AWS DeepLens Sample Projects Overview
To get started with AWS DeepLens, use the sample project templates. AWS DeepLens sample projects are projects where the model is pre-trained so that all you have to do is create the project, import the model, deploy the project, and run the project. Other sections in this guide teach you to extend a sample project's functionality so that it performs a specified task in response to an event, and train a sample project to do something different than the original sample.
Artistic Style Transfer
This project transfers the style of an image, such as a painting, to an entire video sequence captured by AWS DeepLens.
This project shows how a Convolutional Neural Network
You can also use your own image. After fine tuning the model for the image, you can watch as the CNN applies the image's style to your video stream.
-
Project model: deeplens-artistic-style-transfer
-
Project function: deeplens-artistic-style-transfer
Object Recognition
This project shows you how a deep learning model can detect and recognize objects in a room.
The project uses the Single
Shot MultiBox Detector (SSD)
Note
When deploying an SageMaker-trained SSD model, you must first run deploy.py
(available from https://github.com/apache/incubator-mxnet/tree/v1.x/example/ssd/git reset --hard 73d88974f8bca1e68441606fb0787a2cd17eb364
command before calling deploy.py
to convert the model, if the latest version does not work.
The model is able to recognize the following objects: airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV monitor.
-
Project model: deeplens-object-detection
-
Project function: deeplens-object-detection
Face Detection and Recognition
With this project, you use a face detection model and your AWS DeepLens device to detect the faces of people in a room.
The model takes the video stream from your AWS DeepLens device as input and marks the images of faces that it detects. The project uses a pretrained optimized model that is ready to be deployed to your AWS DeepLens device.
-
Project model: deeplens-face-detection
-
Project function: deeplens-face-detection
Hot Dog Recognition
Inspired by a popular television show, this project classifies food as either a hot dog or not a hot dog.
It uses a model based on the SqueezeNet deep neural network
You can edit this model by creating Lambda functions that are triggered by the model's output. For example, if the model detects a hot dog, a Lambda function could send you an SMS message. To learn how to create this Lambda function, see Use SageMaker to Provision a Pre-trained Model for a Sample Project
Cat and Dog Recognition
This project shows how you can use deep learning to recognize a cat or a dog.
It is based on a convolutional neural network (CNN) architecture and uses a pretrained Resnet-152 topology to classify an image as a cat or a dog. The project uses a pretrained, optimized model that is ready to be deployed to your AWS DeepLens device. After deploying it, you can watch as AWS DeepLens uses the model to recognize your pets.
-
Project model: deeplens-cat-and-dog-recognition
-
Project function: deeplens-cat-and-dog-recognition
Action Recognition
This project recognizes more than 30 kinds of activities.
It uses the Apache MXNet framework to transfer learning from a SqueezeNet trained with ImageNet to a new task. The network has been tuned on a subset of the UCF101 dataset and is capable of recognizing more than 30 different activities. The model takes the video stream from your AWS DeepLens device as input and labels the actions that it identifies. The project uses a pretrained, optimized model that is ready to be deployed to your AWS DeepLens device.
After deploying the model, you can watch your AWS DeepLens use the model to recognize 37 different activities, such as applying makeup, applying lipstick, participating in archery, playing basketball, bench pressing, biking, playing billiards, blowing drying your hair, blowing out candles, bowling, brushing teeth, cutting things in the kitchen, playing a drum, getting a haircut, hammering, handstand walking, getting a head massage, horseback riding, hula hooping, juggling, jumping rope, doing jumping jacks, doing lunges, using nunchucks, playing a cello, playing a flute, playing a guitar, playing a piano, playing a sitar, playing a violin, doing pushups, shaving, skiing, typing, walking a dog, writing on a board, and playing with a yo-yo.
-
Project model: deeplens-action-recognition
-
Project function: deeplens-action-recognition
Head Pose Detection
This sample project uses a deep learning model generated with the TensorFlow framework to accurately detect the orientation of a person’s head.
This project uses the ResNet
To help you get started, we have provided a pretrained, optimized model ready to deploy to your AWS DeepLens device . After deploying the model, you can watch AWS DeepLens recognize various head poses.
-
Project model: deeplens-head-pose-detection
-
Project function: deeplens-head-pose-detection
Bird Classification
This project makes prediction of the top 5 bird species from a static bird photo captured by the AWS DeepLens camera.
This project uses the ResNet
-
Project model: deeplens-bird-detection
-
Project function: deeplens-bird-detection