Erkennen Sie Entitäten in einem Dokument mit Amazon Comprehend mithilfe eines SDK AWS - Amazon Comprehend

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Erkennen Sie Entitäten in einem Dokument mit Amazon Comprehend mithilfe eines SDK AWS

Die folgenden Codebeispiele zeigen, wie Entitäten in einem Dokument mit Amazon Comprehend erkannt werden.

Beispiele für Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Im folgenden Codebeispiel können Sie diese Aktion im Kontext sehen:

.NET
AWS SDK for .NET
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the AmazonComprehend service detect any /// entities in submitted text. /// </summary> public static class DetectEntities { /// <summary> /// The main method calls the DetectEntitiesAsync method to find any /// entities in the sample code. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); Console.WriteLine("Calling DetectEntities\n"); var detectEntitiesRequest = new DetectEntitiesRequest() { Text = text, LanguageCode = "en", }; var detectEntitiesResponse = await comprehendClient.DetectEntitiesAsync(detectEntitiesRequest); foreach (var e in detectEntitiesResponse.Entities) { Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score: {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}"); } Console.WriteLine("Done"); } }
  • Einzelheiten zur API finden Sie DetectEntitiesin der AWS SDK for .NET API-Referenz.

CLI
AWS CLI

Um benannte Entitäten im Eingabetext zu erkennen

Das folgende detect-entities Beispiel analysiert den Eingabetext und gibt die benannten Entitäten zurück. Der Konfidenzwert des vortrainierten Modells wird ebenfalls für jede Vorhersage ausgegeben.

aws comprehend detect-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Ausgabe:

{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }

Weitere Informationen finden Sie unter Entitäten im Amazon Comprehend Developer Guide.

  • Einzelheiten zur API finden Sie DetectEntitiesin der AWS CLI Befehlsreferenz.

Java
SDK für Java 2.x
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.comprehend.ComprehendClient; import software.amazon.awssdk.services.comprehend.model.DetectEntitiesRequest; import software.amazon.awssdk.services.comprehend.model.DetectEntitiesResponse; import software.amazon.awssdk.services.comprehend.model.Entity; import software.amazon.awssdk.services.comprehend.model.ComprehendException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectEntities { public static void main(String[] args) { String text = "Amazon.com, Inc. is located in Seattle, WA and was founded July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable Seattle - based companies are Starbucks and Boeing."; Region region = Region.US_EAST_1; ComprehendClient comClient = ComprehendClient.builder() .region(region) .build(); System.out.println("Calling DetectEntities"); detectAllEntities(comClient, text); comClient.close(); } public static void detectAllEntities(ComprehendClient comClient, String text) { try { DetectEntitiesRequest detectEntitiesRequest = DetectEntitiesRequest.builder() .text(text) .languageCode("en") .build(); DetectEntitiesResponse detectEntitiesResult = comClient.detectEntities(detectEntitiesRequest); List<Entity> entList = detectEntitiesResult.entities(); for (Entity entity : entList) { System.out.println("Entity text is " + entity.text()); } } catch (ComprehendException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } } }
  • Einzelheiten zur API finden Sie DetectEntitiesin der AWS SDK for Java 2.x API-Referenz.

Python
SDK für Python (Boto3)
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities
  • Einzelheiten zur API finden Sie DetectEntitiesin AWS SDK for Python (Boto3) API Reference.

Eine vollständige Liste der AWS SDK-Entwicklerhandbücher und Codebeispiele finden Sie unter. Verwenden von Amazon Comprehend mit einem -AWSSDK Dieses Thema enthält auch Informationen zu den ersten Schritten und Details zu früheren SDK-Versionen.