Erste Schritte mit dem Training von Machine-Learning-Modellen mit Amazon-Redshift-Daten - Amazon Redshift

Erste Schritte mit dem Training von Machine-Learning-Modellen mit Amazon-Redshift-Daten

Mit Amazon Redshift Machine Learning (Amazon Redshift ML) können Sie ein Modell trainieren, indem Sie die Daten an Amazon Redshift bereitstellen. Dann erstellt Amazon Redshift ML Modelle, die Muster in den Eingabedaten erfassen. Sie können diese Modelle dann verwenden, um Prognosen für neue Eingabedaten zu generieren, ohne dass zusätzliche Kosten entstehen. Mithilfe von Amazon Redshift ML können Sie Machine-Learning-Modelle mithilfe von SQL-Anweisungen trainieren und sie in SQL-Abfragen für Prognosen aufrufen. Sie können die Genauigkeit der Prognosen weiter verbessern, indem Sie die Parameter iterativ ändern und Ihre Trainingsdaten verbessern.

Amazon Redshift ML erleichtert SQL-Benutzern das Erstellen, Trainieren und Bereitstellen von Machine-Learning-Modellen mit vertrauten SQL-Befehlen. Mit Amazon Redshift ML können Sie Ihre Daten in Amazon-Redshift-Clustern verwenden, um Modelle mit Amazon SageMaker zu trainieren. Sie können dann die Modelle lokalisieren und Prognosen innerhalb einer Amazon-Redshift-Datenbank erstellen.

Weitere Informationen zu Amazon Redshift ML finden Sie unter Erste Schritte mit Amazon Redshift ML im Datenbankentwicklerhandbuch zu Amazon Redshift.