Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Entwickeln Sie einen Kinesis Client Library-Consumer in Python
Sie können die Kinesis Client Library (KCL) verwenden, um Anwendungen zu erstellen, die Daten aus Ihren Kinesis-Datenströmen verarbeiten. Die Kinesis Client Library ist in mehreren Sprachen verfügbar. In diesem Thema wird Python behandelt.
Die KCL ist eine Java-Bibliothek. Unterstützung für andere Sprachen als Java wird über eine mehrsprachige Schnittstelle bereitgestellt, die als. MultiLangDaemon Dieser Daemon basiert auf Java und wird im Hintergrund ausgeführt, wenn Sie eine andere KCL Sprache als Java verwenden. Wenn Sie also das KCL für Python installieren und Ihre Consumer-App vollständig in Python schreiben, müssen Sie aufgrund der trotzdem Java auf Ihrem System installiert haben MultiLangDaemon. Darüber hinaus MultiLangDaemon verfügt es über einige Standardeinstellungen, die Sie möglicherweise an Ihren Anwendungsfall anpassen müssen, z. B. an die AWS Region, mit der eine Verbindung hergestellt wird. Weitere Informationen dazu finden Sie MultiLangDaemon auf GitHub der KCL MultiLangDaemon Projektseite
Um Python KCL von herunterzuladen GitHub, gehen Sie zur Kinesis Client Library (Python)
Sie müssen die folgenden Aufgaben ausführen, wenn Sie eine KCL Verbraucheranwendung in Python implementieren:
Aufgaben
Implementieren Sie die RecordProcessor Klassenmethoden
Die RecordProcess
-Klasse muss die RecordProcessorBase
-Klasse erweitern, um die folgenden Methoden zu implementieren:
initialize process_records shutdown_requested
Dieses Beispiel stellt Implementierungen bereit, die Sie als Ausgangspunkt verwenden können.
#!/usr/bin/env python # Copyright 2014-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Amazon Software License (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/asl/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import print_function import sys import time from amazon_kclpy import kcl from amazon_kclpy.v3 import processor class RecordProcessor(processor.RecordProcessorBase): """ A RecordProcessor processes data from a shard in a stream. Its methods will be called with this pattern: * initialize will be called once * process_records will be called zero or more times * shutdown will be called if this MultiLangDaemon instance loses the lease to this shard, or the shard ends due a scaling change. """ def __init__(self): self._SLEEP_SECONDS = 5 self._CHECKPOINT_RETRIES = 5 self._CHECKPOINT_FREQ_SECONDS = 60 self._largest_seq = (None, None) self._largest_sub_seq = None self._last_checkpoint_time = None def log(self, message): sys.stderr.write(message) def initialize(self, initialize_input): """ Called once by a KCLProcess before any calls to process_records :param amazon_kclpy.messages.InitializeInput initialize_input: Information about the lease that this record processor has been assigned. """ self._largest_seq = (None, None) self._last_checkpoint_time = time.time() def checkpoint(self, checkpointer, sequence_number=None, sub_sequence_number=None): """ Checkpoints with retries on retryable exceptions. :param amazon_kclpy.kcl.Checkpointer checkpointer: the checkpointer provided to either process_records or shutdown :param str or None sequence_number: the sequence number to checkpoint at. :param int or None sub_sequence_number: the sub sequence number to checkpoint at. """ for n in range(0, self._CHECKPOINT_RETRIES): try: checkpointer.checkpoint(sequence_number, sub_sequence_number) return except kcl.CheckpointError as e: if 'ShutdownException' == e.value: # # A ShutdownException indicates that this record processor should be shutdown. This is due to # some failover event, e.g. another MultiLangDaemon has taken the lease for this shard. # print('Encountered shutdown exception, skipping checkpoint') return elif 'ThrottlingException' == e.value: # # A ThrottlingException indicates that one of our dependencies is is over burdened, e.g. too many # dynamo writes. We will sleep temporarily to let it recover. # if self._CHECKPOINT_RETRIES - 1 == n: sys.stderr.write('Failed to checkpoint after {n} attempts, giving up.\n'.format(n=n)) return else: print('Was throttled while checkpointing, will attempt again in {s} seconds' .format(s=self._SLEEP_SECONDS)) elif 'InvalidStateException' == e.value: sys.stderr.write('MultiLangDaemon reported an invalid state while checkpointing.\n') else: # Some other error sys.stderr.write('Encountered an error while checkpointing, error was {e}.\n'.format(e=e)) time.sleep(self._SLEEP_SECONDS) def process_record(self, data, partition_key, sequence_number, sub_sequence_number): """ Called for each record that is passed to process_records. :param str data: The blob of data that was contained in the record. :param str partition_key: The key associated with this recod. :param int sequence_number: The sequence number associated with this record. :param int sub_sequence_number: the sub sequence number associated with this record. """ #################################### # Insert your processing logic here #################################### self.log("Record (Partition Key: {pk}, Sequence Number: {seq}, Subsequence Number: {sseq}, Data Size: {ds}" .format(pk=partition_key, seq=sequence_number, sseq=sub_sequence_number, ds=len(data))) def should_update_sequence(self, sequence_number, sub_sequence_number): """ Determines whether a new larger sequence number is available :param int sequence_number: the sequence number from the current record :param int sub_sequence_number: the sub sequence number from the current record :return boolean: true if the largest sequence should be updated, false otherwise """ return self._largest_seq == (None, None) or sequence_number > self._largest_seq[0] or \ (sequence_number == self._largest_seq[0] and sub_sequence_number > self._largest_seq[1]) def process_records(self, process_records_input): """ Called by a KCLProcess with a list of records to be processed and a checkpointer which accepts sequence numbers from the records to indicate where in the stream to checkpoint. :param amazon_kclpy.messages.ProcessRecordsInput process_records_input: the records, and metadata about the records. """ try: for record in process_records_input.records: data = record.binary_data seq = int(record.sequence_number) sub_seq = record.sub_sequence_number key = record.partition_key self.process_record(data, key, seq, sub_seq) if self.should_update_sequence(seq, sub_seq): self._largest_seq = (seq, sub_seq) # # Checkpoints every self._CHECKPOINT_FREQ_SECONDS seconds # if time.time() - self._last_checkpoint_time > self._CHECKPOINT_FREQ_SECONDS: self.checkpoint(process_records_input.checkpointer, str(self._largest_seq[0]), self._largest_seq[1]) self._last_checkpoint_time = time.time() except Exception as e: self.log("Encountered an exception while processing records. Exception was {e}\n".format(e=e)) def lease_lost(self, lease_lost_input): self.log("Lease has been lost") def shard_ended(self, shard_ended_input): self.log("Shard has ended checkpointing") shard_ended_input.checkpointer.checkpoint() def shutdown_requested(self, shutdown_requested_input): self.log("Shutdown has been requested, checkpointing.") shutdown_requested_input.checkpointer.checkpoint() if __name__ == "__main__": kcl_process = kcl.KCLProcess(RecordProcessor()) kcl_process.run()
Ändern Sie die Konfigurationseigenschaften
Das Beispiel zeigt Standardwerte für die Konfigurationseigenschaften, wie in dem folgenden Skript gezeigt. Sie können diese Eigenschaften mit eigenen Werten überschreiben.
# The script that abides by the multi-language protocol. This script will # be executed by the MultiLangDaemon, which will communicate with this script # over STDIN and STDOUT according to the multi-language protocol. executableName = sample_kclpy_app.py # The name of an Amazon Kinesis stream to process. streamName = words # Used by the KCL as the name of this application. Will be used as the name # of an Amazon DynamoDB table which will store the lease and checkpoint # information for workers with this application name applicationName = PythonKCLSample # Users can change the credentials provider the KCL will use to retrieve credentials. # The DefaultAWSCredentialsProviderChain checks several other providers, which is # described here: # http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html AWSCredentialsProvider = DefaultAWSCredentialsProviderChain # Appended to the user agent of the KCL. Does not impact the functionality of the # KCL in any other way. processingLanguage = python/2.7 # Valid options at TRIM_HORIZON or LATEST. # See http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#API_GetShardIterator_RequestSyntax initialPositionInStream = TRIM_HORIZON # The following properties are also available for configuring the KCL Worker that is created # by the MultiLangDaemon. # The KCL defaults to us-east-1 #regionName = us-east-1 # Fail over time in milliseconds. A worker which does not renew it's lease within this time interval # will be regarded as having problems and it's shards will be assigned to other workers. # For applications that have a large number of shards, this msy be set to a higher number to reduce # the number of DynamoDB IOPS required for tracking leases #failoverTimeMillis = 10000 # A worker id that uniquely identifies this worker among all workers using the same applicationName # If this isn't provided a MultiLangDaemon instance will assign a unique workerId to itself. #workerId = # Shard sync interval in milliseconds - e.g. wait for this long between shard sync tasks. #shardSyncIntervalMillis = 60000 # Max records to fetch from Kinesis in a single GetRecords call. #maxRecords = 10000 # Idle time between record reads in milliseconds. #idleTimeBetweenReadsInMillis = 1000 # Enables applications flush/checkpoint (if they have some data "in progress", but don't get new data for while) #callProcessRecordsEvenForEmptyRecordList = false # Interval in milliseconds between polling to check for parent shard completion. # Polling frequently will take up more DynamoDB IOPS (when there are leases for shards waiting on # completion of parent shards). #parentShardPollIntervalMillis = 10000 # Cleanup leases upon shards completion (don't wait until they expire in Kinesis). # Keeping leases takes some tracking/resources (e.g. they need to be renewed, assigned), so by default we try # to delete the ones we don't need any longer. #cleanupLeasesUponShardCompletion = true # Backoff time in milliseconds for Amazon Kinesis Client Library tasks (in the event of failures). #taskBackoffTimeMillis = 500 # Buffer metrics for at most this long before publishing to CloudWatch. #metricsBufferTimeMillis = 10000 # Buffer at most this many metrics before publishing to CloudWatch. #metricsMaxQueueSize = 10000 # KCL will validate client provided sequence numbers with a call to Amazon Kinesis before checkpointing for calls # to RecordProcessorCheckpointer#checkpoint(String) by default. #validateSequenceNumberBeforeCheckpointing = true # The maximum number of active threads for the MultiLangDaemon to permit. # If a value is provided then a FixedThreadPool is used with the maximum # active threads set to the provided value. If a non-positive integer or no # value is provided a CachedThreadPool is used. #maxActiveThreads = 0
Anwendungsname
Das KCL erfordert einen Anwendungsnamen, der für Ihre Anwendungen und für Amazon DynamoDB-Tabellen in derselben Region eindeutig ist. Sie verwendet den Wert der Anwendungsnamenkonfiguration auf folgende Arten:
-
Für mit diesem Anwendungsnamen verknüpfte Auftragnehmer wird angenommen, dass sie gemeinsam im gleichen Stream arbeiten. Diese Worker können auf mehrere Instances verteilt sein. Wenn Sie eine zusätzliche Instance desselben Anwendungscodes ausführen, jedoch mit einem anderen Anwendungsnamen, KCL behandelt das die zweite Instance als eine völlig separate Anwendung, die ebenfalls auf demselben Stream ausgeführt wird.
-
Das KCL erstellt eine DynamoDB-Tabelle mit dem Anwendungsnamen und verwendet die Tabelle, um Statusinformationen (wie Checkpoints und Worker-Shard-Mapping) für die Anwendung zu verwalten. Jede Anwendung verfügt über eine eigene DynamoDB-Tabelle. Weitere Informationen finden Sie unter Verwenden Sie eine Leasetabelle, um nachzuverfolgen, welche Shards von der Consumer-Anwendung verarbeitet wurden KCL.
Anmeldeinformationen
Sie müssen Ihre AWS Anmeldeinformationen einem der Anmeldeinformationsanbieter in der Kette der Standardanmeldedienstanbieter zur Verfügung stellen. Sie können die Eigenschaft AWSCredentialsProvider
verwenden, um einen Anmeldeinformationsanbieter einzurichten. Wenn Sie Ihre Consumer-Anwendung auf einer EC2 Amazon-Instance ausführen, empfehlen wir Ihnen, die Instance mit einer IAM Rolle zu konfigurieren. AWS Anmeldeinformationen, die die mit dieser IAM Rolle verknüpften Berechtigungen widerspiegeln, werden Anwendungen auf der Instance über deren Instance-Metadaten zur Verfügung gestellt. Dies ist die sicherste Methode zur Verwaltung von Anmeldeinformationen für eine Verbraucheranwendung, die auf einer EC2 Instance ausgeführt wird.