Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Hybrid Deployment - High Performance Computing Lens
Diese Seite wurde nicht in Ihre Sprache übersetzt. Übersetzung anfragen

Hybrid Deployment

Hybrid deployments are primarily considered by organizations that are invested in their on-premises infrastructure and also want to use AWS. This approach allows organizations to augment on-premises resources and creates an alternative path to AWS rather than an immediate full migration.

Hybrid scenarios vary from minimal coordination, like workload separation, to tightly integrated approaches, like scheduler driven job placement. For example, an organization may separate their workloads and run all workloads of a certain type on AWS infrastructure. Alternatively, organizations with a large investment in their on-premises processes and infrastructure may desire a more seamless experience for their end users by managing AWS resources with their job scheduling software and potentially a job submission portal. Several job schedulers – commercial and open-source – provide the capability to dynamically provision and deprovision AWS resources as necessary. The underlying resource management relies on native AWS integrations (for example, AWS CLI or API) and can allow for a highly customized environment, depending on the scheduler. Although job schedulers help manage AWS resources, the scheduler is only one aspect of a successful deployment.

Critical factors in successfully operating a hybrid scenario are data locality and data movement. Some HPC workloads do not require or generate significant datasets; therefore, data management is less of a concern. However, jobs that require large input data, or that generate significant output data, can become a bottleneck. Techniques to address data management vary depending on organization. For example, one organization may have their end users manage the data transfer in their job submission scripts, others might only run certain jobs in the location where a dataset resides, a third organization might choose to duplicate data in both locations, and yet another organization might choose to use a combination of several options.

Depending on the data management approach, AWS provides several services to aid in a hybrid deployment. For example, AWS Direct Connect establishes a dedicated network connection between an on-premises environment and AWS, and AWS DataSync automatically moves data from on-premises storage to Amazon S3 or Amazon Elastic File System. Additional software options are available from third-party companies in the AWS Marketplace and the AWS Partner Network (APN).

Hybrid-deployment architectures can be used for loosely and tightly coupled workloads. However, a single tightly coupled workload should reside either on-premises or in AWS for best performance.

Reference Architecture

Diagram showing on-premises data center connected to AWS Cloud VPC with various compute options.

Figure 3: Example hybrid, scheduler-based deployment

Workflow steps:

  1. User submits the job to a scheduler (for example, Slurm) on an on-premises login node.

  2. Scheduler executes the job on either on-premises compute or AWS infrastructure based on configuration.

  3. The jobs access shared storage based on their run location.

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.