicy.DESTROY)
.autoDeleteObjects(true).build();

using Amazon.CDK;
using Amazon.CDK.AWS.S3;

public CdkTestStack(Construct scope, string id, IStackProps props)
props)
{
new Bucket(this, "Bucket", new BucketProps {
RemovalPolicy = RemovalPolicy.DESTROY,
AutoDeleteObjects = true

1)

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/jsii-runtime-go"
s3 "github.com/aws/aws-cdk-go/awscdk/v2/awss3"

s3.NewBucket(this, jsii.String("Bucket"), &s3.BucketProps{

base(scope, id,

Removal policies

Version 2 133

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

RemovalPolicy: awscdk.RemovalPolicy_DESTROY,
AutoDeleteObjects: jsii.Bool(true),
1)

You can also apply a removal policy directly to the underlying AWS CloudFormation resource via
the applyRemovalPolicy() method. This method is available on some stateful resources that do
not have a removalPolicy property in their L2 resource’s props. Examples include the following:

« AWS CloudFormation stacks

« Amazon Cognito user pools

« Amazon DocumentDB database instances
« Amazon EC2 volumes

« Amazon OpenSearch Service domains

« Amazon FSx file systems

« Amazon SQS queues

Example
TypeScript

const resource = bucket.node.findChild('Resource') as cdk.CfnResource;
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTRQY);

JavaScript

const resource = bucket.node.findChild('Resource');
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

Python

resource = bucket.node.find_child('Resource')
resource.apply_removal_policy(cdk.RemovalPolicy.DESTROY);

Java

CfnResource resource = (CfnResource)bucket.node.findChild("Resource");
resource.applyRemovalPolicy(cdk.RemovalPolicy.DESTROY);

Removal policies Version 2 134

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CH#

var resource = (CfnResource)bucket.node.findChild('Resource');
resource.ApplyRemovalPolicy(cdk.RemovalPolicy.DESTRQY);

(@ Note

The AWS CDK's RemovalPolicy translates to AWS CloudFormation’s DeletionPolicy.
However, the default in AWS CDK is to retain the data, which is the opposite of the AWS
CloudFormation default.

Identifiers and the AWS CDK

When building AWS Cloud Development Kit (AWS CDK) apps, you will use many types of identifiers
and names. To use the AWS CDK effectively and avoid errors, it is important to understand the
types of identifiers.

Identifiers must be unique within the scope in which they are created; they do not need to be
globally unique in your AWS CDK application.

If you attempt to create an identifier with the same value within the same scope, the AWS CDK
throws an exception.

Construct IDs

The most common identifier, id, is the identifier passed as the second argument when
instantiating a construct object. This identifier, like all identifiers, only needs to be unique within
the scope in which it is created, which is the first argument when instantiating a construct object.

(® Note

The id of a stack is also the identifier that you use to refer to it in the AWS CDK CLI
reference.

Let's look at an example where we have two constructs with the identifier MyBucket in our app.
The first is defined in the scope of the stack with the identifier Stackl. The second is defined in

Identifiers Version 2 135

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

the scope of a stack with the identifier Stack?2. Because they're defined in different scopes, this
doesn't cause any conflict, and they can coexist in the same app without issues.

Example
TypeScript

import { App, Stack, StackProps } from 'aws-cdk-1lib';
import { Construct } from 'constructs';
import * as s3 from 'aws-cdk-lib/aws-s3';

class MyStack extends Stack {
constructor(scope: Construct, id: string, props: StackProps = {}) {

super(scope, id, props);

new s3.Bucket(this, 'MyBucket');

const app = new App();
new MyStack(app, 'Stackl');
new MyStack(app, 'Stack2');

JavaScript

const { App , Stack } = require('aws-cdk-1ib');
const s3 = require('aws-cdk-1lib/aws-s3');

class MyStack extends Stack {
constructor(scope, id, props = {}) {

super(scope, id, props);

new s3.Bucket(this, 'MyBucket');

const app = new App();
new MyStack(app, 'Stackl');
new MyStack(app, 'Stack2');

Python

from aws_cdk import App, Construct, Stack, StackProps

Construct IDs Version 2 136

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

from constructs import Construct
from aws_cdk import aws_s3 as s3

class MyStack(Stack):
def __init_ (self, scope: Construct, id: str, **kwargs):

super().__init_ (scope, id, **kwargs)
s3.Bucket(self, "MyBucket")

app = App()
MyStack(app, 'Stackl')
MyStack(app, 'Stack2')

Java

// MyStack.java
package com.myorg;

import software.amazon.awscdk.App;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.constructs.Construct;

import software.amazon.awscdk.services.s3.Bucket;

public class MyStack extends Stack {
public MyStack(final Construct scope, final String id) {
this(scope, id, null);

public MyStack(final Construct scope, final String id, final StackProps props) {

super(scope, id, props);
new Bucket(this, "MyBucket");

// Main.java
package com.myorg;

import software.amazon.awscdk.App;

public class Main {
public static void main(String[] args) {

Construct IDs

Version 2 137

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

App app = new App();
new MyStack(app, "Stackl");
new MyStack(app, "Stack2");

}
}
C#
using Amazon.CDK;
using constructs;
using Amazon.CDK.AWS.S3;
public class MyStack : Stack
{
public MyStack(Construct scope, string id, IStackProps props) : base(scope, id,
props)
{
new Bucket(this, "MyBucket");
}
}
class Program
{
static void Main(string[] args)
{
var app = new App();
new MyStack(app, "Stackl");
new MyStack(app, "Stack2");
}
}
Paths

The constructs in an AWS CDK application form a hierarchy rooted in the App class. We refer to the
collection of IDs from a given construct, its parent construct, its grandparent, and so on to the root
of the construct tree, as a path.

The AWS CDK typically displays paths in your templates as a string. The IDs from the levels are
separated by slashes, starting at the node immediately under the root App instance, which is
usually a stack. For example, the paths of the two Amazon S3 bucket resources in the previous code
example are Stackl/MyBucket and Stack2/MyBucket.

Paths Version 2 138

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can access the path of any construct programmatically, as shown in the following example.
This gets the path of myConstruct (or my_construct, as Python developers would write it).
Since IDs must be unique within the scope they are created, their paths are always unique within an
AWS CDK application.

Example

TypeScript
const path: string = myConstruct.node.path;
JavaScript
const path = myConstruct.node.path;
Python
path = my_construct.node.path
Java

String path = myConstruct.getNode().getPath();

CH#

string path = myConstruct.Node.Path;

Unique IDs

AWS CloudFormation requires that all logical IDs in a template be unique. Because of this, the
AWS CDK must be able to generate a unique identifier for each construct in an application.
Resources have paths that are globally unique (the names of all scopes from the stack to a specific
resource). Therefore, the AWS CDK generates the necessary unique identifiers by concatenating
the elements of the path and adding an 8-digit hash. (The hash is necessary to distinguish distinct
paths, such as A/B/C and A/BC, that would result in the same AWS CloudFormation identifier.
AWS CloudFormation identifiers are alphanumeric and cannot contain slashes or other separator
characters.) The AWS CDK calls this string the unique ID of the construct.

Unique IDs Version 2 139

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In general, your AWS CDK app should not need to know about unique IDs. You can, however, access
the unique ID of any construct programmatically, as shown in the following example.

Example

TypeScript

const uid: string = Names.uniqueId(myConstruct);
JavaScript

const uid = Names.uniqueId(myConstruct);
Python

uid = Names.unique_id(my_construct)

Java

String uid Names.uniqueId(myConstruct);

CH#

string uid Names.Uniqueid(myConstruct);

The address is another kind of unique identifier that uniquely distinguishes CDK resources. Derived
from the SHA-1 hash of the path, it is not human-readable. However, its constant, relatively short
length (always 42 hexadecimal characters) makes it useful in situations where the "traditional”
unique ID might be too long. Some constructs may use the address in the synthesized AWS
CloudFormation template instead of the unique ID. Again, your app generally should not need to
know about its constructs' addresses, but you can retrieve a construct’s address as follows.

Example

TypeScript

const addr: string = myConstruct.node.addr;

Unique IDs Version 2 140

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const addr = myConstruct.node.addr;
Python

addr = my_construct.node.addr

Java

String addr = myConstruct.getNode().getAddr();

CH#

string addr = myConstruct.Node.Addr;

Logical IDs

Unique IDs serve as the logical identifiers (or logical names) of resources in the generated AWS
CloudFormation templates for constructs that represent AWS resources.

For example, the Amazon S3 bucket in the previous example that is created within Stack2 results
inan AWS::S3::Bucket resource. The resource's logical ID is Stack2MyBucket4DD88BA4F in
the resulting AWS CloudFormation template. (For details on how this identifier is generated, see

Unique IDs.)
Logical ID stability

Avoid changing the logical ID of a resource after it has been created. AWS CloudFormation
identifies resources by their logical ID. Therefore, if you change the logical ID of a resource, AWS
CloudFormation creates a new resource with the new logical ID, then deletes the existing one.
Depending on the type of resource, this might cause service interruption, data loss, or both.

Tokens and the AWS CDK

In the AWS Cloud Development Kit (AWS CDK), tokens are placeholders for values that aren’t
known when defining constructs or synthesizing stacks. These values will be fully resolved at
deployment, when your actual infrastructure is created. When developing AWS CDK applications,
you will work with tokens to manage these values across your application.

Logical IDs Version 2 141

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Token example

The following is an example of a CDK stack that defines a construct for an Amazon Simple
Storage Service (Amazon S3) bucket. Since the name of our bucket is not yet known, the value for
bucketName is stored as a token:

Example

TypeScript

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs';
import * as s3 from 'aws-cdk-lib/aws-s3';

export class CdkDemoAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

// Store value of the S3 bucket name
const myBucketName = myBucket.bucketName;

// Print the current value for the S3 bucket name at synthesis
console.log("myBucketName: " + bucketName);

JavaScript

const { Stack, Duration } = require('aws-cdk-1lib');
const s3 = require('aws-cdk-lib/aws-s3');

class CdkDemoAppStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

// Store value of the S3 bucket name
const myBucketName = myBucket.bucketName;

Token example Version 2 142

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

// Print the current value for the S3 bucket name at synthesis
console.log("myBucketName: " + myBucketName);

module.exports = { CdkDemoAppStack }

Python

from aws_cdk import (

)

Stack

from constructs import Construct
from aws_cdk import aws_s3 as s3

class CdkDemoAppStack(Stack):

Java

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:

super().__init_ (scope, construct_id, **kwargs)

Define an S3 bucket
my_bucket = s3.Bucket(self, "myBucket")

Store the value of the S3 bucket name
my_bucket_name = my_bucket.bucket_name

Print the current value for the S3 bucket name at synthesis

print(f"myBucketName: {my_bucket_name}")

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.s3.Bucket;

import java.util.Map;

public class CdkDemoAppStack extends Stack {

public CdkDemoAppStack(final Construct scope, final String id)

Token example

Version 2 143

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

this(scope, id, null);

public CdkDemoAppStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Define an S3 bucket
Bucket myBucket = Bucket.Builder.create(this, "myBucket")
Lbuild();

// Store the token for the bucket name
String myBucketName = myBucket.getBucketName();

// Print the token at synthesis
System.out.println("myBucketName: " + myBucketName);

CH#

using Amazon.CDK;
using Constructs;
using Amazon.CDK.AWS.S3;

namespace CdkDemoApp

{
public class CdkDemoAppStack : Stack

{
internal CdkDemoAppStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{
// Define an S3 bucket
var myBucket = new Bucket(this, "myBucket");

// Store the token for the bucket name
var myBucketName = myBucket.BucketName;

// Print the token at synthesis
System.Console.WriteLine($"myBucketName: {myBucketName}");

Token example Version 2 144

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

package main

import (
Ilfmt n

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awss3"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

type CdkDemoAppStackProps struct {
awscdk.StackProps
}

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define an S3 bucket
myBucket := awss3.NewBucket(stack, jsii.String("myBucket"), &awss3.BucketProps{})

// Store the token for the bucket name
myBucketName := myBucket.BucketName()

// Print the token at synthesis
fmt.Println("myBucketName: ", *myBucketName)

return stack

}

M ococ

When we run cdk synth to synthesize our stack, the value for myBucketName will be displayed
in the token format of ${Token[TOKEN.<1234>1]}. This token format is a result of how the AWS
CDK encodes tokens. In this example, the token is encoded as a string:

Token example Version 2 145

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ cdk synth --quiet
myBucketName: ${Token[TOKEN.21]}

Since the value for our bucket name is not known at synthesis, the token is rendered as
myBucket<unique-hash>. Our AWS CloudFormation template uses the Ref intrinsic function to
reference its value, which will be known at deployment:

Resources:
myBucket<5AF9C99B>:
...
Outputs:
bucketNameOutput:
Description: The name of the S3 bucket
Value:
Ref: myBucket<5AF9C99B>

For more information on how the unique hash is generated, see Generated logical IDs in your AWS

CloudFormation template.

Passing tokens

Tokens can be passed around as if they were the actual value they represent. The following is an
example that passes the token for our bucket name to a construct for an AWS Lambda function:

Example

TypeScript

import * as cdk from 'aws-cdk-1lib';

import { Construct } from 'constructs';

import * as s3 from 'aws-cdk-lib/aws-s3';

import * as lambda from 'aws-cdk-lib/aws-lambda';

export class CdkDemoAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

// ...

Passing tokens Version 2 146

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

// Define a Lambda function
const myFunction = new lambda.Function(this, "myFunction", {
runtime: lambda.Runtime.NODEJS_20_X,
handler: "index.handler",
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I
),

functionName: myBucketName + "Function", // Pass token for the S3 bucket name

environment: {
BUCKET_NAME: myBucketName, // Pass token for the S3 bucket name
}
1)

JavaScript

const { Stack, Duration } = require('aws-cdk-1ib');
const s3 = require('aws-cdk-1lib/aws-s3');
const lambda = require('aws-cdk-lib/aws-lambda');

class CdkDemoAppStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

// ...

// Define a Lambda function
const myFunction = new lambda.Function(this, 'myFunction', {
runtime: lambda.Runtime.NODEJS_20_X,
handler: 'index.handler',
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {

Passing tokens

Version 2 147

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I
),
functionName: myBucketName + 'Function', // Pass token for the S3 bucket name
environment: {
BUCKET_NAME: myBucketName, // Pass token for the S3 bucket name
}
1)

module.exports = { CdkDemoAppStack }

Python

from aws_cdk import (
Stack
)
from constructs import Construct
from aws_cdk import aws_s3 as s3
from aws_cdk import aws_lambda as _lambda

class CdkDemoAppStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define an S3 bucket
my_bucket = s3.Bucket(self, "myBucket")

Define a Lambda function
my_function = _lambda.Function(self, "myFunction",
runtime=_lambda.Runtime.NODEJS_20_X,
handler="index.handler",
code=_lambda.Code.from_inline("""
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),

Passing tokens Version 2 148

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

i

I
"y,
function_name=f"{my_bucket_name}Function", # Pass token for the S3
bucket name
environment={
"BUCKET_NAME": my_bucket_name # Pass token for the S3 bucket name

Java

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;

import java.util.Map;

public class CdkDemoAppStack extends Stack {
public CdkDemoAppStack(final Construct scope, final String id) {
this(scope, id, null);

public CdkDemoAppStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Define an S3 bucket
Bucket myBucket = Bucket.Builder.create(this, "myBucket")
.build();

2 coo

// Define a Lambda function

Function myFunction = Function.Builder.create(this, "myFunction")
.runtime(Runtime.NODEJS_20_X)
.handler("index.handler")

Passing tokens Version 2 149

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

.code(Code.fromInline(
"exports.handler = async function(event) {" +
"return {" +
"statusCode: 200," +
"body: JSON.stringify('Hello World!')," +
"o+
"y,
))
.functionName(myBucketName + "Function") // Pass the token for the s3
bucket to the function construct
.environment(Map.of("BUCKET_NAME", myBucketName)) // Pass the bucket
name as environment variable
.build();

CH#

using Amazon.CDK;

using Constructs;

using Amazon.CDK.AWS.S3;

using Amazon.CDK.AWS.Lambda;
using System;

using System.Collections.Generic;

namespace CdkDemoApp

{
public class CdkDemoAppStack : Stack

{
internal CdkDemoAppStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{
// Define an S3 bucket
var myBucket = new Bucket(this, "myBucket");

2 coo

// Define a Lambda function
var myFunction = new Function(this, "myFunction", new FunctionProps
{

Runtime = Runtime.NODEJS_20_X,

Handler = "index.handler",

Code = Code.FromInline(@"

Passing tokens Version 2 150

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I
"),
// Pass the token for the S3 bucket name
Environment = new Dictionary<string, string>

{
{ "BUCKET_NAME", myBucketName }

iy
FunctionName = $"{myBucketName}Function" // Pass the token for the

s3 bucket to the function construct

1)

Go

package main

import (
||.Fmt||

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awslambda"
"github.com/aws/aws-cdk-go/awscdk/v2/awss3"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

type CdkDemoAppStackProps struct {
awscdk.StackProps

}

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {

var sprops awscdk.StackProps

if props != nil {
sprops = props.StackProps

}

Passing tokens Version 2 151

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

stack := awscdk.NewStack(scope, &id, &sprops)

// Define an S3 bucket
myBucket := awss3.NewBucket(stack, jsii.String("myBucket"), &awss3.BucketProps{})

Y coo

// Define a Lambda function
myFunction := awslambda.NewFunction(stack, jsii.String("myFunction"),
&awslambda.FunctionProps{
Runtime: awslambda.Runtime_NODEJS_20_X(),
Handler: jsii.String("index.handler"),
Code: awslambda.Code_FromInline(jsii.String("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
i
};
),
FunctionName: jsii.String(fmt.Sprintf("%sFunction", *myBucketName)), // Pass the
token for the S3 bucket to the function name
Environment: &map[string]*string{
"BUCKET_NAME": myBucketName,
},
1)

return stack

}
2 oac

When we synthesize our template, the Ref and Fn: : Join intrinsic functions are used to specify
the values, which will be known at deployment:

Resources:
myBucket<5AF9C99B>:
Type: AWS::S3::Bucket
...
myFunction<884E1557>:
Type: AWS::Lambda::Function
Properties:
...

Passing tokens Version 2 152

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Environment:
Variables:
BUCKET_NAME :
Ref: myBucket<5AF9C99B>
FunctionName:
Fn::Join:
- - Ref: myBucket<5AF9C99B>
- Function

How token encodings work

Tokens are objects that implement the IResolvable interface, which contains a single resolve

method. During synthesis, the AWS CDK calls this method to produce the final value for tokens in
your CloudFormation template.

(® Note

You'll rarely work directly with the IResolvable interface. You will most likely only see
string-encoded versions of tokens.

Token encoding types

Tokens participate in the synthesis process to produce arbitrary values of any type. Other functions
typically only accept arguments of basic types, such as string or number. To use tokens in these
cases, you can encode them into one of three types by using static methods on the cdk.Token
class.

« Token.asString to generate a string encoding (or call . toString() on the token object).

« Token.asList to generate a list encoding.

« Token.asNumber to generate a numeric encoding.

These take an arbitrary value, which can be an IResolvable, and encode them into a primitive
value of the indicated type.

How token encodings work Version 2 153

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.IResolvable.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrstringvalue-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrlistvalue-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-aswbrnumbervalue

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

/A Important

Because any one of the previous types can potentially be an encoded token, be careful
when you parse or try to read their contents. For example, if you attempt to parse a string
to extract a value from it, and the string is an encoded token, your parsing fails. Similarly,
if you try to query the length of an array or perform math operations with a number, you
must first verify that they aren’t encoded tokens.

How to check for tokens in your app

To check whether a value has an unresolved token in it, call the Token.isUnresolved (Python:
is_unresolved) method. The following is an example that checks if the value for our Amazon S3
bucket name is a token. If its not a token, we then validate the length of the bucket name:

Example

TypeScript

// ...

export class CdkDemoAppStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

// ...

// Check if bucket name is a token. If not, check if length is less than 10
characters
if (cdk.Token.isUnresolved(myBucketName)) {
console.log("Token identified.");
} else if (!cdk.Token.isUnresolved(myBucketName) && myBucketName.length > 10) {
throw new Error('Maximum length for name is 10 characters.');

Iy

// ...
}

How to check for tokens in your app Version 2 154

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Token.html#static-iswbrunresolvedobj

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

const { Stack, Duration, Token, CfnOutput } = require('aws-cdk-1lib');
// ...

class CdkDemoAppStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define an S3 bucket
const myBucket = new s3.Bucket(this, 'myBucket');

Y coo

// Check if bucket name is a token. If not, check if length is less than 10
characters
if (Token.isUnresolved(myBucketName)) {
console.log("Token identified.");
} else if (!Token.isUnresolved(myBucketName) && myBucketName.length > 10) {
throw new Error('Maximum length for name is 10 characters.');

};

Y coo

Python

from aws_cdk import (
Stack,
Token

class CdkDemoAppStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define an S3 bucket
my_bucket = s3.Bucket(self, "myBucket")

How to check for tokens in your app Version 2 155

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Check if bucket name is a token. If not, check if length is less than 10
characters

if Token.is_unresolved(my_bucket_name):
print("Token identified.")

elif not Token.is_unresolved(my_bucket_name) and len(my_bucket_name) < 10:
raise ValueError("Maximum length for name is 10 characters.")

Java

// ...
import software.amazon.awscdk.Token;
import software.amazon.awscdk.services.s3.Bucket;

2 coo

public class CdkDemoAppStack extends Stack {
public CdkDemoAppStack(final Construct scope, final String id) {
this(scope, id, null);

public CdkDemoAppStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Define an S3 bucket
Bucket myBucket = Bucket.Builder.create(this, "myBucket")
.build();

// ...

// Get the bucket name
String myBucketName = myBucket.getBucketName();

// Check if the bucket name is a token. If not, check if length is less than
10 characters
if (Token.isUnresolved(myBucketName)) {
System.out.println("Token identified.");
} else if (!Token.isUnresolved(myBucketName) && myBucketName.length() > 10)

throw new IllegalArgumentException("Maximum length for name is 10
characters.");

How to check for tokens in your app Version 2 156

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

CH

}

// ...

using Amazon.CDK;

using Constructs;

using Amazon.CDK.AWS.S3;

using Amazon.CDK.AWS.Lambda;
using System;

using System.Collections.Generic;

namespace CdkDemoApp

{

public class CdkDemoAppStack : Stack

{

internal CdkDemoAppStack(Construct scope, string id, IStackProps props =

null)
{

base(scope, id, props)

// Define an S3 bucket
var myBucket = new Bucket(this, "myBucket");

// ...

// Get the bucket name
var myBucketName = myBucket.BucketName;

// Check if bucket name is a token. If not, check if length is less than
10 characters

if (Token.IsUnresolved(myBucketName))
{

System.Console.WriteLine("Token identified.");

}

else if (!Token.IsUnresolved(myBucketName) && myBucketName.Length > 10)

{

throw new System.Exception("Maximum length for name is 10

characters.");

}

How to check for tokens in your app

Version 2 157

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

// ...

Go

2 coo

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define an S3 bucket

myBucket := awss3.NewBucket(stack, jsii.String("myBucket"), &awss3.BucketProps{})

// ...

// Check if the bucket name is unresolved (a token)

if tokenUnresolved := awscdk.Token_IsUnresolved(myBucketName); tokenUnresolved !=

nil && *tokenUnresolved {
fmt.Println("Token identified.")

} else if tokenUnresolved != nil && !*tokenUnresolved && len(*myBucketName) > 10 {

panic("Maximum length for name is 10 characters.")

}

// ...
}

When we run cdk synth, myBucketName is identified as a token:

$ cdk synth --quiet
Token identified.

How to check for tokens in your app

Version 2 158

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note

You can use token encodings to escape the type system. For example, you could string-
encode a token that produces a number value at synthesis time. If you use these functions,
it's your responsibility to make sure that your template resolves to a usable state after
synthesis.

Working with string-encoded tokens

String-encoded tokens look like the following.

${TOKEN[Bucket.Name.1234]}

They can be passed around like regular strings, and can be concatenated, as shown in the following
example.

Example

TypeScript

const functionName = bucket.bucketName + 'Function';

JavaScript

const functionName bucket.bucketName + 'Function';
Python
function_name = bucket.bucket_name + "Function"

Java

String functionName = bucket.getBucketName().concat("Function");

CH#

string functionName = bucket.BucketName + "Function";

Working with string-encoded tokens Version 2 159

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

functionName := *bucket.BucketName() + "Function"

You can also use string interpolation, if your language supports it, as shown in the following
example.

Example

TypeScript

const functionName = “${bucket.bucketName}Function";

JavaScript

const functionName ‘${bucket.bucketName}Function;
Python
function_name = f"{bucket.bucket_name}Function"

Java

String functionName = String.format("%sFunction". bucket.getBucketName());

CH
string functionName = $"${bucket.bucketName}Function";

Go

Use fmt.Sprintf for similar functionality:

functionName := fmt.Sprintf("%sFunction", *bucket.BucketName())

Avoid manipulating the string in other ways. For example, taking a substring of a string is likely to
break the string token.

Working with string-encoded tokens Version 2 160

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with list-encoded tokens

List-encoded tokens look like the following:

["#{TOKEN[Stack.NotificationArns.1234]1}"]

The only safe thing to do with these lists is pass them directly to other constructs. Tokens in string
list form cannot be concatenated, nor can an element be taken from the token. The only safe way
to manipulate them is by using AWS CloudFormation intrinsic functions like Fn.select.

Working with number-encoded tokens

Number-encoded tokens are a set of tiny negative floating-point numbers that look like the
following.

-1.8881545897087626e+289

As with list tokens, you cannot modify the number value, as doing so is likely to break the number
token.

The following is an example of a construct that contains a token encoded as a number:
Example

TypeScript

import { Stack, Duration, StackProps } from 'aws-cdk-1lib';
import { Construct } from 'constructs';

import * as rds from 'aws-cdk-lib/aws-rds';

import * as ec2 from 'aws-cdk-lib/aws-ec2';

export class CdkDemoAppStack extends Stack {
constructor(scope: Construct, id: string, props?: StackProps) {
super(scope, id, props);

// Define a new VPC
const vpc = new ec2.Vpc(this, 'MyVpc', {
maxAzs: 3, // Maximum number of availability zones to use

1)

// Define an RDS database cluster

Working with list-encoded tokens Version 2 161

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-select.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

const dbCluster = new rds.DatabaseCluster(this, 'MyRDSCluster', {

engine: rds.DatabaseClusterEngine.AURORA,
instanceProps: {
vpc,
},
18

// Get the port token (this is a token encoded as a number)

const portToken = dbCluster.clusterEndpoint.port;

// Print the value for our token at synthesis

console.log("portToken: " + portToken);
}
}
JavaScript
const { Stack, Duration } = require('aws-cdk-1ib');
const lambda = require('aws-cdk-lib/aws-lambda');
const rds = require('aws-cdk-1lib/aws-rds');
const ec2 = require('aws-cdk-lib/aws-ec2');
class CdkDemoAppStack extends Stack {

constructor(scope, id, props) {
super(scope, id, props);

// Define a new VPC
const vpc = new ec2.Vpc(this, 'MyVpc', {

maxAzs: 3, // Maximum number of availability zones to use

1)

// Define an RDS database cluster

const dbCluster = new rds.DatabaseCluster(this, 'MyRDSCluster', {

engine: rds.DatabaseClusterEngine.AURORA,
instanceProps: {
vpc,

}I

1)

// Get the port token (this is a token encoded as a number)
const portToken = dbCluster.clusterEndpoint.port;

// Print the value for our token at synthesis

Working with number-encoded tokens

Version 2 162

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

console.log("portToken: " + portToken);

module.exports = { CdkDemoAppStack }

Python

from aws_cdk import (
Duration,
Stack,

)

from aws_cdk import aws_rds as rds
from aws_cdk import aws_ec2 as ec2
from constructs import Construct

class CdkDemoAppStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define a new VPC
vpc = ec2.Vpc(self, 'MyVpc',
max_azs=3 # Maximum number of availability zones to use

Define an RDS database cluster
db_cluster = rds.DatabaseCluster(self, 'MyRDSCluster’,
engine=rds.DatabaseClusterEngine.AURORA,
instance_props=rds.InstanceProps(
vpc=vpc

Get the port token (this is a token encoded as a number)
port_token = db_cluster.cluster_endpoint.port

Print the value for our token at synthesis
print(f"portToken: {port_token}")

Java

package com.myorg;

Working with number-encoded tokens Version 2 163

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

import
import
import
import
import
import
import

software.
software.
software.

software

constructs.Construct;

amazon.
amazon.

.amazon.
software.
software.
software.

amazon.
amazon.
amazon.

awscdk.
awscdk.
awscdk.
awscdk.
awscdk.
awscdk.

Stack;
StackProps;

services.ec?.
services.rds.
services.rds.
services.rds.

public class CdkDemoAppStack extends Stack
public CdkDemoAppStack(final Construct
this(scope, id, null);

public CdkDemoAppStack(final Construct
props) {
super(scope, id, props);

"MyRDSCluster")

CH#

// Define a new VPC

Vpc vpc

Vpc.Builder.create(this,

Vpc;

DatabaseCluster;
DatabaseClusterEngine;
InstanceProps;

{
scope, final String id) {

scope, final String id, final StackProps

IIMprC n)

.maxAzs(3) // Maximum number of availability zones to use
.build();

// Define an RDS database cluster
DatabaseCluster dbCluster = DatabaseCluster.Builder.create(this,

.engine(DatabaseClusterEngine.AURORA)
.instanceProps(InstanceProps.builder()

.vpc(vpc)

.build(

.build();

)

// Get the port token (this is a token encoded as a number)
Number portToken = dbCluster.getClusterEndpoint().getPort();

// Print the value for our token at synthesis
System.out.println("portToken: " + portToken);

using Amazon.CDK;

Working with number-encoded tokens

Version 2 164

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Constructs;

using Amazon.CDK.AWS.EC2;

using Amazon.CDK.AWS.RDS;

using System;

using System.Collections.Generic;

namespace CdkDemoApp
{
public class CdkDemoAppStack : Stack
{
internal CdkDemoAppStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{
// Define a new VPC
var vpc = new Vpc(this, "MyVpc", new VpcProps
{
MaxAzs = 3 // Maximum number of availability zones to use

1)

// Define an RDS database cluster
var dbCluster = new DatabaseCluster(this, "MyRDSCluster", new
DatabaseClusterProps

{
Engine = DatabaseClusterEngine.AURORA, // Remove parentheses
InstanceProps = new Amazon.CDK.AWS.RDS.InstanceProps // Specify RDS
InstanceProps
{
Vpc = vpc
}
1)

// Get the port token (this is a token encoded as a number)
var portToken = dbCluster.ClusterEndpoint.Port;

// Print the value for our token at synthesis
System.Console.WriteLine($"portToken: {portTokenl}");

Go

package main

Working with number-encoded tokens Version 2 165

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

import (

)

t

}

Ilfmt n

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsec2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsrds"
"github.com/aws/constructs-go/constructs/v10Q"
"github.com/aws/jsii-runtime-go"

ype CdkDemoAppStackProps struct {
awscdk.StackProps

func NewCdkDemoAppStack(scope constructs.Construct, id string, props

*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define a new VPC
vpc := awsec2.NewVpc(stack, jsii.String("MyVpc"), &awsec2.VpcProps{
MaxAzs: jsii.Number(3), // Maximum number of availability zones to use

1)

// Define an RDS database cluster
dbCluster := awsrds.NewDatabaseCluster(stack, jsii.String("MyRDSCluster"),
&awsrds.DatabaseClusterProps{
Engine: awsrds.DatabaseClusterEngine_AURORA(),
InstanceProps: &awsrds.InstanceProps{
Vpc: vpc,
},
b

// Get the port token (this is a token encoded as a number)
portToken := dbCluster.ClusterEndpoint().Port()

// Print the value for our token at synthesis
fmt.Println("portToken: ", portToken)

return stack

Working

with number-encoded tokens

Version 2 166

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

// ...

When we run cdk synth, the value for portToken is displayed as a number-encoded token:

$ cdk synth --quiet
portToken: -1.8881545897087968e+289

Pass number-encoded tokens

When you pass humber-encoded tokens to other constructs, it may make sense to convert them
to strings first. For example, if you want to use the value of a number-encoded string as part of a
concatenated string, converting it helps with readability.

In the following example,portToken is a number-encoded token that we want to pass to our
Lambda function as part of connectionString:

Example

TypeScript

import { Stack, Duration, CfnOutput, StackProps } from 'aws-cdk-1lib';
// ...

import * as lambda from 'aws-cdk-lib/aws-lambda';

export class CdkDemoAppStack extends Stack {
constructor(scope: Construct, id: string, props?: StackProps) {
super(scope, id, props);

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
const portToken = dbCluster.clusterEndpoint.port;

/rr

Working with number-encoded tokens Version 2 167

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Example connection string with the port token as a number
const connectionString = ‘jdbc:mysql://mydb.cluster.amazonaws.com:${portToken}/
mydatabase;

// Use the connection string as an environment variable in a Lambda function
const myFunction = new lambda.Function(this, 'MyLambdaFunction’', {
runtime: lambda.Runtime.NODEJS_20_X,
handler: 'index.handler',
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
I
};
iy
environment: {
DATABASE_CONNECTION_STRING: connectionString, // Using the port token as
part of the string
I
1);

// Output the value of our connection string at synthesis
console.log("connectionString: " + connectionString);

// Output the connection string
new CfnOutput(this, 'ConnectionString', {
value: connectionString,

1)

JavaScript

const { Stack, Duration, CfnOutput } = require('aws-cdk-1lib');
// ...

const lambda = require('aws-cdk-lib/aws-lambda');
class CdkDemoAppStack extends Stack {
constructor(scope, id, props) {

super(scope, id, props);

// Define a new VPC

Working with number-encoded tokens Version 2 168

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
const portToken = dbCluster.clusterEndpoint.port;

// ...

// Example connection string with the port token as a number
const connectionString = ‘jdbc:mysql://mydb.cluster.amazonaws.com:${portToken}/
mydatabase;

// Use the connection string as an environment variable in a Lambda function
const myFunction = new lambda.Function(this, 'MyLambdaFunction’', {
runtime: lambda.Runtime.NODEJS_20_X,
handler: 'index.handler',
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
I
};
iy
environment: {
DATABASE_CONNECTION_STRING: connectionString, // Using the port token as
part of the string
I
1);

// Output the value of our connection string at synthesis
console.log("connectionString: " + connectionString);

// Output the connection string
new CfnOutput(this, 'ConnectionString', {
value: connectionString,

1)

module.exports = { CdkDemoAppStack }

Working with number-encoded tokens Version 2 169

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

from aws_cdk import (

Duration,

Stack,

CfnOutput,
)
from aws_cdk import aws_lambda as _lambda
...

class CdkDemoAppStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init__(scope, construct_id, **kwargs)

Define a new VPC
...

Define an RDS database cluster
...

Get the port token (this is a token encoded as a number)
port_token = db_cluster.cluster_endpoint.port

Example connection string with the port token as a number
connection_string = f"jdbc:mysql://mydb.cluster.amazonaws.com:{port_token}/
mydatabase"

Use the connection string as an environment variable in a Lambda function
my_function = _lambda.Function(self, 'MyLambdaFunction',
runtime=_lambda.Runtime.NODEJS_20_X,
handler="'index.handler',
code=_lambda.Code.from_inline("""
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I

environment={

Working with number-encoded tokens Version 2 170

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Java

/...
import
import
import
import

import

}

'DATABASE_CONNECTION_STRING': connection_string # Using the port
token as part of the string

Output the value of our connection string at synthesis
print(f"connectionString: {connection_string}")

Output the connection string

CfnOutput(self,

'ConnectionString’,

value=connection_string

software.
software.
software.
software.

amazon.
amazon.
amazon.
amazon.

java.util.Map;

awscdk.CfnOutput;
awscdk.services.lambda.Function;
awscdk.services.lambda.Runtime;
awscdk.services.lambda.Code;

public class CdkDemoAppStack extends Stack {

public CdkDemoAppStack(final Construct scope, final String id)

this(scope, id, null);

public CdkDemoAppStack(final Construct scope, final String id, final StackProps

props) {
super(scope, id, props);

// Define a new VPC

2 coo

// Define an RDS database cluster

// ...

// Get the port token (this is a token encoded as a number)
Number portToken = dbCluster.getClusterEndpoint().getPort();

2 coo

Working with number-encoded tokens

Version 2 171

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Example connection string with the port token as a number
String connectionString = "jdbc:mysql://mydb.cluster.amazonaws.com:" +
portToken + "/mydatabase";

// Use the connection string as an environment variable in a Lambda function
Function myFunction = Function.Builder.create(this, "MyLambdaFunction")
.runtime(Runtime.NODEJS_20_X)
.handler("index.handler")
.code(Code.fromInline(
"exports.handler = async function(event) {\n" +
" return {\n" +
" statusCode: 200,\n" +
" body: JSON.stringify('Hello World!'),\n" +
"o 3A\n" o+
"}")
.environment(Map.of(
"DATABASE_CONNECTION_STRING", connectionString // Using the port
token as part of the string
))
.build();

// Output the value of our connection string at synthesis
System.out.println("connectionString: " + connectionString);

// Output the connection string
CfnOutput.Builder.create(this, "ConnectionString")
.value(connectionString)
.build();

CH

/...

using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.RDS;

using Amazon.CDK;

using Constructs;

using System;

using System.Collections.Generic;

namespace CdkDemoApp
{

Working with number-encoded tokens Version 2 172

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

public class CdkDemoAppStack : Stack
{
internal CdkDemoAppStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{
// Define a new VPC

// ...

// Define an RDS database cluster

var dbCluster = new DatabaseCluster(this, "MyRDSCluster", new
DatabaseClusterProps

{

// ... properties would go here

1)

// Get the port token (this is a token encoded as a number)
var portToken = dbCluster.ClusterEndpoint.Port;

// ...

// Example connection string with the port token as a number
var connectionString = $"jdbc:mysqgl://mydb.cluster.amazonaws.com:
{portToken}/mydatabase";

// Use the connection string as an environment variable in a Lambda
function
var myFunction = new Function(this, "MyLambdaFunction", new
FunctionProps
{
Runtime = Runtime.NODEJS_20_X,
Handler = "index.handler",
Code = Code.FromInline(@"
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I
"),
Environment = new Dictionary<string, string>
{
{ "DATABASE_CONNECTION_STRING", connectionString } // Using the
port token as part of the string

}

Working with number-encoded tokens Version 2 173

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Go

1)

// Output the value of our connection string at synthesis
Console.WriteLine($"connectionString: {connectionStringl}");

// Output the connection string
new CfnOutput(this, "ConnectionString", new CfnOutputProps

{

Value = connectionString

1)

// ...

"github.com/aws/aws-cdk-go/awscdk/v2/awslambda"
)

type CdkDemoAppStackProps struct {
awscdk.StackProps

}

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
portToken := dbCluster.ClusterEndpoint().Port()

2 coo

Working with number-encoded tokens

Version 2 174

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Example connection string with the port token as a number
connectionString := fmt.Sprintf("jdbc:mysql://mydb.cluster.amazonaws.com:%s/
mydatabase", portToken)

// Use the connection string as an environment variable in a Lambda function
myFunction := awslambda.NewFunction(stack, jsii.String("MyLambdaFunction"),
&awslambda.FunctionProps{
Runtime: awslambda.Runtime_NODEJS_20_X(),
Handler: jsii.String("index.handler"),
Code: awslambda.Code_FromInline(jsii.String("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
i
),
Environment: &map[string]l*string{
"DATABASE_CONNECTION_STRING": jsii.String(connectionString), // Using the port
token as part of the string
},
1)

// Output the value of our connection string at synthesis
fmt.Println("connectionString: ", connectionString)

// Output the connection string
awscdk.NewCfnOutput(stack, jsii.String("ConnectionString"), &awscdk.CfnOutputProps{
Value: jsii.String(connectionString),

1)

return stack

}

// ...

If we pass this value to connectionString, the output value when we run cdk synth may be
confusing due to the number-encoded string:

$ cdk synth --quiet
connectionString: jdbc:mysql://mydb.cluster.amazonaws.com:-1.888154589708796e+289/
mydatabase

Working with number-encoded tokens Version 2 175

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To convert a number-encoded token to a string, use
cdk.Tokenization.stringifyNumber(<token>). In the following example, we convert the
number-encoded token to a string before defining our connection string:

Example

TypeScript

import { Stack, Duration, Tokenization, CfnOutput, StackProps } from 'aws-cdk-lib';
// ...

export class CdkDemoAppStack extends Stack {
constructor(scope: Construct, id: string, props?: StackProps) {
super(scope, id, props);

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
const portToken = dbCluster.clusterEndpoint.port;

/e

// Convert the encoded number to an encoded string for use in the connection
string
const portAsString = Tokenization.stringifyNumber(portToken);

// Example connection string with the port token as a string
const connectionString = “jdbc:mysql://mydb.cluster.amazonaws.com:
${portAsString}/mydatabase’;

// Use the connection string as an environment variable in a Lambda function
const myFunction = new lambda.Function(this, 'MyLambdaFunction', {
/] ...
environment: {
DATABASE_CONNECTION_STRING: connectionString, // Using the port token as
part of the string
b
1)

Working with number-encoded tokens Version 2 176

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tokenization.html#static-stringifywbrnumberx

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Output the value of our connection string at synthesis
console.log("connectionString: " + connectionString);

// Output the connection string
new CfnOutput(this, 'ConnectionString', {
value: connectionString,

1)

JavaScript

const { Stack, Duration, Tokenization, CfnOutput } = require('aws-cdk-1lib');

2 coo

class CdkDemoAppStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
const portToken = dbCluster.clusterEndpoint.port;

// ...

// Convert the encoded number to an encoded string for use in the connection
string
const portAsString = Tokenization.stringifyNumber(portToken);

// Example connection string with the port token as a string
const connectionString = “jdbc:mysql://mydb.cluster.amazonaws.com:
${portAsString}/mydatabase’;

// Use the connection string as an environment variable in a Lambda function
const myFunction = new lambda.Function(this, 'MyLambdaFunction', {

// ...

environment: {

Working with number-encoded tokens Version 2 177

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

}I

1)

DATABASE_CONNECTION_STRING: connectionString, // Using the port token as
part of the string

// Output the value of our connection string at synthesis
console.log("connectionString: " + connectionString);

// Output the connection string

new

CfnOutput(this, 'ConnectionString', {

value: connectionString,

1)

module.exports = { CdkDemoAppStack }

Python

from aws_cdk import (

Duration,
Stack,
Tokenization,
CfnOutput,

class CdkDemoAppStack(Stack):

def __init__ (self, scope: Construct, construct_id: str, **kwargs) -> None:

string

super().__init_ (scope, construct_id, **kwargs)

Define a new VPC
...

Define an RDS database cluster
...

Get the port token (this is a token encoded as a number)
port_token = db_cluster.cluster_endpoint.port

Convert the encoded number to an encoded string for use in the connection

Working with number-encoded tokens

Version 2 178

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

port_as_string = Tokenization.stringify_number(port_token)

Example connection string with the port token as a string
connection_string = f"jdbc:mysql://mydb.cluster.amazonaws.com:
{port_as_string}/mydatabase"

Use the connection string as an environment variable in a Lambda function
my_function = _lambda.Function(self, 'MyLambdaFunction',
oo
environment={
'DATABASE_CONNECTION_STRING': connection_string # Using the port
token as part of the string

}

Output the value of our connection string at synthesis
print(f"connectionString: {connection_string}")

Output the connection string
CfnOutput(self, 'ConnectionString',
value=connection_string

Java

J coo

import software.amazon.awscdk.Tokenization;

public class CdkDemoAppStack extends Stack {
public CdkDemoAppStack(final Construct scope, final String id) {
this(scope, id, null);

public CdkDemoAppStack(final Construct scope, final String id, final StackProps

props) {
super(scope, id, props);

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

Working with number-encoded tokens Version 2 179

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Get the port token (this is a token encoded as a number)
Number portToken = dbCluster.getClusterEndpoint().getPort();

Y coo

// Convert the encoded number to an encoded string for use in the connection
string
String portAsString = Tokenization.stringifyNumber(portToken);

// Example connection string with the port token as a string
String connectionString = "jdbc:mysqgl://mydb.cluster.amazonaws.com:" +
portAsString + "/mydatabase";

// Use the connection string as an environment variable in a Lambda function
Function myFunction = Function.Builder.create(this, "MyLambdaFunction")

// ...

.environment(Map.of(

"DATABASE_CONNECTION_STRING", connectionString // Using the port
token as part of the string
))
.build();

// Output the value of our connection string at synthesis
System.out.println("connectionString: " + connectionString);

// Output the connection string
CfnOutput.Builder.create(this, "ConnectionString")
.value(connectionString)
.build();

CH#

// ...

namespace CdkDemoApp
{
public class CdkDemoAppStack : Stack
{
internal CdkDemoAppStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)
{

Working with number-encoded tokens Version 2 180

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
var portToken = dbCluster.ClusterEndpoint.Port;

Y coo

// Convert the encoded number to an encoded string for use in the
connection string
var portAsString = Tokenization.StringifyNumber(portToken);

// Example connection string with the port token as a string
var connectionString = $"jdbc:mysql://mydb.cluster.amazonaws.com:

{portAsString}/mydatabase";

// Use the connection string as an environment variable in a Lambda

function
var myFunction = new Function(this, "MyLambdaFunction", new
FunctionProps
{
// ...
Environment = new Dictionary<string, string>
{

{ "DATABASE_CONNECTION_STRING", connectionString } // Using the
port token as part of the string
}
1}

// Output the value of our connection string at synthesis
Console.WriteLine($"connectionString: {connectionStringl}");

// Output the connection string
new CfnOutput(this, "ConnectionString", new CfnOutputProps
{

Value = connectionString

1)

Working with number-encoded tokens Version 2 181

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

Y coo

func NewCdkDemoAppStack(scope constructs.Construct, id string, props
*CdkDemoAppStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define a new VPC
// ...

// Define an RDS database cluster
// ...

// Get the port token (this is a token encoded as a number)
portToken := dbCluster.ClusterEndpoint().Port()

// ...

// Convert the encoded number to an encoded string for use in the connection string
portAsString := awscdk.Tokenization_StringifyNumber(portToken)

// Example connection string with the port token as a string
connectionString := fmt.Sprintf("jdbc:mysql://mydb.cluster.amazonaws.com:%s/

mydatabase", portAsString)

// Use the connection string as an environment variable in a Lambda function

myFunction := awslambda.NewFunction(stack, jsii.String("MyLambdaFunction"),
&awslambda.FunctionProps{
// ...

Environment: &map[string]l*string{
"DATABASE_CONNECTION_STRING": jsii.String(connectionString), // Using the port
token as part of the string
1,
1)

// Output the value of our connection string at synthesis

fmt.Println("connectionString: ", connectionString)

// Output the connection string

Working with number-encoded tokens Version 2 182

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

awscdk.NewCfnOutput(stack, jsii.String("ConnectionString"), &awscdk.CfnOutputProps{
Value: jsii.String(connectionString),

1)
fmt.Println(myFunction)

return stack

}

Y coo

When we run cdk synth, the value for our connection string is represented in a cleaner and
clearer format:

$ cdk synth --quiet
connectionString: jdbc:mysql://mydb.cluster.amazonaws.com:${Token[TOKEN.242]}/
mydatabase

Lazy values

In addition to representing deploy-time values, such as AWS CloudFormation parameters, tokens
are also commonly used to represent synthesis-time lazy values. These are values for which the
final value will be determined before synthesis has completed, but not at the point where the value
is constructed. Use tokens to pass a literal string or number value to another construct, while the
actual value at synthesis time might depend on some calculation that has yet to occur.

You can construct tokens representing synth-time lazy values using static methods on the Lazy
class, suchas Lazy.string and Lazy.number. These methods accept an object whose produce

property is a function that accepts a context argument and returns the final value when called.

The following example creates an Auto Scaling group whose capacity is determined after its
creation.

Example
TypeScript
let actualValue: number;

new AutoScalingGroup(this, 'Group', {

Lazy values Version 2 183

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Lazy.html#static-stringproducer-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Lazy.html#static-numberproducer

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

desiredCapacity: Lazy.numberValue({
produce(context) {
return actualValue;
}
)
1)

// At some later point
actualValue = 10;

JavaScript

let actualValue;

new AutoScalingGroup(this, 'Group', {
desiredCapacity: Lazy.numberValue({
produce(context) {
return (actualValue);
}
)
1))8

// At some later point
actualValue = 10;

Python

class Producer:
def __init___(self, func):
self.produce = func

actual_value = None

AutoScalingGroup(self, "Group",

desired_capacity=Lazy.number_value(Producer(lambda context: actual_value))

At some later point
actual_value = 10

Java

double actualValue = 0;

Lazy values

Version 2 184

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class ProduceActualValue implements INumberProducer {
@Override

public Number produce(IResolveContext context) {
return actualValue;

AutoScalingGroup.Builder.create(this, "Group")
.desiredCapacity(Lazy.numberValue(new ProduceActualValue())).build();

// At some later point
actualValue = 10;

CH

public class NumberProducer : INumberProducer

{
Func<Double> function;
public NumberProducer(Func<Double> function)
{
this.function = function;
}
public Double Produce(IResolveContext context)
{
return function();
}
}

double actualValue = 0;

new AutoScalingGroup(this, "Group", new AutoScalingGroupProps

{

DesiredCapacity = Lazy.NumberValue(new NumberProducer(() => actualValue))

1)

// At some later point
actualValue = 10;

Lazy values Version 2 185

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Converting to JSON

Sometimes you want to produce a JSON string of arbitrary data, and you may not know whether
the data contains tokens. To properly JSON-encode any data structure, regardless of whether it
contains tokens, use the method stack.toJsonString, as shown in the following example.

Example

TypeScript

const stack = Stack.of(this);
const str = stack.toJsonString({
value: bucket.bucketName

1)
JavaScript

const stack = Stack.of(this);
const str = stack.toJsonString({
value: bucket.bucketName

1)

Python

stack = Stack.of(self)
string = stack.to_json_string(dict(value=bucket.bucket_name))

Java

Stack stack = Stack.of(this);
String stringVal = stack.toJsonString(java.util.Map.of(// Map.of requires Java
9+

put("value", bucket.getBucketName())));

C#

var stack = Stack.O0f(this);
var stringVal = stack.ToJsonString(new Dictionary<string, string>

{

["value"] = bucket.BucketName

Converting to JSON Version 2 186

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#towbrjsonwbrstringobj-space

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Parameters and the AWS CDK

Parameters are custom values that are supplied at deployment time. Parameters are a feature
of AWS CloudFormation. Since the AWS Cloud Development Kit (AWS CDK) synthesizes AWS
CloudFormation templates, it also offers support for deployment-time parameters.

About parameters

Using the AWS CDK, you can define parameters, which can then be used in the properties of
constructs you create. You can also deploy stacks that contain parameters.

When deploying the AWS CloudFormation template using the AWS CDK CLI, you provide
the parameter values on the command line. If you deploy the template through the AWS
CloudFormation console, you are prompted for the parameter values.

In general, we recommend against using AWS CloudFormation parameters with the AWS CDK.
The usual ways to pass values into AWS CDK apps are context values and environment variables.

Because they are not available at synthesis time, parameter values cannot be easily used for flow
control and other purposes in your CDK app.

(@ Note

To do control flow with parameters, you can use CfnCondition constructs, although this

is awkward compared to native if statements.

Using parameters requires you to be mindful of how the code you're writing behaves at
deployment time, and also at synthesis time. This makes it harder to understand and reason about
your AWS CDK application, in many cases for little benefit.

Generally, it's better to have your CDK app accept necessary information in a well-defined way
and use it directly to declare constructs in your CDK app. An ideal AWS CDK-generated AWS
CloudFormation template is concrete, with no values remaining to be specified at deployment
time.

There are, however, use cases to which AWS CloudFormation parameters are uniquely suited.
If you have separate teams defining and deploying infrastructure, for example, you can use

Parameters Version 2 187

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnCondition.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

parameters to make the generated templates more widely useful. Also, because the AWS CDK
supports AWS CloudFormation parameters, you can use the AWS CDK with AWS services that use
AWS CloudFormation templates (such as Service Catalog). These AWS services use parameters to
configure the template that's being deployed.

Learn more

For instructions on developing CDK apps with parameters, see Use CloudFormation parameters to

get a CloudFormation value.

Tags and the AWS CDK

Tags are informational key-value elements that you can add to constructs in your AWS CDK app. A
tag applied to a given construct also applies to all of its taggable children. Tags are included in the
AWS CloudFormation template synthesized from your app and are applied to the AWS resources it
deploys. You can use tags to identify and categorize resources for the following purposes:

Simplifying management

Cost allocation

Access control

Any other purposes that you devise

® Tip
For more information about how you can use tags with your AWS resources, see Best
Practices for Tagging AWS Resources in the AWS Whitepaper.

Using tags

The Tags class includes the static method of (), through which you can add tags to, or remove tags
from, the specified construct.

e Tags.of(<SCOPE>).add() applies a new tag to the given construct and all of its children.

e Tags.of(<SCOPE>).remove() removes a tag from the given construct and any of its children,

including tags a child construct may have applied to itself.

Learn more Version 2 188

https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html#addkey-value-props
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Tags.html#removekey-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note
Tagging is implemented using Aspects and the AWS CDK. Aspects are a way to apply an

operation (such as tagging) to all constructs in a given scope.

The following example applies the tag key with the value value to a construct.

Example

TypeScript

Tags.of(myConstruct).add('key', 'value');

JavaScript

Tags.of(myConstruct).add('key', 'value');

Python

Tags.of(my_construct).add("key", "value")

Java

Tags.of(myConstruct).add("key", "value");

CH#

Tags.0f(myConstruct).Add("key", "value");

Go

awscdk.Tags_0f(myConstruct).Add(jsii.String("key"), jsii.String("value"),
&awscdk.TagProps{})

The following example deletes the tag key from a construct.

Using tags Version 2 189

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example
TypeScript
Tags.of(myConstruct).remove('key');
JavaScript
Tags.of(myConstruct).remove('key');
Python
Tags.of(my_construct).remove('"key")
Java
Tags.of(myConstruct).remove("key");
C#
Tags.0f(myConstruct).Remove("key");
Go

awscdk.Tags_0f(myConstruct).Remove(jsii.String("key"), &awscdk.TagProps{})

If you are using Stage constructs, apply the tag at the Stage level or below. Tags are not applied
across Stage boundaries.

Tag priorities

The AWS CDK applies and removes tags recursively. If there are conflicts, the tagging operation
with the highest priority wins. (Priorities are set using the optional priority property.) If the
priorities of two operations are the same, the tagging operation closest to the bottom of the
construct tree wins. By default, applying a tag has a priority of 100 (except for tags added directly
to an AWS CloudFormation resource, which has a priority of 50). The default priority for removing a
tag is 200.

The following applies a tag with a priority of 300 to a construct.

Tag priorities Version 2 190

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

Tags.of(myConstruct).add('key', 'value', {
priority: 300
});

JavaScript

Tags.of(myConstruct).add('key', 'value', {
priority: 300
});

Python
Tags.of(my_construct).add("key", "value", priority=300)
Java

Tags.of(myConstruct).add("key", "value", TagProps.builder()
.priority(300).build());

C#
Tags.0f(myConstruct).Add("key", "value", new TagProps { Priority = 300 });
Go

awscdk.Tags_0f (myConstruct).Add(jsii.String("key"), jsii.String("value"),
&awscdk.TagProps{

Priority: jsii.Number(300),
1)

Optional properties

Tags support properties that fine-tune how tags are applied to, or removed from, resources. All
properties are optional.

Optional properties Version 2 191

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.TagProps.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

applyToLaunchedInstances (Python: apply_to_launched_instances)

Available for add() only. By default, tags are applied to instances launched in an Auto Scaling
group. Set this property to false to ignore instances launched in an Auto Scaling group.

includeResourceTypes/excludeResourceTypes (Python:
include_resource_types/exclude_resource_types)

Use these to manipulate tags only on a subset of resources, based on AWS CloudFormation
resource types. By default, the operation is applied to all resources in the construct subtree, but
this can be changed by including or excluding certain resource types. Exclude takes precedence
over include, if both are specified.

priority

Use this to set the priority of this operation with respect to other Tags.add() and
Tags.remove() operations. Higher values take precedence over lower values. The default is
100 for add operations (50 for tags applied directly to AWS CloudFormation resources) and 200
for remove operations.

The following example applies the tag tagname with the value value and priority 100 to resources
of type AWS::Xxx::Yyy in the construct. It doesn't apply the tag to instances launched in an
Amazon EC2 Auto Scaling group or to resources of type AWS::Xxx::Zzz. (These are placeholders for
two arbitrary but different AWS CloudFormation resource types.)

Example
TypeScript

Tags.of(myConstruct).add('tagname', 'value', {
applyTolLaunchedInstances: false,
includeResourceTypes: ['AWS::Xxx::Yyy'],
excludeResourceTypes: ['AWS::Xxx::Zzz'],
priority: 100,

1)

JavaScript

Tags.of(myConstruct).add('tagname', 'value', {
applyToLaunchedInstances: false,
includeResourceTypes: ['AWS::Xxx::Yyy'],
excludeResourceTypes: ['AWS::Xxx::Zzz'],

Optional properties Version 2 192

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

priority: 100
1)

Python

Tags.of(my_construct).add("tagname", "value",
apply_to_launched_instances=False,
include_resource_types=["AWS: :Xxx::Yyy"],
exclude_resource_types=["AWS: :Xxx::Zzz"],
priority=100)

Java

Tags.of(myConstruct).add("tagname", "value", TagProps.builder()
.applyToLaunchedInstances(false)
.includeResourceTypes(Arrays.asList("AWS: :Xxx::Yyy"))
.excludeResourceTypes(Arrays.asList("AWS: :Xxx::Zzz"))
.priority(100).build());

CH#

Tags.0f(myConstruct).Add("tagname", "value", new TagProps

{
ApplyToLaunchedInstances = false,
IncludeResourceTypes = ["AWS::Xxx::Yyy"],
ExcludeResourceTypes = ["AWS::Xxx::Zzz"],
Priority = 100

)8

Go

awscdk.Tags_0f(myConstruct).Add(jsii.String("tagname"), jsii.String("value"),
&awscdk.TagProps{
ApplyToLaunchedInstances: jsii.Bool(false),

IncludeResourceTypes: &[J*string{jsii.String("AWS: :Xxx:Yyy")},
ExcludeResourceTypes: &[]*string{jsii.String("AWS: :Xxx:Z2zz")},
Priority: jsii.Number(100),

1

The following example removes the tag tagname with priority 200 from resources of type
AWS::Xxx::Yyy in the construct, but not from resources of type AWS::Xxx::Zzz.

Optional properties Version 2 193

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

Tags.of(myConstruct).remove('tagname', {
includeResourceTypes: ['AWS::Xxx::Yyy'],
excludeResourceTypes: ['AWS::Xxx::Zzz'],
priority: 200,

)i

JavaScript

Tags.of(myConstruct).remove('tagname', {
includeResourceTypes: ['AWS::Xxx::Yyy'l],
excludeResourceTypes: ['AWS::Xxx::Zzz'],
priority: 200

1)

Python

Tags.of(my_construct).remove("tagname",
include_resource_types=["AWS: :Xxx::Yyy"],
exclude_resource_types=["AWS: :Xxx::Zzz"],
priority=200,)

Java

Tags.of((myConstruct).remove("tagname", TagProps.builder()
.includeResourceTypes(Arrays.asList("AWS: :Xxx::Yyy"))
.excludeResourceTypes(Arrays.asList("AWS: :Xxx::Zzz"))
.priority(100).build());

)

CH#

Tags.0f(myConstruct).Remove("tagname", new TagProps

{
IncludeResourceTypes = ["AWS::Xxx::Yyy"],
ExcludeResourceTypes = ["AWS::Xxx::Zzz"],
Priority = 100

D)8

Optional properties Version 2 194

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go
awscdk.Tags_0f (myConstruct).Remove(jsii.String("tagname"), &awscdk.TagProps{
IncludeResourceTypes: &[]*string{jsii.String("AWS: :Xxx:Yyy")},
ExcludeResourceTypes: &[]*string{jsii.String("AWS: :Xxx:Z2zz")},
Priority: jsii.Number(200),
D)
Example

The following example adds the tag key StackType with value TheBest to any resource created
within the Stack named MarketingSystem. Then it removes it again from all resources except
Amazon EC2 VPC subnets. The result is that only the subnets have the tag applied.

Example
TypeScript
import { App, Stack, Tags } from 'aws-cdk-1lib';

const app = new App();
const theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add('StackType', 'TheBest');

// Remove the tag from all resources except subnet resources

Tags.of(theBestStack).remove('StackType', {
excludeResourceTypes: ['AWS::EC2::Subnet']

1)
JavaScript

const { App, Stack, Tags } = require('aws-cdk-1lib');

const app = new App();
const theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add('StackType', 'TheBest');

Example Version 2 195

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

// Remove the tag from all resources except subnet resources
Tags.of(theBestStack).remove('StackType', {
excludeResourceTypes: ['AWS::EC2::Subnet']

1)

Python

Java

CH#

from aws_cdk import App, Stack, Tags

app = App();
the_best_stack = Stack(app, 'MarketingSystem')

Add a tag to all constructs in the stack
Tags.of(the_best_stack).add("StackType", "TheBest")

Remove the tag from all resources except subnet resources
Tags.of(the_best_stack).remove("StackType",
exclude_resource_types=["AWS::EC2::Subnet"])

import software.amazon.awscdk.App;
import software.amazon.awscdk.Tags;

// Add a tag to all constructs in the stack
Tags.of(theBestStack).add("StackType", "TheBest");

// Remove the tag from all resources except subnet resources
Tags.of(theBestStack).remove("StackType", TagProps.builder()

.excludeResourceTypes(Arrays.asList("AWS::EC2::Subnet"))

.build());

using Amazon.CDK;

var app = new App();
var theBestStack = new Stack(app, 'MarketingSystem');

// Add a tag to all constructs in the stack
Tags.0f(theBestStack).Add("StackType", "TheBest");

Example

Version 2 196

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// Remove the tag from all resources except subnet resources
Tags.0f(theBestStack).Remove("StackType", new TagProps

{
ExcludeResourceTypes = ["AWS::EC2::Subnet"]

1)
Go

import "github.com/aws/aws-cdk-go/awscdk/v2"

app := awscdk.NewApp(nil)

theBestStack := awscdk.NewStack(app, jsii.String("MarketingSystem"),
&awscdk.StackProps{})

// Add a tag to all constructs in the stack

awscdk.Tags_Of (theBestStack).Add(jsii.String("StackType"), jsii.String("TheBest"),
&awscdk.TagProps{})

// Remove the tag from all resources except subnet resources

awscdk.Tags_Of (theBestStack).Add(jsii.String("StackType"), jsii.String("TheBest"),
&awscdk.TagProps{

ExcludeResourceTypes: &[]*string{jsii.String("AWS::EC2::Subnet")},
1}

The following code achieves the same result. Consider which approach (inclusion or exclusion)
makes your intent clearer.

Example

TypeScript

Tags.of(theBestStack).add('StackType', 'TheBest',
{ includeResourceTypes: ['AWS::EC2::Subnet']});

JavaScript

Tags.of(theBestStack).add('StackType', 'TheBest',
{ includeResourceTypes: ['AWS::EC2::Subnet']});

Python

Tags.of(the_best_stack).add("StackType", "TheBest",

Example Version 2 197

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

include_resource_types=["AWS::EC2::Subnet"])

Java

Tags.of(theBestStack).add("StackType", "TheBest", TagProps.builder()
.includeResourceTypes(Arrays.asList("AWS::EC2: :Subnet"))

.build());
CH
Tags.0f(theBestStack).Add("StackType", "TheBest", new TagProps {
IncludeResourceTypes = ["AWS::EC2::Subnet"]
1);
Go

awscdk.Tags_Of (theBestStack).Add(jsii.String("StackType"), jsii.String("TheBest"),
&awscdk.TagProps{

IncludeResourceTypes: &[]*string{jsii.String("AWS::EC2::Subnet")},
b

Tagging single constructs

Tags.of(scope).add(key, value) is the standard way to add tags to constructs in the AWS
CDK. Its tree-walking behavior, which recursively tags all taggable resources under the given
scope, is almost always what you want. Sometimes, however, you need to tag a specific, arbitrary
construct (or constructs).

One such case involves applying tags whose value is derived from some property of the construct
being tagged. The standard tagging approach recursively applies the same key and value to all
matching resources in the scope. However, here the value could be different for each tagged
construct.

Tags are implemented using aspects, and the CDK calls the tag's visit () method for each
construct under the scope you specified using Tags.of(scope). We can call Tag.visit()
directly to apply a tag to a single construct.

Tagging single constructs Version 2 198

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example
TypeScript

new cdk.Tag(key, value).visit(scope);
JavaScript

new cdk.Tag(key, value).visit(scope);
Python

cdk.Tag(key, value).visit(scope)
Java

Tag.Builder.create(key, value).build().visit(scope);
C#

new Tag(key, value).Visit(scope);
Go

awscdk.NewTag(key, value, &awscdk.TagProps{}).Visit(scope)

You can tag all constructs under a scope but let the values of the tags derive from properties
of each construct. To do so, write an aspect and apply the tag in the aspect’s visit()
method as shown in the preceding example. Then, add the aspect to the desired scope using
Aspects.of(scope).add(aspect).

The following example applies a tag to each resource in a stack containing the resource’s path.
Example

TypeScript

class PathTagger implements cdk.IAspect {
visit(node: IConstruct) {
new cdk.Tag("aws-cdk-path", node.node.path).visit(node);

Tagging single constructs Version 2 199

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

stack = new MyStack(app);
cdk.Aspects.of (stack).add(new PathTagger())

JavaScript

class PathTagger {
visit(node) {
new cdk.Tag("aws-cdk-path", node.node.path).visit(node);
}

stack = new MyStack(app);
cdk.Aspects.of(stack).add(new PathTagger())

Python

@jsii.implements(cdk.IAspect)
class PathTagger:
def visit(self, node: IConstruct):
cdk.Tag("aws-cdk-path", node.node.path).visit(node)

stack = MyStack(app)
cdk.Aspects.of(stack).add(PathTagger())

Java

final class PathTagger implements IAspect {

public void visit(IConstruct node) {

Tag.Builder.create("aws-cdk-path", node.getNode().getPath()).build().visit(node);
}
}

stack stack = new MyStack(app);
Aspects.of(stack).add(new PathTagger());

CH#

public class PathTagger : IAspect
{

Tagging single constructs Version 2 200

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

public void Visit(IConstruct node)

{
new Tag("aws-cdk-path", node.Node.Path).Visit(node);

var stack = new MyStack(app);
Aspects.Of(stack).Add(new PathTagger);

® Tip
The logic of conditional tagging, including priorities, resource types, and so on, is built into
the Tag class. You can use these features when applying tags to arbitrary resources; the tag
is not applied if the conditions aren’'t met. Also, the Tag class only tags taggable resources,
so you don't need to test whether a construct is taggable before applying a tag.

Assets and the AWS CDK

Assets are local files, directories, or Docker images that can be bundled into AWS CDK libraries
and apps. For example, an asset might be a directory that contains the handler code for an AWS
Lambda function. Assets can represent any artifact that the app needs to operate.

The following tutorial video provides a comprehensive overview of CDK assets, and explains how
you can use them in your infrastructure as code (laC).

You add assets through APIs that are exposed by specific AWS constructs. For example, when you
define a lambda.Function construct, the code property lets you pass an asset (directory).

Function uses assets to bundle the contents of the directory and use it for the function’s code.
Similarly, ecs.ContainerImage.fromAsset uses a Docker image built from a local directory

when defining an Amazon ECS task definition.

Assets in detail

When you refer to an asset in your app, the cloud assembly that's synthesized from your

application includes metadata information with instructions for the AWS CDK CLI. The instructions
include where to find the asset on the local disk and what type of bundling to perform based on
the asset type, such as a directory to compress (zip) or a Docker image to build.

Assets Version 2 201

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html#code
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Code.html#static-fromwbrassetpath-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.ContainerImage.html#static-fromwbrassetdirectory-props

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The AWS CDK generates a source hash for assets. This can be used at construction time to
determine whether the contents of an asset have changed.

By default, the AWS CDK creates a copy of the asset in the cloud assembly directory, which defaults
to cdk.out, under the source hash. This way, the cloud assembly is self-contained, so if it moved
over to a different host for deployment, it can still be deployed. See Cloud assemblies for details.

When the AWS CDK deploys an app that references assets (either directly by the app code or
through a library), the AWS CDK CLI first prepares and publishes the assets to an Amazon S3
bucket or Amazon ECR repository. (The S3 bucket or repository is created during bootstrapping.)
Only then are the resources defined in the stack deployed.

This section describes the low-level APIs available in the framework.
Asset types
The AWS CDK supports the following types of assets:

Amazon S3 assets

These are local files and directories that the AWS CDK uploads to Amazon S3.

Docker Image

These are Docker images that the AWS CDK uploads to Amazon ECR.

These asset types are explained in the following sections.

Amazon S3 assets

You can define local files and directories as assets, and the AWS CDK packages and uploads them
to Amazon S3 through the aws-s3-assets module.

The following example defines a local directory asset and a file asset.

Example
TypeScript
import { Asset } from 'aws-cdk-lib/aws-s3-assets';

// Archived and uploaded to Amazon S3 as a .zip file
const directoryAsset = new Asset(this, "SampleZippedDirAsset", {

Asset types Version 2 202

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets-readme.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

path: path.join(__dirname, "sample-asset-directory")

1)

// Uploaded to Amazon S3 as-is

const fileAsset = new Asset(this, 'SampleSingleFileAsset', {

path: path.join(__dirname, 'file-asset.txt')

1}
JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');

// Archived and uploaded to Amazon S3 as a .zip file

const directoryAsset = new Asset(this, "SampleZippedDirAsset",

path: path.join(__dirname, "sample-asset-directory")

1)

// Uploaded to Amazon S3 as-is

const fileAsset = new Asset(this, 'SampleSingleFileAsset', {

path: path.join(__dirname, 'file-asset.txt')

1)
Python

import os.path
dirname = os.path.dirname(__file_)

from aws_cdk.aws_s3_assets import Asset
Archived and uploaded to Amazon S3 as a .zip file

directory_asset = Asset(self, "SampleZippedDirAsset",
path=os.path.join(dirname, "sample-asset-directory")

Uploaded to Amazon S3 as-is
file_asset = Asset(self, 'SampleSingleFileAsset',
path=os.path.join(dirname, 'file-asset.txt')

Java

import java.io.File;

{

Amazon S3 assets

Version 2 203

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import software.amazon.awscdk.services.s3.assets.Asset;

// Directory where app was started
File startDir = new File(System.getProperty("user.dir"));

// Archived and uploaded to Amazon S3 as a .zip file

Asset directoryAsset = Asset.Builder.create(this, "SampleZippedDirAsset")
.path(new File(startDir, "sample-asset-

directory").toString()).build();

// Uploaded to Amazon S3 as-is
Asset fileAsset = Asset.Builder.create(this, "SampleSingleFileAsset")
.path(new File(startDir, "file-asset.txt").toString()).build();

CH#

using System.IO;
using Amazon.CDK.AWS.S3.Assets;

// Archived and uploaded to Amazon S3 as a .zip file
var directoryAsset = new Asset(this, "SampleZippedDirAsset", new AssetProps
{

Path = Path.Combine(Directory.GetCurrentDirectory(), "sample-asset-directory")

1)

// Uploaded to Amazon S3 as-is
var fileAsset = new Asset(this, "SampleSingleFileAsset", new AssetProps
{
Path = Path.Combine(Directory.GetCurrentDirectory(), "file-asset.txt")
1);

Go

dirName, err := os.Getwd()
if err !'= nil {
panic(err)

awss3assets.NewAsset(stack, jsii.String("SampleZippedDirAsset"),
awss3assets.AssetProps{
Path: jsii.String(path.Join(dirName, "sample-asset-directory")),

D

Amazon S3 assets Version 2 204

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

awss3assets.NewAsset(stack, jsii.String("SampleSingleFileAsset"),
awss3assets.AssetProps{

Path: jsii.String(path.Join(dirName, "file-asset.txt")),
1}

In most cases, you don't need to directly use the APIs in the aws-s3-assets module. Modules
that support assets, such as aws-1ambda, have convenience methods so that you can use assets.
For Lambda functions, the fromAsset () static method enables you to specify a directory or a .zip
file in the local file system.

Lambda function example
A common use case is creating Lambda functions with the handler code as an Amazon S3 asset.

The following example uses an Amazon S3 asset to define a Python handler in the local directory
handler. It also creates a Lambda function with the local directory asset as the code property.
Following is the Python code for the handler.

def lambda_handler(event, context):
message = 'Hello World!'
return {
'message’': message

The code for the main AWS CDK app should look like the following.
Example

TypeScript

import * as cdk from 'aws-cdk-1lib';

import { Constructs } from 'constructs';

import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as path from 'path';

export class HelloAssetStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

new lambda.Function(this, 'myLambdaFunction', {
code: lambda.Code.fromAsset(path.join(__dirname, 'handler')),

Amazon S3 assets Version 2 205

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Code.html#static-fromwbrassetpath-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

runtime: lambda.Runtime.PYTHON_3_6,
handler: 'index.lambda_handler'

1)

JavaScript

const cdk = require('aws-cdk-1ib');
const lambda = require('aws-cdk-lib/aws-lambda');
const path = require('path');

class HelloAssetStack extends cdk.Stack {
constructor(scope, id, props) {
super(scope, id, props);

new lambda.Function(this, 'myLambdaFunction', {
code: lambda.Code.fromAsset(path.join(__dirname, 'handler')),
runtime: lambda.Runtime.PYTHON_3_6,
handler: 'index.lambda_handler'

1)

module.exports = { HelloAssetStack }
Python

from aws_cdk import Stack
from constructs import Construct
from aws_cdk import aws_lambda as lambda_

import os.path
dirname = os.path.dirname(__file_)

class HelloAssetStack(Stack):
def __init_ (self, scope: Construct, id: str, **kwargs):
super().__init_ (scope, id, **kwargs)

lambda_.Function(self, 'myLambdaFunction',
code=lambda_.Code.from_asset(os.path.join(dirname, 'handler')),
runtime=lambda_.Runtime.PYTHON_3_6,
handler="index.lambda_handler")

Amazon S3 assets Version 2 206

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

import java.io.File;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;

public class HelloAssetStack extends Stack {

public HelloAssetStack(final App scope, final String id) {
this(scope, id, null);

public HelloAssetStack(final App scope, final String id, final StackProps props)

super(scope, id, props);

File startDir = new File(System.getProperty("user.dir"));

Function.Builder.create(this, "myLambdaFunction")
.code(Code.fromAsset(new File(startDir, "handler").toString()))
.runtime(Runtime.PYTHON_3_6)
.handler("index.lambda_handler").build();

CH#

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using System.IO;

public class HelloAssetStack : Stack
{
public HelloAssetStack(Construct scope, string id, StackProps props)
base(scope, id, props)
{
new Function(this, "myLambdaFunction", new FunctionProps
{
Code = Code.FromAsset(Path.Combine(Directory.GetCurrentDirectory(),
"handler")),

Amazon S3 assets Version 2 207

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Runtime = Runtime.PYTHON_3_6,

Handler = "index.lambda_handler"
1)
}
}
Go

import (
IIOSII
Ilpathll
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awslambda"
"github.com/aws/aws-cdk-go/awscdk/v2/awss3assets"”
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

)

func HelloAssetStack(scope constructs.Construct, id string, props
*HelloAssetStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}

stack := awscdk.NewStack(scope, id, sprops)

dirName, err := os.Getwd()
if err !'= nil {
panic(err)

awslambda.NewFunction(stack, jsii.String("myLambdaFunction"),
awslambda.FunctionProps{

Code: awslambda.AssetCode_FromAsset(jsii.String(path.Join(dirName, "handler")),

awss3assets.AssetOptions{}),
Runtime: awslambda.Runtime_PYTHON_3_6(),
Handler: jsii.String("index.lambda_handler"),

1)

return stack

Amazon S3 assets

Version 2 208

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The Function method uses assets to bundle the contents of the directory and use it for the
function's code.

® Tip
Java . jar files are ZIP files with a different extension. These are uploaded as-is to Amazon
S3, but when deployed as a Lambda function, the files they contain are extracted, which
you might not want. To avoid this, place the . jar file in a directory and specify that
directory as the asset.

Deploy-time attributes example

Amazon S3 asset types also expose deploy-time attributes that can be referenced in AWS CDK
libraries and apps. The AWS CDK CLI command cdk synth displays asset properties as AWS
CloudFormation parameters.

The following example uses deploy-time attributes to pass the location of an image asset into a
Lambda function as environment variables. (The kind of file doesn’t matter; the PNG image used
here is only an example.)

Example

TypeScript

import { Asset } from 'aws-cdk-lib/aws-s3-assets';
import * as path from 'path';

const imageAsset = new Asset(this, "SampleAsset", {
path: path.join(__dirname, "images/my-image.png")

1)

new lambda.Function(this, "myLambdaFunction", {

code: lambda.Code.asset(path.join(__dirname, "handler")),

runtime: lambda.Runtime.PYTHON_3_6,

handler: "index.lambda_handler",

environment: {
'S3_BUCKET_NAME': imageAsset.s3BucketName,
'S3_OBJECT_KEY': imageAsset.s30bjectKey,
'S3_OBJECT_URL': imageAsset.s30bjectUrl

Amazon S3 assets Version 2 209

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

1)

JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');
const path = require('path');

const imageAsset = new Asset(this, "SampleAsset", {
path: path.join(__dirname, "images/my-image.png")

1)

new lambda.Function(this, "myLambdaFunction", {
code: lambda.Code.asset(path.join(__dirname, "handler")),
runtime: lambda.Runtime.PYTHON_3_6,
handler: "index.lambda_handlexr",
environment: {
'S3_BUCKET_NAME': imageAsset.s3BucketName,
'S3_OBJECT_KEY': imageAsset.s30bjectKey,
'S3_OBJECT_URL': imageAsset.s30bjectUrl
}
h)7

Python

import os.path

import aws_cdk.aws_lambda as lambda_
from aws_cdk.aws_s3_assets import Asset

dirname = os.path.dirname(__file_)

image_asset = Asset(self, "SampleAsset",
path=os.path.join(dirname, "images/my-image.png"))

lambda_.Function(self, "myLambdaFunction",

code=1lambda_.Code.asset(os.path.join(dirname, "handler")),

runtime=lambda_.Runtime.PYTHON_3_6,

handler="index.lambda_handler",

environment=dict(
S3_BUCKET_NAME=image_asset.s3_bucket_name,
S3_0BJECT_KEY=image_asset.s3_object_key,
S3_OBJECT_URL=image_asset.s3_object_url))

Amazon S3 assets

Version 2 210

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

import

import
import
import
import
import

public

java.io.File;

software.amazon.awscdk.Stack;
software.amazon.awscdk.StackProps;
software.amazon.awscdk.services.lambda.Function;
software.amazon.awscdk.services.lambda.Runtime;
software.amazon.awscdk.services.s3.assets.Asset;

class FunctionStack extends Stack {

public FunctionStack(final App scope, final String id, final StackProps props) {

CH#

super(scope, id, props);
File startDir = new File(System.getProperty("user.dir"));

Asset imageAsset = Asset.Builder.create(this, "SampleAsset")
.path(new File(startDir, "images/my-image.png").toString()).build())

Function.Builder.create(this, "myLambdaFunction")
.code(Code.fromAsset(new File(startDir, "handler").toString()))
.runtime(Runtime.PYTHON_3_6)

.handler("index.lambda_handler")

.environment(java.util.Map.of(// Java 9 or later
"S3_BUCKET_NAME", imageAsset.getS3BucketName(),
"S3_OBJECT_KEY", imageAsset.getS30bjectKey(),
"S3_OBJECT_URL", imageAsset.getS30bjectUrl()))

.build();

using Amazon.CDK;

using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.S3.Assets;
using System.IO;

using System.Collections.Generic;

var imageAsset = new Asset(this, "SampleAsset", new AssetProps

{

Path = Path.Combine(Directory.GetCurrentDirectory(), @"images\my-image.png")

1)

Amazon S3 assets

Version 2 211

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Go

new Function(this, "myLambdaFunction", new FunctionProps

{

Code = Code.FromAsset(Path.Combine(Directory.GetCurrentDirectory(),
Runtime = Runtime.PYTHON_3_6,

Handler = "index.lambda_handler",
Environment = new Dictionarystring, string
{

["S3_BUCKET_NAME"] = imageAsset.S3BucketName,
["S3_OBJECT_KEY"] = imageAsset.S30bjectKey,
["S3_OBJECT_URL"] = imageAsset.S30bjectUrl

1)

import (

os
llpathll

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awslambda"
"github.com/aws/aws-cdk-go/awscdk/v2/awss3assets"

)
dirName, err := os.Getwd()
if err !'= nil {
panic(err)
}
imageAsset := awss3assets.NewAsset(stack, jsii.String("SampleAsset"),

awss3assets.AssetProps{
Path: jsii.String(path.Join(dirName, "images/my-image.png")),
)

awslambda.NewFunction(stack, jsii.String("myLambdaFunction"),
awslambda.FunctionProps{

"handler")),

Code: awslambda.AssetCode_FromAsset(jsii.String(path.Join(dirName, "handler"))),

Runtime: awslambda.Runtime_PYTHON_3_6(),

Handler: jsii.String("index.lambda_handler"),

Environment: map[string]*string{
"S3_BUCKET_NAME": imageAsset.S3BucketName(),
"S3_OBJECT_KEY": imageAsset.S30bjectKey(),

Amazon S3 assets

Version 2 212

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"S3_URL": imageAsset.S30bjectUrl(),

iy
1)

Permissions

If you use Amazon S3 assets directly through the aws-s3-assets module, IAM roles, users, or
groups, and you need to read assets in runtime, then grant those assets IAM permissions through
the asset.grantRead method.

The following example grants an IAM group read permissions on a file asset.
Example
TypeScript

import { Asset } from 'aws-cdk-lib/aws-s3-assets';
import * as path from 'path';

const asset = new Asset(this, 'MyFile', {
path: path.join(__dirname, 'my-image.png')

1)

const group = new iam.Group(this, 'MyUserGroup');
asset.grantRead(group);

JavaScript

const { Asset } = require('aws-cdk-lib/aws-s3-assets');
const path = require('path');

const asset = new Asset(this, 'MyFile’', {
path: path.join(__dirname, 'my-image.png')

1)

const group = new iam.Group(this, 'MyUserGroup');
asset.grantRead(group);

Python

from aws_cdk.aws_s3_assets import Asset
import aws_cdk.aws_iam as iam

Amazon S3 assets Version 2 213

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3_assets.Asset.html#grantwbrreadgrantee

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import os.path

dirname = os

.path.dirname(__file_)

asset = Asset(self, "MyFile",

path=os.path.join(dirname, "my-image.png"))

group = iam.Group(self, "MyUserGroup")
asset.grant_read(group)

Java

import java.io.File;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.iam.Group;
import software.amazon.awscdk.services.s3.assets.Asset;

public class

GrantStack extends Stack {

public GrantStack(final App scope, final String id, final StackProps props) {
super(scope, id, props);

File

startDir = new File(System.getProperty("user.dir"));

Asset asset = Asset.Builder.create(this, "SampleAsset")

.path(new File(startDir, "images/my-image.png").toString()).build();

Group group = new Group(this, "MyUserGroup");
asset.grantRead(group); }

CH#

using Amazon.

using Amazon
using Amazon

using System.

var asset =

CDK;

.CDK.AWS.IAM;
.CDK.AWS.S3.Assets;
I0;

new Asset(this, "MyFile", new AssetProps {

Path = Path.Combine(Path.Combine(Directory.GetCurrentDirectory(), @"images\my-

image.png"))
1);

Amazon S3 assets

Version 2 214

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

var group = new Group(this, "MyUserGroup");
asset.GrantRead(group);

Go

import (

IIOS
"path"

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsiam"
"github.com/aws/aws-cdk-go/awscdk/v2/awss3assets"

)

dirName, err := os.Getwd()

if err !'= nil {
panic(err)

}

asset := awss3assets.NewAsset(stack, jsii.String("MyFile"), awss3assets.AssetProps{
Path: jsii.String(path.Join(dirName, "my-image.png")),

b

group := awsiam.NewGroup(stack, jsii.String("MyUserGroup"), awsiam.GroupProps{})

asset.GrantRead(group)

Docker image assets

The AWS CDK supports bundling local Docker images as assets through the aws-ecr-assets
module.

The following example defines a Docker image that is built locally and pushed to Amazon ECR.
Images are built from a local Docker context directory (with a Dockerfile) and uploaded to Amazon
ECR by the AWS CDK CLI or your app’s CI/CD pipeline. The images can be naturally referenced in
your AWS CDK app.

Docker image assets Version 2 215

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr_assets-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

import { DockerImageAsset } from 'aws-cdk-lib/aws-ecr-assets';
const asset = new DockerImageAsset(this, 'MyBuildImage', {

directory: path.join(__dirname, 'my-image')

1)
JavaScript

const { DockerImageAsset } = require('aws-cdk-lib/aws-ecr-assets');
const asset = new DockerImageAsset(this, 'MyBuildImage', {

directory: path.join(__dirname, 'my-image')

1)
Python

from aws_cdk.aws_ecr_assets import DockerImageAsset

import os.path
dirname = os.path.dirname(__file_)

asset = DockerImageAsset(self, 'MyBuildImage',
directory=os.path.join(dirname, 'my-image'))

Java

import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;
File startDir = new File(System.getProperty("user.dir"));

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "MyBuildImage")
.directory(new File(startDir, "my-image").toString()).build();

CH#

using System.IO;
using Amazon.CDK.AWS.ECR.Assets;

Docker image assets Version 2 216

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps

{

Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image")

1)
Go

import (

0os
"path"

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsecrassets"

)

dirName, err := os.Getwd()
if err !'= nil {
panic(err)

}

asset := awsecrassets.NewDockerImageAsset(stack, jsii.String("MyBuildImage"),
awsecrassets.DockerImageAssetProps{
Directory: jsii.String(path.Join(dirName, "my-image")),

1)

The my-image directory must include a Dockerfile. The AWS CDK CLI builds a Docker image from
my-image, pushes it to an Amazon ECR repository, and specifies the name of the repository as
an AWS CloudFormation parameter to your stack. Docker image asset types expose deploy-time
attributes that can be referenced in AWS CDK libraries and apps. The AWS CDK CLI command cdk
synth displays asset properties as AWS CloudFormation parameters.

Amazon ECS task definition example

A common use case is to create an Amazon ECS TaskDefinition to run Docker containers. The

following example specifies the location of a Docker image asset that the AWS CDK builds locally
and pushes to Amazon ECR.

Docker image assets Version 2 217

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.TaskDefinition.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Example

TypeScript

import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as ecr_assets from 'aws-cdk-lib/aws-ecr-assets';
import * as path from 'path';

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
memoryLimitMiB: 1024,
cpu: 512

18

const asset = new ecr_assets.DockerImageAsset(this, 'MyBuildImage', {
directory: path.join(__dirname, 'my-image')

1)

taskDefinition.addContainer("my-other-container", {
image: ecs.ContainerImage.fromDockerImageAsset(asset)

1)
JavaScript

const ecs = require('aws-cdk-1lib/aws-ecs');
const ecr_assets = require('aws-cdk-lib/aws-ecr-assets');
const path = require('path');

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {
memoryLimitMiB: 1024,
cpu: 512

18

const asset = new ecr_assets.DockerImageAsset(this, 'MyBuildImage', {
directory: path.join(__dirname, 'my-image')

1)

taskDefinition.addContainer("my-other-container", {
image: ecs.ContainerImage.fromDockerImageAsset(asset)

1)
Python

import aws_cdk.aws_ecs as ecs

Docker image assets

Version 2 218

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

CH#

import aws_cdk.aws_ecr_assets as ecr_assets

import os.path
dirname = os.path.dirname(__file_)

task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mib=1024,
cpu=512)

asset = ecr_assets.DockerImageAsset(self, 'MyBuildImage',
directory=os.path.join(dirname, 'my-image'))

task_definition.add_container("my-other-container",
image=ecs.ContainerImage.from_docker_image_asset(asset))

import java.io.File;

import software.amazon.awscdk.services.ecs.FargateTaskDefinition;
import software.amazon.awscdk.services.ecs.ContainerDefinitionOptions;
import software.amazon.awscdk.services.ecs.ContainerImage;

import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;
File startDir = new File(System.getProperty("user.dir"));

FargateTaskDefinition taskDefinition = FargateTaskDefinition.Builder.create(
this, "TaskDef").memoryLimitMiB(1024).cpu(512).build();

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "MyBuildImage")
.directory(new File(startDir, "my-image").toString()).build();

taskDefinition.addContainer("my-other-container",
ContainerDefinitionOptions.builder()
.image(ContainerImage.fromDockerImageAsset(asset))
.build();

using System.IO;
using Amazon.CDK.AWS.ECS;

Docker image assets Version 2 219

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Go

using Amazon.CDK.AWS.Ecr.Assets;

var taskDefinition = new FargateTaskDefinition(this, "TaskDef", new
FargateTaskDefinitionProps
{
MemoryLimitMiB = 1024,
Cpu = 512
18

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps

{

Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image")

1)

taskDefinition.AddContainer("my-other-container", new ContainerDefinitionOptions
{
Image = ContainerImage.FromDockerImageAsset(asset)

1)

import (
"OS"
Ilpathll

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsecrassets"”
"github.com/aws/aws-cdk-go/awscdk/v2/awsecs"

)
dirName, err := os.Getwd()
if err !'= nil {
panic(err)
}
taskDefinition := awsecs.NewTaskDefinition(stack, jsii.String("TaskDef"),

awsecs.TaskDefinitionProps{
MemoryMiB: jsii.String("1024"),
Cpu: jsii.String("512"),

)

asset := awsecrassets.NewDockerImageAsset(stack, jsii.String("MyBuildImage"),
awsecrassets.DockerImageAssetProps{

Docker image assets Version 2 220

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Directory: jsii.String(path.Join(dirName, "my-image")),

1)

taskDefinition.AddContainer(jsii.String("MyOtherContainer"),
awsecs.ContainerDefinitionOptions{
Image: awsecs.ContainerImage_FromDockerImageAsset(asset),

1)

Deploy-time attributes example

The following example shows how to use the deploy-time attributes repository and imageUri
to create an Amazon ECS task definition with the AWS Fargate launch type. Note that the Amazon
ECR repo lookup requires the image's tag, not its URI, so we snip it from the end of the asset's URI.

Example

TypeScript

import * as ecs from 'aws-cdk-lib/aws-ecs';
import * as path from 'path';
import { DockerImageAsset } from 'aws-cdk-lib/aws-ecr-assets';

const asset = new DockerImageAsset(this, 'my-image', {
directory: path.join(__dirname, "..", "demo-image")

1)

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef", {

memoryLimitMiB: 1024,
cpu: 512
1)

taskDefinition.addContainer("my-other-container", {
image: ecs.ContainerImage.fromEcrRepository(asset.repository,
asset.imageUri.split(":").pop())

1)

JavaScript

const ecs = require('aws-cdk-1lib/aws-ecs');
const path = require('path');

const { DockerImageAsset } = require('aws-cdk-lib/aws-ecr-assets');

Docker image assets

Version 2 221

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

const asset = new DockerImageAsset(this, 'my-image', {
directory: path.join(__dirname, "..", "demo-image")

1);

const taskDefinition = new ecs.FargateTaskDefinition(this, "TaskDef",
memoryLimitMiB: 1024,
cpu: 512

});

taskDefinition.addContainer("my-other-container", {
image: ecs.ContainerImage.fromEcrRepository(asset.repository,

asset.imageUri.split(":").pop())
1);

Python

import aws_cdk.aws_ecs as ecs
from aws_cdk.aws_ecr_assets import DockerImageAsset

import os.path
dirname = os.path.dirname(__file_)

asset = DockerImageAsset(self, 'my-image’,
directory=os.path.join(dirname, "..", "demo-image"))

task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mib=1024, cpu=512)

task_definition.add_container("my-other-container",

image=ecs.ContainerImage.from_ecr_repository(
asset.repository, asset.image_uri.rpartition(":")[-1]))

Java

import java.io.File;
import software.amazon.awscdk.services.ecr.assets.DockerImageAsset;

import software.amazon.awscdk.services.ecs.FargateTaskDefinition;

import software.amazon.awscdk.services.ecs.ContainerDefinitionOptions;

import software.amazon.awscdk.services.ecs.ContainerImage;

{

Docker image assets

Version 2 222

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

File startDir = new File(System.getProperty("user.dir"));

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "my-image'")
.directory(new File(startDir, "demo-image").toString()).build();

FargateTaskDefinition taskDefinition = FargateTaskDefinition.Builder.create(
this, "TaskDef").memoryLimitMiB(1@24).cpu(512).build();

// extract the tag from the asset's image URI for use in ECR repo lookup
String imageUri = asset.getImageUri();
String imageTag = imageUri.substring(imageUri.lastIndexOf(":") + 1);

taskDefinition.addContainer("my-other-container",
ContainerDefinitionOptions.builder().image(ContainerImage.fromEcrRepository(
asset.getRepository(), imageTag)).build());

CH#

using System.IO;
using Amazon.CDK.AWS.ECS;
using Amazon.CDK.AWS.ECR.Assets;

var asset = new DockerImageAsset(this, "my-image", new DockerImageAssetProps {
Directory = Path.Combine(Directory.GetCurrentDirectory(), "demo-image")

1)

var taskDefinition = new FargateTaskDefinition(this, "TaskDef", new
FargateTaskDefinitionProps
{
MemoryLimitMiB = 1024,
Cpu = 512
1);

taskDefinition.AddContainer("my-other-container", new ContainerDefinitionOptions
{
Image = ContainerImage.FromEcrRepository(asset.Repository,
asset.ImageUri.Split(":").Last())
1}

Go

import (

(015

Docker image assets Version 2 223

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Ilpathll

"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/aws-cdk-go/awscdk/v2/awsecrassets"
"github.com/aws/aws-cdk-go/awscdk/v2/awsecs"

dirName, err := os.Getwd()
if err !'= nil {
panic(err)

asset := awsecrassets.NewDockerImageAsset(stack, jsii.String("MyImage"),
awsecrassets.DockerImageAssetProps{
Directory: jsii.String(path.Join(dirName, "demo-image")),

1)

taskDefinition := awsecs.NewFargateTaskDefinition(stack, jsii.String("TaskDef"),
awsecs.FargateTaskDefinitionProps{

MemoryLimitMiB: jsii.Number(1024),

Cpu: jsii.Number(512),
1)

taskDefinition.AddContainer(jsii.String("MyOtherContainer"),
awsecs.ContainerDefinitionOptions{

Image: awsecs.ContainerImage_FromEcrRepository(asset.Repository(),
asset.ImageTag()),
b

Build arguments example

You can provide customized build arguments for the Docker build step through the buildArgs
(Python: build_args) property option when the AWS CDK CLI builds the image during
deployment.

Example

TypeScript

const asset = new DockerImageAsset(this, 'MyBuildImage', {
directory: path.join(__dirname, 'my-image'),
buildArgs: {

Docker image assets Version 2 224

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

HTTP_PROXY: 'http://10.20.30.2:1234"

}
1)

JavaScript

const asset = new DockerImageAsset(this, 'MyBuildImage', {
directory: path.join(__dirname, 'my-image'),
buildArgs: {
HTTP_PROXY: 'http://10.20.30.2:1234"
}
1);

Python

asset = DockerImageAsset(self, "MyBuildImage",
directory=os.path.join(dirname, "my-image"),
build_args=dict(HTTP_PROXY="http://10.20.30.2:1234"))

Java

DockerImageAsset asset = DockerImageAsset.Builder.create(this, "my-image"),
.directory(new File(startDir, "my-image").toString())
.buildArgs(java.util.Map.of(// Java 9 or later

"HTTP_PROXY", "http://10.20.30.2:1234"))
.build();

CH#

var asset = new DockerImageAsset(this, "MyBuildImage", new DockerImageAssetProps {
Directory = Path.Combine(Directory.GetCurrentDirectory(), "my-image"),
BuildArgs = new Dictionarystring, string

{
["HTTP_PROXY"] = "http://10.20.30.2:1234"
}
1);
Go
dirName, err := os.Getwd()

Docker image assets Version 2 225

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

if err !'= nil {
panic(err)
}
asset := awsecrassets.NewDockerImageAsset(stack, jsii.String("MyBuildImage"),

awsecrassets.DockerImageAssetProps{
Directory: jsii.String(path.Join(dirName, "my-image")),
BuildArgs: map[string]l*string{

"HTTP_PROXY": jsii.String("http://10.20.30.2:1234"),

iy
1)

Permissions

If you use a module that supports Docker image assets, such as aws-ecs, the

AWS CDK manages permissions for you when you use assets directly or through
ContainerImage.fromEcrRepository (Python: from_ecr_repository). If you use Docker
image assets directly, make sure that the consuming principal has permissions to pull the image.

In most cases, you should use asset.repository.grantPull method (Python:

grant_pull). This modifies the IAM policy of the principal to enable it to pull images from

this repository. If the principal that is pulling the image is not in the same account, or if it's

an AWS service that doesn’t assume a role in your account (such as AWS CodeBuild), you

must grant pull permissions on the resource policy and not on the principal’s policy. Use the
asset.repository.addToResourcePolicy method (Python: add_to_resource_policy)to
grant the appropriate principal permissions.

AWS CloudFormation resource metadata

(@ Note

This section is relevant only for construct authors. In certain situations, tools need to know
that a certain CFN resource is using a local asset. For example, you can use the AWS SAM
CLI to invoke Lambda functions locally for debugging purposes. See AWS SAM integration
for details.

To enable such use cases, external tools consult a set of metadata entries on AWS CloudFormation
resources:

AWS CloudFormation resource metadata Version 2 226

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecs.ContainerImage.html#static-fromwbrecrwbrrepositoryrepository-tag
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr.Repository.html#grantwbrpullgrantee
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ecr.Repository.html#addwbrtowbrresourcewbrpolicystatement

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

e aws:asset:path - Points to the local path of the asset.

« aws:asset:property - The name of the resource property where the asset is used.

Using these two metadata entries, tools can identify that assets are used by a certain resource, and
enable advanced local experiences.

To add these metadata entries to a resource, use the asset.addResourceMetadata (Python:
add_resource_metadata) method.

Permissions and the AWS CDK

The AWS Construct Library uses a few common, widely implemented idioms to manage access and
permissions. The IAM module provides you with the tools you need to use these idioms.

AWS CDK uses AWS CloudFormation to deploy changes. Every deployment involves an actor (either
a developer, or an automated system) that starts a AWS CloudFormation deployment. In the course
of doing this, the actor will assume one or more IAM Identities (user or roles) and optionally pass a
role to AWS CloudFormation.

If you use AWS IAM Identity Center to authenticate as a user, then the single sign-on provider
supplies short-lived session credentials that authorize you to act as a pre-defined IAM role. To
learn how the AWS CDK obtains AWS credentials from IAM Identity Center authentication, see
Understand IAM Identity Center authentication in the AWS SDKs and Tools Reference Guide.

Principals

An IAM principal is an authenticated AWS entity representing a user, service, or application that can
call AWS APIs. The AWS Construct Library supports specifying principals in several flexible ways to
grant them access your AWS resources.

In security contexts, the term "principal” refers specifically to authenticated entities such as users.
Obijects like groups and roles do not represent users (and other authenticated entities) but rather
identify them indirectly for the purpose of granting permissions.

For example, if you create an IAM group, you can grant the group (and thus its members) write
access to an Amazon RDS table. However, the group itself is not a principal because it doesn't
represent a single entity (also, you cannot log in to a group).

Permissions Version 2 227

https://docs.aws.amazon.com/sdkref/latest/guide/understanding-sso.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In the CDK's IAM library, classes that directly or indirectly identify principals implement the
IPrincipal interface, allowing these objects to be used interchangeably in access policies.
However, not all of them are principals in the security sense. These objects include:

1. 1AM resources such as Role, User, and Group

2. Service principals (new iam.ServicePrincipal('service.amazonaws.com'))

W

. Federated principals (new iam.FederatedPrincipal('cognito-

identity.amazonaws.com'))

4. Account principals (new iam.AccountPrincipal('0123456789012"'))

5. Canonical user principals (new iam.CanonicalUserPrincipal('79a59d[..]7ef2be"))

6. AWS Organizations principals (new iam.OrganizationPrincipal('org-id"'))

7. Arbitrary ARN principals (new iam.ArnPrincipal(res.azrn))

8. An iam.CompositePrincipal(principall, principal2, ..) to trust multiple
principals

Grants

Every construct that represents a resource that can be accessed, such as an Amazon S3 bucket or
Amazon DynamoDB table, has methods that grant access to another entity. All such methods have
names starting with grant.

For example, Amazon S3 buckets have the methods grantRead and grantReadwWrite (Python:

grant_read, grant_read_write) to enable read and read/write access, respectively, from an
entity to the bucket. The entity doesn’t have to know exactly which Amazon S3 IAM permissions
are required to perform these operations.

The first argument of a grant method is always of type IGrantable. This interface represents
entities that can be granted permissions. That is, it represents resources with roles, such as the IAM
objects Role, User, and Group.

Other entities can also be granted permissions. For example, later in this topic, we show how to
grant a CodeBuild project access to an Amazon S3 bucket. Generally, the associated role is obtained
via a role property on the entity being granted access.

Resources that use execution roles, such as 1ambda.Function, also implement IGrantable, so
you can grant them access directly instead of granting access to their role. For example, if bucket

Grants Version 2 228

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.IPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ServicePrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.FederatedPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.AccountPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.CanonicalUserPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.OrganizationPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ArnPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.CompositePrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#grantwbrreadidentity-objectskeypattern
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html#grantwbrreadwbrwriteidentity-objectskeypattern
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.IGrantable.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

is an Amazon S3 bucket, and function is a Lambda function, the following code grants the
function read access to the bucket.

Example

TypeScript
bucket.grantRead(function);

JavaScript
bucket.grantRead(function);

Python
bucket.grant_read(function)

Java

bucket.grantRead(function);

CH

bucket.GrantRead(function);

Sometimes permissions must be applied while your stack is being deployed. One such case is
when you grant an AWS CloudFormation custom resource access to some other resource. The
custom resource will be invoked during deployment, so it must have the specified permissions at
deployment time.

Another case is when a service verifies that the role you pass to it has the right policies applied. (A
number of AWS services do this to make sure that you didn't forget to set the policies.) In those
cases, the deployment might fail if the permissions are applied too late.

To force the grant’s permissions to be applied before another resource is created, you can add
a dependency on the grant itself, as shown here. Though the return value of grant methods is
commonly discarded, every grant method in fact returns an iam.Grant object.

Grants Version 2 229

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Example

TypeScript

const grant = bucket.grantRead(lambda);
const custom = new CustomResource(...);
custom.node.addDependency(grant);

JavaScript

const grant = bucket.grantRead(lambda);
const custom = new CustomResource(...);
custom.node.addDependency(grant);

Python

grant = bucket.grant_read(function)
custom = CustomResource(...)
custom.node.add_dependency(grant)

Java

Grant grant = bucket.grantRead(function);
CustomResource custom = new CustomResource(...);

custom.node.addDependency(grant);

CH#

var grant = bucket.GrantRead(function);
var custom = new CustomResource(...);
custom.node.AddDependency(grant);

Roles

The IAM package contains a Role construct that represents IAM roles. The following code creates a

new role, trusting the Amazon EC2 service.

Roles

Version 2 230

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Example

TypeScript

import * as iam from 'aws-cdk-lib/aws-iam';

const role =
assumedBy:

1)

new iam.Role(this, 'Role', {

new iam.ServicePrincipal('ec2.amazonaws.com'), // required

JavaScript

const iam = require('aws-cdk-1lib/aws-iam');

const role = new iam.Role(this, 'Role’', {

assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com')

1)

// required

Python

import aws_cdk.aws_iam as iam

role = iam.Role(self, "Role",

assumed_by=iam.ServicePrincipal("ec2.amazonaws.com")) # required

Java

import software.amazon.awscdk.services.iam.Role;
import software.amazon.awscdk.services.iam.ServicePrincipal;

Role role = Role.Builder.create(this, "Role")

.assumedBy(new ServicePrincipal("ec2.amazonaws.com")).build();

C#
using Amazon.CDK.AWS.IAM;
var role = new Role(this, "Role", new RoleProps
{
AssumedBy = new ServicePrincipal("ec2.amazonaws.com"), // required
1);
Roles Version 2 231

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

You can add permissions to a role by calling the role's addToPolicy method (Python:
add_to_policy), passing ina PolicyStatement that defines the rule to be added. The
statement is added to the role’s default policy; if it has none, one is created.

The following example adds a Deny policy statement to the role for the actions ec2:SomeAction
and s3:AnotherAction on the resources bucket and otherRole (Python: other_role), under
the condition that the authorized service is AWS CodeBuild.

Example

TypeScript

role.addToPolicy(new iam.PolicyStatement({

effect: iam.Effect.DENY,
resources: [bucket.bucketArn, otherRole.roleArn],
actions: ['ec2:SomeAction', 's3:AnotherAction’'],
conditions: {StringEquals: {

'ec2:AuthorizedService': 'codebuild.amazonaws.com',

131

JavaScript

role.addToPolicy(new iam.PolicyStatement({

1}

effect: iam.Effect.DENY,

resources: [bucket.bucketArn, otherRole.roleArn],

actions: ['ec2:SomeAction', 's3:AnotherAction’'],

conditions: {StringEquals: {
'ec2:AuthorizedService': 'codebuild.amazonaws.com'

1))

Python

role.add_to_policy(iam.PolicyStatement(

)

effect=iam.Effect.DENY,
resources=[bucket.bucket_arn, other_role.role_arn],
actions=["ec2:SomeAction", "s3:AnotherAction"],
conditions={"StringEquals": {

"ec2:AuthorizedService": "codebuild.amazonaws.com"}}

Roles

Version 2 232

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#addwbrtowbrpolicystatement
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

role.addToPolicy(PolicyStatement.Builder.create()
.effect(Effect.DENY)
.resources(Arrays.asList(bucket.getBucketArn(), otherRole.getRoleArn()))
.actions(Arrays.asList("ec2:SomeAction", "s3:AnotherAction"))
.conditions(java.util.Map.of(// Map.of requires Java 9 or later
"StringEquals", java.util.Map.of(
"ec2:AuthorizedService", "codebuild.amazonaws.com")))
.build());

CH#

role.AddToPolicy(new PolicyStatement(new PolicyStatementProps

{
Effect = Effect.DENY,
Resources = new string[] { bucket.BucketArn, otherRole.RoleArn },
Actions = new string[] { "ec2:SomeAction", "s3:AnotherAction" },
Conditions = new Dictionary<string, object>
{
["StringEquals"] = new Dictionary<string, string>
{
["ec2:AuthorizedService"] = "codebuild.amazonaws.com"
}
}
1)

In the preceding example, we've created a new PolicyStatement inline with the addToPolicy

(Python: add_to_policy) call. You can also pass in an existing policy statement or one you've
modified. The PolicyStatement object has numerous methods for adding principals, resources,
conditions, and actions.

If you're using a construct that requires a role to function correctly, you can do one of the
following:
» Pass in an existing role when instantiating the construct object.

» Let the construct create a new role for you, trusting the appropriate service principal. The
following example uses such a construct: a CodeBuild project.

Roles Version 2 233

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#addwbrtowbrpolicystatement
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html#methods

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

import * as codebuild from 'aws-cdk-lib/aws-codebuild’;

// imagine roleOrUndefined is a function that might return a Role object
// under some conditions, and undefined under other conditions
const someRole: iam.IRole | undefined = roleOrUndefined();

const project = new codebuild.Project(this, 'Project', {
// if someRole is undefined, the Project creates a new default role,
// trusting the codebuild.amazonaws.com service principal
role: someRole,

1)

JavaScript

const codebuild = require('aws-cdk-1lib/aws-codebuild');

// imagine roleOrUndefined is a function that might return a Role object
// under some conditions, and undefined under other conditions
const someRole = roleOrUndefined();

const project = new codebuild.Project(this, 'Project', {
// if someRole is undefined, the Project creates a new default role,
// trusting the codebuild.amazonaws.com service principal
role: someRole

1)

Python

import aws_cdk.aws_codebuild as codebuild

imagine role_or_none is a function that might return a Role object
under some conditions, and None under other conditions
some_role = role_or_none();

project = codebuild.Project(self, "Project",

if role is None, the Project creates a new default role,
trusting the codebuild.amazonaws.com service principal
role=some_role)

Roles

Version 2 234

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java

C#

import software.amazon.awscdk.services.iam.Role;
import software.amazon.awscdk.services.codebuild.Project;

// imagine roleOrNull is a function that might return a Role object
// under some conditions, and null under other conditions
Role someRole = roleOrNull();

// if someRole is null, the Project creates a new default role,

// trusting the codebuild.amazonaws.com service principal

Project project = Project.Builder.create(this, "Project")
.role(someRole).build();

using Amazon.CDK.AWS.CodeBuild;

// imagine roleOrNull is a function that might return a Role object
// under some conditions, and null under other conditions
var someRole = roleOrNull();

// if someRole is null, the Project creates a new default role,
// trusting the codebuild.amazonaws.com service principal
var project = new Project(this, "Project", new ProjectProps
{
Role = someRole

1)

Once the object is created, the role (whether the role passed in or the default one created
by the construct) is available as the property role. However, this property is not available
on external resources. Therefore, these constructs have an addToRolePolicy (Python:

add_to_role_policy) method.

The method does nothing if the construct is an external resource, and it calls the addToPolicy

(Python: add_to_policy) method of the role property otherwise. This saves you the trouble of

handling the undefined case explicitly.

The following example demonstrates:

Roles

Version 2 235

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

// project is imported into the CDK application
const project = codebuild.Project.fromProjectName(this, 'Project', 'ProjectName');

// project is imported, so project.role is undefined, and this call has no effect
project.addToRolePolicy(new iam.PolicyStatement({

effect: iam.Effect.ALLOW, // ... and so on defining the policy
1)

JavaScript

// project is imported into the CDK application
const project = codebuild.Project.fromProjectName(this, 'Project', 'ProjectName');

// project is imported, so project.role is undefined, and this call has no effect
project.addToRolePolicy(new iam.PolicyStatement({

effect: iam.Effect.ALLOW // ... and so on defining the policy
1)

Python

project is imported into the CDK application
project = codebuild.Project.from_project_name(self, 'Project', 'ProjectName')

project is imported, so project.role is undefined, and this call has no effect
project.add_to_role_policy(iam.PolicyStatement(

effect=iam.Effect.ALLOW, # ... and so on defining the policy

)

Java

// project is imported into the CDK application
Project project = Project.fromProjectName(this, "Project", "ProjectName");

// project is imported, so project.getRole() is null, and this call has no effect
project.addToRolePolicy(PolicyStatement.Builder.create()

.effect(Effect.ALLOW) // .. and so on defining the policy

.build();

Roles Version 2 236

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

)

CH#

// project is imported into the CDK application
var project = Project.FromProjectName(this, "Project", "ProjectName");

// project is imported, so project.role is null, and this call has no effect
project.AddToRolePolicy(new PolicyStatement(new PolicyStatementProps

{
Effect = Effect.ALLOW, // ... and so on defining the policy

1)

Resource policies

A few resources in AWS, such as Amazon S3 buckets and IAM roles, also have a resource policy.
These constructs have an addToResourcePolicy method (Python: add_to_resource_policy),
which takes a PolicyStatement as its argument. Every policy statement added to a resource

policy must specify at least one principal.

In the following example, the Amazon S3 bucket bucket grants a role with the s3:SomeAction
permission to itself.

Example

TypeScript

bucket.addToResourcePolicy(new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: ['s3:SomeAction'],
resources: [bucket.bucketArn],
principals: [role]

1)

JavaScript

bucket.addToResourcePolicy(new iam.PolicyStatement({
effect: iam.Effect.ALLOW,
actions: ['s3:SomeAction'],
resources: [bucket.bucketArn],

Resource policies Version 2 237

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.PolicyStatement.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

principals: [role]

1))
Python

bucket.add_to_resource_policy(iam.PolicyStatement(
effect=iam.Effect.ALLOW,
actions=["s3:SomeAction"],
resources=[bucket.bucket_arn],
principals=role))

Java

bucket.addToResourcePolicy(PolicyStatement.Builder.create()
.effect(Effect.ALLOW)
.actions(Arrays.asList("s3:SomeAction"))
.resources(Arrays.asList(bucket.getBucketArn()))
.principals(Arrays.aslList(role))
.build());

C#

bucket.AddToResourcePolicy(new PolicyStatement(new PolicyStatementProps

{
Effect = Effect.ALLOW,

Actions = new string[] { "s3:SomeAction" },
Resources = new string[] { bucket.BucketArn },
Principals = new IPrincipal[] { role }

1)

Using external IAM objects

If you have defined an IAM user, principal, group, or role outside your AWS CDK app, you can use
that IAM object in your AWS CDK app. To do so, create a reference to it using its ARN or its name.
(Use the name for users, groups, and roles.) The returned reference can then be used to grant
permissions or to construct policy statements as explained previously.

e Forusers, call User.fromUserArn() or User.fromUsexrName().

User.fromUserAttributes() is also available, but currently provides the same functionality
as User.fromUserAzrn().

Using external IAM objects Version 2 238

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html#static-fromwbruserwbrarnscope-id-userarn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.User.html#static-fromwbruserwbrnamescope-id-username

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

 For principals, instantiate an AtnPrincipal object.

« For groups, call Group.fromGroupArn() or Group.fromGroupName().

e Forroles, call Role.fromRoleArn() or Role.fromRoleName().

Policies (including managed policies) can be used in similar fashion using the following methods.
You can use references to these objects anywhere an IAM policy is required.

Policy.fromPolicyName

ManagedPolicy.fromManagedPolicyArn

ManagedPolicy.fromManagedPolicyName

ManagedPolicy.fromAwsManagedPolicyName

(@ Note

As with all references to external AWS resources, you cannot modify external IAM objects in
your CDK app.

Context values and the AWS CDK

Context values are key-value pairs that can be associated with an app, stack, or construct. They
may be supplied to your app from a file (usually either cdk. json or cdk.context. json in your
project directory) or on the command line.

The CDK Toolkit uses context to cache values retrieved from your AWS account during synthesis.
Values include the Availability Zones in your account or the Amazon Machine Image (AMI) IDs
currently available for Amazon EC2 instances. Because these values are provided by your AWS
account, they can change between runs of your CDK application. This makes them a potential
source of unintended change. The CDK Toolkit's caching behavior "freezes" these values for your
CDK app until you decide to accept the new values.

Imagine the following scenario without context caching. Let's say you specified "latest Amazon
Linux" as the AMI for your Amazon EC2 instances, and a new version of this AMI was released. Then,
the next time you deployed your CDK stack, your already-deployed instances would be using the
outdated ("wrong") AMI and would need to be upgraded. Upgrading would result in replacing all
your existing instances with new ones, which would probably be unexpected and undesired.

Context values Version 2 239

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ArnPrincipal.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html#static-fromwbrgroupwbrarnscope-id-grouparn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Group.html#static-fromwbrgroupwbrnamescope-id-groupname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#static-fromwbrrolewbrarnscope-id-rolearn-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Role.html#static-fromwbrrolewbrnamescope-id-rolename
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.Policy.html#static-fromwbrpolicywbrnamescope-id-policyname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrmanagedwbrpolicywbrarnscope-id-managedpolicyarn
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrmanagedwbrpolicywbrnamescope-id-managedpolicyname
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_iam.ManagedPolicy.html#static-fromwbrawswbrmanagedwbrpolicywbrnamemanagedpolicyname

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Instead, the CDK records your account’s available AMls in your project's cdk.context. json file,
and uses the stored value for future synthesis operations. This way, the list of AMIs is no longer a
potential source of change. You can also be sure that your stacks will always synthesize to the same
AWS CloudFormation templates.

Not all context values are cached values from your AWS environment. AWS CDK feature flags are

also context values. You can also create your own context values for use by your apps or constructs.

Context keys are strings. Values may be any type supported by JSON: numbers, strings, arrays, or
objects.

® Tip
If your constructs create their own context values, incorporate your library’s package name
in its keys so they won't conflict with other packages' context values.

Many context values are associated with a particular AWS environment, and a given CDK app can
be deployed in more than one environment. The key for such values includes the AWS account and
Region so that values from different environments do not conflict.

The following context key illustrates the format used by the AWS CDK, including the account and
Region.

availability-zones:account=123456789012:region=eu-central-1

/A Important

Cached context values are managed by the AWS CDK and its constructs, including
constructs you may write. Do not add or change cached context values by manually editing
files. It can be useful, however, to review cdk.context. json occasionally to see what
values are being cached. Context values that don’t represent cached values should be
stored under the context key of cdk. json. This way, they won't be cleared when cached
values are cleared.

Sources of context values

Context values can be provided to your AWS CDK app in six different ways:

Sources of context values Version 2 240

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

« Automatically from the current AWS account.

» Through the --context option to the cdk command. (These values are always strings.)
« In the project’s cdk.context. json file.

« In the context key of the project’s cdk. json file.

« Inthe context key of your ~/. cdk. json file.

« In your AWS CDK app using the construct.node.setContext() method.

The project file cdk.context. json is where the AWS CDK caches context values retrieved

from your AWS account. This practice avoids unexpected changes to your deployments when, for
example, a new Availability Zone is introduced. The AWS CDK does not write context data to any of
the other files listed.

/A Important

Because they're part of your application’s state, cdk. json and cdk.context.json must
be committed to source control along with the rest of your app’s source code. Otherwise,
deployments in other environments (for example, a Cl pipeline) might produce inconsistent
results.

Context values are scoped to the construct that created them; they are visible to child constructs,
but not to parents or siblings. Context values that are set by the AWS CDK Toolkit (the cdk
command) can be set automatically, from a file, or from the --context option. Context values
from these sources are implicitly set on the App construct. Therefore, they're visible to every
construct in every stack in the app.

Your app can read a context value using the construct.node.tryGetContext method. If the
requested entry isn't found on the current construct or any of its parents, the result is undefined.
(Alternatively, the result could be your language’s equivalent, such as None in Python.)

Context methods

The AWS CDK supports several context methods that enable AWS CDK apps to obtain contextual
information from the AWS environment. For example, you can get a list of Availability Zones that
are available in a given AWS account and Region, using the stack.availabilityZones method.

The following are the context methods:

Context methods Version 2 241

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#availabilityzones

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

HostedZone.fromLookup

Gets the hosted zones in your account.

stack.availabilityZones

Gets the supported Availability Zones.

StringParameter.valueFromLookup

Gets a value from the current Region’s Amazon EC2 Systems Manager Parameter Store.

Vpc.fromLookup

Gets the existing Amazon Virtual Private Clouds in your accounts.

LookupMachineImage

Looks up a machine image for use with a NAT instance in an Amazon Virtual Private Cloud.

If a required context value isn't available, the AWS CDK app notifies the CDK Toolkit that the
context information is missing. Next, the CLI queries the current AWS account for the information
and stores the resulting context information in the cdk.context. json file. Then, it executes the
AWS CDK app again with the context values.

Viewing and managing context

Use the cdk context command to view and manage the information in your
cdk.context. json file. To see this information, use the cdk context command without any
options. The output should be something like the following.

Context found in cdk.json:

HUSHH U HH USSR U R H U S S S S S S S S S S S S S S S S S A
Key # Value
#
HAS A A S S S S S S S S S S S S S S S S S S A S A
1 # availability-zones:account=123456789012:region=eu-central-1 # ["eu-central-la",
"eu-central-1b", "eu-central-1c"] #
HUSHH USSR U S H AR RS S S S S S S S S S S S S S S S S 1
2 # availability-zones:account=123456789012:region=eu-west-1 # ["eu-west-1la",
"eu-west-1b", "eu-west-1c"] #
HA A S A S A

Viewing and managing context Version 2 242

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_route53.HostedZone.html#static-fromwbrlookupscope-id-query
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#availabilityzones
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ssm.StringParameter.html#static-valuewbrfromwbrlookupscope-parametername
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.Vpc.html#static-fromwbrlookupscope-id-options
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.LookupMachineImage.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Run
cdk context --reset KEY_OR_NUMBER
to remove a context key. If it is a cached value, it will be refreshed on the next

cdk synth

To remove a context value, run cdk context --reset, specifying the value's corresponding
key or number. The following example removes the value that corresponds to the second key in
the preceding example. This value represents the list of Availability Zones in the Europe (Ireland)
Region.

cdk context --reset 2

Context value
availability-zones:account=123456789012:region=eu-west-1
reset. It will be refreshed on the next SDK synthesis run.

Therefore, if you want to update to the latest version of the Amazon Linux AMI, use the preceding
example to do a controlled update of the context value and reset it. Then, synthesize and deploy
your app again.

$ cdk synth

To clear all of the stored context values for your app, run cdk context --clear, as follows.

$ cdk context --clear

Only context values stored in cdk.context. json can be reset or cleared. The AWS CDK does
not touch other context values. Therefore, to protect a context value from being reset using these
commands, you might copy the value to cdk. json.

AWS CDK Toolkit --context flag

Use the - -context (-c for short) option to pass runtime context values to your CDK app during
synthesis or deployment.

AWS CDK Toolkit --context flag Version 2 243

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ cdk synth --context key=value MyStack

To specify multiple context values, repeat the --context option any number of times, providing
one key-value pair each time.

$ cdk synth --context keyl=valuel --context key2=value2 MyStack

When synthesizing multiple stacks, the specified context values are passed to all stacks. To provide
different context values to individual stacks, either use different keys for the values, or use multiple
cdk synthor cdk deploy commands.

Context values passed from the command line are always strings. If a value is usually of some other
type, your code must be prepared to convert or parse the value. You might have non-string context
values provided in other ways (for example, in cdk.context. json). To make sure this kind of
value works as expected, confirm that the value is a string before converting it.

Example

Following is an example of using an existing Amazon VPC using AWS CDK context.
Example

TypeScript

import * as cdk from 'aws-cdk-1lib';
import * as ec2 from 'aws-cdk-lib/aws-ec2';
import { Construct } from 'constructs';
export class ExistsVpcStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);
const vpcid = this.node.tryGetContext('vpcid');
const vpc = ec2.Vpc.fromLookup(this, 'VPC', {
vpcId: vpcid,
1);

const pubsubnets = vpc.selectSubnets({subnetType: ec2.SubnetType.PUBLIC});

Example Version 2 244

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

new cdk.CfnOutput(this, 'publicsubnets', {
value: pubsubnets.subnetIds.toString(),
});

JavaScript

const cdk = require('aws-cdk-1ib');
const ec2 = require('aws-cdk-1lib/aws-ec2');

class ExistsVpcStack extends cdk.Stack {
constructor(scope, id, props) {
super(scope, id, props);
const vpcid = this.node.tryGetContext('vpcid');
const vpc = ec2.Vpc.fromLookup(this, 'VPC', {
vpcId: vpcid
1);

const pubsubnets = vpc.selectSubnets({subnetType: ec2.SubnetType.PUBLIC});

new cdk.CfnOutput(this, 'publicsubnets', {
value: pubsubnets.subnetIds.toString()

1)

module.exports = { ExistsVpcStack }

Python

import aws_cdk as cdk

import aws_cdk.aws_ec2 as ec2
from constructs import Construct
class ExistsVpcStack(cdk.Stack):

def __init_ (scope: Construct, id: str, **kwargs):

super().__init_ (scope, id, **kwargs)

Example Version 2 245

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

vpcid = self.node.try_get_context("vpcid")
vpc = ec2.Vpc.from_lookup(self, "VPC", vpc_id=vpcid)

pubsubnets = vpc.select_subnets(subnetType=ec2.SubnetType.PUBLIC)

cdk.CfnOutput(self, "publicsubnets",
value=pubsubnets.subnet_ids.to_string())

Java

import software.amazon.awscdk.CfnOutput;

import software.amazon.awscdk.services.ec2.Vpc;

import software.amazon.awscdk.services.ec2.VpcLookupOptions;
import software.amazon.awscdk.services.ec2.SelectedSubnets;
import software.amazon.awscdk.services.ec2.SubnetSelection;
import software.amazon.awscdk.services.ec2.SubnetType;
import software.constructs.Construct;

public class ExistsVpcStack extends Stack {

public ExistsVpcStack(Construct context, String id) {
this(context, id, null);

public ExistsVpcStack(Construct context, String id, StackProps props) {
super(context, id, props);
String vpcIld = (String)this.getNode().tryGetContext("vpcid");
Vpc vpc = (Vpc)Vpc.fromLookup(this, "VPC", VpcLookupOptions.builder()

.vpcId(vpcId).build());

SelectedSubnets pubSubNets = vpc.selectSubnets(SubnetSelection.builder()
.subnetType(SubnetType.PUBLIC).build());

CfnOutput.Builder.create(this, "publicsubnets")
.value(pubSubNets.getSubnetIds().toString()).build();

CH#

using Amazon.CDK;

Example Version 2 246

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK.AWS.EC2;
using Constructs;

class ExistsVpcStack : Stack
{

public ExistsVpcStack(Construct scope, string id, StackProps props)
base(scope, id, props)

{
var vpcld = (string)this.Node.TryGetContext("vpcid");
var vpc = Vpc.FromLookup(this, "VPC", new VpcLookupOptions
{
VpcId = vpcld
1}
SelectedSubnets pubSubNets = vpc.SelectSubnets([new SubnetSelection
{
SubnetType = SubnetType.PUBLIC
ipF
new CfnOutput(this, "publicsubnets", new CfnOutputProps {
Value = pubSubNets.SubnetIds.ToString()
18
}

You can use cdk diff to see the effects of passing in a context value on the command line:

$ cdk diff -c vpcid=vpc-0cb9c31031d0d3e22

Stack ExistsvpcStack

Outputs

[+] Output publicsubnets publicsubnets:
{"Value":"subnet-06e@ea7dd302d3e8f, subnet-01fc@acfb58f3128f"}

The resulting context values can be viewed as shown here.

$ cdk context -j

"vpc-provider:account=123456789012:filter.vpc-id=vpc-0cb9c31031d0d3e22:region=us-
east-1": {

Example Version 2 247

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

"vpcId": "vpc-0cb9c31031dod3e22",

"availabilityZones": [
"us-east-1la",
"us-east-1b"

1,
"privateSubnetIds": [

"subnet-03ecfc®33225be285",
"subnet-0cded5da53180@ebfa"

1,
"privateSubnetNames": [
"Private"

1,

"privateSubnetRouteTableIds":

"rtb-0e955393ced0@adads",
"rtb-05602e7b9f310e5b0"

15
"publicSubnetIds": [

"subnet-06e@ea7dd302d3e8f",
"subnet-01fc@acfb58f3128f"

15
"publicSubnetNames": [

"Public"
1,

"publicSubnetRouteTablelIds":

"rtb-00d1fdfd823c82289",
"rtb-04bb1969b42969bch"

AWS CDK feature flags

L

The AWS CDK uses feature flags to enable potentially breaking behaviors in a release. Flags are
stored as Context values and the AWS CDK values in cdk. json (or ~/.cdk. json). They are not

removed by the cdk context --reset orcdk context --clear commands.

Feature flags are disabled by default. Existing projects that do not specify the flag will continue to

work as before with later AWS CDK releases. New projects created using cdk init include flags

enabling all features available in the release that created the project. Edit cdk. json to disable

any flags for which you prefer the earlier behavior. You can also add flags to enable new behaviors

after upgrading the AWS CDK.

Feature flags

Version 2 248

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

A list of all current feature flags can be found on the AWS CDK GitHub repository in
FEATURE_FLAGS.md. See the CHANGELOG in a given release for a description of any new feature
flags added in that release.

Reverting to v1 behavior

In CDK v2, the defaults for some feature flags have been changed with respect to v1. You can set
these back to false to revert to specific AWS CDK v1 behavior. Use the cdk diff command to
inspect the changes to your synthesized template to see if any of these flags are needed.

@aws-cdk/core:newStyleStackSynthesis

Use the new stack synthesis method, which assumes bootstrap resources with well-known
names. Requires modern bootstrapping, but in turn allows Cl/CD via CDK Pipelines and cross-
account deployments out of the box.

@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveld

If your application uses multiple Amazon APl Gateway API keys and associates them to usage
plans.

@aws-cdk/aws-rds:lowercaseDbIdentifier

If your application uses Amazon RDS database instance or database clusters, and explicitly
specifies the identifier for these.

@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021

If your application uses the TLS_V1_2_2019 security policy with Amazon CloudFront
distributions. CDK v2 uses security policy TLSv1.2_2021 by default.

@aws-cdk/core:stackRelativeExports

If your application uses multiple stacks and you refer to resources from one stack in another,
this determines whether absolute or relative path is used to construct AWS CloudFormation
exports.

@aws-cdk/aws-lambda:recognizeVersionProps

If set to false, the CDK includes metadata when detecting whether a Lambda function has
changed. This can cause deployment failures when only the metadata has changed, since
duplicate versions are not allowed. There is no need to revert this flag if you've made at least
one change to all Lambda Functions in your application.

Reverting to v1 behavior Version 2 249

https://github.com/aws/aws-cdk/blob/main/packages/aws-cdk-lib/cx-api/FEATURE_FLAGS.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The syntax for reverting these flags in cdk. json is shown here.

"context": {
"@aws-cdk/core:newStyleStackSynthesis": false,
"@aws-cdk/aws-apigateway:usagePlanKeyOrderInsensitiveId": false,
"@aws-cdk/aws-cloudfront:defaultSecurityPolicyTLSv1.2_2021": false,
"@aws-cdk/aws-rds:lowercaseDbIdentifier": false,
"@aws-cdk/core:stackRelativeExports": false,
"@aws-cdk/aws-lambda:recognizeVersionProps": false

Aspects and the AWS CDK

Aspects are a way to apply an operation to all constructs in a given scope. The aspect could
modify the constructs, such as by adding tags. Or it could verify something about the state of the
constructs, such as making sure that all buckets are encrypted.

To apply an aspect to a construct and all constructs in the same scope, call
Aspects.of(<SCOPE>).add() with a new aspect, as shown in the following example.

Example

TypeScript

Aspects.of (myConstruct).add(new SomeAspect(...));
JavaScript

Aspects.of(myConstruct).add(new SomeAspect(...));
Python

Aspects.of(my_construct).add(SomeAspect(...))
Java

Aspects.of(myConstruct).add(new SomeAspect(...));

Aspects Version 2 250

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Aspects.html#static-ofscope

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#
Aspects.0f(myConstruct).add(new SomeAspect(...));
Go

awscdk.Aspects_0Of(stack).Add(awscdk.NewTag(...))

The AWS CDK uses aspects to tag resources, but the framework can also be used for other
purposes. For example, you can use it to validate or change the AWS CloudFormation resources
that are defined for you by higher-level constructs.

Aspects in detail

Aspects employ the visitor pattern. An aspect is a class that implements the following interface.

Example
TypeScript

interface IAspect {
visit(node: IConstruct): void;}

JavaScript

JavaScript doesn't have interfaces as a language feature. Therefore, an aspect is simply an
instance of a class having a visit method that accepts the node to be operated on.

Python

Python doesn’t have interfaces as a language feature. Therefore, an aspect is simply an instance
of a class having a visit method that accepts the node to be operated on.

Java

public interface IAspect {
public void visit(Construct node);

C#

public interface IAspect

Aspects in detail Version 2 251

https://en.wikipedia.org/wiki/Visitor_pattern

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

{

void Visit(IConstruct node);

Go

type IAspect interface {
Visit(node constructs.IConstruct)

}

When you call Aspects.of (<SCOPE>).add(..) , the construct adds the aspect to an internal list
of aspects. You can obtain the list with Aspects.of (<SCOPE>).

During the prepare phase, the AWS CDK calls the visit method of the object for the construct
and each of its children in top-down order.

The visit method is free to change anything in the construct. In strongly typed languages, cast
the received construct to a more specific type before accessing construct-specific properties or
methods.

Aspects don't propagate across Stage construct boundaries, because Stages are self-contained
and immutable after definition. Apply aspects on the Stage construct itself (or lower) if you want
them to visit constructs inside the Stage.

Example

The following example validates that all buckets created in the stack have versioning enabled. The
aspect adds an error annotation to the constructs that fail the validation. This results in the synth
operation failing and prevents deploying the resulting cloud assembly.

Example

TypeScript

class BucketVersioningChecker implements IAspect {
public visit(node: IConstruct): void {
// See that we're dealing with a CfnBucket
if (node instanceof s3.CfnBucket) {

// Check for versioning property, exclude the case where the property

Example Version 2 252

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// can be a token (IResolvable).
if (!node.versioningConfiguration
|| (!Tokenization.isResolvable(node.versioningConfiguration)
&& node.versioningConfiguration.status !== 'Enabled')) {
Annotations.of(node).addError('Bucket versioning is not enabled');

}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

JavaScript

class BucketVersioningChecker {
visit(node) {
// See that we're dealing with a CfnBucket
if (node instanceof s3.CfnBucket) {

// Check for versioning property, exclude the case where the property
// can be a token (IResolvable).
if (!node.versioningConfiguration
|| !'Tokenization.isResolvable(node.versioningConfiguration)
&& node.versioningConfiguration.status !== 'Enabled')) {
Annotations.of(node).addError('Bucket versioning is not enabled');

}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

Python

@jsii.implements(cdk.IAspect)
class BucketVersioningChecker:

def visit(self, node):
See that we're dealing with a CfnBucket
if isinstance(node, s3.CfnBucket):

Example Version 2 253

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Check for versioning property, exclude the case where the property
can be a token (IResolvable).
if (not node.versioning_configuration or
not Tokenization.is_resolvable(node.versioning_configuration)
and node.versioning_configuration.status != "Enabled"):
Annotations.of(node).add_error('Bucket versioning is not enabled')

Later, apply to the stack
Aspects.of(stack).add(BucketVersioningChecker())

Java

public class BucketVersioningChecker implements IAspect

{
@Override
public void visit(Construct node)
{
// See that we're dealing with a CfnBucket
if (node instanceof CfnBucket)
{
CfnBucket bucket = (CfnBucket)node;
Object versioningConfiguration = bucket.getVersioningConfiguration();
if (versioningConfiguration == null ||
!Tokenization.isResolvable(versioningConfiguration.toString())
&&
lversioningConfiguration.toString().contains("Enabled"))
Annotations.of(bucket.getNode()).addError("Bucket versioning is not
enabled");
}
}
}

// Later, apply to the stack
Aspects.of(stack).add(new BucketVersioningChecker());

CH#

class BucketVersioningChecker : Amazon.Jsii.Runtime.Deputy.DeputyBase, IAspect
{
public void Visit(IConstruct node)
{
// See that we're dealing with a CfnBucket
if (node is CfnBucket)

Example Version 2 254

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

{
var bucket = (CfnBucket)node;
if (bucket.VersioningConfiguration is null ||
!Tokenization.IsResolvable(bucket.VersioningConfiguration) &&
!bucket.VersioningConfiguration.ToString().Contains("Enabled"))
Annotations.Of(bucket.Node).AddError("Bucket versioning is not
enabled");
}

// Later, apply to the stack
Aspects.0f(stack).add(new BucketVersioningChecker());

Example Version 2 255

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK prerequisites

Complete all prerequisites before getting started with the AWS Cloud Development Kit (AWS CDK).

Set up your AWS account

If you or your organization are new to AWS, you must set up your AWS account. This includes
signing up for an AWS account, securing your root user, determining your method of managing
users, and creating an administrative user. To manage users, you can use AWS Identity and Access
Management (IAM) or AWS IAM Identity Center. We recommend that you use IAM Identity Center.
For more information, see the following:

o What is IAM? in the IAM User Guide.
o What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

After setting up an AWS account, you should have an administrative user and the ability to create
and manage additional users using IAM or IAM Identity Center.

Before moving forward, we recommend that you take time to learn the recommended best
practices in AWS Identity and Access Management. For more information, see Security best
practices and use cases in AWS Identity and Access Management in the IAM User Guide.

Install and configure the AWS CLI

When you develop AWS CDK applications on your local machine, you will use the AWS Cloud
Development Kit (AWS CDK) Command Line Interface (CLI) to interact with AWS, such as
deploying applications to provision your AWS resources. To interact with AWS outside of the AWS
Management Console, you must configure security credentials on your local machine. To do this,
we recommend that you install and use the AWS Command Line Interface (AWS CLI).

For instructions on installing the AWS CLI, see Install or update to the latest version of the AWS CLI
in the AWS Command Line Interface User Guide.

How you configure security credentials will depend on how you or your organization manages
users. For instructions, see Authentication and access credentials in the AWS Command Line
Interface User Guide.

Set up your AWS account Version 2 256

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

After installing and configuring the AWS CLI, you should have the following:

« The AWS CLlI installed on your local machine.

» Credentials configured in a config on your local machine using the AWS CLI.

Install Node.js and programming language prerequisites

All AWS CDK developers, regardless of the supported programming language that you will use,
require Node.js 22.x or later. All supported programming languages use the same backend, which
runs on Node.js. We recommend a version in active long-term support.

For more information on supported Node.js versions, see Supported Node versions.

Other programming language prerequisites depend on the language that you will use to develop
AWS CDK applications:

Example
TypeScript

« TypeScript 3.8 or later (hpm -g install typescript)

JavaScript

« No additional requirements

Python

e Python 3.7 or later including pip and virtualenv

Java

« Java Development Kit (JDK) 8 (a.k.a. 1.8) or later

» Apache Maven 3.5 or later

Java IDE recommended (we use Eclipse ™ in some examples in this guide). IDE must be able
to import Maven projects. Check to make sure that your project is set to use Java 1.8. Set the
JAVA_HOME environment variable to the path where you have installed the JDK.

Install Node.js and programming language prerequisites Version 2 257

https://nodejs.org/en/download/
https://nodejs.org/en/about/releases/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#
.NET Core 3.1 or later, or .NET 6.0 or later.

Visual Studio 2019 (any edition) or Visual Studio Code recommended.
Go

Go 1.1.8 or later.

@ Third-party language deprecation

Each language version is only supported until it is EOL (End Of Life) and is subject to
change with prior notice.

Next steps

To get started with the AWS CDK, see Getting started with the AWS CDK.

Next steps Version 2 258

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Getting started with the AWS CDK

Get started with the AWS Cloud Development Kit (AWS CDK) by installing and configuring the AWS
CDK Command Line Interface (AWS CDK CLI). Then, use the CDK CLI to create your first CDK app,
bootstrap your AWS environment, and deploy your application.

Prerequisites

Before getting started with the AWS CDK, complete all prerequisites. These prerequisites are
required for those that are new to AWS or new to programming. For instructions, see AWS CDK
prerequisites.

We recommend that you have a basic understanding of what the AWS CDK is. For more
information, see What is the AWS CDK? and Learn AWS CDK core concepts.

Install the AWS CDK CLI

Use the Node Package Manager to install the CDK CLI. We recommend that you install it globally
using the following command:

$ npm install -g aws-cdk
To install a specific version of the CDK CLI, use the following command structure:

$ npm install -g aws-cdk@X.YY.Z

If you want to use multiple versions of the AWS CDK, consider installing a matching version of
the CDK CLI in individual CDK projects. To do this, remove the -g option from the npm install
command. Then, use npx aws-cdk to invoke the CDK CLI. This will run a local version if it exists.
Otherwise, the globally installed version will be used.

Troubleshoot a CDK CLI installation

If you get a permission error, and have administrator access on your system, run the following:

$ sudo npm install -g aws-cdk

If you receive an error message, try uninstalling the CDK CLI by running the following:

Prerequisites Version 2 259

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

$ npm uninstall -g aws-cdk

Then, repeat steps to reinstall the CDK CLI.

Verify a successful CDK CLI installation

Run the following command to verify a successful installation. The AWS CDK CLI should output the
version humber:

$ cdk --version

Configure the AWS CDK CLI

After installing the CDK CLI, you can start using it to develop applications on your local machine.
To interact with AWS, such as deploying applications, you must have security credentials
configured on your local machine with permissions to perform any actions that you initiate.

To configure security credentials on your local machine, you use the AWS CLI. How you configure
security credentials depends on how you manage users. For instructions, see Authentication and

access credentials in the AWS Command Line Interface User Guide.

The CDK CLI will automatically use the security credentials that you configure with the AWS

CLI. For example, if you are an IAM Identity Center user, you can use the aws configure

sso command to configure security credentials. If you are an IAM user, you can use the aws
configure command. The AWS CLI will guide you through configuring security credentials on
your local machine and save the necessary information in your config and credentials files.
Then, when you use the CDK CLI, such as deploying an application with cdk deploy, the CDK CLI
will use your configured security credentials.

Just like the AWS CLI, the CDK CLI will use your default profile by default. You can specify a
profile using the CDK CLI - -profile option. For more information on using security credentials
with the CDK CLI, see Configure security credentials for the AWS CDK CLI.

(Optional) Install additional AWS CDK tools

The AWS Toolkit for Visual Studio Code is an open source plug-in for Visual Studio Code that helps
you create, debug, and deploy applications on AWS. The toolkit provides an integrated experience

Verify a successful CDK CLI installation Version 2 260

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html
https://aws.amazon.com/visualstudiocode/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

for developing AWS CDK applications. It includes the AWS CDK Explorer feature to list your AWS
CDK projects and browse the various components of the CDK application. For instructions, see the
following:

« Installing the AWS Toolkit for Visual Studio Code.
« AWS CDK for VS Code.

Create your first CDK app

You're now ready to get started with using the AWS CDK by creating your first CDK app. For
instructions, see Tutorial: Create your first AWS CDK app.

Tutorial: Create your first AWS CDK app

Get started with using the AWS Cloud Development Kit (AWS CDK) by using the AWS CDK
Command Line Interface (AWS CDK CLI) to develop your first CDK app, bootstrap your AWS
environment, and deploy your application on AWS.

Prerequisites

Before starting this tutorial, complete all set up steps in Getting started with the AWS CDK.

About this tutorial

In this tutorial, you will create and deploy a simple application on AWS using the AWS CDK. The
application consists of an AWS Lambda function that returns a Hello World! message when

invoked. The function will be invoked through a Lambda function URL that serves as a dedicated

HTTP(S) endpoint for your Lambda function.

Through this tutorial, you will perform the following:

» Create your project — Create a CDK project using the CDK CLI cdk init command.

» Configure your AWS environment — Configure the AWS environment that you will deploy your
application into.

« Bootstrap your AWS environment — Prepare your AWS environment for deployment by
bootstrapping it using the CDK CLI cdk bootstrap command.

» Develop your app — Use constructs from the AWS Construct Library to define your Lambda
function and Lambda function URL resources.

Create your first CDK app Version 2 261

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/cdk-explorer.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Prepare your app for deployment — Use the CDK CLI to build your app and synthesize an AWS
CloudFormation template.

Deploy your app — Use the CDK CLI cdk deploy command to deploy your application and
provision your AWS resources.

Interact with your application - Interact with your deployed Lambda function on AWS by
invoking it and receiving a response.

Modify your app — Modify your Lambda function and deploy to implement your changes.

Delete your app — Delete all resources that you created by using the CDK CLI cdk destroy
command.

Step 1: Create your CDK project

In this step, you create a new CDK project. A CDK project should be in its own directory, with its

own local module dependencies.

To create a CDK project

1. From a starting directory of your choice, create and navigate to a directory named hello-
cdk:

$ mkdir hello-cdk && cd hello-cdk

/A Important

Be sure to name your project directory hello-cdk, exactly as shown here. The CDK
CLI uses this directory name to name things within your CDK code. If you use a
different directory name, you will run into issues during this tutorial.

2. From the hello-cdk directory, initialize a new CDK project using the CDK CLIcdk init
command. Specify the app template and your preferred programming language with the - -
language option:

Example

TypeScript

$ cdk init app --language typescript

Step 1: Create your CDK project Version 2 262

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

$ cdk init app --language javascript

Python

$ cdk init app --language python

After the app has been created, also enter the following two commands. These activate
the app’s Python virtual environment and installs the AWS CDK core dependencies.

$ source .venv/bin/activate # On Windows, run °.\venv\Scripts\activate' instead
$ python -m pip install -r requirements.txt

Java
$ cdk init app --language java
If you are using an IDE, you can now open or import the project. In Eclipse, for example,

choose File > Import > Maven > Existing Maven Projects. Make sure that the project
settings are set to use Java 8 (1.8).

CH#

$ cdk init app --language csharp

If you are using Visual Studio, open the solution file in the src directory.

Go

$ cdk init app --language go

After the app has been created, also enter the following command to install the AWS
Construct Library modules that the app requires.

$ go get

Step 1: Create your CDK project Version 2 263

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The cdk init command creates a structure of files and folders within the hello-cdk directory
to help organize the source code for your CDK app. This structure of files and folders is called your
CDK project. Take a moment to explore your CDK project.

If you have Git installed, each project you create using cdk init is also initialized as a Git
repository.

During project initialization, the CDK CLI creates a CDK app containing a single CDK stack. The CDK

app instance is created using the App construct. The following is a portion of this code from your
CDK application file:

Example
TypeScript

Located in bin/hello-cdk. ts:

#!/usr/bin/env node

import 'source-map-support/register’;

import * as cdk from 'aws-cdk-lib';

import { HelloCdkStack } from '../lib/hello-cdk-stack';

const app = new cdk.App();
new HelloCdkStack(app, 'HelloCdkStack',6 {
1)

JavaScript

Located in bin/hello-cdk. js:

#!/usr/bin/env node

const cdk = require('aws-cdk-1ib');
const { HelloCdkStack } = require('../lib/hello-cdk-stack');

const app = new cdk.App();

new HelloCdkStack(app, 'HelloCdkStack',6 {
});

Python

Located in app.py:

Step 1: Create your CDK project Version 2 264

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.App.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

#!/usr/bin/env python3
import os

import aws_cdk as cdk
from hello_cdk.hello_cdk_stack import HelloCdkStack

app = cdk.App()
HelloCdkStack(app, "HelloCdkStack",)

app.synth()

Java

Located in src/main/java/../HelloCdkApp.java :

package com.myorg;

import software.amazon.awscdk.App;
import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

import java.util.Arrays;

public class HelloCdkApp {
public static void main(final String[] args) {
App app = new App();

new HelloCdkStack(app, "HelloCdkStack", StackProps.builder()
.build());

app.synth();

CH#

Located in src/HelloCdk/Program.cs:

using Amazon.CDK;

using System;

using System.Collections.Generic;
using System.Ling;

Step 1: Create your CDK project Version 2 265

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

namespace HelloCdk

{

sealed class Program
{
public static void Main(string[] args)
{
var app = new App();
new HelloCdkStack(app, "HelloCdkStack", new StackProps
)8
app.Synth();

Go

Located in hello-cdk.go:

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v1Q"
"github.com/aws/jsii-runtime-go"

2 coo

func main() {
defer jsii.Close()

app := awscdk.NewApp(nil)

NewHelloCdkStack(app, "HelloCdkStack", &HelloCdkStackProps{
awscdk.StackProps{
Env: env(),
b
1)

app.Synth(nil)

Step 1: Create your CDK project

Version 2 266

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// ...

The CDK stack is created using the Stack construct. The following is a portion of this code from
your CDK stack file:

Example
TypeScript

Located in 1ib/hello-cdk-stack.ts:

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs';

export class HelloCdkStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {

super(scope, id, props);

// Define your constructs here

JavaScript

Located in 1ib/hello-cdk-stack. js:

const { Stack } = require('aws-cdk-1ib');
class HelloCdkStack extends Stack {
constructor(scope, id, props) {

super(scope, id, props);

// Define your constructs here

module.exports = { HelloCdkStack }

Step 1: Create your CDK project Version 2 267

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

Located in hello_cdk/hello_cdk_stack.py:

from aws_cdk import (
Stack,
)

from constructs import Construct

class HelloCdkStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define your constructs here

Java

Located in src/main/java/../HelloCdkStack. java :

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);
}

public HelloCdkStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Define your constructs here

}

C#

Located in src/HelloCdk/HelloCdkStack.cs:

Step 1: Create your CDK project Version 2 268

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using Amazon.CDK;
using Constructs;

namespace HelloCdk

{
public class HelloCdkStack : Stack

{
internal HelloCdkStack(Construct scope, string id, IStackProps props = null)

base(scope, id, props)

{

// Define your constructs here

}

Go

Located in hello-cdk.go:

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

type HelloCdkStackProps struct {
awscdk.StackProps

func NewHelloCdkStack(scope constructs.Construct, id string, props
*HelloCdkStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

return stack

Y coo

Step 1: Create your CDK project Version 2 269

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Step 2: Configure your AWS environment

In this step, you configure the AWS environment for your CDK stack. By doing this, you specify
which environment your CDK stack will be deployed to.

First, determine the AWS environment that you want to use. An AWS environment consists of an
AWS account and AWS Region.

When you use the AWS CLI to configure security credentials on your local machine, you can then
use the AWS CLI to obtain AWS environment information for a specific profile.

To use the AWS CLI to obtain your AWS account ID

1. Run the following AWS CLI command to get the AWS account ID for your default profile:

$ aws sts get-caller-identity --query "Account" --output text

2. If you prefer to use a named profile, provide the name of your profile using the --profile
option:

$ aws sts get-caller-identity --profile your-profile-name --query "Account" --
output text

To use the AWS CLI to obtain your AWS Region

1. Run the following AWS CLI command to get the Region that you configured for your
default profile:

$ aws configure get region

2. If you prefer to use a named profile, provide the name of your profile using the --profile
option:

$ aws configure get region --profile your-profile-name

Next, you will configure the AWS environment for your CDK stack by modifying the
HelloCdkStack instance in your application file. For this tutorial, you will hard code your AWS
environment information. This is recommended for production environments. For information on
other ways to configure environments, see Configure environments to use with the AWS CDK.

Step 2: Configure your AWS environment Version 2 270

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To configure the environment for your CDK stack

1. In your application file, use the env property of the Stack construct to configure your
environment. The following is an example:

Example
TypeScript

Located in bin/hello-cdk.ts:

#!/usr/bin/env node

import 'source-map-support/register’;

import * as cdk from 'aws-cdk-1lib';

import { HelloCdkStack } from '../lib/hello-cdk-stack';

const app = new cdk.App();
new HelloCdkStack(app, 'HelloCdkStack',6 {

env: { account: '123456789012', region: 'us-east-1' 1},
35;

JavaScript

Located in bin/hello-cdk. js:

#!/usr/bin/env node

const cdk = require('aws-cdk-1ib');
const { HelloCdkStack } = require('../lib/hello-cdk-stack');

const app = new cdk.App();
new HelloCdkStack(app, 'HelloCdkStack',6 {

env: { account: '123456789012', region: 'us-east-1' },
1);

Python

Located in app.py:

#!/usr/bin/env python3
import os

import aws_cdk as cdk
Step 2: Configure your AWS environment Version 2 271

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

from hello_cdk.hello_cdk_stack import HelloCdkStack

app = cdk.App()

HelloCdkStack(app, "HelloCdkStack",
env=cdk.Environment(account='123456789012', region='us-east-1'),

)

app.synth()

Java

Located in src/main/java/../HelloCdkApp.java :

package com.myorg;

import software.amazon.awscdk.App;

import software.amazon.awscdk.Environment;
import software.amazon.awscdk.StackProps;

import java.util.Arrays;

public class HelloCdkApp {
public static void main(final String[] args) {

App app = new App();
new HelloCdkStack(app, "HelloCdkStack", StackProps.builder()
.env(Environment.builder()
.account("123456789012")
.region("us-east-1")
.build())
.build());

app.synth();

CH#

Located in src/HelloCdk/Program.cs:

using Amazon.CDK;

Step 2: Configure your AWS environment Version 2 272

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

using System;
using System.Collections.Generic;
using System.Ling;

namespace HelloCdk

{
sealed class Program
{
public static void Main(string[] args)
{
var app = new App();
new HelloCdkStack(app, "HelloCdkStack", new StackProps
{
Env = new Amazon.CDK.Environment
{
Account = "123456789012",
Region = "us-east-1",
}
1);
app.Synth();
}
}
}

Go

Located in hello-cdk.go:

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"

// ...

func main() {
defer jsii.Close()

app := awscdk.NewApp(nil)

Step 2: Configure your AWS environment Version 2 273

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

NewHelloCdkStack(app, "HelloCdkStack", &HelloCdkStackProps{
awscdk.StackProps{
Env: env(),
.
)

app.Synth(nil)
}

func env() *awscdk.Environment {
return &awscdk.Environment{
Account: jsii.String("123456789012"),
Region: jsii.String("us-east-1"),

}

}

Step 3: Bootstrap your AWS environment

In this step, you bootstrap the AWS environment that you configured in the previous step. This
prepares your environment for CDK deployments.

To bootstrap your environment, run the following from the root of your CDK project:

$ cdk bootstrap

By bootstrapping from the root of your CDK project, you don't have to provide any additional
information. The CDK CLI obtains environment information from your project. When you bootstrap
outside of a CDK project, you must provide environment information with the cdk bootstrap
command. For more information, see Bootstrap your environment for use with the AWS CDK.

Step 4: Build your CDK app

In most programming environments, you build or compile code after making changes. This isn't
necessary with the AWS CDK since the CDK CLI will automatically perform this step. However,
you can still build manually when you want to catch syntax and type errors. The following is an
example:

Step 3: Bootstrap your AWS environment Version 2 274

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Example

TypeScript

$ npm run build

> hello-cdk@@.1.0 build
> tsc

JavaScript

No build step is necessary.

Python

No build step is necessary.

Java

$ mvn compile -q

Or press Control-B in Eclipse (other Java IDEs may vary)

CH#

$ dotnet build src

Or press F6 in Visual Studio
Go

$ go build

Step 5: List the CDK stacks in your app

At this point, you should have a CDK app containing a single CDK stack. To verify, use the CDK
CLI cdk 1list command to display your stacks. The output should display a single stack named

HelloCdkStack:

$ cdk list

Step 5: List the CDK stacks in your app

Version 2 275

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

HelloCdkStack

If you don't see this output, verify that you are in the correct working directory of your project and
try again. If you still don't see your stack, repeat Step 1: Create your CDK project and try again.

Step 6: Define your Lambda function

In this step, you import the aws_1lambda module from the AWS Construct Library and use the
Function L2 construct.

Modify your CDK stack file as follows:
Example
TypeScript

Located in 1ib/hello-cdk-stack.ts:

import * as cdk from 'aws-cdk-1lib';

import { Construct } from 'constructs';

// Import the Lambda module

import * as lambda from 'aws-cdk-lib/aws-lambda';

export class HelloCdkStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Define the Lambda function resource
const myFunction = new lambda.Function(this, "HelloWorldFunction", {
runtime: lambda.Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
handler: "index.handler",
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
%
),
D)8

Step 6: Define your Lambda function Version 2 276

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda.Function.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

Located in 1ib/hello-cdk-stack. js:

const { Stack } = require('aws-cdk-1lib');
// Import the Lambda module
const lambda = require('aws-cdk-lib/aws-lambda');

class HelloCdkStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define the Lambda function resource
const myFunction = new lambda.Function(this, "HelloWorldFunction", {
runtime: lambda.Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
handler: "index.handler",
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
%
};
),
});

module.exports = { HelloCdkStack }

Python

Located in hello_cdk/hello_cdk_stack.py:

from aws_cdk import (
Stack,
aws_lambda as _lambda, # Import the Lambda module

)

from constructs import Construct

class HelloCdkStack(Stack):

Step 6: Define your Lambda function Version 2 277

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define the Lambda function resource
my_function = _lambda.Function(
self, "HelloWorldFunction",
runtime = _lambda.Runtime.NODEJS_20_X, # Provide any supported Node.js runtime
handler = "index.handler",
code = _lambda.Code.from_inline(
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};
I

),

Java

Located in src/main/java/../HelloCdkStack. java

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

// Import Lambda function

import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);

public HelloCdkStack(final Construct scope, final String id, final StackProps

props) {
super(scope, id, props);

// Define the Lambda function resource

Step 6: Define your Lambda function Version 2 278

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Function myFunction = Function.Builder.create(this, "HelloWorldFunction")
.runtime(Runtime.NODEJS_20_X) // Provide any supported Node.js runtime
.handler("index.handlexr")

.code(Code.fromInline(
"exports.handler = async function(event) {" +
" return {" +
" statusCode: 200," +
" body: JSON.stringify('Hello World!')" +
"+
"}")

.build();

CH#

Located in src/main/java/../HelloCdkStack. java

using Amazon.CDK;
using Constructs;
// Import the Lambda module
using Amazon.CDK.AWS.Lambda;

namespace HelloCdk
{
public class HelloCdkStack : Stack
{
internal HelloCdkStack(Construct scope, string id, IStackProps props = null)
base(scope, id, props)
{
// Define the Lambda function resource
var myFunction = new Function(this, "HelloWorldFunction", new FunctionProps
{
Runtime = Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
Handler = "index.handler",
Code = Code.FromInline(@"
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!'),
};

};
")I

Step 6: Define your Lambda function Version 2 279

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)

Go

Located in hello-cdk.go:

package main

import (
"github.com/aws/aws-cdk-go/awscdk/v2"
"github.com/aws/constructs-go/constructs/v10"
"github.com/aws/jsii-runtime-go"
// Import the Lambda module
"github.com/aws/aws-cdk-go/awscdk/v2/awslambda"

type HelloCdkStackProps struct {
awscdk.StackProps

func NewHelloCdkStack(scope constructs.Construct, id string, props
*HelloCdkStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps

}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define the Lambda function resource

myFunction := awslambda.NewFunction(stack, jsii.String("HelloWorldFunction"),

&awslambda.FunctionProps{
Runtime: awslambda.Runtime_NODEJS_20_X(), // Provide any supported Node.js

runtime
Handler: jsii.String("index.handler"),
Code: awslambda.Code_FromInline(jsii.String("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
I
};

Step 6: Define your Lambda function Version 2 280

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

1)),
1)

return stack

// ...

Let's take a closer look at the Function construct. Like all constructs, the Function class takes
three parameters:

» scope — Defines your Stack instance as the parent of the Function construct. All constructs
that define AWS resources are created within the scope of a stack. You can define constructs
inside of constructs, creating a hierarchy (tree). Here, and in most cases, the scope is this (self
in Python).

« Id - The construct ID of the Function within your AWS CDK app. This ID, plus a hash based on
the function’s location within the stack, uniquely identifies the function during deployment.
The AWS CDK also references this ID when you update the construct in your app and re-deploy
to update the deployed resource. Here, your construct ID is HelloWorldFunction. Functions
can also have a name, specified with the functionName property. This is different from the
construct ID.

« props - A bundle of values that define properties of the function. Here you define the runtime,
handler, and code properties.

Props are represented differently in the languages supported by the AWS CDK.

 In TypeScript and JavaScript, props is a single argument and you pass in an object containing
the desired properties.

« In Python, props are passed as keyword arguments.

 In Java, a Builder is provided to pass the props. There are two: one for FunctionProps, and a
second for Function to let you build the construct and its props object in one step. This code
uses the latter.

« In C#, you instantiate a FunctionProps object using an object initializer and pass it as the
third parameter.

If a construct’s props are optional, you can omit the props parameter entirely.

Step 6: Define your Lambda function Version 2 281

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

All constructs take these same three arguments, so it's easy to stay oriented as you learn about new
ones. And as you might expect, you can subclass any construct to extend it to suit your needs, or if
you want to change its defaults.

Step 7: Define your Lambda function URL

In this step, you use the addFunctionUrl helper method of the Function construct to define
a Lambda function URL. To output the value of this URL at deployment, you will create an AWS
CloudFormation output using the CfnOutput construct.

Add the following to your CDK stack file:
Example
TypeScript

Located in 1ib/hello-cdk-stack.ts:

// ...

export class HelloCdkStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Define the Lambda function resource

/Err

// Define the Lambda function URL resource

const myFunctionUrl = myFunction.addFunctionUrl({
authType: lambda.FunctionUrlAuthType.NONE,

});

// Define a CloudFormation output for your URL
new cdk.CfnOutput(this, "myFunctionUrlOutput", {
value: myFunctionUrl.url,

1)

JavaScript

Located in 1ib/hello-cdk-stack.js:

Step 7: Define your Lambda function URL Version 2 282

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.CfnOutput.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const { Stack, CfnOutput } = require('aws-cdk-1ib'); // Import CfnOutput

class HelloCdkStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Define the Lambda function resource

M ococ

// Define the Lambda function URL resource

const myFunctionUrl = myFunction.addFunctionUrl({
authType: lambda.FunctionUrlAuthType.NONE,

1);

// Define a CloudFormation output for your URL
new CfnOutput(this, "myFunctionUrlOutput", {

value: myFunctionUrl.url,

1)

module.exports = { HelloCdkStack }

Python

Located in hello_cdk/hello_cdk_stack.py:

from aws_cdk import (
...

CfnOutput # Import CfnOutput
)

from constructs import Construct
class HelloCdkStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Define the Lambda function resource
...

Define the Lambda function URL resource

Step 7: Define your Lambda function URL Version 2 283

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

my_function_url = my_function.add_function_url(
auth_type = _lambda.FunctionUrlAuthType.NONE,

Define a CloudFormation output for your URL
CfnOutput(self, "myFunctionUrlOutput", value=my_function_url.url)

Java

Located in src/main/java/../HelloCdkStack. java :

package com.myorg;

// ...

// Import Lambda function URL

import software.amazon.awscdk.services.lambda.FunctionUrl;

import software.amazon.awscdk.services.lambda.FunctionUrlAuthType;
import software.amazon.awscdk.services.lambda.FunctionUrlOptions;
// Import CfnOutput

import software.amazon.awscdk.CfnOutput;

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);
}

public HelloCdkStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Define the Lambda function resource

// ...

// Define the Lambda function URL resource
FunctionUrl myFunctionUrl =
myFunction.addFunctionUrl(FunctionUrlOptions.buildexr()
.authType(FunctionUrlAuthType.NONE)
.build());

// Define a CloudFormation output for your URL
CfnOutput.Builder.create(this, "myFunctionUrlOutput")
.value(myFunctionUrl.getUrl())
.build();

Step 7: Define your Lambda function URL Version 2 284

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

C#

Located in src/main/java/../HelloCdkStack. java :

// ...

namespace HelloCdk

{
public class HelloCdkStack : Stack
{

internal HelloCdkStack(Construct scope, string id, IStackProps props = null)
base(scope, id, props)
{
// Define the Lambda function resource

Tl coo

// Define the Lambda function URL resource
var myFunctionUrl = myFunction.AddFunctionUrl(new FunctionUrlOptions

{
AuthType = FunctionUrlAuthType.NONE

1)

// Define a CloudFormation output for your URL
new CfnOutput(this, "myFunctionUrlOutput", new CfnOutputProps
{

Value = myFunctionUrl.Url

1)

Go

Located in hello-cdk.go:

Tl coo

func NewHelloCdkStack(scope constructs.Construct, id string, props
*HelloCdkStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {

Step 7: Define your Lambda function URL Version 2 285

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Define the Lambda function resource

Y coo

// Define the Lambda function URL resource

myFunctionUrl := myFunction.AddFunctionUrl(&awslambda.FunctionUrlOptions{
AuthType: awslambda.FunctionUrlAuthType_NONE,

1)

// Define a CloudFormation output for your URL
awscdk .NewCfnOutput(stack, jsii.String("myFunctionUrlOutput"),
&awscdk.CfnOutputProps{
Value: myFunctionUrl.Url(),
b

return stack

Y coo

/A Warning

To keep this tutorial simple, your Lambda function URL is defined without authentication.
When deployed, this creates a publicly accessible endpoint that can be used to invoke your
function. When you are done with this tutorial, follow Step 12: Delete your application to
delete these resources.

Step 8: Synthesize a CloudFormation template

In this step, you prepare for deployment by synthesizing a CloudFormation template with the CDK
CLI cdk synth command. This command performs basic validation of your CDK code, runs your
CDK app, and generates a CloudFormation template from your CDK stack.

If your app contains more than one stack, you must specify which stacks to synthesize. Since your
app contains a single stack, the CDK CLI automatically detects the stack to synthesize.

Step 8: Synthesize a CloudFormation template Version 2 286

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you don't synthesize a template, the CDK CLI will automatically perform this step when you
deploy. However, we recommend that you run this step before each deployment to check for
synthesis errors.

Before synthesizing a template, you can optionally build your application to catch syntax and type
errors. For instructions, see Step 4: Build your CDK app.

To synthesize a CloudFormation template, run the following from the root of your project:

$ cdk synth

® Note

If you receive an error like the following, verify that you are in the hello-cdk directory
and try again:

--app is required either in command-line, in cdk.json or in ~/.cdk.json

If successful, the CDK CLI will output a YAML—formatted CloudFormation template to stdout and
save a JSON-formatted template in the cdk.out directory of your project.

The following is an example output of the CloudFormation template:

AWS CloudFormation template

Resources:
HelloWorldFunctionServiceRole<unique-identifier>:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Version: "2012-10-17"

ManagedPolicyAzrns:
- Fn::Join:
- - "arn:"

Step 8: Synthesize a CloudFormation template Version 2 287

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

- Ref: AWS::Partition
- :iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
Metadata:
aws:cdk:path: HelloCdkStack/HelloWorldFunction/ServiceRole/Resource
HelloWorldFunction<unique-identifier>:
Type: AWS::Lambda::Function

Properties:
Code:
ZipFile: "
\ exports.handler = async function(event) {
\ return {
\ statusCode: 200,
\ body: JSON.stringify('Hello World!"'),
\ };
\ };
\ n
Handler: index.handler
Role:
Fn::GetAtt:

- HelloWorldFunctionServiceRole<unique-identifier>
- Arn
Runtime: nodejs20.x
DependsOn:
- HelloWorldFunctionServiceRole<unique-identifier>
Metadata:
aws:cdk:path: HelloCdkStack/HelloWorldFunction/Resource
HelloWorldFunctionFunctionUrl<unique-identifier>:
Type: AWS::Lambda::Url
Properties:
AuthType: NONE
TargetFunctionAzrn:
Fn::GetAtt:
- HelloWorldFunction<unique-identifier>
- Arn
Metadata:
aws:cdk:path: HelloCdkStack/HelloWorldFunction/FunctionUrl/Resource
HelloWorldFunctioninvokefunctionurl<unique-identifier>:

Step 8: Synthesize a CloudFormation template Version 2 288

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

Type: AWS::Lambda::Permission

Properties:

Action: lambda:InvokeFunctionUrl

FunctionName:
Fn::GetAtt:

- HelloWorldFunction<unique-identifier>

- Arn

FunctionUrlAuthType: NONE

Principal: "*"

Metadata:

aws:cdk:path: HelloCdkStack/HelloWorldFunction/invoke-function-url

CDKMetadata:

Type: AWS::CDK::Metadata

Properties:

Analytics: v2:deflateb4:<unique-identifier>

Metadata:

aws:cdk:path: HelloCdkStack/CDKMetadata/Default

Condition: CDKMetadataAvailable

Outputs:

myFunctionUrlOutput:

Value:
Fn::GetAtt:

- HelloWorldFunctionFunctionUrl<unique-identifier>
- FunctionUrl

Parameters:
BootstrapVersion:

Type: AWS::SSM::Parameter::Value<String>

Default: /cdk-bootstrap/<unique-identifier>/version

Description: Version of the CDK Bootstrap resources in this environment,
automatically retrieved from SSM Parameter Store.

Rules:

CheckBootstrapVersion:

Assertions:
- Assert:
Fn::Not:

- Fn::Contains:

- Ref: BootstrapVersion

ng
o
-
nam
=

[cdk:skip]

Step 8: Synthesize a CloudFormation template

Version 2 289

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AssertDescription: CDK bootstrap stack version 6 required. Please run 'cdk
bootstrap' with a recent version of the CDK CLI.

® Note

Every generated template contains an AWS: :CDK: :Metadata resource by default. The
AWS CDK team uses this metadata to gain insight into AWS CDK usage and find ways to
improve it. For details, including how to opt out of version reporting, see Version reporting.

By defining a single L2 construct, the AWS CDK creates an extensive CloudFormation template
containing your Lambda resources, along with the permissions and glue logic required for your
resources to interact within your application.

Step 9: Deploy your CDK stack

In this step, you use the CDK CLI cdk deploy command to deploy your CDK stack. This command
retrieves your generated CloudFormation template and deploys it through AWS CloudFormation,
which provisions your resources as part of a CloudFormation stack.

From the root of your project, run the following. Confirm changes if prompted:

$ cdk deploy
Synthesis time: 2.69s

HelloCdkStack: start: Building <unique-identifier>:current_account-current_region

HelloCdkStack: success: Built <unique-identifier>:current_account-current_region

HelloCdkStack: start: Publishing <unique-identifier>:current_account-current_region

HelloCdkStack: success: Published <unique-identifier>:current_account-current_region

This deployment will make potentially sensitive changes according to your current
security approval level (--require-approval broadening).

Please confirm you intend to make the following modifications:

IAM Statement Changes
HHHHHHHH RS HHH SR TR SRR RS SRR RS SRS TR RS SRR RS SRS RS RS RS RS RT3
Resource # Effect # Action
Principal # Condition #
Eedigigigi i oo gogid oo igifodid i gogiF oo g gogiF i gogi F oo g fofeF e gogi F oo g g gogaFeiigogiF oo g gogiFedigigogiF oo g gigiFedigigogiFeiF g fogiFidigigogiFedigig gy
+ # ${HelloWorldFunction.Arn} # Allow # lambda:InvokeFunctionUrl # *
#

Step 9: Deploy your CDK stack Version 2 290

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

edigigigi i i gogid oo igifodedidiig g FediF g fogiF i gogi F oo g fofeF e gogs F oo g g fogaFedipigopiF oo g gogiFedigigogi F oo gigaFedigigogiFeiF g fogiFidigigogif oo gig gy
+ # ${HelloWorldFunction/ServiceRole.Arn} # Allow # sts:AssumeRole
Service:lambda.amazonaws.com # #
HHHH SRR TR SRR RS SR H RS RS SRR SRS SRS RS SRS RS SRR SRS RS RS RS RT3
IAM Policy Changes
HHHHHHHH RS HHH SRR SRR SRR RS TR RS RS RS RS RS RS SRR RT3
Resource # Managed Policy ARN
#

Eedigigigi i i gogid oo g fodid i gogi S oo g gogiF i i gogi F oo igi fofeF i gogi F oo g fogaFedipigogiFeiFiggogiF oo gogi F oo gigiFedigigogiFeiF g fogiFidigigogif oo giggigi g
+ # ${HelloWorldFunction/ServiceRole} # arn:${AWS::Partition}:iam::aws:policy/
service-role/AWSLambdaBasicExecutionRole #
HHHHHHHH RS HHH S TR SRR S SRR SRR H SRR RS SRS RS RS RS RS RS RS RT3
(NOTE: There may be security-related changes not in this list. See https://github.com/
aws/aws-cdk/issues/1299)

Do you wish to deploy these changes (y/n)? vy

Similar to cdk synth, you don't have to specify the AWS CDK stack since the app contains a single
stack.

During deployment, the CDK CLI displays progress information as your stack is deployed. When
complete, you can go to the AWS CloudFormation console to view your HelloCdkStack stack.
You can also go to the Lambda console to view your HelloWorldFunction resource.

When deployment completes, the CDK CLI will output your endpoint URL. Copy this URL for the
next step. The following is an example:

HelloCdkStack: deploying... [1/1]
HelloCdkStack: creating CloudFormation changeset...

HelloCdkStack

Deployment time: 41.65s

Outputs:

HelloCdkStack.myFunctionUrlOutput = https://<api-id>.lambda-url.<Region>.on.aws/
Stack ARN:

arn:aws:cloudformation:<Region:account-id>:stack/HelloCdkStack/<unique-identifier>

Total time: 44.34s

Step 9: Deploy your CDK stack Version 2 291

https://console.aws.amazon.com/cloudformation/home

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Step 10: Interact with your application on AWS

In this step, you interact with your application on AWS by invoking your Lambda function through
the function URL. When you access the URL, your Lambda function returns the Hello World!
message.

To invoke your function, access the function URL through your browser or from the command line.
The following is an example:

$ curl https://<api-id>.lambda-url.<Region>.on.aws/
"Hello World!"%

Step 11: Modify your application

In this step, you modify the message that the Lambda function returns when invoked. You perform
a diff using the CDK CLI cdk diff command to preview your changes and deploy to update your
application. You then interact with your application on AWS to see your new message.

Modify the myFunction instance in your CDK stack file as follows:
Example
TypeScript

Located in 1ib/hello-cdk-stack.ts:

// ...

export class HelloCdkStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps) {
super(scope, id, props);

// Modify the Lambda function resource
const myFunction = new lambda.Function(this, "HelloWorldFunction", {
runtime: lambda.Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
handler: "index.handler",
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'),

Step 10: Interact with your application on AWS Version 2 292

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide
};
};
),

1)

Y coo

JavaScript

Located in 1ib/hello-cdk-stack.js:

/rr

class HelloCdkStack extends Stack {
constructor(scope, id, props) {
super(scope, id, props);

// Modify the Lambda function resource
const myFunction = new lambda.Function(this, "HelloWorldFunction", {
runtime: lambda.Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
handler: "index.handler",
code: lambda.Code.fromInline("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'),
};
I
),
)8

/rr

module.exports = { HelloCdkStack }

Python

Located in hello_cdk/hello_cdk_stack.py:

Step 11: Modify your application Version 2 293

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class HelloCdkStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

Modify the Lambda function resource
my_function = _lambda.Function(
self, "HelloWorldFunction",
runtime = _lambda.Runtime.NODEJS_20_X, # Provide any supported Node.js runtime
handler = "index.handler",
code = _lambda.Code.from_inline(
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'),
I
};

),

Java

Located in strc/main/java/../HelloCdkStack. java :

// ...

public class HelloCdkStack extends Stack {
public HelloCdkStack(final Construct scope, final String id) {
this(scope, id, null);
}

public HelloCdkStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

// Modify the Lambda function resource
Function myFunction = Function.Builder.create(this, "HelloWorldFunction")

Step 11: Modify your application Version 2 294

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

.runtime(Runtime.NODEJS_20_X) // Provide any supported Node.js runtime
.handler("index.handler")
.code(Code.fromInline(

"exports.handler = async function(event) {" +

" return {" +

" statusCode: 200," +

" body: JSON.stringify('Hello CDK!')" +

n };Il +
"};:"))
.build();
/s
}
}
CH
/s

namespace HelloCdk

{
public class HelloCdkStack : Stack

{
internal HelloCdkStack(Construct scope, string id, IStackProps props = null)
base(scope, id, props)
{
// Modify the Lambda function resource
var myFunction = new Function(this, "HelloWorldFunction", new FunctionProps

{
Runtime = Runtime.NODEJS_20_X, // Provide any supported Node.js runtime
Handler = "index.handler",
Code = Code.FromInline(@"
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'),
b7
};
)
});
// ...
}

Step 11: Modify your application Version 2 295

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

}

Go

T coo

type HelloCdkStackProps struct {
awscdk.StackProps

func NewHelloCdkStack(scope constructs.Construct, id string, props
*HelloCdkStackProps) awscdk.Stack {
var sprops awscdk.StackProps
if props != nil {
sprops = props.StackProps
}
stack := awscdk.NewStack(scope, &id, &sprops)

// Modify the Lambda function resource
myFunction := awslambda.NewFunction(stack, jsii.String("HelloWorldFunction"),
&awslambda.FunctionProps{
Runtime: awslambda.Runtime_NODEJS_20@_X(), // Provide any supported Node.]js
runtime
Handler: jsii.String("index.handler"),
Code: awslambda.Code_FromInline(jsii.String("
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'"),
};
%
),
)

T coo

Currently, your code changes have not made any direct updates to your deployed Lambda resource.
Your code defines the desired state of your resource. To modify your deployed resource, you will
use the CDK CLI to synthesize the desired state into a new AWS CloudFormation template. Then,

Step 11: Modify your application Version 2 296

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

you will deploy your new CloudFormation template as a change set. Change sets make only the
necessary changes to reach your new desired state.

To preview your changes, run the cdk diff command. The following is an example:

$ cdk diff
Stack HelloCdkStack
Hold on while we create a read-only change set to get a diff with accurate replacement
information (use --no-change-set to use a less accurate but faster template-only diff)
Resources
[~] AWS::Lambda::Function HelloWorldFunction HelloWorldFunction<unique-identifier>
[~] Code
[~] .ZipFile:

[-]
exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello World!"'),
I
};
[+]

exports.handler = async function(event) {
return {
statusCode: 200,
body: JSON.stringify('Hello CDK!'),
I
};

Number of stacks with differences: 1

To create this diff, the CDK CLI queries your AWS account account for the latest AWS
CloudFormation template for the Hel1loCdkStack stack. Then, it compares the latest template
with the template it just synthesized from your app.

To implement your changes, run the cdk deploy command. The following is an example:

$ cdk deploy

Synthesis time: 2.12s

Step 11: Modify your application Version 2 297

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

HelloCdkStack: start: Building <unique-identifier>:current_account-current_region
HelloCdkStack: success: Built <unique-identifier>:current_account-current_region
HelloCdkStack: start: Publishing <unique-identifier>:current_account-current_region
HelloCdkStack: success: Published <unique-identifier>:current_account-current_region
HelloCdkStack: deploying... [1/1]

HelloCdkStack: creating CloudFormation changeset...

HelloCdkStack
Deployment time: 26.96s

Outputs:

HelloCdkStack.myFunctionUrlOutput = https://<unique-identifier>.lambda-
url.<Region>.on.aws/

Stack ARN:
arn:aws:cloudformation:<Region:account-id>:stack/HelloCdkStack/<unique-identifier>

Total time: 29.07s

To interact with your application, repeat Step 10: Interact with your application on AWS. The
following is an example:

$ curl https://<api-id>.lambda-url.<Region>.on.aws/
"Hello CDK!"%

Step 12: Delete your application

In this step, you use the CDK CLI cdk destroy command to delete your application. This
command deletes the CloudFormation stack associated with your CDK stack, which includes the
resources you created.

To delete your application, run the cdk destroy command and confirm your request to delete
the application. The following is an example:

$ cdk destroy
Are you sure you want to delete: HelloCdkStack (y/n)? vy
HelloCdkStack: destroying... [1/1]

HelloCdkStack: destroyed

Step 12: Delete your application Version 2 298

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Next steps

Congratulations! You've completed this tutorial and have used the AWS CDK to successfully create,
modify, and delete resources in the AWS Cloud. You're now ready to begin using the AWS CDK.

To learn more about using the AWS CDK in your preferred programming language, see Work with
the AWS CDK library.

For additional resources, see the following:

» Try the CDK Workshop for a more in-depth tour involving a more complex project.

» See the API reference to begin exploring the CDK constructs available for your favorite AWS
services.

« Visit Construct Hub to discover constructs created by AWS and others.

« Explore Examples of using the AWS CDK.

The AWS CDK is an open-source project. To contribute, see to Contributing to the AWS Cloud
Development Kit (AWS CDK).

Next steps Version 2 299

https://cdkworkshop.com/
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html
https://constructs.dev/search?q=&cdk=aws-cdk&cdkver=2&sort=downloadsDesc&offset=0
https://github.com/aws-samples/aws-cdk-examples
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md
https://github.com/aws/aws-cdk/blob/main/CONTRIBUTING.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Work with the AWS CDK library

Import and use the AWS Cloud Development Kit (AWS CDK) library to define your AWS Cloud
infrastructure with a supported programming language.

Import the AWS CDK Library

The AWS CDK Library is often referred to by its TypeScript package name of aws-cdk-1ib. The
actual package name varies by language. The following is an example of how to install and import
the CDK Library:

Example
TypeScript
Install npm install aws-cdk-1ib
Import import * as cdk from 'aws-cdk-
lib';
JavaScript
Install npm install aws-cdk-1lib
Import const cdk = require('aws-cdk-1
ib");
Python
Install python -m pip install aws-cdk-1ib
Import import aws_cdk as cdk

Import the AWS CDK Library Version 2 300

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Java
In pom.xml, add Group software.amazon.awscdk;
artifact aws-cdk-1lib
Import import software.amazon.aw
scdk.App;
C#
Install dotnet add package Amazon.CDK.Lib
Import using Amazon.CDK;
Go
Install go get github.com/aws/aws-cdk-
go/awscdk/v2
et import (
"github.com/aws/aws-cdk-go/
awscdk/v2"

)

The construct base class and supporting code is in the constructs library. Experimental
constructs, where the APl is still undergoing refinement, are distributed as separate modules.

Using the AWS CDK API Reference

Use the AWS CDK API reference as you develop with the AWS CDK.

Each module's reference material is broken into the following sections.

» Overview: Introductory material you'll need to know to work with the service in the AWS CDK,
including concepts and examples.

Using the AWS CDK API Reference Version 2 301

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

» Constructs: Library classes that represent one or more concrete AWS resources. These are the
"curated" (L2) resources or patterns (L3 resources) that provide a high-level interface with sane
defaults.

 Classes: Non-construct classes that provide functionality used by constructs in the module.

« Structs: Data structures (attribute bundles) that define the structure of composite values such as
properties (the props argument of constructs) and options.

« Interfaces: Interfaces, whose names all begin with "I", define the absolute minimum functionality
for the corresponding construct or other class. The CDK uses construct interfaces to represent
AWS resources that are defined outside your AWS CDK app and referenced by methods such as
Bucket.fromBucketArn().

» Enumes: Collections of named values for use in specifying certain construct parameters. Using an
enumerated value allows the CDK to check these values for validity during synthesis.

» CloudFormation Resources: These L1 constructs, whose names begin with "Cfn", represent exactly
the resources defined in the CloudFormation specification. They are automatically generated
from that specification with each CDK release. Each L2 or L3 construct encapsulates one or more
CloudFormation resources.

» CloudFormation Property Types: The collection of named values that define the properties for
each CloudFormation Resource.

Interfaces compared with construct classes

The AWS CDK uses interfaces in a specific way that may not be obvious even if you are familiar with
interfaces as a programming concept.

The AWS CDK supports using resources defined outside CDK applications using methods such
as Bucket.fromBucketArn(). External resources cannot be modified and may not have all
the functionality available with resources defined in your CDK app using e.g. the Bucket class.
Interfaces, then, represent the bare minimum functionality available in the CDK for a given AWS
resource type, including external resources.

When instantiating resources in your CDK app, then, you should always use concrete classes

such as Bucket. When specifying the type of an argument you are accepting in one of your own
constructs, use the interface type such as IBucket if you are prepared to deal with external
resources (that is, you won't need to change them). If you require a CDK-defined construct, specify
the most general type you can use.

Interfaces compared with construct classes Version 2 302

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Some interfaces are minimum versions of properties or options bundles associated with specific
classes, rather than constructs. Such interfaces can be useful when subclassing to accept
arguments that you'll pass on to your parent class. If you require one or more additional properties,
you'll want to implement or derive from this interface, or from a more specific type.

(® Note

Some programming languages supported by the AWS CDK don't have an interface feature.
In these languages, interfaces are just ordinary classes. You can identify them by their
names, which follow the pattern of an initial "I" followed by the name of some other
construct (e.g. IBucket). The same rules apply.

Managing dependencies

Dependencies for your AWS CDK app or library are managed using package management tools.
These tools are commonly used with the programming languages.

Typically, the AWS CDK supports the language's standard or official package management tool

if there is one. Otherwise, the AWS CDK will support the language’s most popular or widely
supported one. You may also be able to use other tools, especially if they work with the supported
tools. However, official support for other tools is limited.

The AWS CDK supports the following package managers:

Language Supported package management tool
TypeScript/JavaScript NPM (Node Package Manager) or Yarn
Python PIP (Package Installer for Python)

Java Maven

C# NuGet

Go Go modules

When you create a new project using the AWS CDK CLI cdk init command, dependencies for the
CDK core libraries and stable constructs are automatically specified.

Managing dependencies Version 2 303

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

For more information on managing dependencies for supported programming languages, see the
following:

« Managing dependencies in TypeScript.

« Managing dependencies in JavaScript.

» Managing dependencies in Python.

« Managing dependencies in Java.

« Managing dependencies in C#.

« Managing dependencies in Go.

Comparing AWS CDK in TypeScript with other languages

TypeScript was the first language supported for developing AWS CDK applications. Therefore,

a substantial amount of example CDK code is written in TypeScript. If you are developing

in another language, it might be useful to compare how AWS CDK code is implemented in
TypeScript compared to your language of choice. This can help you use the examples throughout
documentation.

Importing a module

Example
TypeScript/JavaScript

TypeScript supports importing either an entire namespace, or individual objects from a
namespace. Each namespace includes constructs and other classes for use with a given AWS
service.

// Import main CDK library as cdk
import * as cdk from 'aws-cdk-1lib'; // ES6 import preferred in TS
const cdk = require('aws-cdk-1ib'); // Node.js require() preferred in 3JS

// Import specific core CDK classes
import { Stack, App } from 'aws-cdk-1lib';
const { Stack, App } = require('aws-cdk-1lib');

// Import AWS S3 namespace as s3 into current namespace
import { aws_s3 as s3 } from 'aws-cdk-1lib'; // TypeScript

Comparing AWS CDK in TypeScript with other languages Version 2 304

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

const s3 = require('aws-cdk-1lib/aws-s3'); //

// Having imported cdk already as above, this is
const s3 = cdk.aws_s3;

// Now use s3 to access the S3 types
const bucket = s3.Bucket(...);

// Selective import of s3.Bucket
import { Bucket } from 'aws-cdk-lib/aws-s3';
const { Bucket } = require('aws-cdk-lib/aws-s3');

// Now use Bucket to instantiate an S3 bucket
const bucket = Bucket(...);

Python

Like TypeScript, Python supports namespaced module imports and selective imports.

JavaScript

also valid

// TypeScript
// JavaScript

Namespaces in Python look like aws_cdk. xxx, where xxx represents an AWS service name, such
as s3 for Amazon S3. (Amazon S3 is used in these examples).

Java

Import main CDK library as cdk
import aws_cdk as cdk

Selective import of specific core classes
from aws_cdk import Stack, App

Import entire module as s3 into current namespace

import aws_cdk.aws_s3 as s3

s3 can now be used to access classes it contains

bucket = s3.Bucket(...)

Selective import of s3.Bucket into current namespace

from aws_cdk.s3 import Bucket

Bucket can now be used to instantiate a bucket
bucket = Bucket(...)

Java's imports work differently from TypeScript's. Each import statement imports either a single

class name from a given package, or all classes defined in that package (using \ *). Classes may

Importing a module

Version 2 305

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

be accessed using either the class name by itself if it has been imported, or the qualified class
name including its package.

Libraries are named like software.amazon.awscdk.services. xxx for the AWS Construct
Library (the main library is software.amazon.awscdk). The Maven group ID for AWS CDK
packages is software.amazon.awscdk.

// Make certain core classes available
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.App;

// Make all Amazon S3 construct library classes available
import software.amazon.awscdk.services.s3.*;

// Make only Bucket and EventType classes available
import software.amazon.awscdk.services.s3.Bucket;
import software.amazon.awscdk.services.s3.EventType;

// An imported class may now be accessed using the simple class name (assuming that
name

// does not conflict with another class)

Bucket bucket = Bucket.Builder.create(...).build();

// We can always use the qualified name of a class (including its package) even
without an
// import directive
software.amazon.awscdk.services.s3.Bucket bucket =
software.amazon.awscdk.services.s3.Bucket.Builder.create(...)
.build();

// Java 10 or later can use var keyword to avoid typing the type twice
var bucket =
software.amazon.awscdk.services.s3.Bucket.Builder.create(...)
.build();

CH#

In C#, you import types with the using directive. There are two styles. One gives you access
to all the types in the specified namespace by using their plain names. With the other, you can
refer to the namespace itself by using an alias.

Importing a module Version 2 306

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Packages are named like Amazon.CDK.AWS. xxx for AWS Construct Library packages. (The core
module is Amazon.CDK.)

// Make CDK base classes available under cdk
using cdk = Amazon.CDK;

// Make all Amazon S3 construct library classes available
using Amazon.CDK.AWS.S3;

// Now we can access any S3 type using its name
var bucket = new Bucket(...);

// Import the S3 namespace under an alias
using s3 = Amazon.CDK.AWS.S3;

// Now we can access an S3 type through the namespace alias
var bucket = new s3.Bucket(...);

// We can always use the qualified name of a type (including its namespace) even
without a

// using directive
var bucket = new Amazon.CDK.AWS.S3.Bucket(...);

Go

Each AWS Construct Library module is provided as a Go package.

import (
"github.com/aws/aws-cdk-go/awscdk/v2" // CDK core package
"github.com/aws/aws-cdk-go/awscdk/v2/awss3" // AWS S3 construct library
module
)

// now instantiate a bucket
bucket := awss3.NewBucket(...)

// use aliases for brevity/clarity

import (

cdk "github.com/aws/aws-cdk-go/awscdk/v2" // CDK core package

s3 '"github.com/aws/aws-cdk-go/awscdk/v2/awss3" // AWS S3 construct library
module
)

Importing a module Version 2 307

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

bucket := s3.NewBucket(...)

Instantiating a construct

AWS CDK construct classes have the same name in all supported languages. Most languages

use the new keyword to instantiate a class (Python and Go do not). Also, in most languages, the
keyword this refers to the current instance. (Python uses self by convention.) You should pass a
reference to the current instance as the scope parameter to every construct you create.

The third argument to an AWS CDK construct is props, an object containing attributes needed
to build the construct. This argument may be optional, but when it is required, the supported
languages handle it in idiomatic ways. The names of the attributes are also adapted to the
language’s standard naming patterns.

Example

TypeScript/JavaScript

// Instantiate default Bucket
const bucket = new s3.Bucket(this, 'amzn-s3-demo-bucket');

// Instantiate Bucket with bucketName and versioned properties
const bucket = new s3.Bucket(this, 'amzn-s3-demo-bucket', {
bucketName: 'amzn-s3-demo-bucket',
versioned: true,

1)

// Instantiate Bucket with websiteRedirect, which has its own sub-properties
const bucket = new s3.Bucket(this, 'amzn-s3-demo-bucket', {
websiteRedirect: {host: 'aws.amazon.com'l}});

Python

Python doesn’'t use a new keyword when instantiating a class. The properties argument is
represented using keyword arguments, and the arguments are named using snake_case.

If a props value is itself a bundle of attributes, it is represented by a class named after the
property, which accepts keyword arguments for the subproperties.

In Python, the current instance is passed to methods as the first argument, which is named
self by convention.

Instantiating a construct Version 2 308

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Instantiate default Bucket
bucket = s3.Bucket(self, "amzn-s3-demo-bucket")

Instantiate Bucket with bucket_name and versioned properties
bucket = s3.Bucket(self, "amzn-s3-demo-bucket", bucket_name="amzn-s3-demo-bucket",
versioned=true)

Instantiate Bucket with website_redirect, which has its own sub-properties
bucket = s3.Bucket(self, "amzn-s3-demo-bucket", website_redirect=s3.WebsiteRedirect(
host_name="aws.amazon.com"))

Java

In Java, the props argument is represented by a class named XxxxProps (for example,
BucketProps for the Bucket construct's props). You build the props argument using a builder
pattern.

Each XxxxProps class has a builder. There is also a convenient builder for each construct that
builds the props and the construct in one step, as shown in the following example.

Props are named the same as in TypeScript, using camelCase.

// Instantiate default Bucket
Bucket bucket = Bucket(self, "amzn-s3-demo-bucket");

// Instantiate Bucket with bucketName and versioned properties
Bucket bucket = Bucket.Builder.create(self, "amzn-s3-demo-bucket")

.bucketName("amzn-s3-demo-bucket").versioned(true)
.build();

Instantiate Bucket with websiteRedirect, which has its own sub-properties
Bucket bucket = Bucket.Builder.create(self, "amzn-s3-demo-bucket")
.websiteRedirect(new websiteRedirect.Builder()
.hostName("aws.amazon.com").build())
.build();

C#

In C#, props are specified using an object initializer to a class named XxxxProps (for example,
BucketProps for the Bucket construct’s props).

Props are named similarly to TypeScript, except using PascalCase.

Instantiating a construct Version 2 309

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

It is convenient to use the var keyword when instantiating a construct, so you don't need to
type the class name twice. However, your local code style guide may vary.

// Instantiate default Bucket
var bucket = Bucket(self, "amzn-s3-demo-bucket");

// Instantiate Bucket with BucketName and Versioned properties

var bucket = Bucket(self, "amzn-s3-demo-bucket", new BucketProps {
BucketName = "amzn-s3-demo-bucket",
Versioned = truel});

// Instantiate Bucket with WebsiteRedirect, which has its own sub-properties
var bucket = Bucket(self, "amzn-s3-demo-bucket", new BucketProps {
WebsiteRedirect = new WebsiteRedirect {
HostName = "aws.amazon.com"

13

Go

To create a construct in Go, call the function NewXxxxxx where Xxxxxxx is the name of the
construct. The constructs' properties are defined as a struct.

In Go, all construct parameters are pointers, including values like numbers, Booleans, and
strings. Use the convenience functions like jsii.String to create these pointers.

// Instantiate default Bucket
bucket := awss3.NewBucket(stack, jsii.String("amzn-s3-demo-bucket"), nil)

// Instantiate Bucket with BucketName and Versioned properties
bucketl := awss3.NewBucket(stack, jsii.String("amzn-s3-demo-bucket"),
&awss3.BucketProps{

BucketName: jsii.String("amzn-s3-demo-bucket"),

Versioned: jsii.Bool(true),

)

// Instantiate Bucket with WebsiteRedirect, which has its own sub-properties
bucket2 := awss3.NewBucket(stack, jsii.String("amzn-s3-demo-bucket"),
&awss3.BucketProps{
WebsiteRedirect: &awss3.RedirectTarget{

HostName: jsii.String("aws.amazon.com"),

1)

Instantiating a construct Version 2 310

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Accessing members

It is common to refer to attributes or properties of constructs and other AWS CDK classes and use
these values as, for example, inputs to build other constructs. The naming differences described
previously for methods apply here also. Furthermore, in Java, it is not possible to access members
directly. Instead, a getter method is provided.

Example
TypeScript/JavaScript

Names are camelCase.
bucket.bucketArn

Python

Names are snake_case.
bucket.bucket_arn

Java

A getter method is provided for each property; these names are camelCase.
bucket.getBucketArn()

CH

Names are PascalCase.
bucket.BucketArn

Go

Names are PascalCase.

bucket.BucketArn

Accessing members Version 2 311

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Enum constants

Enum constants are scoped to a class, and have uppercase names with underscores in all languages
(sometimes referred to as SCREAMING_SNAKE_CASE). Since class names also use the same casing
in all supported languages except Go, qualified enum names are also the same in these languages.

s3.BucketEncryption.KMS_MANAGED

In Go, enum constants are attributes of the module namespace and are written as follows.

awss3.BucketEncryption_KMS_MANAGED

Object interfaces

The AWS CDK uses TypeScript object interfaces to indicate that a class implements an expected set
of methods and properties. You can recognize an object interface because its name starts with I. A
concrete class indicates the interfaces that it implements by using the implements keyword.

Example

TypeScript/JavaScript

® Note

JavaScript doesn’t have an interface feature. You can ignore the implements keyword
and the class names following it.

import { IAspect, IConstruct } from 'aws-cdk-1lib';

class MyAspect implements IAspect {
public visit(node: IConstruct) {
console.log('Visited', node.node.path);
}
}

Enum constants Version 2 312

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

Python doesn’t have an interface feature. However, for the AWS CDK you can indicate interface
implementation by decorating your class with @jsii.implements(interface).

from aws_cdk import IAspect, IConstruct
import jsii

@jsii.implements(IAspect)

class MyAspect():

def visit(self, node: IConstruct) -> None:
print("Visited", node.node.path)

Java

import software.amazon.awscdk.IAspect;
import software.amazon.awscdk.IConstruct;

public class MyAspect implements IAspect {

public void visit(IConstruct node) {
System.out.format("Visited %s", node.getNode().getPath());

CH#

using Amazon.CDK;

public class MyAspect : IAspect

{
public void Visit(IConstruct node)
{
System.Console.WriteLine($"Visited ${node.Node.Path}");
}
}

Go

Go structs do not need to explicitly declare which interfaces they implement. The Go compiler
determines implementation based on the methods and properties available on the structure.
For example, in the following code, MyAspect implements the IAspect interface because it
provides a Visit method that takes a construct.

Object interfaces Version 2 313

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

type MyAspect struct {
}

func (a MyAspect) Visit(node constructs.IConstruct) {
fmt.Println("Visited", *node.Node().Path())
}

Working with the AWS CDK in TypeScript

TypeScript is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK)
and is considered stable. Working with the AWS CDK in TypeScript uses familiar tools, including
Microsoft's TypeScript compiler (tsc), Node.js and the Node Package Manager (npm). You may also
use Yarn if you prefer, though the examples in this Guide use NPM. The modules comprising the
AWS Construct Library are distributed via the NPM repository, npmjs.org.

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-
source equivalent VSCodium), which has excellent support for TypeScript.

Get started with TypeScript

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

You also need TypeScript itself (version 3.8 or later). If you don't already have it, you can install it
using npm.

$ npm install -g typescript

(® Note

If you get a permission error, and have administrator access on your system, try sudo npm
install -g typescript.

Keep TypeScript up to date with a regular npm update -g typescript.

In TypeScript Version 2 314

https://nodejs.org/
https://yarnpkg.com/
https://www.npmjs.com/
https://code.visualstudio.com/
https://vscodium.com/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the - -
language option and specify typescript:

$ mkdir my-project
$ cd my-project
$ cdk init app --language typescript

Creating a project also installs the aws-cdk-11ib module and its dependencies.

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a TypeScript identifier; for example, it should not
start with a number or contain spaces.

Using local tsc and cdk

For the most part, this guide assumes you install TypeScript and the CDK Toolkit globally (npm
install -g typescript aws-cdk), and the provided command examples (such as cdk
synth) follow this assumption. This approach makes it easy to keep both components up to date,
and since both take a strict approach to backward compatibility, there is generally little risk in
always using the latest versions.

Some teams prefer to specify all dependencies within each project, including tools like the
TypeScript compiler and the CDK Toolkit. This practice lets you pin these components to
specific versions and ensure that all developers on your team (and your CI/CD environment) use
exactly those versions. This eliminates a possible source of change, helping to make builds and
deployments more consistent and repeatable.

The CDK includes dependencies for both TypeScript and the CDK Toolkit in the TypeScript project
template’s package. json, so if you want to use this approach, you don't need to make any

Creating a project Version 2 315

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

changes to your project. All you need to do is use slightly different commands for building your
app and for issuing cdk commands.

Operation Use global tools Use local tools
Initialize project cdk init --language npx aws-cdk init --
typescript language typescript
Build tsc npm run build
Run CDK Toolkit command cdk .. npm run cdk .. ornpx
aws-cdk ..

npx aws-cdk runs the version of the CDK Toolkit installed locally in the current project, if one
exists, falling back to the global installation, if any. If no global installation exists, npx downloads a
temporary copy of the CDK Toolkit and runs that. You may specify an arbitrary version of the CDK
Toolkit using the @ syntax: npx aws-cdk@2.0 --version prints2.0.0.

® Tip

Set up an alias so you can use the cdk command with a local CDK Toolkit installation.

macOS/Linux
$ alias cdk="npx aws-cdk"
Windows

doskey cdk=npx aws-cdk $*

Managing AWS Construct Library modules

Use the Node Package Manager (npm) to install and update AWS Construct Library modules for use
by your apps, as well as other packages you need. (You may use yarn instead of npm if you prefer.)
npm also installs the dependencies for those modules automatically.

Managing AWS Construct Library modules Version 2 316

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Most AWS CDK constructs are in the main CDK package, named aws-cdk-1ib, which is a default
dependency in new projects created by cdk init. "Experimental" AWS Construct Library modules,
where higher-level constructs are still under development, are named like @aws-cdk/<SERVICE-
NAME>-alpha. The service name has an aws- prefix. If you're unsure of a module’s name, search
for it on NPM.

(® Note

The CDK API Reference also shows the package names.

For example, the command below installs the experimental module for AWS CodeStar.

$ npm install @aws-cdk/aws-codestar-alpha

Some services' Construct Library support is in more than one namespace. For example, besides
aws-routeb3, there are three additional Amazon Route 53 namespaces, aws-route53-targets,
aws-route53-patterns, and aws-route53resolver.

Your project’s dependencies are maintained in package. json. You can edit this file to lock some
or all of your dependencies to a specific version or to allow them to be updated to newer versions
under certain criteria. To update your project's NPM dependencies to the latest permitted version
according to the rules you specified in package. json:

$ npm update

In TypeScript, you import modules into your code under the same name you use to install them
using NPM. We recommend the following practices when importing AWS CDK classes and AWS
Construct Library modules in your applications. Following these guidelines will help make your
code consistent with other AWS CDK applications as well as easier to understand.

» Use ES6-style import directives, not require().
« Generally, import individual classes from aws-cdk-1ib.
import { App, Stack } from 'aws-cdk-1lib';

« If you need many classes from aws-cdk-1ib, you may use a namespace alias of cdk instead of
importing the individual classes. Avoid doing both.

Managing AWS Construct Library modules Version 2 317

https://www.npmjs.com/search?q=%40aws-cdk
https://www.npmjs.com/search?q=%40aws-cdk
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

import * as cdk from 'aws-cdk-1lib';

« Generally, import AWS service constructs using short namespace aliases.

import { aws_s3 as s3 } from 'aws-cdk-lib';

Managing dependencies in TypeScript

In TypeScript CDK projects, dependencies are specified in the package. json file in the project’s
main directory. The core AWS CDK modules are in a single NPM package called aws-cdk-1ib.

When you install a package using npm install, NPM records the package in package. json for
you.

If you prefer, you may use Yarn in place of NPM. However, the CDK does not support Yarn's plug-
and-play mode, which is default mode in Yarn 2. Add the following to your project’s .yarnrc.yml
file to turn off this feature.

nodeLinker: node-modules

CDK applications

The following is an example package. json file generated by the cdk init --language
typescript command:

{

"name": "my-package",

"version": "0.1.0",

"bin": {
"my-package": "bin/my-package.js"

.

"scripts": {
"build": "tsc",
"watch": "tsc -w",
"test": "jest",
"cdk": "cdk"

.

"devDependencies": {
"@types/jest": "726.0.10",

Managing dependencies in TypeScript Version 2 318

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"@types/node": "10.17.27",
"jest": "A26.4.2",
"ts-jest": "726.2.0",
"aws-cdk": "2.16.0",
"ts-node": "79.0.0",
"typescript": "~3.9.7"

},

"dependencies": {
"aws-cdk-1ib": "2.16.0",
"constructs": "710.0.0",
"source-map-support": "7@0.5.16"

}

For deployable CDK apps, aws-cdk-1ib must be specified in the dependencies section of
package. json. You can use a caret (*) version number specifier to indicate that you will accept
later versions than the one specified as long as they are within the same major version.

For experimental constructs, specify exact versions for the alpha construct library modules, which
have APIs that may change. Do not use ” or ~ since later versions of these modules may bring API
changes that can break your app.

Specify versions of libraries and tools needed to test your app (for example, the jest testing
framework) in the devDependencies section of package. json. Optionally, use » to specify that
later compatible versions are acceptable.

Third-party construct libraries

If you're developing a construct library, specify its dependencies using a combination of the
peerDependencies and devDependencies sections, as shown in the following example
package. jsonfile.

"name": "my-package",

"version": "0.0.1",

"peerDependencies": {
"aws-cdk-1ib": "A2.14.0",
"@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
"constructs": "710.0.0"

1,

"devDependencies": {
"aws-cdk-1ib": "2.14.0",

Managing dependencies in TypeScript Version 2 319

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
"constructs": "10.0.0",

"jsii": "~1.50.0",

"aws-cdk": "A2.14.0"

In peerDependencies, use a caret (*) to specify the lowest version of aws-cdk-1ib that your
library works with. This maximizes the compatibility of your library with a range of CDK versions.
Specify exact versions for alpha construct library modules, which have APIs that may change.
Using peerDependencies makes sure that there is only one copy of all CDK libraries in the
node_modules tree.

In devDependencies, specify the tools and libraries you need for testing, optionally with

to indicate that later compatible versions are acceptable. Specify exactly (without » or ~) the
lowest versions of aws-cdk-1ib and other CDK packages that you advertise your library be
compatible with. This practice makes sure that your tests run against those versions. This way, if
you inadvertently use a feature found only in newer versions, your tests can catch it.

/A Warning

peerDependencies are installed automatically only by NPM 7 and later. If you are using
NPM 6 or earlier, or if you are using Yarn, you must include the dependencies of your
dependencies in devDependencies. Otherwise, they won't be installed, and you will
receive a warning about unresolved peer dependencies.

Installing and updating dependencies
Run the following command to install your project’s dependencies.
Example

NPM

Install the latest version of everything that matches the ranges in 'package.json'
npm install

Install the same exact dependency versions as recorded in 'package-lock.json'
npm ci

Managing dependencies in TypeScript Version 2 320

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Yarn

Install the latest version of everything that matches the ranges in 'package.json'
$ yarn upgrade

Install the same exact dependency versions as recorded in 'yarn.lock'
$ yarn install --frozen-lockfile

To update the installed modules, the preceding npm install and yarn upgrade commands
can be used. Either command updates the packages in node_modules to the latest versions that
satisfy the rules in package. json. However, they do not update package. json itself, which

you might want to do to set a new minimum version. If you host your package on GitHub, you can
configure Dependabot version updates to automatically update package. json. Alternatively, use

npm-check-updates.

/A Important

By design, when you install or update dependencies, NPM and Yarn choose the latest
version of every package that satisfies the requirements specified in package. json. There
is always a risk that these versions may be broken (either accidentally or intentionally). Test
thoroughly after updating your project’s dependencies.

AWS CDK idioms in TypeScript

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props. Argument props is a
bundle of key/value pairs that the construct uses to configure the AWS resources it creates. Other
classes and methods also use the "bundle of attributes" pattern for arguments.

In TypeScript, the shape of props is defined using an interface that tells you the required and
optional arguments and their types. Such an interface is defined for each kind of props argument,
usually specific to a single construct or method. For example, the Bucket construct (in the
aws-cdk-1ib/aws-s3 module) specifies a props argument conforming to the BucketProps

interface.

AWS CDK idioms in TypeScript Version 2 321

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuring-dependabot-version-updates
https://www.npmjs.com/package/npm-check-updates
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.Bucket.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.BucketProps.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If a property is itself an object, for example the websiteRedirect property of BucketProps,
that object will have its own interface to which its shape must conform, in this case

RedirectTarget.

If you are subclassing an AWS Construct Library class (or overriding a method that takes a props-
like argument), you can inherit from the existing interface to create a new one that specifies any
new props your code requires. When calling the parent class or base method, generally you can
pass the entire props argument you received, since any attributes provided in the object but not
specified in the interface will be ignored.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. Passing the value you receive up the inheritance chain can then cause
unexpected behavior. It's safer to pass a shallow copy of the props you received with your property
removed or set to undefined. For example:

super(scope, name, {...props, encryptionKeys: undefined});

Alternatively, name your properties so that it is clear that they belong to your construct. This way,
it is unlikely they will collide with properties in future AWS CDK releases. If there are many of them,
use a single appropriately-named object to hold them.

Missing values

Missing values in an object (such as props) have the value undefined in TypeScript. Version 3.7
of the language introduced operators that simplify working with these values, making it easier
to specify defaults and "short-circuit" chaining when an undefined value is reached. For more
information about these features, see the TypeScript 3.7 Release Notes, specifically the first two

features, Optional Chaining and Nullish Coalescing.

Build and run CDK apps

Generally, you should be in the project's root directory when building and running your application.

Node.js cannot run TypeScript directly; instead, your application is converted to JavaScript using
the TypeScript compiler, tsc. The resulting JavaScript code is then executed.

The AWS CDK automatically does this whenever it needs to run your app. However, it can be useful
to compile manually to check for errors and to run tests. To compile your TypeScript app manually,
issue npm run build. You may also issue npm run watch to enter watch mode, in which the
TypeScript compiler automatically rebuilds your app whenever you save changes to a source file.

Build and run CDK apps Version 2 322

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.BucketProps.html#websiteredirect
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_s3.RedirectTarget.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with the AWS CDK in JavaScript

JavaScript is a fully-supported client language for the AWS CDK and is considered stable. Working
with the AWS Cloud Development Kit (AWS CDK) in JavaScript uses familiar tools, including Node.js
and the Node Package Manager (npm). You may also use Yarn if you prefer, though the examples

in this Guide use NPM. The modules comprising the AWS Construct Library are distributed via the

NPM repository, npmjs.org.

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-
source equivalent VSCodium), which has good support for JavaScript.

Get started with JavaScript

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

JavaScript AWS CDK applications require no additional prerequisites beyond these.

(® Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the - -
language option and specify javascript:

$ mkdir my-project
$ cd my-project
$ cdk init app --language javascript

Creating a project also installs the aws-cdk-lib module and its dependencies.

cdk init usesthe name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a JavaScript identifier; for example, it should not
start with a number or contain spaces.

In JavaScript Version 2 323

https://nodejs.org/
https://yarnpkg.com/
https://www.npmjs.com/
https://code.visualstudio.com/
https://vscodium.com/
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Using local cdk

For the most part, this guide assumes you install the CDK Toolkit globally (hpm install -g

aws -cdk), and the provided command examples (such as cdk synth) follow this assumption.
This approach makes it easy to keep the CDK Toolkit up to date, and since the CDK takes a strict
approach to backward compatibility, there is generally little risk in always using the latest version.

Some teams prefer to specify all dependencies within each project, including tools like the

CDK Toolkit. This practice lets you pin such components to specific versions and ensure that all
developers on your team (and your CI/CD environment) use exactly those versions. This eliminates
a possible source of change, helping to make builds and deployments more consistent and
repeatable.

The CDK includes a dependency for the CDK Toolkit in the JavaScript project template’s
package. json, so if you want to use this approach, you don’t need to make any changes to your
project. All you need to do is use slightly different commands for building your app and for issuing
cdk commands.

Operation Use global tools Use local tools
Initialize project cdk init --language npx aws-cdk init --
javascript language javascript
Run CDK Toolkit command cdk .. npm run cdk .. ornpx
aws-cdk ..

npx aws-cdk runs the version of the CDK Toolkit installed locally in the current project, if one
exists, falling back to the global installation, if any. If no global installation exists, npx downloads a
temporary copy of the CDK Toolkit and runs that. You may specify an arbitrary version of the CDK
Toolkit using the @ syntax: npx aws-cdk@l.120 --versionprints1.120.0.

® Tip

Set up an alias so you can use the cdk command with a local CDK Toolkit installation.

macOS/Linux

$ alias cdk="npx aws-cdk"

Using local cdk Version 2 324

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Windows

doskey cdk=npx aws-cdk $*

Managing AWS Construct Library modules

Use the Node Package Manager (npm) to install and update AWS Construct Library modules for use
by your apps, as well as other packages you need. (You may use yarn instead of npm if you prefer.)
npm also installs the dependencies for those modules automatically.

Most AWS CDK constructs are in the main CDK package, named aws-cdk-1ib, which is a default
dependency in new projects created by cdk init. "Experimental" AWS Construct Library modules,
where higher-level constructs are still under development, are named like aws-cdk-1ib/
<SERVICE-NAME>-alpha. The service name has an aws- prefix. If you're unsure of a module’s
name, search for it on NPM.

® Note

The CDK API Reference also shows the package names.

For example, the command below installs the experimental module for AWS CodeStar.

npm install eaws-cdk/aws-codestar-alpha

Some services' Construct Library support is in more than one namespace. For example, besides
aws-routeb3, there are three additional Amazon Route 53 namespaces, aws-route53-targets,
aws-route53-patterns, and aws-route53resolver.

Your project’s dependencies are maintained in package. json. You can edit this file to lock some
or all of your dependencies to a specific version or to allow them to be updated to newer versions
under certain criteria. To update your project's NPM dependencies to the latest permitted version
according to the rules you specified in package. json:

npm update

Managing AWS Construct Library modules Version 2 325

https://www.npmjs.com/search?q=%40aws-cdk
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

In JavaScript, you import modules into your code under the same name you use to install them
using NPM. We recommend the following practices when importing AWS CDK classes and AWS
Construct Library modules in your applications. Following these guidelines will help make your
code consistent with other AWS CDK applications as well as easier to understand.

» Use require(), not ES6-style import directives. Older versions of Node.js do not support
ES6 imports, so using the older syntax is more widely compatible. (If you really want to use ES6
imports, use esm to ensure your project is compatible with all supported versions of Node.js.)

» Generally, import individual classes from aws-cdk-1ib.

const { App, Stack } = require('aws-cdk-1lib');

« If you need many classes from aws-cdk-1ib, you may use a namespace alias of cdk instead of
importing the individual classes. Avoid doing both.

const cdk = require('aws-cdk-1ib');

« Generally, import AWS Construct Libraries using short namespace aliases.

const { s3 } = require('aws-cdk-1lib/aws-s3');

Managing dependencies in JavaScript

In JavaScript CDK projects, dependencies are specified in the package. json file in the project’s
main directory. The core AWS CDK modules are in a single NPM package called aws-cdk-11ib.

When you install a package using npm install, NPM records the package in package. json for
you.

If you prefer, you may use Yarn in place of NPM. However, the CDK does not support Yarn's plug-
and-play mode, which is default mode in Yarn 2. Add the following to your project’s .yarnrc.yml
file to turn off this feature.

nodeLinker: node-modules

Managing dependencies in JavaScript Version 2 326

https://www.npmjs.com/package/esm

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CDK applications

The following is an example package. json file generated by the cdk init --language
typescript command. The file generated for JavaScript is similar, only without the TypeScript-
related entries.

{

"name": "my-package",

"version": "0.1.0",

"bin": {

"my-package": "bin/my-package.js"

3,

"scripts": {

"build": "tsc",
"watch": "tsc -w",
"test": "jest",
"cdk": "cdk"

3,

"devDependencies": {
"@types/jest": "726.0.10",
"@types/node": "10.17.27",
"jest": "726.4.2",
"ts-jest": "726.2.0",
"aws-cdk": "2.16.0",
"ts-node": "79.0.0",
"typescript": "~3.9.7"

.

"dependencies": {
"aws-cdk-1ib": "2.16.0",
"constructs": "710.0.0",
"source-map-support": "7@.5.16"

}

}

For deployable CDK apps, aws-cdk-1ib must be specified in the dependencies section of
package. json. You can use a caret (*) version number specifier to indicate that you will accept
later versions than the one specified as long as they are within the same major version.

For experimental constructs, specify exact versions for the alpha construct library modules, which
have APIs that may change. Do not use ” or ~ since later versions of these modules may bring API
changes that can break your app.

Managing dependencies in JavaScript Version 2 327

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Specify versions of libraries and tools needed to test your app (for example, the jest testing
framework) in the devDependencies section of package. json. Optionally, use ” to specify that
later compatible versions are acceptable.

Third-party construct libraries

If you're developing a construct library, specify its dependencies using a combination of the
peerDependencies and devDependencies sections, as shown in the following example
package. jsonfile.

{
"name": "my-package",
"version": "0.0.1",
"peerDependencies": {
"aws-cdk-1ib": "72.14.0",
"@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
"constructs": "710.0.0"
1,
"devDependencies": {
"aws-cdk-1ib": "2.14.0",
"@aws-cdk/aws-appsync-alpha": "2.10.0-alpha",
"constructs": "10.0.0",
"jsii": "21.50.0",
"aws-cdk": "A2.14.0"
}
}

In peerDependencies, use a caret (") to specify the lowest version of aws-cdk-1ib that your
library works with. This maximizes the compatibility of your library with a range of CDK versions.
Specify exact versions for alpha construct library modules, which have APIs that may change.
Using peerDependencies makes sure that there is only one copy of all CDK libraries in the
node_modules tree.

In devDependencies, specify the tools and libraries you need for testing, optionally with »

to indicate that later compatible versions are acceptable. Specify exactly (without ~ or ~) the
lowest versions of aws-cdk-1ib and other CDK packages that you advertise your library be
compatible with. This practice makes sure that your tests run against those versions. This way, if
you inadvertently use a feature found only in newer versions, your tests can catch it.

Managing dependencies in JavaScript Version 2 328

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

/A Warning

peerDependencies are installed automatically only by NPM 7 and later. If you are using
NPM 6 or earlier, or if you are using Yarn, you must include the dependencies of your
dependencies in devDependencies. Otherwise, they won't be installed, and you will
receive a warning about unresolved peer dependencies.

Installing and updating dependencies
Run the following command to install your project’s dependencies.

Example

NPM

Install the latest version of everything that matches the ranges in 'package.json'
npm install

Install the same exact dependency versions as recorded in 'package-lock.json'
npm ci

Yarn

Install the latest version of everything that matches the ranges in 'package.json'
yarn upgrade

Install the same exact dependency versions as recorded in 'yarn.lock'
yarn install --frozen-lockfile

To update the installed modules, the preceding npm install and yarn upgrade commands
can be used. Either command updates the packages in node_modules to the latest versions that
satisfy the rules in package. json. However, they do not update package. json itself, which

you might want to do to set a new minimum version. If you host your package on GitHub, you can
configure Dependabot version updates to automatically update package. json. Alternatively, use
npm-check-updates.

Managing dependencies in JavaScript Version 2 329

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuring-dependabot-version-updates
https://www.npmjs.com/package/npm-check-updates

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

/A Important

By design, when you install or update dependencies, NPM and Yarn choose the latest
version of every package that satisfies the requirements specified in package. json. There
is always a risk that these versions may be broken (either accidentally or intentionally). Test
thoroughly after updating your project’s dependencies.

AWS CDK idioms in JavaScript

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the AWS resources it creates. Other classes and methods
also use the "bundle of attributes" pattern for arguments.

Using an IDE or editor that has good JavaScript autocomplete will help avoid misspelling
property names. If a construct is expecting an encryptionKeys property, and you spell it
encryptionkeys, when instantiating the construct, you haven't passed the value you intended.
This can cause an error at synthesis time if the property is required, or cause the property to be
silently ignored if it is optional. In the latter case, you may get a default behavior you intended to
override. Take special care here.

When subclassing an AWS Construct Library class (or overriding a method that takes a props-like
argument), you may want to accept additional properties for your own use. These values will be
ignored by the parent class or overridden method, because they are never accessed in that code, so
you can generally pass on all the props you received.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. Passing the value you receive up the inheritance chain can then cause
unexpected behavior. It's safer to pass a shallow copy of the props you received with your property
removed or set to undefined. For example:

super(scope, name, {...props, encryptionKeys: undefined});

Alternatively, name your properties so that it is clear that they belong to your construct. This way,
it is unlikely they will collide with properties in future AWS CDK releases. If there are many of them,
use a single appropriately-named object to hold them.

AWS CDK idioms in JavaScript Version 2 330

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Missing values

Missing values in an object (such as props) have the value undefined in JavaScript. The usual
techniques apply for dealing with these. For example, a common idiom for accessing a property of
a value that may be undefined is as follows:

// a may be undefined, but if it is not, it may have an attribute b
// c is undefined if a is undefined, OR if a doesn't have an attribute b
let ¢ = a && a.b;

However, if a could have some other "falsy" value besides undefined, it is better to make the test
more explicit. Here, we'll take advantage of the fact that null and undefined are equal to test
for them both at once:

let ¢ = a ==null ? a : a.b;
® Tip

Node.js 14.0 and later support new operators that can simplify the handling of undefined
values. For more information, see the optional chaining and nullish coalescing proposals.

Using TypeScript examples with JavaScript

TypeScript is the language we use to develop the AWS CDK, and it was the first language
supported for developing applications, so many available AWS CDK code examples are written in
TypeScript. These code examples can be a good resource for JavaScript developers; you just need
to remove the TypeScript-specific parts of the code.

TypeScript snippets often use the newer ECMAScript import and export keywords to import
objects from other modules and to declare the objects to be made available outside the current
module. Node.js has just begun supporting these keywords in its latest releases. Depending on the
version of Node.js you're using (or wish to support), you might rewrite imports and exports to use
the older syntax.

Imports can be replaced with calls to the require() function.

Using TypeScript examples with JavaScript Version 2 331

https://github.com/tc39/proposal-optional-chaining/blob/master/README.md
https://github.com/tc39/proposal-nullish-coalescing/blob/master/README.md
https://www.typescriptlang.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example

TypeScript

import * as cdk from 'aws-cdk-lib';
import { Bucket, BucketPolicy } from 'aws-cdk-lib/aws-s3';

JavaScript

const cdk = require('aws-cdk-1ib');
const { Bucket, BucketPolicy } = require('aws-cdk-1lib/aws-s3');

Exports can be assigned to the module.exports object.

Example

TypeScript

export class Stackl extends cdk.Stack {
/]

export class Stack2 extends cdk.Stack {
/]

JavaScript

class Stackl extends cdk.Stack {
// ...

class Stack2 extends cdk.Stack {
// ...

module.exports = { Stackl, Stack2 }

Using TypeScript examples with JavaScript Version 2 332

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note

An alternative to using the old-style imports and exports is to use the esm module.

Once you've got the imports and exports sorted, you can dig into the actual code. You may run into
these commonly-used TypeScript features:

Type annotations

Interface definitions

Type conversions/casts

Access modifiers

Type annotations may be provided for variables, class members, function parameters, and function
return types. For variables, parameters, and members, types are specified by following the
identifier with a colon and the type. Function return values follow the function signature and
consist of a colon and the type.

To convert type-annotated code to JavaScript, remove the colon and the type. Class members
must have some value in JavaScript; set them to undefined if they only have a type annotation in
TypeScript.

Example

TypeScript

var encrypted: boolean = true;

class myStack extends cdk.Stack {
bucket: s3.Bucket;

/e

function makeEnv(account: string, region: string) : object {

/e

Using TypeScript examples with JavaScript Version 2 333

https://www.npmjs.com/package/esm

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

JavaScript

var encrypted = true;

class myStack extends cdk.Stack {
bucket = undefined;

Jf 500

function makeEnv(account, region) {

Jf 500

In TypeScript, interfaces are used to give bundles of required and optional properties, and their
types, a name. You can then use the interface name as a type annotation. TypeScript will make sure
that the object you use as, for example, an argument to a function has the required properties of
the right types.

interface myFuncProps {
code: lambda.Code,
handler?: string

JavaScript does not have an interface feature, so once you've removed the type annotations, delete
the interface declarations entirely.

When a function or method returns a general-purpose type (such as object), but you want to
treat that value as a more specific child type to access properties or methods that are not part of
the more general type's interface, TypeScript lets you cast the value using as followed by a type or
interface name. JavaScript doesn’t support (or need) this, so simply remove as and the following
identifier. A less-common cast syntax is to use a type name in brackets, <LikeThis>; these casts,
too, must be removed.

Finally, TypeScript supports the access modifiers public, protected, and private for members
of classes. All class members in JavaScript are public. Simply remove these modifiers wherever you
see them.

Knowing how to identify and remove these TypeScript features goes a long way toward adapting
short TypeScript snippets to JavaScript. But it may be impractical to convert longer TypeScript

Using TypeScript examples with JavaScript Version 2 334

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

examples in this fashion, since they are more likely to use other TypeScript features. For these
situations, we recommend Sucrase. Sucrase won't complain if code uses an undefined variable, for
example, as tsc would. If it is syntactically valid, then with few exceptions, Sucrase can translate it
to JavaScript. This makes it particularly valuable for converting snippets that may not be runnable
on their own.

Migrating to TypeScript

Many JavaScript developers move to TypeScript as their projects get larger and more complex.
TypeScript is a superset of JavaScript—all JavaScript code is valid TypeScript code, so no changes
to your code are required—and it is also a supported AWS CDK language. Type annotations and
other TypeScript features are optional and can be added to your AWS CDK app as you find value in
them. TypeScript also gives you early access to new JavaScript features, such as optional chaining
and nullish coalescing, before they're finalized—and without requiring that you upgrade Node.js.

TypeScript's "shape-based" interfaces, which define bundles of required and optional properties
(and their types) within an object, allow common mistakes to be caught while you're writing the
code, and make it easier for your IDE to provide robust autocomplete and other real-time coding
advice.

Coding in TypeScript does involve an additional step: compiling your app with the TypeScript
compiler, tsc. For typical AWS CDK apps, compilation requires a few seconds at most.

The easiest way to migrate an existing JavaScript AWS CDK app to TypeScript is to create a new
TypeScript project using cdk init app --language typescript, then copy your source files
(and any other necessary files, such as assets like AWS Lambda function source code) to the new
project. Rename your JavaScript files to end in . ts and begin developing in TypeScript.

Working with the AWS CDK in Python

Python is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK) and is
considered stable. Working with the AWS CDK in Python uses familiar tools, including the standard
Python implementation (CPython), virtual environments with virtualenv, and the Python
package installer pip. The modules comprising the AWS Construct Library are distributed via
pypi.org. The Python version of the AWS CDK even uses Python-style identifiers (for example,
snake_case method names).

You can use any editor or IDE. Many AWS CDK developers use Visual Studio Code (or its open-

source equivalent VSCodium), which has good support for Python via an official extension. The

Migrating to TypeScript Version 2 335

https://github.com/alangpierce/sucrase
https://www.typescriptlang.org/
https://pypi.org/search/?q=aws-cdk
https://code.visualstudio.com/
https://vscodium.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

IDLE editor included with Python will suffice to get started. The Python modules for the AWS CDK
do have type hints, which are useful for a linting tool or an IDE that supports type validation.

Get started with Python

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

Python AWS CDK applications require Python 3.6 or later. If you don't already have it installed,
download a compatible version for your operating system at python.org. If you run Linux, your
system may have come with a compatible version, or you may install it using your distro’s package
manager (yum, apt, etc.). Mac users may be interested in Homebrew, a Linux-style package
manager for macOS.

® Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

The Python package installer, pip, and virtual environment manager, virtualenv, are also
required. Windows installations of compatible Python versions include these tools. On Linux, pip
and virtualenv may be provided as separate packages in your package manager. Alternatively,
you may install them with the following commands:

python -m ensurepip --upgrade
python -m pip install --upgrade pip
python -m pip install --upgrade virtualenv

If you encounter a permission error, run the above commands with the --user flag so that the
modaules are installed in your user directory, or use sudo to obtain the permissions to install the
modules system-wide.

(@ Note

It is common for Linux distros to use the executable name python3 for Python 3.x, and
have python refer to a Python 2.x installation. Some distros have an optional package
you can install that makes the python command refer to Python 3. Failing that, you can

Get started with Python Version 2 336

https://www.python.org/downloads/
https://www.python.org/
https://brew.sh/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

adjust the command used to run your application by editing cdk. json in the project's
main directory.

® Note

On Windows, you may want to invoke Python (and pip) using the py executable, the
Python launcher for Windows. Among other things, the launcher allows you to easily
specify which installed version of Python you want to use.

If typing python at the command line results in a message about installing Python from
the Windows Store, even after installing a Windows version of Python, open Windows'
Manage App Execution Aliases settings panel and turn off the two App Installer entries for
Python.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the - -
language option and specify python:

$ mkdir my-project
$ cd my-project
$ cdk init app --language python

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,

the name should otherwise follow the form of a Python identifier; for example, it should not start
with a number or contain spaces.

To work with the new project, activate its virtual environment. This allows the project’s
dependencies to be installed locally in the project folder, instead of globally.

$ source .venv/bin/activate

(@ Note

You may recognize this as the Mac/Linux command to activate a virtual environment. The
Python templates include a batch file, source.bat, that allows the same command to

Creating a project Version 2 337

https://docs.python.org/3/using/windows.html#launcher

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

be used on Windows. The traditional Windows command, .\venv\Scripts\activate,
works, too.

If you initialized your AWS CDK project using CDK Toolkit v1.70.0 or earlier, your virtual
environment is in the . env directory instead of . venv.

/A Important

Activate the project’s virtual environment whenever you start working on it. Otherwise,
you won't have access to the modules installed there, and modules you install will go in the
Python global module directory (or will result in a permission error).

After activating your virtual environment for the first time, install the app’s standard dependencies:

$ python -m pip install -r requirements.txt

Managing AWS Construct Library modules

Use the Python package installer, pip, to install and update AWS Construct Library modules for
use by your apps, as well as other packages you need. pip also installs the dependencies for those
modules automatically. If your system does not recognize pip as a standalone command, invoke
pip as a Python module, like this:

$ python -m pip <PIP-COMMAND>

Most AWS CDK constructs are in aws-cdk-1ib. Experimental modules are in separate modules
named like aws-cdk .<SERVICE-NAME>.alpha. The service name includes an aws prefix. If you're
unsure of a module's name, search for it at PyPIl. For example, the command below installs the AWS

CodeStar library.

$ python -m pip install aws-cdk.aws-codestar-alpha

Some services' constructs are in more than one namespace. For example, besides aws-cdk . aws-
routeb3, there are three additional Amazon Route 53 namespaces, named aws-route53-
targets, aws-route53-patterns, and aws-route53resolver.

Managing AWS Construct Library modules Version 2 338

https://pypi.org/search/?q=aws-cdk

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note
The Python edition of the CDK API Reference also shows the package names.

The names used for importing AWS Construct Library modules into your Python code look like the
following.

import aws_cdk.aws_s3 as s3
import aws_cdk.aws_lambda as lambda_

We recommend the following practices when importing AWS CDK classes and AWS Construct
Library modules in your applications. Following these guidelines will help make your code
consistent with other AWS CDK applications as well as easier to understand.

« Generally, import individual classes from top-level aws_cdk.

from aws_cdk import App, Construct

« If you need many classes from the aws_cdk, you may use a namespace alias of cdk instead of
importing individual classes. Avoid doing both.

import aws_cdk as cdk

« Generally, import AWS Construct Libraries using short namespace aliases.

import aws_cdk.aws_s3 as s3

After installing a module, update your project's requirements. txt file, which lists your project’s
dependencies. It is best to do this manually rather than using pip freeze.pip freeze captures
the current versions of all modules installed in your Python virtual environment, which can be
useful when bundling up a project to be run elsewhere.

Usually, though, your requirements. txt should list only top-level dependencies (modules that
your app depends on directly) and not the dependencies of those libraries. This strategy makes
updating your dependencies simpler.

Managing AWS Construct Library modules Version 2 339

https://docs.aws.amazon.com/cdk/api/v2/python/index.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

You can edit requirements. txt to allow upgrades; simply replace the == preceding a version
number with ~= to allow upgrades to a higher compatible version, or remove the version
requirement entirely to specify the latest available version of the module.

With requirements. txt edited appropriately to allow upgrades, issue this command to upgrade
your project’s installed modules at any time:

$ pip install --upgrade -r requirements.txt

Managing dependencies in Python

In Python, you specify dependencies by putting them in requirements.txt for applications or
setup.py for construct libraries. Dependencies are then managed with the PIP tool. PIP is invoked
in one of the following ways:

pip <command options>
python -m pip <command options>

The python -m pip invocation works on most systems; pip requires that PIP’s executable be on
the system path. If pip doesn't work, try replacing it with python -m pip.

The cdk init --language python command creates a virtual environment for your

new project. This lets each project have its own versions of dependencies, and also a basic
requirements. txt file. You must activate this virtual environment by running source .venv/
bin/activate each time you begin working with the project. On Windows, run .\venv\Scripts
\activate instead

CDK applications

The following is an example requirements. txt file. Because PIP does not have a dependency-
locking feature, we recommend that you use the == operator to specify exact versions for all
dependencies, as shown here.

aws-cdk-1ib==2.14.0
aws-cdk.aws-appsync-alpha==2.10.0a0

Installing a module with pip install does not automatically add it to requirements. txt. You
must do that yourself. If you want to upgrade to a later version of a dependency, edit its version
number in requirements. txt.

Managing dependencies in Python Version 2 340

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To install or update your project’s dependencies after creating or editing requirements. txt, run
the following:

python -m pip install -r requirements.txt

® Tip
The pip freeze command outputs the versions of all installed dependencies in a format
that can be written to a text file. This can be used as a requirements file with pip install
-1. This file is convenient for pinning all dependencies (including transitive ones) to the
exact versions that you tested with. To avoid problems when upgrading packages later, use
a separate file for this, such as freeze.txt (not requirements.txt). Then, regenerate it
when you upgrade your project’s dependencies.

Third-party construct libraries

In libraries, dependencies are specified in setup.py, so that transitive dependencies are
automatically downloaded when the package is consumed by an application. Otherwise,
every application that wants to use your package needs to copy your dependencies into their
requirements.txt. An example setup.py is shown here.

from setuptools import setup

setup(
name='my-package',
version='0.0.1",
install_requires=[
'aws-cdk-1ib==2.14.0",
1,

To work on the package for development, create or activate a virtual environment, then run the
following command.

python -m pip install -e .

Managing dependencies in Python Version 2 341

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Although PIP automatically installs transitive dependencies, there can only be one installed copy
of any one package. The version that is specified highest in the dependency tree is selected;
applications always have the last word in what version of packages get installed.

AWS CDK idioms in Python

Language conflicts

In Python, 1ambda is a language keyword, so you cannot use it as a name for the AWS Lambda
construct library module or Lambda functions. The Python convention for such conflicts is to use a
trailing underscore, as in lambda_, in the variable name.

By convention, the second argument to AWS CDK constructs is named id. When writing your own
stacks and constructs, calling a parameter id "shadows" the Python built-in function id(), which
returns an object's unique identifier. This function isn't used very often, but if you should happen
to need it in your construct, rename the argument, for example construct_id.

Arguments and properties

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

scope and id should always be passed as positional arguments, not keyword arguments, because
their names change if the construct accepts a property named scope or id.

In Python, props are expressed as keyword arguments. If an argument contains nested data
structures, these are expressed using a class which takes its own keyword arguments at
instantiation. The same pattern is applied to other method calls that take a structured argument.

For example, in a Amazon S3 bucket's add_lifecycle_rule method, the transitions
property is a list of Transition instances.

bucket.add_lifecycle_rule(
transitions=[
Transition(
storage_class=StorageClass.GLACIER,
transition_after=Duration.days(10)

)

AWS CDK idioms in Python Version 2 342

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

]

When extending a class or overriding a method, you may want to accept additional arguments for
your own purposes that are not understood by the parent class. In this case you should accept the
arguments you don't care about using the **kwargs idiom, and use keyword-only arguments to
accept the arguments you're interested in. When calling the parent’s constructor or the overridden
method, pass only the arguments it is expecting (often just **kwargs). Passing arguments that the
parent class or method doesn’t expect results in an error.

class MyConstruct(Construct):
def __init_ (self, id, *, MyProperty=42, **kwargs):
super().__init_ (self, id, **kwargs)
...

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. This won't cause any technical issues for users of your construct or method
(since your property isn't passed "up the chain," the parent class or overridden method will simply
use a default value) but it may cause confusion. You can avoid this potential problem by naming
your properties so they clearly belong to your construct. If there are many new properties, bundle
them into an appropriately-named class and pass it as a single keyword argument.

Missing values

The AWS CDK uses None to represent missing or undefined values. When working with **kwargs,
use the dictionary’'s get () method to provide a default value if a property is not provided. Avoid
using kwargs/[..] , as this raises KeyError for missing values.

encrypted = kwargs.get("encrypted") # None if no property "encrypted" exists
encrypted kwargs.get("encrypted", False) # specify default of False if property is
missing

Some AWS CDK methods (such as tryGetContext() to get a runtime context value) may return
None, which you will need to check explicitly.

Using interfaces

Python doesn’t have an interface feature as some other languages do, though it does have
abstract base classes, which are similar. (If you're not familiar with interfaces, Wikipedia has a

AWS CDK idioms in Python Version 2 343

https://docs.python.org/3/library/abc.html
https://en.wikipedia.org/wiki/Interface_(computing)#In_object-oriented_languages

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

good introduction.) TypeScript, the language in which the AWS CDK is implemented, does provide
interfaces, and constructs and other AWS CDK objects often require an object that adheres to a
particular interface, rather than inheriting from a particular class. So the AWS CDK provides its own
interface feature as part of the JSII layer.

To indicate that a class implements a particular interface, you can use the @jsii.implements
decorator:

from aws_cdk import IAspect, IConstruct
import jsii

@jsii.implements(IAspect)
class MyAspect():
def visit(self, node: IConstruct) -> None:
print("Visited", node.node.path)

Type pitfalls

Python uses dynamic typing, where all variables may refer to a value of any type. Parameters and
return values may be annotated with types, but these are "hints" and are not enforced. This means
that in Python, it is easy to pass the incorrect type of value to a AWS CDK construct. Instead of
getting a type error during build, as you would from a statically-typed language, you may instead
get a runtime error when the JSII layer (which translates between Python and the AWS CDK's
TypeScript core) is unable to deal with the unexpected type.

In our experience, the type errors Python programmers make tend to fall into these categories.

« Passing a single value where a construct expects a container (Python list or dictionary) or vice
versa.

« Passing a value of a type associated with a layer 1 (CfnXxxxxx) construct to a L2 or L3 construct,
or vice versa.

The AWS CDK Python modules do include type annotations, so you can use tools that support
them to help with types. If you are not using an IDE that supports these, such as PyCharm, you
might want to call the MyPy type validator as a step in your build process. There are also runtime
type checkers that can improve error messages for type-related errors.

AWS CDK idioms in Python Version 2 344

https://en.wikipedia.org/wiki/Interface_(computing)#In_object-oriented_languages
https://github.com/aws/jsii
https://www.jetbrains.com/pycharm/
http://mypy-lang.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Working with the AWS CDK in Java

Java is a fully-supported client language for the AWS CDK and is considered stable. You can
develop AWS CDK applications in Java using familiar tools, including the JDK (Oracle’s, or an
OpenlJDK distribution such as Amazon Corretto) and Apache Maven.

The AWS CDK supports Java 8 and later. We recommend using the latest version you can, however,
because later versions of the language include improvements that are particularly convenient

for developing AWS CDK applications. For example, Java 9 introduces the Map.of () method (a
convenient way to declare hashmaps that would be written as object literals in TypeScript). Java 10
introduces local type inference using the var keyword.

(® Note

Most code examples in this Developer Guide work with Java 8. A few examples use
Map.of(); these examples include comments noting that they require Java 9.

You can use any text editor, or a Java IDE that can read Maven projects, to work on your AWS CDK
apps. We provide Eclipse hints in this Guide, but IntelliJ IDEA, NetBeans, and other IDEs can import
Maven projects and can be used for developing AWS CDK applications in Java.

It is possible to write AWS CDK applications in JVM-hosted languages other than Java (for example,
Kotlin, Groovy, Clojure, or Scala), but the experience may not be particularly idiomatic, and we are
unable to provide any support for these languages.

Get started with Java

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

Java AWS CDK applications require Java 8 (v1.8) or later. We recommend Amazon Corretto, but you
can use any OpenJDK distribution or Oracle’s JDK. You will also need Apache Maven 3.5 or later.
You can also use tools such as Gradle, but the application skeletons generated by the AWS CDK
Toolkit are Maven projects.

In Java Version 2 345

https://www.eclipse.org/downloads/
https://aws.amazon.com/corretto/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify java:

$ mkdir my-project
$ cd my-project
$ cdk init app --language java

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a Java identifier; for example, it should not start
with a number or contain spaces.

The resulting project includes a reference to the software.amazon.awscdk Maven package. It
and its dependencies are automatically installed by Maven.

If you are using an IDE, you can now open or import the project. In Eclipse, for example, choose File
> Import > Maven > Existing Maven Projects. Make sure that the project settings are set to use
Java 8 (1.8).

Managing AWS Construct Library modules

Use Maven to install AWS Construct Library packages, which are in the group
software.amazon.awscdk. Most constructs are in the artifact aws-cdk-1ib, which is added
to new Java projects by default. Modules for services whose higher-level CDK support is still
being developed are in separate "experimental" packages, named with a short version (no AWS or
Amazon prefix) of their service’'s name. Search the Maven Central Repository to find the names of
all AWS CDK and AWS Construct Module libraries.

(® Note

The Java edition of the CDK API Reference also shows the package names.

Creating a project Version 2 346

https://search.maven.org/search?q=software.amazon.awscdk
https://docs.aws.amazon.com/cdk/api/v2/java/index.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Some services' AWS Construct Library support is in more than one namespace. For example,
Amazon Route 53 has its functionality divided into software.amazon.awscdk.route53,
route53-patterns, route53resolver, and route53-targets.

The main AWS CDK package is imported in Java code as software.amazon.awscdk.

Modules for the various services in the AWS Construct Library live under
software.amazon.awscdk.services and are named similarly to their Maven package name.
For example, the Amazon S3 module's namespace is software.amazon.awscdk.services.s3.

We recommend writing a separate Java import statement for each AWS Construct Library class
you use in each of your Java source files, and avoiding wildcard imports. You can always use a
type’s fully-qualified name (including its namespace) without an import statement.

If your application depends on an experimental package, edit your project’s pom. xml and add
a new <dependency> element in the <dependencies> container. For example, the following
<dependency> element specifies the CodeStar experimental construct library module:

<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>codestar-alpha</artifactId>
<version>2.0.0-alpha.10</version>
</dependency>

® Tip
If you use a Java IDE, it probably has features for managing Maven dependencies. We

recommend editing pom. xml directly, however, unless you are absolutely sure the IDE's
functionality matches what you'd do by hand.

Managing dependencies in Java

In Java, dependencies are specified in pom. xml and installed using Maven. The <dependencies>
container includes a <dependency> element for each package. Following is a section of pom. xml
for a typical CDK Java app.

<dependencies>
<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>aws-cdk-1lib</artifactId>

Managing dependencies in Java Version 2 347

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

<version>2.14.0</version>

</dependency>

<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>appsync-alpha</artifactId>
<version>2.10.0-alpha.0</version>

</dependency>

</dependencies>

® Tip
Many Java IDEs have integrated Maven support and visual pom. xml editors, which you may
find convenient for managing dependencies.

Maven does not support dependency locking. Although it's possible to specify version ranges in
pom.xml, we recommend you always use exact versions to keep your builds repeatable.

Maven automatically installs transitive dependencies, but there can only be one installed copy of
each package. The version that is specified highest in the POM tree is selected; applications always
have the last word in what version of packages get installed.

Maven automatically installs or updates your dependencies whenever you build (mnvn compile) or
package (mvn package) your project. The CDK Toolkit does this automatically every time you run
it, so generally there is no need to manually invoke Maven.

AWS CDK idioms in Java

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

In Java, props are expressed using the Builder pattern. Each construct type has a corresponding
props type; for example, the Bucket construct (which represents an Amazon S3 bucket) takes as its

props an instance of BucketProps.

The BucketProps class (like every AWS Construct Library props class) has an inner class called
Builder. The BucketProps.Builder type offers methods to set the various properties of a

AWS CDK idioms in Java Version 2 348

https://en.wikipedia.org/wiki/Builder_pattern

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

BucketProps instance. Each method returns the Builder instance, so the method calls can be
chained to set multiple properties. At the end of the chain, you call build() to actually produce
the BucketProps object.

Bucket bucket = new Bucket(this, "amzn-s3-demo-bucket", new BucketProps.Builder()
.versioned(true)
.encryption(BucketEncryption.KMS_MANAGED)

.build());

Constructs, and other classes that take a props-like object as their final argument, offer a shortcut.
The class has a Builder of its own that instantiates it and its props object in one step. This way,
you don't need to explicitly instantiate (for example) both BucketProps and a Bucket--and you
don't need an import for the props type.

Bucket bucket = Bucket.Builder.create(this, "amzn-s3-demo-bucket")
.versioned(true)
.encryption(BucketEncryption.KMS_MANAGED)
.build();

When deriving your own construct from an existing construct, you may want to accept additional
properties. We recommend that you follow these builder patterns. However, this isn’t as simple as
subclassing a construct class. You must provide the moving parts of the two new Builder classes
yourself. You may prefer to simply have your construct accept one or more additional arguments.
You should provide additional constructors when an argument is optional.

Generic structures

In some APIs, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject () method.) In Java, these objects are

represented as java.util.Map<String, Object>.In cases where the values are all strings, you
can use Map<String, String>.

Java does not provide a way to write literals for such containers like some other languages do. In
Java 9 and later, you can use java.util.Map.of () to conveniently define maps of up to ten

entries inline with one of these calls.

java.util.Map.of(
"base-directory", "dist",
"files", "LambdaStack.template.json"

AWS CDK idioms in Java Version 2 349

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html#static-fromwbrobjectvalue
https://docs.oracle.com/javase/9/docs/api/java/util/Map.html#ofEntries-java.util.Map.Entry%E2%80%A6%E2%80%8B-

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

)

To create maps with more than ten entries, use java.util.Map.ofEntries().

If you are using Java 8, you could provide your own methods similar to to these.

JavaScript arrays are represented as List<Object> or List<String> in Java. The method
java.util.Arrays.asList is convenient for defining short Lists.

List<String> cmds = Arrays.aslList("cd lambda", "npm install", "npm install typescript")

Missing values

In Java, missing values in AWS CDK objects such as props are represented by null. You must
explicitly test any value that could be null to make sure it contains a value before doing anything
with it. Java does not have "syntactic sugar" to help handle null values as some other languages do.
You may find Apache ObjectUtil's defaultIfNull and firstNonNull useful in some situations.
Alternatively, write your own static helper methods to make it easier to handle potentially null

values and make your code more readable.

Build and run CDK applications

The AWS CDK automatically compiles your app before running it. However, it can be useful to
build your app manually to check for errors and to run tests. You can do this in your IDE (for
example, press Control-B in Eclipse) or by issuing mvn compile at a command prompt while in
your project’s root directory.

Run any tests you've written by running mvn test at a command prompt.

Working with the AWS CDK in C#

.NET is a fully-supported client language for the AWS CDK and is considered stable. C# is the

main .NET language for which we provide examples and support. You can choose to write AWS CDK
applications in other .NET languages, such as Visual Basic or F#, but AWS offers limited support for
using these languages with the CDK.

You can develop AWS CDK applications in C# using familiar tools including Visual Studio, Visual
Studio Code, the dotnet command, and the NuGet package manager. The modules comprising the
AWS Construct Library are distributed via nuget.org.

Build and run CDK applications Version 2 350

https://docs.oracle.com/javase/9/docs/api/java/util/Map.html#ofEntries-java.util.Map.Entry%E2%80%A6%E2%80%8B-
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ObjectUtils.html#defaultIfNull-T-T-
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ObjectUtils.html#firstNonNull-T%E2%80%A6%E2%80%8B-
https://www.nuget.org/packages?q=amazon.cdk.aws

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

We suggest using Visual Studio 2019 (any edition) on Windows to develop AWS CDK apps in C#.

Get started with C#

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

C# AWS CDK applications require .NET Core v3.1 or later, available here.

The .NET toolchain includes dotnet, a command-line tool for building and running .NET
applications and managing NuGet packages. Even if you work mainly in Visual Studio, this
command can be useful for batch operations and for installing AWS Construct Library packages.

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify cshazrp:

mkdir my-project
cd my-project
cdk init app --language csharp

cdk init usesthe name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a C# identifier; for example, it should not start with
a number or contain spaces.

The resulting project includes a reference to the Amazon.CDK.Lib NuGet package. It and its
dependencies are installed automatically by NuGet.

Managing AWS Construct Library modules

The .NET ecosystem uses the NuGet package manager. The main CDK package, which contains the
core classes and all stable service constructs, is Amazon.CDK.Lib. Experimental modules, where
new functionality is under active development, are named like Amazon.CDK.AWS.<SERVICE-
NAME>.Alpha, where the service name is a short name without an AWS or Amazon prefix. For
example, the NuGet package name for the AWS loT module is Amazon.CDK.AWS.IoT.Alpha. If
you can't find a package you want, search Nuget.org.

Get started with C# Version 2 351

https://visualstudio.microsoft.com/downloads/
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://www.nuget.org/packages?q=amazon.cdk.aws

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Note
The .NET edition of the CDK API Reference also shows the package names.

Some services' AWS Construct Library support is in more than one module. For example, AWS loT
has a second module named Amazon.CDK.AWS.IoT.Actions.Alpha.

The AWS CDK’s main module, which you'll need in most AWS CDK apps, is imported in C#
code as Amazon. CDK. Modules for the various services in the AWS Construct Library live under
Amazon.CDK.AWS . For example, the Amazon S3 module’s namespace is Amazon.CDK.AWS. S3.

We recommend writing C# using directives for the CDK core constructs and for each AWS service
you use in each of your C# source files. You may find it convenient to use an alias for a namespace
or type to help resolve name conflicts. You can always use a type's fully-qualfiied name (including
its namespace) without a using statement.

Managing dependencies in C#

In C# AWS CDK apps, you manage dependencies using NuGet. NuGet has four standard, mostly
equivalent interfaces. Use the one that suits your needs and working style. You can also use
compatible tools, such as Paket or MyGet or even edit the . csproj file directly.

NuGet does not let you specify version ranges for dependencies. Every dependency is pinned to a
specific version.

After updating your dependencies, Visual Studio will use NuGet to retrieve the specified versions of
each package the next time you build. If you are not using Visual Studio, use the dotnet restore
command to update your dependencies.

Editing the project file directly

Your project's . csproj file contains an <ItemGroup> container that lists your dependencies as
<PackageReference elements.

<ItemGroup>
<PackageReference Include="Amazon.CDK.Lib" Version="2.14.0" />
<PackageReference Include="Constructs" Version="%constructs-version%" />
</ItemGroup>

Managing dependencies in C# Version 2 352

https://docs.aws.amazon.com/cdk/api/latest/dotnet/api/index.html
https://fsprojects.github.io/Paket/
https://www.myget.org/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The Visual Studio NuGet GUI

Visual Studio’s NuGet tools are accessible from Tools > NuGet Package Manager > Manage NuGet
Packages for Solution. Use the Browse tab to find the AWS Construct Library packages you want
to install. You can choose the desired version, including prerelease versions of your modules, and
add them to any of the open projects.

(® Note

All AWS Construct Library modules deemed "experimental" (see AWS CDK versioning) are
flagged as prerelease in NuGet and have an alpha name suffix.

Managing dependencies in C# Version 2 353

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

MNuGet - Solution & ¢ Rl io 0j io g HelloLambdaSta

Browse Installed Updates @] Consolidate Manage Packages for solution

Amazon. COK.AWS alpha % | Include prerelease Package source: 03

(g Amazon.COK AWS.Re(% nugetors
Amaznn.CDK.AWS.Redshif‘t.AIpha @ by Amazon Web Services, 2.33K dow 2.0.0-rc.24

. The CDK Construct Library for AWS:Redshift (Stability: Experimental) Versions - 0
Tereiease
|:| Project Version Installed
@ Amazon.CDK.AWS. Amplify.Alpha @ by Amazon Web Services, 2.33K dowr 2.0.0-rc.24 [] HelloFunction
5 The CDK Construct Library for AWS:Amplify (Stability: Experimental) |:| HelloLambda
rereiease

@ Amazon.CDK.AWS.Neptune.Alpha @ by Amazon Web Services, 231K dow 2.0.0-rc.24
The CDK Construct Library for AWS::Meptune (Stability: Experimental)

Prereleas

(%j Amazon.CDK.AWS.Glue.Alpha & by Amazon Web Services, 2.31K downloac 2.0.0-rc.24
The CDK Construct Library for AWS:Glue (Stability: Expenimental)

Prereleas

Installed: not installed

@ Amazon.CDK.AWS.Batch.Alpha @ by Amazon Web Services, 2.34K downlo. 2.0.0-rc.24 Version: | Latest prerelease 2.0.0-rc
The CDK Construct Library for AWS:Batch (Stability: Experimental)

Prargleas

() Options

@ Amazon.CDK.AWS.MSK.Alpha & by Amazon Web Services, 2.31K downloac 2.0.0-rc.24 -
The CDK Construct Library for AWS:MSK (Stability: Experimental)

Prersizas Description

The CDK Construct Library for AWS:Redshift (Stability:
@ Amazon.CDK.AWS.Synthetics. Alpha @ by Amazon Web Services, 231K dv 2.0.0-rc.24 Experimental)

The CDK Construct Library for AWS:Synthetics (Stability: Experimental)

Prerelease Version: 2.0.0-rc.24
Author(s): Amazon Web Services
@ Amazon.CDK.AWS.IVS.Alpha @ by Amazon Web Services, 2.33K downloads 2.0.0-rc.24 License: Apache-20
The COK Construct Library for AWS: VS (Stability: Experimental
Prersesse onstruct Hbrarytor (Stability: Experimental) Date published: Wednesday, October 13, 2021
(10/13/2021)
Amazon.CDK.AWS.KinesisFirehose.Destinations.Alpha ® by Amazo 2.0.0-rc.24 Report Abuse: https://www.nuget.org/packages/
o L - . Amazon. CDKAWS.Redshift.Alpha/2.0.
brermense CDK Destinations Constructs for AWS Kinesis Firehose (Stability: Experimental) D-rc.24/ReportAbuse
Tags: aws, cdk, constructs, redshift
@ Amazon.CDK.AWS.APIGatewayv2.Alpha & by Amazon Web Services, 2.5 2.0.0-rc.24 4 Dependencies
. The CDK Construct Library for AWS:APIGatewaywv2 (Stability: Experimental) 4 .NETCoreApp,Version=v3.1
rereiease

Amazon.COK.Lib (== 2.0.0-rc.24)
Amazon.JSlL.Runtime (== 1,39.0 &8 < 2.0.0)

Constructs (>= 10.0.0 &8 < 11.0.0
@ Amazon.CDK.AWS.Route53Resolver.Alpha @ by Amazon Web Services, 2.0.0-rc.24 onstructs (> :)

The CDK Construct Library for AWS:Reute33Resohver (Stability: Experimental)

Prargleas

Look on the Updates page to install new versions of your packages.
The NuGet console

The NuGet console is a PowerShell-based interface to NuGet that works in the context of a Visual
Studio project. You can open it in Visual Studio by choosing Tools > NuGet Package Manager >
Package Manager Console. For more information about using this tool, see Install and Manage
Packages with the Package Manager Console in Visual Studio.

Managing dependencies in C# Version 2 354

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The dotnet command

The dotnet command is the primary command line tool for working with Visual Studio C#
projects. You can invoke it from any Windows command prompt. Among its many capabilities,
dotnet can add NuGet dependencies to a Visual Studio project.

Assuming you're in the same directory as the Visual Studio project (. csproj) file, issue a command
like the following to install a package. Because the main CDK library is included when you create

a project, you only need to explicitly install experimental modules. Experimental modules require
you to specify an explicit version number.

dotnet add package Amazon.CDK.AWS.IoT.Alpha -v <VERSION-NUMBER>

You can issue the command from another directory. To do so, include the path to the project file, or
to the directory that contains it, after the add keyword. The following example assumes that you
are in your AWS CDK project’s main directory.

dotnet add src/<PROJECT-DIR> package Amazon.CDK.AWS.IoT.Alpha -v <VERSION-NUMBER>

To install a specific version of a package, include the -v flag and the desired version.

To update a package, issue the same dotnet add command you used to install it. For
experimental modules, again, you must specify an explicit version number.

For more information about managing packages using the dotnet command, see Install and
Manage Packages Using the dotnet CLI.

The nuget command

The nuget command line tool can install and update NuGet packages. However, it requires your
Visual Studio project to be set up differently from the way cdk init sets up projects. (Technical
details: nuget works with Packages.config projects, while cdk init creates a newer-style
PackageReference project.)

We do not recommend the use of the nuget tool with AWS CDK projects created by cdk init. If
you are using another type of project, and want to use nuget, see the NuGet CLI Reference.

Managing dependencies in C# Version 2 355

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-dotnet-cli
https://docs.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS CDK idioms in C#

Props

All AWS Construct Library classes are instantiated using three arguments: the scope in which the
construct is being defined (its parent in the construct tree), an id, and props, a bundle of key/value
pairs that the construct uses to configure the resources it creates. Other classes and methods also
use the "bundle of attributes" pattern for arguments.

In C#, props are expressed using a props type. In idiomatic C# fashion, we can use an object
initializer to set the various properties. Here we're creating an Amazon S3 bucket using the Bucket
construct; its corresponding props type is BucketProps.

var bucket = new Bucket(this, "amzn-s3-demo-bucket", new BucketProps {
Versioned = true

1)

® Tip
Add the package Amazon.JSII.Analyzers to your project to get required-values
checking in your props definitions inside Visual Studio.

When extending a class or overriding a method, you may want to accept additional props for your
own purposes that are not understood by the parent class. To do this, subclass the appropriate
props type and add the new attributes.

// extend BucketProps for use with MimeBucket
class MimeBucketProps : BucketProps {
public string MimeType { get; set; }

// hypothetical bucket that enforces MIME type of objects inside it
class MimeBucket : Bucket {
public MimeBucket(readonly Construct scope, readonly string id, readonly
MimeBucketProps props=null) : base(scope, id, props) {

T coo

AWS CDK idioms in C# Version 2 356

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// instantiate our MimeBucket class

var bucket = new MimeBucket(this, "amzn-s3-demo-bucket", new MimeBucketProps {
Versioned = true,
MimeType = "image/jpeg"

1);

When calling the parent class’s initializer or overridden method, you can generally pass the props
you received. The new type is compatible with its parent, and extra props you added are ignored.

A future release of the AWS CDK could coincidentally add a new property with a name you used
for your own property. This won't cause any technical issues using your construct or method (since
your property isn't passed "up the chain," the parent class or overridden method will simply use a
default value) but it may cause confusion for your construct’s users. You can avoid this potential
problem by naming your properties so they clearly belong to your construct. If there are many new
properties, bundle them into an appropriately-named class and pass them as a single property.

Generic structures

In some APIs, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject () method.) In C#, these objects are
represented as System.Collections.Generic.Dictionary<String, Object>.In cases
where the values are all strings, you can use Dictionary<String, String>.JavaScript arrays

are represented as object[] or string[] array types in C#.

® Tip
You might define short aliases to make it easier to work with these specific dictionary
types.

using StringDict = System.Collections.Generic.Dictionary<string, string>;
using ObjectDict = System.Collections.Generic.Dictionary<string, object>;

Missing values

In C#, missing values in AWS CDK objects such as props are represented by null. The null-
conditional member access operator ?. and the null coalescing operator ?? are convenient for
working with these values.

AWS CDK idioms in C# Version 2 357

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

// mimeType is null if props is null or if props.MimeType is null
string mimeType = props?.MimeType;

// mimeType defaults to text/plain. either props or props.MimeType can be null
string MimeType = props?.MimeType ?? "text/plain";

Build and run CDK applications

The AWS CDK automatically compiles your app before running it. However, it can be useful to build
your app manually to check for errors and run tests. You can do this by pressing F6 in Visual Studio
or by issuing dotnet build src from the command line, where sxc is the directory in your
project directory that contains the Visual Studio Solution (. s1n) file.

Working with the AWS CDK in Go

Go is a fully-supported client language for the AWS Cloud Development Kit (AWS CDK) and is
considered stable. Working with the AWS CDK in Go uses familiar tools. The Go version of the AWS
CDK even uses Go-style identifiers.

Unlike the other languages the CDK supports, Go is not a traditional object-oriented programming
language. Go uses composition where other languages often leverage inheritance. We have tried
to employ idiomatic Go approaches as much as possible, but there are places where the CDK may
differ.

This topic provides guidance when working with the AWS CDK in Go. See the announcement blog

post for a walkthrough of a simple Go project for the AWS CDK.

Get started with Go

To work with the AWS CDK, you must have an AWS account and credentials and have installed
Node.js and the AWS CDK Toolkit. See Getting started with the AWS CDK.

The Go bindings for the AWS CDK use the standard Go toolchain, v1.18 or later. You can use the
editor of your choice.

(® Note

Third-party language deprecation: language version is only supported until its EOL (End Of
Life) shared by the vendor or community and is subject to change with prior notice.

Build and run CDK applications Version 2 358

https://aws.amazon.com/blogs/developer/getting-started-with-the-aws-cloud-development-kit-and-go/
https://aws.amazon.com/blogs/developer/getting-started-with-the-aws-cloud-development-kit-and-go/
https://golang.org/dl/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Creating a project

You create a new AWS CDK project by invoking cdk init in an empty directory. Use the --
language option and specify go:

mkdir my-project
cd my-project
cdk init app --language go

cdk init uses the name of the project folder to name various elements of the project, including
classes, subfolders, and files. Hyphens in the folder name are converted to underscores. However,
the name should otherwise follow the form of a Go identifier; for example, it should not start with
a number or contain spaces.

The resulting project includes a reference to the core AWS CDK Go module, github.com/aws/
aws-cdk-go/awscdk/v2, in go.mod. Issue go get to install this and other required modules.

Managing AWS Construct Library modules

In most AWS CDK documentation and examples, the word "module" is often used to refer to AWS
Construct Library modules, one or more per AWS service, which differs from idiomatic Go usage of
the term. The CDK Construct Library is provided in one Go module with the individual Construct
Library modules, which support the various AWS services, provided as Go packages within that
module.

Some services' AWS Construct Library support is in more than one Construct Library module (Go
package). For example, Amazon Route 53 has three Construct Library modules in addition to
the main awsroute53 package, named awsroute53patterns, awsroute53resolver, and
awsroute53targets.

The AWS CDK'’s core package, which you'll need in most AWS CDK apps, is imported in Go code
as github.com/aws/aws-cdk-go/awscdk/v2. Packages for the various services in the AWS
Construct Library live under github.com/aws/aws-cdk-go/awscdk/v2. For example, the
Amazon S3 module's namespace is github.com/aws/aws-cdk-go/awscdk/v2/awss3.

import (
"github.com/aws/aws-cdk-go/awscdk/v2/awss3"
// ...

Creating a project Version 2 359

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Once you have imported the Construct Library modules (Go packages) for the services you want to
use in your app, you access constructs in that module using, for example, awss3.Bucket.

Managing dependencies in Go

In Go, dependencies versions are defined in go.mod. The default go.mod is similar to the one
shown here.

module my-package

go 1.16

require (
github.com/aws/aws-cdk-go/awscdk/v2 v2.16.0
github.com/aws/constructs-go/constructs/v10 v10.0.5

github.com/aws/jsii-runtime-go v1.29.0

)

Package names (modules, in Go parlance) are specified by URL with the required version number
appended. Go's module system does not support version ranges.

Issue the go get command to install all required modules and update go.mod. To see a list of
available updates for your dependencies, issue go list -m -u all.

AWS CDK idioms in Go

Field and method names

Field and method names use camel casing (likeThis) in TypeScript, the CDK’s language of origin.
In Go, these follow Go conventions, so are Pascal-cased (LikeThis).

Cleaning up
In your main method, use defer jsii.Close() to make sure your CDK app cleans up after itself.
Missing values and pointer conversion

In Go, missing values in AWS CDK objects such as property bundles are represented by nil. Go
doesn't have nullable types; the only type that can contain nil is a pointer. To allow values to be
optional, then, all CDK properties, arguments, and return values are pointers, even for primitive

Managing dependencies in Go Version 2 360

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

types. This applies to required values as well as optional ones, so if a required value later becomes
optional, no breaking change in type is needed.

When passing literal values or expressions, use the following helper functions to create pointers to
the values.

jsii.String

jsii.Number

jsii.Bool

jsii.Time

For consistency, we recommend that you use pointers similarly when defining your own constructs,
even though it may seem more convenient to, for example, receive your construct’'s id as a string
rather than a pointer to a string.

When dealing with optional AWS CDK values, including primitive values as well as complex types,
you should explicitly test pointers to make sure they are not nil before doing anything with
them. Go does not have "syntactic sugar" to help handle empty or missing values as some other
languages do. However, required values in property bundles and similar structures are guaranteed
to exist (construction fails otherwise), so these values need not be nil-checked.

Constructs and Props

Constructs, which represent one or more AWS resources and their associated attributes, are
represented in Go as interfaces. For example, awss3.Bucket is an interface. Every construct has a
factory function, such as awss3.NewBucket, to return a struct that implements the corresponding
interface.

All factory functions take three arguments: the scope in which the construct is being defined (its
parent in the construct tree), an id, and props, a bundle of key/value pairs that the construct uses
to configure the resources it creates. The "bundle of attributes" pattern is also used elsewhere in
the AWS CDK.

In Go, props are represented by a specific struct type for each construct. For example, an
awss3.Bucket takes a props argument of type awss3.BucketProps. Use a struct literal to write
props arguments.

var bucket = awss3.NewBucket(stack, jsii.String("amzn-s3-demo-bucket"),
&awss3.BucketProps{

AWS CDK idioms in Go Version 2 361

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Versioned: jsii.Bool(true),

1)

Generic structures

In some places, the AWS CDK uses JavaScript arrays or untyped objects as input to a method. (See,
for example, AWS CodeBuild's BuildSpec.fromObject () method.) In Go, these objects are
represented as slices and an empty interface, respectively.

The CDK provides variadic helper functions such as jsii.Strings for building slices containing
primitive types.

jsii.Strings("One", "Two", "Three")

Developing custom constructs

In Go, it is usually more straightforward to write a new construct than to extend an existing one.
First, define a new struct type, anonymously embedding one or more existing types if extension-
like semantics are desired. Write methods for any new functionality you're adding and the fields
necessary to hold the data they need. Define a props interface if your construct needs one. Finally,
write a factory function NewMyConstruct() to return an instance of your construct.

If you are simply changing some default values on an existing construct or adding a simple
behavior at instantiation, you don't need all that plumbing. Instead, write a factory function that
calls the factory function of the construct you're "extending." In other CDK languages, for example,
you might create a TypedBucket construct that enforces the type of objects in an Amazon S3
bucket by overriding the s3.Bucket type and, in your new type’s initializer, adding a bucket policy
that allows only specified filename extensions to be added to the bucket. In Go, it is easier to
simply write a NewTypedBucket that returns an s3.Bucket (instantiated using s3.NewBucket)
to which you have added an appropriate bucket policy. No new construct type is necessary because
the functionality is already available in the standard bucket construct; the new "construct"” just
provides a simpler way to configure it.

Building, synthesizing, and deploying

The AWS CDK automatically compiles your app before running it. However, it can be useful to build
your app manually to check for errors and to run tests. You can do this by issuing go build ata
command prompt while in your project’'s root directory.

Building, synthesizing, and deploying Version 2 362

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_codebuild.BuildSpec.html#static-fromwbrobjectvalue

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Run any tests you've written by running go test at a command prompt.

Building, synthesizing, and deploying Version 2 363

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Best practices for developing and deploying cloud
infrastructure with the AWS CDK

With the AWS CDK, developers or administrators can define their cloud infrastructure by using

a supported programming language. CDK applications should be organized into logical units,

such as API, database, and monitoring resources, and optionally have a pipeline for automated
deployments. The logical units should be implemented as constructs including the following:

« Infrastructure (such as Amazon S3 buckets, Amazon RDS databases, or an Amazon VPC network)

e Runtime code (such as AWS Lambda functions)

« Configuration code

Stacks define the deployment model of these logical units. For a more detailed introduction to the
concepts behind the CDK, see Getting started with the AWS CDK.

The AWS CDK reflects careful consideration of the needs of our customers and internal teams

and of the failure patterns that often arise during the deployment and ongoing maintenance of
complex cloud applications. We discovered that failures are often related to "out-of-band" changes
to an application that aren't fully tested, such as configuration changes. Therefore, we developed
the AWS CDK around a model in which your entire application is defined in code, not only business
logic but also infrastructure and configuration. That way, proposed changes can be carefully
reviewed, comprehensively tested in environments resembling production to varying degrees, and
fully rolled back if something goes wrong.

Version 2 364

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

b

Infra + App + Source + Config + Deploy

At deployment time, the AWS CDK synthesizes a cloud assembly that contains the following:

« AWS CloudFormation templates that describe your infrastructure in all target environments

« File assets that contain your runtime code and their supporting files

With the CDK, every commit in your application’s main version control branch can represent
a complete, consistent, deployable version of your application. Your application can then be
deployed automatically whenever a change is made.

- Version 2368

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

The philosophy behind the AWS CDK leads to our recommended best practices, which we have
divided into four broad categories.

Organization best practices

Coding best practices

Construct best practices

Application best practices

® Tip
Also consider best practices for AWS CloudFormation and the individual AWS services that
you use, where applicable to CDK-defined infrastructure.

Organization best practices

In the beginning stages of AWS CDK adoption, it's important to consider how to set up your
organization for success. It's a best practice to have a team of experts responsible for training and
guiding the rest of the company as they adopt the CDK. The size of this team might vary, from one
or two people at a small company to a full-fledged Cloud Center of Excellence (CCoE) at a larger
company. This team is responsible for setting standards and policies for cloud infrastructure at your
company, and also for training and mentoring developers.

The CCoE might provide guidance on what programming languages should be used for cloud
infrastructure. Details will vary from one organization to the next, but a good policy helps make
sure that developers can understand and maintain the company'’s cloud infrastructure.

The CCoE also creates a "landing zone" that defines your organizational units within AWS. A
landing zone is a pre-configured, secure, scalable, multi-account AWS environment based on best
practice blueprints. To tie together the services that make up your landing zone, you can use AWS
Control Tower, which configures and manages your entire multi-account system from a single user

interface.

Development teams should be able to use their own accounts for testing and deploy new resources
in these accounts as needed. Individual developers can treat these resources as extensions of

their own development workstation. Using CDK Pipelines, the AWS CDK applications can then

be deployed via a CI/CD account to testing, integration, and production environments (each

Organization best practices Version 2 366

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://aws.amazon.com/controltower/
https://aws.amazon.com/controltower/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

isolated in its own AWS Region or account). This is done by merging the developers' code into your
organization’s canonical repository.

Best Practice — Deploy to multiple accounts

Eric's Rico's
Account Account

B Gamma

[T e |
{\5 source Account
% control pipeline N
cdk deploy x
Prod

Account

Coding best practices

This section presents best practices for organizing your AWS CDK code. The following diagram
shows the relationship between a team and that team’s code repositories, packages, applications,
and construct libraries.

@ @ owns 1 or more contains 1 or more consists of
L @ -3 —_— Code — = - CDK App or Construct

.: : Repository Package Library

L

depends on 0 or more

Coding best practices Version 2 367

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Start simple and add complexity only when you need it

The guiding principle for most of our best practices is to keep things simple as possible—but
no simpler. Add complexity only when your requirements dictate a more complicated solution.
With the AWS CDK, you can refactor your code as necessary to support new requirements. You
don't have to architect for all possible scenarios upfront.

Align with the AWS Well-Architected Framework

The AWS Well-Architected Framework defines a component as the code, configuration, and
AWS resources that together deliver against a requirement. A component is often the unit of
technical ownership, and is decoupled from other components. The term workload is used to
identify a set of components that together deliver business value. A workload is usually the
level of detail that business and technology leaders communicate about.

An AWS CDK application maps to a component as defined by the AWS Well-Architected
Framework. AWS CDK apps are a mechanism to codify and deliver Well-Architected cloud
application best practices. You can also create and share components as reusable code libraries
through artifact repositories, such as AWS CodeArtifact.

Every application starts with a single package in a single repository

A single package is the entry point of your AWS CDK app. Here, you define how and where to
deploy the different logical units of your application. You also define the CI/CD pipeline to
deploy the application. The app’s constructs define the logical units of your solution.

Use additional packages for constructs that you use in more than one application. (Shared
constructs should also have their own lifecycle and testing strategy.) Dependencies between
packages in the same repository are managed by your repo’s build tooling.

Although it's possible, we don't recommend putting multiple applications in the same
repository, especially when using automated deployment pipelines. Doing this increases

the "blast radius" of changes during deployment. When there are multiple applicationsin a
repository, changes to one application trigger deployment of the others (even if the others
haven't changed). Furthermore, a break in one application prevents the other applications from
being deployed.

Coding best practices Version 2 368

https://aws.amazon.com/architecture/well-architected/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Move code into repositories based on code lifecycle or team ownership

When packages begin to be used in multiple applications, move them to their own repository.
This way, the packages can be referenced by application build systems that use them, and they
can also be updated on cadences independent of the application lifecycles. However, at first it
might make sense to put all shared constructs in one repository.

Also, move packages to their own repository when different teams are working on them. This
helps enforce access control.

To consume packages across repository boundaries, you need a private package repository
—similar to NPM, PyPi, or Maven Central, but internal to your organization. You also need a
release process that builds, tests, and publishes the package to the private package repository.
CodeArtifact can host packages for most popular programming languages.

Dependencies on packages in the package repository are managed by your language's package
manager, such as NPM for TypeScript or JavaScript applications. Your package manager helps
to make sure that builds are repeatable. It does this by recording the specific versions of every
package that your application depends on. It also lets you upgrade those dependencies in a
controlled manner.

Shared packages need a different testing strategy. For a single application, it might be good
enough to deploy the application to a testing environment and confirm that it still works. But
shared packages must be tested independently of the consuming application, as if they were
being released to the public. (Your organization might choose to actually release some shared
packages to the public.)

Keep in mind that a construct can be arbitrarily simple or complex. A Bucket is a construct, but
CameraShopWebsite could be a construct, too.

Infrastructure and runtime code live in the same package

In addition to generating AWS CloudFormation templates for deploying infrastructure, the AWS
CDK also bundles runtime assets like Lambda functions and Docker images and deploys them
alongside your infrastructure. This makes it possible to combine the code that defines your
infrastructure and the code that implements your runtime logic into a single construct. It's a
best practice to do this. These two kinds of code don't need to live in separate repositories or
even in separate packages.

Coding best practices Version 2 369

https://docs.aws.amazon.com/codeartifact/latest/ug/

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

To evolve the two kinds of code together, you can use a self-contained construct that
completely describes a piece of functionality, including its infrastructure and logic. With a self-
contained construct, you can test the two kinds of code in isolation, share and reuse the code
across projects, and version all the code in sync.

Construct best practices

This section contains best practices for developing constructs. Constructs are reusable, composable
modules that encapsulate resources. They're the building blocks of AWS CDK apps.

Model with constructs, deploy with stacks

Stacks are the unit of deployment: everything in a stack is deployed together. So when building
your application’s higher-level logical units from multiple AWS resources, represent each logical
unit as a Construct, not as a Stack. Use stacks only to describe how your constructs should be
composed and connected for your various deployment scenarios.

For example, if one of your logical units is a website, the constructs that make it up (such as
an Amazon S3 bucket, APl Gateway, Lambda functions, or Amazon RDS tables) should be
composed into a single high-level construct. Then that construct should be instantiated in one
or more stacks for deployment.

By using constructs for building and stacks for deploying, you improve reuse potential of your
infrastructure and give yourself more flexibility in how it's deployed.

Configure with properties and methods, not environment variables

Environment variable lookups inside constructs and stacks are a common anti-pattern.

Both constructs and stacks should accept a properties object to allow for full configurability
completely in code. Doing otherwise introduces a dependency on the machine that the code
will run on, which creates yet more configuration information that you have to track and
manage.

In general, environment variable lookups should be limited to the top level of an AWS CDK app.
They should also be used to pass in information that's needed for running in a development
environment. For more information, see Environments for the AWS CDK.

Construct best practices Version 2 370

https://docs.aws.amazon.com/cdk/api/v2/docs/constructs.Construct.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Unit test your infrastructure

To consistently run a full suite of unit tests at build time in all environments, avoid network
lookups during synthesis and model all your production stages in code. (These best practices
are covered later.) If any single commit always results in the same generated template, you can
trust the unit tests that you write to confirm that the generated templates look the way you
expect. For more information, see Test AWS CDK applications.

Don’t change the logical ID of stateful resources

Changing the logical ID of a resource results in the resource being replaced with a new one

at the next deployment. For stateful resources like databases and S3 buckets, or persistent
infrastructure like an Amazon VPC, this is seldom what you want. Be careful about any
refactoring of your AWS CDK code that could cause the ID to change. Write unit tests that assert
that the logical IDs of your stateful resources remain static. The logical ID is derived from the

id you specify when you instantiate the construct, and the construct's position in the construct
tree. For more information, see Logical IDs.

Constructs aren’t enough for compliance

Many enterprise customers write their own wrappers for L2 constructs (the "curated" constructs
that represent individual AWS resources with built-in sane defaults and best practices). These
wrappers enforce security best practices such as static encryption and specific IAM policies.

For example, you might create a MyCompanyBucket that you then use in your applications in
place of the usual Amazon S3 Bucket construct. This pattern is useful for surfacing security
guidance early in the software development lifecycle, but don't rely on it as the sole means of
enforcement.

Instead, use AWS features such as service control policies and permission boundaries to enforce
your security guardrails at the organization level. Use Aspects and the AWS CDK or tools like
CloudFormation Guard to make assertions about the security properties of infrastructure
elements before deployment. Use AWS CDK for what it does best.

Finally, keep in mind that writing your own "L2+" constructs might prevent your developers
from taking advantage of AWS CDK packages such as AWS Solutions Constructs or third-
party constructs from Construct Hub. These packages are typically built on standard AWS CDK

constructs and won't be able to use your wrapper constructs.

Construct best practices Version 2 371

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://github.com/aws-cloudformation/cloudformation-guard
https://docs.aws.amazon.com/solutions/latest/constructs/welcome.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Application best practices

In this section we discuss how to write your AWS CDK applications, combining constructs to define
how your AWS resources are connected.

Make decisions at synthesis time

Although AWS CloudFormation lets you make decisions at deployment time (using
Conditions, { Fn::If }, and Parameters), and the AWS CDK gives you some access to
these mechanisms, we recommend against using them. The types of values that you can use
and the types of operations you can perform on them are limited compared to what's available
in a general-purpose programming language.

Instead, try to make all decisions, such as which construct to instantiate, in your AWS CDK
application by using your programming language’s if statements and other features. For
example, a common CDK idiom, iterating over a list and instantiating a construct with values
from each item in the list, simply isn't possible using AWS CloudFormation expressions.

Treat AWS CloudFormation as an implementation detail that the AWS CDK uses for robust cloud
deployments, not as a language target. You're not writing AWS CloudFormation templates

in TypeScript or Python, you're writing CDK code that happens to use CloudFormation for
deployment.

Use generated resource names, not physical names

Names are a precious resource. Each name can only be used once. Therefore, if you hardcode a
table name or bucket name into your infrastructure and application, you can't deploy that piece
of infrastructure twice in the same account. (The name we're talking about here is the name
specified by, for example, the bucketName property on an Amazon S3 bucket construct.)

What's worse, you can't make changes to the resource that require it to be replaced. If a
property can only be set at resource creation, such as the KeySchema of an Amazon DynamoDB
table, then that property is immutable. Changing this property requires a new resource.
However, the new resource must have the same name in order to be a true replacement. But it
can't have the same name while the existing resource is still using that name.

A better approach is to specify as few names as possible. If you omit resource names, the AWS
CDK will generate them for you in a way that won't cause problems. Suppose you have a table

Application best practices Version 2 372

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

as a resource. You can then pass the generated table name as an environment variable into
your AWS Lambda function. In your AWS CDK application, you can reference the table name as
table.tableName. Alternatively, you can generate a configuration file on your Amazon EC2
instance on startup, or write the actual table name to the AWS Systems Manager Parameter
Store so your application can read it from there.

If the place you need it is another AWS CDK stack, that's even more straightforward. Supposing
that one stack defines the resource and another stack needs to use it, the following applies:

« If the two stacks are in the same AWS CDK app, pass a reference between the two stacks. For
example, save a reference to the resource’s construct as an attribute of the defining stack
(this.stack.uploadBucket = amzn-s3-demo-bucket). Then, pass that attribute to the
constructor of the stack that needs the resource.

» When the two stacks are in different AWS CDK apps, use a static from method to use an
externally defined resource based on its ARN, name, or other attributes. (For example, use
Table.fromArn() for a DynamoDB table). Use the CfnOutput construct to print the ARN
or other required value in the output of cdk deploy, or look in the AWS Management
Console. Alternatively, the second app can read the CloudFormation template generated by
the first app and retrieve that value from the OQutputs section.

Define removal policies and log retention

The AWS CDK attempts to keep you from losing data by defaulting to policies that retain
everything you create. For example, the default removal policy on resources that contain

data (such as Amazon S3 buckets and database tables) is not to delete the resource when it is
removed from the stack. Instead, the resource is orphaned from the stack. Similarly, the CDK's
default is to retain all logs forever. In production environments, these defaults can quickly result
in the storage of large amounts of data that you don't actually need, and a corresponding AWS
bill.

Consider carefully what you want these policies to be for each production resource and specify
them accordingly. Use Aspects and the AWS CDK to validate the removal and logging policies in

your stack.

Separate your application into multiple stacks as dictated by deployment requirements

There is no hard and fast rule to how many stacks your application needs. You'll usually end up
basing the decision on your deployment patterns. Keep in mind the following guidelines:

Application best practices Version 2 373

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

o It's typically more straightforward to keep as many resources in the same stack as possible, so
keep them together unless you know you want them separated.

» Consider keeping stateful resources (like databases) in a separate stack from stateless
resources. You can then turn on termination protection on the stateful stack. This way, you
can freely destroy or create multiple copies of the stateless stack without risk of data loss.

» Stateful resources are more sensitive to construct renaming—renaming leads to resource
replacement. Therefore, don't nest stateful resources inside constructs that are likely to be
moved around or renamed (unless the state can be rebuilt if lost, like a cache). This is another
good reason to put stateful resources in their own stack.

Commit cdk.context. json to avoid non-deterministic behavior

Determinism is key to successful AWS CDK deployments. An AWS CDK app should have
essentially the same result whenever it is deployed to a given environment.

Since your AWS CDK app is written in a general-purpose programming language, it can execute
arbitrary code, use arbitrary libraries, and make arbitrary network calls. For example, you could
use an AWS SDK to retrieve some information from your AWS account while synthesizing your
app. Recognize that doing so will result in additional credential setup requirements, increased
latency, and a chance, however small, of failure every time you run cdk synth.

Never modify your AWS account or resources during synthesis. Synthesizing an app should not
have side effects. Changes to your infrastructure should happen only in the deployment phase,
after the AWS CloudFormation template has been generated. This way, if there's a problem,
AWS CloudFormation can automatically roll back the change. To make changes that can't be
easily made within the AWS CDK framework, use custom resources to execute arbitrary code at
deployment time.

Even strictly read-only calls are not necessarily safe. Consider what happens if the value
returned by a network call changes. What part of your infrastructure will that impact? What will
happen to already-deployed resources? Following are two example situations in which a sudden
change in values might cause a problem.

« If you provision an Amazon VPC to all available Availability Zones in a specified Region,
and the number of AZs is two on deployment day, then your IP space gets split in half. If
AWS launches a new Availability Zone the next day, the next deployment after that tries to
split your IP space into thirds, requiring all subnets to be recreated. This probably won't be

Application best practices Version 2 374

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.custom_resources-readme.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

possible because your Amazon EC2 instances are still running, and you'll have to clean this up
manually.

« If you query for the latest Amazon Linux machine image and deploy an Amazon EC2 instance,
and the next day a new image is released, a subsequent deployment picks up the new AMI
and replaces all your instances. This might not be what you expected to happen.

These situations can be pernicious because the AWS-side change might occur after months or
years of successful deployments. Suddenly your deployments are failing "for no reason" and you
long ago forgot what you did and why.

Fortunately, the AWS CDK includes a mechanism called context providers to record a snapshot
of non-deterministic values. This allows future synthesis operations to produce exactly the
same template as they did when first deployed. The only changes in the new template are the
changes that you made in your code. When you use a construct’s . fromLookup() method, the
result of the call is cached in cdk.context. json. You should commit this to version control
along with the rest of your code to make sure that future executions of your CDK app use the
same value. The CDK Toolkit includes commands to manage the context cache, so you can
refresh specific entries when you need to. For more information, see Context values and the
AWS CDK.

If you need some value (from AWS or elsewhere) for which there is no native CDK context
provider, we recommend writing a separate script. The script should retrieve the value and write
it to a file, then read that file in your CDK app. Run the script only when you want to refresh the
stored value, not as part of your regular build process.

Let the AWS CDK manage roles and security groups

With the AWS CDK construct library’s grant () convenience methods, you can create AWS
Identity and Access Management roles that grant access to one resource by another using
minimally scoped permissions. For example, consider a line like the following:

amzn-s3-demo-bucket.grantRead(myLambda)

This single line adds a policy to the Lambda function'’s role (which is also created for you). That
role and its policies are more than a dozen lines of CloudFormation that you don’t have to write.
The AWS CDK grants only the minimal permissions required for the function to read from the
bucket.

Application best practices Version 2 375

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you require developers to always use predefined roles that were created by a security team,
AWS CDK coding becomes much more complicated. Your teams could lose a lot of flexibility
in how they design their applications. A better alternative is to use service control policies and

permission boundaries to make sure that developers stay within the guardrails.

Model all production stages in code

In traditional AWS CloudFormation scenarios, your goal is to produce a single artifact that

is parameterized so that it can be deployed to various target environments after applying
configuration values specific to those environments. In the CDK, you can, and should, build

that configuration into your source code. Create a stack for your production environment, and
create a separate stack for each of your other stages. Then, put the configuration values for
each stack in the code. Use services like Secrets Manager and Systems Manager Parameter Store

for sensitive values that you don't want to check in to source control, using the names or ARNs
of those resources.

When you synthesize your application, the cloud assembly created in the cdk . out folder
contains a separate template for each environment. Your entire build is deterministic. There are
no out-of-band changes to your application, and any given commit always yields the exact same
AWS CloudFormation template and accompanying assets. This makes unit testing much more
reliable.

Measure everything

Achieving the goal of full continuous deployment, with no human intervention, requires a high
level of automation. That automation is only possible with extensive amounts of monitoring. To
measure all aspects of your deployed resources, create metrics, alarms, and dashboards. Don't
stop at measuring things like CPU usage and disk space. Also record your business metrics,

and use those measurements to automate deployment decisions like rollbacks. Most of the

L2 constructs in AWS CDK have convenience methods to help you create metrics, such as the
metricUserErrors() method on the dynamodb.Table class.

AWS CDK security best practices

The AWS Cloud Development Kit (AWS CDK) is a powerful tool that developers can use to configure
AWS services and provision infrastructure on AWS. With any tool that provides such control and
capabilities, organizations will need to establish policies and practices to ensure that the tool is

Security Version 2 376

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_dynamodb.Table.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

being used in safe and secure ways. For example, organizations may want to restrict developer
access to specific services to ensure that they can’t tamper with compliance or cost control
measures that are configured in the account.

Often, there can be a tension between security and productivity, and each organization needs to
establish the proper balance for themselves. This topic provides security best practices for the AWS
CDK that you can consider as you create and implement your own security policies. The following
best practices are general guidelines and don't represent a complete security solution. Because
these best practices might not be appropriate or sufficient for your environment, treat them as
helpful considerations rather than prescriptions.

Follow IAM security best practices

AWS Identity and Access Management (IAM) is a web service that helps you securely control access
to AWS resources. Organizations, individuals, and the AWS CDK use IAM to manage permissions
that determine the actions that can be performed on AWS resources. When using IAM, follow the
IAM security best practices. For more information, see Security best practices and use cases in AWS
Identity and Access Management in the IAM User Guide.

Manage permissions for the AWS CDK

When you use the AWS CDK across your organization to develop and manage your infrastructure,
you'll want to consider the following scenarios where managing permissions will be important:

» Permissions for AWS CDK deployments — These permissions determine who can make changes
to your AWS resources and what changes they can make.

« Permissions between resources — These are the permissions that allow interactions between the
AWS resources that you create and manage with the AWS CDK.

Manage permissions for AWS CDK deployments

Developers use the AWS CDK to define infrastructure locally on their development machines. This
infrastructure is implemented in AWS environments through deployments that typically involve
using the AWS CDK Command Line Interface (AWS CDK CLI). With deployments, you may want to
control what changes developers can make in your environments. For example, you might have an
Amazon Virtual Private Cloud (Amazon VPC) resource that you don't want developers to modify.

By default, the CDK CLI uses a combination of the actor’s security credentials and IAM roles that
are created during bootstrapping to receive permissions for deployments. The actor's security

Follow IAM security best practices Version 2 377

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

credentials are first used for authentication and IAM roles are then assumed to perform various
actions during deployment, such as using the AWS CloudFormation service to create resources.
For more information on how CDK deployments work, including the IAM roles that are used, see
Deploy AWS CDK applications.

To restrict who can perform deployments and the actions that can be performed during
deployment, consider the following:

» The actor’s security credentials are the first set of credentials used to authenticate to AWS.
From here, the permissions used to perform actions during deployment are granted to the IAM
roles that are assumed during the deployment workflow. You can restrict who can perform
deployments by limiting who can assume these roles. You can also restrict the actions that can
be performed during deployment by replacing these IAM roles with your own.

» Permissions for performing deployments are given to the DeploymentActionRole. You can
control permissions for who can perform deployments by limiting who can assume this role. By
using a role for deployments, you can perform cross-account deployments since the role can
be assumed by AWS identities in a different account. By default, all identities in the same AWS
account with the appropriate AssumeRole policy statement can assume this role.

» Permissions for creating and modifying resources through AWS CloudFormation are given
to the CloudFormationExecutionRole. This role also requires permission to read from
the bootstrap resources. You control the permissions that CDK deployments have by using a
managed policy for the CloudFormationExecutionRole and optionally by configuring a
permissions boundary. By default, this role has AdministratorAccess permissions with no
permission boundary.

« Permissions for interacting with bootstrap resources are given to the FilePublishingRole
and ImagePublishingRole. The actor performing deployments must have permission to
assume these roles. By default, all identities in the same AWS account with the appropriate
AssumeRole policy statement can assume this role.

« Permissions for accessing bootstrap resources to perform lookups are given to the LookupRole.
The actor performing deployments must have permission to assume this role. By default, this
role has readOnly access to the bootstrap resources. By default, all identities in the same AWS
account with the appropriate AssumeRole policy statement can assume this role.

To configure the IAM identities in your AWS account with permission to assume these roles, add a
policy with the following policy statement to the identities:

Manage permissions for the AWS CDK Version 2 378

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"Version": "2012-10-17",
"Statement": [{
"Sid": "AssumeCDKRoles",
"Effect": "Allow",
"Action": "sts:AssumeRole",
"Resource": "*",
"Condition": {
"StringEquals": {
"iam:ResourceTag/aws-cdk:bootstrap-role": [
"image-publishing",
"file-publishing",
"deploy",
"lookup"

]

Modify the permissions for the roles assumed during deployment

By modifying permissions for the roles assumed during deployment, you can manage the actions

that can be performed during deployment. To modify permissions, you create your own IAM roles
and specify them when bootstrapping your environment. When you customize bootstrapping, you
will have to customize synthesis. For general instructions, see Customize AWS CDK bootstrapping.

Modify the security credentials and roles used during deployment

The roles and bootstrap resources that are used during deployments are determined by the CDK
stack synthesizer that you use. To modify this behavior, you can customize synthesis. For more
information, see Configure and perform CDK stack synthesis.

Considerations for granting least privilege access

Granting least privilege access is a security best practice that we recommend that you consider as
you develop your security strategy. For more information, see SEC03-BP02 Grant least privilege
access in the AWS Well-Architected Framework Guide.

Often, granting least privilege access involves restricting IAM policies to the minimum access
necessary to perform a given task. Attempting to grant least privilege access through fine-grained
permissions with the CDK using this approach can impact CDK deployments and cause you to have

Manage permissions for the AWS CDK Version 2 379

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/sec_permissions_least_privileges.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/sec_permissions_least_privileges.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

to create wider-scoped permissions than you'd like. The following are a few things to consider
when using this approach:

« Determining an exhaustive list of permissions that allow developers to use the AWS CDK to
provision infrastructure through CloudFormation is difficult and complex.

« If you want to be fine-grained, permissions may become too long to fit within the maximum
length of IAM policy documents.

» Providing an incomplete set of permissions can severely impact developer productivity and
deployments.

With the CDK, deployments are performed using CloudFormation. CloudFormation initiates a set
of AWS API calls in order using the permissions that are provided. The permissions necessary at any
point in time depends on many factors:

« The AWS services that are being modified. Specifically, the resources and properties that are
being used and changed.

o The current state of the CloudFormation stack.

« Issues that may occur during deployments and if rollbacks are needed, which will require Delete
permissions in addition to Create.

When the provided permissions are incomplete, manual intervention will be required. The
following are a few examples:

« If you discover incomplete permissions during roll forward, you'll need to pause deployment, and
take time to discuss and provision new permissions before continuing.

« If deployment rolls back and the permissions to apply the roll back are missing, it may leave your
CloudFormation stack in a state that will require a lot of manual work to recover from.

Since this approach can result in complications and severely limit developer productivity, we don't
recommend it. Instead, we recommend implementing guardrails and preventing bypass.

Implementing guardrails and preventing bypass

You can implement guardrails, compliance rules, auditing, and monitoring by using services such
as AWS Control Tower, AWS Config, AWS CloudTrail, AWS Security Hub, and others. With this
approach, you grant developers permission to do everything, except tampering with the existing

Manage permissions for the AWS CDK Version 2 380

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

validation mechanisms. Developers have the freedom to implement changes quickly, as long as
they stay within policy. This is the approach we recommend when using the AWS CDK. For more
information on guardrails, see Controls in the Management and Governance Cloud Environment

Guide.

We also recommend using permissions boundaries or service control policies (SCPs) as a way of
implementing guardrails. For more information on implementing permissions boundaries with the
AWS CDK, see Create and apply permissions boundaries for the AWS CDK.

If you are using any compliance control mechanisms, set them up during the bootstrapping phase.
Make sure that the CloudFormationExecutionRole or developer-accessible identities have
policies or permissions boundaries attached that prevent bypass of the mechanisms that you put in
place. The appropriate policies depends on the specific mechanisms that you use.

Manage permissions between resources provisioned by the AWS CDK

How you manage permissions between resources that are provisioned by the AWS CDK depends on
whether you allow the CDK to create roles and policies.

When you use L2 constructs from the AWS Construct Library to define your infrastructure, you
can use the provided grant methods to provision permissions between resources. With grant
methods, you specify the type of access you want between resources and the AWS CDK provisions
least privilege IAM roles to accomplish your intent. This approach meets security requirements
for most organizations while being efficient for developers. For more information, see Define
permissions for L2 constructs with the AWS CDK.

If you want to work around this feature by replacing the automatically generated roles with
manually created ones, consider the following:

» Your IAM roles will need to be manually created, slowing down application development.

« When IAM roles need to be manually created and managed, people will often combine multiple
logical roles into a single role to make them easier to manage. This runs counter to the least
privilege principle.

« Since these roles will need to be created before deployment, the resources that need to be
referenced will not yet exist. Therefore, you'll need to use wildcards, which runs counter to the
least privilege principle.

« A common workaround to using wildcards is to mandate that all resources be given a predictable
name. However, this interferes with CloudFormation'’s ability to replace resources when

Manage permissions for the AWS CDK Version 2 381

https://docs.aws.amazon.com/wellarchitected/latest/management-and-governance-guide/controls.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

necessary and may slow down or block development. Because of this, we recommend that you
allow CloudFormation to create unique resource names for you.

o It will be impossible to perform continuous delivery since manual actions must be performed
prior to every deployment.

When organizations want to prevent the CDK from creating roles, it is usually to prevent
developers from being able to create IAM roles. The concern is that by giving developers
permission to create IAM roles using the AWS CDK, they could possibly elevate their own privileges.
To mitigate against this, we recommend using permission boundaries or service control policies
(SCPs). With permission boundaries, you can set limits for what developers and the CDK are
allowed to do. For more information on using permission boundaries with the CDK, see Create and
apply permissions boundaries for the AWS CDK.

Manage permissions for the AWS CDK Version 2 382

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrating from AWS CDK v1 to AWS CDK v2

Version 2 of the AWS Cloud Development Kit (AWS CDK) is designed to make writing infrastructure
as code in your preferred programming language easier. This topic describes the changes between
v1 and v2 of the AWS CDK.

® Tip
To identify stacks deployed with AWS CDK v1, use the awscdk-v1-stack-finder utility.

The main changes from AWS CDK v1 to CDK v2 are as follows.

« AWS CDK v2 consolidates the stable parts of the AWS Construct Library, including the core
library, into a single package, aws-cdk-1ib. Developers no longer need to install additional
packages for the individual AWS services they use. This single-package approach also means that
you don't have to synchronize the versions of the various CDK library packages.

L1 (CfnXXXX) constructs, which represent the exact resources available in AWS CloudFormation,
are always considered stable and so are included in aws-cdk-1ib.

» Experimental modules, where we're still working with the community to develop new L2 or L3
constructs, are not included in aws-cdk-1ib. Instead, they're distributed as individual packages.
Experimental packages are named with an alpha suffix and a semantic version number. The
semantic version number matches the first version of the AWS Construct Library that they're
compatible with, also with an alpha suffix. Constructs move into aws-cdk-1ib after being
designated stable, permitting the main Construct Library to adhere to strict semantic versioning.

Stability is specified at the service level. For example, if we begin creating one or more L2
constructs for Amazon AppFlow, which at this writing has only L1 constructs, they first appear in
a module named @aws-cdk/aws-appflow-alpha. Then, they move to aws-cdk-1ib when we
feel that the new constructs meet the fundamental needs of customers.

Once a module has been designated stable and incorporated into aws-cdk-1ib, new APIs are
added using the "BetaN" convention described in the next bullet.

A new version of each experimental module is released with every release of the AWS CDK.
For the most part, however, they needn’t be kept in sync. You can upgrade aws-cdk-1ib or

Version 2 383

https://www.npmjs.com/package/awscdk-v1-stack-finder

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

the experimental module whenever you want. The exception is that when two or more related
experimental modules depend on each other, they must be the same version.

» For stable modules to which new functionality is being added, new APIs (whether entirely new
constructs or new methods or properties on an existing construct) receive a Betal suffix while
work is in progress. (Followed by Beta2, Beta3, and so on when breaking changes are needed.)
A version of the API without the suffix is added when the API is designated stable. All methods
except the latest (whether beta or final) are then deprecated.

For example, if we add a new method grantPower () to a construct, it initially appears as
grantPowerBetal(). If breaking changes are needed (for example, a new required parameter
or property), the next version of the method would be named grantPowerBeta2(), and so on.
When work is complete and the API is finalized, the method grantPowex () (with no suffix) is
added, and the BetaN methods are deprecated.

All the beta APIs remain in the Construct Library until the next major version (3.0) release, and
their signatures will not change. You'll see deprecation warnings if you use them, so you should
move to the final version of the API at your earliest convenience. However, no future AWS CDK
2.x releases will break your application.

« The Construct class has been extracted from the AWS CDK into a separate library, along with
related types. This is done to support efforts to apply the Construct Programming Model to
other domains. If you are writing your own constructs or using related APIs, you must declare the
constructs module as a dependency and make minor changes to your imports. If you are using
advanced features, such as hooking into the CDK app lifecycle, more changes may be needed. For
full details, see the RFC.

» Deprecated properties, methods, and types in AWS CDK v1.x and its Construct Library have been
removed completely from the CDK v2 API. In most supported languages, these APIs produce
warnings under v1.x, so you may have already migrated to the replacement APIs. A complete list
of deprecated APIs in CDK v1.x is available on GitHub.

« Behavior that was gated by feature flags in AWS CDK v1.x is enabled by default in CDK v2.
The earlier feature flags are no longer needed, and in most cases they're not supported. A few
are still available to let you revert to CDK v1 behavior in very specific circumstances. For more
information, see Updating feature flags.

« With CDK v2, the environments you deploy into must be bootstrapped using the modern
bootstrap stack. The legacy bootstrap stack (the default under v1) is no longer supported.
CDK v2 furthermore requires a new version of the modern stack. To upgrade your existing

Version 2 384

https://github.com/aws/aws-cdk-rfcs/blob/master/text/0192-remove-constructs-compat.md#release-notes
https://github.com/aws/aws-cdk/blob/master/DEPRECATED_APIs.md
https://github.com/aws/aws-cdk/blob/master/DEPRECATED_APIs.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

environments, re-bootstrap them. It is no longer necessary to set any feature flags or
environment variables to use the modern bootstrap stack.

/A Important

The modern bootstrap template effectively grants the permissions implied by the - -
cloudformation-execution-policies to any AWS account in the --trust list. By
default, this extends permissions to read and write to any resource in the bootstrapped
account. Make sure to configure the bootstrapping stack with policies and trusted accounts
that you are comfortable with.

New prerequisites

Most requirements for AWS CDK v2 are the same as for AWS CDK v1.x. Additional requirements are
listed here.

» For TypeScript developers, TypeScript 3.8 or later is required.

« A new version of the CDK Toolkit is required for use with CDK v2. Now that CDK v2 is generally
available, v2 is the default version when installing the CDK Toolkit. It is backward-compatible
with CDK v1 projects, so you don't need to keep the earlier version installed unless you want to
create CDK v1 projects. To upgrade, issue npm install -g aws-cdk.

Upgrading from AWS CDK v2 Developer Preview

If you're using the CDK v2 Developer Preview, you have dependencies in your project on a Release
Candidate version of the AWS CDK, such as 2.0.0-xrcl. Update these to 2.0.0, then update the
modaules installed in your project.

Example
TypeScript

npm install oryarn install

JavaScript

npm install oryarn install

New prerequisites Version 2 385

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Python

python -m pip install -r requirements.txt
Java

mvn package
C#

dotnet restore

Go

go get

After updating your dependencies, issue npm update -g aws-cdk to update the CDK Toolkit to
the release version.

Migrating from AWS CDK v1 to CDK v2

To migrate your app to AWS CDK v2, first update the feature flags in cdk. json. Then update your
app's dependencies and imports as necessary for the programming language that it's written in.

Updating to a recent v1

We are seeing a number of customers upgrading from an old version of AWS CDK v1 to the

most recent version of v2 in one step. While it is certainly possible to do that, you would be both
upgrading across multiple years of changes (that unfortunately may not all have had the same
amount of evolution testing we have today), as well as upgrading across versions with new defaults
and a different code organization.

For the safest upgrade experience and to more easily diagnose the sources of any unexpected
changes, we recommend you separate those two steps: first upgrade to the latest v1 version, then
make the switch to v2 afterwards.

Migrating from AWS CDK v1 to CDK v2 Version 2 386

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Updating feature flags

Remove the following v1 feature flags from cdk. json if they exist, as these are all active by
default in AWS CDK v2. If their old effect is important for your infrastructure, you will need to
make source code changes. See the list of flags on GitHub for more information.

» @aws-cdk/core:enableStackNameDuplicates

« aws-cdk:enableDiffNoFail

« @aws-cdk/aws-ecr-assets:dockerIgnoreSupport

» @aws-cdk/aws-secretsmanager:parseOwnedSecretName
« @aws-cdk/aws-kms:defaultKeyPolicies

+ @aws-cdk/aws-s3:grantWriteWithoutAcl

« @aws-cdk/aws-efs:defaultEncryptionAtRest

A handful of v1 feature flags can be set to false in order to revert to specific AWS CDK v1
behaviors; see Reverting to v1 behavior or the list on GitHub for a complete reference.

For both types of flags, use the cdk diff command to inspect the changes to your synthesized
template to see if the changes to any of these flags affect your infrastructure.

CDK Toolkit compatibility

CDK v2 requires v2 or later of the CDK Toolkit. This version is backward-compatible with CDK v1
apps. Therefore, you can use a single globally installed version of CDK Toolkit with all your AWS
CDK projects, whether they use v1 or v2. An exception is that CDK Toolkit v2 only creates CDK v2
projects.

If you need to create both v1 and v2 CDK projects, do not install CDK Toolkit v2 globally.
(Remove it if you already have it installed: npm remove -g aws-cdk.) To invoke the CDK Toolkit,
use npx to run v1 or v2 of the CDK Toolkit as desired.

npx aws-cdk@l.x init app --language typescript
npx aws-cdk@2.x init app --language typescript

Updating feature flags Version 2 387

https://github.com/aws/aws-cdk/blob/main/packages/%40aws-cdk/cx-api/FEATURE_FLAGS.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

® Tip
Set up command line aliases so you can use the cdk and cdk1l commands to invoke the
desired version of the CDK Toolkit.

macOS/Linux

alias cdkl="npx aws-cdke@l.x"
alias cdk="npx aws-cdk@2.x"

Windows

doskey cdkl=npx aws-cdk@l.x $*
doskey cdk=npx aws-cdk@2.x $*

Updating dependencies and imports

Update your app’s dependencies, then install the new packages. Finally, update the imports in your
code.

Example
TypeScript
Applications

For CDK apps, update package. json as follows. Remove dependencies on v1-style
individual stable modules and establish the lowest version of aws-cdk-1ib you require for
your application (2.0.0 here).

Experimental constructs are provided in separate, independently versioned packages
with names that end in alpha and an alpha version number. The alpha version number
corresponds to the first release of aws-cdk-1ib with which they're compatible. Here, we
have pinned aws-codestar to v2.0.0-alpha.1.

{

"dependencies": {
"aws-cdk-1ib": "/~2.0.0",

Updating dependencies and imports Version 2 388

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

"@aws-cdk/aws-codestar-alpha": "2.0.0-alpha.1",
"constructs": "710.0.0"

Construct libraries

For construct libraries, establish the lowest version of aws-cdk-1ib you require for your
application (2.0.0 here) and update package. json as follows.

Note that aws-cdk-11ib appears both as a peer dependency and a dev dependency.

"peerDependencies": {
"aws-cdk-1ib": "72.0.0",
"constructs": "710.0.0"

},

"devDependencies": {
"aws-cdk-1ib": "72.0.0",

"constructs": "710.0.0",
"typescript": "~3.9.0"
}
}
(@ Note

You should perform a major version bump on your library’s version number when
releasing a v2-compatible library, because this is a breaking change for library
consumers. It is not possible to support both CDK v1 and v2 with a single library. To
continue to support customers who are still using v1, you could maintain the earlier
release in parallel, or create a new package for v2.

It's up to you how long you want to continue supporting AWS CDK v1 customers.
You might take your cue from the lifecycle of CDK v1 itself, which entered
maintenance on June 1, 2022 and will reach end-of-life on June 1, 2023. For full
details, see AWS CDK Maintenance Policy.

Both libraries and apps

Install the new dependencies by running npm install or yarn install.

Updating dependencies and imports Version 2 389

https://github.com/aws/aws-cdk-rfcs/blob/master/text/0079-cdk-2.0.md#aws-cdk-maintenance-policy

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Change your imports to import Construct from the new constructs module, core types
such as App and Stack from the top level of aws-cdk-1ib, and stable Construct Library
modaules for the services you use from namespaces under aws-cdk-1ib.

import { Construct } from 'constructs';

import { App, Stack } from 'aws-cdk-1lib'; // core constructs
import { aws_s3 as s3 } from 'aws-cdk-lib'; // stable module
import * as codestar from '@aws-cdk/aws-codestar-alpha'; // experimental module

JavaScript

Update package. json as follows. Remove dependencies on v1-style individual stable modules
and establish the lowest version of aws-cdk-1ib you require for your application (2.0.0 here).

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-1ib with which they're compatible. Here, we have pinned aws -
codestar to v2.0.0-alpha.1.

{
"dependencies": {
"aws-cdk-1ib": "~2.0.0",
"@aws-cdk/aws-codestar-alpha": "2.0.0-alpha.1",
"constructs": "710.0.0"
}
}

Install the new dependencies by running npm install or yarn install.
Change your app's imports to do the following:

e Import Construct from the new constructs module
« Import core types, such as App and Stack, from the top level of aws-cdk-1ib

« Import AWS Construct Library modules from namespaces under aws-cdk-1ib

const { Construct } = require('constructs');
const { App, Stack } = require('aws-cdk-1lib'); // core constructs
const s3 = require('aws-cdk-1lib').aws_s3; // stable module

Updating dependencies and imports Version 2 390

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const codestar = require('eaws-cdk/aws-codestar-alpha'); // experimental module

Python

Update requirements.txt orthe install_requires definition in setup.py as follows.
Remove dependencies on v1-style individual stable modules.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-1ib with which they're compatible. Here, we have pinned aws -
codestar to v2.0.0alphal.

install_requires=[
"aws-cdk-1ib>=2.0.0",
"constructs>=10.0.0",
"aws-cdk.aws-codestar-alpha>=2.0.0alphal",
...

® Tip
Uninstall any other versions of AWS CDK modules already installed in your app’s virtual
environment using pip uninstall. Then Install the new dependencies with python
-m pip install -r requirements.txt.

Change your app's imports to do the following:

« Import Construct from the new constructs module
« Import core types, such as App and Stack, from the top level of aws_cdk

« Import AWS Construct Library modules from namespaces under aws_cdk

from constructs import Construct

from aws_cdk import App, Stack # core constructs
from aws_cdk import aws_s3 as s3 # stable module
import aws_cdk.aws_codestar_alpha as codestar # experimental module
.

Updating dependencies and imports Version 2 391

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

class MyConstruct(Construct):
...

class MyStack(Stack):
...

s3.Bucket(...)

Java

In pom. xml, remove all software.amazon.awscdk dependencies for stable modules
and replace them with dependencies on software.constructs (for Construct) and
software.amazon.awscdk.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-1ib with which they're compatible. Here, we have pinned aws -
codestar to v2.0.0-alpha.1.

<dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>aws-cdk-lib</artifactId>
<version>2.0.0</version>

</dependency><dependency>
<groupId>software.amazon.awscdk</groupId>
<artifactId>code-star-alpha</artifactId>
<version>2.0.0-alpha.1l</version>

</dependency>

<dependency>
<groupId>software.constructs</groupIld>
<artifactId>constructs</artifactId>
<version>10.0.0</version>

</dependency>

Install the new dependencies by running mvn package.
Change your code to do the following:

« Import Construct from the new software.constructs library
» Import core classes, like Stack and App, from software.amazon.awscdk

« Import service constructs from software.amazon.awscdk.services

Updating dependencies and imports Version 2 392

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

C#

Go

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.App;

import software.amazon.awscdk.services.s3.Bucket;

import software.amazon.awscdk.services.codestar.alpha.GitHubRepository;

The most straightforward way to upgrade the dependencies of a C# CDK application is to edit
the . csproj file manually. Remove all stable Amazon.CDK. * package references and replace
them with references to the Amazon.CDK.Lib and Constructs packages.

Experimental constructs are provided in separate, independently versioned packages with
names that end in alpha and an alpha version number. The alpha version number corresponds
to the first release of aws-cdk-1ib with which they're compatible. Here, we have pinned aws -
codestar to v2.0.0-alpha.1.

<PackageReference Include="Amazon.CDK.Lib" Version="2.0.0" />
<PackageReference Include="Amazon.CDK.AWS.Codestar.Alpha" Version="2.0.0-alpha.l" />
<PackageReference Include="Constructs" Version="10.0.0" />

Install the new dependencies by running dotnet restore.

Change the imports in your source files as follows.

using Constructs; // for Construct class

using Amazon.CDK; // for core classes like App and Stack
using Amazon.CDK.AWS.S3; // for stable constructs like Bucket
using Amazon.CDK.Codestar.Alpha; // for experimental constructs

Issue go get to update your dependencies to the latest version and update your project’'s .mod
file.

Testing your migrated app before deploying

Before deploying your stacks, use cdk diff to check for unexpected changes to the resources.
Changes to logical IDs (causing replacement of resources) are not expected.

Testing your migrated app before deploying Version 2 393

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Expected changes include but are not limited to:

« Changes to the CDKMetadata resource.
» Updated asset hashes.

« Changes related to the new-style stack synthesis. Applies if your app used the legacy stack
synthesizer in v1.

« The addition of a CheckBootstrapVersion rule.

Unexpected changes are typically not caused by upgrading to AWS CDK v2 in itself. Usually, they're
the result of deprecated behavior that was previously changed by feature flags. This is a symptom
of upgrading from a version of CDK earlier than about 1.85.x. You would see the same changes
upgrading to the latest v1.x release. You can usually resolve this by doing the following:

1. Upgrade your app to the latest v1.x release

Remove feature flags

Revise your code as necessary

Deploy

ok W

Upgrade to v2

(@ Note
If your upgraded app is undeployable after the two-stage upgrade, report the issue.

When you are ready to deploy the stacks in your app, consider deploying a copy first so you
can test it. The easiest way to do this is to deploy it into a different Region. However, you can
also change the IDs of your stacks. After testing, be sure to destroy the testing copy with cdk
destroy.

Troubleshooting
TypeScript 'from' expectedor ';' expected errorinimports

Upgrade to TypeScript 3.8 or later.

Troubleshooting Version 2 394

https://github.com/aws/aws-cdk/issues/new/choose

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Run 'cdk bootstrap'

If you see an error like the following:

MyStack failed: Error: MyStack: SSM parameter /cdk-bootstrap/hnb659fds/version
not found. Has the environment been bootstrapped? Please run 'cdk bootstrap' (see
https://docs.aws.amazon.com/cdk/latest/guide/bootstrapping.html)

at CloudFormationDeployments.validateBootstrapStackVersion (.../aws-cdk/lib/api/
cloudformation-deployments.ts:323:13)
at processTicksAndRejections (internal/process/task_queues.js:97:5)

MyStack: SSM parameter /cdk-bootstrap/hnb659fds/version not found. Has the
environment been bootstrapped? Please run 'cdk bootstrap' (see https://

docs.aws.amazon.com/cdk/latest/qguide/bootstrapping.html)

AWS CDK v2 requires an updated bootstrap stack, and furthermore, all v2 deployments require
bootstrap resources. (With v1, you could deploy simple stacks without bootstrapping.) For
complete details, see AWS CDK bootstrapping.

Finding v1 stacks

When migrating your CDK application from v1 to v2, you might want to identify the deployed AWS
CloudFormation stacks that were created using v1. To do this, run the following command:

npx awscdk-vl-stack-finder

For usage details, see the awscdk-v1-stack-finder README.

Finding v1 stacks Version 2 395

https://github.com/cdklabs/awscdk-v1-stack-finder/blob/main/README.md

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrate existing resources and AWS CloudFormation
templates to the AWS CDK

The CDK Migrate feature is in preview release for AWS CDK and is subject to change.

Use the AWS Cloud Development Kit (AWS CDK) Command Line Interface (AWS CDK CLI) to migrate
deployed AWS resources, deployed AWS CloudFormation stacks, and local AWS CloudFormation
templates to AWS CDK.

How migration works

Use the AWS CDK CLI cdk migrate command to migrate from the following sources:

» Deployed AWS resources.
« Deployed AWS CloudFormation stacks.

» Local AWS CloudFormation templates.

Deployed AWS resources

You can migrate deployed AWS resources from a specific environment (AWS account and AWS
Region) that are not associated with an AWS CloudFormation stack.

The AWS CDK CLI utilizes the laC generator service to scan for resources in your AWS
environment to gather resource details. To learn more about laC generator, see Generating
templates for existing resources in the AWS CloudFormation User Guide.

After gathering resource details, the AWS CDK CLI creates a new CDK app that includes a single
stack containing your migrated resources.

Deployed AWS CloudFormation stacks
You can migrate a single AWS CloudFormation stack into a new AWS CDK app. The AWS CDK

CLI will retrieve the AWS CloudFormation template of your stack and create a new CDK app. The
CDK app will consist of a single stack that contains your migrated AWS CloudFormation stack.

How migration works Version 2 396

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Local AWS CloudFormation templates

You can migrate from a local AWS CloudFormation template. Local templates may or may not
contain deployed resources. The AWS CDK CLI will create a new CDK app that contains a single
stack with your resources.

After migrating, you can manage, modify, and deploy your CDK app to AWS CloudFormation to
provision or update your resources.

Benefits of CDK Migrate

Migrating resources into AWS CDK has historically been a manual process that requires time and
expertise with AWS CloudFormation and AWS CDK to even begin. With CDK Migrate, the AWS
CDK CLI facilitates a majority of the migration effort for you in a fraction of the time. CDK Migrate
will quickly get you started with using the AWS CDK to develop and manage new and existing
applications on AWS.

Considerations

General considerations
CDK Migrate vs. CDK Import

The cdk import command can import deployed resources into a new or existing CDK app.
When importing, each resource will have to manually be defined as an L1 construct in your app.
We recommend using cdk import to import one or more resources at a time into a new or
existing CDK app. To learn more, see Import existing resources into a stack.

The cdk migrate command migrates from deployed resources, deployed AWS
CloudFormation stacks, or local AWS CloudFormation templates into a new CDK app. During
migration, the AWS CDK CLI uses cdk import to import your resources into the new CDK app.
The AWS CDK CLI also generates L1 constructs for each resource for you. We recommend using
cdk migrate when importing from a supported migration source into a new AWS CDK app.

CDK Migrate creates L1 constructs only

The newly created CDK app will include L1 constructs only. You can add higher-level constructs
to your app after migration.

Benefits of CDK Migrate Version 2 397

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

CDK Migrate creates CDK apps that contain a single stack
The newly created CDK app will contain a single stack.

When migrating deployed resources, all migrated resources will be contained within a single
stack in the new CDK app.

When migrating AWS CloudFormation stacks, you can only migrate a single AWS
CloudFormation stack into a single stack in the new CDK app.

Migrating assets

Project assets, such as AWS Lambda code, will not directly migrate into the new CDK app. After
migration, you can specify asset values to include them in the CDK app.

Migrating stateful resources

When migrating stateful resources, such as databases and Amazon Simple Storage Service
(Amazon S3) buckets, you'd most often want to migrate the existing resource instead of
creating a new resource.

To migrate and preserve stateful resources, do the following:

« Verify that your stateful resource supports import. For more information, see Resource type
support in the AWS CloudFormation User Guide.

« After migration, verify that the migrated resource’s logical ID in the new CDK app matches
the logical ID of the deployed resource.

« If migrating from an AWS CloudFormation stack, verify that the stack name in the new CDK
app matches the AWS CloudFormation stack.

» Deploy the CDK app using the same AWS account and AWS Region of the migrated resource.

Considerations when migrating from an AWS CloudFormation template

CDK Migrate supports single template migration

When migrating AWS CloudFormation templates, you can select a single template to migrate.
Nested templates are not supported.

Considerations when migrating from an AWS CloudFormation template Version 2 398

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrating templates with intrinsic functions

When migrating from an AWS CloudFormation template that uses intrinsic functions, the AWS
CDK CLI will attempt to migrate your logic into the CDK app with the Fn class. To learn more,
see class Fn in the AWS Cloud Development Kit (AWS CDK) API Reference.

Considerations when migrating from deployed resources
Scan limitations

When scanning your environment for resources, laC generator has specific limitations on the
data it can retrieve and quota limitations when scanning. To learn more, see Considerations in
the AWS CloudFormation User Guide.

Prerequisites

Before using the cdk migrate command, complete all set up steps in Getting started with the
AWS CDK.

Get started with CDK Migrate

To begin, run the AWS CDK CLI cdk migrate command from a directory of your choice. Provide
required and optional options, depending on the type of migration you are performing.

For a full list and description of options that you can use with cdk migrate, see cdk migrate.

The following are some important options that you may want to provide.

Stack name

The only required option is --stack-name. Use this option to specify a name for the stack that
will be created within the AWS CDK app after migration. The stack name will also be used as the
name of your AWS CloudFormation stack at deployment.

Language

Use --language to specify the programming language of the new CDK app.

Considerations when migrating from deployed resources Version 2 399

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Fn.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC.html#generate-template-considerations

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

AWS account and AWS Region

The AWS CDK CLI retrieves AWS account and AWS Region information from default sources. For
more information, see Environments for the AWS CDK. You can use --account and --region

options with cdk migrate to provide other values.

Output directory of your new CDK project

By default, the AWS CDK CLI will create a new CDK project in your working directory and use
the value you provide with --stack-name to name the project folder. If a folder with the same
name currently exists, the AWS CDK CLI will overwrite that folder.

You can specify a different output path for the new CDK project folder with the --output-
path option.

Migration source

Provide an option to specify the source you are migrating from.
e --from-path - Migrate from a local AWS CloudFormation template.
« --from-scan - Migrate from deployed resources in an AWS account and AWS Region.

« --from-stack — Migrate from an AWS CloudFormation stack.

Depending on your migration source, you can provide additional options to customize the cdk
migrate command.

Migrate from an AWS CloudFormation stack

To migrate from a deployed AWS CloudFormation stack, provide the --from-stack option.
Provide the name of your deployed AWS CloudFormation stack with - -stack-name. The following
is an example:

$ cdk migrate --from-stack --stack-name "myCloudFormationStack"

The AWS CDK CLI will do the following:

1. Retrieve the AWS CloudFormation template of your deployed stack.
2. Run cdk init to initialize a new CDK app.

3. Create a stack within the CDK app that contains your migrated AWS CloudFormation stack.

Migrate from an AWS CloudFormation stack Version 2 400

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

When you migrate from a deployed AWS CloudFormation stack, the AWS CDK CLI attempts to
match deployed resource logical IDs and the deployed AWS CloudFormation stack name to the
migrated resources and stack in the new CDK app.

After migration, you can manage and modify your CDK app normally. When you deploy, AWS
CloudFormation will identify the deployment as an AWS CloudFormation stack update due to the
matching AWS CloudFormation stack name. Resources with matching logical IDs will be updated.
For more information on deploying, see Manage and deploy your CDK app.

Migrate from an AWS CloudFormation template

CDK Migrate supports migrating from AWS CloudFormation templates formatted in JSON or YAML.

To migrate from a local AWS CloudFormation template, use the - -from-path option and provide
a path to the local template. You must also provide the required --stack-name option. The
following is an example:

$ cdk migrate --from-path "./template.json" --stack-name "myCloudFormationStack"

The AWS CDK CLI will do the following:

1. Retrieve your local AWS CloudFormation template.
2. Run cdk init to initialize a new CDK app.

3. Create a stack within the CDK app that contains your migrated AWS CloudFormation template.

After migration, you can manage and modify your CDK app normally. At deployment, you have the
following options:

« Update an AWS CloudFormation stack - If the local AWS CloudFormation template was
previously deployed, you can update the deployed AWS CloudFormation stack.

« Deploy a new AWS CloudFormation stack - If the local AWS CloudFormation template was
never deployed, or if you want to create a new stack from a previously deployed template, you
can deploy a new AWS CloudFormation stack.

Migrate from an AWS CloudFormation template Version 2 401

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Migrate from an AWS SAM template

To migrate from an AWS Serverless Application Model (AWS SAM) template, you must first convert
it to an AWS CloudFormation template or deploy to create an AWS CloudFormation stack.

To convert an AWS SAM template to AWS CloudFormation, you can use the AWS SAM CLI sam
validate --debug command. You may have to set 1int to false in your samconfig.toml file
before running this command.

To convert to an AWS CloudFormation stack, deploy the AWS SAM template using the AWS SAM
CLI. Then migrate from the deployed stack.

Migrate from deployed resources

To migrate from deployed AWS resources, provide the --from-scan option. You must also provide
the required --stack-name option. The following is an example:

$ cdk migrate --from-scan --stack-name "myCloudFormationStack"

The AWS CDK CLI will do the following:

1. Scan your account for resource and property details — The AWS CDK CLI utilizes l1aC generator
to scan your account and gather details.

2. Generate an AWS CloudFormation template — After scanning, the AWS CDK CLI utilizes IaC
generator to create an AWS CloudFormation template.

3. Initialize a new CDK app and migrate your template - The AWS CDK CLI runs cdk init to
initialize a new AWS CDK app and migrates your AWS CloudFormation template into the CDK
app as a single stack.

Use filters

By default, the AWS CDK CLI will scan the entire AWS environment and migrate resources up to the
maximum quota limit of 1aC generator. You can provide filters with the AWS CDK CLI to specify a
criteria for which resources get migrated from your account to the new CDK app. To learn more, see
--filter .

Migrate from an AWS SAM template Version 2 402

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Scanning for resources with l1aC generator

Depending on the number of resources in your account, scanning may take a few minutes. A
progress bar will display during the scanning process.

Supported resource types

The AWS CDK CLI will migrate resources supported by the l1aC generator. For a full list, see
Resource type support in the AWS CloudFormation User Guide.

Resolve write-only properties

Some supported resources contain write-only properties. These properties can be written to, to
configure the property, but can't be read by IaC generator or AWS CloudFormation to obtain the
value. For example, a property used to specify a database password may be write-only for security
reasons.

When scanning resources during migration, laC generator will detect resources that may contain
write-only properties and will categorize them into any of the following types:

e« MUTUALLY_EXCLUSIVE_PROPERTIES - These are write-only properties for a specific resource
that are interchangeable and serve a similar purpose. One of the mutually exclusive properties
are required to configure your resource. For example, the S3Bucket, ImageUri, and ZipFile
properties foran AWS::Lambda: : Function resource are mutually exclusive write-only
properties. Any one of them can be used to specify your function assets, but you must use one.

e MUTUALLY_EXCLUSIVE_TYPES - These are required write-only properties that accept multiple
configuration types. For example, the Body property of an AWS: :ApiGateway: :RestApi
resource accepts an object or string type.

« UNSUPPORTED_PROPERTIES - These are write-only properties that don't fall under the other
two categories. They are either optional properties or required properties that accept an array of
objects.

For more information on write-only properties and how laC generator manages them when
scanning for deployed resources and creating AWS CloudFormation templates, see laC generator
and write-only properties in the AWS CloudFormation User Guide.

Scanning for resources with laC generator Version 2 403

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/resource-import-supported-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

After migration, you must specify write-only property values in the new CDK app. The AWS CDK
CLI will append a Warnings section to the CDK project’s ReadMe file to document any write-only
properties that were identified by 1aC generator. The following is an example:

Welcome to your CDK TypeScript project

Warnings

Write-only properties

Write-only properties are resource property values that can be written to but can't be
read by AWS CloudFormation or CDK Migrate. For more information, see [IaC generator
and write-only properties](https://docs.aws.amazon.com/AWSCloudFormation/latest/

UserGuide/generate-IaC-write-only-properties.html).

Write-only properties discovered during migration are organized here by resource ID and
categorized by write-only property type. Resolve write-only properties by providing
property values in your CDK app. For guidance, see [Resolve write-only properties]

(https://docs.aws.amazon.com/cdk/v2/quide/migrate.html#migrate-resources-writeonly).

MyLambdaFunction

- **UNSUPPORTED_PROPERTIES**:

- SnapStart/ApplyOn: Applying SnapStart setting on function resource type.Possible
values: [PublishedVersions, None]

This property can be replaced with other types

- Code/S30bjectVersion: For versioned objects, the version of the deployment package
object to use.

This property can be replaced with other exclusive properties

- **MUTUALLY_EXCLUSIVE_PROPERTIES**:

- Code/S3Bucket: An Amazon S3 bucket in the same AWS Region as your function. The
bucket can be in a different AWS account.

This property can be replaced with other exclusive properties

- Code/S3Key: The Amazon S3 key of the deployment package.

This property can be replaced with other exclusive properties

« Warnings are organized under headings that identify the resource's logical ID that they are
associated with.

» Warnings are categorized by type. These types come directly from laC generator.

To resolve write-only properties

1. Identify write-only properties to resolve from the Warnings section of your CDK project's
ReadMe file. Here, you can take note of the resources in your CDK app that may contain
write-only properties and identify the write-only property types that were discovered.

Resolve write-only properties Version 2 404

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

a. For MUTUALLY_EXCLUSIVE_PROPERTIES, determine which mutually exclusive property
to configure in your AWS CDK app.

b. For MUTUALLY_EXCLUSIVE_TYPES, determine which accepted type that you will use to
configure the property.

c. For UNSUPPORTED_PROPERTIES, determine if the property is optional or required. Then,
configure as necessary.

2. Use guidance from laC generator and write-only properties to reference what the warning

types mean.

3. In your CDK app, write-only property values to resolve will also be specified in the Props
section of your app. Provide the correct values here. For property descriptions and guidance,
you can reference the AWS CDK API Reference.

The following is an example of the Props section within a migrated CDK app with two write-
only properties to resolve:

export interface MyTestAppStackProps extends cdk.StackProps {
/**
* The Amazon S3 key of the deployment package.
*/
readonly lambdaFunction@@asdfasdfsadf@08grklCodeS3Keym8P82: string;
/**
* An Amazon S3 bucket in the same AWS Region as your function. The bucket can
be in a different AWS account.
*/
readonly lambdaFunction@@asdfasdfsadf@08grklCodeS3Bucketzidw8: string;
}

Once you resolve all write-only property values, you're ready to prepare for deployment.

The migrate.json file

The AWS CDK CLI creates amigrate. json file in your AWS CDK project during migration. This file
contains reference information on your deployed resources. When you deploy your CDK app for
the first time, the AWS CDK CLI uses this file to reference your deployed resources, associates your
resources with the new AWS CloudFormation stack, and deletes the file.

The migrate.json file Version 2 405

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/generate-IaC-write-only-properties.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-construct-library.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Manage and deploy your CDK app

When migrating to AWS CDK, the new CDK app may not be deployment-ready immediately. This
topic describes action items to consider while managing and deploying your new CDK app.

Prepare for deployment
Before deploying, you must prepare your CDK app.
Synthesize your app

Use the cdk synth command to synthesize the stack in your CDK app into an AWS
CloudFormation template.

If you migrated from a deployed AWS CloudFormation stack or template, you can compare the
synthesized template to the migrated template to verify resource and property values.

To learn more about cdk synth, see Synthesize stacks.

Perform a diff

If you migrated from a deployed AWS CloudFormation stack, you can use the cdk diff command
to compare with the stack in your new CDK app.

To learn more about cdk diff, see Compare stacks.

Bootstrap your environment

If you are deploying from an AWS environment for the first time, use cdk bootstrap to
prepare your environment. To learn more, see AWS CDK bootstrapping.

Deploy your CDK app

When you deploy a CDK app, the AWS CDK CLI utilizes the AWS CloudFormation service to
provision your resources. Resources are bundled into a single stack in the CDK app and are
deployed as a single AWS CloudFormation stack.

Depending on where you migrated from, you can deploy to create a new AWS CloudFormation
stack or update an existing AWS CloudFormation stack.

Manage and deploy your CDK app Version 2 406

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Deploy to create a new AWS CloudFormation stack

If you migrated from deployed resources, the AWS CDK CLI will automatically create a new AWS
CloudFormation stack at deployment. Your deployed resources will be included in the new AWS
CloudFormation stack.

If you migrated from a local AWS CloudFormation template that was never deployed, the AWS
CDK CLI will automatically create a new AWS CloudFormation stack at deployment.

If you migrated from a deployed AWS CloudFormation stack or local AWS CloudFormation
template that was previously deployed, you can deploy to create a new AWS CloudFormation
stack. To create a new stack, do the following:

» Deploy to a new AWS environment. This consists of using a different AWS account or
deploying to a different AWS Region.

« If you want to deploy a new stack to the same AWS environment of the migrated stack
or template, you must modify the stack name in your CDK app to a new value. You must
also modify all logical IDs of resources in your CDK app. Then, you can deploy to the same
environment to create a new stack and new resources.

Deploy to update an existing AWS CloudFormation stack

If you migrated from a deployed AWS CloudFormation stack or local AWS CloudFormation
template that was previously deployed, you can deploy to update the existing AWS
CloudFormation stack.

Verify that the stack name in your CDK app matches the stack name of the deployed AWS
CloudFormation stack and deploy to the same AWS environment.

Deploy your CDK app Version 2 407

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configure security credentials for the AWS CDK CLI

When you use the AWS Cloud Development Kit (AWS CDK) to develop applications in your local
environment, you will primarily use the AWS CDK Command Line Interface (AWS CDK CLI) to
interact with AWS. For example, you can use the CDK CLI to deploy your application or to delete
your resources from your AWS environment.

To use the CDK CLI to interact with AWS, you must configure security credentials on your local
machine. This lets AWS know who you are and what permissions you have.

To learn more about security credentials, see AWS security credentials in the IAM User Guide.

Prerequisites

Configuring security credentials is part of the getting started process. Complete all prerequisites
and previous steps at Getting started with the AWS CDK.

How to configure security credentials

How you configure security credentials depends on how you or your organization manages users.
Whether you use AWS Identity and Access Management (IAM) or AWS IAM Identity Center, we
recommend that you use the AWS Command Line Interface (AWS CLI) to configure and manage
security credentials for the CDK CLI. This includes using AWS CLI commands like aws configure
to configure security credentials on your local machine. However, you can use alternative methods
such as manually updating your config and credentials files, or setting environment variables.

For guidance on configuring security credentials using the AWS CLI, along with information on
configuration and credential precedence when using different methods, see Authentication and
access credentials in the AWS Command Line Interface User Guide. The CDK CLI adheres to the
same configuration and credential precedence of the AWS CLI. The --profile command line
option takes precedence over environment variables. If you have both the AWS_PROFILE and
CDK_DEFAULT_PROFILE environment variables configured, the AWS_PROFILE environment
variable takes precedence.

If you configure multiple profiles, you can use the CDK CLI --profile option with
any command to specify the profile from your credentials and config files to use for
authentication. If you don't provide --profile, the default profile will be used.

Prerequisites Version 2 408

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-authentication.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

If you prefer to quickly configure basic settings, including security credentials, see Set up the AWS
CLI'in the AWS Command Line Interface User Guide.

Once you've configured security credentials on your local machine, you can use the CDK CLI to
interact with AWS.

Configure and manage security credentials for IAM Identity
Center users

IAM ldentity Center users can authenticate with 1AM Identity Center or manually by using short-
term credentials.

Authenticate with IAM Identity Center to generate short-term credentials

You can configure the AWS CLI to authenticate with IAM Identity Center. This is the
recommended approach of configuring security credentials for IAM Identity Center users. IAM
Identity Center users can use the AWS CLI aws configure sso wizard to configure an IAM
Identity Center profile and sso-session, which gets stored in the config file on your local
machine. For instructions, see Configure the AWS CLI to use AWS IAM Identity Center in the
AWS Command Line Interface User Guide.

Next, you can use the AWS CLI aws sso login command to request refreshed credentials. You
can also use this command to switch profiles. For instructions, see Use an IAM Identity Center

named profile in the AWS Command Line Interface User Guide.

Once authenticated, you can use the CDK CLI to interact with AWS for the duration of your
session. For an example, see Example: Authenticate with IAM Identity Center automatic token
refresh for use with the AWS CDK CLI.

Manually configure short-term credentials

As an alternative to using the AWS CLI and authenticating with 1AM Identity Center, IAM
Identity Center users can obtain short-term credentials from the AWS Management Console
and manually configure the credentials and config files on their local machine. Once
configured, you can use the CDK CLI to interact with AWS until your credentials expire. For
instructions, see Authenticate with short-term credentials in the AWS Command Line Interface
User Guide.

Configure and manage security credentials for IAM Identity Center users Version 2 409

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/sso-using-profile.html
https://docs.aws.amazon.com/cli/latest/userguide/sso-using-profile.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-short-term.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configure and manage security credentials for IAM users

IAM users can use an IAM role or IAM user credentials with the CDK CLI.

Use an IAM role to configure short-term credentials

IAM users can assume |AM roles to gain additional (or different) permissions. For IAM users, this
is the recommended approach since it provides short-term credentials.

First, the IAM role and user’'s permission to assume the role must be configured. This is typically
performed by an administrator using the AWS Management Console or AWS CLI. Then, the

IAM user can use the AWS CLI to assume the role and configure short-term credentials on their
local machine. For instructions, see Use an IAM role in the AWS CLI in the AWS Command Line
Interface User Guide.

Use IAM user credentials

/A Warning

To avoid security risks, we don't recommend using IAM user credentials since they
provide long-term access. If you must use long-term credentials, we recommend that
you update access keys as an IAM security best practice.

IAM users can obtain access keys from the AWS Management Console. You can then use
the AWS CLI to configure long-term credentials on your local machine. For instructions, see
Authenticate with IAM user credentials in the AWS Command Line Interface User Guide.

Additional information

To learn about the different ways that you can sign in to AWS, depending on the type of user you
are, see What is AWS Sign-In? in the AWS Sign-In User Guide.

For reference information when using AWS SDKs and tools, including the AWS CLI, see the
AWS SDKs and Tools Reference Guide.

Configure and manage security credentials for IAM users Version 2 410

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/signin/latest/userguide/what-is-sign-in.html
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Example: Authenticate with IAM Identity Center automatic
token refresh for use with the AWS CDK CLI

In this example, we configure the AWS Command Line Interface (AWS CLI) to authenticate our
user with the AWS IAM Identity Center token provider configuration. The SSO token provider
configuration lets the AWS CLI automatically retrieve refreshed authentication tokens to generate
short-term credentials that we can use with the AWS Cloud Development Kit (AWS CDK) Command
Line Interface (AWS CDK CLI).

Prerequisites
This example assumes that the following prerequisites have been completed:

» Prerequisites required to get set up with AWS and install our starting CLI tools. For more
information, see Prerequisites.

« |IAM Identity Center has been set up by our organization as the method of managing users.

» At least one user has been created in IAM Identity Center.

Step 1: Configure the AWS CLI

For detailed instructions on this step, see Configure the AWS CLI to use IAM Identity Center token
provider credentials with automatic authentication refresh in the AWS Command Line Interface
User Guide.

We sign in to the AWS access portal provided by our organization to gather our IAM Identity Center
information. This includes the SSO start URL and SSO Region.

Next, we use the AWS CLI aws configure sso command to configure an IAM Identity Center
profile and sso-session on our local machine:

$ aws configure sso

SSO session name (Recommended): <my-sso>

SSO start URL [None]: <https://my-sso-portal.awsapps.com/start>
SSO region [None]: <us-east-1>

SSO registration scopes [sso:account:access]: <ENTER>

The AWS CLI attempts to open our default browser to begin the login process for our IAM Identity
Center account. If the AWS CLI is unable to open our browser, instructions are provided to manually

Example: Authenticate with IAM Identity Center automatic token refresh Version 2 411

https://docs.aws.amazon.com/cli/latest/userguide/sso-configure-profile-token.html
https://docs.aws.amazon.com/cli/latest/userguide/sso-configure-profile-token.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

start the login process. This process associates the IAM Identity Center session with our current
AWS CLI session.

After establishing our session, the AWS CLI displays the AWS accounts available to us:

There are 2 AWS accounts available to you.
> DeveloperAccount, developer-account-admin@example.com (<123456789011>)
ProductionAccount, production-account-admin@example.com (<123456789022>)

We use the arrow keys to select our DeveloperAccount.

Next, the AWS CLI displays the IAM roles available to us from our selected account:

Using the account ID
There are 2 roles available to you.
> ReadOnly

FullAccess

We use the arrow keys to select FullAccess.

Next, the AWS CLI prompts us to complete configuration by specifying a default output format,
default AWS Region, and name for our profile:

CLI default client Region [None]: <us-west-2> <ENTER>
CLI default output format [None]: <json> <ENTER>
CLI profile name [123456789011_FullAccess]: <my-dev-profile> <ENTER>

The AWS CLI displays a final message, showing how to use the named profile with the AWS CLI:

To use this profile, specify the profile name using --profile, as shown:

aws s3 1ls --profile <my-dev-profile>

After completing this step, our config file will look like the following:

[profile <my-dev-profile>]
sso_session = <my-sso>
sso_account_id = <123456789011>
sso_role_name = <fullAccess>
region = <us-west-2>

Step 1: Configure the AWS CLI Version 2 412

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

output = <json>
[sso-session <my-sso>]
sso_region = <us-east-1>

sso_start_url = <https://my-sso-portal.awsapps.com/start>
sso_registration_scopes = <sso:account:access>

We can now use this sso-session and named profile to request security credentials.

Step 2: Use the AWS CLI to generate security credentials

For detailed instructions on this step, see Use an IAM Identity Center named profile in the AWS

Command Line Interface User Guide.

We use the AWS CLI aws sso login command to request security credentials for our profile:

$ aws sso login --profile <my-dev-profile>

The AWS CLI attempts to open our default browser and verifies our IAM log in. If we are not
currently signed into IAM Identity Center, we will be prompted to complete the sign in process.
If the AWS CLI is unable to open our browser, instructions are provided to manually start the
authorization process.

After successfully logging in, the AWS CLI caches our IAM Identity Center session credentials. These
credentials include an expiration timestamp. When they expire, the AWS CLI will request that we
sign in to IAM Identity Center again.

Using valid IAM ldentity Center credentials, the AWS CLI securely retrieves AWS credentials for the
IAM role specified in our profile. From here, we can use the AWS CDK CLI with our credentials.

Step 3: Use the CDK CLI

With any CDK CLI command, we use the --profile option to specify the named profile that
we generated credentials for. If our credentials are valid, the CDK CLI will successfully perform the
command. The following is an example:

$ cdk diff --profile <my-dev-profile>

Stack CdkAppStack

Hold on while we create a read-only change set to get a diff with accurate replacement
information (use --no-change-set to use a less accurate but faster template-only diff)

Step 2: Use the AWS CLI to generate security credentials Version 2 413

https://docs.aws.amazon.com/cli/latest/userguide/sso-using-profile.html

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Resources
[-1 AWS::S3::Bucket amzn-s3-demo-bucket amzn-s3-demo-bucket5AF9C99B destroy

Outputs
[-] Output BucketRegion: {"Value":{"Ref":"AWS::Region"}}

Number of stacks with differences: 1

When our credentials expire, an error message like the following will display:

$ cdk diff --profile <my-dev-profile>
Stack CdkAppStack

Unable to resolve AWS account to use. It must be either configured when you define your
CDK Stack, or through the environment

To refresh our credentials, we use the AWS CLI aws sso login command:

$ aws sso login --profile <my-dev-profile>

Step 3: Use the CDK CLI Version 2 414

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

Configure environments to use with the AWS CDK

You can configure AWS environments in multiple ways to use with the AWS Cloud Development
Kit (AWS CDK). The best method of managing AWS environments will vary, based on your specific
needs.

Each CDK stack in your application must eventually be associated with an environment to
determine where the stack gets deployed to.

For an introduction to AWS environments, see Environments for the AWS CDK.

Where you can specify environments from

You can specify environments in credentials and configuration files, or by using the env property
of the Stack construct from the AWS Construct Library.

Credentials and configuration files

You can use the AWS Command Line Interface (AWS CLI) to create credentials and config files
that store, organize, and manage your AWS environment information. To learn more about these
files, see Configuration and credential file settings in the AWS Command Line Interface User Guide.

Values stored in these files are organized by profiles. How you name your profiles and the key-value
pairs in these files will vary based on your method of configuring programmatic access. To learn
more about the different methods, see Configure security credentials for the AWS CDK CLI.

In general, the AWS CDK resolves AWS account information from your credentials file and AWS
Region information from your config file.

Once you have your credentials and config files configured, you can specify the environment
to use with the AWS CDK CLI and through environment variables.

env property of the Stack construct

You can specify the environment for each stack by using the env property of the Stack
construct. This property defines an account and Region to use. You can pass hard-coded values to
this property or pass environment variables that are offered by the CDK.

To pass environment variables, use the AWS_DEFAULT_ACCOUNT and AWS_DEFAULT_REGION
environment variables. These environment variables can pass values from your credentials

Where you can specify environments from Version 2 415

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#env
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.Stack.html#env

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

and config files. You can also use logic within your CDK code to determine the values of these
environment variables.

Environment precedence with the AWS CDK

If you use multiple methods of specifying environments, the AWS CDK adheres to the following
precedence:

1. Hard-coded values specified with the env property of the Stack construct.

2. AWS_DEFAULT_ACCOUNT and AWS_DEFAULT_REGION environment variables specified with the
env property of the Stack construct.

3. Environment information associated with the profile from your credentials and config files
and passed to the CDK CLI using the --profile option.

4. The default profile from your credentials and config files.

When to specify environments

When you develop with the CDK, you start by defining CDK stacks, which contain constructs that
represent AWS resources. Next, you synthesize each CDK stack into an AWS CloudFormation
template. You then deploy the CloudFormation template to your environment. How you specify
environments determines when your environment information gets applied and can affect CDK
behavior and outcomes.

Specify environments at template synthesis

When you specify environment information using the env property of the Stack construct, your
environment information is applied at template synthesis. Running cdk synth or cdk deploy
produces an environment-specific CloudFormation template.

If you use environment variables within the env property, you must use the --profile option
with CDK CLI commands to pass in the profile containing your environment information from your
credentials and configuration files. This information will then be applied at template synthesis to
produce an environment-specific template.

Environment information within the CloudFormation template takes precedence over other
methods. For example, if you provide a different environment with cdk deploy --profile
<profile>, the profile will be ignored.

Environment precedence with the AWS CDK Version 2 416

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

When you provide environment information in this way, you can use environment-dependent
code and logic within your CDK app. This also means that the synthesized template could be
different, based on the machine, user, or session that it's synthesized under. This approach is often
acceptable or desirable during development, but is not recommended for production use.

Specify environments at stack deployment

If you don't specify an environment using the env property of the Stack construct, the CDK CLI
will produce an environment-agnostic CloudFormation template at synthesis. You can then specify
the environment to deploy to by using cdk deploy --profile <profile>.

If you don't specify a profile when deploying an environment-agnostic template, the CDK CLI will
attempt to use environment values from the default profile of your credentials and config
files at deployment.

If environment information is not available at deployment, AWS CloudFormation will attempt to
resolve environment information at deployment through environment-related attributes such as
stack.account, stack.region, and stack.availabilityZones.

For environment-agnostic stacks, constructs within the stack cannot use environment information
and you cannot use logic that requires environment information. For example, you cannot write
code like if (stack.region ==== 'us-east-1') or use construct methods that require
environment information such as Vpc.fromLookup . To use these features, you must specify an

environment with the env property.

For environment-agnostic stacks, any construct that uses Availability Zones will see two Availability
Zones, allowing the stack to be deployed to any Region.

How to specify environments with the AWS CDK

Specify hard-coded environments for each stack

Use the env property of the Stack construct to specify AWS environment values for your stack.
The following is an example:

Example
TypeScript

const envEU = { account: '2383838383', region: 'eu-west-1' };

Specify environments at stack deployment Version 2 417

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_ec2.Vpc.html#static-fromwbrlookupscope-id-options

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

const envUSA = { account: '8373873873', region: 'us-west-2' };

new MyFirstStack(app, 'first-stack-us', { env: envUSA });
new MyFirstStack(app, 'first-stack-eu', { env: envkU });

JavaScript

const envEU { account: '2383838383', region: 'eu-west-1' };
const envUSA = { account: '8373873873', region: 'us-west-2' };

new MyFirstStack(app, 'first-stack-us', { env: envUSA });
new MyFirstStack(app, 'first-stack-eu', { env: envkEU });

Python

env_EU = cdk.Environment(account="8373873873", region="eu-west-1")
env_USA = cdk.Environment(account="2383838383", region="us-west-2")

MyFirstStack(app, "first-stack-us", env=env_USA)
MyFirstStack(app, "first-stack-eu", env=env_EU)

Java

public class MyApp {

// Helper method to build an environment
static Environment makeEnv(String account, String region) {
return Environment.builder()
.account(account)
.region(region)
.build();

public static void main(final String argv[]) {
App app = new App();

Environment envEU = makeEnv("8373873873", "eu-west-1");
Environment envUSA = makeEnv("2383838383", "us-west-2");

new MyFirstStack(app, "first-stack-us", StackProps.builder()
.env(envUSA) .build());
new MyFirstStack(app, "first-stack-eu", StackProps.builder()

Specify hard-coded environments for each stack Version 2 418

AWS Cloud Development Kit (AWS CDK) v2

Developer Guide

CH#

Go

.env(envEU).build());

app.synth();

Amazon.CDK.Environment makeEnv(string account, string region)

{

return new Amazon.CDK.Environment

{

Account = account,
Region = region

};

var envEU = makeEnv(account: "8373873873", region: "eu-west-1");
var envUSA = makeEnv(account: "2383838383", region: "us-west-2");

new MyFirstStack(app, "first-stack-us", new StackProps { Env=envUSA });
new MyFirstStack(app, "first-stack-eu", new StackProps { Env=envEU });

env_EU := awscdk.Environment{
Account: jsii.String("8373873873"),
Region: jsii.String("eu-west-1"),

}

env_USA := awscdk.Environment{
Account: jsii.String("2383838383"),
Region: jsii.String("us-west-2"),

}

MyFirstStack(app, "first-stack-us", &awscdk.StackProps{
Env: &env_USA,
1)

MyFirstStack(app, "first-stack-eu", &awscdk.StackProps{
Env: &env_EU,

1)

Specify hard-coded environments for each stack

Version 2 419

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

We recommend this approach for production environments. By explicitly specifying the
environment in this way, you can ensure that the stack is always deployed to the specific
environment.

Specify environments using environment variables

The AWS CDK provides two environment variables that you can use within your CDK code:
CDK_DEFAULT_ACCOUNT and CDK_DEFAULT_REGION. When you use these environment variables
within the env property of your stack instance, you can pass environment information from your
credentials and configuration files using the CDK CLI --profile option.

The following is an example of how to specify these environment variables:
Example
TypeScript

Access environment variables via Node's process object.

(@ Note

You need the DefinitelyTyped module to use process in TypeScript. cdk init
installs this module for you. However, you should install this module manually if you are
working with a project created before it was added, or if you didn't set up your project
using cdk init.

npm install @types/node

new MyDevStack(app, 'dev', {
env: {
account: process.env.CDK_DEFAULT_ACCOUNT,
region: process.env.CDK_DEFAULT_REGION

13);

JavaScript

Access environment variables via Node's process object.

new MyDevStack(app, 'dev', {

Specify environments using environment variables Version 2 420

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

env: {
account: process.env.CDK_DEFAULT_ACCOUNT,
region: process.env.CDK_DEFAULT_REGION
11);

Python

Use the os module's environ dictionary to access environment variables.

import os

MyDevStack(app, "dev", env=cdk.Environment(
account=os.environ["CDK_DEFAULT_ACCOUNT"],
region=os.environ["CDK_DEFAULT_REGION"]))

Java

Use System.getenv() to get the value of an environment variable.

public class MyApp {

// Helper method to build an environment
static Environment makeEnv(String account, String region) {
account = (account == null) ? System.getenv("CDK_DEFAULT_ACCOUNT")
account;
region = (region == null) ? System.getenv("CDK_DEFAULT_REGION") : region;

return Environment.buildexr()
.account(account)
.region(region)
.build();

public static void main(final String argv[]) {
App app = new App();

Environment envEU = makeEnv(null, null);
Environment envUSA = makeEnv(null, null);

new MyDevStack(app, "first-stack-us", StackProps.builder()
.env(envUSA) .build());

new MyDevStack(app, "first-stack-eu", StackProps.builder()
.env(envEU).build());

Specify environments using environment variables Version 2 421

AWS Cloud Development Kit (AWS CDK) v2 Developer Guide

app.synth();

CH

Use System.Environment.GetEnvironmentVariable() to get the value of an
environment variable.

Amazon.CDK.Environment makeEnv(string account=null, string region=null)

{

return new Amazon.CDK.Environment

{
Account = acc