
Developer Guide

AWS IoT Core

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT Core Developer Guide

AWS IoT Core: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT Core Developer Guide

Table of Contents

What is AWS IoT? .. 1
How your devices and apps access AWS IoT .. 2
What AWS IoT can do ... 2

IoT in Industry ... 3
IoT in Home automation ... 3

How AWS IoT works .. 4
The IoT universe .. 4
AWS IoT services overview .. 7
AWS IoT Core services ... 12

Learn more about AWS IoT ... 16
Training resources for AWS IoT ... 16
AWS IoT resources and guides ... 16
AWS IoT in social media .. 17
AWS services used by the AWS IoT Core rules engine .. 17
Communication protocols supported by AWS IoT Core ... 19

What's new in the AWS IoT console .. 19
Legend ... 22

Working with AWS SDKs .. 23
Getting started with AWS IoT Core .. 25

Connect your first device to AWS IoT Core .. 25
Set up your AWS account ... 27

Sign up for an AWS account .. 27
Create a user with administrative access ... 28
Open the AWS IoT console ... 29

Try the AWS IoT Core interactive tutorial ... 29
Connecting IoT devices .. 30
Saving offline device state .. 31
Routing device data to services ... 32

Try the AWS IoT quick connect ... 33
Step 1. Start the tutorial .. 34
Step 2. Create a thing object ... 35
Step 3. Download files to your device ... 38
Step 4. Run the sample ... 40
Step 5. Explore further .. 44

iii

AWS IoT Core Developer Guide

Testing connectivity with your device data endpoint ... 45
Explore AWS IoT Core services in hands-on tutorial .. 50

Which device option is best for you? ... 52
Create AWS IoT resources ... 52
Configure your device .. 57

View MQTT messages with the AWS IoT MQTT client ... 96
Viewing MQTT messages in the MQTT client ... 96
Publishing MQTT messages from the MQTT client ... 99
Testing Shared Subscriptions in the MQTT client .. 101

Connecting to AWS IoT Core .. 103
AWS IoT Core - control plane endpoints ... 103
AWS IoT device endpoints ... 104
AWS IoT Core for LoRaWAN gateways and devices .. 106
Connecting to AWS IoT Core service endpoints .. 107

AWS CLI for AWS IoT Core ... 107
AWS SDKs ... 108
AWS Mobile SDKs ... 113
REST APIs of the AWS IoT Core services ... 114

Connecting devices to AWS IoT .. 115
AWS IoT device data and service endpoints ... 116
AWS IoT Device SDKs .. 118
Device communication protocols .. 121
MQTT topics .. 158
Configurable endpoints ... 181

Connecting to AWS IoT FIPS endpoints .. 201
AWS IoT Core - control plane endpoints .. 201
AWS IoT Core - data plane endpoints .. 201
AWS IoT Device Management - jobs data endpoints .. 202
AWS IoT Device Management - Fleet Hub endpoints ... 202
AWS IoT Device Management - secure tunneling endpoints ... 203

AWS IoT tutorials .. 204
Building demos with the AWS IoT Device Client ... 204

Prerequisites to building demos with the AWS IoT Device Client .. 205
Preparing your devices for the AWS IoT Device Client ... 207
Installing and configuring the AWS IoT Device Client .. 222
Demonstrate MQTT message communication with the AWS IoT Device Client 234

iv

AWS IoT Core Developer Guide

Demonstrate remote actions (jobs) with the AWS IoT Device Client 254
Cleaning up .. 268

Building solutions with the AWS IoT Device SDKs .. 278
Start building solutions with the AWS IoT Device SDKs .. 278
Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 278
Creating AWS IoT rules to route device data to other services ... 301
Retaining device state while the device is offline with Device Shadows 344
Creating a custom authorizer for AWS IoT Core .. 374
Monitoring soil moisture with AWS IoT and Raspberry Pi ... 392

Managing devices with AWS IoT .. 406
How to manage things with the registry ... 406

Create a thing ... 407
List things ... 407
Describe things .. 410
Update a thing .. 410
Delete a thing ... 411
Attach a principal to a thing ... 411
Detach a principal from a thing .. 411

Thing types ... 412
Create a thing type .. 412
List thing types ... 413
Describe a thing type .. 413
Associate a thing type with a thing ... 414
Deprecate a thing type ... 414
Delete a thing type .. 416

Static thing groups .. 416
Create a static thing group .. 418
Describe a thing group .. 419
Add a thing to a static thing group ... 420
Remove a thing from a static thing group ... 420
List things in a thing group ... 421
List thing groups .. 421
List groups for a thing .. 423
Update a static thing group ... 424
Delete a thing group ... 425
Attach a policy to a static thing group .. 425

v

AWS IoT Core Developer Guide

Detach a policy from a static thing group .. 426
List the policies attached to a static thing group .. 426
List the groups for a policy .. 427
Get effective policies for a thing .. 427
Test authorization for MQTT actions ... 428

Dynamic thing groups ... 430
Use cases of dynamic thing groups .. 431
Create a dynamic thing group ... 432
Describe a dynamic thing group ... 433
Update a dynamic thing group ... 434
Delete a dynamic thing group ... 435
Dynamic and Static Thing Group Limitations ... 435
Dynamic Thing Group Limitations .. 435

Tagging your AWS IoT resources .. 439
Tag basics .. 439

Tag restrictions and limitations ... 440
Using tags with IAM policies ... 441
Billing groups .. 443

Viewing cost allocation and usage data .. 444
Security .. 446

Security in AWS IoT ... 447
Authentication .. 448

AWS training and certification ... 448
X.509 Certificate overview ... 448
Server authentication .. 448
Client authentication ... 453
Custom authentication and authorization .. 487

Authorization .. 505
AWS training and certification ... 508
AWS IoT Core policies .. 508
Authorizing direct calls to AWS services using AWS IoT Core credential provider 579
Cross account access with IAM .. 585

Data protection .. 587
Data encryption in AWS IoT ... 588
Transport security in AWS IoT Core .. 589
Data encryption .. 594

vi

AWS IoT Core Developer Guide

Identity and access management ... 595
Audience ... 596
Authenticating with IAM identities ... 596
Managing access using policies ... 600
How AWS IoT works with IAM ... 602
Identity-based policy examples ... 634
AWS managed policies .. 638
Troubleshooting .. 653

Logging and Monitoring ... 655
Monitoring Tools ... 655

Compliance validation .. 657
Resilience ... 658
Using AWS IoT Core with VPC endpoints ... 659

Creating VPC endpoints for AWS IoT Core data plane ... 659
Creating VPC endpoints for AWS IoT Core credential provider .. 660
Creating an Amazon VPC interface endpoint ... 661
Configuring private hosted zone ... 663
Controlling Access to AWS IoT Core over VPC endpoints .. 664
Limitations .. 666
Scaling VPC endpoints with AWS IoT Core ... 667
Using custom domains with VPC endpoints ... 667
Availability of VPC endpoints for AWS IoT Core .. 667

Infrastructure security ... 667
Security monitoring ... 668
Security best practices .. 668

Protecting MQTT connections in AWS IoT .. 668
Keep your device's clock in sync ... 671
Validate the server certificate .. 672
Use a single identity per device .. 672
Use a second AWS Region as backup .. 673
Use just in time provisioning ... 673
Permissions to run AWS IoT Device Advisor tests ... 673
Cross-service confused deputy prevention for Device Advisor ... 675

AWS training and certification .. 676
Monitoring AWS IoT .. 677

Configure AWS IoT logging ... 678

vii

AWS IoT Core Developer Guide

Configure logging role and policy .. 679
Configure default logging in the AWS IoT (console) ... 681
Configure default logging in AWS IoT (CLI) .. 682
Configure resource-specific logging in AWS IoT (CLI) ... 684
Log levels ... 686

Monitor AWS IoT alarms and metrics using Amazon CloudWatch .. 687
Using AWS IoT metrics .. 688
Creating CloudWatch alarms in AWS IoT .. 688
AWS IoT metrics and dimensions .. 693

Monitor AWS IoT using CloudWatch Logs .. 715
Viewing AWS IoT logs in the CloudWatch console .. 716
CloudWatch Logs AWS IoT log entries .. 717

Upload device-side logs to Amazon CloudWatch ... 751
How it works ... 751
Uploading device-side logs by using AWS IoT rules ... 752

Logging AWS IoT API calls using AWS CloudTrail ... 763
AWS IoT information in CloudTrail ... 763
Understanding AWS IoT log file entries .. 764

Rules ... 767
Granting an AWS IoT rule the access it requires ... 768
Pass role permissions .. 771
Creating an AWS IoT rule ... 772

Tagging your rules ... 777
Viewing your rules ... 778
Deleting a rule .. 779
AWS IoT rule actions ... 779

Apache Kafka ... 782
CloudWatch alarms .. 794
CloudWatch Logs .. 796
CloudWatch metrics ... 798
DynamoDB ... 800
DynamoDBv2 ... 803
Elasticsearch ... 806
HTTP .. 808
IoT Analytics .. 848
AWS IoT Events ... 851

viii

AWS IoT Core Developer Guide

AWS IoT SiteWise ... 853
Firehose ... 859
Kinesis Data Streams ... 861
Lambda ... 863
Location .. 867
OpenSearch .. 870
Republish .. 873
S3 ... 876
Salesforce IoT .. 878
SNS .. 879
SQS .. 882
Step Functions .. 884
Timestream .. 886

Troubleshooting a rule ... 893
Accessing cross-account resources using AWS IoT rules .. 893

Prerequisites .. 894
Cross-account setup for Amazon SQS ... 894
Cross-account setup for Amazon SNS ... 896
Cross-account setup for Amazon S3 .. 898
Cross-account setup for AWS Lambda ... 900

Error handling (error action) ... 902
Error action message format ... 903
Error action example ... 904

Reducing messaging costs with Basic Ingest ... 905
Using Basic Ingest .. 906

AWS IoT SQL reference .. 907
SELECT clause .. 908
FROM clause .. 910
WHERE clause .. 911
Data types .. 912
Operators .. 917
Functions .. 927
Literals ... 996
Case statements .. 997
JSON extensions ... 998
Substitution templates .. 1000

ix

AWS IoT Core Developer Guide

Nested object queries .. 1003
Binary payloads .. 1004
SQL versions .. 1010

Device Shadow service .. 1013
Using shadows ... 1013

Choosing to use named or unnamed shadows .. 1014
Accessing shadows ... 1014
Using shadows in devices, apps, and other cloud services .. 1015
Message order ... 1016
Trim shadow messages ... 1018

Using shadows in devices .. 1018
Initializing the device on first connection to AWS IoT ... 1020
Processing messages while the device is connected to AWS IoT ... 1022
Processing messages when the device reconnects to AWS IoT .. 1023

Using shadows in apps and services ... 1023
Initializing the app or service on connection to AWS IoT .. 1024
Processing state changes while the app or service is connected to AWS IoT 1024
Detecting a device is connected ... 1025

Simulating Device Shadow service communications .. 1027
Setting up the simulation .. 1027
Initialize the device .. 1027
Send an update from the app ... 1031
Respond to update in device ... 1034
Observe the update in the app ... 1039
Going beyond the simulation .. 1040

Interacting with shadows ... 1041
Protocol support ... 1041
Requesting and reporting state .. 1042
Updating a shadow .. 1042
Retrieving a shadow document ... 1046
Deleting shadow data ... 1047

Device Shadow REST API ... 1050
GetThingShadow .. 1051
UpdateThingShadow ... 1052
DeleteThingShadow ... 1054
ListNamedShadowsForThing .. 1055

x

AWS IoT Core Developer Guide

Device Shadow MQTT topics .. 1056
/get .. 1057
/get/accepted .. 1058
/get/rejected ... 1059
/update ... 1060
/update/delta .. 1061
/update/accepted ... 1062
/update/documents ... 1063
/update/rejected .. 1064
/delete .. 1065
/delete/accepted .. 1066
/delete/rejected .. 1067

Device Shadow service documents .. 1068
Shadow document examples ... 1068
Document properties ... 1074
Delta state ... 1075
Versioning shadow documents .. 1078
Client tokens in shadow documents .. 1078
Empty shadow document properties ... 1078
Array values in shadow documents .. 1079

Device Shadow error messages .. 1080
Jobs ... 1082

Accessing AWS IoT jobs .. 1082
AWS IoT Jobs Regions and endpoints ... 1082
What is a remote operation? .. 1082

Benefits of using AWS IoT Device Management Jobs for remote operations 1083
What is AWS IoT Jobs? ... 1085

Jobs key concepts .. 1086
Jobs and job execution states ... 1089

Managing jobs .. 1095
Code signing for jobs .. 1095
Job document ... 1095
Presigned URLs ... 1095
Create and manage jobs using the console .. 1098
Create and manage jobs using the CLI .. 1100

Job templates ... 1112

xi

AWS IoT Core Developer Guide

Custom and AWS managed templates .. 1113
Use AWS managed templates ... 1113
Create custom job templates .. 1132

Job configurations ... 1141
How job configurations work .. 1141
Specify additional configurations ... 1156

Devices and jobs .. 1165
Programming devices to work with jobs ... 1168
Device workflow ... 1168
Jobs workflow ... 1170
Jobs notifications ... 1174

AWS IoT jobs API operations .. 1183
Jobs management and control API and data types .. 1185
Jobs device MQTT and HTTPS API operations and data types ... 1205

Securing users and devices for Jobs ... 1219
Required policy type for AWS IoT Jobs ... 1219
Authorizing Jobs users and cloud services ... 1221
Authorizing devices to use jobs .. 1232

Job limits ... 1237
Active and concurrent job limits ... 1237

AWS IoT secure tunneling ... 1241
What is secure tunneling? ... 1241

Secure tunneling concepts ... 1241
How secure tunneling works ... 1243
Secure tunnel lifecycle .. 1244

AWS IoT secure tunneling tutorials ... 1245
Tutorials in this section ... 1245
Open a tunnel and start SSH session to remote device .. 1246
Open a tunnel for remote device and use browser-based SSH .. 1263

Local proxy .. 1267
How to use the local proxy .. 1267
Configure local proxy for devices that use web proxy ... 1273

Multiplexing and simultaneous TCP connections ... 1281
Multiplexing multiple data streams ... 1282
Using simultaneous TCP connections .. 1285

Configuring a remote device and using IoT agent ... 1288

xii

AWS IoT Core Developer Guide

IoT agent snippet ... 1288
Controlling access to tunnels .. 1290

Tunnel access prerequisites .. 1290
Tunnel access policies ... 1291

Resolving secure tunneling connectivity issues .. 1298
Invalid client access token error ... 1298
Client token mismatch error .. 1299
Remote device connectivity issues ... 1300

Device provisioning ... 1303
Provisioning devices in AWS IoT .. 1304
Fleet provisioning APIs ... 1305
Provisioning devices that don't have device certificates using fleet provisioning 1306

Provisioning by claim .. 1306
Provisioning by trusted user .. 1309
Using pre-provisioning hooks with the AWS CLI ... 1311

Provisioning devices that have device certificates .. 1315
Single thing provisioning .. 1315
Just-in-time provisioning .. 1316
Bulk registration ... 1322

Provisioning templates ... 1323
Parameters section .. 1324
Resources section ... 1324
Template example for bulk registration .. 1330
Template example for just-in-time provisioning (JITP) .. 1331
Fleet provisioning ... 1333

Pre-provisioning hooks ... 1337
Pre-provision hook input .. 1337
Pre-provision hook return value ... 1338
Pre-provisioning hook Lambda example ... 1338

Self-managed certificate signing using AWS IoT Core certificate provider 1341
How self-managed certificate signing works in fleet provisioning .. 1342
Certificate provider Lambda function input ... 1343
Certificate provider Lambda function return value .. 1344
Example Lambda function ... 1344
Self-managed certificate signing for fleet provisioning ... 1346
AWS CLI commands for certificate provider ... 1347

xiii

AWS IoT Core Developer Guide

Creating IAM policies and roles for a user installing a device .. 1350
Creating an IAM policy for the user who will install a device ... 1350
Creating an IAM role for the user who will install a device ... 1351
Updating an existing policy to authorize a new template .. 1352

Device provisioning MQTT API ... 1354
CreateCertificateFromCsr .. 1354
CreateKeysAndCertificate ... 1357
RegisterThing .. 1359

Fleet indexing .. 1362
Managing index updates .. 1362
Searching across data sources .. 1362
Querying for aggregate data .. 1362
Monitoring aggregate data and creating alarms by using fleet metrics 1363
Managing fleet indexing .. 1363

Thing indexing .. 1363
Thing group indexing .. 1364
Managed fields ... 1364
Custom fields .. 1366
Manage thing indexing ... 1367
Manage thing group indexing ... 1383

Querying for aggregate data .. 1385
GetStatistics ... 1385
GetCardinality ... 1388
GetPercentiles ... 1389
GetBucketsAggregation ... 1392
Authorization ... 1393

Query syntax .. 1393
Supported features .. 1393
Unsupported features ... 1394
Notes ... 1394

Example thing queries .. 1395
Example thing group queries .. 1399
Indexing location data .. 1400

Supported data formats ... 1400
How to index location data ... 1402
Update thing indexing configuration ... 1402

xiv

AWS IoT Core Developer Guide

Example geoqueries ... 1405
Getting started tutorial ... 1406

Fleet metrics ... 1411
Getting started tutorial ... 1411
Managing fleet metrics ... 1418

MQTT-based file delivery .. 1425
What is a stream? .. 1425
Managing a stream in the AWS Cloud .. 1426

Grant permissions to your devices ... 1427
Connect your devices to AWS IoT .. 1428
TagResource Usage .. 1428

Using AWS IoT MQTT-based file delivery in devices .. 1429
Use DescribeStream to get stream data ... 1430
Get data blocks from a stream file .. 1432
Handling errors from AWS IoT MQTT-based file delivery .. 1438

An example use case in FreeRTOS OTA .. 1440
Device Advisor ... 1441

Setting up ... 1443
Create an IoT thing .. 1443
Create an IAM role to use as your device role ... 1443
Create a custom-managed policy for an IAM user to use Device Advisor 1446
Create an IAM user to use Device Advisor .. 1446
Configure your device ... 1449

Getting started with Device Advisor in the console ... 1450
Device Advisor workflow .. 1459

Prerequisites .. 1460
Create a test suite definition ... 1460
Get a test suite definition .. 1462
Get a test endpoint ... 1463
Start a test suite run ... 1463
Get a test suite run ... 1464
Stop a test suite run ... 1464
Get a qualification report for a successful qualification test suite run 1465

Device Advisor detailed console workflow ... 1465
Prerequisites .. 1466
Create a test suite definition ... 1466

xv

AWS IoT Core Developer Guide

Start a test suite run ... 1473
Stop a test suite run (optional) ... 1475
View test suite run details and logs ... 1476
Download an AWS IoT qualification report .. 1477

Long duration tests console workflow .. 1478
Device Advisor VPC endpoints (AWS PrivateLink) .. 1486

Considerations for AWS IoT Core Device Advisor VPC endpoints ... 1486
Create an interface VPC endpoint for AWS IoT Core Device Advisor 1487
Controlling access to AWS IoT Core Device Advisor over VPC endpoints 1488

Device Advisor test cases ... 1489
Device Advisor test cases to qualify for the AWS Device Qualification Program. 1489
TLS ... 1490
MQTT .. 1497
Shadow ... 1511
Job Execution .. 1513
Permissions and policies ... 1515
Long duration tests ... 1516

Software Package Catalog .. 1534
Preparing to use Software Package Catalog ... 1534

... 1534
Package version lifecycle .. 1535
Package version naming conventions .. 1537
Default version .. 1537
Version attributes ... 1537
Enabling AWS IoT fleet indexing .. 1538
Reserved named shadow .. 1538
Deleting a software package ... 1540

Preparing security .. 1540
Resource-based authentication ... 1540
AWS IoT Job rights to deploy package versions .. 1542
AWS IoT Job rights to update the reserved named shadow ... 1543
AWS IoT Jobs permissions to download from Amazon S3 .. 1545

Preparing fleet indexing .. 1545
Setting the $package shadow as a data source .. 1546
Metrics displayed in the console ... 1546
Query patterns .. 1547

xvi

AWS IoT Core Developer Guide

Collecting package version distribution through getBucketsAggregation 1550
Preparing AWS IoT Jobs ... 1550

Substitution parameters for AWS IoT jobs ... 1551
Preparing the job document and package version for deployment 1552
Naming the packages and versions when deploying .. 1553
Targeting jobs through AWS IoT dynamic thing groups .. 1553
Reserved named shadow and package versions .. 1553
Uninstalling a software package .. 1554

Getting started ... 1555
Creating a package and version .. 1555
Deploying a package version ... 1557
Associating a package version ... 1559

AWS IoT Core Device Location ... 1561
Measurement types and solvers ... 1561
How AWS IoT Core Device Location works .. 1562
How to use AWS IoT Core Device Location .. 1564
Resolving location of IoT devices ... 1565

Resolving device location (console) .. 1565
Resolving device location (API) ... 1569
Troubleshooting errors when resolving the location .. 1570

Resolving device location using MQTT topics ... 1571
Format of device location MQTT topics .. 1572
Policy for device location MQTT topics ... 1573
Device location topics and payload .. 1574

Location solvers and device payload ... 1579
Wi-Fi based solver .. 1579
Cellular based solver ... 1580
IP reverse lookup solver ... 1585
GNSS solver ... 1586

Event messages .. 1588
How event messages are generated ... 1588

Policy for receiving event messages .. 1588
Enable events for AWS IoT .. 1589
Registry events ... 1594

Thing events .. 1594
Thing type events .. 1596

xvii

AWS IoT Core Developer Guide

Thing group events .. 1599
Jobs events ... 1605
Lifecycle events .. 1609

Connect/Disconnect events ... 1610
Subscribe/Unsubscribe events ... 1614

Troubleshooting ... 1616
AWS IoT Core troubleshooting guide .. 1616

Diagnosing connectivity issues .. 1617
Diagnosing rules issues ... 1620
Diagnosing problems with shadows .. 1622
Diagnosing Salesforce action issues ... 1624
Diagnosing Stream Limits .. 1626
Troubleshooting device fleet disconnects ... 1626

AWS IoT Device Advisor troubleshooting guide .. 1627
AWS IoT Device Management troubleshooting guide ... 1630

AWS IoT Jobs Troubleshooting ... 1630
Fleet indexing troubleshooting guide .. 1634

AWS IoT errors ... 1637
AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client ... 1639

AWS IoT Device SDKs ... 1639
AWS IoT Device SDK for Embedded C ... 1641
Earlier AWS IoT Device SDKs versions ... 1642

AWS Mobile SDKs .. 1642
AWS IoT Device Client .. 1643

Code examples ... 1645
Actions ... 1651

AttachThingPrincipal ... 1652
CreateKeysAndCertificate .. 1655
CreateThing ... 1661
CreateTopicRule ... 1664
DeleteCertificate ... 1669
DeleteThing ... 1672
DeleteTopicRule ... 1675
DescribeEndpoint ... 1676
DescribeThing .. 1681
DetachThingPrincipal ... 1684

xviii

AWS IoT Core Developer Guide

ListCertificates ... 1687
ListThings ... 1692
SearchIndex ... 1695
UpdateIndexingConfiguration ... 1700
UpdateThing ... 1702

Scenarios .. 1706
Work with device management use cases .. 1706

AWS IoT quotas ... 1755
AWS IoT Core pricing .. 1756

xix

AWS IoT Core Developer Guide

What is AWS IoT?

AWS IoT provides the cloud services that connect your IoT devices to other devices and AWS cloud
services. AWS IoT provides device software that can help you integrate your IoT devices into AWS
IoT-based solutions. If your devices can connect to AWS IoT, AWS IoT can connect them to the
cloud services that AWS provides.

For a hands-on introduction to AWS IoT, visit Getting started with AWS IoT Core.

AWS IoT lets you select the most appropriate and up-to-date technologies for your solution. To
help you manage and support your IoT devices in the field, AWS IoT Core supports these protocols:

• MQTT (Message Queuing and Telemetry Transport)

• MQTT over WSS (Websockets Secure)

• HTTPS (Hypertext Transfer Protocol - Secure)

• LoRaWAN (Long Range Wide Area Network)

The AWS IoT Core message broker supports devices and clients that use MQTT and MQTT over WSS
protocols to publish and subscribe to messages. It also supports devices and clients that use the
HTTPS protocol to publish messages.

1

https://docs.aws.amazon.com/iot-wireless/latest/developerguide/what-is-iot-lorawan.html

AWS IoT Core Developer Guide

AWS IoT Core for LoRaWAN helps you connect and manage wireless LoRaWAN (low-power long-
range Wide Area Network) devices. AWS IoT Core for LoRaWAN replaces the need for you to
develop and operate a LoRaWAN Network Server (LNS).

If you don't require AWS IoT features such as device communications, rules, or jobs, see AWS
Messaging for information about other AWS IoT messaging services that might better fit your
requirements.

How your devices and apps access AWS IoT

AWS IoT provides the following interfaces for AWS IoT tutorials:

• AWS IoT Device SDKs—Build applications on your devices that send messages to and receive
messages from AWS IoT. For more information, see AWS IoT Device SDKs, Mobile SDKs, and AWS
IoT Device Client.

• AWS IoT Core for LoRaWAN—Connect and manage your long range WAN (LoRaWAN) devices
and gateways by using AWS IoT Core for LoRaWAN.

• AWS Command Line Interface (AWS CLI)—Run commands for AWS IoT on Windows, macOS,
and Linux. These commands allow you to create and manage thing objects, certificates, rules,
jobs, and policies. To get started, see the AWS Command Line Interface User Guide. For more
information about the commands for AWS IoT, see iot in the AWS CLI Command Reference.

• AWS IoT API—Build your IoT applications using HTTP or HTTPS requests. These API actions
allow you to programmatically create and manage thing objects, certificates, rules, and policies.
For more information about the API actions for AWS IoT, see Actions in the AWS IoT API
Reference.

• AWS SDKs—Build your IoT applications using language-specific APIs. These SDKs wrap the
HTTP/HTTPS API and allow you to program in any of the supported languages. For more
information, see AWS SDKs and Tools.

You can also access AWS IoT through the AWS IoT console, which provides a graphical user
interface (GUI) through which you can configure and manage the thing objects, certificates, rules,
jobs, policies, and other elements of your IoT solutions.

What AWS IoT can do

This topic describes some of the solutions that you might need that AWS IoT supports.

How your devices and apps access AWS IoT 2

https://aws.amazon.com/messaging/
https://aws.amazon.com/messaging/
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/what-is-iot-lorawan.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/iot/index.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations.html
http://aws.amazon.com/tools/#sdk
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

IoT in Industry

These are some examples of AWS IoT solutions for industrial use cases that apply IoT technologies
to improve the performance and productivity of industrial processes.

Solutions for industrial use cases

• Use AWS IoT to build predictive quality models in industrial operations

See how AWS IoT can collect and analyze data from industrial operations to build predictive
quality models. Learn more

• Use AWS IoT to support predictive maintenance in industrial operations

See how AWS IoT can help plan preventive maintenance to reduce unplanned downtime. Learn
more

IoT in Home automation

These are some examples of AWS IoT solutions for home automation use cases that apply IoT
technologies to build scalable IoT applications that automate household activities using connected
home devices.

Solutions for home automation

• Use AWS IoT in your connected home

IoT in Industry 3

https://aws.amazon.com/iot/solutions/industrial-iot/
https://d1.awsstatic.com/IoT/Predictive%20Quality%20Infographic.pdf
https://d1.awsstatic.com/IoT/AWS%20Industrial%20-%20Predictive%20Quality%20Reference%20Architecture.pdf
https://d1.awsstatic.com/IoT/Predictive%20Maintenance%20Infographic.pdf
https://d1.awsstatic.com/IoT/AWS%20Industrial%20-%20Predictive%20Maintenance%20Reference%20Architecture.pdf
https://d1.awsstatic.com/IoT/AWS%20Industrial%20-%20Predictive%20Maintenance%20Reference%20Architecture.pdf
https://aws.amazon.com/iot/solutions/connected-home/
https://pages.awscloud.com/rs/112-TZM-766/images/AWS_Home%20Automation_DES_07.20.18_V4.pdf

AWS IoT Core Developer Guide

See how AWS IoT can provide integrated home automation solutions.

• Use AWS IoT to provide home security and monitoring

See how AWS IoT can apply machine learning and edge computing to your home automation
solution.

For a list of solutions for industrial, consumer, and commercial use cases, see the AWS IoT Solution
Repository.

How AWS IoT works

AWS IoT provides cloud services and device support that you can use to implement IoT solutions.
AWS provides many cloud services to support IoT-based applications. So to help you understand
where to start, this section provides a diagram and definition of essential concepts to introduce you
to the IoT universe.

The IoT universe

In general, the Internet of Things (IoT) consists of the key components shown in this diagram.

How AWS IoT works 4

https://pages.awscloud.com/rs/112-TZM-766/images/AWS_Connected%20Homes_DES_7.20.18_V3.pdf
https://aws.amazon.com/iot/solutions/
https://aws.amazon.com/iot/solutions/

AWS IoT Core Developer Guide

Apps

Apps give end users access to IoT devices and the features provided by the cloud services to which
those devices are connected.

Cloud services

Cloud services are distributed, large-scale data storage and processing services that are connected
to the internet. Examples include:

• IoT connection and management services

AWS IoT is an example of an IoT connection and management service.

• Compute services, such as Amazon Elastic Compute Cloud and AWS Lambda

• Database services, such as Amazon DynamoDB

The IoT universe 5

AWS IoT Core Developer Guide

Communications

Devices communicate with cloud services by using various technologies and protocols. Examples
include:

• Wi-Fi/Broadband internet

• Broadband cellular data

• Narrow-band cellular data

• Long-range Wide Area Network (LoRaWAN)

• Proprietary RF communications

Devices

A device is a type of hardware that manages interfaces and communications. Devices are usually
located in close proximity to the real-world interfaces they monitor and control. Devices can
include computing and storage resources, such as microcontrollers, CPU, memory. Examples
include:

• Raspberry Pi

• Arduino

• Voice-interface assistants

• LoRaWAN and devices

• Amazon Sidewalk devices

• Custom IoT devices

Interfaces

An interface is a component that connects a device to the physical world.

• User interfaces

Components that allow devices and users to communicate with each other.

• Input interfaces

Enable a user to communicate with a device

The IoT universe 6

AWS IoT Core Developer Guide

Examples: keypad, button

• Output interfaces

Enable a device to communicate with a user

Examples: Alpha-numeric display, graphical display, indicator light, alarm bell

• Sensors

Input components that measure or sense something in the outside world in a way that a device
understands. Examples include:

• Temperature sensor (converts temperature to an analog or digital signal)

• Humidity sensor (converts relative humidity to an analog or digital signal)

• Analog to digital convertor (converts an analog voltage to a numeric value)

• Ultrasonic distance measuring unit (converts a distance to a numeric value)

• Optical sensor (converts a light level to a numeric value)

• Camera (converts image data to digital data)

• Actuators

Output components that the device can use to control something in the outside world. Examples
include:

• Stepper motors (convert electric signals to movement)

• Relays (control high electric voltages and currents)

AWS IoT services overview

In the IoT universe, AWS IoT provides the services that support the devices that interact with the
world and the data that passes between them and AWS IoT. AWS IoT is made up of the services
that are shown in this illustration to support your IoT solution.

AWS IoT services overview 7

AWS IoT Core Developer Guide

AWS IoT device software

AWS IoT provides this software to support your IoT devices.

AWS IoT Device SDKs

The AWS IoT Device and Mobile SDKs help you efficiently connect your devices to AWS IoT. The
AWS IoT Device and Mobile SDKs include open-source libraries, developer guides with samples,
and porting guides so that you can build innovative IoT products or solutions on your choice of
hardware platforms.

AWS IoT Device Tester

AWS IoT Device Tester for FreeRTOS and AWS IoT Greengrass is a test automation tool for
microcontrollers. AWS IoT Device Tester tests your device to determine if it will run FreeRTOS or
AWS IoT Greengrass and interoperate with AWS IoT services.

AWS IoT ExpressLink

AWS IoT ExpressLink powers a range of hardware modules developed and offered by AWS
Partners. The connectivity modules include AWS-validated software, making it faster and easier
for you to securely connect devices to the cloud and seamlessly integrate with a range of AWS

AWS IoT services overview 8

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://aws.amazon.com/iot-expresslink/partners/?nc=sn&loc=6
https://aws.amazon.com/iot-expresslink/partners/?nc=sn&loc=6

AWS IoT Core Developer Guide

services. For more information, visit the AWS IoT ExpressLink overview page or see the AWS IoT
ExpressLink Programmer's Guide.

AWS IoT Greengrass

AWS IoT Greengrass extends AWS IoT to edge devices so they can act locally on the data they
generate, run predictions based on machine learning models, and filter and aggregate device
data. AWS IoT Greengrass enables your devices to collect and analyze data closer to where that
data is generated, react autonomously to local events, and communicate securely with other
devices on the local network. You can use AWS IoT Greengrass to build edge applications using
pre-built software modules, called components, that can connect your edge devices to AWS
services or third-party services.

FreeRTOS

FreeRTOS is an open source, real-time operating system for microcontrollers that lets you
include small, low-power edge devices in your IoT solution. FreeRTOS includes a kernel and
a growing set of software libraries that support many applications. FreeRTOS systems can
securely connect your small, low-power devices to AWS IoT and support more powerful edge
devices running AWS IoT Greengrass.

AWS IoT control services

Connect to the following AWS IoT services to manage the devices in your IoT solution.

AWS IoT Core

AWS IoT Core is a managed cloud service that enables connected devices to securely interact
with cloud applications and other devices. AWS IoT Core can support many devices and
messages, and it can process and route those messages to AWS IoT endpoints and other
devices. With AWS IoT Core, your applications can interact with all of your devices even when
they aren’t connected.

AWS IoT Core Device Advisor

AWS IoT Core Device Advisor is a cloud-based, fully managed test capability for validating IoT
devices during device software development. Device Advisor provides pre-built tests that you
can use to validate IoT devices for reliable and secure connectivity with AWS IoT Core, before
deploying devices to production.

AWS IoT services overview 9

https://aws.amazon.com/iot-expresslink/
https://docs.aws.amazon.com/iot-expresslink/latest/programmersguide/elpg.html
https://docs.aws.amazon.com/iot-expresslink/latest/programmersguide/elpg.html
https://docs.aws.amazon.com/greengrass/
https://docs.aws.amazon.com/freertos/
https://docs.aws.amazon.com/iot/
https://docs.aws.amazon.com/greengrass/
https://docs.aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html

AWS IoT Core Developer Guide

AWS IoT Device Defender

AWS IoT Device Defender helps you secure your fleet of IoT devices. AWS IoT Device Defender
continuously audits your IoT configurations to make sure that they aren’t deviating from
security best practices. AWS IoT Device Defender sends an alert when it detects any gaps in your
IoT configuration that might create a security risk, such as identity certificates being shared
across multiple devices or a device with a revoked identity certificate trying to connect to AWS
IoT Core.

AWS IoT Device Management

AWS IoT Device Management services help you track, monitor, and manage the plethora of
connected devices that make up your device fleets. AWS IoT Device Management services help
you ensure that your IoT devices work properly and securely after they have been deployed.
They also provide secure tunneling to access your devices, monitor their health, detect and
remotely troubleshoot problems, as well as services to manage device software and firmware
updates.

AWS IoT data services

Analyze the data from the devices in your IoT solution and take appropriate action by using the
following AWS IoT services.

Amazon Kinesis Video Streams

Amazon Kinesis Video Streams allows you to stream live video from devices to the AWS Cloud,
where it is durably stored, encrypted, and indexed, allowing you to access your data through
easy-to-use APIs. You can use Amazon Kinesis Video Streams to capture massive amounts of
live video data from millions of sources, including smartphones, security cameras, webcams,
cameras embedded in cars, drones, and other sources. Amazon Kinesis Video Streams enables
you to play back video for live and on-demand viewing, and quickly build applications that
take advantage of computer vision and video analytics through integration with Amazon
Rekognition Video, and libraries for ML frameworks. You can also send non-video time-
serialized data such as audio data, thermal imagery, depth data, RADAR data, and more.

Amazon Kinesis Video Streams with WebRTC

Amazon Kinesis Video Streams with WebRTC provides a standards-compliant WebRTC
implementation as a fully managed capability. You can use Amazon Kinesis Video Streams with
WebRTC to securely live stream media or perform two-way audio or video interaction between

AWS IoT services overview 10

https://docs.aws.amazon.com/iot-device-defender/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://docs.aws.amazon.com/iot-device-management/
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/what-is-kinesis-video.html
https://docs.aws.amazon.com/kinesisvideostreams-webrtc-dg/latest/devguide/what-is-kvswebrtc.html

AWS IoT Core Developer Guide

any camera IoT device and WebRTC-compliant mobile or web players. As a fully managed
capability, you don't have to build, operate, or scale any WebRTC-related cloud infrastructure,
such as signaling or media relay servers to securely stream media across applications and
devices. Using Amazon Kinesis Video Streams with WebRTC, you can easily build applications for
live peer-to-peer media streaming, or real-time audio or video interactivity between camera IoT
devices, web browsers, and mobile devices for a variety of use cases.

AWS IoT Analytics

AWS IoT Analytics lets you efficiently run and operationalize sophisticated analytics on massive
volumes of unstructured IoT data. AWS IoT Analytics automates each difficult step that is
required to analyze data from IoT devices. AWS IoT Analytics filters, transforms, and enriches
IoT data before storing it in a time-series data store for analysis. You can analyze your data by
running one-time or scheduled queries using the built-in SQL query engine or machine learning.

AWS IoT Events

AWS IoT Events detects and responds to events from IoT sensors and applications. Events are
patterns of data that identify more complicated circumstances than expected, such as motion
detectors using movement signals to activate lights and security cameras. AWS IoT Events
continuously monitors data from multiple IoT sensors and applications, and integrates with
other services, such as AWS IoT Core, IoT SiteWise, DynamoDB, and others to enable early
detection and unique insights.

AWS IoT FleetWise

AWS IoT FleetWise is a managed service that you can use to collect and transfer vehicle data
to the cloud in near-real time. With AWS IoT FleetWise, you can easily collect and organize
data from vehicles that use different protocols and data formats. AWS IoT FleetWise helps to
transform low-level messages into human-readable values and standardize the data format in
the cloud for data analyses. You can also define data collection schemes to control what data to
collect in vehicles and when to transfer it to the cloud.

AWS IoT SiteWise

AWS IoT SiteWise collects, stores, organizes, and monitors data passed from industrial
equipment by MQTT messages or APIs at scale by providing software that runs on a gateway in
your facilities. The gateway securely connects to your on-premises data servers and automates
the process of collecting and organizing the data and sending it to the AWS Cloud.

AWS IoT services overview 11

https://docs.aws.amazon.com/iotanalytics/
https://docs.aws.amazon.com/iotevents/
https://docs.aws.amazon.com/iot-fleetwise/latest/developerguide/what-is-iotfleetwise.html
https://docs.aws.amazon.com/iot-sitewise/

AWS IoT Core Developer Guide

AWS IoT TwinMaker

AWS IoT TwinMaker builds operational digital twins of physical and digital systems. AWS IoT
TwinMaker creates digital visualizations using measurements and analysis from a variety of
real-world sensors, cameras, and enterprise applications to help you keep track of your physical
factory, building, or industrial plant. You can use real-world data to monitor operations,
diagnose and correct errors, and optimize operations.

AWS IoT Core services

AWS IoT Core provides the services that connect your IoT devices to the AWS Cloud so that other
cloud services and applications can interact with your internet-connected devices.

The next section describes each of the AWS IoT Core services shown in the illustration.

AWS IoT Core messaging services

The AWS IoT Core connectivity services provide secure communication with the IoT devices and
manage the messages that pass between them and AWS IoT.

Device gateway

Enables devices to securely and efficiently communicate with AWS IoT. Device communication is
secured by secure protocols that use X.509 certificates.

AWS IoT Core services 12

https://docs.aws.amazon.com/iot-twinmaker/

AWS IoT Core Developer Guide

Message broker

Provides a secure mechanism for devices and AWS IoT applications to publish and receive
messages from each other. You can use either the MQTT protocol directly or MQTT over
WebSocket to publish and subscribe. For more information about the protocols that AWS IoT
supports, see the section called “Device communication protocols”. Devices and clients can also
use the HTTP REST interface to publish data to the message broker.

The message broker distributes device data to devices that have subscribed to it and to other
AWS IoT Core services, such as the Device Shadow service and the rules engine.

AWS IoT Core for LoRaWAN

AWS IoT Core for LoRaWAN makes it possible to set up a private LoRaWAN network by
connecting your LoRaWAN devices and gateways to AWS without the need to develop and
operate a LoRaWAN Network Server (LNS). Messages received from LoRaWAN devices are sent
to the rules engine where they can be formatted and sent to other AWS IoT services.

Rules engine

The Rules engine connects data from the message broker to other AWS IoT services for storage
and additional processing. For example, you can insert, update, or query a DynamoDB table
or invoke a Lambda function based on an expression that you defined in the Rules engine.
You can use an SQL-based language to select data from message payloads, and then process
and send the data to other services, such as Amazon Simple Storage Service (Amazon S3),
Amazon DynamoDB, and AWS Lambda. You can also create rules that republish messages to the
message broker and on to other subscribers. For more information, see Rules for AWS IoT.

AWS IoT Core control services

The AWS IoT Core control services provide device security, management, and registration features.

Custom Authentication service

You can define custom authorizers that allow you to manage your own authentication and
authorization strategy using a custom authentication service and a Lambda function. Custom
authorizers allow AWS IoT to authenticate your devices and authorize operations using bearer
token authentication and authorization strategies.

Custom authorizers can implement various authentication strategies; for example, JSON Web
Token verification or OAuth provider callout. They must return policy documents that are

AWS IoT Core services 13

AWS IoT Core Developer Guide

used by the device gateway to authorize MQTT operations. For more information, see Custom
authentication and authorization.

Device Provisioning service

Allows you to provision devices using a template that describes the resources required for your
device: a thing object, a certificate, and one or more policies. A thing object is an entry in the
registry that contains attributes that describe a device. Devices use certificates to authenticate
with AWS IoT. Policies determine which operations a device can perform in AWS IoT.

The templates contain variables that are replaced by values in a dictionary (map). You can
use the same template to provision multiple devices just by passing in different values for the
template variables in the dictionary. For more information, see Device provisioning.

Group registry

Groups allow you to manage several devices at once by categorizing them into groups. Groups
can also contain groups—you can build a hierarchy of groups. Any action that you perform on a
parent group will apply to its child groups. The same action also applies to all the devices in the
parent group and all devices in the child groups. Permissions granted to a group will apply to all
devices in the group and in all of its child groups. For more information, see Managing devices
with AWS IoT.

Jobs service

Allows you to define a set of remote operations that are sent to and run on one or more devices
connected to AWS IoT. For example, you can define a job that instructs a set of devices to
download and install application or firmware updates, reboot, rotate certificates, or perform
remote troubleshooting operations.

To create a job, you specify a description of the remote operations to be performed and a list
of targets that should perform them. The targets can be individual devices, groups or both. For
more information, see Jobs.

Registry

Organizes the resources associated with each device in the AWS Cloud. You register your devices
and associate up to three custom attributes with each one. You can also associate certificates
and MQTT client IDs with each device to improve your ability to manage and troubleshoot
them. For more information, see Managing devices with AWS IoT.

AWS IoT Core services 14

AWS IoT Core Developer Guide

Security and Identity service

Provides shared responsibility for security in the AWS Cloud. Your devices must keep their
credentials safe to securely send data to the message broker. The message broker and rules
engine use AWS security features to send data securely to devices or other AWS services. For
more information, see Authentication.

AWS IoT Core data services

The AWS IoT Core data services help your IoT solutions provide a reliable application experience
even with devices that are not always connected.

Device shadow

A JSON document used to store and retrieve current state information for a device.

Device Shadow service

The Device Shadow service maintains a device's state so that applications can communicate
with a device whether the device is online or not. When a device is offline, the Device
Shadow service manages its data for connected applications. When the device reconnects, it
synchronizes its state with that of its shadow in the Device Shadow service. Your devices can
also publish their current state to a shadow for use by applications or other devices that might
not be connected all the time. For more information, see AWS IoT Device Shadow service.

AWS IoT Core support service

Amazon Sidewalk Integration for AWS IoT Core

Amazon Sidewalk is a shared network that improves connectivity options to help devices work
together better. Amazon Sidewalk supports a wide range of customer devices such as those that
locate pets or valuables, those that provide smart home security and lighting control, and those
that provide remote diagnostics for appliances and tools. Amazon Sidewalk Integration for AWS
IoT Core makes it possible for device manufacturers to add their Sidewalk device fleet to the
AWS IoT Cloud.

For more information, see AWS IoT Core for Amazon Sidewalk.

AWS IoT Core services 15

https://www.amazon.com/Amazon-Sidewalk/b?ie=UTF8&node=21328123011
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-sidewalk.html

AWS IoT Core Developer Guide

Learn more about AWS IoT

This topic helps you get familiar with the world of AWS IoT. You can get general information about
how IoT solutions are applied in various use cases, training resources, links to social media for AWS
IoT and all other AWS services, and a list of services and communication protocols that AWS IoT
uses.

Training resources for AWS IoT

We provide these training courses to help you learn about AWS IoT and how to apply them to your
solution design.

• Introduction to AWS IoT

A video overview of AWS IoT and its core services.

• Deep Dive into AWS IoT Authentication and Authorization

An advanced course that explores the concepts of AWS IoT authentication and authorization. You
will learn how to authenticate and authorize clients to access the AWS IoT control plane and data
plane APIs.

• Internet of Things Foundation Series

A learning path of IoT eLearning modules on different IoT technologies and features.

AWS IoT resources and guides

These are in-depth technical resources on specific aspects of AWS IoT.

• IoT Lens – AWS IoT Well-Architected Framework

A document that describes the best practices for architecting your IoT applications on AWS.

• Designing MQTT Topics for AWS IoT Core

A whitepaper that describes the best practices for designing MQTT topics in AWS IoT Core and
leveraging AWS IoT Core features with MQTT.

• Abstract and introduction

A PDF document that describes the different ways that AWS IoT provides to provision large fleets
of devices.

Learn more about AWS IoT 16

https://www.aws.training/learningobject/video?id=16505
https://www.aws.training/Details/Curriculum?id=42335
https://explore.skillbuilder.aws/learn/course/internal/view/elearning/402/internet-of-things-foundation-series
https://docs.aws.amazon.com/wellarchitected/latest/iot-lens/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
https://docs.aws.amazon.com/whitepapers/latest/device-manufacturing-provisioning/device-manufacturing-provisioning.html

AWS IoT Core Developer Guide

• AWS IoT Core Device Advisor

AWS IoT Core Device Advisor provides pre-built tests that you can use to validate IoT devices for
reliable and secure connectivity best practices with AWS IoT Core, before deploying devices to
production.

• AWS IoT Resources

IoT-specific resources, such as Technical Guides, Reference Architectures, eBooks, and curated
blog posts, presented in a searchable index.

• IoT Atlas

Overviews on how to solve common IoT design problems. The IoT Atlas provides in-depth looks
into the design challenges that you are likely to encounter while developing your IoT solution.

• AWS Whitepapers & Guides

Our current collection of whitepapers and guides on AWS IoT and other AWS technologies.

AWS IoT in social media

These social media channels provide information about AWS IoT and AWS-related topics.

• The Internet of Things on AWS IoT – Official Blog

• AWS IoT videos in the Amazon Web Services channel on YouTube

These social media accounts cover all AWS services, including AWS IoT

• The Amazon Web Services channel on YouTube

• Amazon Web Services on Twitter

• Amazon Web Services on Facebook

• Amazon Web Services on Instagram

• Amazon Web Services on LinkedIn

AWS services used by the AWS IoT Core rules engine

The AWS IoT Core rules engine can connect to these AWS services.

AWS IoT in social media 17

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html
https://aws.amazon.com/iot/resources/
https://iotatlas.net
https://aws.amazon.com/whitepapers/?whitepapers-main.sort-by=item.additionalFields.sortDate&whitepapers-main.sort-order=desc&awsf.whitepapers-category=categories%23iot
https://aws.amazon.com/blogs/iot/
https://www.youtube.com/user/AmazonWebServices/search?query=IoT
https://www.youtube.com/user/AmazonWebServices/
https://twitter.com/awscloud
https://www.facebook.com/amazonwebservices/
https://www.instagram.com/amazonwebservices/
https://www.linkedin.com/company/amazon-web-services/

AWS IoT Core Developer Guide

• Amazon DynamoDB

Amazon DynamoDB is a scalable, NoSQL database service that provides fast and predictable
database performance.

• Amazon Kinesis

Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you
can get timely insights and react quickly to new information. Amazon Kinesis can ingest real-
time data such as video, audio, application logs, website clickstreams, and IoT telemetry data for
machine learning, analytics, and other applications.

• AWS Lambda

AWS Lambda lets you run code without provisioning or managing servers. You can set up your
code to automatically trigger from AWS IoT data and events or call it directly from a web or
mobile app.

• Amazon Simple Storage Service

Amazon Simple Storage Service (Amazon S3) can store and retrieve any amount of data at any
time, from anywhere on the web. AWS IoT rules can send data to Amazon S3 for storage.

• Amazon Simple Notification Service

Amazon Simple Notification Service (Amazon SNS) is a web service that enables applications, end
users, and devices to send and receive notifications from the cloud.

• Amazon Simple Queue Service

Amazon Simple Queue Service (Amazon SQS) is a message queuing service that decouples and
scales microservices, distributed systems, and serverless applications.

• Amazon OpenSearch Service

Amazon OpenSearch Service (OpenSearch Service) is a managed service that makes it easy to
deploy, operate, and scale OpenSearch, a popular open-source search and analytics engine.

• Amazon SageMaker

Amazon SageMaker can create machine learning (ML) models by finding patterns in your IoT
data. The service uses these models to process new data and generate predictions for your
application.

• Amazon CloudWatch
AWS services used by the AWS IoT Core rules engine 18

https://docs.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/sns/
https://docs.aws.amazon.com/sqs/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/cloudwatch/

AWS IoT Core Developer Guide

Amazon CloudWatch provides a reliable, scalable, and flexible monitoring solution to help set up,
manage, and scale your own monitoring systems and infrastructure.

Communication protocols supported by AWS IoT Core

These topics provide more information about the communication protocols used by AWS IoT. For
more information about the protocols used by AWS IoT and connecting devices and services to
AWS IoT, see Connecting to AWS IoT Core.

• MQTT (Message Queuing Telemetry Transport)

The home page of the MQTT.org site where you can find the MQTT protocol specifications. For
more information about how AWS IoT supports MQTT, see MQTT.

• HTTPS (Hypertext Transfer Protocol - Secure)

Devices and apps can access AWS IoT services by using HTTPS.

• LoRaWAN (Long Range Wide Area Network)

LoRaWAN devices and gateways can connect to AWS IoT Core by using AWS IoT Core for
LoRaWAN.

• TLS (Transport Layer Security) v1.3

The specification of the TLS v1.3 (RFC 5246). AWS IoT uses TLS v1.3 to establish secure
connections between devices and AWS IoT.

What's new in the AWS IoT console

We're in the process of updating the user interface of the AWS IoT console to a new experience.
We're updating the user interface in stages, so some pages in the console will have a new
experience, some might have both the original and the new experience, and some might have only
the original experience.

This table displays the state of individual areas of the AWS IoT console user interface as of January
27, 2022.

Communication protocols supported by AWS IoT Core 19

http://mqtt.org/
https://tools.ietf.org/html/rfc2616
https://lora-alliance.org/about-lorawan
https://aws.amazon.com/blogs/iot/introducing-tls-1-3-support-in-aws-iot-core/

AWS IoT Core Developer Guide

AWS IoT console user interface status

Console page Original experience New experience Comments

Monitor Not available Available

Activity Not available Available

Onboard - Get
started

Not available Available Not available in CN
Regions

Onboard - Fleet
provisioning
templates

Available Available

Manage - Things Available Available

Manage - Types Available Available

Manage - Thing
groups

Available Available

Manage - Billing
groups

Available Available

Manage - Jobs Available Available

Manage - Job
templates

Not available Available

Manage - Tunnels Not available Available

Fleet Hub - Get
started

Not available Available Not available in all
AWS Regions

Fleet Hub - Applicati
ons

Not available Available Not available in all
AWS Regions

Greengrass - Getting
started

Not available Available Not available in all
AWS Regions

What's new in the AWS IoT console 20

AWS IoT Core Developer Guide

Console page Original experience New experience Comments

Greengrass - Core
devices

Not available Available Not available in all
AWS Regions

Greengrass -
Components

Not available Available Not available in all
AWS Regions

Greengrass -
Deployments

Not available Available Not available in all
AWS Regions

Greengrass - Classic
(V1)

Available Available

Wireless connectiv
ity - Intro

Not available Available Not available in all
AWS Regions

Wireless connectiv
ity - Gateways

Not available Available Not available in all
AWS Regions

Wireless connectiv
ity - Devices

Not available Available Not available in all
AWS Regions

Wireless connectiv
ity - Profiles

Not available Available Not available in all
AWS Regions

Wireless connectiv
ity - Destinations

Not available Available Not available in all
AWS Regions

Secure - Certificates Available Available

Secure - Policies Available Available

Secure - CAs Available Available

Secure - Role Aliases Available Available

Secure - Authorizers Available Available

Defend - Intro Not available Available

What's new in the AWS IoT console 21

AWS IoT Core Developer Guide

Console page Original experience New experience Comments

Defend - Audit Not available Available

Defend - Detect Not available Available

Defend - Mitigation
actions

Not available Available

Defend - Settings Not available Available

Act - Rules Available Available

Act - Destinations Available Available

Test - Device Advisor Available Available Not available in all
AWS Regions

Test - MQTT test
client

Available Available

Software Available Available

Settings Not available Available

Learn Available Not available yet

Legend

Status values

• Available

This user interface experience can be used.

• Not available

This user interface experience can't be used.

• Not available yet

The new user interface experience is being worked on, but it's not ready, yet.

Legend 22

AWS IoT Core Developer Guide

• In progress

The new user interface experience is in the process of being updated. Some pages might still
have the original user experience, however.

Using AWS IoT with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Working with AWS SDKs 23

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS IoT Core Developer Guide

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 24

AWS IoT Core Developer Guide

Getting started with AWS IoT Core

Whether you're new to IoT or you have years of experience, these resources present the AWS IoT
concepts and terms that will help you start using AWS IoT.

• Look inside AWS IoT and its components in How AWS IoT works.

• Learn more about AWS IoT from our collection of training materials and videos. This topic
also includes a list of services that AWS IoT can connect to, social media links, and links to
communication protocol specifications.

• the section called “Connect your first device to AWS IoT Core”.

• Develop your IoT solutions by Connecting to AWS IoT Core and exploring the AWS IoT tutorials.

• Test and validate your IoT devices for secure and reliable communication by using the Device
Advisor.

• Manage your solution by using AWS IoT Core management services such as Fleet indexing, Jobs,
and AWS IoT Device Defender.

• Analyze the data from your devices by using the AWS IoT data services.

Connect your first device to AWS IoT Core

AWS IoT Core services connect IoT devices to AWS IoT services and other AWS services. AWS IoT
Core includes the device gateway and the message broker, which connect and process messages
between your IoT devices and the cloud.

Here's how you can get started with AWS IoT Core and AWS IoT.

Connect your first device to AWS IoT Core 25

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html

AWS IoT Core Developer Guide

This section presents a tour of the AWS IoT Core to introduce its key services and provides several
examples of how to connect a device to AWS IoT Core and pass messages between them. Passing
messages between devices and the cloud is fundamental to every IoT solution and is how your
devices can interact with other AWS services.

• Set up your AWS account

Before you can use AWS IoT services, you must set up an AWS account. If you already have an
AWS account and an IAM user for yourself, you can use them and skip this step.

• Try the interactive tutorial

This demo is best if you want to see what a basic AWS IoT solution can do without connecting a
device or downloading any software. The interactive tutorial presents a simulated solution built
on AWS IoT Core services that illustrates how they interact.

• Try the quick connect tutorial

This tutorial is best if you want to quickly get started with AWS IoT and see how it works in a
limited scenario. In this tutorial, you'll need a device and you'll install some AWS IoT software
on it. If you don't have an IoT device, you can use your Windows, Linux, or macOS personal
computer as a device for this tutorial. If you want to try AWS IoT, but you don't have a device, try
the next option.

• Explore AWS IoT Core services with a hands-on tutorial

This tutorial is best for developers who want to get started with AWS IoT so they can continue to
explore other AWS IoT Core features such as the rules engine and shadows. This tutorial follows
a process similar to the quick connect tutorial, but provides more details on each step to enable a
smoother transition to the more advanced tutorials.

• View MQTT messages with the AWS IoT MQTT client

Learn how to use the MQTT test client to watch your first device publish MQTT messages to AWS
IoT. The MQTT test client is a useful tool to monitor and troubleshoot device connections.

Note

If you want to try more than one of these getting started tutorials or repeat the same
tutorial, you should delete the thing object that you created from an earlier tutorial before
you start another one. If you don't delete the thing object from an earlier tutorial, you will

Connect your first device to AWS IoT Core 26

AWS IoT Core Developer Guide

need to use a different thing name for subsequent tutorials. This is because the thing name
must be unique in your account and AWS Region.

For more information about AWS IoT Core, see What Is AWS IoT Core?

Set up your AWS account

Before you use AWS IoT Core for the first time, complete the following tasks:

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Open the AWS IoT console

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Set up your AWS account 27

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

AWS IoT Core Developer Guide

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create a user with administrative access 28

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

AWS IoT Core Developer Guide

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

• Open the AWS IoT console

If you already have an AWS account and a user for yourself, you can use them and skip ahead to the
section called “Open the AWS IoT console”.

Open the AWS IoT console

Most of the console-oriented topics in this section start from the AWS IoT console. If you aren't
already signed in to your AWS account, sign in, then open the AWS IoT console and continue to the
next section to continue getting started with AWS IoT.

Try the AWS IoT Core interactive tutorial

The interactive tutorial shows the components of a simple IoT solution built on AWS IoT. The
tutorial's animations show how IoT devices interact with AWS IoT Core services. This topic provides
a preview of the AWS IoT Core interactive tutorial. The images in the console include animations
that don't appear in the images in this tutorial.

To run the demo, you must first the section called “Set up your AWS account”. The tutorial,
however, doesn't require any AWS IoT resources, additional software, or any coding.

Expect to spend approximately 5-10 minutes on this demo. Giving yourself 10 minutes will allow
more time to comprehend each of the steps.

To run the AWS IoT Core interactive tutorial

1. Open the AWS IoT home page in the AWS IoT console.

On the AWS IoT home page, in the Learning resources window pane, choose Start tutorial.

Open the AWS IoT console 29

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home#/home

AWS IoT Core Developer Guide

2. In the AWS IoT Console Tutorial page, review the tutorial sections and choose Start section
when you're ready to continue.

The following sections describe how the AWS IoT Console Tutorial presents these AWS IoT Core
features:

• Connecting IoT devices

• Saving offline device state

• Routing device data to services

Connecting IoT devices

Learn how IoT devices communicate with AWS IoT Core.

Connecting IoT devices 30

AWS IoT Core Developer Guide

The animation in this step shows how two devices, the control device on the left and a smart lamp
in the house on the right, connect and communicate with AWS IoT Core in the cloud. The animation
shows the devices communicating with AWS IoT Core and reacting to the messages they receive.

For more information about connecting devices to AWS IoT Core, see Connecting to AWS IoT Core.

Saving offline device state

Learn how AWS IoT Core saves device state for while a device or app is offline.

Saving offline device state 31

AWS IoT Core Developer Guide

The animation in this step shows how the Device Shadow service in AWS IoT Core saves device
state information for the control device and the smart lamp. While the smart lamp is offline, the
Device Shadow saves commands from the control device.

When the smart lamp reconnects to AWS IoT Core, it retrieves those commands. When the control
device is offline, the Device Shadow saves state information from the smart lamp. When the
control device reconnects, it retrieves the current state of the smart lamp to update its display.

For more information about Device Shadows, see AWS IoT Device Shadow service.

Routing device data to services

Learn how AWS IoT Core sends device state to other AWS services.

Routing device data to services 32

AWS IoT Core Developer Guide

The animation in this step shows how AWS IoT Core sends data from the devices to other AWS
services by using AWS IoT rules. AWS IoT rules subscribe to specific messages from the devices,
interpret the data in those messages, and route the interpreted data to other services. In this
example, an AWS IoT rule interprets data from a motion sensor and sends commands to a Device
Shadow, which then sends them to the smart bulb. As in the previous example, the Device Shadow
stores the device-state info for the control device.

For more information about AWS IoT rules, see Rules for AWS IoT.

Try the AWS IoT quick connect

In this tutorial, you'll create your first thing object, connect a device to it, and watch it send MQTT
messages.

You can expect to spend 15-20 minutes on this tutorial.

This tutorial is best for people who want to quickly get started with AWS IoT to see how it works in
a limited scenario. If you're looking for an example that will get you started so that you can explore
more features and services, try Explore AWS IoT Core services in hands-on tutorial.

In this tutorial, you'll download and run software on a device that connects to a thing resource
in AWS IoT Core as part of a very small IoT solution. The device can be an IoT device, such as
a Raspberry Pi, or it can also be a computer that is running Linux, OS and OSX, or Windows. If

Try the AWS IoT quick connect 33

AWS IoT Core Developer Guide

you're looking to connect a Long Range WAN (LoRaWAN) device to AWS IoT, refer to the tutorial
>Connecting devices and gateways to AWS IoT Core for LoRaWAN.

If your device supports a browser that can run the AWS IoT console, we recommend you complete
this tutorial on that device.

Note

If your device doesn't have a compatible browser, follow this tutorial on a computer. When
the procedure asks you to download the file, download it to your computer, and then
transfer the downloaded file to your device by using Secure Copy (SCP) or a similar process.

The tutorial requires your IoT device to communicate with port 8443 on your AWS account's device
data endpoint. To test whether it can access that port, try the procedures in Testing connectivity
with your device data endpoint.

Step 1. Start the tutorial

If possible, complete this procedure on your device; otherwise, be ready to transfer a file to your
device later in this procedure.

To start the tutorial, sign in to the AWS IoT console. In the AWS IoT console home page, on the left,
choose Connect and then choose Connect one device.

Step 1. Start the tutorial 34

https://docs.aws.amazon.com/iot-wireless/latest/developerguide/lorawan-getting-started.html
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Step 2. Create a thing object

1. In the Prepare your device section, follow the on-screen instructions to prepare your device
for connecting to AWS IoT.

2. In the Register and secure your device section, choose Create a new thing or Choose an
existing thing. In the Thing name field, enter the name for your thing object. The thing name
used in this example is TutorialTestThing

Important

Double-check your thing name before you continue.

Step 2. Create a thing object 35

AWS IoT Core Developer Guide

A thing name can't be changed after the thing object is created. If you want to change
a thing name, you must create a new thing object with the correct thing name and
then delete the one with the incorrect name.

In the Additional configurations section, customize your thing resource further using the
optional configurations listed.

After you provide your thing object a name and select any additional configurations, choose
Next.

3. In the Choose platform and SDK section, choose the platform and the language of the AWS
IoT Device SDK that you want to use. This example uses the Linux/OSX platform and the

Step 2. Create a thing object 36

AWS IoT Core Developer Guide

Python SDK. Make sure that you have python3 and pip3 installed on your target device before
you continue to the next step.

Note

Be sure to check the list of prerequisite software required by your chosen SDK at the
bottom of the console page.
You must have the required software installed on your target computer before you
continue to the next step.

After you choose the platform and device SDK language, choose Next.

Step 2. Create a thing object 37

AWS IoT Core Developer Guide

Step 3. Download files to your device

This page appears after AWS IoT has created the connection kit, which includes the following files
and resources that your device requires:

• The thing's certificate files used to authenticate the device

• A policy resource to authorize your thing object to interact with AWS IoT

• The script to download the AWS Device SDK and run the sample program on your device

1. When you're ready to continue, choose the Download connection kit for button to download
the connection kit for the platform that you chose earlier.

Step 3. Download files to your device 38

AWS IoT Core Developer Guide

2. If you're running this procedure on your device, save the connection kit file to a directory from
which you can run command line commands.

If you're not running this procedure on your device, save the connection kit file to a local
directory and then transfer the file to your device.

3. In the Unzip connection kit on your device section, enter unzip connect_device_package.zip
in the directory where the connection kit files are located.

Step 3. Download files to your device 39

AWS IoT Core Developer Guide

If you're using a Windows PowerShell command window and the unzip command doesn't
work, replace unzip with expand-archive, and try the command line again.

4. After you have the connection kit file on the device, continue the tutorial by choosing Next.

Step 4. Run the sample

You do this procedure in a terminal or command window on your device while you follow the
directions displayed in the console. The commands you see in the console are for the operating

Step 4. Run the sample 40

AWS IoT Core Developer Guide

system you chose in the section called “Step 2. Create a thing object”. Those shown here are for the
Linux/OSX operating systems.

1. In a terminal or command window on your device, in the directory with the connection kit file,
perform the steps shown in the AWS IoT console.

2. After you enter the command from Step 2 in the console, you should see an output in the
device's terminal or command window that is similar to the following. This output is from the
messages the program is sending to and then receiving back from AWS IoT Core.

Step 4. Run the sample 41

AWS IoT Core Developer Guide

While the sample program is running, the test message Hello World! will appear as well.
The test message appears in the terminal or command window on your device.

Note

For more information about topic subscription and publish, see the example code of
your chosen SDK.

3. To run the sample program again, you can repeat the commands from Step 2 in the console of
this procedure.

4. (Optional) If you want to see the messages from your IoT client in the AWS IoT console, open
the MQTT test client on the Test page of the AWS IoT console. If you chose Python SDK,
then in the MQTT test client, in Topic filter, enter the topic, such as sdk/test/python to
subscribe to the messages from your device. The topic filters are case sensitive and depend on
the programming language of the SDK you chose in Step 1. For more information about topic
subscription and publish, see the code example of your chosen SDK.

5. After you subscribe to the test topic, run ./start.sh on your device. For more information, see
the section called “View MQTT messages with the AWS IoT MQTT client”.

After you run ./start.sh, messages appear in the MQTT client, similar to the following:

{
 "message": "Hello World!" [1]
}

The sequence number encased in [] increments by one each time a new Hello World!
message is received and stops when you end the program.

6. To finish the tutorial and see a summary, in the AWS IoT console, choose Continue.

Step 4. Run the sample 42

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

7. A summary of your AWS IoT quick connect tutorial will now appear.

Step 4. Run the sample 43

AWS IoT Core Developer Guide

Step 5. Explore further

Here are some ideas to explore AWS IoT further after you complete the quick start.

• View MQTT messages in the MQTT test client

From the AWS IoT console, you can open the MQTT client on the Test page of the AWS IoT
console. In the MQTT test client, subscribe to #, and then, on your device, run the program ./
start.sh as described in the previous step. For more information, see the section called “View
MQTT messages with the AWS IoT MQTT client”.

• Run tests on your devices with Device Advisor

Use Device Advisor to test if your devices can securely and reliably connect to, and interact with,
AWS IoT.

• the section called “Try the AWS IoT Core interactive tutorial”

To start the interactive tutorial, from the Learn page of the AWS IoT console, in the See how
AWS IoT works tile, choose Start the tutorial.

• Get ready to explore more tutorials

This quick start gives you just a sample of AWS IoT. If you want to explore AWS IoT further and
learn about the features that make it a powerful IoT solution platform, start preparing your
development platform by Explore AWS IoT Core services in hands-on tutorial.

Step 5. Explore further 44

https://console.aws.amazon.com/iot/home#/test
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home#/test
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html

AWS IoT Core Developer Guide

Testing connectivity with your device data endpoint

This topic describes how to test a device's connection with your account's device data endpoint, the
endpoint that your IoT devices use to connect to AWS IoT.

Perform these procedures on the device that you want to test or by using an SSH terminal session
connected to the device you want to test.

To test a device's connectivity with your device data endpoint.

• Find your device data endpoint

• Test the connection quickly

• Get the app to test the connection to your device data endpoint and port

• Test the connection to your device data endpoint and port

Find your device data endpoint

To find your device data endpoint

1. In the AWS IoT console, near the bottom of the navigation pane, chooseSettings.

2. In the Settings page, in the Device data endpoint container, locate the Endpoint value and
copy it. Your endpoint value is unique to your AWS account and is similar to this example:
a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com.

3.
Save your device data endpoint to use in the following procedures.

Test the connection quickly

This procedure tests general connectivity with your device data endpoint, but it doesn't test the
specific port that your devices will use. This test uses a common program and is usually sufficient
to find out if your devices can connect to AWS IoT.

If you want to test connectivity with the specific port that your devices will use, skip this procedure
and continue to Get the app to test the connection to your device data endpoint and port.

Testing connectivity with your device data endpoint 45

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

To test the device data endpoint quickly

1. In a terminal or command line window on your device, replace the sample device data
endpoint (a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com) with the device data
endpoint for your account, and then enter this command.

Linux

ping -c 5 a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com

Windows

ping -n 5 a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com

2. If ping displays an output similar to the following, it connected to your device data endpoint
successfully. While it didn't communicate with AWS IoT directly, it did find the server and it's
likely that AWS IoT is available through this endpoint.

PING a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com (xx.xx.xxx.xxx) 56(84) bytes of
 data.
64 bytes from ec2-EXAMPLE-218.eu-west-1.compute.amazonaws.com (xx.xx.xxx.xxx):
 icmp_seq=1 ttl=231 time=127 ms
64 bytes from ec2-EXAMPLE-218.eu-west-1.compute.amazonaws.com (xx.xx.xxx.xxx):
 icmp_seq=2 ttl=231 time=127 ms
64 bytes from ec2-EXAMPLE-218.eu-west-1.compute.amazonaws.com (xx.xx.xxx.xxx):
 icmp_seq=3 ttl=231 time=127 ms
64 bytes from ec2-EXAMPLE-218.eu-west-1.compute.amazonaws.com (xx.xx.xxx.xxx):
 icmp_seq=4 ttl=231 time=127 ms
64 bytes from ec2-EXAMPLE-218.eu-west-1.compute.amazonaws.com (xx.xx.xxx.xxx):
 icmp_seq=5 ttl=231 time=127 ms

If you are satisfied with this result, you can stop testing here.

If you want to test the connectivity with the specific port used by AWS IoT, continue to Get the
app to test the connection to your device data endpoint and port.

3. If ping didn't return a successful output, check the endpoint value to make sure you have the
correct endpoint and check the device's connection with the internet.

Testing connectivity with your device data endpoint 46

AWS IoT Core Developer Guide

Get the app to test the connection to your device data endpoint and port

A more thorough connectivity test can be performed by using nmap. This procedure tests to see if
nmap is installed on your device.

To check for nmap on the device

1. In a terminal or command line window on the device you want to test, enter this command to
see if nmap is installed.

nmap --version

2. If you see an output similar to the following, nmap is installed and you can continue to the
section called “Test the connection to your device data endpoint and port”.

Nmap version 6.40 (http://nmap.org)
Platform: x86_64-koji-linux-gnu
Compiled with: nmap-liblua-5.2.2 openssl-1.0.2k libpcre-8.32 libpcap-1.5.3 nmap-
libdnet-1.12 ipv6
Compiled without:
Available nsock engines: epoll poll select

3. If you don't see a response similar to the one shown in the preceding step, you must install
nmap on the device. Choose the procedure for your device's operating system.

Linux

This procedure requires that you have permission to install software on the computer.

To install nmap on your Linux computer

1. In a terminal or command line window on your device, enter the command that
corresponds to the version of Linux it's running.

a. Debian or Ubuntu:

sudo apt install nmap

b. CentOS or RHEL:

sudo yum install nmap

Testing connectivity with your device data endpoint 47

AWS IoT Core Developer Guide

2. Test the installation with this command:

nmap --version

3. If you see an output similar to the following, nmap is installed and you can continue to the
section called “Test the connection to your device data endpoint and port”.

Nmap version 6.40 (http://nmap.org)
Platform: x86_64-koji-linux-gnu
Compiled with: nmap-liblua-5.2.2 openssl-1.0.2k libpcre-8.32 libpcap-1.5.3 nmap-
libdnet-1.12 ipv6
Compiled without:
Available nsock engines: epoll poll select

macOS

This procedure requires that you have permission to install software on the computer.

To install nmap on your macOS computer

1. In a browser, open https://nmap.org/download#macosx and download the latest stable
installer.

When prompted, select Open with DiskImageInstaller.

2. In the installation window, move the package to the Applications folder.

3. In the Finder, locate the nmap-xxxx-mpkg package in the Applications folder. Ctrl-click
the on package and select Open to open the package.

4. Review the security dialog box. If you are ready to install nmap, choose Open to install
nmap.

5. In Terminal, test the installation with this command.

nmap --version

6. If you see an output similar to the following, nmap is installed and you can continue to the
section called “Test the connection to your device data endpoint and port”.

Nmap version 7.92 (https://nmap.org)
Platform: x86_64-apple-darwin17.7.0

Testing connectivity with your device data endpoint 48

https://nmap.org/download#macosx

AWS IoT Core Developer Guide

Compiled with: nmap-liblua-5.3.5 openssl-1.1.1k nmap-libssh2-1.9.0 libz-1.2.11
 nmap-libpcre-7.6 nmap-libpcap-1.9.1 nmap-libdnet-1.12 ipv6 Compiled without:
Available nsock engines: kqueue poll select

Windows

This procedure requires that you have permission to install software on the computer.

To install nmap on your Windows computer

1. In a browser, open https://nmap.org/download#windows and download the latest stable
release of the setup program.

If prompted, choose Save file. After the file is downloaded, open it from the downloads
folder.

2. After the setup file finishes downloading, open downloaded nmap-xxxx-setup.exe to
install the app.

3. Accept the default settings as the program installs.

You don't need the Npcap app for this test. You can deselect that option if you don't want
to install it.

4. In Command, test the installation with this command.

nmap --version

5. If you see an output similar to the following, nmap is installed and you can continue to the
section called “Test the connection to your device data endpoint and port”.

Nmap version 7.92 (https://nmap.org)
Platform: i686-pc-windows-windows
Compiled with: nmap-liblua-5.3.5 openssl-1.1.1k nmap-libssh2-1.9.0 nmap-
libz-1.2.11 nmap-libpcre-7.6 Npcap-1.50 nmap-libdnet-1.12 ipv6
Compiled without:
Available nsock engines: iocp poll select

Testing connectivity with your device data endpoint 49

https://nmap.org/download#windows

AWS IoT Core Developer Guide

Test the connection to your device data endpoint and port

To test your device data endpoint and port

1. In a terminal or command line window on your device, replace the sample device data
endpoint (a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com) with the device data
endpoint for your account, and then enter this command.

nmap -p 8443 a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com

2. If nmap displays an output similar to the following, nmap was able to connect successfully to
your device data endpoint at the selected port.

Starting Nmap 7.92 (https://nmap.org) at 2022-02-18 16:23 Pacific Standard Time
Nmap scan report for a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com
 (xx.xxx.147.160)
Host is up (0.036s latency).
Other addresses for a3qEXAMPLEsffp-ats.iot.eu-west-1.amazonaws.com (not scanned):
 xx.xxx.134.144 xx.xxx.55.139 xx.xxx.110.235 xx.xxx.174.233 xx.xxx.74.65
 xx.xxx.122.179 xx.xxx.127.126
rDNS record for xx.xxx.147.160: ec2-EXAMPLE-160.eu-west-1.compute.amazonaws.com

PORT STATE SERVICE
8443/tcp open https-alt
MAC Address: 00:11:22:33:44:55 (Cimsys)

Nmap done: 1 IP address (1 host up) scanned in 0.91 seconds

3. If nmap didn't return a successful output, check the endpoint value to make sure you have the
correct endpoint and check your device's connection with the internet.

You can test other ports on your device data endpoint, such as port 443, the primary HTTPS port,
by replacing the port used in step 1, 8443, with the port that you want to test.

Explore AWS IoT Core services in hands-on tutorial

In this tutorial, you'll install the software and create the AWS IoT resources necessary to connect a
device to AWS IoT Core so that it can send and receive MQTT messages with AWS IoT Core. You'll
see the messages in the MQTT client in the AWS IoT console.

Explore AWS IoT Core services in hands-on tutorial 50

AWS IoT Core Developer Guide

You can expect to spend 20-30 minutes on this tutorial. If you are using an IoT device or a
Raspberry Pi, this tutorial might take longer if, for example, you need to install the operating
system and configure the device.

This tutorial is best for developers who want to get started with AWS IoT Core so they can continue
to explore more advanced features, such as the rules engine and shadows. This tutorial prepares
you to continue learning about AWS IoT Core and how it interacts with other AWS services by
explaining the steps in greater detail than the quick start tutorial. If you are looking for just a quick,
Hello World, experience, try the Try the AWS IoT quick connect.

After setting up your AWS account and AWS IoT console, you'll follow these steps to see how to
connect a device and have it send messages to AWS IoT Core.

Next steps

• Choose which device option is the best for you

• the section called “Create AWS IoT resources” if you are not going to create a virtual device with
Amazon EC2

• the section called “Configure your device”

• the section called “View MQTT messages with the AWS IoT MQTT client”

For more information about AWS IoT Core, see What Is AWS IoT Core?

Explore AWS IoT Core services in hands-on tutorial 51

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

AWS IoT Core Developer Guide

Which device option is best for you?

If you're not sure which option to pick, use the following list of each option's advantages and
disadvantages to help you decide which one is best for you.

Option This might be a good option
if:

This might not be a good
option if:

the section called “Create a
virtual device with Amazon
EC2”

• You don't have your own
device to test.

• You don't want to install
any software on your own
system.

• You want to test on a Linux
OS.

• You're not comfortab
le using command-line
commands.

• You don't want to incur any
additional AWS charges.

• You don't want to test on a
Linux OS.

the section called “Use your
Windows or Linux PC or Mac
as an AWS IoT device”

• You don't want to incur any
additional AWS charges.

• You don't want to configure
any additional devices.

• You don't want to install
any software on your
personal computer.

• You want a more represent
ative test platform.

the section called “Connect a
Raspberry Pi or other device”

• You want to test AWS IoT
with an actual device.

• You already have a device
to test with.

• You have experience
integrating hardware into
systems.

• You don't want to buy or
configure a device just to
try it out.

• You want to test AWS IoT
as simply as possible, for
now.

Create AWS IoT resources

In this tutorial, you'll create the AWS IoT resources that a device requires to connect to AWS IoT
Core and exchange messages.

Which device option is best for you? 52

AWS IoT Core Developer Guide

1. Create an AWS IoT policy document, which will authorize your device to interact with AWS IoT
services.

2. Create a thing object in AWS IoT and its X.509 device certificate, and then attach the policy
document. The thing object is the virtual representation of your device in the AWS IoT registry.
The certificate authenticates your device to AWS IoT Core, and the policy document authorizes
your device to interact with AWS IoT.

Note

If you are planning to the section called “Create a virtual device with Amazon EC2”, you
can skip this page and continue to the section called “Configure your device”. You will
create these resources when you create your virtual thing.

This tutorial uses the AWS IoT console to create the AWS IoT resources. If your device supports a
web browser, it might be easier to run this procedure on the device's web browser because you
will be able to download the certificate files directly to your device. If you run this procedure on
another computer, you will need to copy the certificate files to your device before they can be used
by the sample app.

Create an AWS IoT policy

Devices use an X.509 certificate to authenticate with AWS IoT Core. The certificate has AWS IoT
policies attached to it. These policies determine which AWS IoT operations, such as subscribing or

Create AWS IoT resources 53

AWS IoT Core Developer Guide

publishing to MQTT topics, the device is permitted to perform. Your device presents its certificate
when it connects and sends messages to AWS IoT Core.

Follow the steps to create a policy that allows your device to perform the AWS IoT operations
necessary to run the example program. You must create the AWS IoT policy before you can attach
it to the device certificate, which you'll create later.

To create an AWS IoT policy

1. In the AWS IoT console, in the left menu, choose Security and then choose Policies.

2. On the You don't have a policy yet page, choose Create policy.

If your account has existing policies, choose Create policy.

3. On the Create policy page:

1. In the Policy properties section, in the Policy name field, enter a name for the policy (for
example, My_Iot_Policy). Don't use personally identifiable information in your policy
names.

2. In the Policy document section, create the policy statements that grant or deny resources
access to AWS IoT Core operations. To create a policy statement that grants all clients to
perform iot:Connect, follow these steps:

• In the Policy effect field, choose Allow. This allows all clients that have this policy
attached to their certificate to perform the action listed in the Policy action field.

• In the Policy action field, choose a policy action such as iot:Connect. Policy actions
are the actions that your device needs permission to perform when it runs the example
program from the Device SDK.

• In the Policy resource field, enter a resource Amazon Resource Name (ARN) or *. A * to
select any client (device).

To create the policy statements for iot:Receive, iot:Publish, and iot:Subscribe,
choose Add new statement and repeat the steps.

Create AWS IoT resources 54

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Note

In this quick start, the wildcard (*) character is used for simplicity. For higher
security, you should restrict which clients (devices) can connect and publish
messages by specifying a client ARN instead of the wildcard character as the
resource. Client ARNs follow this format: arn:aws:iot:your-region:your-
aws-account:client/my-client-id.
However, you must first create the resource (such as a client device or thing shadow)
before you can assign its ARN to a policy. For more information, see AWS IoT Core
action resources.

4. After you've entered the information for your policy, choose Create.

For more information, see How AWS IoT works with IAM.

Create a thing object

Devices connected to AWS IoT Core are represented by thing objects in the AWS IoT registry. A
thing object represents a specific device or logical entity. It can be a physical device or sensor (for
example, a light bulb or a light switch on the wall). It can also be a logical entity, like an instance
of an application or physical entity that doesn't connect to AWS IoT, but is related to other devices
that do (for example, a car that has engine sensors or a control panel).

To create a thing in the AWS IoT console

1. In the AWS IoT console, in the left menu, choose All devices and then choose Things.

2. On the Things page, choose Create things.

Create AWS IoT resources 55

https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html
https://console.aws.amazon.com/https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

3. On the Create things page, choose Create a single thing, then choose Next.

4. On the Specify thing properties page, for Thing name, enter a name for your thing, such as
MyIotThing.

Choose thing names carefully, because you can't change a thing name later.

To change a thing's name, you must create a new thing, give it the new name, and then delete
the old thing.

Note

Do not use personally identifiable information in your thing name. The thing name can
appear in unencrypted communications and reports.

5. Keep the rest of the fields on this page empty. Choose Next.

6. On the Configure device certificate - optional page, choose Auto-generate a new certificate
(recommended). Choose Next.

7. On the Attach policies to certificate - optional page, select the policy you created in the
previous section. In that section, the policy was named, My_Iot_Policy. Choose Create
thing.

8. On the Download certificates and keys page:

1. Download each of the certificate and key files and save them for later. You'll need to install
these files on your device.

When you save your certificate files, give them the names in the following table. These are
the file names used in later examples.

Certificate file names

File File path

Private key private.pem.key

Public key (not used in these examples)

Device certificate device.pem.crt

Root CA certificate Amazon-root-CA-1.pem

Create AWS IoT resources 56

AWS IoT Core Developer Guide

2. To download the root CA file for these files, choose the Download link of the root CA
certificate file that corresponds to the type of data endpoint and cipher suite you're using.
In this tutorial, choose Download to the right of RSA 2048 bit key: Amazon Root CA 1 and
download the RSA 2048 bit key: Amazon Root CA 1 certificate file.

Important

You must save the certificate files before you leave this page. After you leave this
page in the console, you will no longer have access to the certificate files.
If you forgot to download the certificate files that you created in this step, you
must exit this console screen, go to the list of things in the console, delete the thing
object you created, and then restart this procedure from the beginning.

3. Choose Done.

After you complete this procedure, you should see the new thing object in your list of things.

Configure your device

This section describes how to configure your device to connect to AWS IoT Core. If you'd like to
get started with AWS IoT Core but don't have a device yet, you can create a virtual device by using
Amazon EC2 or you can use your Windows PC or Mac as an IoT device.

Select the best device option for you to try AWS IoT Core. Of course, you can try all of them, but
try only one at a time. If you're not sure which device option is best for you, read about how to
choose which device option is the best, and then return to this page.

Device options

• Create a virtual device with Amazon EC2

• Use your Windows or Linux PC or Mac as an AWS IoT device

• Connect a Raspberry Pi or other device

Create a virtual device with Amazon EC2

In this tutorial, you'll create an Amazon EC2 instance to serve as your virtual device in the cloud.

Configure your device 57

AWS IoT Core Developer Guide

To complete this tutorial, you need an AWS account. If you don't have one, complete the steps
described in Set up your AWS account before you continue.

In this tutorial, you'll:

• Set up an Amazon EC2 instance

• Install Git, Node.js and configure the AWS CLI

• Create AWS IoT resources for your virtual device

• Install the AWS IoT Device SDK for JavaScript

• Run the sample application

• View messages from the sample app in the AWS IoT console

Set up an Amazon EC2 instance

The following steps show you how to create an Amazon EC2 instance that will act as your virtual
device in place of a physical device.

If this is the first time you've created an Amazon EC2 instance, you might find the instructions in
Get started with Amazon EC2Linux instances to be more helpful.

To launch an instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the console menu on the left, expand Instances section and choose Instances. From
the Instances dashboard, choose Launch instances on the right to display a list of basic
configurations.

3. In the Name and tags section, enter a name for the instance and optionally add tags.

4. In the Application and OS Images (Amazon Machine Image) section, choose an AMI template
for your instance, such as Amazon Linux 2 AMI (HVM). Notice that this AMI is marked "Free tier
eligible."

5. In the Instance type section, you can select the hardware configuration of your instance.
Select the t2.micro type, which is selected by default. Notice that this instance type is
eligible for the free tier.

6. In the Key pair (login) section, choose a key pair name from the drop-down list or choose
Create a new key pair to create a new one. When creating a new key pair, make sure you
download the private key file and save it in a safe place, because this is your only chance to

Configure your device 58

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://console.aws.amazon.com/ec2/

AWS IoT Core Developer Guide

download and save it. You'll need to provide the name of your key pair when you launch an
instance and the corresponding private key each time you connect to the instance.

Warning

Don't choose the Proceed without a key pair option. If you launch your instance
without a key pair, then you can't connect to it.

7. In the Network settings section and the Configure storage section, you can keep the default
settings. When you are ready, choose Launch instances.

8. A confirmation page lets you know that your instance is launching. Choose View Instances to
close the confirmation page and return to the console.

9. On the Instances screen, you can view the status of the launch. It takes a short time for an
instance to launch. When you launch an instance, its initial state is pending. After the instance
starts, its state changes to running and it receives a public DNS name. (If the Public DNS
(IPv4) column is hidden, choose Show/Hide Columns (the gear-shaped icon) in the top right
corner of the page and then select Public DNS (IPv4).)

10. It can take a few minutes for the instance to be ready so that you can connect to it. Check that
your instance has passed its status checks; you can view this information in the Status Checks
column.

After your new instance has passed its status checks, continue to the next procedure and
connect to it.

To connect to your instance

You can connect to an instance using the browser-based client by selecting the instance from
the Amazon EC2 console and choosing to connect using Amazon EC2 Instance Connect. Instance
Connect handles the permissions and provides a successful connection.

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. On the left menu, choose Instances.

3. Select the instance and choose Connect.

4. Choose Amazon EC2 Instance Connect , Connect.

Configure your device 59

https://console.aws.amazon.com/ec2/

AWS IoT Core Developer Guide

You should now have an Amazon EC2 Instance Connect window that is logged into your new
Amazon EC2 instance.

Install Git, Node.js and configure the AWS CLI

In this section, you'll install Git and Node.js on your Linux instance.

To install Git

1. In your Amazon EC2 Instance Connect window, update your instance by using the following
command.

sudo yum update -y

2. In your Amazon EC2 Instance Connect window, install Git by using the following command.

sudo yum install git -y

3. To check if Git has been installed and the current version of Git, run the following command:

git --version

To install Node.js

1. In your Amazon EC2 Instance Connect window, install node version manager (nvm) by using
the following command.

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash

We will use nvm to install Node.js because nvm can install multiple versions of Node.js and
allow you to switch between them.

2. In your Amazon EC2 Instance Connect window, activate nvm by using this command.

. ~/.nvm/nvm.sh

3. In your Amazon EC2 Instance Connect window, use nvm to install the latest version of Node.js
by using this command.

nvm install 16

Configure your device 60

AWS IoT Core Developer Guide

Note

This installs the latest LTS release of Node.js.

Installing Node.js also installs the Node Package Manager (npm) so you can install additional
modules as needed.

4. In your Amazon EC2 Instance Connect window, test that Node.js is installed and running
correctly by using this command.

node -e "console.log('Running Node.js ' + process.version)"

This tutorial requires Node v10.0 or later. For more information, see Tutorial: Setting Up
Node.js on an Amazon EC2 Instance.

To configure AWS CLI

Your Amazon EC2 instance comes preloaded with the AWS CLI. However, you must complete your
AWS CLI profile. For more information on how to configure your CLI, see Configuring the AWS CLI.

1. The following example shows sample values. Replace them with your own values. You can find
these values in your AWS console in your account info under Security credentials.

In your Amazon EC2 Instance Connect window, enter this command:

aws configure

Then enter the values from your account at the prompts displayed.

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]: json

2. You can test your AWS CLI configuration with this command:

aws iot describe-endpoint --endpoint-type iot:Data-ATS

Configure your device 61

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://console.aws.amazon.com/iam/home#/security_credentials

AWS IoT Core Developer Guide

If your AWS CLI is configured correctly, the command should return an endpoint address from
your AWS account.

Create AWS IoT resources for your virtual device

This section describes how to use the AWS CLI to create the thing object and its certificate files
directly on the virtual device. This is done directly on the device to avoid the potential complication
that might arise from copying them to the device from another computer. In this section, you will
create the following resources for your virtual device:

• A thing object to represent your virtual device in AWS IoT.

• A certificate to authenticate your virtual device.

• A policy document to authorize your virtual device to connect to AWS IoT, and to publish,
receive, and subscribe to messages.

To create an AWS IoT thing object in your Linux instance

Devices connected to AWS IoT are represented by thing objects in the AWS IoT registry. A thing
object represents a specific device or logical entity. In this case, your thing object will represent your
virtual device, this Amazon EC2 instance.

1. In your Amazon EC2 Instance Connect window, run the following command to create your
thing object.

aws iot create-thing --thing-name "MyIotThing"

2. The JSON response should look like this:

{
 "thingArn": "arn:aws:iot:your-region:your-aws-account:thing/MyIotThing",
 "thingName": "MyIotThing",
 "thingId": "6cf922a8-d8ea-4136-f3401EXAMPLE"
}

Configure your device 62

AWS IoT Core Developer Guide

To create and attach AWS IoT keys and certificates in your Linux instance

The create-keys-and-certificate command creates client certificates signed by the Amazon Root
certificate authority. This certificate is used to authenticate the identity of your virtual device.

1. In your Amazon EC2 Instance Connect window, create a directory to store your certificate and
key files.

mkdir ~/certs

2. In your Amazon EC2 Instance Connect window, download a copy of the Amazon certificate
authority (CA) certificate by using this command.

curl -o ~/certs/Amazon-root-CA-1.pem \
 https://www.amazontrust.com/repository/AmazonRootCA1.pem

3. In your Amazon EC2 Instance Connect window, run the following command to create your
private key, public key, and X.509 certificate files. This command also registers and activates
the certificate with AWS IoT.

aws iot create-keys-and-certificate \
 --set-as-active \
 --certificate-pem-outfile "~/certs/device.pem.crt" \
 --public-key-outfile "~/certs/public.pem.key" \
 --private-key-outfile "~/certs/private.pem.key"

The response looks like the following. Save the certificateArn so that you can use it in
subsequent commands. You'll need it to attach your certificate to your thing and to attach the
policy to the certificate in a later steps.

{
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/9894ba17925e663f1d29c23af4582b8e3b7619c31f3fbd93adcb51ae54b83dc2",
 "certificateId":
 "9894ba17925e663f1d29c23af4582b8e3b7619c31f3fbd93adcb51ae54b83dc2",
 "certificatePem": "
-----BEGIN CERTIFICATE-----
MIICiTCCEXAMPLE6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC
VVMxCzAJBgNVBAgEXAMPLEAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6
b24xFDASBgNVBAsTC0lBTSEXAMPLE2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
BgkqhkiG9w0BCQEWEG5vb25lQGFtYEXAMPLEb20wHhcNMTEwNDI1MjA0NTIxWhcN

Configure your device 63

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-keys-and-certificate.html

AWS IoT Core Developer Guide

MTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCEXAMPLEJBgNVBAgTAldBMRAwDgYD
VQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDAEXAMPLEsTC0lBTSBDb25z
b2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEXAMPLE25lQGFt
YXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+aEXAMPLE
EXAMPLEfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T
rDHudUZEXAMPLELG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE
Ibb3OhjZnzcvQAEXAMPLEWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4
nUhVVxYUntneD9+h8Mg9qEXAMPLEyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb
FFBjvSfpJIlJ00zbhNYS5f6GuoEDEXAMPLEBHjJnyp378OD8uTs7fLvjx79LjSTb
NYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=
-----END CERTIFICATE-----\n",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC
 KEY-----\nMIIBIjANBgkqhkEXAMPLEQEFAAOCAQ8AMIIBCgKCAQEAEXAMPLE1nnyJwKSMHw4h
\nMMEXAMPLEuuN/dMAS3fyce8DW/4+EXAMPLEyjmoF/YVF/
gHr99VEEXAMPLE5VF13\n59VK7cEXAMPLE67GK+y+jikqXOgHh/xJTwo
+sGpWEXAMPLEDz18xOd2ka4tCzuWEXAMPLEahJbYkCPUBSU8opVkR7qkEXAMPLE1DR6sx2HocliOOLtu6Fkw91swQWEXAMPLE
\GB3ZPrNh0PzQYvjUStZeccyNCx2EXAMPLEvp9mQOUXP6plfgxwKRX2fEXAMPLEDa
\nhJLXkX3rHU2xbxJSq7D+XEXAMPLEcw+LyFhI5mgFRl88eGdsAEXAMPLElnI9EesG\nFQIDAQAB\n-----
END PUBLIC KEY-----\n",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----\nkey omitted for security
 reasons\n-----END RSA PRIVATE KEY-----\n"
 }
}

4. In your Amazon EC2 Instance Connect window, attach your thing object to the certificate you
just created by using the following command and the certificateArn in the response from
the previous command.

aws iot attach-thing-principal \
 --thing-name "MyIotThing" \
 --principal "certificateArn"

If successful, this command does not display any output.

To create and attach a policy

1. In your Amazon EC2 Instance Connect window, create the policy file by copying and pasting
this policy document to a file named ~/policy.json.

If you don't have a favorite Linux editor, you can open nano, by using this command.

Configure your device 64

AWS IoT Core Developer Guide

nano ~/policy.json

Paste the policy document for policy.json into it. Enter ctrl-x to exit the nano editor and
save the file.

Contents of the policy document for policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:Connect"
],
 "Resource": [
 "*"
]
 }
]
}

2. In your Amazon EC2 Instance Connect window, create your policy by using the following
command.

aws iot create-policy \
 --policy-name "MyIotThingPolicy" \
 --policy-document "file://~/policy.json"

Output:

{
 "policyName": "MyIotThingPolicy",
 "policyArn": "arn:aws:iot:your-region:your-aws-account:policy/
MyIotThingPolicy",
 "policyDocument": "{
 \"Version\": \"2012-10-17\",

Configure your device 65

AWS IoT Core Developer Guide

 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Action\": [
 \"iot:Publish\",
 \"iot:Receive\",
 \"iot:Subscribe\",
 \"iot:Connect\"
],
 \"Resource\": [
 \"*\"
]
 }
]
 }",
 "policyVersionId": "1"
}

3. In your Amazon EC2 Instance Connect window, attach the policy to your virtual device's
certificate by using the following command.

aws iot attach-policy \
 --policy-name "MyIotThingPolicy" \
 --target "certificateArn"

If successful, this command does not display any output.

Install the AWS IoT Device SDK for JavaScript

In this section, you'll install the AWS IoT Device SDK for JavaScript, which contains the code
that applications can use to communicate with AWS IoT and the sample programs. For more
information, see the AWS IoT Device SDK for JavaScript GitHub repository.

To install the AWS IoT Device SDK for JavaScript on your Linux instance

1. In your Amazon EC2 Instance Connect window, clone the AWS IoT Device SDK for JavaScript
repository into the aws-iot-device-sdk-js-v2 directory of your home directory by using
this command.

cd ~
git clone https://github.com/aws/aws-iot-device-sdk-js-v2.git

Configure your device 66

https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Core Developer Guide

2. Navigate to the aws-iot-device-sdk-js-v2 directory that you created in the preceding
step.

cd aws-iot-device-sdk-js-v2

3. Use npm to install the SDK.

npm install

Run the sample application

The commands in the next sections assume that your key and certificate files are stored on your
virtual device as shown in this table.

Certificate file names

File File path

Private key ~/certs/private.pem.key

Device certificate ~/certs/device.pem.crt

Root CA certificate ~/certs/Amazon-root-CA-1.pem

In this section, you'll install and run the pub-sub.js sample app found in the aws-iot-device-
sdk-js-v2/samples/node directory of the AWS IoT Device SDK for JavaScript. This app shows
how a device, your Amazon EC2 instance, uses the MQTT library to publish and subscribe to MQTT
messages. The pub-sub.js sample app subscribes to a topic, topic_1, publishes 10 messages to
that topic and displays the messages as they're received from the message broker.

To install and run the sample app

1. In your Amazon EC2 Instance Connect window, navigate to the aws-iot-device-sdk-js-
v2/samples/node/pub_sub directory that the SDK created and install the sample app by
using these commands.

cd ~/aws-iot-device-sdk-js-v2/samples/node/pub_sub
npm install

Configure your device 67

AWS IoT Core Developer Guide

2. In your Amazon EC2 Instance Connect window, get your-iot-endpoint from AWS IoT by
using this command.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

3. In your Amazon EC2 Instance Connect window, insert your-iot-endpoint as indicated and
run this command.

node dist/index.js --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/
certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-endpoint

The sample app:

1. Connects to AWS IoT Core for your account.

2. Subscribes to the message topic, topic_1, and displays the messages it receives on that topic.

3. Publishes 10 messages to the topic, topic_1.

4. Displays output similar to the following:

Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":1}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":2}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":3}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":4}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":5}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":6}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":7}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":8}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":9}
Publish received. topic:"topic_1" dup:false qos:1 retain:false
{"message":"Hello world!","sequence":10}

Configure your device 68

AWS IoT Core Developer Guide

If you're having trouble running the sample app, review the section called “Troubleshooting
problems with the sample app”.

You can also add the --verbosity debug parameter to the command line so the sample app
displays detailed messages about what it’s doing. That information might provide you the help you
need to correct the problem.

View messages from the sample app in the AWS IoT console

You can see the sample app's messages as they pass through the message broker by using the
MQTT test client in the AWS IoT console.

To view the MQTT messages published by the sample app

1. Review View MQTT messages with the AWS IoT MQTT client. This helps you learn how to use
the MQTT test client in the AWS IoT console to view MQTT messages as they pass through
the message broker.

2. Open the MQTT test client in the AWS IoT console.

3. In Subscribe to a topic, Subscribe to the topic, topic_1.

4. In your Amazon EC2 Instance Connect window, run the sample app again and watch the
messages in the MQTT test client in the AWS IoT console.

cd ~/aws-iot-device-sdk-js-v2/samples/node/pub_sub
node dist/index.js --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/
certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-endpoint

For more information about MQTT and how AWS IoT Core supports the protocol, see MQTT.

Use your Windows or Linux PC or Mac as an AWS IoT device

In this tutorial, you'll configure a personal computer for use with AWS IoT. These instructions
support Windows and Linux PCs and Macs. To accomplish this, you need to install some software
on your computer. If you don't want to install software on your computer, you might try Create a
virtual device with Amazon EC2, which installs all software on a virtual machine.

In this tutorial, you'll:

• Set up your personal computer

• Install Git, Python, and the AWS IoT Device SDK for Python

Configure your device 69

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

AWS IoT Core Developer Guide

• Set up the policy and run the sample application

• View messages from the sample app in the AWS IoT console

• Run the Shared Subscription example in Python

Set up your personal computer

To complete this tutorial, you need a Windows or Linux PC or a Mac with a connection to the
internet.

Before you continue to the next step, make sure you can open a command line window on your
computer. Use cmd.exe on a Windows PC. On a Linux PC or a Mac, use Terminal.

Install Git, Python, and the AWS IoT Device SDK for Python

In this section, you'll install Python, and the AWS IoT Device SDK for Python on your computer.

Install the latest version of Git and Python

To download and install Git and Python on your computer

1. Check to see if you have Git installed on your computer. Enter this command in the command
line.

git --version

If the command displays the Git version, Git is installed and you can continue to the next step.

If the command displays an error, open https://git-scm.com/download and install Git for your
computer.

2. Check to see if you have already installed Python. Enter the command in the command line.

python -V

Note

If this command gives an error: Python was not found, it might be because your
operating system calls the Python v3.x executable as Python3. In that case, replace all
instances of python with python3 and continue the remainder of this tutorial.

Configure your device 70

https://git-scm.com/download

AWS IoT Core Developer Guide

If the command displays the Python version, Python is already installed. This tutorial requires
Python v3.7 or later.

3. If Python is installed, you can skip the rest of the steps in this section. If not, continue.

4. Open https://www.python.org/downloads/ and download the installer for your computer.

5. If the download didn't automatically start to install, run the downloaded program to install
Python.

6. Verify the installation of Python.

python -V

Confirm that the command displays the Python version. If the Python version isn't displayed,
try downloading and installing Python again.

Install the AWS IoT Device SDK for Python

To install the AWS IoT Device SDK for Python on your computer

1. Install v2 of the AWS IoT Device SDK for Python.

python3 -m pip install awsiotsdk

2. Clone the AWS IoT Device SDK for Python repository into the aws-iot-device-sdk-python-v2
directory of your home directory. This procedure refers to the base directory for the files you're
installing as home.

The actual location of the home directory depends on your operating system.

Linux/macOS

In macOS and Linux, the home directory is ~.

cd ~
git clone https://github.com/aws/aws-iot-device-sdk-python-v2.git

Configure your device 71

https://www.python.org/downloads/

AWS IoT Core Developer Guide

Windows

In Windows, you can find the home directory path by running this command in the cmd
window.

echo %USERPROFILE%
cd %USERPROFILE%
git clone https://github.com/aws/aws-iot-device-sdk-python-v2.git

Note

If you're using Windows PowerShell as opposed to cmd.exe, then use the following
command.

echo $home

For more information, see the AWS IoT Device SDK for Python GitHub repository.

Prepare to run the sample applications

To prepare your system to run the sample application

• Create the certs directory. Into the certs directory, copy the private key, device certificate,
and root CA certificate files you saved when you created and registered the thing object in
the section called “Create AWS IoT resources”. The file names of each file in the destination
directory should match those in the table.

The commands in the next section assume that your key and certificate files are stored on your
device as shown in this table.

Linux/macOS

Run this command to create the certs subdirectory that you'll use when you run the
sample applications.

mkdir ~/certs

Configure your device 72

https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Core Developer Guide

Into the new subdirectory, copy the files to the destination file paths shown in the
following table.

Certificate file names

File File path

Private key ~/certs/private.pem.key

Device certificate ~/certs/device.pem.crt

Root CA certificate ~/certs/Amazon-root-CA-1.pem

Run this command to list the files in the certs directory and compare them to those listed
in the table.

ls -l ~/certs

Windows

Run this command to create the certs subdirectory that you'll use when you run the
sample applications.

mkdir %USERPROFILE%\certs

Into the new subdirectory, copy the files to the destination file paths shown in the
following table.

Certificate file names

File File path

Private key %USERPROFILE%\certs\private
.pem.key

Device certificate %USERPROFILE%\certs\device.
pem.crt

Configure your device 73

AWS IoT Core Developer Guide

File File path

Root CA certificate %USERPROFILE%\certs\Amazon-
root-CA-1.pem

Run this command to list the files in the certs directory and compare them to those listed
in the table.

dir %USERPROFILE%\certs

Set up the policy and run the sample application

In this section, you'll set up your policy and run the pubsub.py sample script found in the aws-
iot-device-sdk-python-v2/samples directory of the AWS IoT Device SDK for Python. This
script shows how your device uses the MQTT library to publish and subscribe to MQTT messages.

The pubsub.py sample app subscribes to a topic, test/topic, publishes 10 messages to that
topic, and displays the messages as they're received from the message broker.

To run the pubsub.py sample script, you need the following information:

Application parameter values

Parameter Where to find the value

your-iot-endpoint 1. In the AWS IoT console, in the left menu,
choose Settings.

2. On the Settings page, your endpoint is
displayed in the Device data endpoint
section.

The your-iot-endpoint value has a format of: endpoint_id-
ats.iot.region.amazonaws.com, for example, a3qj468EXAMPLE-ats.iot.us-
west-2.amazonaws.com.

Before running the script, make sure your thing's policy provides permissions for the sample script
to connect, subscribe, publish, and receive.

Configure your device 74

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

To find and review the policy document for a thing resource

1. In the AWS IoT console, in the Things list, find the thing resource that represents your device.

2. Choose the Name link of the thing resource that represents your device to open the Thing
details page.

3. In the Thing details page, in the Certificates tab, choose the certificate that is attached to
the thing resource. There should only be one certificate in the list. If there is more than one,
choose the certificate whose files are installed on your device and that will be used to connect
to AWS IoT Core.

In the Certificate details page, in the Policies tab, choose the policy that's attached to the
certificate. There should only be one. If there is more than one, repeat the next step for each
to make sure that at least one policy grants the required access.

4. In the Policy overview page, find the JSON editor and choose Edit policy document to review
and edit the policy document as required.

5. The policy JSON is displayed in the following example. In the "Resource" element, replace
region:account with your AWS Region and AWS account in each of the Resource values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/test/topic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/test/topic"
]
 },

Configure your device 75

https://console.aws.amazon.com/iot/home#/thinghub

AWS IoT Core Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:region:account:client/test-*"
]
 }
]
}

Linux/macOS

To run the sample script on Linux/macOS

1. In your command line window, navigate to the ~/aws-iot-device-sdk-python-v2/
samples/node/pub_sub directory that the SDK created by using these commands.

cd ~/aws-iot-device-sdk-python-v2/samples

2. In your command line window, replace your-iot-endpoint as indicated and run this
command.

python3 pubsub.py --endpoint your-iot-endpoint --ca_file ~/certs/Amazon-root-
CA-1.pem --cert ~/certs/device.pem.crt --key ~/certs/private.pem.key

Windows

To run the sample app on a Windows PC

1. In your command line window, navigate to the %USERPROFILE%\aws-iot-device-sdk-
python-v2\samples directory that the SDK created and install the sample app by using
these commands.

cd %USERPROFILE%\aws-iot-device-sdk-python-v2\samples

2. In your command line window, replace your-iot-endpoint as indicated and run this
command.

Configure your device 76

AWS IoT Core Developer Guide

python3 pubsub.py --endpoint your-iot-endpoint --ca_file %USERPROFILE%
\certs\Amazon-root-CA-1.pem --cert %USERPROFILE%\certs\device.pem.crt --key
 %USERPROFILE%\certs\private.pem.key

The sample script:

1. Connects to the AWS IoT Core for your account.

2. Subscribes to the message topic, test/topic, and displays the messages it receives on that topic.

3. Publishes 10 messages to the topic, test/topic.

4. Displays output similar to the following:

Connected!
Subscribing to topic 'test/topic'...
Subscribed with QoS.AT_LEAST_ONCE
Sending 10 message(s)
Publishing message to topic 'test/topic': Hello World! [1]
Received message from topic 'test/topic': b'"Hello World! [1]"'
Publishing message to topic 'test/topic': Hello World! [2]
Received message from topic 'test/topic': b'"Hello World! [2]"'
Publishing message to topic 'test/topic': Hello World! [3]
Received message from topic 'test/topic': b'"Hello World! [3]"'
Publishing message to topic 'test/topic': Hello World! [4]
Received message from topic 'test/topic': b'"Hello World! [4]"'
Publishing message to topic 'test/topic': Hello World! [5]
Received message from topic 'test/topic': b'"Hello World! [5]"'
Publishing message to topic 'test/topic': Hello World! [6]
Received message from topic 'test/topic': b'"Hello World! [6]"'
Publishing message to topic 'test/topic': Hello World! [7]
Received message from topic 'test/topic': b'"Hello World! [7]"'
Publishing message to topic 'test/topic': Hello World! [8]
Received message from topic 'test/topic': b'"Hello World! [8]"'
Publishing message to topic 'test/topic': Hello World! [9]
Received message from topic 'test/topic': b'"Hello World! [9]"'
Publishing message to topic 'test/topic': Hello World! [10]
Received message from topic 'test/topic': b'"Hello World! [10]"'
10 message(s) received.
Disconnecting...
Disconnected!

Configure your device 77

AWS IoT Core Developer Guide

If you're having trouble running the sample app, review the section called “Troubleshooting
problems with the sample app”.

You can also add the --verbosity Debug parameter to the command line so the sample app
displays detailed messages about what it’s doing. That information might help you correct the
problem.

View messages from the sample app in the AWS IoT console

You can see the sample app's messages as they pass through the message broker by using the
MQTT test client in the AWS IoT console.

To view the MQTT messages published by the sample app

1. Review View MQTT messages with the AWS IoT MQTT client. This helps you learn how to use
the MQTT test client in the AWS IoT console to view MQTT messages as they pass through
the message broker.

2. Open the MQTT test client in the AWS IoT console.

3. In Subscribe to a topic, subscribe to the topic, test/topic.

4. In your command line window, run the sample app again and watch the messages in the MQTT
client in the AWS IoT console.

Linux/macOS

cd ~/aws-iot-device-sdk-python-v2/samples
python3 pubsub.py --topic test/topic --ca_file ~/certs/Amazon-root-CA-1.pem --
cert ~/certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-
endpoint

Windows

cd %USERPROFILE%\aws-iot-device-sdk-python-v2\samples
python3 pubsub.py --topic test/topic --ca_file %USERPROFILE%\certs\Amazon-root-
CA-1.pem --cert %USERPROFILE%\certs\device.pem.crt --key %USERPROFILE%\certs
\private.pem.key --endpoint your-iot-endpoint

For more information about MQTT and how AWS IoT Core supports the protocol, see MQTT.

Configure your device 78

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

AWS IoT Core Developer Guide

Run the Shared Subscription example in Python

AWS IoT Core supports Shared Subscriptions for both MQTT 3 and MQTT 5. Shared Subscriptions
allow multiple clients to share a subscription to a topic and only one client will receive messages
published to that topic using a random distribution. To use Shared Subscriptions, clients subscribe
to a Shared Subscription's topic filter: $share/{ShareName}/{TopicFilter}.

To set up the policy and run the Shared Subscription example

1. To run the Shared Subscription example, you must set up your thing's policy as documented in
MQTT 5 Shared Subscription.

2. To run the Shared Subscription example, run the following commands.

Linux/macOS

To run the sample script on Linux/macOS

1. In your command line window, navigate to the ~/aws-iot-device-sdk-python-
v2/samples directory that the SDK created by using these commands.

cd ~/aws-iot-device-sdk-python-v2/samples

2. In your command line window, replace your-iot-endpoint as indicated and run this
command.

python3 mqtt5_shared_subscription.py --endpoint your-iot-endpoint --ca_file
 ~/certs/Amazon-root-CA-1.pem --cert ~/certs/device.pem.crt --key ~/certs/
private.pem.key --group_identifier consumer

Windows

To run the sample app on a Windows PC

1. In your command line window, navigate to the %USERPROFILE%\aws-iot-device-
sdk-python-v2\samples directory that the SDK created and install the sample app
by using these commands.

cd %USERPROFILE%\aws-iot-device-sdk-python-v2\samples

Configure your device 79

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html#topicfilters
https://github.com/aws/aws-iot-device-sdk-python-v2/blob/main/samples/mqtt5_shared_subscription.md#mqtt5-shared-subscription

AWS IoT Core Developer Guide

2. In your command line window, replace your-iot-endpoint as indicated and run this
command.

python3 mqtt5_shared_subscription.py --endpoint your-iot-endpoint --ca_file
 %USERPROFILE%\certs\Amazon-root-CA-1.pem --cert %USERPROFILE%\certs
\device.pem.crt --key %USERPROFILE%\certs\private.pem.key --group_identifier
 consumer

Note

You can optionally specify a group identifier based on your needs when you run the
sample (e.g., --group_identifier consumer). If you don't specify one, python-
sample is the default group identifier.

3. The output in your command line can look like the following:

Publisher]: Lifecycle Connection Success
[Publisher]: Connected
Subscriber One]: Lifecycle Connection Success
[Subscriber One]: Connected
Subscriber Two]: Lifecycle Connection Success
[Subscriber Two]: Connected
[Subscriber One]: Subscribed to topic 'test/topic' in shared subscription group
 'consumer'.
[Subscriber One]: Full subscribed topic is: '$share/consumer/test/topic' with
 SubAck code: [<SubackReasonCode.GRANTED_QOS_1: 1>]
[Subscriber Two]: Subscribed to topic 'test/topic' in shared subscription group
 'consumer'.
[Subscriber Two]: Full subscribed topic is: '$share/consumer/test/topic' with
 SubAck code: [<SubackReasonCode.GRANTED_QOS_1: 1>]
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber Two] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [1]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber One] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [2]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber Two] Received a publish

Configure your device 80

AWS IoT Core Developer Guide

 Publish received message on topic: test/topic
 Message: b'"Hello World! [3]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber One] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [4]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber Two] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [5]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber One] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [6]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber Two] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [7]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber One] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [8]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber Two] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [9]"'
[Publisher]: Sent publish and got PubAck code: <PubackReasonCode.SUCCESS: 0>
[Subscriber One] Received a publish
 Publish received message on topic: test/topic
 Message: b'"Hello World! [10]"'
[Subscriber One]: Unsubscribed to topic 'test/topic' in shared subscription group
 'consumer'.
[Subscriber One]: Full unsubscribed topic is: '$share/consumer/test/topic' with
 UnsubAck code: [<UnsubackReasonCode.SUCCESS: 0>]
[Subscriber Two]: Unsubscribed to topic 'test/topic' in shared subscription group
 'consumer'.
[Subscriber Two]: Full unsubscribed topic is: '$share/consumer/test/topic' with
 UnsubAck code [<UnsubackReasonCode.SUCCESS: 0>]
Publisher]: Lifecycle Disconnected
[Publisher]: Lifecycle Stopped
[Publisher]: Fully stopped
Subscriber One]: Lifecycle Disconnected
[Subscriber One]: Lifecycle Stopped
[Subscriber One]: Fully stopped

Configure your device 81

AWS IoT Core Developer Guide

Subscriber Two]: Lifecycle Disconnected
[Subscriber Two]: Lifecycle Stopped
[Subscriber Two]: Fully stopped
Complete!

4. Open MQTT test client in the AWS IoT console. In Subscribe to a topic, subscribe to the
Shared Subscription’s topic such as: $share/consumer/test/topic. You can specify a
group identifier based on your needs when you run the sample (e.g., --group_identifier
consumer). If you don't specify a group identifier, the default value is python-sample. For
more information, see MQTT 5 Shared Subscription Python example and Shared Subscriptions
from AWS IoT Core Developer Guide.

In your command line window, run the sample app again and watch the distribution of
messages in your MQTT test client of the AWS IoT console and the command line.

Configure your device 82

https://github.com/aws/aws-iot-device-sdk-python-v2/blob/main/samples/mqtt5_shared_subscription.md#mqtt5-shared-subscription

AWS IoT Core Developer Guide

Connect a Raspberry Pi or other device

In this section, we'll configure a Raspberry Pi for use with AWS IoT. If you have another device that
you'd like to connect, the instructions for the Raspberry Pi include references that can help you
adapt these instructions to your device.

This normally takes about 20 minutes, but it can take longer if you have many system software
upgrades to install.

In this tutorial, you'll:

• Set up your device

• Install the required tools and libraries for the AWS IoT Device SDK

• Install AWS IoT Device SDK

• Install and run the sample app

• View messages from the sample app in the AWS IoT console

Important

Adapting these instructions to other devices and operating systems can be challenging.
You'll need to understand your device well enough to be able to interpret these instructions
and apply them to your device.
If you encounter difficulties while configuring your device for AWS IoT, you might try one of
the other device options as an alternative, such as Create a virtual device with Amazon EC2
or Use your Windows or Linux PC or Mac as an AWS IoT device.

Set up your device

The goal of this step is to collect what you'll need to configure your device so that it can start the
operating system (OS), connect to the internet, and allow you to interact with it at a command line
interface.

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, complete the steps described in Set up your AWS account
before you continue.

Configure your device 83

AWS IoT Core Developer Guide

• A Raspberry Pi 3 Model B or more recent model. This might work on earlier versions of the
Raspberry Pi, but they have not been tested.

• Raspberry Pi OS (32-bit) or later. We recommend using the latest version of the Raspberry Pi OS.
Earlier versions of the OS might work, but they have not been tested.

To run this example, you do not need to install the desktop with the graphical user interface
(GUI); however, if you're new to the Raspberry Pi and your Raspberry Pi hardware supports it,
using the desktop with the GUI might be easier.

• An Ethernet or WiFi connection.

• Keyboard, mouse, monitor, cables, power supplies, and other hardware required by your device.

Important

Before you continue to the next step, your device must have its operating system installed,
configured, and running. The device must be connected to the internet and you will need
to be able to access the device by using its command line interface. Command line access
can be through a directly-connected keyboard, mouse, and monitor, or by using an SSH
terminal remote interface.

If you are running an operating system on your Raspberry Pi that has a graphical user interface
(GUI), open a terminal window on the device and perform the following instructions in that
window. Otherwise, if you are connecting to your device by using a remote terminal, such as PuTTY,
open a remote terminal to your device and use that.

Install the required tools and libraries for the AWS IoT Device SDK

Before you install the AWS IoT Device SDK and sample code, make sure your system is up to date
and has the required tools and libraries to install the SDKs.

1. Update the operating system and install required libraries

Before you install an AWS IoT Device SDK, run these commands in a terminal window on your
device to update the operating system and install the required libraries.

sudo apt-get update

Configure your device 84

https://www.raspberrypi.org/products/
https://www.raspberrypi.org/downloads/raspberry-pi-os/

AWS IoT Core Developer Guide

sudo apt-get upgrade

sudo apt-get install cmake

sudo apt-get install libssl-dev

2. Install Git

If your device's operating system doesn't come with Git installed, you must install it to install
the AWS IoT Device SDK for JavaScript.

a. Test to see if Git is already installed by running this command.

git --version

b. If the previous command returns the Git version, Git is already installed and you can skip
to Step 3.

c. If an error is displayed when you run the git command, install Git by running this
command.

sudo apt-get install git

d. Test again to see if Git is installed by running this command.

git --version

e. If Git is installed, continue to the next section. If not, troubleshoot and correct the error
before continuing. You need Git to install the AWS IoT Device SDK for JavaScript.

Install AWS IoT Device SDK

Install the AWS IoT Device SDK.

Python

In this section, you'll install Python, its development tools, and the AWS IoT Device SDK for
Python on your device. These instructions are for a Raspberry Pi running the latest Raspberry Pi

Configure your device 85

AWS IoT Core Developer Guide

OS. If you have another device or are using another operating system, you might need to adapt
these instructions for your device.

1. Install Python and its development tools

The AWS IoT Device SDK for Python requires Python v3.5 or later to be installed on your
Raspberry Pi.

In a terminal window to your device, run these commands.

1. Run this command to determine the version of Python installed on your device.

python3 --version

If Python is installed, it will display its version.

2. If the version displayed is Python 3.5 or greater, you can skip to Step 2.

3. If the version displayed is less than Python 3.5, you can install the correct version by
running this command.

sudo apt install python3

4. Run this command to confirm that the correct version of Python is now installed.

python3 --version

2. Test for pip3

In a terminal window to your device, run these commands.

1. Run this command to see if pip3 is installed.

pip3 --version

2. If the command returns a version number, pip3 is installed and you can skip to Step 3.

3. If the previous command returns an error, run this command to install pip3.

sudo apt install python3-pip

4. Run this command to see if pip3 is installed.

Configure your device 86

AWS IoT Core Developer Guide

pip3 --version

3. Install the current AWS IoT Device SDK for Python

Install the AWS IoT Device SDK for Python and download the sample apps to your device.

On your device, run these commands.

cd ~
python3 -m pip install awsiotsdk

git clone https://github.com/aws/aws-iot-device-sdk-python-v2.git

JavaScript

In this section, you'll install Node.js, the npm package manager, and the AWS IoT Device SDK
for JavaScript on your device. These instructions are for a Raspberry Pi running the Raspberry Pi
OS. If you have another device or are using another operating system, you might need to adapt
these instructions for your device.

1. Install the latest version of Node.js

The AWS IoT Device SDK for JavaScript requires Node.js and the npm package manager to
be installed on your Raspberry Pi.

a. Download the latest version of the Node repository by entering this command.

cd ~
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

b. Install Node and npm.

sudo apt-get install -y nodejs

c. Verify the installation of Node.

node -v

Configure your device 87

AWS IoT Core Developer Guide

Confirm that the command displays the Node version. This tutorial requires Node
v10.0 or later. If the Node version isn't displayed, try downloading the Node repository
again.

d. Verify the installation of npm.

npm -v

Confirm that the command displays the npm version. If the npm version isn't
displayed, try installing Node and npm again.

e. Restart the device.

sudo shutdown -r 0

Continue after the device restarts.

2. Install the AWS IoT Device SDK for JavaScript

Install the AWS IoT Device SDK for JavaScript on your Raspberry Pi.

a. Clone the AWS IoT Device SDK for JavaScript repository into the aws-iot-device-
sdk-js-v2 directory of your home directory. On the Raspberry Pi, the home directory
is ~/, which is used as the home directory in the following commands. If your device
uses a different path for the home directory, you must replace ~/ with the correct path
for your device in the following commands.

These commands create the ~/aws-iot-device-sdk-js-v2 directory and copy the
SDK code into it.

cd ~
git clone https://github.com/aws/aws-iot-device-sdk-js-v2.git

b. Change to the aws-iot-device-sdk-js-v2 directory that you created in the
preceding step and run npm install to install the SDK. The command npm install
will invoke the aws-crt library build that can take a few minutes to complete.

cd ~/aws-iot-device-sdk-js-v2
npm install

Configure your device 88

AWS IoT Core Developer Guide

Install and run the sample app

In this section, you'll install and run the pubsub sample app found in the AWS IoT Device SDK. This
app shows how your device uses the MQTT library to publish and subscribe to MQTT messages. The
sample app subscribes to a topic, topic_1, publishes 10 messages to that topic, and displays the
messages as they're received from the message broker.

Install the certificate files

The sample app requires the certificate files that authenticate the device to be installed on the
device.

To install the device certificate files for the sample app

1. Create a certs subdirectory in your home directory by running these commands.

cd ~
mkdir certs

2. Into the ~/certs directory, copy the private key, device certificate, and root CA certificate that
you created earlier in the section called “Create AWS IoT resources”.

How you copy the certificate files to your device depends on the device and operating system
and isn't described here. However, if your device supports a graphical user interface (GUI) and
has a web browser, you can perform the procedure described in the section called “Create AWS
IoT resources” from your device's web browser to download the resulting files directly to your
device.

The commands in the next section assume that your key and certificate files are stored on the
device as shown in this table.

Certificate file names

File File path

Root CA certificate ~/certs/Amazon-root-CA-1.pem

Device certificate ~/certs/device.pem.crt

Private key ~/certs/private.pem.key

Configure your device 89

AWS IoT Core Developer Guide

To run the sample app, you need the following information:

Application parameter values

Parameter Where to find the value

your-iot-endpoint In the AWS IoT console, choose All devices,
and then choose Things.

On the Settings page in the AWS IoT menu.
Your endpoint is displayed in the Device data
endpoint section.

The your-iot-endpoint value has a format of: endpoint_id-
ats.iot.region.amazonaws.com, for example, a3qj468EXAMPLE-ats.iot.us-
west-2.amazonaws.com.

Python

To install and run the sample app

1. Navigate to the sample app directory.

cd ~/aws-iot-device-sdk-python-v2/samples

2. In the command line window, replace your-iot-endpoint as indicated and run this
command.

python3 pubsub.py --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --
cert ~/certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-
endpoint

3. Observe that the sample app:

1. Connects to the AWS IoT service for your account.

2. Subscribes to the message topic, topic_1, and displays the messages it receives on that
topic.

3. Publishes 10 messages to the topic, topic_1.

4. Displays output similar to the following:

Configure your device 90

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Connecting to a3qEXAMPLEffp-ats.iot.us-west-2.amazonaws.com with client ID
 'test-0c8ae2ff-cc87-49d2-a82a-ae7ba1d0ca5a'...
Connected!
Subscribing to topic 'topic_1'...
Subscribed with QoS.AT_LEAST_ONCE
Sending 10 message(s)
Publishing message to topic 'topic_1': Hello World! [1]
Received message from topic 'topic_1': b'Hello World! [1]'
Publishing message to topic 'topic_1': Hello World! [2]
Received message from topic 'topic_1': b'Hello World! [2]'
Publishing message to topic 'topic_1': Hello World! [3]
Received message from topic 'topic_1': b'Hello World! [3]'
Publishing message to topic 'topic_1': Hello World! [4]
Received message from topic 'topic_1': b'Hello World! [4]'
Publishing message to topic 'topic_1': Hello World! [5]
Received message from topic 'topic_1': b'Hello World! [5]'
Publishing message to topic 'topic_1': Hello World! [6]
Received message from topic 'topic_1': b'Hello World! [6]'
Publishing message to topic 'topic_1': Hello World! [7]
Received message from topic 'topic_1': b'Hello World! [7]'
Publishing message to topic 'topic_1': Hello World! [8]
Received message from topic 'topic_1': b'Hello World! [8]'
Publishing message to topic 'topic_1': Hello World! [9]
Received message from topic 'topic_1': b'Hello World! [9]'
Publishing message to topic 'topic_1': Hello World! [10]
Received message from topic 'topic_1': b'Hello World! [10]'
10 message(s) received.
Disconnecting...
Disconnected!

If you're having trouble running the sample app, review the section called “Troubleshooting
problems with the sample app”.

You can also add the --verbosity Debug parameter to the command line so the sample
app displays detailed messages about what it’s doing. That information might provide you
the help you need to correct the problem.

Configure your device 91

AWS IoT Core Developer Guide

JavaScript

To install and run the sample app

1. In your command line window, navigate to the ~/aws-iot-device-sdk-js-v2/
samples/node/pub_sub directory that the SDK created and install the sample app by
using these commands. The command npm install will invoke the aws-crt library build
that can take a few minutes to complete.

cd ~/aws-iot-device-sdk-js-v2/samples/node/pub_sub
npm install

2. In the command line window, replace your-iot-endpoint as indicated and run this
command.

node dist/index.js --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --
cert ~/certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-
endpoint

3. Observe that the sample app:

1. Connects to the AWS IoT service for your account.

2. Subscribes to the message topic, topic_1, and displays the messages it receives on that
topic.

3. Publishes 10 messages to the topic, topic_1.

4. Displays output similar to the following:

Publish received on topic topic_1
{"message":"Hello world!","sequence":1}
Publish received on topic topic_1
{"message":"Hello world!","sequence":2}
Publish received on topic topic_1
{"message":"Hello world!","sequence":3}
Publish received on topic topic_1
{"message":"Hello world!","sequence":4}
Publish received on topic topic_1
{"message":"Hello world!","sequence":5}
Publish received on topic topic_1
{"message":"Hello world!","sequence":6}
Publish received on topic topic_1

Configure your device 92

AWS IoT Core Developer Guide

{"message":"Hello world!","sequence":7}
Publish received on topic topic_1
{"message":"Hello world!","sequence":8}
Publish received on topic topic_1
{"message":"Hello world!","sequence":9}
Publish received on topic topic_1
{"message":"Hello world!","sequence":10}

If you're having trouble running the sample app, review the section called “Troubleshooting
problems with the sample app”.

You can also add the --verbosity Debug parameter to the command line so the sample
app displays detailed messages about what it’s doing. That information might provide you
the help you need to correct the problem.

View messages from the sample app in the AWS IoT console

You can see the sample app's messages as they pass through the message broker by using the
MQTT test client in the AWS IoT console.

To view the MQTT messages published by the sample app

1. Review View MQTT messages with the AWS IoT MQTT client. This helps you learn how to use
the MQTT test client in the AWS IoT console to view MQTT messages as they pass through
the message broker.

2. Open the MQTT test client in the AWS IoT console.

3. Subscribe to the topic, topic_1.

4. In your command line window, run the sample app again and watch the messages in the MQTT
client in the AWS IoT console.

Python

cd ~/aws-iot-device-sdk-python-v2/samples
python3 pubsub.py --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --
cert ~/certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-
endpoint

Configure your device 93

AWS IoT Core Developer Guide

JavaScript

cd ~/aws-iot-device-sdk-js-v2/samples/node/pub_sub
node dist/index.js --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --
cert ~/certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-
endpoint

Troubleshooting problems with the sample app

If you encounter an error when you try to run the sample app, here are some things to check.

Check the certificate

If the certificate is not active, AWS IoT will not accept any connection attempts that use it for
authorization. When creating your certificate, it's easy to overlook the Activate button. Fortunately,
you can activate your certificate from the AWS IoT console.

To check your certificate's activation

1. In the AWS IoT console, in the left menu, choose Secure, and then choose Certificates.

2. In the list of certificates, find the certificate you created for the exercise and check its status in
the Status column.

If you don't remember the certificate's name, check for any that are Inactive to see if they
might be the one you're using.

Choose the certificate in the list to open its detail page. In the detail page, you can see its
Create date to help you identify the certificate.

3. To activate an inactive certificate, from the certificate's detail page, choose Actions and then
choose Activate.

If you found the correct certificate and it's active, but you're still having problems running the
sample app, check its policy as the next step describes.

You can also try to create a new thing and a new certificate by following the steps in the section
called “Create a thing object”. If you create a new thing, you will need to give it a new thing name
and download the new certificate files to your device.

Configure your device 94

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Check the policy attached to the certificate

Policies authorize actions in AWS IoT. If the certificate used to connect to AWS IoT does not have
a policy, or does not have a policy that allows it to connect, the connection will be refused, even if
the certificate is active.

To check the policies attached to a certificate

1. Find the certificate as described in the previous item and open its details page.

2. In the left menu of the certificate's details page, choose Policies to see the policies attached to
the certificate.

3. If there are no policies attached to the certificate, add one by choosing the Actions menu, and
then choosing Attach policy.

Choose the policy that you created earlier in the section called “Create AWS IoT resources”.

4. If there is a policy attached, choose the policy tile to open its details page.

In the details page, review the Policy document to make sure it contains the same information
as the one you created in the section called “Create an AWS IoT policy”.

Check the command line

Make sure you used the correct command line for your system. The commands used on Linux and
macOS systems are often different from those used on Windows systems.

Check the endpoint address

Review the command you entered and double-check the endpoint address in your command to the
one in your AWS IoT console.

Check the file names of the certificate files

Compare the file names in the command you entered to the file names of the certificate files in the
certs directory.

Some systems might require the file names to be in quotes to work correctly.

Check the SDK installation

Make sure that your SDK installation is complete and correct.

Configure your device 95

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

If in doubt, reinstall the SDK on your device. In most cases, that's a matter of finding the section of
the tutorial titled Install the AWS IoT Device SDK for SDK language and following the procedure
again.

If you are using the AWS IoT Device SDK for JavaScript, remember to install the sample apps
before you try to run them. Installing the SDK doesn't automatically install the sample apps. The
sample apps must be installed manually after the SDK has been installed.

View MQTT messages with the AWS IoT MQTT client

This section describes how to use the AWS IoT MQTT test client in the AWS IoT console to watch
the MQTT messages sent and received by AWS IoT. The example used in this section relates to the
examples used in Getting started with AWS IoT Core; however, you can replace the topicName
used in the examples with any topic name or topic filter used by your IoT solution.

Devices publish MQTT messages that are identified by topics to communicate their state to AWS
IoT, and AWS IoT publishes MQTT messages to inform the devices and apps of changes and events.
You can use the MQTT client to subscribe to these topics and watch the messages as they occur.
You can also use the MQTT test client to publish MQTT messages to subscribed devices and
services in your AWS account.

Contents

• Viewing MQTT messages in the MQTT client

• Publishing MQTT messages from the MQTT client

• Testing Shared Subscriptions in the MQTT client

Viewing MQTT messages in the MQTT client

To view MQTT messages in the MQTT test client

1. In the AWS IoT console, in the left menu, choose Test and then choose MQTT test client.

View MQTT messages with the AWS IoT MQTT client 96

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

2. In the Subscribe to a topic tab, enter the topicName to subscribe to the topic on which your
device publishes. For the getting started sample app, subscribe to #, which subscribes to all
message topics.

Continuing with the getting started example, on the Subscribe to a topic tab, in the Topic
filter field, enter #, and then choose Subscribe.

The topic message log page, # opens and # appears in the Subscriptions list. If the device that
you configured in the section called “Configure your device” is running the example program,
you should see the messages it sends to AWS IoT in the # message log. The message log
entries will appear below the Publish section when messages with the subscribed topic are
received by AWS IoT.

Viewing MQTT messages in the MQTT client 97

AWS IoT Core Developer Guide

3. On the # message log page, you can also publish messages to a topic, but you'll need to
specify the topic name. You cannot publish to the # topic.

Messages published to subscribed topics appear in the message log as they are received, with
the most recent message first.

Troubleshooting MQTT messages

Use the wild card topic filter

If your messages are not showing up in the message log as you expect, try subscribing to a wild
card topic filter as described in Topic filters. The MQTT multi-level wild card topic filter is the hash
or pound sign (#) and can be used as the topic filter in the Subscription topic field.

Subscribing to the # topic filter subscribes to every topic received by the message broker. You can
narrow the filter down by replacing elements of the topic filter path with a # multi-level wild card
character or the '+' single-level wild-card character.

When using wild cards in a topic filter

• The multi-level wild card character must be the last character in the topic filter.

• The topic filter path can have only one single-level wild card character per topic level.

For example:

Topic filter Displays messages with

Any topic name

topic_1/# A topic name that starts with topic_1/

topic_1/level_2/# A topic name that starts with topic_1/l
evel_2/

topic_1/+/level_3 A topic name that starts with topic_1/, ends
with /level_3, and has one element of any
value in between.

Viewing MQTT messages in the MQTT client 98

AWS IoT Core Developer Guide

For more information on topic filters, see Topic filters.

Check for topic name errors

MQTT topic names and topic filters are case sensitive. If, for example, your device is publishing
messages to Topic_1 (with a capital T) instead of topic_1, the topic to which you subscribed,
its messages would not appear in the MQTT test client. Subscribing to the wild card topic filter,
however would show that the device is publishing messages and you could see that it was using a
topic name that was not the one you expected.

Publishing MQTT messages from the MQTT client

To publish a message to an MQTT topic

1. On the MQTT test client page, in the Publish to a topic tab, in the Topic name field, enter the
topicName of your message. In this example, use my/topic.

Note

Do not use personally identifiable information in topic names, whether using them
in the MQTT test client or in your system implementation. Topic names can appear in
unencrypted communications and reports.

2. In the message payload window, enter the following JSON:

{
 "message": "Hello, world",
 "clientType": "MQTT test client"
}

3. Choose Publish to publish your message to AWS IoT.

Note

Make sure you are subscribed to the my/topic topic before publishing your message.

Publishing MQTT messages from the MQTT client 99

AWS IoT Core Developer Guide

4. In the Subscriptions list, choose my/topic to see the message. You should see the message
appear in the MQTT test client below the publish message payload window.

You can publish MQTT messages to other topics by changing the topicName in the Topic name
field and choosing the Publish button.

Important

When you create multiple subscriptions with overlapping topics (e.g., probe1/temperature
and probe1/#), there is a possibility that a single message published to a topic matching
both subscriptions will be delivered multiple times, once for each overlapping subscription.

Publishing MQTT messages from the MQTT client 100

AWS IoT Core Developer Guide

Testing Shared Subscriptions in the MQTT client

This section describes how to use the AWS IoT MQTT client in the AWS IoT console to watch the
MQTT messages sent and received by AWS IoT using Shared Subscriptions. ??? allow multiple
clients to share a subscription to a topic with only one client receiving messages published to that
topic using a random distribution. To simulate multiple MQTT clients (in this example, two MQTT
clients) sharing the same subscription, you open the AWS IoT MQTT client in the AWS IoT console
from multiple web browsers. The example used in this section doesn't relate to the examples used
in Getting started with AWS IoT Core. For more information, see Shared Subscriptions.

To share a subscription to an MQTT topic

1. In the AWS IoT console, in the navigation pane, choose Test and then choose MQTT test client.

2. In the Subscribe to a topic tab, enter the topicName to subscribe to the topic on which your
device publishes. To use Shared Subscriptions, subscribe to a Shared Subscription's topic filter
as follows:

$share/{ShareName}/{TopicFilter}

An example topic filter can be $share/group1/topic1, which subscribes to the message
topic topic1.

3. Open another web browser and repeat step1 and step2. In this way, you are simulating two
different MQTT clients that share the same subscription $share/group1/topic1.

4. Choose one MQTT client, in the Publish to a topic tab, in the Topic name field, enter the
topicName of your message. In this example, use topic1. Try publishing the message a few
times. From the Subscriptions list of both MQTT clients, you should be able to see that the

Testing Shared Subscriptions in the MQTT client 101

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

clients receive the message using a random distribution. In this example, we publish the same
message "Hello from AWS IoT console" three times. The MQTT client on the left received the
message twice and the MQTT client on the right received the message once.

Testing Shared Subscriptions in the MQTT client 102

AWS IoT Core Developer Guide

Connecting to AWS IoT Core

AWS IoT Core supports connections with IoT devices, wireless gateways, services, and apps. Devices
connect to AWS IoT Core so they can send data to and receive data from AWS IoT services and
other devices. Apps and other services also connect to AWS IoT Core to control and manage the IoT
devices and process the data from your IoT solution. This section describes how to choose the best
way to connect and communicate with AWS IoT Core for each aspect of your IoT solution.

There are several ways to interact with AWS IoT. Apps and services can use the AWS IoT
Core - control plane endpoints and devices can connect to AWS IoT Core by using the AWS IoT
device endpoints or AWS IoT Core for LoRaWAN Regions and endpoints.

AWS IoT Core - control plane endpoints

The AWS IoT Core - control plane endpoints provide access to functions that control and manage
your AWS IoT solution.

• Endpoints

AWS IoT Core - control plane endpoints 103

https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-lorawan.html#connect-iot-lorawan-regions-endpoints

AWS IoT Core Developer Guide

The AWS IoT Core - control plane and AWS IoT Core Device Advisor control plane endpoints
are Region specific and are listed in AWS IoT Core Endpoints and Quotas. The formats of the
endpoints are as follows.

Endpoint purpose Endpoint format Serves

AWS IoT
Core - control plane

iot.aws-regio
n .amazonaws.com

AWS IoT Control Plane API

AWS IoT Core Device
Advisor - control plane

api.iotdeviceadvis
or. aws-regio
n .amazonaws.com

AWS IoT Core Device Advisor
Control Plane API

• SDKs and tools

The AWS SDKs provide language-specific support for the AWS IoT Core APIs, and the APIs
of other AWS services. The AWS Mobile SDKs provide app developers with platform-specific
support for the AWS IoT Core API, and other AWS services on mobile devices.

The AWS CLI provides command-line access to the functions provided by the AWS IoT service
endpoints. AWS Tools for PowerShell provides tools to manage AWS services and resources in the
PowerShell scripting environment.

• Authentication

The service endpoints use IAM users and AWS credentials to authenticate users.

• Learn more

For more information and links to SDK references, see the section called “Connecting to AWS IoT
Core service endpoints”.

AWS IoT device endpoints

The AWS IoT device endpoints support communication between your IoT devices and AWS IoT.

• Endpoints

AWS IoT device endpoints 104

https://docs.aws.amazon.com/general/latest/gr/iot-core.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Core_Device_Advisor.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Core_Device_Advisor.html
https://aws.amazon.com/tools/#SDKs
https://aws.amazon.com/tools/#Mobile_SDKs
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/

AWS IoT Core Developer Guide

The device endpoints support AWS IoT Core and AWS IoT Device Management functions. They
are specific to your AWS account and you can see what they are by using the describe-endpoint
command.

Endpoint purpose Endpoint format Serves

AWS IoT Core - data plane See ???. AWS IoT Data Plane API

AWS IoT Device Managemen
t - jobs data

See ???. AWS IoT Jobs Data Plane API

AWS IoT Device Advisor -
data plane

See ???. Not applicable

AWS IoT Device Managemen
t - Fleet Hub

Not applicable Not applicable

AWS IoT Device Managemen
t - secure tunneling

api.tunneling.iot.
aws-region .amazonaw
s.com

AWS IoT Secure Tunneling
API

For more information about these endpoints and the functions that they support, see the section
called “AWS IoT device data and service endpoints”.

• SDKs

The AWS IoT Device SDKs provide language-specific support for the Message Queueing
Telemetry Transport (MQTT) and WebSocket Secure (WSS) protocols, which devices use
to communicate with AWS IoT. AWS Mobile SDKs also provide support for MQTT device
communications, AWS IoT APIs, and the APIs of other AWS services on mobile devices.

• Authentication

The device endpoints use X.509 certificates or AWS IAM users with credentials to authenticate
users.

• Learn more

For more information and links to SDK references, see the section called “AWS IoT Device SDKs”.

AWS IoT device endpoints 105

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Data_Plane.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Jobs_Data_Plane.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Secure_Tunneling.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Secure_Tunneling.html

AWS IoT Core Developer Guide

AWS IoT Core for LoRaWAN gateways and devices

AWS IoT Core for LoRaWAN connects wireless gateways and devices to AWS IoT Core.

• Endpoints

AWS IoT Core for LoRaWAN manages the gateway connections to account and Region-specific
AWS IoT Core endpoints. Gateways can connect to your account's Configuration and Update
Server (CUPS) endpoint that AWS IoT Core for LoRaWAN provides.

Endpoint purpose Endpoint format Serves

Configuration and Update
Server (CUPS)

account-specific-
prefix .cups.lor
awan. aws-regio
n .amazonaws.com:443

Gateway communication
with the Configuration and
Update Server provided by
AWS IoT Core for LoRaWAN

LoRaWAN Network Server
(LNS)

account-specific-
prefix .gateway.
lorawan. aws-regio
n .amazonaws.com:443

Gateway communication
with the LoRaWAN Network
Server provided by AWS IoT
Core for LoRaWAN

• SDKs

The AWS IoT Wireless API that AWS IoT Core for LoRaWAN is built on is supported by the AWS
SDK. For more information, see AWS SDKs and Toolkits.

• Authentication

AWS IoT Core for LoRaWAN device communications use X.509 certificates to secure
communications with AWS IoT.

• Learn more

For more information about configuring and connecting wireless devices, see AWS IoT Core for
LoRaWAN Regions and endpoints.

AWS IoT Core for LoRaWAN gateways and devices 106

https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/lorawan-getting-started.html
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/lorawan-getting-started.html

AWS IoT Core Developer Guide

Connecting to AWS IoT Core service endpoints

You can access the features of the AWS IoT Core - control plane by using the AWS CLI, the AWS
SDK for your preferred language, or by calling the REST API directly. We recommend using the
AWS CLI or an AWS SDK to interact with AWS IoT Core because they incorporate the best practices
for calling AWS services. Calling the REST APIs directly is an option, but you must provide the
necessary security credentials that enable access to the API.

Note

IoT devices should use AWS IoT Device SDKs. The Device SDKs are optimized for use on
devices, support MQTT communication with AWS IoT, and support the AWS IoT APIs
most used by devices. For more information about the Device SDKs and the features they
provide, see AWS IoT Device SDKs.
Mobile devices should use AWS Mobile SDKs. The Mobile SDKs provide support for AWS
IoT APIs, MQTT device communications, and the APIs of other AWS services on mobile
devices. For more information about the Mobile SDKs and the features they provide, see
AWS Mobile SDKs.

You can use AWS Amplify tools and resources in web and mobile applications to connect more
easily to AWS IoT Core. For more information about connecting to AWS IoT Core by using Amplify,
see Pub Sub Getting Started in the Amplify documentation.

The following sections describe the tools and SDKs that you can use to develop and interact with
AWS IoT and other AWS services. For the complete list of AWS tools and development kits that are
available to build and manage apps on AWS, see Tools to Build on AWS.

AWS CLI for AWS IoT Core

The AWS CLI provides command-line access to AWS APIs.

• Installation

For information about how to install the AWS CLI, see Installing the AWS CLI.

• Authentication

The AWS CLI uses credentials from your AWS account.

Connecting to AWS IoT Core service endpoints 107

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.amplify.aws/lib/pubsub/getting-started/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Core Developer Guide

• Reference

For information about the AWS CLI commands for these AWS IoT Core services, see:

• AWS CLI Command Reference for IoT

• AWS CLI Command Reference for IoT data

• AWS CLI Command Reference for IoT jobs data

• AWS CLI Command Reference for IoT secure tunneling

For tools to manage AWS services and resources in the PowerShell scripting environment, see AWS
Tools for PowerShell.

AWS SDKs

With AWS SDKs, your apps and compatible devices can call AWS IoT APIs and the APIs of other
AWS services. This section provides links to the AWS SDKs and to the API reference documentation
for the APIs of the AWS IoT Core services.

The AWS SDKs support these AWS IoT Core APIs

• AWS IoT

• AWS IoT Data Plane

• AWS IoT Jobs Data Plane

• AWS IoT Secure Tunneling

• AWS IoT Wireless

C++

To install the AWS SDK for C++ and use it to connect to AWS IoT:

1. Follow the instructions in Getting Started Using the AWS SDK for C++

These instructions describe how to:

• Install and build the SDK from source files

• Provide credentials to use the SDK with your AWS account

• Initialize and shutdown the SDK in your app or service

• Create a CMake project to build your app or service

AWS SDKs 108

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-data/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-jobs-data/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsecuretunneling/index.html
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/iot/latest/apireference/welcome.html
https://docs.aws.amazon.com/iot/latest/apireference/welcome.html
https://docs.aws.amazon.com/iot/latest/apireference/welcome.html
https://docs.aws.amazon.com/iot/latest/apireference/welcome.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/welcome.html
https://aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/getting-started.html

AWS IoT Core Developer Guide

2. Create and run a sample app. For sample apps that use the AWS SDK for C++, see AWS SDK
for C++ Code Examples.

Documentation for the AWS IoT Core services that the AWS SDK for C++ supports

• AWS::IoTClient" reference documentation

• Aws::IoTDataPlane::IoTDataPlaneClient reference documentation

• Aws::IoTJobsDataPlane::IoTJobsDataPlaneClient reference documentation

• Aws::IoTSecureTunneling::IoTSecureTunnelingClient reference documentation

Go

To install the AWS SDK for Go and use it to connect to AWS IoT:

1. Follow the instructions in Getting Started with the AWS SDK for Go

These instructions describe how to:

• Install the AWS SDK for Go

• Get access keys for the SDK to access your AWS account

• Import packages into the source code of our apps or services

2. Create and run a sample app. For sample apps that use the AWS SDK for Go, see AWS SDK for
Go Code Examples.

Documentation for the AWS IoT Core services that the AWS SDK for Go supports

• IoT reference documentation

• IoTDataPlane reference documentation

• IoTJobsDataPlane reference documentation

• IoTSecureTunneling reference documentation

Java

To install the AWS SDK for Java and use it to connect to AWS IoT:

1. Follow the instructions in Getting Started with AWS SDK for Java 2.x

AWS SDKs 109

https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/programming-services.html
https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/programming-services.html
https://sdk.amazonaws.com/cpp/api/LATEST/root/html/index.html
http://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_io_t_data_plane_1_1_io_t_data_plane_client.html
http://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_io_t_jobs_data_plane_1_1_io_t_jobs_data_plane_client.html
http://sdk.amazonaws.com/cpp/api/LATEST/class_aws_1_1_io_t_secure_tunneling_1_1_io_t_secure_tunneling_client.html
https://aws.amazon.com/sdk-for-go/
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/setting-up.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/common-examples.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/common-examples.html
https://docs.aws.amazon.com/sdk-for-go/api/service/iot/
https://docs.aws.amazon.com/sdk-for-go/api/service/iotdataplane/
https://docs.aws.amazon.com/sdk-for-go/api/service/iotjobsdataplane/
https://docs.aws.amazon.com/sdk-for-go/api/service/iotsecuretunneling/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/getting-started.html

AWS IoT Core Developer Guide

These instructions describe how to:

• Sign up for AWS and Create an IAM User

• Download the SDK

• Set up AWS Credentials and Region

• Use the SDK with Apache Maven

• Use the SDK with Gradle

2. Create and run a sample app using one of the AWS SDK for Java 2.x Code Examples.

3. Review the SDK API reference documentation

Documentation for the AWS IoT Core services that the AWS SDK for Java supports

• IotClient reference documentation

• IotDataPlaneClient reference documentation

• IotJobsDataPlaneClient reference documentation

• IoTSecureTunnelingClient reference documentation

JavaScript

To install the AWS SDK for JavaScript and use it to connect to AWS IoT:

1. Follow the instructions in Setting Up the AWS SDK for JavaScript. These instructions apply to
using the AWS SDK for JavaScript in the browser and with Node.JS. Make sure you follow the
directions that apply to your installation.

These instructions describe how to:

• Check for the prerequisites

• Install the SDK for JavaScript

• Load the SDK for JavaScript

2. Create and run a sample app to get started with the SDK as the getting started option for
your environment describes.

• Get started with the AWS SDK for JavaScript in the Browser, or

• Get started with the AWS SDK for JavaScript in Node.js

AWS SDKs 110

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/advanced-topics.html
https://sdk.amazonaws.com/java/api/latest/
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/iot/IotClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/iotdataplane/IotDataPlaneClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/iotjobsdataplane/IotJobsDataPlaneClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/iotsecuretunneling/IoTSecureTunnelingClient.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html

AWS IoT Core Developer Guide

Documentation for the AWS IoT Core services that the AWS SDK for JavaScript supports

• AWS.Iot reference documentation

• AWS.IotData reference documentation

• AWS.IotJobsDataPlane reference documentation

• AWS.IotSecureTunneling reference documentation

.NET

To install the AWS SDK for .NET and use it to connect to AWS IoT:

1. Follow the instructions in Setting up your AWS SDK for .NET environment

2. Follow the instructions in Setting up your AWS SDK for .NET project

These instructions describe how to:

• Start a new project

• Obtain and configure AWS credentials

• Install AWS SDK packages

3. Create and run one of the sample programs in Working with AWS services in the AWS SDK
for .NET

4. Review the SDK API reference documentation

Documentation for the AWS IoT Core services that the AWS SDK for .NET supports

• Amazon.IoT.Model reference documentation

• Amazon.IotData.Model reference documentation

• Amazon.IoTJobsDataPlane.Model reference documentation

• Amazon.IoTSecureTunneling.Model reference documentation

PHP

To install the AWS SDK for PHP and use it to connect to AWS IoT:

1. Follow the instructions in Getting Started with the AWS SDK for PHP Version 3

These instructions describe how to:

AWS SDKs 111

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Iot.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IotData.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IoTJobsDataPlane.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IoTSecureTunneling.html
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-setup.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/tutorials-examples.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/tutorials-examples.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/NIoTModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IotData/NIotDataModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoTJobsDataPlane/NIoTJobsDataPlaneModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoTSecureTunneling/NIoTSecureTunnelingModel.html
https://aws.amazon.com/sdk-for-php/
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/getting-started_index.html

AWS IoT Core Developer Guide

• Check for the prerequisites

• Install the SDK

• Apply the SDK to a PHP script

2. Create and run a sample app using one of the AWS SDK for PHP Version 3 Code Examples

Documentation for the AWS IoT Core services that the AWS SDK for PHP supports

• IoTClient reference documentation

• IoTDataPlaneClient reference documentation

• IoTJobsDataPlaneClient reference documentation

• IoTSecureTunnelingClient reference documentation

Python

To install the AWS SDK for Python (Boto3) and use it to connect to AWS IoT:

1. Follow the instructions in the AWS SDK for Python (Boto3) Quickstart

These instructions describe how to:

• Install the SDK

• Configure the SDK

• Use the SDK in your code

2. Create and run a sample program that uses the AWS SDK for Python (Boto3)

This program displays the account's currently configured logging options. After you install
the SDK and configure it for your account, you should be able to run this program.

import boto3
import json

initialize client
iot = boto3.client('iot')

get current logging levels, format them as JSON, and write them to stdout
response = iot.get_v2_logging_options()
print(json.dumps(response, indent=4))

AWS SDKs 112

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/examples_index.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Iot.IotClient.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.IotDataPlane.IotDataPlaneClient.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.IoTJobsDataPlane.IoTJobsDataPlaneClient.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.IoTSecureTunneling.IoTSecureTunnelingClient.html
https://aws.amazon.com/sdk-for-python/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

AWS IoT Core Developer Guide

For more information about the function used in this example, see the section called
“Configure AWS IoT logging”.

Documentation for the AWS IoT Core services that the AWS SDK for Python (Boto3) supports

• IoT reference documentation

• IoTDataPlane reference documentation

• IoTJobsDataPlane reference documentation

• IoTSecureTunneling reference documentation

Ruby

To install the AWS SDK for Ruby and use it to connect to AWS IoT:

• Follow the instructions in Getting Started with the AWS SDK for Ruby

These instructions describe how to:

• Install the SDK

• Configure the SDK

• Create and run the Hello World Tutorial

Documentation for the AWS IoT Core services that the AWS SDK for Ruby supports

• Aws::IoT::Client reference documentation

• Aws::IoTDataPlane::Client reference documentation

• Aws::IoTJobsDataPlane::Client reference documentation

• Aws::IoTSecureTunneling::Client reference documentation

AWS Mobile SDKs

The AWS Mobile SDKs provide mobile app developers platform-specific support for the APIs of the
AWS IoT Core services, IoT device communication using MQTT, and the APIs of other AWS services.

AWS Mobile SDKs 113

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot-data.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iot-jobs-data.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iotsecuretunneling.html
https://aws.amazon.com/sdk-for-ruby/
https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/hello.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoT/Client.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoTDataPlane/Client.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoTJobsDataPlane/Client.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoTSecureTunneling/Client.html

AWS IoT Core Developer Guide

Android

AWS Mobile SDK for Android

The AWS Mobile SDK for Android contains a library, samples, and documentation for developers
to build connected mobile applications using AWS. This SDK also includes support for MQTT
device communications and calling the APIs of the AWS IoT Core services. For more information,
see the following:

• AWS Mobile SDK for Android on GitHub

• AWS Mobile SDK for Android Readme

• AWS Mobile SDK for Android Samples

• AWS SDK for Android API reference

• AWSIoTClient Class reference documentation

iOS

AWS Mobile SDK for iOS

The AWS Mobile SDK for iOS is an open-source software development kit, distributed under
an Apache Open Source license. The SDK for iOS provides a library, code samples, and
documentation to help developers build connected mobile applications using AWS. This SDK
also includes support for MQTT device communications and calling the APIs of the AWS IoT
Core services. For more information, see the following:

• AWS Mobile SDK for iOS on GitHub

• AWS SDK for iOS Readme

• AWS SDK for iOS Samples

• AWS IoT Class reference docs in the AWS SDK for iOS

REST APIs of the AWS IoT Core services

The REST APIs of the AWS IoT Core services can be called directly by using HTTP requests.

• Endpoint URL

The service endpoints that expose the REST APIs of the AWS IoT Core services vary by Region
and are listed in AWS IoT Core Endpoints and Quotas. You must use the endpoint for the Region

REST APIs of the AWS IoT Core services 114

https://github.com/aws/aws-sdk-android
https://github.com/aws-amplify/aws-sdk-android/blob/main/README.md#aws-sdk-for-android
https://github.com/awslabs/aws-sdk-android-samples#aws-sdk-for-android-samples
https://aws-amplify.github.io/aws-sdk-android/docs/reference/
https://aws-amplify.github.io/aws-sdk-android/docs/reference/com/amazonaws/services/iot/AWSIotClient.html
https://github.com/aws/aws-sdk-ios
https://github.com/aws-amplify/aws-sdk-ios/blob/main/README.md#aws-sdk-for-ios
https://github.com/awslabs/aws-sdk-ios-samples#the-aws-sdk-for-ios-samples
https://aws-amplify.github.io/aws-sdk-ios/docs/reference/AWSIoT/index.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html

AWS IoT Core Developer Guide

that has the AWS IoT resources that you want to access, because AWS IoT resources are Region
specific.

• Authentication

The REST APIs of the AWS IoT Core services use AWS IAM credentials for authentication. For
more information, see Signing AWS API requests in the AWS General Reference.

• API reference

For information about the specific functions provided by the REST APIs of the AWS IoT Core
services, see:

• API reference for IoT.

• API reference for IoT data.

• API reference for IoT jobs data.

• API reference for IoT secure tunneling.

Connecting devices to AWS IoT

Devices connect to AWS IoT and other services through AWS IoT Core. Through AWS IoT Core,
devices send and receive messages using device endpoints that are specific to your account. The
the section called “AWS IoT Device SDKs” support device communications using the MQTT and WSS
protocols. For more information about the protocols that devices can use, see the section called
“Device communication protocols”.

The message broker

AWS IoT manages device communication through a message broker. Devices and clients publish
messages to the message broker and also subscribe to messages that the message broker
publishes. Messages are identified by an application-defined topic. When the message broker
receives a message published by a device or client, it republishes that message to the devices and
clients that have subscribed to the message's topic. The message broker also forwards messages to
the AWS IoT rules engine, which can act on the content of the message.

AWS IoT message security

Device connections to AWS IoT use the section called “X.509 client certificates” and AWS signature
V4 for authentication. Device communications are secured by TLS version 1.3 and AWS IoT

Connecting devices to AWS IoT 115

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Data_Plane.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Jobs_Data_Plane.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Secure_Tunneling.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

AWS IoT Core Developer Guide

requires devices to send the Server Name Indication (SNI) extension when they connect. For more
information, see Transport Security in AWS IoT.

AWS IoT device data and service endpoints

Important

You can cache or store the endpoints in your device. This means you won't need to query
the DescribeEndpoint API every time when a new device is connected. The endpoints
won't change after AWS IoT Core creates them for your account.

Each account has several device endpoints that are unique to the account and support specific
IoT functions. The AWS IoT device data endpoints support a publish/subscribe protocol that is
designed for the communication needs of IoT devices; however, other clients, such as apps and
services, can also use this interface if their application requires the specialized features that these
endpoints provide. The AWS IoT device service endpoints support device-centric access to security
and management services.

To learn your account's device data endpoint, you can find it in the Settings page of your AWS IoT
Core console.

To learn your account's device endpoint for a specific purpose, including the device data endpoint,
use the describe-endpoint CLI command shown here, or the DescribeEndpoint REST API, and
provide the endpointType parameter value from the following table.

aws iot describe-endpoint --endpoint-type endpointType

This command returns an iot-endpoint in the following format: account-specific-
prefix.iot.aws-region.amazonaws.com.

Every customer has an iot:Data-ATS and an iot:Data endpoint. Each endpoint uses an X.509
certificate to authenticate the client. We strongly recommend that customers use the newer
iot:Data-ATS endpoint type to avoid issues related to the widespread distrust of Symantec
certificate authorities. We provide the iot:Data endpoint for devices to retrieve data from old
endpoints that use VeriSign certificates for backward compatibility. For more information, see
Server Authentication.

AWS IoT device data and service endpoints 116

https://tools.ietf.org/html/rfc3546#section-3.1
transport-security.html
https://console.aws.amazon.com/iot/home#/settings
server-authentication.html

AWS IoT Core Developer Guide

AWS IoT endpoints for devices

Endpoint purpose endpointType value Description

AWS IoT Core - data plane
operations

iot:Data-ATS Used to send and receive data
to and from the message
broker, Device Shadow, and
Rules Engine components of
AWS IoT.

iot:Data-ATS returns an
ATS signed data endpoint.

AWS IoT Core - data plane
operations (legacy)

iot:Data iot:Data returns a VeriSign
signed data endpoint
provided for backward
compatibility. MQTT 5 is
not supported on Symantec
(iot:Data) endpoints.

AWS IoT Core credential
access

iot:CredentialProv
ider

Used to exchange a device's
built-in X.509 certificate
for temporary credentia
ls to connect directly with
other AWS services. For more
information about connectin
g to other AWS services, see
Authorizing Direct Calls to
AWS Services.

AWS IoT Device Managemen
t - jobs data operations

iot:Jobs Used to enable devices to
interact with the AWS IoT
Jobs service using the Jobs
Device HTTPS APIs.

AWS IoT Device Advisor
operations

iot:DeviceAdvisor A test endpoint type used for
testing devices with Device

AWS IoT device data and service endpoints 117

AWS IoT Core Developer Guide

Endpoint purpose endpointType value Description

Advisor. For more informati
on, see ???.

AWS IoT Core data beta
(preview)

iot:Data-Beta An endpoint type reserved for
beta releases. For information
about its current use, see ???.

You can also use your own fully-qualified domain name (FQDN), such as example.com, and
the associated server certificate to connect devices to AWS IoT by using the section called
“Configurable endpoints”.

AWS IoT Device SDKs

The AWS IoT Device SDKs help you connect your IoT devices to AWS IoT Core and they support
MQTT and MQTT over WSS protocols.

The AWS IoT Device SDKs differ from the AWS SDKs in that the AWS IoT Device SDKs support the
specialized communications needs of IoT devices, but don't support all of the services supported
by the AWS SDKs. The AWS IoT Device SDKs are compatible with the AWS SDKs that support all
of the AWS services; however, they use different authentication methods and connect to different
endpoints, which could make using the AWS SDKs impractical on an IoT device.

Mobile devices

The the section called “AWS Mobile SDKs” support both MQTT device communications, some of
the AWS IoT service APIs, and the APIs of other AWS services. If you're developing on a supported
mobile device, review its SDK to see if it's the best option for developing your IoT solution.

C++

AWS IoT C++ Device SDK

The AWS IoT C++ Device SDK allows developers to build connected applications using AWS
and the APIs of the AWS IoT Core services. Specifically, this SDK was designed for devices that
are not resource constrained and require advanced features such as message queuing, multi-
threading support, and the latest language features. For more information, see the following:

• AWS IoT Device SDK C++ v2 on GitHub

AWS IoT Device SDKs 118

https://github.com/aws/aws-iot-device-sdk-cpp-v2

AWS IoT Core Developer Guide

• AWS IoT Device SDK C++ v2 Readme

• AWS IoT Device SDK C++ v2 Samples

• AWS IoT Device SDK C++ v2 API documentation

Python

AWS IoT Device SDK for Python

The AWS IoT Device SDK for Python makes it possible for developers to write Python scripts to
use their devices to access the AWS IoT platform through MQTT or MQTT over the WebSocket
Secure (WSS) protocol. By connecting their devices to the APIs of the AWS IoT Core services,
users can securely work with the message broker, rules, and Device Shadow service that AWS
IoT Core provides and with other AWS services like AWS Lambda, Amazon Kinesis, and Amazon
S3, and more.

• AWS IoT Device SDK for Python v2 on GitHub

• AWS IoT Device SDK for Python v2 Readme

• AWS IoT Device SDK for Python v2 Samples

• AWS IoT Device SDK for Python v2 API documentation

JavaScript

AWS IoT Device SDK for JavaScript

The AWS IoT Device SDK for JavaScript makes it possible for developers to write JavaScript
applications that access APIs of the AWS IoT Core using MQTT or MQTT over the WebSocket
protocol. It can be used in Node.js environments and browser applications. For more
information, see the following:

• AWS IoT Device SDK for JavaScript v2 on GitHub

• AWS IoT Device SDK for JavaScript v2 Readme

• AWS IoT Device SDK for JavaScript v2 Samples

• AWS IoT Device SDK for JavaScript v2 API documentation

Java

AWS IoT Device SDK for Java

AWS IoT Device SDKs 119

https://github.com/aws/aws-iot-device-sdk-cpp-v2#aws-iot-device-sdk-for-c-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-c-v2
https://aws.github.io/aws-iot-device-sdk-cpp-v2/
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2#aws-iot-device-sdk-v2-for-python
https://github.com/aws/aws-iot-device-sdk-python-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-v2-for-python
https://aws.github.io/aws-iot-device-sdk-python-v2/
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2#aws-iot-device-sdk-for-javascript-v2
https://github.com/aws/aws-iot-device-sdk-js-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-javascript-v2
https://aws.github.io/aws-iot-device-sdk-js-v2/index.html

AWS IoT Core Developer Guide

The AWS IoT Device SDK for Java makes it possible for Java developers to access the APIs of
the AWS IoT Core through MQTT or MQTT over the WebSocket protocol. The SDK supports
the Device Shadow service. You can access shadows by using HTTP methods, including GET,
UPDATE, and DELETE. The SDK also supports a simplified shadow access model, which allows
developers to exchange data with shadows by using getter and setter methods, without having
to serialize or deserialize any JSON documents. For more information, see the following:

• AWS IoT Device SDK for Java v2 on GitHub

• AWS IoT Device SDK for Java v2 Readme

• AWS IoT Device SDK for Java v2 Samples

• AWS IoT Device SDK for Java v2 API documentation

Embedded C

AWS IoT Device SDK for Embedded C

Important

This SDK is intended for use by experienced embedded-software developers.

The AWS IoT Device SDK for Embedded C (C-SDK) is a collection of C source files under the MIT
open source license that can be used in embedded applications to securely connect IoT devices
to AWS IoT Core. It includes MQTT, JSON Parser, and AWS IoT Device Shadow libraries and
others. It is distributed in source form and intended to be built into customer firmware along
with application code, other libraries and, optionally, an RTOS (Real Time Operating System).

The AWS IoT Device SDK for Embedded C is generally targeted at resource constrained devices
that require an optimized C language runtime. You can use the SDK on any operating system
and host it on any processor type (for example, MCUs and MPUs). If your device has sufficient
memory and processing resources available, we recommend that you use one of the other
AWS IoT Device and Mobile SDKs, such as the AWS IoT Device SDK for C++, Java, JavaScript, or
Python.

For more information, see the following:

• AWS IoT Device SDK for Embedded C on GitHub

AWS IoT Device SDKs 120

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2#aws-iot-device-sdk-for-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-java-v2
https://aws.github.io/aws-iot-device-sdk-java-v2/
https://github.com/aws/aws-iot-device-sdk-embedded-C

AWS IoT Core Developer Guide

• AWS IoT Device SDK for Embedded C Readme

• AWS IoT Device SDK for Embedded C Samples

Device communication protocols

AWS IoT Core supports devices and clients that use the MQTT and the MQTT over WebSocket
Secure (WSS) protocols to publish and subscribe to messages, and devices and clients that use the
HTTPS protocol to publish messages. All protocols support IPv4 and IPv6. This section describes
the different connection options for devices and clients.

TLS 1.2 and TLS 1.3

AWS IoT Core uses TLS version 1.2 and TLS version 1.3 to encrypt all communication. When
connecting devices to AWS IoT Core, clients can send the Server Name Indication (SNI) extension,
which is not required but highly recommended. To use features such as multi-account registration,
custom domains, and VPC endpoints, you must use the SNI extension. For more information, see
Transport Security in AWS IoT.

The AWS IoT Device SDKs support MQTT and MQTT over WSS and support the security
requirements of client connections. We recommend using the AWS IoT Device SDKs to connect
clients to AWS IoT.

Protocols, port mappings, and authentication

How a device or client connects to the message broker by using a device endpoint depends on the
protocol it uses. The following table lists the protocols that the AWS IoT device endpoints support
and the authentication methods and ports they use.

Protocols, authentication, and port mappings

Protocol Operations
supported

Authentication Port ALPN protocol
name

MQTT over
WebSocket

Publish,
Subscribe

Signature
Version 4

443 N/A

MQTT over
WebSocket

Publish,
Subscribe

Custom
authentication

443 N/A

Device communication protocols 121

https://github.com/aws/aws-iot-device-sdk-embedded-C#aws-iot-device-sdk-for-embedded-c
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/docs/doxygen/output/html/demos_main.html
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.3
https://tools.ietf.org/html/rfc3546#section-3.1
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html#multiple-account-cert
https://docs.aws.amazon.com/iot/latest/developerguide/iot-custom-endpoints-configurable-custom.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
transport-security.html

AWS IoT Core Developer Guide

Protocol Operations
supported

Authentication Port ALPN protocol
name

MQTT Publish,
Subscribe

X.509 client
certificate

443† x-amzn-mq
tt-ca

MQTT Publish,
Subscribe

X.509 client
certificate

8883 N/A

MQTT Publish,
Subscribe

Custom
authentication

443† mqtt

HTTPS Publish only Signature
Version 4

443 N/A

HTTPS Publish only X.509 client
certificate

443† x-amzn-ht
tp-ca

HTTPS Publish only X.509 client
certificate

8443 N/A

HTTPS Publish only Custom
authentication

443 N/A

Application Layer Protocol Negotiation (ALPN)
†Clients that connect on port 443 with X.509 client certificate authentication must
implement the Application Layer Protocol Negotiation (ALPN) TLS extension and use the
ALPN protocol name listed in the ALPN ProtocolNameList sent by the client as part of the
ClientHello message.
On port 443, the IoT:Data-ATS endpoint supports ALPN x-amzn-http-ca HTTP, but the
IoT:Jobs endpoint does not.
On port 8443 HTTPS and port 443 MQTT with ALPN x-amzn-mqtt-ca, custom
authentication can't be used.

Clients connect to their AWS account's device endpoints. See the section called “AWS IoT device
data and service endpoints” for information about how to find your account's device endpoints.

Device communication protocols 122

https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301#section-3.1

AWS IoT Core Developer Guide

Note

AWS SDKs don't require the entire URL. They only require the endpoint hostname such as
the pubsub.py sample for AWS IoT Device SDK for Python on GitHub. Passing the entire
URL as provided in the following table can generate an error such as invalid hostname.

Connecting to AWS IoT Core

Protocol Endpoint or URL

MQTT iot-endpoint

MQTT over WSS wss://iot-endpoint /mqtt

HTTPS https://iot-endpoint /topics

Choosing a protocol for your device communication

For most IoT device communication through the device endpoints, you'll want to use the MQTT or
MQTT over WSS protocols; however, the device endpoints also support HTTPS. The following table
compares how AWS IoT Core uses the two protocols for device communication.

AWS IoT device protocols side-by-side

Feature MQTT HTTPS

Publish/Subscribe support Publish and subscribe Publish only

SDK support AWS Device SDKs support
MQTT and WSS protocols

No SDK support, but you
can use language-specific
methods to make HTTPS
requests

Quality of Service support MQTT QoS levels 0 and 1 QoS is supported by passing
a query string parameter ?
qos=qos where the value
can be 0 or 1. You can add
this query string to publish a

Device communication protocols 123

https://github.com/aws/aws-iot-device-sdk-python-v2/blob/master/samples/pubsub.py#L100

AWS IoT Core Developer Guide

Feature MQTT HTTPS

message with the QoS value
you want.

Can receive messages be
missed while device was
offline

Yes No

clientId field support Yes No

Device disconnection
detection

Yes No

Secure communications Yes. See Protocols, port
mappings, and authentication

Yes. See Protocols, port
mappings, and authentication

Topic definitions Application defined Application defined

Message data format Application defined Application defined

Protocol overhead Lower Higher

Power consumption Lower Higher

Connection duration limits

HTTPS connections aren't guaranteed to last any longer than the time it takes to receive and
respond to requests.

MQTT connection duration depends on the authentication feature that you use. The following
table lists the maximum connection duration under ideal conditions for each feature.

MQTT connection duration by authentication feature

Feature Maximum duration *

X.509 client certificate 1–2 weeks

Custom authentication 1–2 weeks

Device communication protocols 124

AWS IoT Core Developer Guide

Feature Maximum duration *

Signature Version 4 Up to 24 hours

* Not guaranteed

With X.509 certificates and custom authentication, connection duration has no hard limit, but
it can be as short as a few minutes. Connection interruptions can occur for various reasons. The
following list contains some of the most common reasons.

• Wi-Fi availability interruptions

• Internet service provider (ISP) connection interruptions

• Service patches

• Service deployments

• Service auto scaling

• Unavailable service host

• Load balancer issues and updates

• Client-side errors

Your devices must implement strategies for detecting disconnections and reconnecting. For
information about disconnect events and guidance on how to handle them, see ??? in ???.

MQTT

MQTT (Message Queuing Telemetry Transport) is a lightweight and widely adopted messaging
protocol that is designed for constrained devices. AWS IoT Core support for MQTT is based on the
MQTT v3.1.1 specification and the MQTT v5.0 specification, with some differences, as documented
in the section called “AWS IoT differences from MQTT specifications”. As the latest version of the
standard, MQTT 5 introduces several key features that make an MQTT-based system more robust,
including new scalability enhancements, improved error reporting with reason code responses,
message and session expiry timers, and custom user message headers. For more information
about MQTT 5 features that AWS IoT Core supports, see MQTT 5 supported features. AWS IoT Core
also supports cross MQTT version (MQTT 3 and MQTT 5) communication. An MQTT 3 publisher
can send an MQTT 3 message to an MQTT 5 subscriber that will be receiving an MQTT 5 publish
message, and vice versa.

Device communication protocols 125

http://mqtt.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

AWS IoT Core Developer Guide

AWS IoT Core supports device connections that use the MQTT protocol and MQTT over WSS
protocol and that are identified by a client ID. The AWS IoT Device SDKs support both protocols
and are the recommended ways to connect devices to AWS IoT Core. The AWS IoT Device SDKs
support the functions necessary for devices and clients to connect to and access AWS IoT services.
The Device SDKs support the authentication protocols that the AWS IoT services require and the
connection ID requirements that the MQTT protocol and MQTT over WSS protocols require. For
information about how to connect to AWS IoT using the AWS Device SDKs and links to examples of
AWS IoT in the supported languages, see the section called “Connecting with MQTT using the AWS
IoT Device SDKs”. For more information about authentication methods and the port mappings for
MQTT messages, see Protocols, port mappings, and authentication.

While we recommend using the AWS IoT Device SDKs to connect to AWS IoT, they are not required.
If you do not use the AWS IoT Device SDKs, however, you must provide the necessary connection
and communication security. Clients must send the Server Name Indication (SNI) TLS extension
in the connection request. Connection attempts that don't include the SNI are refused. For more
information, see Transport Security in AWS IoT. Clients that use IAM users and AWS credentials to
authenticate clients must provide the correct Signature Version 4 authentication.

In this topic:

• Connecting with MQTT using the AWS IoT Device SDKs

• MQTT Quality of Service (QoS) options

• MQTT persistent sessions

• MQTT retained messages

• MQTT Last Will and Testament (LWT) messages

• Using connectAttributes

• MQTT 5 supported features

• MQTT 5 properties

• MQTT reason codes

• AWS IoT differences from MQTT specifications

Connecting with MQTT using the AWS IoT Device SDKs

This section contains links to the AWS IoT Device SDKs and to the source code of sample programs
that illustrate how to connect a device to AWS IoT. The sample apps linked here show how to
connect to AWS IoT using the MQTT protocol and MQTT over WSS.

Device communication protocols 126

https://tools.ietf.org/html/rfc3546#section-3.1
transport-security.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS IoT Core Developer Guide

Note

The AWS IoT Device SDKs have released an MQTT 5 client.

C++

Using the AWS IoT C++ Device SDK to connect devices

• Source code of a sample app that shows an MQTT connection example in C++

• AWS IoT C++ Device SDK v2 on GitHub

Python

Using the AWS IoT Device SDK for Python to connect devices

• Source code of a sample app that shows an MQTT connection example in Python

• AWS IoT Device SDK for Python v2 on GitHub

JavaScript

Using the AWS IoT Device SDK for JavaScript to connect devices

• Source code of a sample app that shows an MQTT connection example in JavaScript

• AWS IoT Device SDK for JavaScript v2 on GitHub

Java

Using the AWS IoT Device SDK for Java to connect devices

Note

The AWS IoT Device SDK for Java v2 now supports Android development. For more
information, see AWS IoT Device SDK for Android.

• Source code of a sample app that shows an MQTT connection example in Java

• AWS IoT Device SDK for Java v2 on GitHub

Device communication protocols 127

https://github.com/aws/aws-iot-device-sdk-cpp-v2/blob/main/samples/mqtt/basic_connect/main.cpp
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-python-v2/blob/master/samples/pubsub.py
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-js-v2/blob/master/samples/node/pub_sub/index.ts
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-java-v2/blob/main/documents/ANDROID.md
https://github.com/aws/aws-iot-device-sdk-java-v2/blob/master/samples/BasicPubSub/src/main/java/pubsub/PubSub.java
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Core Developer Guide

Embedded C

Using the AWS IoT Device SDK for Embedded C to connect devices

Important

This SDK is intended for use by experienced embedded-software developers.

• Source code of a sample app that shows an MQTT connection example in Embedded C

• AWS IoT Device SDK for Embedded C on GitHub

MQTT Quality of Service (QoS) options

AWS IoT and the AWS IoT Device SDKs support the MQTT Quality of Service (QoS) levels 0 and
1. The MQTT protocol defines a third level of QoS, level 2, but AWS IoT does not support it. Only
the MQTT protocol supports the QoS feature. HTTPS supports QoS by passing a query string
parameter ?qos=qos where the value can be 0 or 1.

This table describes how each QoS level affects messages published to and by the message broker.

With a QoS level of... The message is... Comments

QoS level 0 Sent zero or more times This level should be used for
messages that are sent over
reliable communication links
or that can be missed without
a problem.

QoS level 1 Sent at least one time, and
then repeatedly until a
PUBACK response is received

The message is not considere
d complete until the sender
receives a PUBACK response
to indicate successful delivery.

MQTT persistent sessions

Persistent sessions store a client’s subscriptions and messages, with a Quality of Service (QoS) of 1,
that haven't been acknowledged by the client. When the device reconnects to a persistent session,

Device communication protocols 128

https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/demos/mqtt/mqtt_demo_basic_tls/mqtt_demo_basic_tls.c
https://github.com/aws/aws-iot-device-sdk-embedded-C
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc385349263
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc385349263

AWS IoT Core Developer Guide

the session resumes, subscriptions are reinstated, and unacknowledged subscribed messages
received and stored prior to the reconnection are sent to the client.

The processing of the stored messages is recorded in CloudWatch and CloudWatch Logs. For
information about the entries written to CloudWatch and CloudWatch Logs, see Message broker
metrics and Queued log entry.

Creating a persistent session

In MQTT 3, you create an MQTT persistent session by sending a CONNECT message and setting the
cleanSession flag to 0. If no session exists for the client sending the CONNECT message, a new
persistent session is created. If a session already exists for the client, the client resumes the existing
session. To create a clean session, you send a CONNECT message and set the cleanSession flag to
1, and the broker will not store any session state when the client disconnects.

In MQTT 5, you handle persistent sessions by setting the Clean Start flag and Session
Expiry Interval. Clean Start controls the beginning of the connecting session and the end
of the previous session. When you set Clean Start = 1, a new session is created and a previous
session is terminated if it exists. When you set Clean Start= 0, the connecting session resumes
a previous session if it exists. Session Expiry Interval controls the end of the connecting session.
Session Expiry Interval specifies the time, in seconds (4-byte integer), that a session will persist
after disconnect. Setting Session Expiry interval=0 causes the session to terminate
immediately upon disconnect. If the Session Expiry Interval is not specified in the CONNECT
message, the default is 0.

MQTT 5 Clean Start and Session Expiry

Property value Description

Clean Start= 1 Creates a new session and terminates a previous session if one
exists.

Clean Start= 0 Resumes a session if a previous session exists.

Session Expiry
Interval> 0

Persists a session.

Session Expiry
interval= 0

Does not persist a session.

Device communication protocols 129

AWS IoT Core Developer Guide

In MQTT 5, if you set Clean Start = 1 and Session Expiry Interval = 0, this is the
equivalent of an MQTT 3 clean session. If you set Clean Start = 0 and Session Expiry
Interval> 0, this is the equivalent of an MQTT 3 persistent session.

Note

Cross MQTT version (MQTT 3 and MQTT 5) persistent sessions are not supported. An MQTT
3 persistent session can't be resumed as an MQTT 5 session, and vice versa.

Operations during a persistent session

Clients use the sessionPresent attribute in the connection acknowledged (CONNACK) message
to determine if a persistent session is present. If sessionPresent is 1, a persistent session
is present and any stored messages for the client are delivered to the client after the client
receives the CONNACK, as described in Message traffic after reconnection to a persistent session. If
sessionPresent is 1, the client does not need to resubscribe. However, if sessionPresent is 0,
no persistent session is present and the client must resubscribe to its topic filters.

After the client joins a persistent session, it can publish messages and subscribe to topic filters
without any additional flags on each operation.

Message traffic after reconnection to a persistent session

A persistent session represents an ongoing connection between a client and an MQTT message
broker. When a client connects to the message broker using a persistent session, the message
broker saves all subscriptions that the client makes during the connection. When the client
disconnects, the message broker stores unacknowledged QoS 1 messages and new QoS 1
messages published to topics to which the client is subscribed. Messages are stored according
to account limit. Messages that exceed the limit will be dropped. For more information about
persistent message limits, see AWS IoT Core endpoints and quotas. When the client reconnects
to its persistent session, all subscriptions are reinstated and all stored messages are sent to the
client at a maximum rate of 10 messages per second. In MQTT 5, if an outbound QoS1 with the
Message Expiry Interval expires when a client is offline, after the connection resumes, the client
won't receive the expired message.

After reconnection, the stored messages are sent to the client, at a rate that is limited to 10 stored
messages per second, along with any current message traffic until the Publish requests per

Device communication protocols 130

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Core Developer Guide

second per connection limit is reached. Because the delivery rate of the stored messages is
limited, it will take several seconds to deliver all stored messages if a session has more than 10
stored messages to deliver after reconnection.

Ending a persistent session

Persistent sessions can end in the following ways:

• The persistent session expiration time elapses. The persistent session expiration timer
starts when the message broker detects that a client has disconnected, either by the client
disconnecting or the connection timing out.

• The client sends a CONNECT message that sets the cleanSession flag to 1.

In MQTT 3, the default value of persistent sessions expiration time is an hour, and this applies to all
the sessions in the account.

In MQTT 5, you can set the Session Expiry Interval for each session on CONNECT and DISCONNECT
packets.

For Session Expiry Interval on DISCONNECT packet:

• If the current session has a Session Expiry Interval of 0, you can't set Session Expiry Interval to
greater than 0 on the DISCONNECT packet.

• If the current session has a Session Expiry Interval of greater than 0, and you set the Session
Expiry Interval to 0 on the DISCONNECT packet, the session will be ended on DISCONNECT.

• Otherwise, the Session Expiry Interval on DISCONNECT packet will update the Session Expiry
Interval of the current session.

Note

The stored messages waiting to be sent to the client when a session ends are discarded;
however, they are still billed at the standard messaging rate, even though they could not
be sent. For more information about message pricing, see AWS IoT Core Pricing. You can
configure the expiration time interval.

Device communication protocols 131

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://aws.amazon.com/iot-core/pricing

AWS IoT Core Developer Guide

Reconnection after a persistent session has expired

If a client doesn't reconnect to its persistent session before it expires, the session ends and its
stored messages are discarded. When a client reconnects after the session has expired with
a cleanSession flag to 0, the service creates a new persistent session. Any subscriptions or
messages from the previous session are not available to this session because they were discarded
when the previous session expired.

Persistent session message charges

Messages are charged to your AWS account when the message broker sends a message to a client
or an offline persistent session. When an offline device with a persistent session reconnects and
resumes its session, the stored messages are delivered to the device and charged to your account
again. For more information about message pricing, see AWS IoT Core pricing - Messaging.

The default persistent session expiration time of one hour can be increased by using the standard
limit increase process. Note that increasing the session expiration time might increase your
message charges because the additional time could allow for more messages to be stored for the
offline device and those additional messages would be charged to your account at the standard
messaging rate. The session expiration time is approximate and a session could persist for up to
30 minutes longer than the account limit; however, a session will not be shorter than the account
limit. For more information about session limits, see AWS Service Quotas.

MQTT retained messages

AWS IoT Core supports the RETAIN flag described in the MQTT protocol. When a client sets the
RETAIN flag on an MQTT message that it publishes, AWS IoT Core saves the message. It can then be
sent to new subscribers, retrieved by calling the GetRetainedMessage operation, and viewed in
the AWS IoT console.

Examples of using MQTT retained messages

• As an initial configuration message

MQTT retained messages are sent to a client after the client subscribes to a topic. If you want
all clients that subscribe to a topic to receive the MQTT retained message right after their
subscription, you can publish a configuration message with the RETAIN flag set. Subscribing
clients also receive updates to that configuration whenever a new configuration message is
published.

• As a last-known state message

Device communication protocols 132

https://aws.amazon.com/iot-core/pricing/#Messaging
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_GetRetainedMessage.html
https://console.aws.amazon.com/iot/home#/retainedMessages

AWS IoT Core Developer Guide

Devices can set the RETAIN flag on current-state messages so that AWS IoT Core will save
them. When applications connect or reconnect, they can subscribe to this topic and get the last
reported state right after subscribing to the retained message topic. This way they can avoid
having to wait until the next message from the device to see the current state.

In this section:

• Common tasks with MQTT retained messages in AWS IoT Core

• Billing and retained messages

• Comparing MQTT retained messages and MQTT persistent sessions

• MQTT retained messages and AWS IoT Device Shadows

Common tasks with MQTT retained messages in AWS IoT Core

AWS IoT Core saves MQTT messages with the RETAIN flag set. These retained messages are sent to
all clients that have subscribed to the topic, as a normal MQTT message, and they are also stored
to be sent to new subscribers to the topic.

MQTT retained messages require specific policy actions to authorize clients to access them. For
examples of using retained message policies, see Retained message policy examples.

This section describes common operations that involve retained messages.

• Creating a retained message

The client determines whether a message is retained when it publishes an MQTT message.
Clients can set the RETAIN flag when they publish a message by using a Device SDK. Applications
and services can set the RETAIN flag when they use the Publish action to publish an MQTT
message.

Only one message per topic name is retained. A new message with the RETAIN flag set published
to a topic replaces any existing retained message that was sent to the topic earlier.

NOTE: You can't publish to a reserved topic with the RETAIN flag set.

• Subscribing to a retained message topic

Clients subscribe to retained message topics as they would any other MQTT message topic.
Retained messages received by subscribing to a retained message topic have the RETAIN flag set.

Device communication protocols 133

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_Publish.html

AWS IoT Core Developer Guide

Retained messages are deleted from AWS IoT Core when a client publishes a retained message
with a 0-byte message payload to the retained message topic. Clients that have subscribed to
the retained message topic will also receive the 0-byte message.

Subscribing to a wild card topic filter that includes a retained message topic lets the client
receive subsequent messages published to the retained message's topic, but it doesn't deliver the
retained message upon subscription.

NOTE: To receive a retained message upon subscription, the topic filter in the subscription
request must match the retained message topic exactly.

Retained messages received upon subscribing to a retained message topic have the RETAIN flag
set. Retained messages that are received by a subscribing client after subscription, don't.

• Retrieving a retained message

Retained messages are delivered to clients automatically when they subscribe to the topic with
the retained message. For a client to receive the retained message upon subscription, it must
subscribe to the exact topic name of the retained message. Subscribing to a wild card topic filter
that includes a retained message topic lets the client receive subsequent messages published to
the retained message's topic, but it does not deliver the retained message upon subscription.

Services and apps can list and retrieve retained messages by calling ListRetainedMessages
and GetRetainedMessage.

A client is not prevented from publishing messages to a retained message topic without setting
the RETAIN flag. This could cause unexpected results, such as the retained message not matching
the message received by subscribing to the topic.

With MQTT 5, if a retained message has the Message Expiry Interval set and the retained
message expires, a new subscriber that subscribes to that topic will not receive the retained
message upon successful subscription.

• Listing retained message topics

You can list retained messages by calling ListRetainedMessages and the retained messages
can be viewed in the AWS IoT console.

• Getting retained message details

Device communication protocols 134

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_ListRetainedMessages.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_GetRetainedMessage.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_ListRetainedMessages.html
https://console.aws.amazon.com/iot/home#/retainedMessages

AWS IoT Core Developer Guide

You can get retained message details by calling GetRetainedMessage and they can be viewed
in the AWS IoT console.

• Retaining a Will message

MQTT Will messages that are created when a device connects can be retained by setting the
Will Retain flag in the Connect Flag bits field.

• Deleting a retained message

Devices, applications, and services can delete a retained message by publishing a message with
the RETAIN flag set and an empty (0-byte) message payload to the topic name of the retained
message to delete. Such messages delete the retained message from AWS IoT Core, are sent to
clients with a subscription to the topic, but they are not retained by AWS IoT Core.

Retained messages can also be deleted interactively by accessing the retained message in the
AWS IoT console. Retained messages that are deleted by using the AWS IoT console also send a
0-byte message to clients that have subscribed to the retained message's topic.

Retained messages can't be restored after they are deleted. A client would need to publish a new
retained message to take the place of the deleted message.

• Debugging and troubleshooting retained messages

The AWS IoT console provides several tools to help you troubleshoot retained messages:

• The Retained messages page

The Retained messages page in the AWS IoT console provides a paginated list of the retained
messages that have been stored by your Account in the current Region. From this page, you
can:

• See the details of each retained message, such as the message payload, QoS, the time it was
received.

• Update the contents of a retained message.

• Delete a retained message.

• The MQTT test client

The MQTT test client page in the AWS IoT console can subscribe and publish to MQTT topics.
The publish option lets you set the RETAIN flag on the messages that you publish to simulate
how your devices might behave.

Device communication protocols 135

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_GetRetainedMessage.html
https://console.aws.amazon.com/iot/home#/retainedMessages
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Will_Flag
https://console.aws.amazon.com/iot/home#/retainedMessages
https://console.aws.amazon.com/iot/home#/retainedMessages
https://console.aws.amazon.com/iot/home#
https://console.aws.amazon.com/iot/home#/retainedMessages
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

Some unexpected results might be the result of these aspects of how retained messages are
implemented in AWS IoT Core.

• Retained message limits

When an account has stored the maximum number of retained messages, AWS IoT Core
returns a throttled response to messages published with RETAIN set and payloads greater than
0 bytes until some retained messages are deleted and the retained message count falls below
the limit.

• Retained message delivery order

The sequence of retained message and subscribed message delivery is not guaranteed.

Billing and retained messages

Publishing messages with the RETAIN flag set from a client, by using AWS IoT console, or by calling
Publish incurs additional messaging charges described in AWS IoT Core pricing - Messaging.

Retrieving retained messages by a client, by using AWS IoT console, or by calling
GetRetainedMessage incurs messaging charges in addition to the normal API usage charges. The
additional charges are described in AWS IoT Core pricing - Messaging.

MQTT Will messages that are published when a device disconnects unexpectedly incur messaging
charges described in AWS IoT Core pricing - Messaging.

For more information about messaging costs, see AWS IoT Core pricing - Messaging.

Comparing MQTT retained messages and MQTT persistent sessions

Retained messages and persistent sessions are standard features of MQTT that make it possible for
devices to receive messages that were published while they were offline. Retained messages can be
published from persistent sessions. This section describes key aspects of these features and how
they work together.

Retained messages Persistent sessions

Key features Retained messages can be
used to configure or notify

Persistent sessions are
useful for devices that have
intermittent connectivity and

Device communication protocols 136

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_Publish.html
https://aws.amazon.com/iot-core/pricing/#Messaging
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_GetRetainedMessage.html
https://aws.amazon.com/iot-core/pricing/#Messaging
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Will_Flag
https://aws.amazon.com/iot-core/pricing/#Messaging
https://aws.amazon.com/iot-core/pricing/#Messaging

AWS IoT Core Developer Guide

Retained messages Persistent sessions

large groups of devices after
they connect.

Retained messages can also
be used where you want
devices to receive only the
last message published to a
topic after a reconnection.

could miss several important
 messages.

Devices can connect with a
persistent session to receive
messages sent while they are
offline.

Examples Retained messages can
give devices configuration
information about their
environment when they come
online. The initial configura
tion could include a list of
other message topics to
which it should subscribe or
information about how it
should configure its local time
zone.

Devices that connect over
a cellular network with
intermittent connectivity
could use persistent sessions
to avoid missing important
messages that are sent while
a device is out of network
coverage or needs to turn off
its cellular radio.

Messages received on initial
subscription to a topic

After subscribing to a topic
with a retained message, the
most recent retained message
is received.

After subscribing to a topic
without a retained message,
no message is received until
one is published to the topic.

Subscribed topics after
reconnection

Without a persistent session,
the client must subscribe to
topics after reconnection.

Subscribed topics are restored
after reconnection.

Messages received after
reconnection

After subscribing to a topic
with a retained message, the
most recent retained message
is received.

All messages published with
a QOS = 1 and subscribe
d to with a QOS =1 while
the device was disconnec
ted are sent after the device
reconnects.

Device communication protocols 137

AWS IoT Core Developer Guide

Retained messages Persistent sessions

Data/session expiration In MQTT 3, retained messages
do not expire. They are stored
until they are replaced or
deleted. In MQTT 5, retained
messages expire after the
message expiry interval you
set. For more information, see
Message Expiry.

Persistent sessions expire if
the client doesn't reconnect
 within the timeout period.
After a persistent session
expires, the client's subscript
ions and saved messages that
were published with a QOS
= 1 and subscribed to with
a QOS =1 while the device
was disconnected are deleted.
Expired messages won't be
delivered. For more informati
on about session expiratio
ns with persistent sessions,
see the section called “MQTT
persistent sessions”.

For information about persistent sessions, see the section called “MQTT persistent sessions”.

With Retained Messages, the publishing client determines whether a message should be retained
and delivered to a device after it connects, whether it had a previous session or not. The choice to
store a message is made by the publisher and the stored message is delivered to all current and
future clients that subscribe with a QoS 0 or QoS 1 subscriptions. Retained messages keep only one
message on a given topic at a time.

When an account has stored the maximum number of retained messages, AWS IoT Core returns a
throttled response to messages published with RETAIN set and payloads greater than 0 bytes until
some retained messages are deleted and the retained message count falls below the limit.

MQTT retained messages and AWS IoT Device Shadows

Retained messages and Device Shadows both retain data from a device, but they behave differently
and serve different purposes. This section describes their similarities and differences.

Device communication protocols 138

AWS IoT Core Developer Guide

Retained messages Device Shadows

Message payload has a pre-
defined structure or schema

As defined by the implement
ation. MQTT does not specify
a structure or schema for its
message payload.

AWS IoT supports a specific
data structure.

Updating the message
payload generates event
messages

Publishing a retained
message sends the message
to subscribed clients, but
doesn't generate additional
update messages.

Updating a Device Shadow
produces update messages
that describe the change.

Message updates are
numbered

Retained messages are not
numbered automatically.

Device Shadow documents
have automatic version
numbers and timestamps.

Message payload is attached
to a thing resource

Retained messages are not
attached to a thing resource.

Device Shadows are attached
to a thing resource.

Updating individual
elements of the message
payload

Individual elements of the
message can't be changed
without updating the entire
message payload.

Individual elements of a
Device Shadow document can
be updated without the need
to update the entire Device
Shadow document.

Client receives message data
upon subscription

Client automatically receives
a retained message after it
subscribes to a topic with a
retained message.

Clients can subscribe to
Device Shadow updates, but
they must request the current
state deliberately.

Indexing and searchability Retained messages are not
indexed for search.

Fleet indexing indexes Device
Shadow data for search and
aggregation.

Device communication protocols 139

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-delta-pub-sub-topic
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-delta-pub-sub-topic

AWS IoT Core Developer Guide

MQTT Last Will and Testament (LWT) messages

Last Will and Testament (LWT) is a feature in MQTT. With LWT, clients can specify a message
which the broker will publish to a client-defined topic and send to all clients that subscribed to the
topic when an uninitiated disconnection occurs. The message that clients specify is called an LWT
message or a Will Message, and the topic that clients define is referred to as a Will Topic. You can
specify an LWT message when a device connects to the broker. These messages can be retained
by setting the Will Retain flag in the Connect Flag bits field during the connection. For
example, if the Will Retain flag is set to 1, a Will Message will be stored in the broker in the
associated Will Topic. For more information, see Will Messages.

The broker will store the Will Messages until an uninitiated disconnection occurs. When that
happens, the broker will publish the messages to all clients that subscribed to the Will Topic
to notify the disconnection. If the client disconnects from the broker with a client-initiated
disconnection using the MQTT DISCONNECT message, the broker won't publish the stored LWT
messages. In all other cases, the LWT messages will be dispatched. For a complete list of the
disconnect scenarios when the broker will send the LWT messages, see Connect/Disconnect events.

Using connectAttributes

ConnectAttributes allow you to specify what attributes you want to use in your
connect message in your IAM policies such as PersistentConnect and LastWill. With
ConnectAttributes, you can build policies that don't give devices access to new features by
default, which can be helpful if a device is compromised.

connectAttributes supports the following features:

PersistentConnect

Use the PersistentConnect feature to save all subscriptions the client makes during the
connection when the connection between the client and broker is interrupted.

LastWill

Use the LastWill feature to publish a message to the LastWillTopic when a client
unexpectedly disconnects.

By default, your policy has a non-persistent connection and there are no attributes passed for this
connection. You must specify a persistent connection in your IAM policy if you want to have one.

For ConnectAttributes examples, see Connect Policy Examples.

Device communication protocols 140

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc479576982
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html#connect-disconnect

AWS IoT Core Developer Guide

MQTT 5 supported features

AWS IoT Core support for MQTT 5 is based on the MQTT v5.0 specification with some differences
as documented in the section called “AWS IoT differences from MQTT specifications”.

AWS IoT Core supports the following MQTT 5 features:

• Shared Subscriptions

• Clean Start and Session Expiry

• Reason Code on all ACKs

• Topic Aliases

• Message Expiry

• Other MQTT 5 features

Shared Subscriptions

AWS IoT Core supports Shared Subscriptions for both MQTT 3 and MQTT 5. Shared Subscriptions
allow multiple clients to share a subscription to a topic and only one client will receive messages
published to that topic using a random distribution. Shared Subscriptions can effectively load
balance MQTT messages across a number of subscribers. For example, say you have 1,000 devices
publishing to the same topic, and 10 backend applications processing those messages. In that
case, the backend applications can subscribe to the same topic and each would randomly receive
messages published by the devices to the shared topic. This is effectively "sharing" the load
of those messages. Shared Subscriptions also allow for better resiliency. When any backend
application disconnects, the broker distributes the load to remaining subscribers in the group.

To use Shared Subscriptions, clients subscribe to a Shared Subscription's topic filter as follows:

$share/{ShareName}/{TopicFilter}

• $share is a literal string to indicate a Shared Subscription's topic filter, which must start with
$share.

• {ShareName} is a character string to specify the shared name used by a group of subscribers. A
Shared Subscription's topic filter must contain a ShareName and be followed by the / character.
The {ShareName} must not include the following characters: /, +, or #. The maximum size for
{ShareName} is 128 bytes.

Device communication protocols 141

http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html#topicfilters

AWS IoT Core Developer Guide

• {TopicFilter} follows the same topic filter syntax as a Non-shared Subscription. The
maximum size for {TopicFilter} is 256 bytes.

• The two required slashes (/) for $share/{ShareName}/{TopicFilter} are not included in
the Maximum number of slashes in topic and topic filter limit.

Subscriptions that have the same {ShareName}/{TopicFilter} belong to the same Shared
Subscription group. You can create multiple Shared Subscription groups and don't exceed the
Shared Subscriptions per group limit. For more information, see AWS IoT Core endpoints and
quotas from the AWS General Reference.

The following tables compare Non-shared Subscriptions and Shared Subscriptions:

Subscription Description Topic filter
examples

Non-shared
Subscriptions

Each client creates a separate subscription to
receive the published messages. When a message
is published to a topic, all subscribers to that
topic receive a copy of the message.

sports/tennis
sports/#

Shared Subscript
ions

Multiple clients can share a subscription to a
topic and only one client will receive messages
published to that topic at a random distribution.

$share/co
nsumer/sp
orts/tennis
$share/
consumer/
sports/#

Non-shared
Subscriptions flow

Shared Subscriptions
flow

Device communication protocols 142

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html#topicfilters
https://console.aws.amazon.com/servicequotas/home/services/iotcore/quotas/L-AD5A8D4F
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html

AWS IoT Core Developer Guide

Important notes for using Shared Subscriptions

• When a publish attempt to a QoS0 subscriber fails, no retry attempt will happen, and the
message will be dropped.

• When a publish attempt to a QoS1 subscriber with clean session fails, the message will be sent
to another subscriber in the group for multiple retry attempts. Messages that fail to be delivered
after all the retry attempts will be dropped.

• When a publish attempt to a QoS1 subscriber with persistent sessions fails because the
subscriber is offline, the messages won't be queued and will be attempted to another subscriber
in the group. Messages that fail to be delivered after all the retry attempts will be dropped.

• Shared Subscriptions don't receive retained messages.

• When Shared Subscriptions contain wildcard characters (# or +), there might be multiple
matching Shared Subscriptions to a topic. If that happens, the message broker copies the
publishing message and sends it to a random client in each matching Shared Subscription. The
wildcard behavior of Shared Subscriptions can be explained in the following diagram.

Device communication protocols 143

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-retain

AWS IoT Core Developer Guide

In this example, there are three matching Shared Subscriptions to the publishing MQTT topic
sports/tennis. The message broker copies the published message and sends the message to a
random client in each matching group.

Client 1 and client 2 share the subscription: $share/consumer1/sports/tennis

Client 3 and client 4 share the subscription: $share/consumer1/sports/#

Client 5 and client 6 share the subscription: $share/consumer2/sports/tennis

For more information about Shared Subscriptions limits, see AWS IoT Core endpoints and quotas
from the AWS General Reference. To test Shared Subscriptions using the AWS IoT MQTT client
in the AWS IoT console, see ???. For more information about Shared Subscriptions, see Shared
Subscriptions from the MQTTv5.0 specification.

Clean Start and Session Expiry

You can use Clean Start and Session Expiry to handle your persistent sessions with more flexibility.
A Clean Start flag indicates whether the session should start without using an existing session.
A Session Expiry interval indicates how long to retain the session after a disconnect. The session
expiry interval can be modified at disconnect. For more information, see the section called “MQTT
persistent sessions”.

Reason Code on all ACKs

You can debug or process error messages more easily using the reason codes. Reason codes are
returned by the message broker based on the type of interaction with the broker (Subscribe,
Publish, Acknowledge). For more information, see MQTT reason codes. For a complete list of MQTT
reason codes, see MQTT v5 specification.

Topic Aliases

You can substitute a topic name with a topic alias, which is a two-byte integer. Using topic aliases
can optimize the transmission of topic names to potentially reduce data costs on metered data
services. AWS IoT Core has a default limit of 8 topic aliases. For more information, see AWS IoT
Core endpoints and quotas from the AWS General Reference.

Device communication protocols 144

https://docs.aws.amazon.com/general/latest/gr/iot-core.html
https://console.aws.amazon.com/iot/home
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901250
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901250
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901031
https://docs.aws.amazon.com/general/latest/gr/iot-core.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html

AWS IoT Core Developer Guide

Message Expiry

You can add message expiry values to published messages. These values represent the message
expiry interval in seconds. If the messages haven't been sent to the subscribers within that interval,
the message will expire and be removed. If you don't set the message expiry value, the message
will not expire.

On the outbound, the subscriber will receive a message with the remaining time left in the expiry
interval. For example, if an inbound publish message has a message expire of 30 seconds, and
it's routed to the subscriber after 20 seconds, the message expiry field will be updated to 10. It is
possible for the message received by the subscriber to have an updated MEI of 0. This is because as
soon as the time remaining is 999 ms or less, it will be updated to 0.

In AWS IoT Core, the minimum message expiry interval is 1. If the interval is set to 0 from the client
side, it will be adjusted to 1. The maximum message expiry interval is 604800 (7 days). Any values
higher than this will be adjusted to the maximum value.

In cross version communication, the behavior of message expiry is decided by MQTT version of
the inbound publish message. For example, a message with message expiry sent by a session
connected via MQTT5 can expire for devices subscribed with MQTT3 sessions. The table below lists
how message expiry supports the following types of publish messages:

Publish
Message Type

Message Expiry Interval

Regular
Publish

If a server fails to deliver the message within the specified time, the expired
message will be removed and the subscriber won't receive it. This includes
situations such as when a device is not pubacking their QoS 1 messages.

Retain If a retained message expires and a new client subscribes to the topic, the
client won't receive the message upon subscription.

Last Will The interval for last will messages starts after the client disconnects and the
server attempts to deliver the last will message to its subscribers.

Queued
messages

If an outbound QoS1 with Message Expiry Interval expires when a client
is offline, after the persistent session resumes, the client won't receive the
expired message.

Device communication protocols 145

AWS IoT Core Developer Guide

Other MQTT 5 features

Server disconnect

When a disconnection happens, the server can proactively send the client a DISCONNECT to notify
connection closure with a reason code for disconnection.

Request/Response

Publishers can request a response be sent by the receiver to a publisher-specified topic upon
reception.

Maximum Packet Size

Client and Server can independently specify the maximum packet size that they support.

Payload format and content type

You can specify the payload format (binary, text) and content type when a message is published.
These are forwarded to the receiver of the message.

MQTT 5 properties

MQTT 5 properties are important additions to the MQTT standard to support new MQTT 5 features
such as Session Expiry and the Request/Response pattern. In AWS IoT Core, you can create rules
that can forward the properties in outbound messages, or use HTTP Publish to publish MQTT
messages with some of the new properties.

The following table lists all the MQTT 5 properties that AWS IoT Core supports.

Property Description Input
type

Packet

Payload
Format
Indicator

A boolean value that indicates whether the
payload is formatted as UTF-8.

Byte PUBLISH, CONNECT

Content Type A UTF-8 string that describes the content of
the payload.

UTF-8
string

PUBLISH, CONNECT

Response
Topic

A UTF-8 string that describes the topic the
receiver should publish to as part of the

UTF-8
string

PUBLISH, CONNECT

Device communication protocols 146

https://docs.aws.amazon.com/iot/latest/developerguide/republish-rule-action.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_Publish.html

AWS IoT Core Developer Guide

Property Description Input
type

Packet

request-response flow. The topic must not
have wildcard characters.

Correlation
Data

Binary data used by the sender of the
request message to identify which request
the response message is for.

Binary PUBLISH, CONNECT

User Property A UTF-8 string pair. This property can appear
multiple times in one packet. Receivers will
receive the key-value pairs in the same order
they are sent.

UTF-8
string
pair

CONNECT, PUBLISH,
Will Propertie
s, SUBSCRIBE
, DISCONNECT,
UNSUBSCRIBE

Message
Expiry
Interval

A 4-byte integer that represents the
message expiry interval in seconds. If absent,
the message doesn't expire.

4-
byte
integer

PUBLISH, CONNECT

Session
Expiry
Interval

A 4-byte integer that represents the session
expiry interval in seconds. AWS IoT Core
supports a maximum of 7 days, with a
default maximum of one hour. If the value
you set exceeds the maximum of your
account, AWS IoT Core will return the
adjusted value in the CONNACK.

4-
byte
integer

CONNECT, CONNACK,
DISCONNECT

Assigned
Client
Identifier

A random client ID generated by AWS IoT
Core when a client ID isn’t specified by
devices. The random client ID must be a new
client identifier that's not used by any other
session currently managed by the broker.

UTF-8
string

CONNACK

Server Keep
Alive

A 2-byte integer that represents the keep
alive time assigned by the server. The server
will disconnect the client if the client is
inactive for more than the keep alive time.

2-
byte
integer

CONNACK

Device communication protocols 147

AWS IoT Core Developer Guide

Property Description Input
type

Packet

Request
Problem
Information

A boolean value that indicates whether the
Reason String or User Properties are sent in
the case of failures.

Byte CONNECT

Receive
Maximum

A 2-byte integer that represents the
maximum number of PUBLISH QOS > 0
packets which can be sent without receiving
an PUBACK.

2-
byte
integer

CONNECT, CONNACK

Topic Alias
Maximum

This value indicates the highest value that
will be accepted as a Topic Alias. Default is 0.

2-
byte
integer

CONNECT, CONNACK

Maximum
QoS

The maximum value of QoS that AWS IoT
Core supports. Default is 1. AWS IoT Core
doesn't support QoS2.

Byte CONNACK

Retain
Available

A boolean value that indicates whether AWS
IoT Core message broker supports retained
messages. The default is 1.

Byte CONNACK

Maximum
Packet Size

The maximum packet size that AWS IoT Core
accepts and sends. Cannot exceed 128KB.

4-
byte
integer

CONNECT, CONNACK

Wildcard
Subscription
Available

A boolean value that indicates whether AWS
IoT Core message broker supports Wildcard
Subscription Available. The default is 1.

Byte CONNACK

Subscript
ion Identifier
Available

A boolean value that indicates whether AWS
IoT Core message broker supports Subscript
ion Identifier Available. The default is 0.

Byte CONNACK

Device communication protocols 148

AWS IoT Core Developer Guide

MQTT reason codes

MQTT 5 introduces improved error reporting with reason code responses. AWS IoT Core may return
reason codes including but not limited to the following grouped by packets. For a complete list of
reason codes supported by MQTT 5, see MQTT 5 specifications.

CONNACK Reason Codes

Value Hex Reason Code
name

Description

0 0x00 Success The connection is accepted.

128 0x80 Unspecified error The server does not wish to reveal the reason for the
failure, or none of the other reason codes apply.

133 0x85 Client Identifier
not valid

The client identifier is a valid string but is not allowed by
the server.

134 0x86 Bad User Name
or Password

The server does not accept the user name or password
specified by the client.

135 0x87 Not authorized The client is not authorized to connect.

144 0x90 Topic Name
invalid

The Will Topic Name is correctly formed but is not
accepted by the server.

151 0x97 Quota exceeded An implementation or administrative imposed limit has
been exceeded.

155 0x9B QoS not
supported

The server does not support the QoS set in Will QoS.

PUBACK Reason Codes

Value Hex Reason Code
name

Description

0 0x00 Success The message is accepted. Publication of the QoS 1
message proceeds.

Device communication protocols 149

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901031

AWS IoT Core Developer Guide

Value Hex Reason Code
name

Description

128 0x80 Unspecified
error

The receiver does not accept the publish, but either does
not want to reveal the reason, or it does not match one of
the other values.

135 0x87 Not authorize
d

The PUBLISH is not authorized.

144 0x90 Topic Name
invalid

The topic name is not malformed, but is not accepted by
the client or server.

145 0x91 Packet
identifier in
use

The packet identifier is already in use. This might indicate
a mismatch in the session state between the client and
server.

151 0x97 Quota
exceeded

An implementation or administrative imposed limit has
been exceeded.

DISCONNECT Reason Codes

Value Hex Reason Code
name

Description

129 0x81 Malformed
Packet

The received packet does not conform to this specifica
tion.

130 0x82 Protocol Error An unexpected or out of order packet was received.

135 0x87 Not authorize
d

The request is not authorized.

139 0x8B Server
shutting down

The server is shutting down.

141 0x8D Keep Alive
timeout

The connection is closed because no packet has been
received for 1.5 times the Keep Alive time.

Device communication protocols 150

AWS IoT Core Developer Guide

Value Hex Reason Code
name

Description

142 0x8E Session taken
over

Another connection using the same ClientID has
connected, causing this connection to be closed.

143 0x8F Topic Filter
invalid

The topic filter is correctly formed but is not accepted by
the server.

144 0x90 Topic Name
invalid

The topic name is correctly formed but is not accepted by
this client or server.

147 0x93 Receive
Maximum
exceeded

The client or server has received more than the Receive
Maximum publication for which it has not sent PUBACK or
PUBCOMP.

148 0x94 Topic Alias
invalid

The client or server has received a PUBLISH packet
containing a topic alias greater than the Maximum Topic
Alias it sent in the CONNECT or CONNACK packet.

151 0x97 Quota
exceeded

An implementation or administrative imposed limit has
been exceeded.

152 0x98 Administrative
action

The connection is closed due to an administrative action.

155 0x9B QoS not
supported

The client specified a QoS greater than the QoS specified
in a Maximum QoS in the CONNACK.

161 0xA1 Subscription
Identifiers not
supported

The server does not support subscription identifiers; the
subscription is not accepted.

Device communication protocols 151

AWS IoT Core Developer Guide

SUBACK Reason Codes

Value Hex Reason Code
name

Description

0 0x00 Granted QoS 0 The subscription is accepted and the maximum QoS
sent will be QoS 0. This might be a lower QoS than was
requested.

1 0x01 Granted QoS 1 The subscription is accepted and the maximum QoS
sent will be QoS 1. This might be a lower QoS than was
requested.

128 0x80 Unspecified
error

The subscription is not accepted and the Server either does
not wish to reveal the reason or none of the other Reason
Codes apply.

135 0x87 Not authorized The Client is not authorized to make this subscription.

143 0x8F Topic Filter
invalid

The Topic Filter is correctly formed but is not allowed for
this Client.

145 0x91 Packet Identifie
r in use

The specified Packet Identifier is already in use.

151 0x97 Quota exceeded An implementation or administrative imposed limit has
been exceeded.

UNSUBACK Reason Codes

Value Hex Reason Code
name

Description

0 0x00 Success The subscription is deleted.

128 0x80 Unspecified
error

The unsubscribe could not be completed and the Server
either does not wish to reveal the reason or none of the
other Reason Codes apply.

Device communication protocols 152

AWS IoT Core Developer Guide

Value Hex Reason Code
name

Description

143 0x8F Topic Filter
invalid

The Topic Filter is correctly formed but is not allowed for
this Client.

145 0x91 Packet Identifie
r in use

The specified Packet Identifier is already in use.

AWS IoT differences from MQTT specifications

The message broker implementation is based on the MQTT v3.1.1 specification and the MQTT v5.0
specification, but it differs from the specifications in these ways:

• AWS IoT doesn't support the following packets for MQTT 3: PUBREC, PUBREL, and PUBCOMP.

• AWS IoT doesn't support the following packets for MQTT 5: PUBREC, PUBREL, PUBCOMP, and
AUTH.

• AWS IoT doesn't support MQTT 5 server redirection.

• AWS IoT supports MQTT quality of service (QoS) levels 0 and 1 only. AWS IoT doesn't support
publishing or subscribing with QoS level 2. When QoS level 2 is requested, the message broker
doesn't send a PUBACK or SUBACK.

• In AWS IoT, subscribing to a topic with QoS level 0 means that a message is delivered zero or
more times. A message might be delivered more than once. Messages delivered more than once
might be sent with a different packet ID. In these cases, the DUP flag is not set.

• When responding to a connection request, the message broker sends a CONNACK message. This
message contains a flag to indicate if the connection is resuming a previous session.

• Before sending additional control packets or a disconnect request, the client must wait for the
CONNACK message to be received on their device from the AWS IoT message broker.

• When a client subscribes to a topic, there might be a delay between the time the message broker
sends a SUBACK and the time the client starts receiving new matching messages.

• When a client uses the wildcard character # in the topic filter to subscribe to a topic, all strings at
and below its level in the topic hierarchy are matched. However, the parent topic is not matched.
For example, a subscription to the topic sensor/# receives messages published to the topics
sensor/, sensor/temperature, sensor/temperature/room1, but not messages published
to sensor. For more information about wildcards, see Topic filters.

Device communication protocols 153

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

AWS IoT Core Developer Guide

• The message broker uses the client ID to identify each client. The client ID is passed in from the
client to the message broker as part of the MQTT payload. Two clients with the same client ID
can't be connected concurrently to the message broker. When a client connects to the message
broker using a client ID that another client is using, the new client connection is accepted and the
previously connected client is disconnected.

• On rare occasions, the message broker might resend the same logical PUBLISH message with a
different packet ID.

• Subscription to topic filters that contain a wildcard character can't receive retained messages. To
receive a retained message, the subscribe request must contain a topic filter that matches the
retained message topic exactly.

• The message broker doesn't guarantee the order in which messages and ACK are received.

• AWS IoT may have limits that are different from the specifications. For more information, see
AWS IoT Core message broker and protocol limits and quotas from the AWS IoT Reference Guide.

• The MQTT DUP flag is not supported.

HTTPS

Clients can publish messages by making requests to the REST API using the HTTP 1.0 or 1.1
protocols. For the authentication and port mappings used by HTTP requests, see Protocols, port
mappings, and authentication.

Note

HTTPS doesn't support a clientId value like MQTT does. clientId is available when
using MQTT, but it's not available when using HTTPS.

HTTPS message URL

Devices and clients publish their messages by making POST requests to a client-specific endpoint
and a topic-specific URL:

https://IoT_data_endpoint/topics/url_encoded_topic_name?qos=1

• IoT_data_endpoint is the AWS IoT device data endpoint. You can find the endpoint in the
AWS IoT console on the thing's details page or on the client by using the AWS CLI command:

Device communication protocols 154

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Core Developer Guide

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The endpoint should look something like this: a3qjEXAMPLEffp-ats.iot.us-
west-2.amazonaws.com

• url_encoded_topic_name is the full topic name of the message being sent.

HTTPS message code examples

These are some examples of how to send an HTTPS message to AWS IoT.

Python (port 8443)

import requests
import argparse

define command-line parameters
parser = argparse.ArgumentParser(description="Send messages through an HTTPS
 connection.")
parser.add_argument('--endpoint', required=True, help="Your AWS IoT data custom
 endpoint, not including a port. " +
 "Ex: \"abcdEXAMPLExyz-
ats.iot.us-east-1.amazonaws.com\"")
parser.add_argument('--cert', required=True, help="File path to your client
 certificate, in PEM format.")
parser.add_argument('--key', required=True, help="File path to your private key, in
 PEM format.")
parser.add_argument('--topic', required=True, default="test/topic", help="Topic to
 publish messages to.")
parser.add_argument('--message', default="Hello World!", help="Message to publish. "
 +
 "Specify empty string to
 publish nothing.")

parse and load command-line parameter values
args = parser.parse_args()

create and format values for HTTPS request
publish_url = 'https://' + args.endpoint + ':8443/topics/' + args.topic + '?qos=1'
publish_msg = args.message.encode('utf-8')

make request

Device communication protocols 155

AWS IoT Core Developer Guide

publish = requests.request('POST',
 publish_url,
 data=publish_msg,
 cert=[args.cert, args.key])

print results
print("Response status: ", str(publish.status_code))
if publish.status_code == 200:
 print("Response body:", publish.text)

Python (port 443)

import requests
import http.client
import json
import ssl

ssl_context = ssl.SSLContext(protocol=ssl.PROTOCOL_TLS_CLIENT)
ssl_context.minimum_version = ssl.TLSVersion.TLSv1_2

note the use of ALPN
ssl_context.set_alpn_protocols(["x-amzn-http-ca"])
ssl_context.load_verify_locations(cafile="./<root_certificate>")

update the certificate and the AWS endpoint
ssl_context.load_cert_chain("./<certificate_in_PEM_Format>",
 "<private_key_in_PEM_format>")
connection = http.client.HTTPSConnection('<the ats IoT endpoint>', 443,
 context=ssl_context)
message = {'data': 'Hello, I'm using TLS Client authentication!'}
json_data = json.dumps(message)
connection.request('POST', '/topics/device%2Fmessage?qos=1', json_data)

make request
response = connection.getresponse()

print results
print(response.read().decode())

CURL

You can use curl from a client or device to send a message to AWS IoT.

Device communication protocols 156

https://curl.haxx.se

AWS IoT Core Developer Guide

To use curl to send a message from an AWS IoT client device

1. Check the curl version.

a. On your client, run this command at a command prompt.

curl --help

In the help text, look for the TLS options. You should see the --tlsv1.2 option.

b. If you see the --tlsv1.2 option, continue.

c. If you don't see the --tlsv1.2 option or you get a command not found error,
you might need to update or install curl on your client or install openssl before you
continue.

2. Install the certificates on your client.

Copy the certificate files that you created when you registered your client (thing) in the
AWS IoT console. Make sure you have these three certificate files on your client before you
continue.

• The CA certificate file (Amazon-root-CA-1.pem in this example).

• The client's certificate file (device.pem.crt in this example).

• The client's private key file (private.pem.key in this example).

3. Create the curl command line, replacing the replaceable values for those of your account
and system.

curl --tlsv1.2 \
 --cacert Amazon-root-CA-1.pem \
 --cert device.pem.crt \
 --key private.pem.key \
 --request POST \
 --data "{ \"message\": \"Hello, world\" }" \
 "https://IoT_data_endpoint:8443/topics/topic?qos=1"

--tlsv1.2

Use TLS 1.2 (SSL).

--cacert Amazon-root-CA-1.pem

The file name and path, if necessary, of the CA certificate to verify the peer.
Device communication protocols 157

AWS IoT Core Developer Guide

--cert device.pem.crt

The client's certificate file name and path, if necessary.

--key private.pem.key

The client's private key file name and path, if necessary.

--request POST

The type of HTTP request (in this case, POST).

--data "{ \"message\": \"Hello, world\" }"

The HTTP POST data you want to publish. In this case, it's a JSON string, with the
internal quotation marks escaped with the backslash character (\).

"https://IoT_data_endpoint:8443/topics/topic?qos=1"

The URL of your client's AWS IoT device data endpoint, followed by the HTTPS port,
:8443, which is then followed by the keyword, /topics/ and the topic name, topic,
in this case. Specify the Quality of Service as the query parameter, ?qos=1.

4. Open the MQTT test client in the AWS IoT console.

Follow the instructions in View MQTT messages with the AWS IoT MQTT client and
configure the console to subscribe to messages with the topic name of topic used in your
curl command, or use the wildcard topic filter of #.

5. Test the command.

While monitoring the topic in the test client of the AWS IoT console, go to your client
and issue the curl command line that you created in step 3. You should see your client's
messages in the console.

MQTT topics

MQTT topics identify AWS IoT messages. AWS IoT clients identify the messages they publish by
giving the messages topic names. Clients identify the messages to which they want to subscribe
(receive) by registering a topic filter with AWS IoT Core. The message broker uses topic names and
topic filters to route messages from publishing clients to subscribing clients.

The message broker uses topics to identify messages sent using MQTT and sent using HTTP to the
HTTPS message URL.

MQTT topics 158

AWS IoT Core Developer Guide

While AWS IoT supports some reserved system topics, most MQTT topics are created and managed
by you, the system designer. AWS IoT uses topics to identify messages received from publishing
clients and select messages to send to subscribing clients, as described in the following sections.
Before you create a topic namespace for your system, review the characteristics of MQTT topics to
create the hierarchy of topic names that works best for your IoT system.

Topic names

Topic names and topic filters are UTF-8 encoded strings. They can represent a hierarchy of
information by using the forward slash (/) character to separate the levels of the hierarchy. For
example, this topic name could refer to a temperature sensor in room 1:

• sensor/temperature/room1

In this example, there might also be other types of sensors in other rooms with topic names such
as:

• sensor/temperature/room2

• sensor/humidity/room1

• sensor/humidity/room2

Note

As you consider topic names for the messages in your system, keep in mind:

• Topic names and topic filters are case sensitive.

• Topic names must not contain personally identifiable information.

• Topic names that begin with a $ are reserved topics to be used only by AWS IoT Core.

• AWS IoT Core can't send or receive messages between AWS accounts or Regions.

For more information on designing your topic names and namespace, see our whitepaper,
Designing MQTT Topics for AWS IoT Core.

For examples of how apps can publish and subscribe to messages, start with Getting started with
AWS IoT Core and AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client.

MQTT topics 159

https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html

AWS IoT Core Developer Guide

Important

The topic namespace is limited to an AWS account and Region. For example, the sensor/
temp/room1 topic used by an AWS account in one Region is distinct from the sensor/
temp/room1 topic used by the same AWS account in another Region or used by any other
AWS account in any Region.

Topic ARN

All topic ARNs (Amazon Resource Names) have the following form:

arn:aws:iot:aws-region:AWS-account-ID:topic/Topic

For example, arn:aws:iot:us-west-2:123EXAMPLE456:topic/application/topic/
device/sensor is an ARN for the topic application/topic/device/sensor.

Topic filters

Subscribing clients register topic filters with the message broker to specify the message topics that
the message broker should send to them. A topic filter can be a single topic name to subscribe to a
single topic name or it can include wildcard characters to subscribe to multiple topic names at the
same time.

Publishing clients can't use wildcard characters in the topic names they publish.

The following table lists the wildcard characters that can be used in a topic filter.

Topic wildcards

Wildcard character Matches Notes

All strings at and below its
level in the topic hierarchy.

Must be the last character in
the topic filter.

Must be the only character in
its level of the topic hierarchy.

MQTT topics 160

AWS IoT Core Developer Guide

Wildcard character Matches Notes

Can be used in a topic filter
that also contains the +
wildcard character.

+ Any string in the level that
contains the character.

Must be the only character in
its level of the topic hierarchy.

Can be used in multiple levels
of a topic filter.

Using wildcards with the previous sensor topic name examples:

• A subscription to sensor/# receives messages published to sensor/, sensor/temperature,
sensor/temperature/room1, but not messages published to sensor.

• A subscription to sensor/+/room1 receives messages published to sensor/temperature/
room1 and sensor/humidity/room1, but not messages sent to sensor/temperature/
room2 or sensor/humidity/room2.

Topic filter ARN

All topic filter ARNs (Amazon Resource Names) have the following form:

arn:aws:iot:aws-region:AWS-account-ID:topicfilter/TopicFilter

For example, arn:aws:iot:us-west-2:123EXAMPLE456:topicfilter/application/
topic/+/sensor is an ARN for the topic filter application/topic/+/sensor.

MQTT message payload

The message payload that is sent in your MQTT messages isn't specified by AWS IoT, unless it's
for one of the the section called “Reserved topics”. To accommodate your application's needs, we
recommend you define the message payload for your topics within the constraints of the AWS IoT
Core Service Quotas for Protocols.

Using a JSON format for your message payload enables the AWS IoT rules engine to parse your
messages and apply SQL queries to it. If your application doesn't require the rules engine to

MQTT topics 161

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-protocol-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-protocol-limits

AWS IoT Core Developer Guide

apply SQL queries to your message payloads, you can use any data format that your application
requires. For information about limitations and reserved characters in a JSON document used in
SQL queries, see JSON extensions.

For more information about designing your MQTT topics and their corresponding message
payloads, see Designing MQTT Topics for AWS IoT Core.

If a message size limit exceeds the service quotas, it will result in a CLIENT_ERROR with reason
PAYLOAD_LIMIT_EXCEEDED and "Message payload exceeds size limit for message type." For more
information about message size limit, see AWS IoT Core message broker limits and quotas.

Reserved topics

Topics that begin with a dollar sign ($) are reserved for use by AWS IoT. You can subscribe and
publish to these reserved topics as they allow; however, you can't create new topics that begin
with a dollar sign. Unsupported publish or subscribe operations to reserved topics can result in a
terminated connection.

Asset model topics

Topic Client operations allowed Description

$aws/sitewise/asset-
models/assetModelId /
assets/assetId/properti
es/propertyId

Subscribe AWS IoT SiteWise publishes
asset property notificat
ions to this topic. For more
information, see Interacti
ng with other AWS services
in the AWS IoT SiteWise
User Guide.

AWS IoT Device Defender topics

These messages support response buffers in Concise Binary Object Representation (CBOR) format
and JavaScript Object Notation (JSON), depending on the payload-format of the topic. AWS IoT
Device Defender topics only support MQTT publish.

MQTT topics 162

https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services.html

AWS IoT Core Developer Guide

payload-format Response format data type

cbor Concise Binary Object Representation (CBOR)

json JavaScript Object Notation (JSON)

For more information, see Sending metrics from devices.

Topic Allowed operations Description

$aws/things/thingName
/defender/metrics/

payload-format

Publish AWS IoT Device Defender agents publish
metrics to this topic. For more informati
on, see Sending metrics from devices.

$aws/things/thingName
/defender/metrics/

payload-format /
accepted

Subscribe AWS IoT publishes to this topic after
a AWS IoT Device Defender agent
publishes a successful message to $aws/
things/thingName /defender/metrics/
payload-format . For more informati
on, see Sending metrics from devices.

$aws/things/thingName
/defender/metrics/

payload-format /
rejected

Subscribe AWS IoT publishes to this topic after
a AWS IoT Device Defender agent
publishes an unsuccessful message to
$aws/things/thingName /defender/
metrics/payload-format . For more
information, see Sending metrics from
devices.

AWS IoT Core Device Location topics

AWS IoT Core Device Location can resolve the measurement data from your device and provide an
estimated location of your IoT devices. The measurement data from the device can include GNSS,
Wi-Fi, cellular, and IP address. AWS IoT Core Device Location then chooses the measurement type
that provides the best accuracy and solves the device location information. For more information,

MQTT topics 163

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/detect-device-side-metrics.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/detect-device-side-metrics.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/detect-device-side-metrics.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/detect-device-side-metrics.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/detect-device-side-metrics.html#DetectMetricsMessages

AWS IoT Core Developer Guide

see AWS IoT Core Device Location and Resolving device location using AWS IoT Core Device
Location MQTT topics.

Topic Allowed operations Description

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate

Publish A device publishes to this topic to get
the scanned raw measurement data
to be resolved by AWS IoT Core Device
Location.

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate/accepted

Subscribe AWS IoT Core Device Location publishes
to this topic after it has resolved the
device location successfully.

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate/rejected

Subscribe AWS IoT Core Device Location publishes
to this topic when it is unable to resolve
the device location successfully due to
4xx errors.

Event topics

Note

For more information about reserved MQTT topics for LoRaWAN events, see Connection
status events.

Topic Client operations
allowed

Description

$aws/events/certificates/
registered/caCertifi
cateId

Subscribe AWS IoT publishes this message when
AWS IoT automatically registers a
certificate and when a client presents
a certificate with the PENDING_A
CTIVATION status. For more informati
on, see the section called “Configure the

MQTT topics 164

https://docs.aws.amazon.com/iot/latest/developerguide/iot-lorawan-gateway-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-lorawan-gateway-events.html

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

first connection by a client for automatic
registration”.

$aws/events/job/jobID/
canceled

Subscribe AWS IoT publishes this message when
a job is canceled. For more information,
see Jobs events.

$aws/events/job/jobID/
cancellation_in_progress

Subscribe AWS IoT publishes this message when a
job cancellation is in progress. For more
information, see Jobs events.

$aws/events/job/jobID/
completed

Subscribe AWS IoT publishes this message when a
job has completed. For more informati
on, see Jobs events.

$aws/events/job/jobID/
deleted

Subscribe AWS IoT publishes this message when a
job is deleted. For more information, see
Jobs events.

$aws/events/job/jobID/
deletion_in_progress

Subscribe AWS IoT publishes this message when
a job deletion is in progress. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/canceled

Subscribe AWS IoT publishes this message when
a job execution is canceled. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/deleted

Subscribe AWS IoT publishes this message when
a job execution is deleted. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/failed

Subscribe AWS IoT publishes this message when
a job execution has failed. For more
information, see Jobs events.

MQTT topics 165

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/jobExe
cution/jobID/rejected

Subscribe AWS IoT publishes this message when
a job execution was rejected. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/removed

Subscribe AWS IoT publishes this message when
a job execution was removed. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/succeeded

Subscribe AWS IoT publishes this message when
a job execution succeeded. For more
information, see Jobs events.

$aws/events/jobExe
cution/jobID/timed_out

Subscribe AWS IoT publishes this message when
a job execution timed out. For more
information, see Jobs events.

$aws/events/presence/
connected/clientId

Subscribe AWS IoT publishes to this topic when an
MQTT client with the specified client ID
connects to AWS IoT. For more informati
on, see Connect/Disconnect events.

$aws/events/presence/
disconnected/clientId

Subscribe AWS IoT publishes to this topic when
an MQTT client with the specified client
ID disconnects to AWS IoT. For more
information, see Connect/Disconnect
events.

$aws/events/subscr
iptions/subscribed
/clientId

Subscribe AWS IoT publishes to this topic when an
MQTT client with the specified client ID
subscribes to an MQTT topic. For more
information, see Subscribe/Unsubscribe
events.

MQTT topics 166

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/subscr
iptions/unsubscrib
ed/clientId

Subscribe AWS IoT publishes to this topic when an
MQTT client with the specified client ID
unsubscribes to an MQTT topic. For more
information, see Subscribe/Unsubscribe
events.

$aws/events/thing/
thingName /created

Subscribe AWS IoT publishes to this topic when
the thingName thing is created. For
more information, see the section called
“Registry events”.

$aws/events/thing/
thingName /updated

Subscribe AWS IoT publishes to this topic when
the thingName thing is updated. For
more information, see the section called
“Registry events”.

$aws/events/thing/
thingName /deleted

Subscribe AWS IoT publishes to this topic when
the thingName thing is deleted. For
more information, see the section called
“Registry events”.

$aws/events/thingG
roup/thingGroupName /
created

Subscribe AWS IoT publishes to this topic when
thing group thingGroupName is
created. For more information, see the
section called “Registry events”.

$aws/events/thingG
roup/thingGroupName /
updated

Subscribe AWS IoT publishes to this topic when
thing group thingGroupName is
updated. For more information, see the
section called “Registry events”.

$aws/events/thingG
roup/thingGroupName /
deleted

Subscribe AWS IoT publishes to this topic when
thing group thingGroupName is
deleted. For more information, see the
section called “Registry events”.

MQTT topics 167

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/thingT
ype/thingTypeName /
created

Subscribe AWS IoT publishes to this topic when the
thingTypeName thing type is created.
For more information, see the section
called “Registry events”.

$aws/events/thingT
ype/thingTypeName /
updated

Subscribe AWS IoT publishes to this topic when the
thingTypeName thing type is updated.
For more information, see the section
called “Registry events”.

$aws/events/thingT
ype/thingTypeName /
deleted

Subscribe AWS IoT publishes to this topic when the
thingTypeName thing type is deleted.
For more information, see the section
called “Registry events”.

$aws/events/thingT
ypeAssociation/
thing/thingName

/thingTypeName

Subscribe AWS IoT publishes to this topic when
thing thingName is associated with
or disassociated from thing type
thingTypeName . For more informati
on, see the section called “Registry
events”.

$aws/events/thingG
roupMembership/thi
ngGroup/thingGrou
pName /thing/thingName

/added

Subscribe AWS IoT publishes to this topic when
thing thingName is added to thing
group thingGroupName . For more
information, see the section called
“Registry events”.

$aws/events/thingG
roupMembership/thi
ngGroup/thingGrou
pName /thing/thingName

/removed

Subscribe AWS IoT publishes to this topic when
thing thingName is removed from
thing group thingGroupName . For
more information, see the section called
“Registry events”.

MQTT topics 168

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/thingG
roupHierarchy/thin
gGroup/parentThi
ngGroupName /childThi
ngGroup/childThin
gGroupName /added

Subscribe AWS IoT publishes to this topic when
thing group childThingGroupNam
e is added to thing group parentThi
ngGroupName . For more information,
see the section called “Registry events”.

$aws/events/thingG
roupHierarchy/thin
gGroup/parentThi
ngGroupName /childThi
ngGroup/childThin
gGroupName /removed

Subscribe AWS IoT publishes to this topic when
thing group childThingGroupName
is removed from thing group parentThi
ngGroupName . For more information,
see the section called “Registry events”.

Fleet provisioning topics

Note

The client operations noted as Receive in this table indicate topics that AWS IoT publishes
directly to the client that requested it, whether the client has subscribed to the topic or not.
Clients should expect to receive these response messages even if they haven't subscribed to
them. These response messages don't pass through the message broker and they can't be
subscribed to by other clients or rules.

These messages support response buffers in Concise Binary Object Representation (CBOR) format
and JavaScript Object Notation (JSON), depending on the payload-format of the topic.

payload-format Response format data type

cbor Concise Binary Object Representation (CBOR)

json JavaScript Object Notation (JSON)

MQTT topics 169

AWS IoT Core Developer Guide

For more information, see Device provisioning MQTT API.

Topic Client operations
allowed

Description

$aws/certificates/
create/payload-format

Publish Publish to this topic to create a certificate
from a certificate signing request (CSR).

$aws/certificates/
create/payload-f
ormat /accepted

Subscribe, Receive AWS IoT publishes to this topic after
a successful call to $aws/certificates/
create/payload-format .

$aws/certificates/
create/payload-f
ormat /rejected

Subscribe, Receive AWS IoT publishes to this topic after an
unsuccessful call to $aws/certificates/
create/payload-format .

$aws/certificates/create-fr
om-csr/payload-format

Publish Publishes to this topic to create a certifica
te from a CSR.

$aws/certificates/create-
from-csr/payload-f
ormat /accepted

Subscribe, Receive AWS IoT publishes to this topic a
successful call to $aws/certificates/
create-from-csr/payload-format .

$aws/certificates/create-
from-csr/payload-f
ormat /rejected

Subscribe, Receive AWS IoT publishes to this topic an
unsuccessful call to $aws/certificates/
create-from-csr/payload-format .

$aws/provisioning-
templates/templateN
ame /provision/payload-
format

Publish Publish to this topic to register a thing.

$aws/provisioning-
templates/templateN
ame /provision/payload-
format /accepted

Subscribe, Receive AWS IoT publishes to this topic after a
successful call to $aws/provisioning-
templates/templateName /provisio
n/payload-format .

$aws/provisioning-
templates/templateN

Subscribe, Receive AWS IoT publishes to this topic after an
unsuccessful call to $aws/provisioning-

MQTT topics 170

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

ame /provision/payload-
format /rejected

templates/templateName /provisio
n/payload-format .

Job topics

Note

The client operations noted as Receive in this table indicate topics that AWS IoT publishes
directly to the client that requested it, whether the client has subscribed to the topic or not.
Clients should expect to receive these response messages even if they haven't subscribed to
them.
These response messages don't pass through the message broker and they can't be
subscribed to by other clients or rules. To subscribe to job activity related messages, use the
notify and notify-next topics.
When subscribing to the job and jobExecution event topics for your fleet-monitoring
solution, you must first enable job and job execution events to receive any events on the
cloud side.
For more information, see Jobs device MQTT API operations.

Topic Client operations
allowed

Description

$aws/things/thingName
/jobs/get

Publish Devices publish a message to this topic
to make a GetPendingJobExecu
tions request. For more information,
see Jobs device MQTT API operations.

$aws/things/thingName
/jobs/get/accepted

Subscribe, Receive Devices subscribe to this topic to
receive successful responses from
a GetPendingJobExecutions
request. For more information, see Jobs
device MQTT API operations.

MQTT topics 171

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/things/thingName
/jobs/get/rejected

Subscribe, Receive Devices subscribe to this topic to
receive a response when a GetPendin
gJobExecutions request is
rejected. For more information, see
Jobs device MQTT API operations.

$aws/things/thingName
/jobs/start-next

Publish Devices publish a message to this topic
to make a StartNextPendingJo
bExecution request. For more
information, see Jobs device MQTT API
operations.

$aws/things/thingName
/jobs/start-next/accepted

Subscribe, Receive Devices subscribe to this topic to
receive successful responses to a
StartNextPendingJobExecutio
n request. For more information, see
Jobs device MQTT API operations.

$aws/things/thingName
/jobs/start-next/rejected

Subscribe, Receive Devices subscribe to this topic to
receive a response when a StartNext
PendingJobExecution request
is rejected. For more information, see
Jobs device MQTT API operations.

$aws/things/thingName
/jobs/jobId/get

Publish Devices publish a message to this topic
to make a DescribeJobExecution
request. For more information, see Jobs
device MQTT API operations.

$aws/things/thingName
/jobs/jobId/get/acce

pted

Subscribe, Receive Devices subscribe to this topic to
receive successful responses to a
DescribeJobExecution request.
For more information, see Jobs device
MQTT API operations.

MQTT topics 172

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/things/thingName
/jobs/jobId/get/reje

cted

Subscribe, Receive Devices subscribe to this topic to
receive a response when a DescribeJ
obExecution request is rejected.
For more information, see Jobs device
MQTT API operations.

$aws/things/thingName
/jobs/jobId/update

Publish Devices publish a message to this topic
to make an UpdateJobExecution
request. For more information, see Jobs
device MQTT API operations.

$aws/things/thingName
/jobs/jobId/update/a

ccepted

Subscribe, Receive Devices subscribe to this topic to
receive successful responses to an
UpdateJobExecution request.
For more information, see Jobs device
MQTT API operations.

Note

Only the device that publishes
to $aws/things/thingName /
jobs/jobId/update receives
messages on this topic.

MQTT topics 173

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/things/thingName
/jobs/jobId/update/r

ejected

Subscribe, Receive Devices subscribe to this topic to
receive a response when an UpdateJob
Execution request is rejected. For
more information, see Jobs device
MQTT API operations.

Note

Only the device that publishes
to $aws/things/thingName /
jobs/jobId/update receives
messages on this topic.

$aws/things/thingName
/jobs/notify

Subscribe, Receive Devices subscribe to this topic to
receive notifications when a job
execution is added or removed to the
list of pending executions for a thing.
For more information, see Jobs device
MQTT API operations.

$aws/things/thingName
/jobs/notify-next

Subscribe, Receive Devices subscribe to this topic to
receive notifications when the next
pending job execution for the thing is
changed. For more information, see
Jobs device MQTT API operations.

$aws/events/job/jobId/
completed

Subscribe The Jobs service publishes an event on
this topic when a job completes. For
more information, see Jobs events.

$aws/events/job/jobId/
canceled

Subscribe The Jobs service publishes an event on
this topic when a job is canceled. For
more information, see Jobs events.

MQTT topics 174

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/job/jobId/
deleted

Subscribe The Jobs service publishes an event
on this topic when a job is deleted. For
more information, see Jobs events.

$aws/events/job/jobId/
cancellation_in_progress

Subscribe The Jobs service publishes an event
on this topic when a job cancellation
begins. For more information, see Jobs
events.

$aws/events/job/jobId/
deletion_in_progress

Subscribe The Jobs service publishes an event on
this topic when a job deletion begins.
For more information, see Jobs events.

$aws/events/jobExe
cution/jobId/succeeded

Subscribe The Jobs service publishes an event on
this topic when job execution succeeds.
For more information, see Jobs events.

$aws/events/jobExe
cution/jobId/failed

Subscribe The Jobs service publishes an event on
this topic when a job execution fails.
For more information, see Jobs events.

$aws/events/jobExe
cution/jobId/rejected

Subscribe The Jobs service publishes an event
on this topic when a job execution is
rejected. For more information, see
Jobs events.

$aws/events/jobExe
cution/jobId/canceled

Subscribe The Jobs service publishes an event
on this topic when a job execution is
canceled. For more information, see
Jobs events.

$aws/events/jobExe
cution/jobId/timed_out

Subscribe The Jobs service publishes an event on
this topic when a job execution times
out. For more information, see Jobs
events.

MQTT topics 175

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

$aws/events/jobExe
cution/jobId/removed

Subscribe The Jobs service publishes an event
on this topic when a job execution is
removed. For more information, see
Jobs events.

$aws/events/jobExe
cution/jobId/deleted

Subscribe The Jobs service publishes an event
on this topic when a job execution is
deleted. For more information, see Jobs
events.

Rule topics

Topic Client operations
allowed

Description

$aws/rules/ruleName Publish A device or an application publishes
to this topic to trigger rules directly.
For more information, see Reducing
messaging costs with Basic Ingest.

Secure tunneling topics

Topic Client operations
allowed

Description

$aws/things/thing-nam
e /tunnels/notify

Subscribe AWS IoT publishes this message for
an IoT agent to start a local proxy on
the remote device. For more informati
on, see the section called “IoT agent
snippet”.

MQTT topics 176

AWS IoT Core Developer Guide

Shadow topics

The topics in this section are used by named and unnamed shadows. The topics used by each differ
only in the topic prefix. This table shows the topic prefix used by each shadow type.

ShadowTopicPrefix value Shadow type

$aws/things/thingName /shadow Unnamed (classic) shadow

$aws/things/thingName /shadow/n
ame/shadowName

Named shadow

To create a complete topic, select the ShadowTopicPrefix for the type of shadow to which you
want to refer, replace thingName and if applicable, shadowName, with their corresponding values,
and then append that with the topic stub as shown in the following table. Remember that topics
are case sensitive.

Topic Client operations
allowed

Description

ShadowTopicPrefix /
delete

Publish/Subscribe A device or an application publishes to
this topic to delete a shadow. For more
information, see /delete.

ShadowTopicPrefix /
delete/accepted

Subscribe The Device Shadow service sends
messages to this topic when a shadow
is deleted. For more information, see /
delete/accepted.

ShadowTopicPrefix /
delete/rejected

Subscribe The Device Shadow service sends
messages to this topic when a request
to delete a shadow is rejected. For more
information, see /delete/rejected.

ShadowTopicPrefix /
get

Publish/Subscribe An application or a thing publishes an
empty message to this topic to get

MQTT topics 177

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

a shadow. For more information, see
Device Shadow MQTT topics.

ShadowTopicPrefix /
get/accepted

Subscribe The Device Shadow service sends
messages to this topic when a request
for a shadow is made successfully. For
more information, see /get/accepted.

ShadowTopicPrefix /
get/rejected

Subscribe The Device Shadow service sends
messages to this topic when a request
for a shadow is rejected. For more
information, see /get/rejected.

ShadowTopicPrefix /
update

Publish/Subscribe A thing or application publishes to this
topic to update a shadow. For more
information, see /update.

ShadowTopicPrefix /
update/accepted

Subscribe The Device Shadow service sends
messages to this topic when an update
is successfully made to a shadow.
For more information, see /update/a
ccepted.

ShadowTopicPrefix /
update/rejected

Subscribe The Device Shadow service sends
messages to this topic when an update
to a shadow is rejected. For more
information, see /update/rejected.

ShadowTopicPrefix /
update/delta

Subscribe The Device Shadow service sends
messages to this topic when a differenc
e is detected between the reported and
desired sections of a shadow. For more
information, see /update/delta.

MQTT topics 178

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

ShadowTopicPrefix /
update/documents

Subscribe AWS IoT publishes a state document
to this topic whenever an update to
the shadow is successfully performed
. For more information, see /update/d
ocuments.

MQTT-based file delivery topics

Note

The client operations noted as Receive in this table indicate topics that AWS IoT publishes
directly to the client that requested it, whether the client has subscribed to the topic or not.
Clients should expect to receive these response messages even if they haven't subscribed to
them. These response messages don't pass through the message broker and they can't be
subscribed to by other clients or rules.

These messages support response buffers in Concise Binary Object Representation (CBOR) format
and JavaScript Object Notation (JSON), depending on the payload-format of the topic.

payload-format Response format data type

cbor Concise Binary Object Representation (CBOR)

json JavaScript Object Notation (JSON)

Topic Client operations
allowed

Description

$aws/things/ThingName
/streams/StreamId/

data/payload-format

Subscribe, Receive AWS MQTT-based file delivery
publishes to this topic if the
"GetStream" request from a device is
accepted. The payload contains the

MQTT topics 179

AWS IoT Core Developer Guide

Topic Client operations
allowed

Description

stream data. For more information,
see Using AWS IoT MQTT-based file
delivery in devices.

$aws/things/ThingName
/streams/StreamId/

get/payload-format

Publish A device publishes to this topic to
perform a "GetStream" request. For
more information, see Using AWS IoT
MQTT-based file delivery in devices.

$aws/things/ThingName
/streams/StreamId/

description/payload-f
ormat

Subscribe, Receive AWS MQTT-based file delivery
publishes to this topic if the
"DescribeStream" request from a
device is accepted. The payload
contains the stream description. For
more information, see Using AWS IoT
MQTT-based file delivery in devices.

$aws/things/ThingName
/streams/StreamId/

describe/payload-f
ormat

Publish A device publishes to this topic to
perform a "DescribeStream" request.
For more information, see Using
AWS IoT MQTT-based file delivery in
devices.

$aws/things/ThingName
/streams/StreamId/

rejected/payload-f
ormat

Subscribe, Receive AWS MQTT-based file delivery
publishes to this topic if a "Describe
Stream" or "GetStream" request
from a device is rejected. For more
information, see Using AWS IoT
MQTT-based file delivery in devices.

Reserved topic ARN

All reserved topic ARNs (Amazon Resource Names) have the following form:

arn:aws:iot:aws-region:AWS-account-ID:topic/Topic

MQTT topics 180

AWS IoT Core Developer Guide

For example, arn:aws:iot:us-west-2:123EXAMPLE456:topic/$aws/things/thingName/
jobs/get/accepted is an ARN for the reserved topic $aws/things/thingName/jobs/get/
accepted.

Configurable endpoints

In AWS IoT Core, you can use domain configurations to configure and manage the behaviors of
your data endpoints. With domain configurations, you can generate multiple AWS IoT Core data
endpoints, customize these data endpoints with your own fully qualified domain names (FQDN)
and associated server certificates, and also associate a custom authorizer. For more information,
see Custom authentication and authorization.

Note

This feature is not available in GovCloud AWS Regions.

Domain configurations use cases

You can use domain configurations to simplify tasks such as the following.

• Migrate devices to AWS IoT Core.

• Support heterogeneous device fleets by maintaining separate domain configurations for
separate device types.

• Maintain brand identity (for example, through domain name) while migrating application
infrastructure to AWS IoT Core.

Important notes for using domain configurations in AWS IoT Core

AWS IoT Core uses the server name indication (SNI) TLS extension to apply domain configurations.
Devices must use this extension when they connect to AWS IoT Core. They also must pass a server
name that is identical to the domain name that you specify in the domain configuration. To test
this service, use the v2 version of the AWS IoT Device SDKs in GitHub.

If you create multiple data endpoints in your AWS account, they will share AWS IoT Core resources
such as MQTT topics, device shadows, and rules.

Configurable endpoints 181

https://www.rfc-editor.org/rfc/rfc3546
https://github.com/aws

AWS IoT Core Developer Guide

When you provide the server certificates for AWS IoT Core custom domain configuration, the
certificates have a maximum of four domain names. For more information, see AWS IoT Core
endpoints and quotas.

In this chapter:

• Creating and configuring AWS managed domains

• Creating and configuring custom domains

• Managing domain configurations

• Configuring TLS settings in domain configurations

• Server certificate configuration for OCSP stapling

Creating and configuring AWS managed domains

You create a configurable endpoint on an AWS managed domain by using the
CreateDomainConfiguration API. A domain configuration for an AWS managed domain consists of
the following:

• domainConfigurationName

A user-defined name that identifies the domain configuration and the value must be unique to
your AWS Region. You can't use domain configuration names that start with IoT: because they
are reserved for default endpoints.

• defaultAuthorizerName (optional)

The name of the custom authorizer to use on the endpoint.

• allowAuthorizerOverride (optional)

A Boolean value that specifies whether devices can override the default authorizer by specifying
a different authorizer in the HTTP header of the request. This value is required if a value for
defaultAuthorizerName is specified.

• serviceType (optional)

The service type that the endpoint delivers. AWS IoT Core only supports the DATA service type.
When you specify DATA, AWS IoT Core returns an endpoint with an endpoint type of iot:Data-
ATS. You can't create a configurable iot:Data (VeriSign) endpoint.

• TlsConfig (optional)

Configurable endpoints 182

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#security-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#security-limits
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateDomainConfiguration.html

AWS IoT Core Developer Guide

An object that specifies the TLS configuration for a domain. For more information, see ???.

The following example AWS CLI command creates a domain configuration for a Data endpoint.

aws iot create-domain-configuration --domain-configuration-name
 "myDomainConfigurationName" --service-type "DATA"

The output of the command can look like the following.

{
 "domainConfigurationName": "myDomainConfigurationName",
 "domainConfigurationArn": "arn:aws:iot:us-east-1:123456789012:domainconfiguration/
myDomainConfigurationName/itihw"
}

Creating and configuring custom domains

Domain configurations let you specify a custom fully qualified domain name (FQDN) to connect
to AWS IoT Core. There are many benefits of using custom domains: you can expose your own
domain or your company's own domain to customers for branding purposes; you can easily change
your own domain to point to a new broker; you can support multi-tenancy to serve customers
with different domains within the same AWS account; and you can manage your own server
certificates details, such as the root certificate authority (CA) used to sign the certificate, the
signature algorithm, the certificate chain depth, and the lifecycle of the certificate.

The workflow to set up a domain configuration with a custom domain consists of the following
three stages.

1. Registering Server Certificates in AWS Certificate Manager

2. Creating a Domain Configuration

3. Creating DNS Records

Registering server certificates in AWS certificate manager

Before you create a domain configuration with a custom domain, you must register your server
certificate chain in AWS Certificate Manager (ACM). You can use the following three types of server
certificates.

Configurable endpoints 183

https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

AWS IoT Core Developer Guide

• ACM Generated Public Certificates

• External Certificates Signed by a Public CA

• External Certificates Signed by a Private CA

Note

AWS IoT Core considers a certificate to be signed by a public CA if it's included in Mozilla's
trusted ca-bundle.

Certificate requirements

See Prerequisites for Importing Certificates for the requirements for importing certificates into
ACM. In addition to these requirements, AWS IoT Core adds the following requirements.

• The leaf certificate must include the Extended Key Usage x509 v3 extension with a value of
serverAuth (TLS Web Server Authentication). If you request the certificate from ACM, this
extension is automatically added.

• The maximum certificate chain depth is 5 certificates.

• The maximum certificate chain size is 16KB.

• The cryptographic algorithms and key sizes that are supported include RSA 2048 bit (RSA_2048)
and ECDSA 256 bit (EC_prime256v1).

Using one certificate for multiple domains

If you plan to use one certificate to cover multiple subdomains, use a wildcard domain
in the common name (CN) or Subject Alternative Names (SAN) field. For example,
use *.iot.example.com to cover dev.iot.example.com, qa.iot.example.com, and
prod.iot.example.com. Each FQDN requires its own domain configuration, but more than one
domain configuration can use the same wildcard value. Either the CN or the SAN must cover the
FQDN that you want to use as a custom domain. If SANs are present, the CN is ignored and a SAN
must cover the FQDN that you want to use as a custom domain. This coverage can be an exact
match or a wildcard match. After a wildcard certificate has been validated and registered to an
account, other accounts in the region are blocked from creating custom domains that overlap with
the certificate.

Configurable endpoints 184

https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt?raw=1
https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt?raw=1

AWS IoT Core Developer Guide

The following sections describe how to get each type of certificate. Every certificate resource
requires an Amazon Resource Name (ARN) registered with ACM that you use when you create your
domain configuration.

ACM-generated public certificates

You can generate a public certificate for your custom domain by using the RequestCertificate API.
When you generate a certificate in this way, ACM validates your ownership of the custom domain.
For more information, see Request a Public Certificate in the AWS Certificate Manager User Guide.

External certificates signed by a public CA

If you already have a server certificate that is signed by a public CA (a CA that is included in
Mozilla's trusted ca-bundle), you can import the certificate chain directly into ACM by using the
ImportCertificate API. To learn more about this task and the prerequisites and certificate format
requirements, see Importing Certificates.

External certificates signed by a private CA

If you already have a server certificate that is signed by a private CA or self-signed, you can use the
certificate to create your domain configuration, but you also must create an extra public certificate
in ACM to validate ownership of your domain. To do this, register your server certificate chain
in ACM using the ImportCertificate API. To learn more about this task and the prerequisites and
certificate format requirements, see Importing Certificates.

Creating a validation certificate

After you import your certificate to ACM, generate a public certificate for your custom domain by
using the RequestCertificate API. When you generate a certificate in this way, ACM validates your
ownership of the custom domain. For more information, see Request a Public Certificate. When you
create your domain configuration, use this public certificate as your validation certificate.

Creating a domain configuration

You create a configurable endpoint on a custom domain by using the CreateDomainConfiguration
API. A domain configuration for a custom domain consists of the following:

• domainConfigurationName

A user-defined name that identifies the domain configuration. Domain configuration names
starting with IoT: are reserved for default endpoints and can't be used. Also, this value must be
unique to your AWS Region.

Configurable endpoints 185

https://docs.aws.amazon.com/acm/latest/APIReference/API_RequestCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/acm/latest/APIReference/API_ImportCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/APIReference/API_ImportCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/APIReference/API_RequestCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateDomainConfiguration.html

AWS IoT Core Developer Guide

• domainName

The FQDN that your devices use to connect to AWS IoT Core. AWS IoT Core leverages the server
name indication (SNI) TLS extension to apply domain configurations. Devices must use this
extension when connecting and pass a server name that is identical to the domain name that is
specified in the domain configuration.

• serverCertificateArns

The ARN of the server certificate chain that you registered with ACM. AWS IoT Core currently
supports only one server certificate.

• validationCertificateArn

The ARN of the public certificate that you generated in ACM to validate ownership of your
custom domain. This argument isn't required if you use a publicly signed or ACM-generated
server certificate.

• defaultAuthorizerName (optional)

The name of the custom authorizer to use on the endpoint.

• allowAuthorizerOverride

A Boolean value that specifies whether devices can override the default authorizer by specifying
a different authorizer in the HTTP header of the request. This value is required if a value for
defaultAuthorizerName is specified.

• serviceType

AWS IoT Core currently supports only the DATA service type. When you specify DATA, AWS IoT
returns an endpoint with an endpoint type of iot:Data-ATS.

• TlsConfig (optional)

An object that specifies the TLS configuration for a domain. For more information, see ???.

• serverCertificateConfig (optional)

An object that specifies the server certificate configuration for a domain. For more information,
see ???.

The following AWS CLI command creates a domain configuration for iot.example.com.

Configurable endpoints 186

AWS IoT Core Developer Guide

aws iot create-domain-configuration --domain-configuration-name
 "myDomainConfigurationName" --service-type "DATA"
--domain-name "iot.example.com" --server-certificate-arns serverCertARN --validation-
certificate-arn validationCertArn

Note

After you create your domain configuration, it might take up to 60 minutes until AWS IoT
Core serves your custom server certificates.

For more information, see ???.

Creating DNS records

After you register your server certificate chain and create your domain configuration, create a DNS
record so that your custom domain points to an AWS IoT domain. This record must point to an AWS
IoT endpoint of type iot:Data-ATS. You can get your endpoint by using the DescribeEndpoint
API.

The following AWS CLI command shows how to get your endpoint.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

After you get your iot:Data-ATS endpoint, create a CNAME record from your custom domain to
this AWS IoT endpoint. If you create multiple custom domains in the same AWS account, alias them
to this same iot:Data-ATS endpoint.

Troubleshooting

If you have trouble connecting devices to a custom domain, make sure that AWS IoT Core has
accepted and applied your server certificate. You can verify that AWS IoT Core has accepted your
certificate by using either the AWS IoT Core console or the AWS CLI.

To use the AWS IoT Core console, navigate to the Settings page and select the domain
configuration name. In the Server certificate details section, check the status and status details. If
the certificate is invalid, replace it in ACM with a certificate that meets the certificate requirements
listed in the previous section. If the certificate has the same ARN, AWS IoT Core will be pick it up
and apply it automatically.

Configurable endpoints 187

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint.html

AWS IoT Core Developer Guide

To check the certificate status by using the AWS CLI, call the DescribeDomainConfiguration API and
specify your domain configuration name.

Note

If your certificate is invalid, AWS IoT Core will continue to serve the last valid certificate.

You can check which certificate is being served on your endpoint by using the following openssl
command.

openssl s_client -connect custom-domain-name:8883 -showcerts -servername
custom-domain-name

Managing domain configurations

You can manage the lifecycles of existing configurations by using the following APIs.

• ListDomainConfigurations

• DescribeDomainConfiguration

• UpdateDomainConfiguration

• DeleteDomainConfiguration

Viewing domain configurations

To return a paginated list of all domain configurations in your AWS account, use the
ListDomainConfigurations API . You can see the details of a particular domain configuration using
the DescribeDomainConfiguration API. This API takes a single domainConfigurationName
parameter and returns the details of the specified configuration.

Example

Updating domain configurations

To update the status or the custom authorizer of your domain configuration, use the
UpdateDomainConfiguration API. You can set the status to ENABLED or DISABLED. If you disable
the domain configuration, devices connected to that domain receive an authentication error.
Currently you can't update the server certificate in your domain configuration. To change the
certificate of a domain configuration, you must delete and recreate it.

Configurable endpoints 188

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListDomainConfigurations.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListDomainConfigurations.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateDomainConfiguration.html

AWS IoT Core Developer Guide

Example

Deleting domain configurations

Before you delete a domain configuration, use the UpdateDomainConfiguration API to set the
status to DISABLED. This helps you avoid accidentally deleting the endpoint. After you disable
the domain configuration, delete it by using the DeleteDomainConfiguration API. You must place
AWS-managed domains in DISABLED status for 7 days before you can delete them. You can place
custom domains in DISABLED status and then delete them at once.

Example

After you delete a domain configuration, AWS IoT Core no longer serves the server certificate
associated with that custom domain.

Rotating certificates in custom domains

You may need to periodically replace your server certificate with an updated certificate. The
rate at which you do this depends on the validity period of your certificate. If you generated
your server certificate by using AWS Certificate Manager (ACM), you can set the certificate to
renew automatically. When ACM renews your certificate, AWS IoT Core automatically picks up
the new certificate. You don't have to perform any additional action. If you imported your server
certificate from a different source, you can rotate it by reimporting it to ACM. For information
about reimporting certificates, see Reimport a certificate.

Note

AWS IoT Core only picks up certificate updates under the following conditions.

• The new certificate has the same ARN as the old one.

• The new certificate has the same signing algorithm, common name, or subject
alternative name as the old one.

Configuring TLS settings in domain configurations

AWS IoT Core provides predefined security polices for you to customize your Transport Layer
Security (TLS) settings for TLS 1.2 and TLS 1.3 in domain configurations. A security policy is a
combination of TLS protocols and their ciphers that determine the supported protocols and ciphers

Configurable endpoints 189

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteDomainConfiguration.html
https://docs.aws.amazon.com/acm/latest/userguide/import-reimport.html
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.3

AWS IoT Core Developer Guide

during TLS negotiations between a client and a server. With the supported security policies, you
can manage your devices' TLS settings with more flexibility, apply the most up-to-date security
measures when connecting new devices, and maintain consistent TLS configurations for existing
devices.

The following table describes the security policies, their TLS versions, and supported regions:

Security policy name Supported AWS Regions

IoTSecurityPolicy_
TLS13_1_3_2022_10

All AWS Regions

IoTSecurityPolicy_
TLS13_1_2_2022_10

All AWS Regions

IoTSecurityPolicy_
TLS12_1_2_2022_10

All AWS Regions

IoTSecurityPolicy_
TLS12_1_0_2016_01

ap-east-1, ap-northeast-2, ap-south-1, ap-southeast-2, ca-central-1,
cn-north-1, cn-northwest-1, eu-north-1, eu-west-2, eu-west-3, me-
south-1, sa-east-1, us-east-2, us-west-1

IoTSecurityPolicy_
TLS12_1_0_2015_01

ap-northeast-1, ap-southeast-1, eu-central-1, eu-west-1, us-east-1,
us-west-2

The names of the security policies in AWS IoT Core include version information based on the year
and month that they were released. If you create a new domain configuration, the security policy
will default to IoTSecurityPolicy_TLS13_1_2_2022_10. For a complete table of security
policies with details of protocols, TCP ports, and ciphers, see Security polices. AWS IoT Core doesn't
support custom security policies. For more information, see ???.

To configure TLS settings in domain configurations, you can use the AWS IoT console or the AWS
CLI.

Contents

• Configure TLS settings in domain configurations (console)

• Configure TLS settings in domain configurations (CLI)

Configurable endpoints 190

AWS IoT Core Developer Guide

Configure TLS settings in domain configurations (console)

To configure TLS settings using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. To configure TLS settings when you create a new domain configuration, follow these steps.

1. In the left navigation pane, choose Settings, and then, from the Domain configurations
section, choose Create domain configuration.

2. In the Create domain configuration page, in the Custom domain settings - optional
section, choose a security policy from Select security policy.

3. Follow the widget and complete the rest of the steps. Choose Create domain configuration.

3. To update TLS settings in an existing domain configuration, follow these steps.

1. In the left navigation pane, choose Settings, and then, under Domain configurations,
choose a domain configuration.

2. In the Domain configuration details page, choose Edit. Then, in the Custom domain
settings - optional section, under Select security policy, choose a security policy.

3. Choose Update domain configuration.

For more information, see Create a domain configuration and Manage domain configurations.

Configure TLS settings in domain configurations (CLI)

You can use the create-domain-configuration and update-domain-configuration CLI commands
to configure your TLS settings in domain configurations.

1. To specify TLS settings using the create-domain-configuration CLI command:

aws iot create-domain-configuration \
 --domain-configuration-name domainConfigurationName \
 --tls-config securityPolicy=IoTSecurityPolicy_TLS13_1_2_2022_10

The output of this command can look like the following:

{
"domainConfigurationName": "test",
"domainConfigurationArn": "arn:aws:iot:us-west-2:123456789012:domainconfiguration/
test/34ga9"

Configurable endpoints 191

https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/developerguide/iot-custom-endpoints-configurable-custom.html#iot-custom-endpoints-configurable-custom-domain-config
https://docs.aws.amazon.com/cli/latest/reference/iot/create-domain-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-domain-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-domain-configuration.html

AWS IoT Core Developer Guide

}

If you create a new domain configuration without specifying the security policy, the value will
default to: IoTSecurityPolicy_TLS13_1_2_2022_10.

2. To describe TLS settings using the describe-domain-configuration CLI command:

aws iot describe-domain-configuration \
 --domain-configuration-name domainConfigurationName

This command can return the domain configuration details that include the TLS settings like the
following:

{
 "tlsConfig": {
 "securityPolicy": "IoTSecurityPolicy_TLS13_1_2_2022_10"
 },
 "domainConfigurationStatus": "ENABLED",
 "serviceType": "DATA",
 "domainType": "AWS_MANAGED",
 "domainName": "d1234567890abcdefghij-ats.iot.us-west-2.amazonaws.com",
 "serverCertificates": [],
 "lastStatusChangeDate": 1678750928.997,
 "domainConfigurationName": "test",
 "domainConfigurationArn": "arn:aws:iot:us-west-2:123456789012:domainconfiguration/
test/34ga9"
}

3. To update TLS settings using the update-domain-configuration CLI command:

aws iot update-domain-configuration \
 --domain-configuration-name domainConfigurationName \
 --tls-config securityPolicy=IoTSecurityPolicy_TLS13_1_2_2022_10

The output of this command can look like the following:

{
"domainConfigurationName": "test",
"domainConfigurationArn": "arn:aws:iot:us-west-2:123456789012:domainconfiguration/
test/34ga9"
}

Configurable endpoints 192

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-domain-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-domain-configuration.html

AWS IoT Core Developer Guide

4. To update the TLS settings for your ATS endpoint, run the update-domain-configuration CLI
command. The domain configuration name for your ATS endpoint is iot:Data-ATS.

aws iot update-domain-configuration \
 --domain-configuration-name "iot:Data-ATS" \
 --tls-config securityPolicy=IoTSecurityPolicy_TLS13_1_2_2022_10

The output of the command can look like the following:

{
"domainConfigurationName": "iot:Data-ATS",
"domainConfigurationArn": "arn:aws:iot:us-west-2:123456789012:domainconfiguration/
iot:Data-ATS"
}

For more information, see CreateDomainConfiguration and UpdateDomainConfiguration in the
AWS API Reference.

Server certificate configuration for OCSP stapling

AWS IoT Core supports Online Certificate Status Protocol (OCSP) stapling for server certificate,
also known as server certificate OCSP stapling, or OCSP stapling. It is a security mechanism used to
check the revocation status on the server certificate in a Transport Layer Security (TLS) handshake.
OCSP stapling in AWS IoT Core lets you add an additional layer of verification to your custom
domain's server certificate validity.

You can enable server certificate OCSP stapling in AWS IoT Core to check the validity of the
certificate by querying the OCSP responder periodically. The OCSP stapling setting is part of the
process to create or update a domain configuration with a custom domain. OCSP stapling checks
for revocation status on the server certificate continuously. This helps verify that any certificates
that have been revoked by the CA are no longer trusted by the clients connecting to your custom
domains. For more information, see ???.

Server certificate OCSP stapling provides real-time revocation status check, reduces the latency
associated with checking the revocation status, and improves privacy and reliability of secure
connections. For more information about the benefits of using OCSP stapling, see ???.

Configurable endpoints 193

https://docs.aws.amazon.com/cli/latest/reference/iot/update-domain-configuration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateDomainConfiguration.html
https://www.rfc-editor.org/rfc/rfc6960.html

AWS IoT Core Developer Guide

Note

This feature is not available in AWS GovCloud (US) Regions.

In this topic:

• What is OCSP?

• How OCSP stapling works

• Enabling server certificate OCSP stapling in AWS IoT Core

• Important notes for using server certificate OCSP stapling in AWS IoT Core

• Troubleshooting server certificate OCSP stapling in AWS IoT Core

What is OCSP?

Key concepts

The following concepts provide details about OCSP and related concepts.

OCSP

OCSP is used to check the certificate revocation status during the Transport Layer Security (TLS)
handshake. OCSP allows for real-time validation of certificates. This confirms that the certificate
hasn't been revoked or expired since it was issued. OCSP is also more scalable compared with
traditional Certificate Revocation Lists (CRLs). OCSP responses are smaller and can be efficiently
generated, making them more suitable for large-scale Private Key Infrastructures (PKIs).

OCSP responder

An OCSP responder (also known as OCSP server) receives and responds to OCSP requests from
clients that seek to verify the revocation status of certificates.

Client-side OCSP

In client-side OCSP, the client uses OCSP to contact an OCSP responder to check the certificate's
revocation status during the Transport Layer Security (TLS) handshake.

Server-side OCSP

Configurable endpoints 194

https://www.rfc-editor.org/rfc/rfc6960.html

AWS IoT Core Developer Guide

In server-side OCSP (also known as OCSP stapling), the server is enabled (rather than the client) to
make the request to the OCSP responder. The server staples the OCSP response to the certificate
and returns it to the client during the TLS handshake.

OCSP diagrams

The following diagram illustrates how client-side OCSP and server-side OCSP work.

Client-side OCSP

1. The client sends a ClientHello message to initiate the TLS handshake with the server.

2. The server receives the message and responds with a ServerHello message. The server also
sends the server certificate to the client.

3. The client validates the server certificate and extracts an OCSP URI from it.

4. The client sends a certificate revocation check request to the OCSP responder.

5. The OCSP responder sends an OCSP response.

Configurable endpoints 195

AWS IoT Core Developer Guide

6. The client validates the certificate status from the OCSP response.

7. The TLS handshake is completed.

Server-side OCSP

1. The client sends a ClientHello message to initiate the TLS handshake with the server.

2. The server receives the message and gets the latest cached OCSP response. If the cached
response is missing or expired, the server will call the OCSP responder for certificate status.

3. The OCSP responder sends an OCSP response to the server.

4. The server sends a ServerHello message. The server also sends the server certificate and the
certificate status to the client.

5. The client validates the OCSP certificate status.

6. The TLS handshake is completed.

How OCSP stapling works

OCSP stapling is used during the Transport Layer Security (TLS) handshake between the client and
the server to check the server certificate revocation status. The server makes the OCSP request to
the OCSP responder and staples the OCSP responses to the certificates returned to the client. By
having the server make the request to the OCSP responder, the responses can be cached and then
used multiple times for many clients.

How OCSP stapling works in AWS IoT Core

The following diagram shows how server-side OCSP stapling works in AWS IoT Core.

Configurable endpoints 196

AWS IoT Core Developer Guide

1. The device needs to be registered with custom domains with OCSP stapling enabled.

2. AWS IoT Core calls OCSP responder every hour to get the certificate status.

3. The OCSP responder receives the request, sends the latest OCSP response, and stores the
cached OCSP response.

4. The device sends a ClientHello message to initiate the TLS handshake with AWS IoT Core.

5. AWS IoT Core gets the latest OCSP response from the server cache, which responds with an
OCSP response of the certificate.

6. The server sends a ServerHello message to the device. The server also sends the server
certificate and the certificate status to the client.

7. The device validates the OCSP certificate status.

8. The TLS handshake is completed.

Benefits of using OCSP stapling compared to client-side OCSP checks

A few advantages of using server certificate OCSP stapling are summarized as follows:

Configurable endpoints 197

AWS IoT Core Developer Guide

Improved privacy

Without OCSP stapling, the client's device can expose information to third-party OCSP responders,
potentially compromising user privacy. OCSP stapling mitigates this issue by having the server
obtain the OCSP response and deliver it directly to the client.

Improved reliability

OCSP stapling can improve the reliability of secure connections because it reduces the risk of
OCSP server outages. When OCSP responses are stapled, the server includes the most recent
response with the certificate. This is so that clients have access to the revocation status even if
the OCSP responder is temporarily unavailable. OCSP stapling helps mitigate these problems
because the server fetches OCSP responses periodically and includes the cached responses in the
TLS handshake, reducing reliance on the real-time availability of OCSP responders.

Reduced server load

OCSP stapling offloads the burden of responding to OCSP requests from OCSP responders to the
server. This can help distribute the load more evenly, making the certificate validation process
more efficient and scalable.

Reduced latency

OCSP stapling reduces the latency associated with checking the revocation status of a certificate
during the TLS handshake. Instead of the client having to query an OCSP server separately, the
server sends the request and attaches the OCSP response with the server certificate during the
handshake.

Enabling server certificate OCSP stapling in AWS IoT Core

To enable server certificate OCSP stapling in AWS IoT Core, you must create a domain
configuration for a custom domain or update an existing custom domain configuration. For general
information about creating a domain configuration with a custom domain, see ???.

Use the following instructions to enable OCSP server stapling using AWS Management Console or
AWS CLI.

Configurable endpoints 198

AWS IoT Core Developer Guide

Console

To enable server certificate OCSP stapling using AWS IoT console:

1. Choose Settings from the left navigation of the menu, then choose Create domain
configuration or an existing domain configuration for a custom domain.

2. If you choose to create a new domain configuration from the previous step, you will see the
Create domain configuration page. In the Domain configuration properties section, choose
Custom domain. Enter the information to create a domain configuration.

If you choose to update an existing domain configuration for a custom domain, you will see
the Domain configuration details page. Choose Edit.

3. To enable OCSP server stapling, choose Enable server certificate OCSP stapling in the Server
certificate configurations subsection.

4. Choose Create domain configuration or Update domain configuration.

AWS CLI

To enable server certificate OCSP stapling using AWS CLI:

1. If you create a new domain configuration for a custom domain, the command to enable the
OCSP server stapling can look like the following:

aws iot create-domain-configuration --domain-configuration-name
 "myDomainConfigurationName" \
 --server-certificate-arns arn:aws:iot:us-
east-1:123456789012:cert/
f8c1e5480266caef0fdb1bf97dc1c82d7ba2d3e2642c5f25f5ba364fc6b79ba3 \
 --server-certificate-config "enableOCSPCheck=true|false"

2. If you update an existing domain configuration for a custom domain, the command to enable
the OCSP server stapling can look like the following:

aws iot update-domain-configuration --domain-configuration-name
 "myDomainConfigurationName" \
 --server-certificate-arns arn:aws:iot:us-
east-1:123456789012:cert/
f8c1e5480266caef0fdb1bf97dc1c82d7ba2d3e2642c5f25f5ba364fc6b79ba3 \

Configurable endpoints 199

AWS IoT Core Developer Guide

 --server-certificate-config "enableOCSPCheck=true|false"

For more information, see CreateDomainConfiguration and UpdateDomainConfiguration from the
AWS IoT API Reference.

Important notes for using server certificate OCSP stapling in AWS IoT Core

When you use server certificate OCSP in AWS IoT Core, keep the following in mind:

1. AWS IoT Core supports only those OCSP responders that are reachable over public IPv4
addresses.

2. The OCSP stapling feature in AWS IoT Core doesn't support authorized responder. All OCSP
responses must be signed by the CA that signed the certificate, and the CA must be part of the
certificate chain of the custom domain.

3. The OCSP stapling feature in AWS IoT Core doesn't support custom domains that are created
using self-signed certificates.

4. AWS IoT Core calls an OCSP responder every hour and caches the response. If the call to the
responder fails, AWS IoT Core will staple the most recent valid response.

5. If nextUpdateTime is no longer valid, AWS IoT Core will remove the response from the cache,
and TLS handshake will not include the OCSP response data until the next successful call to the
OCSP responder. This can happen when the cached response has expired before the server gets
a valid response from the OCSP responder. The value of nextUpdateTime suggests that the
OCSP response will be valid until this time. For more information about nextUpdateTime, see
???.

6. Sometimes, AWS IoT Core fails to receive the OCSP response or removes the existing OCSP
response because it's expired. If situations like these happen, AWS IoT Core will continue to use
the server certificate provided by the custom domain without the OCSP response.

7. The size of the OCSP response cannot exceed 4 KiB.

Troubleshooting server certificate OCSP stapling in AWS IoT Core

AWS IoT Core emits the RetrieveOCSPStapleData.Success metric and the
RetrieveOCSPStapleData log entries to CloudWatch. The metric and the log entries can help
detect issues related to retrieving OCSP responses. For more information, see ??? and ???.

Configurable endpoints 200

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateDomainConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateDomainConfiguration.html

AWS IoT Core Developer Guide

Connecting to AWS IoT FIPS endpoints

AWS IoT provides endpoints that support the Federal Information Processing Standard (FIPS)
140-2. FIPS compliant endpoints are different from standard AWS endpoints. To interact with
AWS IoT in a FIPS-compliant manner, you must use the endpoints described below with your FIPS
compliant client. The AWS IoT console is not FIPS compliant.

The following sections describe how to access the FIPS compliant AWS IoT endpoints by using the
REST API, an SDK, or the AWS CLI.

Topics

• AWS IoT Core - control plane endpoints

• AWS IoT Core - data plane endpoints

• AWS IoT Device Management - jobs data endpoints

• AWS IoT Device Management - Fleet Hub endpoints

• AWS IoT Device Management - secure tunneling endpoints

AWS IoT Core - control plane endpoints

The FIPS compliant AWS IoT Core - control plane endpoints that support the AWS IoT operations
and their related CLI commands are listed in FIPS Endpoints by Service. In FIPS Endpoints by
Service, find the AWS IoT Core - control plane service, and look up the endpoint for your AWS
Region.

To use the FIPS compliant endpoint when you access the AWS IoT operations, use the AWS SDK or
the REST API with the endpoint that is appropriate for your AWS Region.

To use the FIPS compliant endpoint when you run aws iot CLI commands, add the --endpoint
parameter with the appropriate endpoint for your AWS Region to the command.

AWS IoT Core - data plane endpoints

The FIPS compliant AWS IoT Core - data plane endpoints are listed in FIPS Endpoints by Service.
In FIPS Endpoints by Service, find the AWS IoT Core - data plane service, and look up the endpoint
for your AWS Region.

You can use the FIPS compliant endpoint for your AWS Region with a FIPS compliant client by
using the AWS IoT Device SDK and providing the endpoint to the SDK's connection function in

Connecting to AWS IoT FIPS endpoints 201

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service

AWS IoT Core Developer Guide

place of your account's default AWS IoT Core - data plane endpoint. The connection function is
specific to the AWS IoT Device SDK. For an example of a connection function, see the Connection
function in the AWS IoT Device SDK for Python.

Note

AWS IoT doesn't support AWS account-specific AWS IoT Core - data plane endpoints that
are FIPS-compliant. Service features that require an AWS account-specific endpoint in the
Server Name Indication (SNI) can't be used. FIPS-compliant AWS IoT Core - data plane
endpoints can't support Multi-Account Registration Certificates, Custom Domains, Custom
Authorizers, and Configurable Endpoints (including supported TLS policies).

AWS IoT Device Management - jobs data endpoints

The FIPS compliant AWS IoT Device Management - jobs data endpoints are listed
in FIPS Endpoints by Service. In FIPS Endpoints by Service, find the AWS IoT Device
Management - jobs data service, and look up the endpoint for your AWS Region.

To use the FIPS compliant AWS IoT Device Management - jobs data endpoint when you run aws
iot-jobs-data CLI commands, add the --endpoint parameter with the appropriate endpoint for
your AWS Region to the command. You can also use the REST API with this endpoint.

You can use the FIPS compliant endpoint for your AWS Region with a FIPS compliant client by
using the AWS IoT Device SDK and providing the endpoint to the SDK's connection function in
place of your account's default AWS IoT Device Management - jobs data endpoint. The connection
function is specific to the AWS IoT Device SDK. For an example of a connection function, see the
Connection function in the AWS IoT Device SDK for Python.

AWS IoT Device Management - Fleet Hub endpoints

The FIPS compliant AWS IoT Device Management - Fleet Hub endpoints to use with Fleet Hub
for AWS IoT Device Management CLI commands are listed in FIPS Endpoints by Service. In FIPS
Endpoints by Service, find the AWS IoT Device Management - Fleet Hub service, and look up the
endpoint for your AWS Region.

To use the FIPS compliant AWS IoT Device Management - Fleet Hub endpoint when you run aws
iotfleethub CLI commands, add the --endpoint parameter with the appropriate endpoint for your
AWS Region to the command. You can also use the REST API with this endpoint.

AWS IoT Device Management - jobs data endpoints 202

https://aws.github.io/aws-iot-device-sdk-python-v2/awsiot/mqtt_connection_builder.html
https://aws.github.io/aws-iot-device-sdk-python-v2/awsiot/mqtt_connection_builder.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-jobs-data/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-jobs-data/index.html
https://aws.github.io/aws-iot-device-sdk-python-v2/awsiot/mqtt_connection_builder.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/cli/latest/reference/iotfleethub/index.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://docs.aws.amazon.com/cli/latest/reference/iotfleethub/index.html
https://docs.aws.amazon.com/cli/latest/reference/iotfleethub/index.html

AWS IoT Core Developer Guide

AWS IoT Device Management - secure tunneling endpoints

The FIPS compliant AWS IoT Device Management - secure tunneling endpoints for the AWS IoT
secure tunneling API and the corresponding CLI commands are listed in FIPS Endpoints by Service.
In FIPS Endpoints by Service, find the AWS IoT Device Management - secure tunneling service,
and look up the endpoint for your AWS Region.

To use the FIPS compliant AWS IoT Device Management - secure tunneling endpoint when you
run aws iotsecuretunneling CLI commands, add the --endpoint parameter with the appropriate
endpoint for your AWS Region to the command. You can also use the REST API with this endpoint.

AWS IoT Device Management - secure tunneling endpoints 203

https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Secure_Tunneling.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Operations_AWS_IoT_Secure_Tunneling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsecuretunneling/index.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsecuretunneling/index.html

AWS IoT Core Developer Guide

AWS IoT tutorials

The AWS IoT tutorials are divided into two learning paths to support two different goals. Choose
the best learning path for your goal.

• You want to build a proof-of-concept to test or demonstrate an AWS IoT solution idea

To demonstrate common IoT tasks and applications using the AWS IoT Device Client on your
devices, follow the the section called “Building demos with the AWS IoT Device Client” learning
path. The AWS IoT Device Client provides device software with which you can apply your own
cloud resources to demonstrate an end-to-end solution with minimum development.

For information about the AWS IoT Device Client, see the AWS IoT Device Client.

• You want to learn how to build production software to deploy your solution

To create your own solution software that meets your specific requirements using an AWS IoT
Device SDK, follow the the section called “Building solutions with the AWS IoT Device SDKs”
learning path.

For information about the available AWS IoT Device SDKs, see ???. For information about the
AWS SDKs, see Tools to Build on AWS.

AWS IoT tutorial learning path options

• Building demos with the AWS IoT Device Client

• Building solutions with the AWS IoT Device SDKs

Building demos with the AWS IoT Device Client

The tutorials in this learning path walk you through the steps to develop demonstration software
by using the AWS IoT Device Client. The AWS IoT Device Client provides software that runs on your
IoT device to test and demonstrate aspects of an IoT solution that's built on AWS IoT.

The goal of these tutorials is to facilitate exploration and experimentation so you can feel
confident that AWS IoT supports your solution before you develop your device software.

Building demos with the AWS IoT Device Client 204

https://github.com/awslabs/aws-iot-device-client#readme
https://aws.amazon.com/tools/

AWS IoT Core Developer Guide

What you'll learn in these tutorials:

• How to prepare a Raspberry Pi for use as an IoT device with AWS IoT

• How to demonstrate AWS IoT features by using the AWS IoT Device Client on your device

In this learning path, you'll install the AWS IoT Device Client on your own Raspberry Pi and create
the AWS IoT resources in the cloud to demonstrate IoT solution ideas. While the tutorials in this
learning path demonstrate features by using a Raspberry Pi, they explain the goals and procedures
to help you adapt them to other devices.

Prerequisites to building demos with the AWS IoT Device Client

This section describes what you'll need to have before you start the tutorials in this learning path.

To complete the tutorials in this learning path, you'll need:

• An AWS account

You can use your existing AWS account, if you have one, but you might need to add additional
roles or permissions to use the AWS IoT features these tutorials use.

If you need to create a new AWS account, see the section called “Set up your AWS account”.

• A Raspberry Pi or compatible IoT device

The tutorials use a Raspberry Pi because it comes in different form factors, it's ubiquitous, and it's
a relatively inexpensive demonstration device. The tutorials have been tested on the Raspberry
Pi 3 Model B+, the Raspberry Pi 4 Model B, and on an Amazon EC2 instance running Ubuntu
Server 20.04 LTS (HVM). To use the AWS CLI and run the commands, We recommend that you
use the the latest version of the Raspberry Pi OS (Raspberry Pi OS (64-bit) or the OS Lite). Earlier
versions of the OS might work, but we haven't tested it.

Note

The tutorials explain the goals of each step to help you adapt them to IoT hardware that
we haven't tried them on; however, they do not specifically describe how to adapt them
to other devices.

• Familiarity with the IoT device's operating system

Prerequisites to building demos with the AWS IoT Device Client 205

https://www.raspberrypi.org/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/downloads/raspberry-pi-os/

AWS IoT Core Developer Guide

The steps in these tutorials assume that you are familiar with using basic Linux commands and
operations from the command line interface supported by a Raspberry Pi. If you're not familiar
with these operations, you might want to give yourself more time to complete the tutorials.

To complete these tutorials, you should already understand how to:

• Safely perform basic device operations such as assembling and connecting components,
connecting the device to required power sources, and installing and removing memory cards.

• Upload and download system software and files to the device. If your device doesn't use a
removable storage device, such as a microSD card, you'll need to know how to connect to your
device and upload and download system software and files to the device.

• Connect your device to the networks that you plan to use it on.

• Connect to your device from another computer using an SSH terminal or similar program.

• Use a command line interface to create, copy, move, rename, and set the permissions of files
and directories on the device.

• Install new programs on the device.

• Transfer files to and from your device using tools such as FTP or SCP.

• A development and testing environment for your IoT solution

The tutorials describe the software and hardware required; however, the tutorials assume that
you'll be able to perform operations that might not be described explicitly. Examples of such
hardware and operations include:

• A local host computer to download and store files on

For the Raspberry Pi, this is usually a personal computer or laptop that can read and write to
microSD memory cards. The local host computer must:

• Be connected to the Internet.

• Have the AWS CLI installed and configured.

• Have a web browser that supports the AWS console.

• A way to connect your local host computer to your device to communicate with it, to enter
commands, and to transfer files

On the Raspberry Pi, this is often done using SSH and SCP from the local host computer.

• A monitor and keyboard to connect to your IoT device

These can be helpful, but are not required to complete the tutorials.Prerequisites to building demos with the AWS IoT Device Client 206

https://aws.amazon.com/cli/

AWS IoT Core Developer Guide

• A way for your local host computer and your IoT devices to connect to the internet

This could be a cabled or a wireless network connection to a router or gateway that's
connected to the internet. The local host must also be able to connect to the Raspberry Pi.
This might require them to be on the same local area network. The tutorials can't show you
how to set this up for your particular device or device configuration, but they show how you
can test this connectivity.

• Access to your local area network's router to view the connected devices

To complete the tutorials in this learning path, you'll need to be able to find the IP address of
your IoT device.

On a local area network, this can be done by accessing the admin interface of the network
router your devices connect to. If you can assign a fixed IP address for your device in the router,
you can simplify reconnection after each time the device restarts.

If you have a keyboard and a monitor attached to the device, ifconfig can display the device's
IP address.

If none of these are an option, you'll need to find a way to identify the device's IP address after
each time it restarts.

After you have all your materials, continue to the section called “Preparing your devices for the
AWS IoT Device Client”.

Tutorials in this learning path

• Tutorial: Preparing your devices for the AWS IoT Device Client

• Tutorial: Installing and configuring the AWS IoT Device Client

• Tutorial: Demonstrate MQTT message communication with the AWS IoT Device Client

• Tutorial: Demonstrate remote actions (jobs) with the AWS IoT Device Client

• Tutorial: Cleaning up after running the AWS IoT Device Client tutorials

Tutorial: Preparing your devices for the AWS IoT Device Client

This tutorial walks you through the initialization of your Raspberry Pi to prepare it for the
subsequent tutorials in this learning path.

Preparing your devices for the AWS IoT Device Client 207

AWS IoT Core Developer Guide

The goal of this tutorial is to install the current version of the device’s operating system and make
sure that you can communicate with your device in the context of your development environment.

To start this tutorial:

• Have the items listed in the section called “Prerequisites to building demos with the AWS IoT
Device Client” available and ready to use.

This tutorial takes about 90 minutes to complete.

When you finish this tutorial:

• Your IoT device will have an up-to-date operating system.

• Your IoT device will have the additional software that it needs for the subsequent tutorials.

• You'll know that your device has connectivity to the internet.

• You will have installed a required certificate on your device.

After you complete this tutorial, the next tutorial prepares your device for the demos that use the
AWS IoT Device Client.

Procedures in this tutorial

• Step 1: Install and update the device's operating system

• Step 2: Install and verify required software on your device

• Step 3: Test your device and save the Amazon CA cert

Step 1: Install and update the device's operating system

The procedures in this section describe how to initialize the microSD card that the Raspberry
Pi uses for its system drive. The Raspberry Pi's microSD card contains its operating system (OS)
software as well as space for its application file storage. If you're not using a Raspberry Pi, follow
the device's instructions to install and update the device's operating system software.

After you complete this section, you should be able to start your IoT device and connect to it from
the terminal program on your local host computer.

Required equipment:

• Your local development and testing environment

Preparing your devices for the AWS IoT Device Client 208

AWS IoT Core Developer Guide

• A Raspberry Pi that or your IoT device, that can connect to the internet

• A microSD memory card with at least 8 GB capacity or sufficient storage for the OS and required
software.

Note

When selecting a microSD card for these exercises, choose one that is as large as
necessary but, as small as possible.
A small SD card will be faster to back up and update. On the Raspberry Pi, you won't
need more than an 8-GB microSD card for these tutorials. If you need more space for
your specific application, the smaller image files you save in these tutorials can resize the
file system on a larger card to use all the supported space of the card you choose.

Optional equipment:

• A USB keyboard connected to the Raspberry Pi

• An HDMI monitor and cable to connect the monitor to the Raspberry Pi

Procedures in this section:

• Load the device's operating system onto microSD card

• Start your IoT device with the new operating system

• Connect your local host computer to your device

Load the device's operating system onto microSD card

This procedure uses the local host computer to load the device's operating system onto a microSD
card.

Note

If your device doesn't use a removable storage medium for its operating system, install the
operating system using the procedure for that device and continue to the section called
“Start your IoT device with the new operating system”.

Preparing your devices for the AWS IoT Device Client 209

AWS IoT Core Developer Guide

To install the operating system on your Raspberry Pi

1. On your local host computer, download and unzip the Raspberry Pi operating system image
that you want to use. The latest versions are available from https://www.raspberrypi.com/
software/operating-systems/

Choosing a version of Raspberry Pi OS

This tutorial uses the Raspberry Pi OS Lite version because it’s the smallest version that
supports these the tutorials in this learning path. This version of the Raspberry Pi OS has only
a command line interface and doesn't have a graphical user interface. A version of the latest
Raspberry Pi OS with a graphical user interface will also work with these tutorials; however,
the procedures described in this learning path use only the command line interface to perform
operations on the Raspberry Pi.

2. Insert your microSD card into the local host computer.

3. Using an SD card imaging tool, write the unzipped OS image file to the microSD card.

4. After writing the Raspberry Pi OS image to the microSD card:

a. Open the BOOT partition on the microSD card in a command line window or file explorer
window.

b. In the BOOT partition of the microSD card, in the root directory, create an empty file
named ssh with no file extension and no content. This tells the Raspberry Pi to enable
SSH communications the first time it starts.

5. Eject the microSD card and safely remove it from the local host computer.

Your microSD card is ready to the section called “Start your IoT device with the new operating
system”.

Start your IoT device with the new operating system

This procedure installs the microSD card and starts your Raspberry Pi for the first time using the
downloaded operating system.

To start your IoT device with the new operation system

1. With the power disconnected from the device, insert the microSD card from the previous step,
the section called “Load the device's operating system onto microSD card”, into the Raspberry
Pi.

Preparing your devices for the AWS IoT Device Client 210

https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/

AWS IoT Core Developer Guide

2. Connect the device to a wired network.

3. These tutorials will interact with your Raspberry Pi from your local host computer using an
SSH terminal.

If you also want to interact with the device directly, you can:

a. Connect an HDMI monitor to it to watch the Raspberry Pi’s console messages before you
can connect the terminal window on your local host computer to your Raspberry Pi.

b. Connect a USB keyboard to it if you want to interact directly with the Raspberry Pi.

4. Connect the power to the Raspberry Pi and wait about a minute for it to initialize.

If you have a monitor connected to your Raspberry Pi, you can watch the start-up process on it.

5. Find out your device’s IP address:

• If you connected an HDMI monitor to the Raspberry Pi, the IP address appears in the
messages displayed on the monitor

• If you have access to the router your Raspberry Pi is connects to, you can see its address in
the router’s admin interface.

After you have your Raspberry Pi's IP address, you're ready to the section called “Connect your local
host computer to your device”.

Connect your local host computer to your device

This procedure uses the terminal program on your local host computer to connect to your
Raspberry Pi and change its default password.

To connect your local host computer to your device

1. On your local host computer, open the SSH terminal program:

• Windows: PuTTY

• Linux/macOS: Terminal

Preparing your devices for the AWS IoT Device Client 211

AWS IoT Core Developer Guide

Note

PuTTY isn't installed automatically on Windows. If it's not on your computer, you might
need to download and install it.

2. Connect the terminal program to your Raspberry Pi’s IP address and log in using its default
credentials.

username: pi
password: raspberry

3. After you log in to your Raspberry Pi, change the password for the pi user.

passwd

Follow the prompts to change the password.

Changing password for pi.
Current password: raspberry
New password: YourNewPassword
Retype new password: YourNewPassword
passwd: password updated successfully

After you have the Raspberry Pi's command line prompt in the terminal window and changed
the password, you're ready to continue to the section called “Step 2: Install and verify required
software on your device”.

Step 2: Install and verify required software on your device

The procedures in this section continue from the previous section to bring your Raspberry Pi's
operating system up to date and install the software on the Raspberry Pi that will be used in the
next section to build and install the AWS IoT Device Client.

After you complete this section, your Raspberry Pi will have an up-to-date operating system, the
software required by the tutorials in this learning path, and it will be configured for your location.

Preparing your devices for the AWS IoT Device Client 212

AWS IoT Core Developer Guide

Required equipment:

• Your local development and testing environment from the previous section

• The Raspberry Pi that you used in the previous section

• The microSD memory card from the previous section

Note

The Raspberry Pi Model 3+ and Raspberry Pi Model 4 can perform all the commands
described in this learning path. If your IoT device can't compile software or run the AWS
Command Line Interface, you might need to install the required compilers on your local
host computer to build the software and then transfer it to your IoT device. For more
information about how to install and build software for your device, see the documentation
for your device's software.

Procedures in this section:

• Update the operating system software

• Install the required applications and libraries

• (Optional) Save the microSD card image

Update the operating system software

This procedure updates the operating system software.

To update the operating system software on the Raspberry Pi

Perform these steps in the terminal window of your local host computer.

1. Enter these commands to update the system software on your Raspberry Pi.

sudo apt-get -y update
sudo apt-get -y upgrade
sudo apt-get -y autoremove

2. Update the Raspberry Pi's locale and time zone settings (optional).

Enter this command to update the device's locale and time zone settings.

Preparing your devices for the AWS IoT Device Client 213

AWS IoT Core Developer Guide

sudo raspi-config

a. To set the device's locale:

i. In the Raspberry Pi Software Configuration Tool (raspi-config) screen, choose
option 5.

5 Localisation Options Configure language and regional settings

Use the Tab key to move to <Select>, and then press the space bar.

ii. In the localization options menu, choose option L1.

L1 Locale Configure language and regional settings

Use the Tab key to move to <Select>, and then press the space bar.

iii. In the list of locale options, choose the locales that you want to install on your
Raspberry Pi by using the arrow keys to scroll and the space bar to mark those that
you want.

In the United States, en_US.UTF-8 is a good one to choose.

iv. After selecting the locales for your device, use the Tab key to choose <OK>, and then
press the space bar to display the Configuring locales confirmation page.

b. To set the device’s time zone:

i. In the raspi-config screen, choose option 5.

5 Localisation Options Configure language and regional settings

Use the Tab key to move to <Select>, and then press the space bar.

ii. In the localization options menu, use the arrow key to choose option L2:

L2 time zone Configure time zone

Use the Tab key to move to <Select>, and then press the space bar.

iii. In the Configuring tzdata menu, choose your geographical area from the list.

Use the Tab key to move to <OK>, and then press the space bar.

iv. In the list of cities, use the arrow keys to choose a city in your time zone.
Preparing your devices for the AWS IoT Device Client 214

AWS IoT Core Developer Guide

To set the time zone, use the Tab key to move to <OK>, and then press the space bar.

c. When you’ve finished updating the settings, use the Tab key to move to <Finish>, and
then press the space bar to close the raspi-config app.

3. Enter this command to restart your Raspberry Pi.

sudo shutdown -r 0

4. Wait for your Raspberry Pi to restart.

5. After your Raspberry Pi has restarted, reconnect the terminal window on your local host
computer to your Raspberry Pi.

Your Raspberry Pi system software is now configured and you're ready to continue to the section
called “Install the required applications and libraries”.

Install the required applications and libraries

This procedure installs the application software and libraries that the subsequent tutorials use.

If you are using a Raspberry Pi, or if you can compile the required software on your IoT device,
perform these steps in the terminal window on your local host computer. If you must compile
software for your IoT device on your local host computer, review the software documentation for
your IoT device for information about how to do these steps on your device.

To install the application software and libraries on your Raspberry Pi

1. Enter this command to install the application software and libraries.

sudo apt-get -y install build-essential libssl-dev cmake unzip git python3-pip

2. Enter these commands to confirm that the correct version of the software was installed.

gcc --version
cmake --version
openssl version
git --version

3. Confirm that these versions of the application software are installed:

• gcc: 9.3.0 or later

Preparing your devices for the AWS IoT Device Client 215

AWS IoT Core Developer Guide

• cmake: 3.10.x or later

• OpenSSL: 1.1.1 or later

• git: 2.20.1 or later

If your Raspberry Pi has acceptable versions of the required application software, you're ready to
continue to the section called “(Optional) Save the microSD card image”.

(Optional) Save the microSD card image

Throughout the tutorials in this learning path, you'll encounter these procedures to save a copy
of the Raspberry Pi's microSD card image to a file on your local host computer. While encouraged,
they are not required tasks. By saving the microSD card image where suggested, you can skip the
procedures that precede the save point in this learning path, which can save time if you find the
need to retry something. The consequence of not saving the microSD card image periodically is
that you might have to restart the tutorials in the learning path from the beginning if your microSD
card is damaged or if you accidentally configure an app or its settings incorrectly.

At this point, your Raspberry Pi's microSD card has an updated OS and the basic application
software loaded. You can save the time it took you to complete the preceding steps by saving the
contents of the microSD card to a file now. Having the current image of your device's microSD card
image lets you start from this point to continue or retry a tutorial or procedure without the need to
install and update the software from scratch.

To save the microSD card image to a file

1. Enter this command to shut down the Raspberry Pi.

sudo shutdown -h 0

2. After the Raspberry Pi shuts down completely, remove its power.

3. Remove the microSD card from the Raspberry Pi.

4. On your local host computer:

a. Insert the microSD card.

b. Using your SD card imaging tool, save the microSD card’s image to a file.

c. After the microSD card’s image has been saved, eject the card from the local host
computer.

Preparing your devices for the AWS IoT Device Client 216

AWS IoT Core Developer Guide

5. With the power disconnected from the Raspberry Pi, insert the microSD card into the
Raspberry Pi.

6. Apply power to the Raspberry Pi.

7. After waiting about a minute, on the local host computer, reconnect the terminal window on
your local host computer that was connected to your Raspberry Pi., and then log in to the
Raspberry Pi.

Step 3: Test your device and save the Amazon CA cert

The procedures in this section continue from the previous section to install the AWS Command Line
Interface and the Certificate Authority certificate used to authenticate your connections with AWS
IoT Core.

After you complete this section, you'll know that your Raspberry Pi has the necessary system
software to install the AWS IoT Device Client and that it has a working connection to the internet.

Required equipment:

• Your local development and testing environment from the previous section

• The Raspberry Pi that you used in the previous section

• The microSD memory card from the previous section

Procedures in this section:

• Install the AWS Command Line Interface

• Configure your AWS account credentials

• Download the Amazon Root CA certificate

• (Optional) Save the microSD card image

Install the AWS Command Line Interface

This procedure installs the AWS CLI onto your Raspberry Pi.

If you are using a Raspberry Pi or if you can compile software on your IoT device, perform these
steps in the terminal window on your local host computer. If you must compile software for your
IoT device on your local host computer, review the software documentation for your IoT device for
information about the libraries it requires.

Preparing your devices for the AWS IoT Device Client 217

AWS IoT Core Developer Guide

To install the AWS CLI on your Raspberry Pi

1. Run these commands to download and install the AWS CLI.

export PATH=$PATH:~/.local/bin # configures the path to include the directory with
 the AWS CLI
git clone https://github.com/aws/aws-cli.git # download the AWS CLI code from
 GitHub
cd aws-cli && git checkout v2 # go to the directory with the repo and checkout
 version 2
pip3 install -r requirements.txt # install the prerequisite software

2. Run this command to install the AWS CLI. This command can take up to 15 minutes to
complete.

pip3 install . # install the AWS CLI

3. Run this command to confirm that the correct version of the AWS CLI was installed.

aws --version

The version of the AWS CLI should be 2.2 or later.

If the AWS CLI displayed its current version, you're ready to continue to the section called
“Configure your AWS account credentials”.

Configure your AWS account credentials

In this procedure, you'll obtain AWS account credentials and add them for use on your Raspberry
Pi.

To add your AWS account credentials to your device

1. Obtain an Access Key ID and Secret Access Key from your AWS account to authenticate the
AWS CLI on your device.

If you’re new to AWS IAM, https://aws.amazon.com/premiumsupport/knowledge-center/
create-access-key/ describes the process to run in the AWS console to create AWS IAM
credentials to use on your device.

Preparing your devices for the AWS IoT Device Client 218

https://aws.amazon.com/premiumsupport/knowledge-center/create-access-key/
https://aws.amazon.com/premiumsupport/knowledge-center/create-access-key/

AWS IoT Core Developer Guide

2. In the terminal window on your local host computer that's connected to your Raspberry Pi. and
with the Access Key ID and Secret Access Key credentials for your device:

a. Run the AWS configure app with this command:

aws configure

b. Enter your credentials and configuration information when prompted:

AWS Access Key ID: your Access Key ID
AWS Secret Access Key: your Secret Access Key
Default region name: your AWS Region code
Default output format: json

3. Run this command to test your device's access to your AWS account and AWS IoT Core
endpoint.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

It should return your AWS account-specific AWS IoT data endpoint, such as this example:

{
 "endpointAddress": "a3EXAMPLEffp-ats.iot.us-west-2.amazonaws.com"
}

If you see your AWS account-specific AWS IoT data endpoint, your Raspberry Pi has the
connectivity and permissions to continue to the section called “Download the Amazon Root CA
certificate”.

Important

Your AWS account credentials are now stored on the microSD card in your Raspberry Pi.
While this makes future interactions with AWS easy for you and the software you’ll create
in these tutorials, they will also be saved and duplicated in any microSD card images you
make after this step by default.
To protect the security of your AWS account credentials, before you save any more microSD
card images, consider erasing the credentials by running aws configure again and
entering random characters for the Access Key ID and Secret Access Key to prevent your
AWS account credentials from compromised.

Preparing your devices for the AWS IoT Device Client 219

AWS IoT Core Developer Guide

If you find that you have saved your AWS account credentials inadvertently, you can
deactivate them in the AWS IAM console.

Download the Amazon Root CA certificate

This procedure downloads and saves a copy of a certificate of the Amazon Root Certificate
Authority (CA). Downloading this certificate saves it for use in the subsequent tutorials and it also
tests your device's connectivity with AWS services.

To download and save the Amazon Root CA certificate

1. Run this command to create a directory for the certificate.

mkdir ~/certs

2. Run this command to download the Amazon Root CA certificate.

curl -o ~/certs/AmazonRootCA1.pem https://www.amazontrust.com/repository/
AmazonRootCA1.pem

3. Run these commands to set the access to the certificate directory and its file.

chmod 745 ~
chmod 700 ~/certs
chmod 644 ~/certs/AmazonRootCA1.pem

4. Run this command to see the CA certificate file in the new directory.

ls -l ~/certs

You should see an entry like this. The date and time will be different; however, the file size and
all other info should be the same as shown here.

-rw-r--r-- 1 pi pi 1188 Oct 28 13:02 AmazonRootCA1.pem

If the file size is not 1188, check the curl command parameters. You might have downloaded
an incorrect file.

Preparing your devices for the AWS IoT Device Client 220

AWS IoT Core Developer Guide

(Optional) Save the microSD card image

At this point, your Raspberry Pi's microSD card has an updated OS and the basic application
software loaded.

To save the microSD card image to a file

1. In the terminal window on your local host computer, clear your AWS credentials.

a. Run the AWS configure app with this command:

aws configure

b. Replace your credentials when prompted. You can leave Default region name and Default
output format as they are by pressing Enter.

AWS Access Key ID [****************YT2H]: XYXYXYXYX
AWS Secret Access Key [****************9plH]: XYXYXYXYX
Default region name [us-west-2]:
Default output format [json]:

2. Enter this command to shut down the Raspberry Pi.

sudo shutdown -h 0

3. After the Raspberry Pi shuts down completely, remove its power connector.

4. Remove the microSD card from your device.

5. On your local host computer:

a. Insert the microSD card.

b. Using your SD card imaging tool, save the microSD card’s image to a file.

c. After the microSD card’s image has been saved, eject the card from the local host
computer.

6. With the power disconnected from the Raspberry Pi, insert the microSD card into the
Raspberry Pi.

7. Apply power to the device.

8. After about a minute, on the local host computer, restart the terminal window session and log
in to the device.

Preparing your devices for the AWS IoT Device Client 221

AWS IoT Core Developer Guide

Don't reenter your AWS account credentials yet.

After you have restarted and logged in to your Raspberry Pi, you're ready to continue to the section
called “Installing and configuring the AWS IoT Device Client”.

Tutorial: Installing and configuring the AWS IoT Device Client

This tutorial walks you through the installation and configuration of the AWS IoT Device Client and
the creation of AWS IoT resources that you'll use in this and other demos.

To start this tutorial:

• Have your local host computer and Raspberry Pi from the previous tutorial ready.

This tutorial can take up to 90 minutes to complete.

When you're finished with this topic:

• Your IoT device will be ready to use in other AWS IoT Device Client demos.

• You'll have provisioned your IoT device in AWS IoT Core.

• You'll have downloaded and installed the AWS IoT Device Client on your device.

• You'll have saved an image of your device's microSD card that can be used in subsequent
tutorials.

Required equipment:

• Your local development and testing environment from the previous section

• The Raspberry Pi that you used in the previous section

• The microSD memory card from the Raspberry Pi that you used in the previous section

Procedures in this tutorial

• Step 1: Download and save the AWS IoT Device Client

• (Optional) Save the microSD card image

• Step 2: Provision your Raspberry Pi in AWS IoT

Installing and configuring the AWS IoT Device Client 222

AWS IoT Core Developer Guide

• Step 3: Configure the AWS IoT Device Client to test connectivity

Step 1: Download and save the AWS IoT Device Client

The procedures in this section download the AWS IoT Device Client, compile it, and install it on
your Raspberry Pi. After you test the installation, you can save the image of the Raspberry Pi's
microSD card to use later when you want to try the tutorials again.

Procedures in this section:

• Download and build the AWS IoT Device Client

• Create the directories used by the tutorials

Download and build the AWS IoT Device Client

This procedure installs the AWS IoT Device Client on your Raspberry Pi.

Perform these commands in the terminal window on your local host computer that is connected to
your Raspberry Pi.

To install the AWS IoT Device Client on your Raspberry Pi

1. Enter these commands to download and build the AWS IoT Device Client on your Raspberry Pi.

cd ~
git clone https://github.com/awslabs/aws-iot-device-client aws-iot-device-client
mkdir ~/aws-iot-device-client/build && cd ~/aws-iot-device-client/build
cmake ../

2. Run this command to build the AWS IoT Device Client. This command can take up to 15
minutes to complete.

cmake --build . --target aws-iot-device-client

The warning messages displayed as the AWS IoT Device Client compiles can be ignored.

These tutorials have been tested with the AWS IoT Device Client built on gcc, version (Raspbian
10.2.1-6+rpi1) 10.2.1 20210110 on the Oct 30th 2021 version of Raspberry Pi OS (bullseye) on
gcc, version (Raspbian 8.3.0-6+rpi1) 8.3.0 on the May 7th 2021 version of the Raspberry Pi OS
(buster).

Installing and configuring the AWS IoT Device Client 223

AWS IoT Core Developer Guide

3. After the AWS IoT Device Client finishes building, test it by running this command.

./aws-iot-device-client --help

If you see the command line help for the AWS IoT Device Client, the AWS IoT Device Client has
been built successfully and is ready for you to use.

Create the directories used by the tutorials

This procedure creates the directories on the Raspberry Pi that will be used to store the files used
by the tutorials in this learning path.

To create the directories used by the tutorials in this learning path:

1. Run these commands to create the required directories.

mkdir ~/dc-configs
mkdir ~/policies
mkdir ~/messages
mkdir ~/certs/testconn
mkdir ~/certs/pubsub
mkdir ~/certs/jobs

2. Run these commands to set the permissions on the new directories.

chmod 745 ~
chmod 700 ~/certs/testconn
chmod 700 ~/certs/pubsub
chmod 700 ~/certs/jobs

After you create these directories and set their permission, continue to the section called
“(Optional) Save the microSD card image”.

(Optional) Save the microSD card image

At this point, your Raspberry Pi's microSD card has an updated OS, the basic application software,
and the AWS IoT Device Client.

If you want to come back to try these exercises and tutorials again, you can skip the preceding
procedures by writing the microSD card image that you save with this procedure to a new microSD

Installing and configuring the AWS IoT Device Client 224

AWS IoT Core Developer Guide

card and continue the tutorials from the section called “Step 2: Provision your Raspberry Pi in AWS
IoT”.

To save the microSD card image to a file:

In the terminal window on your local host computer that's connected to your Raspberry Pi:

1. Confirm that your AWS account credentials have not been stored.

a. Run the AWS configure app with this command:

aws configure

b. If your credentials have been stored (if they are displayed in the prompt), then enter
the XYXYXYXYX string when prompted as shown here. Leave Default region name and
Default output format blank.

AWS Access Key ID [****************YXYX]: XYXYXYXYX
AWS Secret Access Key [****************YXYX]: XYXYXYXYX
Default region name:
Default output format:

2. Enter this command to shutdown the Raspberry Pi.

sudo shutdown -h 0

3. After the Raspberry Pi shuts down completely, remove its power connector.

4. Remove the microSD card from your device.

5. On your local host computer:

a. Insert the microSD card.

b. Using your SD card imaging tool, save the microSD card’s image to a file.

c. After the microSD card’s image has been saved, eject the card from the local host
computer.

You can continue with this microSD card in the section called “Step 2: Provision your Raspberry Pi
in AWS IoT”.

Installing and configuring the AWS IoT Device Client 225

AWS IoT Core Developer Guide

Step 2: Provision your Raspberry Pi in AWS IoT

The procedures in this section start with the saved microSD image that has the AWS CLI and AWS
IoT Device Client installed and create the AWS IoT resources and device certificates that provision
your Raspberry Pi in AWS IoT.

Install the microSD card in your Raspberry Pi

This procedure installs the microSD card with the necessary software loaded and configured into
the Raspberry Pi and configures your AWS account so that you can continue with the tutorials in
this learning path.

Use a microSD card from the section called “(Optional) Save the microSD card image” that has the
necessary software for the exercises and tutorials in this learning path.

To install the microSD card in your Raspberry Pi

1. With the power disconnected from the Raspberry Pi, insert the microSD card into the
Raspberry Pi.

2. Apply power to the Raspberry Pi.

3. After about a minute, on the local host computer, restart the terminal window session and log
in to the Raspberry Pi.

4. On your local host computer, in the terminal window, and with the Access Key ID and Secret
Access Key credentials for your Raspberry Pi:

a. Run the AWS configure app with this command:

aws configure

b. Enter your AWS account credentials and configuration information when prompted:

AWS Access Key ID [****************YXYX]: your Access Key ID
AWS Secret Access Key [****************YXYX]: your Secret Access Key
Default region name [us-west-2]: your AWS Region code
Default output format [json]: json

After you have restored your AWS account credentials, you're ready to continue to the section
called “Provision your device in AWS IoT Core”.

Installing and configuring the AWS IoT Device Client 226

AWS IoT Core Developer Guide

Provision your device in AWS IoT Core

The procedures in this section create the AWS IoT resources that provision your Raspberry Pi in
AWS IoT. As you create these resources, you'll be asked to record various pieces of information. This
information is used by the AWS IoT Device Client configuration in the next procedure.

For your Raspberry Pi to work with AWS IoT, it must be provisioned. Provisioning is the process of
creating and configuring the AWS IoT resources that are necessary to support your Raspberry Pi as
an IoT device.

With your Raspberry Pi powered up and restarted, connect the terminal window on your local host
computer to the Raspberry Pi and complete these procedures.

Procedures in this section:

• Create and download device certificate files

• Create AWS IoT resources

Create and download device certificate files

This procedure creates the device certificate files for this demo.

To create and download the device certificate files for your Raspberry Pi

1. In the terminal window on your local host computer, enter these commands to create the
device certificate files for your device.

mkdir ~/certs/testconn
aws iot create-keys-and-certificate \
--set-as-active \
--certificate-pem-outfile "~/certs/testconn/device.pem.crt" \
--public-key-outfile "~/certs/testconn/public.pem.key" \
--private-key-outfile "~/certs/testconn/private.pem.key"

The command returns a response like the following. Record the certificateArn value for
later use.

{
 "certificateArn": "arn:aws:iot:us-
west-2:57EXAMPLE833:cert/76e7e4edb3e52f52334be2f387a06145b2aa4c7fcd810f3aea2d92abc227d269",

Installing and configuring the AWS IoT Device Client 227

AWS IoT Core Developer Guide

 "certificateId":
 "76e7e4edb3e52f5233EXAMPLE7a06145b2aa4c7fcd810f3aea2d92abc227d269",
 "certificatePem": "-----BEGIN CERTIFICATE-----
\nMIIDWTCCAkGgAwIBAgI_SHORTENED_FOR_EXAMPLE_Lgn4jfgtS\n-----END CERTIFICATE-----
\n",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkiG9w0BA_SHORTENED_FOR_EXAMPLE_ImwIDAQAB\n-----END PUBLIC KEY-----
\n",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----
\nMIIEowIBAAKCAQE_SHORTENED_FOR_EXAMPLE_T9RoDiukY\n-----END RSA PRIVATE KEY-----\n"
 }
}

2. Enter the following commands to set the permissions on the certificate directory and its files.

chmod 745 ~
chmod 700 ~/certs/testconn
chmod 644 ~/certs/testconn/*
chmod 600 ~/certs/testconn/private.pem.key

3. Run this command to review the permissions on your certificate directories and files.

ls -l ~/certs/testconn

The output of the command should be the same as what you see here, except the file dates
and times will be different.

-rw-r--r-- 1 pi pi 1220 Oct 28 13:02 device.pem.crt
-rw------- 1 pi pi 1675 Oct 28 13:02 private.pem.key
-rw-r--r-- 1 pi pi 451 Oct 28 13:02 public.pem.key

At this point, you have the device certificate files installed on your Raspberry Pi and you can
continue to the section called “Create AWS IoT resources”.

Create AWS IoT resources

This procedure provisions your device in AWS IoT by creating the resources that your device needs
to access AWS IoT features and services.

Installing and configuring the AWS IoT Device Client 228

AWS IoT Core Developer Guide

To provision your device in AWS IoT

1. In the terminal window on your local host computer, enter the following command to get the
address of the device data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type IoT:Data-ATS

The command from the previous steps returns a response like the following. Record the
endpointAddress value for later use.

{
 "endpointAddress": "a3qjEXAMPLEffp-ats.iot.us-west-2.amazonaws.com"
}

2. Enter this command to create an AWS IoT thing resource for your Raspberry Pi.

aws iot create-thing --thing-name "DevCliTestThing"

If your AWS IoT thing resource was created, the command returns a response like this.

{
 "thingName": "DevCliTestThing",
 "thingArn": "arn:aws:iot:us-west-2:57EXAMPLE833:thing/DevCliTestThing",
 "thingId": "8ea78707-32c3-4f8a-9232-14bEXAMPLEfd"
}

3. In the terminal window:

a. Open a text editor, such as nano.

b. Copy this JSON policy document and paste it into your open text editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:Connect"

Installing and configuring the AWS IoT Device Client 229

AWS IoT Core Developer Guide

],
 "Resource": [
 "*"
]
 }
]
}

Note

This policy document generously grants every resource permission to connect,
receive, publish, and subscribe. Normally policies grant only permission to specific
resources to perform specific actions. However, for the initial device connectivity
test, this overly general and permissive policy is used to minimize the chance of an
access problem during this test. In the subsequent tutorials, more narrowly scoped
policy documents will be use to demonstrate better practices in policy design.

c. Save the file in your text editor as ~/policies/dev_cli_test_thing_policy.json.

4. Run this command to use the policy document from the previous steps to create an AWS IoT
policy.

aws iot create-policy \
--policy-name "DevCliTestThingPolicy" \
--policy-document "file://~/policies/dev_cli_test_thing_policy.json"

If the policy is created, the command returns a response like this.

{
 "policyName": "DevCliTestThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:57EXAMPLE833:policy/DevCliTestThingPolicy",
 "policyDocument": "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n
 {\n \"Effect\": \"Allow\",\n \"Action\": [\n
 \"iot:Publish\",\n \"iot:Subscribe\",\n
 \"iot:Receive\",\n \"iot:Connect\"\n],\n
 \"Resource\": [\n \"*\"\n]\n }\n]\n}\n",
 "policyVersionId": "1"
}

5. Run this command to attach the policy to the device certificate. Replace certificateArn
with the certificateArn value you saved earlier.

Installing and configuring the AWS IoT Device Client 230

AWS IoT Core Developer Guide

aws iot attach-policy \
--policy-name "DevCliTestThingPolicy" \
--target "certificateArn"

If successful, this command returns nothing.

6. Run this command to attach the device certificate to the AWS IoT thing resource. Replace
certificateArn with the certificateArn value you saved earlier.

aws iot attach-thing-principal \
--thing-name "DevCliTestThing" \
--principal "certificateArn"

If successful, this command returns nothing.

After you successfully provisioned your device in AWS IoT, you're ready to continue to the section
called “Step 3: Configure the AWS IoT Device Client to test connectivity”.

Step 3: Configure the AWS IoT Device Client to test connectivity

The procedures in this section configure the AWS IoT Device Client to publish an MQTT message
from your Raspberry Pi.

Procedures in this section:

• Create the config file

• Open MQTT test client

• Run AWS IoT Device Client

Create the config file

This procedure creates the config file to test the AWS IoT Device Client.

To create the config file to test the AWS IoT Device Client

• In the terminal window on your local host computer that's connected to your Raspberry Pi:

a. Enter these commands to create a directory for the config files and set the permission on
the directory:

Installing and configuring the AWS IoT Device Client 231

AWS IoT Core Developer Guide

mkdir ~/dc-configs
chmod 745 ~/dc-configs

b. Open a text editor, such as nano.

c. Copy this JSON document and paste it into your open text editor.

{
 "endpoint": "a3qEXAMPLEaffp-ats.iot.us-west-2.amazonaws.com",
 "cert": "~/certs/testconn/device.pem.crt",
 "key": "~/certs/testconn/private.pem.key",
 "root-ca": "~/certs/AmazonRootCA1.pem",
 "thing-name": "DevCliTestThing",
 "logging": {
 "enable-sdk-logging": true,
 "level": "DEBUG",
 "type": "STDOUT",
 "file": ""
 },
 "jobs": {
 "enabled": false,
 "handler-directory": ""
 },
 "tunneling": {
 "enabled": false
 },
 "device-defender": {
 "enabled": false,
 "interval": 300
 },
 "fleet-provisioning": {
 "enabled": false,
 "template-name": "",
 "template-parameters": "",
 "csr-file": "",
 "device-key": ""
 },
 "samples": {
 "pub-sub": {
 "enabled": true,
 "publish-topic": "test/dc/pubtopic",
 "publish-file": "",
 "subscribe-topic": "test/dc/subtopic",

Installing and configuring the AWS IoT Device Client 232

AWS IoT Core Developer Guide

 "subscribe-file": ""
 }
 },
 "config-shadow": {
 "enabled": false
 },
 "sample-shadow": {
 "enabled": false,
 "shadow-name": "",
 "shadow-input-file": "",
 "shadow-output-file": ""
 }
}

d. Replace the endpoint value with device data endpoint for your AWS account that you
found in the section called “Provision your device in AWS IoT Core”.

e. Save the file in your text editor as ~/dc-configs/dc-testconn-config.json.

f. Run this command to set the permissions on the new config file.

chmod 644 ~/dc-configs/dc-testconn-config.json

After you save the file, you're ready to continue to the section called “Open MQTT test client”.

Open MQTT test client

This procedure prepares the MQTT test client in the AWS IoT console to subscribe to the MQTT
message that the AWS IoT Device Client publishes when it runs.

To prepare the MQTT test client to subscribe to all MQTT messages

1. On your local host computer, in the AWS IoT console, choose MQTT test client.

2. In the Subscribe to a topic tab, in Topic filter, enter # (a single pound sign), and choose
Subscribe to subscribe to every MQTT topic.

3. Below the Subscriptions label, confirm that you see # (a single pound sign).

Leave the window with the MQTT test client open as you continue to the section called “Run AWS
IoT Device Client”.

Installing and configuring the AWS IoT Device Client 233

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

Run AWS IoT Device Client

This procedure runs the AWS IoT Device Client so that it publishes a single MQTT message that the
MQTT test client receives and displays.

To send an MQTT message from the AWS IoT Device Client

1. Make sure that both the terminal window that's connected to your Raspberry Pi and the
window with the MQTT test client are visible while you perform this procedure.

2. In the terminal window, enter these commands to run the AWS IoT Device Client using the
config file created in the section called “Create the config file”.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-testconn-config.json

In the terminal window, the AWS IoT Device Client displays information messages and any
errors that occur when it runs.

If no errors are displayed in the terminal window, review the MQTT test client.

3. In the MQTT test client, in the Subscriptions window, see the Hello World! message sent to the
test/dc/pubtopic message topic.

4. If the AWS IoT Device Client displays no errors and you see Hello World! sent to the test/dc/
pubtopic message in the MQTT test client, you've demonstrated a successful connection.

5. In the terminal window, enter ^C (Ctrl-C) to stop the AWS IoT Device Client.

After you've demonstrated that the AWS IoT Device Client is running correctly on your Raspberry
Pi and can communicate with AWS IoT, you can continue to the the section called “Demonstrate
MQTT message communication with the AWS IoT Device Client”.

Tutorial: Demonstrate MQTT message communication with the AWS IoT
Device Client

This tutorial demonstrates how the AWS IoT Device Client can subscribe to and publish MQTT
messages, which are commonly used in IoT solutions.

To start this tutorial:

• Have your local host computer and Raspberry Pi configured as used in the previous section.

Demonstrate MQTT message communication with the AWS IoT Device Client 234

AWS IoT Core Developer Guide

If you saved the microSD card image after installing the AWS IoT Device Client, you can use a
microSD card with that image with your Raspberry Pi.

• If you have run this demo before, review ??? to delete all AWS IoT resources that you created in
earlier runs to avoid duplicate resource errors.

This tutorial takes about 45 minutes to complete.

When you're finished with this topic:

• You'll have demonstrated different ways that your IoT device can subscribe to MQTT messages
from AWS IoT and publish MQTT messages to AWS IoT.

Required equipment:

• Your local development and testing environment from the previous section

• The Raspberry Pi that you used in the previous section

• The microSD memory card from the Raspberry Pi that you used in the previous section

Procedures in this tutorial

• Step 1: Prepare the Raspberry Pi to demonstrate MQTT message communication

• Step 2: Demonstrate publishing messages with the AWS IoT Device Client

• Step 3: Demonstrate subscribing to messages with the AWS IoT Device Client

Step 1: Prepare the Raspberry Pi to demonstrate MQTT message communication

This procedure creates the resources in AWS IoT and in the Raspberry Pi to demonstrate MQTT
message communication using the AWS IoT Device Client.

Procedures in this section:

• Create the certificate files to demonstrate MQTT communication

• Provision your device to demonstrate MQTT communication

• Configure the AWS IoT Device Client config file and MQTT test client to demonstrate MQTT
communication

Demonstrate MQTT message communication with the AWS IoT Device Client 235

AWS IoT Core Developer Guide

Create the certificate files to demonstrate MQTT communication

This procedure creates the device certificate files for this demo.

To create and download the device certificate files for your Raspberry Pi

1. In the terminal window on your local host computer, enter the following command to create
the device certificate files for your device.

mkdir ~/certs/pubsub
aws iot create-keys-and-certificate \
--set-as-active \
--certificate-pem-outfile "~/certs/pubsub/device.pem.crt" \
--public-key-outfile "~/certs/pubsub/public.pem.key" \
--private-key-outfile "~/certs/pubsub/private.pem.key"

The command returns a response like the following. Save the certificateArn value for later
use.

{
"certificateArn": "arn:aws:iot:us-
west-2:57EXAMPLE833:cert/76e7e4edb3e52f52334be2f387a06145b2aa4c7fcd810f3aea2d92abc227d269",
"certificateId":
 "76e7e4edb3e52f5233EXAMPLE7a06145b2aa4c7fcd810f3aea2d92abc227d269",
"certificatePem": "-----BEGIN CERTIFICATE-----
\nMIIDWTCCAkGgAwIBAgI_SHORTENED_FOR_EXAMPLE_Lgn4jfgtS\n-----END CERTIFICATE-----
\n",
"keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkiG9w0BA_SHORTENED_FOR_EXAMPLE_ImwIDAQAB\n-----END PUBLIC KEY-----
\n",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----
\nMIIEowIBAAKCAQE_SHORTENED_FOR_EXAMPLE_T9RoDiukY\n-----END RSA PRIVATE KEY-----\n"
}
}

2. Enter the following commands to set the permissions on the certificate directory and its files.

chmod 700 ~/certs/pubsub
chmod 644 ~/certs/pubsub/*
chmod 600 ~/certs/pubsub/private.pem.key

Demonstrate MQTT message communication with the AWS IoT Device Client 236

AWS IoT Core Developer Guide

3. Run this command to review the permissions on your certificate directories and files.

ls -l ~/certs/pubsub

The output of the command should be the same as what you see here, except the file dates
and times will be different.

-rw-r--r-- 1 pi pi 1220 Oct 28 13:02 device.pem.crt
-rw------- 1 pi pi 1675 Oct 28 13:02 private.pem.key
-rw-r--r-- 1 pi pi 451 Oct 28 13:02 public.pem.key

4. Enter these commands to create the directories for the log files.

mkdir ~/.aws-iot-device-client
mkdir ~/.aws-iot-device-client/log
chmod 745 ~/.aws-iot-device-client/log
echo " " > ~/.aws-iot-device-client/log/aws-iot-device-client.log
echo " " > ~/.aws-iot-device-client/log/pubsub_rx_msgs.log
chmod 600 ~/.aws-iot-device-client/log/*

Provision your device to demonstrate MQTT communication

This section creates the AWS IoT resources that provision your Raspberry Pi in AWS IoT.

To provision your device in AWS IoT:

1. In the terminal window on your local host computer, enter the following command to get the
address of the device data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type IoT:Data-ATS

The endpoint value hasn’t changed since the time you ran this command for the previous
tutorial. Running the command again here is done to make it easy to find and paste the data
endpoint value into the config file used in this tutorial.

The command from the previous steps returns a response like the following. Record the
endpointAddress value for later use.

{

Demonstrate MQTT message communication with the AWS IoT Device Client 237

AWS IoT Core Developer Guide

"endpointAddress": "a3qjEXAMPLEffp-ats.iot.us-west-2.amazonaws.com"
}

2. Enter this command to create a new AWS IoT thing resource for your Raspberry Pi.

aws iot create-thing --thing-name "PubSubTestThing"

Because an AWS IoT thing resource is a virtual representation of your device in the cloud, we
can create multiple thing resources in AWS IoT to use for different purposes. They can all be
used by the same physical IoT device to represent different aspects of the device.

These tutorials will only use one thing resource at a time to represent the Raspberry Pi. This
way, in these tutorials, they represent the different demos so that after you create the AWS IoT
resources for a demo, you can go back and repeat the demo using the resources you created
specifically for each.

If your AWS IoT thing resource was created, the command returns a response like this.

{
"thingName": "PubSubTestThing",
"thingArn": "arn:aws:iot:us-west-2:57EXAMPLE833:thing/PubSubTestThing",
"thingId": "8ea78707-32c3-4f8a-9232-14bEXAMPLEfd"
}

3. In the terminal window:

a. Open a text editor, such as nano.

b. Copy this JSON document and paste it into your open text editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:client/PubSubTestThing"
]
 },

Demonstrate MQTT message communication with the AWS IoT Device Client 238

AWS IoT Core Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/subtopic"
]
 }
]
}

c. In the editor, in each Resource section of the policy document, replace us-
west-2:57EXAMPLE833 with your AWS Region, a colon character (:), and your 12-digit
AWS account number.

d. Save the file in your text editor as ~/policies/pubsub_test_thing_policy.json.

4. Run this command to use the policy document from the previous steps to create an AWS IoT
policy.

aws iot create-policy \
--policy-name "PubSubTestThingPolicy" \
--policy-document "file://~/policies/pubsub_test_thing_policy.json"

If the policy is created, the command returns a response like this.

Demonstrate MQTT message communication with the AWS IoT Device Client 239

AWS IoT Core Developer Guide

{
 "policyName": "PubSubTestThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:57EXAMPLE833:policy/PubSubTestThingPolicy",
 "policyDocument": "{\n\"Version\": \"2012-10-17\",\n\"Statement\": [\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Connect\"\n],\n\"Resource\":
 [\n\"arn:aws:iot:us-west-2:57EXAMPLE833:client/PubSubTestThing\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Publish\"\n],\n\"Resource\":
 [\n\"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Subscribe\"\n],\n\"Resource\": [\n
\"arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Receive\"\n],\n\"Resource\": [\n
\"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/*\"\n]\n}\n]\n}\n",
 "policyVersionId": "1"

5. Run this command to attach the policy to the device certificate. Replace certificateArn
with the certificateArn value you saved earlier in this section.

aws iot attach-policy \
--policy-name "PubSubTestThingPolicy" \
--target "certificateArn"

If successful, this command returns nothing.

6. Run this command to attach the device certificate to the AWS IoT thing resource. Replace
certificateArn with the certificateArn value you saved earlier in this section.

aws iot attach-thing-principal \
--thing-name "PubSubTestThing" \
--principal "certificateArn"

If successful, this command returns nothing.

After you successfully provision your device in AWS IoT, you're ready to continue to the section
called “Configure the AWS IoT Device Client config file and MQTT test client to demonstrate MQTT
communication”.

Configure the AWS IoT Device Client config file and MQTT test client to demonstrate MQTT
communication

This procedure creates a config file to test the AWS IoT Device Client.

Demonstrate MQTT message communication with the AWS IoT Device Client 240

AWS IoT Core Developer Guide

To create the config file to test the AWS IoT Device Client

1. In the terminal window on your local host computer that's connected to your Raspberry Pi:

a. Open a text editor, such as nano.

b. Copy this JSON document and paste it into your open text editor.

{
 "endpoint": "a3qEXAMPLEaffp-ats.iot.us-west-2.amazonaws.com",
 "cert": "~/certs/pubsub/device.pem.crt",
 "key": "~/certs/pubsub/private.pem.key",
 "root-ca": "~/certs/AmazonRootCA1.pem",
 "thing-name": "PubSubTestThing",
 "logging": {
 "enable-sdk-logging": true,
 "level": "DEBUG",
 "type": "STDOUT",
 "file": ""
 },
 "jobs": {
 "enabled": false,
 "handler-directory": ""
 },
 "tunneling": {
 "enabled": false
 },
 "device-defender": {
 "enabled": false,
 "interval": 300
 },
 "fleet-provisioning": {
 "enabled": false,
 "template-name": "",
 "template-parameters": "",
 "csr-file": "",
 "device-key": ""
 },
 "samples": {
 "pub-sub": {
 "enabled": true,
 "publish-topic": "test/dc/pubtopic",
 "publish-file": "",
 "subscribe-topic": "test/dc/subtopic",

Demonstrate MQTT message communication with the AWS IoT Device Client 241

AWS IoT Core Developer Guide

 "subscribe-file": "~/.aws-iot-device-client/log/pubsub_rx_msgs.log"
 }
 },
 "config-shadow": {
 "enabled": false
 },
 "sample-shadow": {
 "enabled": false,
 "shadow-name": "",
 "shadow-input-file": "",
 "shadow-output-file": ""
 }
}

c. Replace the endpoint value with device data endpoint for your AWS account that you
found in the section called “Provision your device in AWS IoT Core”.

d. Save the file in your text editor as ~/dc-configs/dc-pubsub-config.json.

e. Run this command to set the permissions on the new config file.

chmod 644 ~/dc-configs/dc-pubsub-config.json

2. To prepare the MQTT test client to subscribe to all MQTT messages:

a. On your local host computer, in the AWS IoT console, choose MQTT test client.

b. In the Subscribe to a topic tab, in Topic filter, enter # (a single pound sign), and choose
Subscribe.

c. Below the Subscriptions label, confirm that you see # (a single pound sign).

Leave the window with the MQTT test client open while you continue this tutorial.

After you save the file and configure the MQTT test client, you're ready to continue to the section
called “Step 2: Demonstrate publishing messages with the AWS IoT Device Client”.

Step 2: Demonstrate publishing messages with the AWS IoT Device Client

The procedures in this section demonstrate how the AWS IoT Device Client can send default and
custom MQTT messages.

These policy statements in the policy that you created in the previous step for these exercises give
the Raspberry Pi permission to perform these actions:

Demonstrate MQTT message communication with the AWS IoT Device Client 242

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

• iot:Connect

Gives the client named PubSubTestThing, your Raspberry Pi running the AWS IoT Device
Client, to connect.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:client/PubSubTestThing"
]
 }

• iot:Publish

Gives the Raspberry Pi permission to publish messages with an MQTT topic of test/dc/
pubtopic.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic"
]
 }

The iot:Publish action gives permission to publish to the MQTT topics listed in the Resource
array. The content of those messages is not controlled by the policy statement.

Publish the default message using the AWS IoT Device Client

This procedure runs the AWS IoT Device Client so that it publishes a single default MQTT message
that the MQTT test client receives and displays.

Demonstrate MQTT message communication with the AWS IoT Device Client 243

AWS IoT Core Developer Guide

To send the default MQTT message from the AWS IoT Device Client

1. Make sure that both the terminal window on your local host computer that's connected to
your Raspberry Pi and the window with the MQTT test client are visible while you perform this
procedure.

2. In the terminal window, enter these commands to run the AWS IoT Device Client using the
config file created in the section called “Create the config file”.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-pubsub-config.json

In the terminal window, the AWS IoT Device Client displays information messages and any
errors that occur when it runs.

If no errors are displayed in the terminal window, review the MQTT test client.

3. In the MQTT test client, in the Subscriptions window, see the Hello World! message sent to
the test/dc/pubtopic message topic.

4. If the AWS IoT Device Client displays no errors and you see Hello World! sent to the test/dc/
pubtopic message in the MQTT test client, you've demonstrated a successful connection.

5. In the terminal window, enter ^C (Ctrl-C) to stop the AWS IoT Device Client.

After you've demonstrated that the AWS IoT Device Client published the default MQTT message,
you can continue to the the section called “Publish a custom message using the AWS IoT Device
Client.”.

Publish a custom message using the AWS IoT Device Client.

The procedures in this section create a custom MQTT message and then runs the AWS IoT Device
Client so that it publishes the custom MQTT message one time for the MQTT test client to receive
and display.

Create a custom MQTT message for the AWS IoT Device Client

Perform these steps in the terminal window on the local host computer that's connected to your
Raspberry Pi.

To create a custom message for the AWS IoT Device Client to publish

1. In the terminal window, open a text editor, such as nano.

Demonstrate MQTT message communication with the AWS IoT Device Client 244

AWS IoT Core Developer Guide

2. Into the text editor, copy and paste the following JSON document. This will be the MQTT
message payload that the AWS IoT Device Client publishes.

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

3. Save the contents of the text editor as ~/messages/sample-ws-message.json.

4. Enter the following command to set the permissions of the message file that you just created.

chmod 600 ~/messages/*

To create a config file for the AWS IoT Device Client to use to send the custom message

1. In the terminal window, in a text editor such as nano, open the existing AWS IoT Device Client
config file: ~/dc-configs/dc-pubsub-config.json.

2. Edit the samples object to look like this. No other part of this file needs to be changed.

 "samples": {
 "pub-sub": {
 "enabled": true,
 "publish-topic": "test/dc/pubtopic",
 "publish-file": "~/messages/sample-ws-message.json",
 "subscribe-topic": "test/dc/subtopic",
 "subscribe-file": "~/.aws-iot-device-client/log/pubsub_rx_msgs.log"

3. Save the contents of the text editor as ~/dc-configs/dc-pubsub-custom-config.json.

4. Run this command to set the permissions on the new config file.

chmod 644 ~/dc-configs/dc-pubsub-custom-config.json

Demonstrate MQTT message communication with the AWS IoT Device Client 245

AWS IoT Core Developer Guide

Publish the custom MQTT message by using the AWS IoT Device Client

This change affects only the contents of the MQTT message payload, so the current policy will
continue to work. However, if the MQTT topic (as defined by the publish-topic value in ~/
dc-configs/dc-pubsub-custom-config.json) was changed, the iot::Publish policy
statement would also need to be modified to allow the Raspberry Pi to publish to the new MQTT
topic.

To send the MQTT message from the AWS IoT Device Client

1. Make sure that both the terminal window and the window with the MQTT test client are
visible while you perform this procedure. Also, make sure that your MQTT test client is still
subscribed to the # topic filter. If it isn't, subscribe to the # topic filter again.

2. In the terminal window, enter these commands to run the AWS IoT Device Client using the
config file created in the section called “Create the config file”.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-pubsub-custom-config.json

In the terminal window, the AWS IoT Device Client displays information messages and any
errors that occur when it runs.

If no errors are displayed in the terminal window, review the MQTT test client.

3. In the MQTT test client, in the Subscriptions window, see the custom message payload sent
to the test/dc/pubtopic message topic.

4. If the AWS IoT Device Client displays no errors and you see the custom message payload that
you published to the test/dc/pubtopic message in the MQTT test client, you've published
a custom message successfully.

5. In the terminal window, enter ^C (Ctrl-C) to stop the AWS IoT Device Client.

After you've demonstrated that the AWS IoT Device Client published a custom message payload,
you can continue to the section called “Step 3: Demonstrate subscribing to messages with the AWS
IoT Device Client”.

Step 3: Demonstrate subscribing to messages with the AWS IoT Device Client

In this section, you'll demonstrate two types of message subscriptions:

Demonstrate MQTT message communication with the AWS IoT Device Client 246

AWS IoT Core Developer Guide

• Single topic subscription

• Wild-card topic subscription

These policy statements in the policy created for these exercises give the Raspberry Pi permission
to perform these actions:

• iot:Receive

Gives the AWS IoT Device Client permission to receive MQTT topics that match those named in
the Resource object.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/subtopic"
]
 }

• iot:Subscribe

Gives the AWS IoT Device Client permission to subscribe to MQTT topic filters that match those
named in the Resource object.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic"
]
 }

Subscribe to a single MQTT message topic

This procedure demonstrates how the AWS IoT Device Client can subscribe to and log MQTT
messages.

Demonstrate MQTT message communication with the AWS IoT Device Client 247

AWS IoT Core Developer Guide

In the terminal window on your local host computer that's connected to your Raspberry Pi, list the
contents of ~/dc-configs/dc-pubsub-custom-config.json or open the file in a text editor
to review its contents. Locate the samples object, which should look like this.

 "samples": {
 "pub-sub": {
 "enabled": true,
 "publish-topic": "test/dc/pubtopic",
 "publish-file": "~/messages/sample-ws-message.json",
 "subscribe-topic": "test/dc/subtopic",
 "subscribe-file": "~/.aws-iot-device-client/log/pubsub_rx_msgs.log"

Notice the subscribe-topic value is the MQTT topic to which the AWS IoT Device Client will
subscribe when it runs. The AWS IoT Device Client writes the message payloads that it receives
from this subscription to the file named in the subscribe-file value.

To subscribe to a MQTT message topic from the AWS IoT Device Client

1. Make sure that both the terminal window and the window with the MQTT test client are
visible while you perform this procedure. Also, make sure that your MQTT test client is still
subscribed to the # topic filter. If it isn't, subscribe to the # topic filter again.

2. In the terminal window, enter these commands to run the AWS IoT Device Client using the
config file created in the section called “Create the config file”.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-pubsub-custom-config.json

In the terminal window, the AWS IoT Device Client displays information messages and any
errors that occur when it runs.

If no errors are displayed in the terminal window, continue in the AWS IoT console.

3. In the AWS IoT console, in the MQTT test client, choose the Publish to a topic tab.

4. In Topic name, enter test/dc/subtopic

5. In Message payload, review the message contents.

6. Choose Publish to publish the MQTT message.

7. In the terminal window, watch for the message received entry from the AWS IoT Device Client
that looks like this.

Demonstrate MQTT message communication with the AWS IoT Device Client 248

AWS IoT Core Developer Guide

2021-11-10T16:02:20.890Z [DEBUG] {samples/PubSubFeature.cpp}: Message received on
 subscribe topic, size: 45 bytes

8. After you see the message received entry that shows the message was received, enter ^C (Ctrl-
C) to stop the AWS IoT Device Client.

9. Enter this command to view the end of the message log file and see the message you
published from the MQTT test client.

tail ~/.aws-iot-device-client/log/pubsub_rx_msgs.log

By viewing the message in the log file, you've demonstrated that the AWS IoT Device Client
received the message that you published from the MQTT test client.

Subscribe to multiple MQTT message topic using wildcard characters

These procedures demonstrate how the AWS IoT Device Client can subscribe to and log MQTT
messages using wildcard characters. To do this, you'll:

1. Update the topic filter that the AWS IoT Device Client uses to subscribe to MQTT topics.

2. Update the policy used by the device to allow the new subscriptions.

3. Run the AWS IoT Device Client and publish messages from the MQTT test console.

To create a config file to subscribe to multiple MQTT message topics by using a wildcard MQTT
topic filter

1. In the terminal window on your local host computer that's connected to your Raspberry
Pi, open ~/dc-configs/dc-pubsub-custom-config.json for editing and locate the
samples object.

2. In the text editor, locate the samples object and update the subscribe-topic value to look
like this.

 "samples": {
 "pub-sub": {
 "enabled": true,
 "publish-topic": "test/dc/pubtopic",
 "publish-file": "~/messages/sample-ws-message.json",
 "subscribe-topic": "test/dc/#",

Demonstrate MQTT message communication with the AWS IoT Device Client 249

AWS IoT Core Developer Guide

 "subscribe-file": "~/.aws-iot-device-client/log/pubsub_rx_msgs.log"

The new subscribe-topic value is an MQTT topic filter with an MQTT wild card character at
the end. This describes a subscription to all MQTT topics that start with test/dc/. The AWS
IoT Device Client writes the message payloads that it receives from this subscription to the file
named in subscribe-file.

3. Save the modified config file as ~/dc-configs/dc-pubsub-wild-config.json, and exit
the editor.

To modify the policy used by your Raspberry Pi to allow subscribing to and receiving multiple
MQTT message topics

1. In the terminal window on your local host computer that's connected to your Raspberry Pi,
in your favorite text editor, open ~/policies/pubsub_test_thing_policy.json for
editing, and then locate the iot::Subscribe and iot::Receive policy statements in the
file.

2. In the iot::Subscribe policy statement, update the string in the Resource object to replace
subtopic with *, so that it looks like this.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/*"
]
 }

Note

The MQTT topic filter wild card characters are the + (plus sign) and the # (pound sign).
A subscription request with a # at the end subscribes to all topics that start with the
string that precedes the # character (for example, test/dc/ in this case).
The resource value in the policy statement that authorizes this subscription, however,
must use a * (an asterisk) in place of the # (a pound sign) in the topic filter ARN. This is
because the policy processor uses a different wild card character than MQTT uses.

Demonstrate MQTT message communication with the AWS IoT Device Client 250

AWS IoT Core Developer Guide

For more information about using wild card characters for topics and topic filters in
policies, see Using wildcard characters in MQTT and AWS IoT Core policies.

3. In the iot::Receive policy statement, update the string in the Resource object to replace
subtopic with *, so that it looks like this.

 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/*"
]
 }

4. Save the updated policy document as ~/policies/
pubsub_wild_test_thing_policy.json, and exit the editor.

5. Enter this command to update the policy for this tutorial to use the new resource definitions.

aws iot create-policy-version \
--set-as-default \
--policy-name "PubSubTestThingPolicy" \
--policy-document "file://~/policies/pubsub_wild_test_thing_policy.json"

If the command succeeds, it returns a response like this. Notice that policyVersionId is now
2, indicating this is the second version of this policy.

If you successfully updated the policy, you can continue to the next procedure.

{
 "policyArn": "arn:aws:iot:us-west-2:57EXAMPLE833:policy/PubSubTestThingPolicy",
 "policyDocument": "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n
 {\n \"Effect\": \"Allow\",\n \"Action\": [\n \"iot:Connect\"\n
],\n \"Resource\": [\n \"arn:aws:iot:us-west-2:57EXAMPLE833:client/
PubSubTestThing\"\n]\n },\n {\n \"Effect\": \"Allow\",\n
 \"Action\": [\n \"iot:Publish\"\n],\n \"Resource\": [\n
 \"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic\"\n
]\n },\n {\n \"Effect\": \"Allow\",\n \"Action\": [\n
 \"iot:Subscribe\"\n],\n \"Resource\": [\n \"arn:aws:iot:us-
west-2:57EXAMPLE833:topicfilter/test/dc/*\"\n]\n },\n {\n \"Effect

Demonstrate MQTT message communication with the AWS IoT Device Client 251

AWS IoT Core Developer Guide

\": \"Allow\",\n \"Action\": [\n \"iot:Receive\"\n],\n
 \"Resource\": [\n \"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/*\"\n
]\n }\n]\n}\n",
 "policyVersionId": "2",
 "isDefaultVersion": true
}

If you get an error that there are too many policy versions to save a new one, enter this
command to list the current versions of the policy. Review the list that this command returns
to find a policy version that you can delete.

aws iot list-policy-versions --policy-name "PubSubTestThingPolicy"

Enter this command to delete a version that you no longer need. Note that you can't delete
the default policy version. The default policy version is the one with a isDefaultVersion
value of true.

aws iot delete-policy-version \
--policy-name "PubSubTestThingPolicy" \
--policy-version-id policyId

After deleting a policy version, retry this step.

With the updated config file and policy, you're ready to demonstrate wild card subscriptions with
the AWS IoT Device Client.

To demonstrate how the AWS IoT Device Client subscribes to and receives multiple MQTT
message topics

1. In the MQTT test client, check the subscriptions. If the MQTT test client is subscribed to the to
the in the # topic filter, continue to the next step. If not, in the MQTT test client, in Subscribe
to a topic tab, in Topic filter, enter # (a pound sign character), and then choose Subscribe to
subscribe to it.

2. In the terminal window on your local host computer that's connected to your Raspberry Pi,
enter these commands to start the AWS IoT Device Client.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-pubsub-wild-config.json

Demonstrate MQTT message communication with the AWS IoT Device Client 252

AWS IoT Core Developer Guide

3. While watching the AWS IoT Device Client output in the terminal window on the local host
computer, return to the MQTT test client. In the Publish to a topic tab, in Topic name, enter
test/dc/subtopic , and then choose Publish.

4. In the terminal window, confirm that the message was received by looking for a message such
as:

2021-11-10T16:34:20.101Z [DEBUG] {samples/PubSubFeature.cpp}: Message received on
 subscribe topic, size: 76 bytes

5. While watching the AWS IoT Device Client output in the terminal window of the local host
computer, return to the MQTT test client. In the Publish to a topic tab, in Topic name, enter
test/dc/subtopic2 , and then choose Publish.

6. In the terminal window, confirm that the message was received by looking for a message such
as:

2021-11-10T16:34:32.078Z [DEBUG] {samples/PubSubFeature.cpp}: Message received on
 subscribe topic, size: 77 bytes

7. After you see the messages that confirm both messages were received, enter ^C (Ctrl-C) to
stop the AWS IoT Device Client.

8. Enter this command to view the end of the message log file and see the message you
published from the MQTT test client.

tail -n 20 ~/.aws-iot-device-client/log/pubsub_rx_msgs.log

Note

The log file contains only message payloads. The message topics are not recorded in
the received message log file.
You might also see the message published by the AWS IoT Device Client in the
received log. This is because the wild card topic filter includes that message topic and,
sometimes, the subscription request can be processed by message broker before the
published message is sent to subscribers.

The entries in the log file demonstrate that the messages were received. You can repeat this
procedure using other topic names. All messages that have a topic name that begins with test/

Demonstrate MQTT message communication with the AWS IoT Device Client 253

AWS IoT Core Developer Guide

dc/ should be received and logged. Messages with topic names that begin with any other text are
ignored.

After demonstrating how the AWS IoT Device Client can publish and subscribe to MQTT messages,
continue to Tutorial: Demonstrate remote actions (jobs) with the AWS IoT Device Client.

Tutorial: Demonstrate remote actions (jobs) with the AWS IoT Device
Client

In these tutorials, you'll configure and deploy jobs to your Raspberry Pi to demonstrate how you
can send remote operations to your IoT devices.

To start this tutorial:

• Have your local host computer an Raspberry Pi configured as used in the previous section.

• If you haven't completed the tutorial in the previous section, you can try this tutorial by using the
Raspberry Pi with a microSD card that has the image you saved after you installed the AWS IoT
Device Client in (Optional) Save the microSD card image.

• If you have run this demo before, review ??? to delete all AWS IoT resources that you created in
earlier runs to avoid duplicate resource errors.

This tutorial takes about 45 minutes to complete.

When you're finished with this topic:

• You'll have demonstrated different ways that your IoT device can use the AWS IoT Core to run
remote operations that are managed by AWS IoT .

Required equipment:

• Your local development and testing environment that you tested in a previous section

• The Raspberry Pi that you tested in a previous section

• The microSD memory card from the Raspberry Pi that you tested in a previous section

Procedures in this tutorial

• Step 1: Prepare the Raspberry Pi to run jobs

Demonstrate remote actions (jobs) with the AWS IoT Device Client 254

AWS IoT Core Developer Guide

• Step 2: Create and run the job in AWS IoT

Step 1: Prepare the Raspberry Pi to run jobs

The procedures in this section describe how to prepare your Raspberry Pi to run jobs by using the
AWS IoT Device Client.

Note

These procedures are device specific. If you want to perform the procedures in this section
with more than one device at the same time, each device will need its own policy and
unique, device-specific certificate and thing name. To give each device its unique resources,
perform this procedure one time for each device while changing the device-specific
elements as described in the procedures.

Procedures in this tutorial

• Provision your Raspberry Pi to demonstrate jobs

• Configure the AWS IoT Device Client to run the jobs agent

Provision your Raspberry Pi to demonstrate jobs

The procedures in this section provision your Raspberry Pi in AWS IoT by creating AWS IoT
resources and device certificates for it.

Create and download device certificate files to demonstrate AWS IoT jobs

This procedure creates the device certificate files for this demo.

If you are preparing more than one device, this procedure must be performed on each device.

To create and download the device certificate files for your Raspberry Pi:

In the terminal window on your local host computer that's connected to your Raspberry Pi, enter
these commands.

1. Enter the following command to create the device certificate files for your device.

aws iot create-keys-and-certificate \

Demonstrate remote actions (jobs) with the AWS IoT Device Client 255

AWS IoT Core Developer Guide

--set-as-active \
--certificate-pem-outfile "~/certs/jobs/device.pem.crt" \
--public-key-outfile "~/certs/jobs/public.pem.key" \
--private-key-outfile "~/certs/jobs/private.pem.key"

The command returns a response like the following. Save the certificateArn value for later
use.

{
"certificateArn": "arn:aws:iot:us-
west-2:57EXAMPLE833:cert/76e7e4edb3e52f52334be2f387a06145b2aa4c7fcd810f3aea2d92abc227d269",
"certificateId":
 "76e7e4edb3e52f5233EXAMPLE7a06145b2aa4c7fcd810f3aea2d92abc227d269",
"certificatePem": "-----BEGIN CERTIFICATE-----
\nMIIDWTCCAkGgAwIBAgI_SHORTENED_FOR_EXAMPLE_Lgn4jfgtS\n-----END CERTIFICATE-----
\n",
"keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkiG9w0BA_SHORTENED_FOR_EXAMPLE_ImwIDAQAB\n-----END PUBLIC KEY-----
\n",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----
\nMIIEowIBAAKCAQE_SHORTENED_FOR_EXAMPLE_T9RoDiukY\n-----END RSA PRIVATE KEY-----\n"
}
}

2. Enter the following commands to set the permissions on the certificate directory and its files.

chmod 700 ~/certs/jobs
chmod 644 ~/certs/jobs/*
chmod 600 ~/certs/jobs/private.pem.key

3. Run this command to review the permissions on your certificate directories and files.

ls -l ~/certs/jobs

The output of the command should be the same as what you see here, except the file dates
and times will be different.

-rw-r--r-- 1 pi pi 1220 Oct 28 13:02 device.pem.crt
-rw------- 1 pi pi 1675 Oct 28 13:02 private.pem.key
-rw-r--r-- 1 pi pi 451 Oct 28 13:02 public.pem.key

Demonstrate remote actions (jobs) with the AWS IoT Device Client 256

AWS IoT Core Developer Guide

After you have downloaded the device certificate files to your Raspberry Pi, you're ready to
continue to the section called “Provision your Raspberry Pi to demonstrate jobs”.

Create AWS IoT resources to demonstrate AWS IoT jobs

Create the AWS IoT resources for this device.

If you are preparing more than one device, this procedure must be performed for each device.

To provision your device in AWS IoT:

In the terminal window on your local host computer that's connected to your Raspberry Pi:

1. Enter the following command to get the address of the device data endpoint for your AWS
account.

aws iot describe-endpoint --endpoint-type IoT:Data-ATS

The endpoint value hasn’t changed since the last time you ran this command. Running the
command again here makes it easy to find and paste the data endpoint value into the config
file used in this tutorial.

The describe-endpoint command returns a response like the following. Record the
endpointAddress value for later use.

{
"endpointAddress": "a3qjEXAMPLEffp-ats.iot.us-west-2.amazonaws.com"
}

2. Replace uniqueThingName with a unique name for your device. If you want to perform this
tutorial with multiple devices, give each device its own name. For example, TestDevice01,
TestDevice02, and so on.

Enter this command to create a new AWS IoT thing resource for your Raspberry Pi.

aws iot create-thing --thing-name "uniqueThingName"

Because an AWS IoT thing resource is a virtual representation of your device in the cloud, we
can create multiple thing resources in AWS IoT to use for different purposes. They can all be
used by the same physical IoT device to represent different aspects of the device.

Demonstrate remote actions (jobs) with the AWS IoT Device Client 257

AWS IoT Core Developer Guide

Note

When you want to secure the policy for multiple devices, you can use
${iot:Thing.ThingName} instead of the static thing name, uniqueThingName.

These tutorials will only use one thing resource at a time per device. This way, in these
tutorials, they represent the different demos so that after you create the AWS IoT resources for
a demo, you can go back and repeat the demos using the resources you created specifically for
each.

If your AWS IoT thing resource was created, the command returns a response like this. Record
the thingArn value for use later when you create the job to run on this device.

{
"thingName": "uniqueThingName",
"thingArn": "arn:aws:iot:us-west-2:57EXAMPLE833:thing/uniqueThingName",
"thingId": "8ea78707-32c3-4f8a-9232-14bEXAMPLEfd"
}

3. In the terminal window:

a. Open a text editor, such as nano.

b. Copy this JSON document and paste it into your open text editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:client/uniqueThingName"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Demonstrate remote actions (jobs) with the AWS IoT Device Client 258

AWS IoT Core Developer Guide

 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/events/job/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/events/jobExecution/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName/
jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/events/jobExecution/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/$aws/
things/uniqueThingName/jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/subtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName/
jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:DescribeJobExecution",
 "iot:GetPendingJobExecutions",
 "iot:StartNextPendingJobExecution",
 "iot:UpdateJobExecution"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName"
]

Demonstrate remote actions (jobs) with the AWS IoT Device Client 259

AWS IoT Core Developer Guide

 }
]
}

c. In the editor, in the Resource section of every policy statement, replace us-
west-2:57EXAMPLE833 with your AWS Region, a colon character (:), and your 12-digit
AWS account number.

d. In the editor, in every policy statement, replace uniqueThingName with the thing name
you gave this thing resource.

e. Save the file in your text editor as ~/policies/jobs_test_thing_policy.json.

If you are running this procedure for multiple devices, save the file to this file name on
each device.

4. Replace uniqueThingName with the thing name for the device, and then run this command
to create an AWS IoT policy that is tailored for that device.

aws iot create-policy \
--policy-name "JobTestPolicyForuniqueThingName" \
--policy-document "file://~/policies/jobs_test_thing_policy.json"

If the policy is created, the command returns a response like this.

{
 "policyName": "JobTestPolicyForuniqueThingName",
 "policyArn": "arn:aws:iot:us-west-2:57EXAMPLE833:policy/
JobTestPolicyForuniqueThingName",
 "policyDocument": "{\n\"Version\": \"2012-10-17\",\n\"Statement\": [\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Connect\"\n],\n\"Resource\":
 [\n\"arn:aws:iot:us-west-2:57EXAMPLE833:client/PubSubTestThing\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Publish\"\n],\n\"Resource\":
 [\n\"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Subscribe\"\n],\n\"Resource\": [\n
\"arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic\"\n]\n},\n{\n
\"Effect\": \"Allow\",\n\"Action\": [\n\"iot:Receive\"\n],\n\"Resource\": [\n
\"arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/*\"\n]\n}\n]\n}\n",
 "policyVersionId": "1"

5. Replace uniqueThingName with the thing name for the device and certificateArn with
the certificateArn value you saved earlier in this section for this device, and then run this
command to attach the policy to the device certificate.

Demonstrate remote actions (jobs) with the AWS IoT Device Client 260

AWS IoT Core Developer Guide

aws iot attach-policy \
--policy-name "JobTestPolicyForuniqueThingName" \
--target "certificateArn"

If successful, this command returns nothing.

6. Replace uniqueThingName with the thing name for the device, replace certificateArn
with the certificateArn value that you saved earlier in this section, and then run this
command to attach the device certificate to the AWS IoT thing resource.

aws iot attach-thing-principal \
--thing-name "uniqueThingName" \
--principal "certificateArn"

If successful, this command returns nothing.

After you successfully provisioned your Raspberry Pi, you're ready to repeat this section for another
Raspberry Pi in your test or, if all devices have been provisioned, continue to the section called
“Configure the AWS IoT Device Client to run the jobs agent”.

Configure the AWS IoT Device Client to run the jobs agent

This procedure creates a config file for the AWS IoT Device Client to run the jobs agent:.

Note: if you are preparing more than one device, this procedure must be performed on each device.

To create the config file to test the AWS IoT Device Client:

1. In the terminal window on your local host computer that's connected to your Raspberry Pi:

a. Open a text editor, such as nano.

b. Copy this JSON document and paste it into your open text editor.

{
 "endpoint": "a3qEXAMPLEaffp-ats.iot.us-west-2.amazonaws.com",
 "cert": "~/certs/jobs/device.pem.crt",
 "key": "~/certs/jobs/private.pem.key",
 "root-ca": "~/certs/AmazonRootCA1.pem",
 "thing-name": "uniqueThingName",
 "logging": {

Demonstrate remote actions (jobs) with the AWS IoT Device Client 261

AWS IoT Core Developer Guide

 "enable-sdk-logging": true,
 "level": "DEBUG",
 "type": "STDOUT",
 "file": ""
 },
 "jobs": {
 "enabled": true,
 "handler-directory": ""
 },
 "tunneling": {
 "enabled": false
 },
 "device-defender": {
 "enabled": false,
 "interval": 300
 },
 "fleet-provisioning": {
 "enabled": false,
 "template-name": "",
 "template-parameters": "",
 "csr-file": "",
 "device-key": ""
 },
 "samples": {
 "pub-sub": {
 "enabled": false,
 "publish-topic": "",
 "publish-file": "",
 "subscribe-topic": "",
 "subscribe-file": ""
 }
 },
 "config-shadow": {
 "enabled": false
 },
 "sample-shadow": {
 "enabled": false,
 "shadow-name": "",
 "shadow-input-file": "",
 "shadow-output-file": ""
 }
}

Demonstrate remote actions (jobs) with the AWS IoT Device Client 262

AWS IoT Core Developer Guide

c. Replace the endpoint value with device data endpoint value for your AWS account that
you found in the section called “Provision your device in AWS IoT Core”.

d. Replace uniqueThingName with the thing name that you used for this device.

e. Save the file in your text editor as ~/dc-configs/dc-jobs-config.json.

2. Run this command to set the file permissions of the new config file.

chmod 644 ~/dc-configs/dc-jobs-config.json

You won't use the MQTT test client for this test. While the device will exchange jobs-related MQTT
messages with AWS IoT, job progress messages are only exchanged with the device running the
job. Because job progress messages are only exchanged with the device running the job, you can't
subscribe to them from another device, such as the AWS IoT console.

After you save the config file, you're ready to continue to the section called “Step 2: Create and run
the job in AWS IoT”.

Step 2: Create and run the job in AWS IoT

The procedures in this section create a job document and an AWS IoT job resource. After you create
the job resource, AWS IoT sends the job document to the specified job targets on which a jobs
agent applies the job document to the device or client.

Procedures in this section

• Create and store the job's job document

• Run a job in AWS IoT for one IoT device

Create and store the job's job document

This procedure creates a simple job document to include in an AWS IoT job resource. This job
document displays "Hello world!" on the job target.

To create and store a job document:

1. Select the Amazon S3 bucket into which you'll save your job document. If you don't have an
existing Amazon S3 bucket to use for this, you'll need to create one. For information about
how to create Amazon S3 buckets, see the topics in Getting started with Amazon S3.

Demonstrate remote actions (jobs) with the AWS IoT Device Client 263

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

AWS IoT Core Developer Guide

2. Create and save the job document for this job

a. On your local host computer, open a text editor.

b. Copy and paste this text into the editor.

{
 "operation": "echo",
 "args": ["Hello world!"]
}

c. On the local host computer, save the contents of the editor to a file named hello-
world-job.json.

d. Confirm the file was saved correctly. Some text editors automatically append .txt to
the file name when they save a text file. If your editor appended .txt to the file name,
correct the file name before proceeding.

3. Replace the path_to_file with the path to hello-world-job.json, if it's not in your
current directory, replace s3_bucket_name with the Amazon S3 bucket path to the bucket
you selected, and then run this command to put your job document into the Amazon S3
bucket.

aws s3api put-object \
--key hello-world-job.json \
--body path_to_file/hello-world-job.json --bucket s3_bucket_name

The job document URL that identifies the job document that you stored in Amazon S3 is
determined by replacing the s3_bucket_name and AWS_region in the following URL. Record
the resulting URL to use later as the job_document_path

https://s3_bucket_name.s3.AWS_Region.amazonaws.com/hello-world-job.json

Note

AWS security prevents you from being able to open this URL outside of your AWS
account, for example by using a browser. The URL is used by the AWS IoT jobs engine,
which has access to the file, by default. In a production environment, you'll need to
make sure that your AWS IoT services have permission to access to the job documents
stored in Amazon S3.

Demonstrate remote actions (jobs) with the AWS IoT Device Client 264

AWS IoT Core Developer Guide

After you have saved the job document's URL, continue to the section called “Run a job in AWS IoT
for one IoT device”.

Run a job in AWS IoT for one IoT device

The procedures in this section start the AWS IoT Device Client on your Raspberry Pi to run the jobs
agent on the device to wait for jobs to run. It also creates a job resource in AWS IoT, which will send
the job to and run on your IoT device.

Note

This procedure runs a job on only a single device.

To start the jobs agent on your Raspberry Pi:

1. In the terminal window on your local host computer that's connected to your Raspberry Pi, run
this command to start the AWS IoT Device Client.

cd ~/aws-iot-device-client/build
./aws-iot-device-client --config-file ~/dc-configs/dc-jobs-config.json

2. In the terminal window, confirm that the AWS IoT Device Client and displays these messages

2021-11-15T18:45:56.708Z [INFO] {Main.cpp}: Jobs is enabled
 .
 .
 .
2021-11-15T18:45:56.708Z [INFO] {Main.cpp}: Client base has been notified that
 Jobs has started
2021-11-15T18:45:56.708Z [INFO] {JobsFeature.cpp}: Running Jobs!
2021-11-15T18:45:56.708Z [DEBUG] {JobsFeature.cpp}: Attempting to subscribe to
 startNextPendingJobExecution accepted and rejected
2021-11-15T18:45:56.708Z [DEBUG] {JobsFeature.cpp}: Attempting to subscribe to
 nextJobChanged events
2021-11-15T18:45:56.708Z [DEBUG] {JobsFeature.cpp}: Attempting to subscribe to
 updateJobExecutionStatusAccepted for jobId +
2021-11-15T18:45:56.738Z [DEBUG] {JobsFeature.cpp}: Ack received for
 SubscribeToUpdateJobExecutionAccepted with code {0}
2021-11-15T18:45:56.739Z [DEBUG] {JobsFeature.cpp}: Attempting to subscribe to
 updateJobExecutionStatusRejected for jobId +

Demonstrate remote actions (jobs) with the AWS IoT Device Client 265

AWS IoT Core Developer Guide

2021-11-15T18:45:56.753Z [DEBUG] {JobsFeature.cpp}: Ack received for
 SubscribeToNextJobChanged with code {0}
2021-11-15T18:45:56.760Z [DEBUG] {JobsFeature.cpp}: Ack received for
 SubscribeToStartNextJobRejected with code {0}
2021-11-15T18:45:56.776Z [DEBUG] {JobsFeature.cpp}: Ack received for
 SubscribeToStartNextJobAccepted with code {0}
2021-11-15T18:45:56.776Z [DEBUG] {JobsFeature.cpp}: Ack received for
 SubscribeToUpdateJobExecutionRejected with code {0}
2021-11-15T18:45:56.777Z [DEBUG] {JobsFeature.cpp}: Publishing
 startNextPendingJobExecutionRequest
2021-11-15T18:45:56.785Z [DEBUG] {JobsFeature.cpp}: Ack received for
 StartNextPendingJobPub with code {0}
2021-11-15T18:45:56.785Z [INFO] {JobsFeature.cpp}: No pending jobs are scheduled,
 waiting for the next incoming job

3. In the terminal window, after you see this message, continue to the next procedure and create
the job resource. Note that it might not be the last entry in the list.

2021-11-15T18:45:56.785Z [INFO] {JobsFeature.cpp}: No pending jobs are scheduled,
 waiting for the next incoming job

To create an AWS IoT job resource

1. On your local host computer:

a. Replace job_document_url with the job document URL from the section called “Create
and store the job's job document”.

b. Replace thing_arn with the ARN of the thing resource you created for your device and
then run this command.

aws iot create-job \
--job-id hello-world-job-1 \
--document-source "job_document_url" \
--targets "thing_arn" \
--target-selection SNAPSHOT

If successful, the command returns a result like this one.

{
 "jobArn": "arn:aws:iot:us-west-2:57EXAMPLE833:job/hello-world-job-1",

Demonstrate remote actions (jobs) with the AWS IoT Device Client 266

AWS IoT Core Developer Guide

 "jobId": "hello-world-job-1"
}

2. In the terminal window, you should see output from the AWS IoT Device Client like this.

2021-11-15T18:02:26.688Z [INFO] {JobsFeature.cpp}: No pending jobs are scheduled,
 waiting for the next incoming job
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Job ids differ
2021-11-15T18:10:24.890Z [INFO] {JobsFeature.cpp}: Executing job: hello-world-
job-1
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Attempting to update job
 execution status!
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Not including stdout with the
 status details
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Not including stderr with the
 status details
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Assuming executable is in PATH
2021-11-15T18:10:24.890Z [INFO] {JobsFeature.cpp}: About to execute: echo Hello
 world!
2021-11-15T18:10:24.890Z [DEBUG] {Retry.cpp}: Retryable function starting, it will
 retry until success
2021-11-15T18:10:24.890Z [DEBUG] {JobsFeature.cpp}: Created EphermalPromise for
 ClientToken 3TEWba9Xj6 in the updateJobExecution promises map
2021-11-15T18:10:24.890Z [DEBUG] {JobEngine.cpp}: Child process now running
2021-11-15T18:10:24.890Z [DEBUG] {JobEngine.cpp}: Child process about to call
 execvp
2021-11-15T18:10:24.890Z [DEBUG] {JobEngine.cpp}: Parent process now running, child
 PID is 16737
2021-11-15T18:10:24.891Z [DEBUG] {16737}: Hello world!
2021-11-15T18:10:24.891Z [DEBUG] {JobEngine.cpp}: JobEngine finished waiting for
 child process, returning 0
2021-11-15T18:10:24.891Z [INFO] {JobsFeature.cpp}: Job exited with status: 0
2021-11-15T18:10:24.891Z [INFO] {JobsFeature.cpp}: Job executed successfully!
2021-11-15T18:10:24.891Z [DEBUG] {JobsFeature.cpp}: Attempting to update job
 execution status!
2021-11-15T18:10:24.891Z [DEBUG] {JobsFeature.cpp}: Not including stdout with the
 status details
2021-11-15T18:10:24.891Z [DEBUG] {JobsFeature.cpp}: Not including stderr with the
 status details
2021-11-15T18:10:24.892Z [DEBUG] {Retry.cpp}: Retryable function starting, it will
 retry until success
2021-11-15T18:10:24.892Z [DEBUG] {JobsFeature.cpp}: Created EphermalPromise for
 ClientToken GmQ0HTzWGg in the updateJobExecution promises map

Demonstrate remote actions (jobs) with the AWS IoT Device Client 267

AWS IoT Core Developer Guide

2021-11-15T18:10:24.905Z [DEBUG] {JobsFeature.cpp}: Ack received for
 PublishUpdateJobExecutionStatus with code {0}
2021-11-15T18:10:24.905Z [DEBUG] {JobsFeature.cpp}: Removing ClientToken 3TEWba9Xj6
 from the updateJobExecution promises map
2021-11-15T18:10:24.905Z [DEBUG] {JobsFeature.cpp}: Success response after
 UpdateJobExecution for job hello-world-job-1
2021-11-15T18:10:24.917Z [DEBUG] {JobsFeature.cpp}: Ack received for
 PublishUpdateJobExecutionStatus with code {0}
2021-11-15T18:10:24.918Z [DEBUG] {JobsFeature.cpp}: Removing ClientToken GmQ0HTzWGg
 from the updateJobExecution promises map
2021-11-15T18:10:24.918Z [DEBUG] {JobsFeature.cpp}: Success response after
 UpdateJobExecution for job hello-world-job-1
2021-11-15T18:10:25.861Z [INFO] {JobsFeature.cpp}: No pending jobs are scheduled,
 waiting for the next incoming job

3. While the AWS IoT Device Client is running and waiting for a job, you can submit another job
by changing the job-id value and re-running the create-job from Step 1.

When you’re done running jobs, in the terminal window, enter ^C (control-C) to stop the AWS IoT
Device Client.

Tutorial: Cleaning up after running the AWS IoT Device Client tutorials

The procedures in this tutorial walk you through removing the files and resources you created while
completing the tutorials in this learning path.

Procedures in this tutorial

• Step 1: Cleaning up your devices after building demos with the AWS IoT Device Client

• Step 2: Cleaning up your AWS account after building demos with the AWS IoT Device Client

Step 1: Cleaning up your devices after building demos with the AWS IoT Device
Client

This tutorial describes two options for how to clean up the microSD card after you built the demos
in this learning path. Choose the option that provides the level of security that you need.

Note that cleaning the device's microSD card does not remove any AWS IoT resources that you
created. To clean up the AWS IoT resources after you clean the device's microSD card, you should
review the tutorial on the section called “Cleaning up after building demos with the AWS IoT
Device Client”.

Cleaning up 268

AWS IoT Core Developer Guide

Option 1: Cleaning up by rewriting the microSD card

The easiest and most thorough way to clean the microSD card after completing the tutorials in
this learning path is to overwrite the microSD card with a saved image file that you created while
preparing your device the first time.

This procedure uses the local host computer to write a saved microSD card image to a microSD
card.

Note

If your device doesn't use a removable storage medium for its operating system, refer to
the procedure for that device.

To write a new image to the microSD card

1. On your local host computer, locate the saved microSD card image that you want to write to
your microSD card.

2. Insert your microSD card into the local host computer.

3. Using an SD card imaging tool, write selected image file to the microSD card.

4. After writing the Raspberry Pi OS image to the microSD card, eject the microSD card and
safely remove it from the local host computer.

Your microSD card is ready to use.

Option 2: Cleaning up by deleting user directories

To clean the microSD card after completing the tutorials without rewriting the microSD card
image, you can delete the user directories individually. This is not as thorough as rewriting the
microSD card from a saved image because it does not remove any system files that might have
been installed.

If removing the user directories is sufficiently thorough for you needs, you can follow this
procedure.

Cleaning up 269

AWS IoT Core Developer Guide

To delete this learning path's user directories from your device

1. Run these commands to delete the user directories, subdirectories, and all their files that were
created in this learning path, in the terminal window connected to your device.

Note

After you delete these directories and files, you won't be able to run the demos
without completing the tutorials again.

rm -Rf ~/dc-configs
rm -Rf ~/policies
rm -Rf ~/messages
rm -Rf ~/certs
rm -Rf ~/.aws-iot-device-client

2. Run these commands to delete the application source directories and files, in the terminal
window connected to your device.

Note

These commands don't uninstall any programs. They only remove the source files used
to build and install them. After you delete these files, the AWS CLI and the AWS IoT
Device Client might not work.

rm -Rf ~/aws-cli
rm -Rf ~/aws
rm -Rf ~/aws-iot-device-client

Step 2: Cleaning up your AWS account after building demos with the AWS IoT
Device Client

These procedures help you identify and remove the AWS resources that you created while
completing the tutorials in this learning path.

Cleaning up 270

AWS IoT Core Developer Guide

Clean up AWS IoT resources

This procedure helps you identify and remove the AWS IoT resources that you created while
completing the tutorials in this learning path.

AWS IoT resources created in this learning path

Tutorial Thing resource Policy resource

the section called “Installing
and configuring the AWS IoT
Device Client”

DevCliTestThing DevCliTestThingPolicy

the section called “Demonstr
ate MQTT message
communication with the AWS
IoT Device Client”

PubSubTestThing PubSubTestThingPolicy

the section called “Demonstr
ate remote actions (jobs) with
the AWS IoT Device Client”

user defined (there could be
more than one)

user defined (there could be
more than one)

To delete the AWS IoT resources, follow this procedure for each thing resource that you created

1. Replace thing_name with the name of the thing resource you want to delete, and then
run this command to list the certificates attached to the thing resource, from the local host
computer.

aws iot list-thing-principals --thing-name thing_name

This command returns a response like this one that lists the certificates that are attached to
thing_name. In most cases, there will only be one certificate in the list.

{
 "principals": [
 "arn:aws:iot:us-
west-2:57EXAMPLE833:cert/23853eea3cf0edc7f8a69c74abeafa27b2b52823cab5b3e156295e94b26ae8ac"
]
}

Cleaning up 271

AWS IoT Core Developer Guide

2. For each certificate listed by the previous command:

a. Replace certificate_ID with the certificate ID from the previous command. The
certificate ID is the alphanumeric characters that follow cert/ in the ARN returned by the
previous command. Then run this command to inactivate the certificate.

aws iot update-certificate --new-status INACTIVE --certificate-
id certificate_ID

If successful, this command doesn't return anything.

b. Replace certificate_ARN with the certificate ARN from the list of certificates returned
earlier, and then run this command to list the policies attached to this certificate.

aws iot list-attached-policies --target certificate_ARN

This command returns a response like this one that lists the policies attached to the
certificate. In most cases, there will only be one policy in the list.

{
 "policies": [
 {
 "policyName": "DevCliTestThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:57EXAMPLE833:policy/
DevCliTestThingPolicy"
 }
]
}

c. For each policy attached to the certificate:

i. Replace policy_name with the policyName value from the previous command,
replace certificate_ARN with the certificate's ARN, and then run this command to
detach the policy from the certificate.

aws iot detach-policy --policy-name policy_name --target certificate_ARN

If successful, this command doesn't return anything.

ii. Replace policy_name with the policyName value, and then run this command to
see if the policy is attached to any more certificates.

Cleaning up 272

AWS IoT Core Developer Guide

aws iot list-targets-for-policy --policy-name policy_name

If the command returns an empty list like this, the policy is not attached to any
certificates and you continue to list the policy versions. If there are still certificates
attached to the policy, continue with the detach-thing-principal step.

{
 "targets": []
}

iii. Replace policy_name with the policyName value, and then run this command to
check for policy versions. To delete the policy, it must have only one version.

aws iot list-policy-versions --policy-name policy_name

If the policy has only one version, like this example, you can skip to the delete-policy
step and delete the policy now.

{
 "policyVersions": [
 {
 "versionId": "1",
 "isDefaultVersion": true,
 "createDate": "2021-11-18T01:02:46.778000+00:00"
 }
]
}

If the policy has more than one version, like this example, the policy versions with
an isDefaultVersion value of false must be deleted before the policy can be
deleted.

{
 "policyVersions": [
 {
 "versionId": "2",
 "isDefaultVersion": true,
 "createDate": "2021-11-18T01:52:04.423000+00:00"
 },

Cleaning up 273

AWS IoT Core Developer Guide

 {
 "versionId": "1",
 "isDefaultVersion": false,
 "createDate": "2021-11-18T01:30:18.083000+00:00"
 }
]
}

If you need to delete a policy version, replace policy_name with the policyName
value, replace version_ID with the versionId value from the previous command,
and then run this command to delete a policy version.

aws iot delete-policy-version --policy-name policy_name --policy-version-
id version_ID

If successful, this command doesn't return anything.

After you delete a policy version, repeat this step until the policy has only one policy
version.

iv. Replace policy_name with the policyName value, and then run this command to
delete the policy.

aws iot delete-policy --policy-name policy_name

d. Replace thing_name with the thing's name, replace certificate_ARN with the
certificate's ARN, and then run this command to detach the certificate from the thing
resource.

aws iot detach-thing-principal --thing-name thing_name --
principal certificate_ARN

If successful, this command doesn't return anything.

e. Replace certificate_ID with the certificate ID from the previous command. The
certificate ID is the alphanumeric characters that follow cert/ in the ARN returned by the
previous command. Then run this command to delete the certificate resource.

aws iot delete-certificate --certificate-id certificate_ID

Cleaning up 274

AWS IoT Core Developer Guide

If successful, this command doesn't return anything.

3. Replace thing_name with the thing's name, and then run this command to delete the thing.

aws iot delete-thing --thing-name thing_name

If successful, this command doesn't return anything.

Clean up AWS resources

This procedure helps you identify and remove other AWS resources that you created while
completing the tutorials in this learning path.

Other AWS resources created in this learning path

Tutorial Resource type Resource name or ID

the section called “Demonstr
ate remote actions (jobs) with
the AWS IoT Device Client”

Amazon S3 object hello-world-job.json

the section called “Demonstr
ate remote actions (jobs) with
the AWS IoT Device Client”

AWS IoT job resources user defined

To delete the AWS resources created in this learning path

1. To delete the jobs created in this learning path

a. Run this command to list the jobs in your AWS account.

aws iot list-jobs

The command returns a list of the AWS IoT jobs in your AWS account and AWS Region that
looks like this.

{
 "jobs": [
 {

Cleaning up 275

AWS IoT Core Developer Guide

 "jobArn": "arn:aws:iot:us-west-2:57EXAMPLE833:job/hello-world-
job-2",
 "jobId": "hello-world-job-2",
 "targetSelection": "SNAPSHOT",
 "status": "COMPLETED",
 "createdAt": "2021-11-16T23:40:36.825000+00:00",
 "lastUpdatedAt": "2021-11-16T23:40:41.375000+00:00",
 "completedAt": "2021-11-16T23:40:41.375000+00:00"
 },
 {
 "jobArn": "arn:aws:iot:us-west-2:57EXAMPLE833:job/hello-world-
job-1",
 "jobId": "hello-world-job-1",
 "targetSelection": "SNAPSHOT",
 "status": "COMPLETED",
 "createdAt": "2021-11-16T23:35:26.381000+00:00",
 "lastUpdatedAt": "2021-11-16T23:35:29.239000+00:00",
 "completedAt": "2021-11-16T23:35:29.239000+00:00"
 }
]
}

b. For each job that you recognize from the list as a job you created in this learning path,
replace jobId with the jobId value of the job to delete, and then run this command to
delete an AWS IoT job.

aws iot delete-job --job-id jobId

If the command is successful, it returns nothing.

2. To delete the job documents you stored in an Amazon S3 bucket in this learning path.

a. Replace bucket with the name of the bucket you used, and then run this command to list
the objects in the Amazon S3 bucket that you used.

aws s3api list-objects --bucket bucket

The command returns a list of the Amazon S3 objects in bucket that looks like this.

{
 "Contents": [
 {

Cleaning up 276

AWS IoT Core Developer Guide

 "Key": "hello-world-job.json",
 "LastModified": "2021-11-18T03:02:12+00:00",
 "ETag": "\"868c8bc3f56b5787964764d4b18ed5ef\"",
 "Size": 54,
 "StorageClass": "STANDARD",
 "Owner": {
 "DisplayName": "EXAMPLE",
 "ID":
 "e9e3d6ec1EXAMPLEf5bfb5e6bd0a2b6ed03884d1ed392a82ad011c144736a4ee"
 }
 },
 {
 "Key": "iot_job_firmware_update.json",
 "LastModified": "2021-04-13T21:57:07+00:00",
 "ETag": "\"7c68c591949391791ecf625253658c61\"",
 "Size": 66,
 "StorageClass": "STANDARD",
 "Owner": {
 "DisplayName": "EXAMPLE",
 "ID":
 "e9e3d6ec1EXAMPLEf5bfb5e6bd0a2b6ed03884d1ed392a82ad011c144736a4ee"
 }
 },
 {
 "Key": "order66.json",
 "LastModified": "2021-04-13T21:57:07+00:00",
 "ETag": "\"bca60d5380b88e1a70cc27d321caba72\"",
 "Size": 29,
 "StorageClass": "STANDARD",
 "Owner": {
 "DisplayName": "EXAMPLE",
 "ID":
 "e9e3d6ec1EXAMPLEf5bfb5e6bd0a2b6ed03884d1ed392a82ad011c144736a4ee"
 }
 }
]
}

b. For each object that you recognize from the list as an object you created in this learning
path, replace bucket with the bucket name and key with key value of the object to
delete, and then run this command to delete an Amazon S3 object.

 aws s3api delete-object --bucket bucket --key key

Cleaning up 277

AWS IoT Core Developer Guide

If the command is successful, it returns nothing.

After you delete all the AWS resources and objects that you created while completing this learning
path, you can start over and repeat the tutorials.

Building solutions with the AWS IoT Device SDKs

The tutorials in this section help walk you through the steps to develop an IoT solution that can be
deployed to a production environment using AWS IoT.

These tutorials can take more time to complete than those in the section on the section called
“Building demos with the AWS IoT Device Client” because they use the AWS IoT Device SDKs and
explain the concepts being applied in more detail to help you create secure and reliable solutions.

Start building solutions with the AWS IoT Device SDKs

These tutorials walk you through different AWS IoT scenarios. Where appropriate, the tutorials use
the AWS IoT Device SDKs.

Topics

• Tutorial: Connecting a device to AWS IoT Core by using the AWS IoT Device SDK

• Creating AWS IoT rules to route device data to other services

• Retaining device state while the device is offline with Device Shadows

• Tutorial: Creating a custom authorizer for AWS IoT Core

• Tutorial: Monitoring soil moisture with AWS IoT and Raspberry Pi

Tutorial: Connecting a device to AWS IoT Core by using the AWS IoT
Device SDK

This tutorial demonstrates how to connect a device to AWS IoT Core so that it can send and receive
data to and from AWS IoT. After you complete this tutorial, your device will be configured to
connect to AWS IoT Core and you'll understand how devices communicate with AWS IoT.

In this tutorial, you will:

Building solutions with the AWS IoT Device SDKs 278

AWS IoT Core Developer Guide

1. the section called “Prepare your device for AWS IoT”

2. the section called “Review the MQTT protocol”

3. the section called “Review the pubsub.py Device SDK sample app”

4. the section called “Connect your device and communicate with AWS IoT Core”

5. the section called “Review the results”

This tutorial takes about an hour to complete.

Before you start this tutorial, make sure that you have:

• Completed Getting started with AWS IoT Core

In the section of that tutorial where you must the section called “Configure your device”, select
the the section called “Connect a Raspberry Pi or other device” option for your device and use
the Python language options to configure your device.

Keep open the terminal window you use in that tutorial because you'll also use it in this tutorial.

• A device that can run the AWS IoT Device SDK v2 for Python.

This tutorial shows how to connect a device to AWS IoT Core by using Python code examples,
which require a relatively powerful device.

If you are working with resource-constrained devices, these code examples might not work on
them. In that case, you might have more success by the section called “Using the AWS IoT Device
SDK for Embedded C” tutorial.

Prepare your device for AWS IoT

In Getting started with AWS IoT Core, you prepared your device and AWS account so they could
communicate. This section reviews the aspects of that preparation that apply to any device
connection with AWS IoT Core.

For a device to connect to AWS IoT Core:

1. You must have an AWS account.

The procedure in Set up your AWS account describes how to create an AWS account if you don’t
already have one.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 279

AWS IoT Core Developer Guide

2. In that account, you must have the following AWS IoT resources defined for the device in your
AWS account and Region.

The procedure in Create AWS IoT resources describes how to create these resources for the
device in your AWS account and Region.

• A device certificate registered with AWS IoT and activated to authenticate the device.

The certificate is often created with, and attached to, an AWS IoT thing object. While a thing
object is not required for a device to connect to AWS IoT, it makes additional AWS IoT features
available to the device.

• A policy attached to the device certificate that authorizes it to connect to AWS IoT Core and
perform all the actions that you want it to.

3. An internet connection that can access your AWS account’s device endpoints.

The device endpoints are described in AWS IoT device data and service endpoints and can be
seen in the settings page of the AWS IoT console.

4. Communication software such as the AWS IoT Device SDKs provide. This tutorial uses the AWS
IoT Device SDK v2 for Python.

Review the MQTT protocol

Before we talk about the sample app, it helps to understand the MQTT protocol. The MQTT
protocol offers some advantages over other network communication protocols, such as HTTP,
which makes it a popular choice for IoT devices. This section reviews the key aspects of MQTT that
apply to this tutorial. For information about how MQTT compares to HTTP, see Choosing a protocol
for your device communication.

MQTT uses a publish/subscribe communication model

The MQTT protocol uses a publish/subscribe communication model with its host. This model
differs from the request/response model that HTTP uses. With MQTT, devices establish a session
with the host that is identified by a unique client ID. To send data, devices publish messages
identified by topics to a message broker in the host. To receive messages from the message broker,
devices subscribe to topics by sending topic filters in subscription requests to the message broker.

MQTT supports persistent sessions

The message broker receives messages from devices and publishes messages to devices that
have subscribed to them. With persistent sessions —sessions that remain active even when the

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 280

https://console.aws.amazon.com/iot/home#/settings
https://github.com/aws/aws-iot-device-sdk-python-v2#aws-iot-device-sdk-v2-for-python
https://github.com/aws/aws-iot-device-sdk-python-v2#aws-iot-device-sdk-v2-for-python

AWS IoT Core Developer Guide

initiating device is disconnected—devices can retrieve messages that were published while they
were disconnected. On the device side, MQTT supports Quality of Service levels (QoS) that ensure
the host receives messages sent by the device.

Review the pubsub.py Device SDK sample app

This section reviews the pubsub.py sample app from the AWS IoT Device SDK v2 for Python
used in this tutorial. Here, we'll review how it connects to AWS IoT Core to publish and subscribe
to MQTT messages. The next section presents some exercises to help you explore how a device
connects and communicates with AWS IoT Core.

The pubsub.py sample app demonstrates these aspects of an MQTT connection with AWS IoT
Core:

• Communication protocols

• Persistent sessions

• Quality of Service

• Message publish

• Message subscription

• Device disconnection and reconnection

Communication protocols

The pubsub.py sample demonstrates an MQTT connection using the MQTT and MQTT over WSS
protocols. The AWS common runtime (AWS CRT) library provides the low-level communication
protocol support and is included with the AWS IoT Device SDK v2 for Python.

MQTT

The pubsub.py sample calls mtls_from_path (shown here) in the mqtt_connection_builder
to establish a connection with AWS IoT Core by using the MQTT protocol. mtls_from_path uses
X.509 certificates and TLS v1.2 to authenticate the device. The AWS CRT library handles the lower-
level details of that connection.

mqtt_connection = mqtt_connection_builder.mtls_from_path(
 endpoint=args.endpoint,
 cert_filepath=args.cert,
 pri_key_filepath=args.key,

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 281

https://github.com/awslabs/aws-crt-python#aws-crt-python
https://github.com/awslabs/aws-crt-python/blob/89207bcf1387177034e02fe29e8e469ca45e39b7/awscrt/awsiot_mqtt_connection_builder.py

AWS IoT Core Developer Guide

 ca_filepath=args.ca_file,
 client_bootstrap=client_bootstrap,
 on_connection_interrupted=on_connection_interrupted,
 on_connection_resumed=on_connection_resumed,
 client_id=args.client_id,
 clean_session=False,
 keep_alive_secs=6
)

endpoint

Your AWS account’s IoT device endpoint

In the sample app, this value is passed in from the command line.

cert_filepath

The path to the device’s certificate file

In the sample app, this value is passed in from the command line.

pri_key_filepath

The path to the device’s private key file that was created with its certificate file

In the sample app, this value is passed in from the command line.

ca_filepath

The path to the Root CA file. Required only if the MQTT server uses a certificate that's not
already in your trust store.

In the sample app, this value is passed in from the command line.

client_bootstrap

The common runtime object that handles socket communication activities

In the sample app, this object is instantiated before the call to
mqtt_connection_builder.mtls_from_path.

on_connection_interrupted, on_connection_resumed

The callback functions to call when the device’s connection is interrupted and resumed

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 282

AWS IoT Core Developer Guide

client_id

The ID that uniquely identifies this device in the AWS Region

In the sample app, this value is passed in from the command line.

clean_session

Whether to start a new persistent session, or, if one is present, reconnect to an existing one

keep_alive_secs

The keep alive value, in seconds, to send in the CONNECT request. A ping will automatically be
sent at this interval. If the server doesn't receive a ping after 1.5 times this value, it assumes
that the connection is lost.

MQTT over WSS

The pubsub.py sample calls websockets_with_default_aws_signing (shown here) in
the mqtt_connection_builder to establish a connection with AWS IoT Core using the MQTT
protocol over WSS. websockets_with_default_aws_signing creates an MQTT connection
over WSS using Signature V4 to authenticate the device.

mqtt_connection = mqtt_connection_builder.websockets_with_default_aws_signing(
 endpoint=args.endpoint,
 client_bootstrap=client_bootstrap,
 region=args.signing_region,
 credentials_provider=credentials_provider,
 websocket_proxy_options=proxy_options,
 ca_filepath=args.ca_file,
 on_connection_interrupted=on_connection_interrupted,
 on_connection_resumed=on_connection_resumed,
 client_id=args.client_id,
 clean_session=False,
 keep_alive_secs=6
)

endpoint

Your AWS account’s IoT device endpoint

In the sample app, this value is passed in from the command line.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 283

https://github.com/awslabs/aws-crt-python/blob/89207bcf1387177034e02fe29e8e469ca45e39b7/awscrt/awsiot_mqtt_connection_builder.py
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS IoT Core Developer Guide

client_bootstrap

The common runtime object that handles socket communication activities

In the sample app, this object is instantiated before the call to
mqtt_connection_builder.websockets_with_default_aws_signing.

region

The AWS signing Region used by Signature V4 authentication. In pubsub.py, it passes the
parameter entered in the command line.

In the sample app, this value is passed in from the command line.

credentials_provider

The AWS credentials provided to use for authentication

In the sample app, this object is instantiated before the call to
mqtt_connection_builder.websockets_with_default_aws_signing.

websocket_proxy_options

HTTP proxy options, if using a proxy host

In the sample app, this value is initialized before the call to
mqtt_connection_builder.websockets_with_default_aws_signing.

ca_filepath

The path to the Root CA file. Required only if the MQTT server uses a certificate that's not
already in your trust store.

In the sample app, this value is passed in from the command line.

on_connection_interrupted, on_connection_resumed

The callback functions to call when the device’s connection is interrupted and resumed

client_id

The ID that uniquely identifies this device in the AWS Region.

In the sample app, this value is passed in from the command line.

clean_session

Whether to start a new persistent session, or, if one is present, reconnect to an existing one

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 284

AWS IoT Core Developer Guide

keep_alive_secs

The keep alive value, in seconds, to send in the CONNECT request. A ping will automatically be
sent at this interval. If the server doesn't receive a ping after 1.5 times this value, it assumes the
connection is lost.

HTTPS

What about HTTPS? AWS IoT Core supports devices that publish HTTPS requests. From a
programming perspective, devices send HTTPS requests to AWS IoT Core as would any other
application. For an example of a Python program that sends an HTTP message from a device, see
the HTTPS code example using Python’s requests library. This example sends a message to AWS
IoT Core using HTTPS such that AWS IoT Core interprets it as an MQTT message.

While AWS IoT Core supports HTTPS requests from devices, be sure to review the information
about Choosing a protocol for your device communication so that you can make an informed
decision on which protocol to use for your device communications.

Persistent sessions

In the sample app, setting the clean_session parameter to False indicates that the connection
should be persistent. In practice, this means that the connection opened by this call reconnects to
an existing persistent session, if one exists. Otherwise, it creates and connects to a new persistent
session.

With a persistent session, messages that are sent to the device are stored by the message broker
while the device is not connected. When a device reconnects to a persistent session, the message
broker sends to the device any stored messages to which it has subscribed.

Without a persistent session, the device will not receive messages that are sent while the device
isn't connected. Which option to use depends on your application and whether messages that
occur while a device is not connected must be communicated. For more information, see MQTT
persistent sessions.

Quality of Service

When the device publishes and subscribes to messages, the preferred Quality of Service (QoS)
can be set. AWS IoT supports QoS levels 0 and 1 for publish and subscribe operations. For more
information about QoS levels in AWS IoT, see MQTT Quality of Service (QoS) options.

The AWS CRT runtime for Python defines these constants for the QoS levels that it supports:

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 285

AWS IoT Core Developer Guide

Python Quality of Service levels

MQTT QoS level Python symbolic value used
by SDK

Description

QoS level 0 mqtt.QoS.AT_MOST_O
NCE

Only one attempt to send
the message will be made,
whether it is received or not.
The message might not be
sent at all, for example, if the
device is not connected or
there's a network error.

QoS level 1 mqtt.QoS.AT_LEAST_
ONCE

The message is sent repeatedl
y until a PUBACK acknowled
gement is received.

In the sample app, the publish and subscribe requests are made with a QoS level of 1
(mqtt.QoS.AT_LEAST_ONCE).

• QoS on publish

When a device publishes a message with QoS level 1, it sends the message repeatedly until it
receives a PUBACK response from the message broker. If the device isn't connected, the message
is queued to be sent after it reconnects.

• QoS on subscribe

When a device subscribes to a message with QoS level 1, the message broker saves the messages
to which the device is subscribed until they can be sent to the device. The message broker
resends the messages until it receives a PUBACK response from the device.

Message publish

After successfully establishing a connection to AWS IoT Core, devices can publish messages. The
pubsub.py sample does this by calling the publish operation of the mqtt_connection object.

mqtt_connection.publish(
 topic=args.topic,

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 286

AWS IoT Core Developer Guide

 payload=message,
 qos=mqtt.QoS.AT_LEAST_ONCE
)

topic

The message's topic name that identifies the message

In the sample app, this is passed in from the command line.

payload

The message payload formatted as a string (for example, a JSON document)

In the sample app, this is passed in from the command line.

A JSON document is a common payload format, and one that is recognized by other AWS IoT
services; however, the data format of the message payload can be anything that the publishers
and subscribers agree upon. Other AWS IoT services, however, only recognize JSON, and CBOR,
in some cases, for most operations.

qos

The QoS level for this message

Message subscription

To receive messages from AWS IoT and other services and devices, devices subscribe to those
messages by their topic name. Devices can subscribe to individual messages by specifying a
topic name, and to a group of messages by specifying a topic filter, which can include wild card
characters. The pubsub.py sample uses the code shown here to subscribe to messages and
register the callback functions to process the message after it’s received.

subscribe_future, packet_id = mqtt_connection.subscribe(
 topic=args.topic,
 qos=mqtt.QoS.AT_LEAST_ONCE,
 callback=on_message_received
)
subscribe_result = subscribe_future.result()

topic

The topic to subscribe to. This can be a topic name or a topic filter.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 287

AWS IoT Core Developer Guide

In the sample app, this is passed in from the command line.

qos

Whether the message broker should store these messages while the device is disconnected.

A value of mqtt.QoS.AT_LEAST_ONCE (QoS level 1), requires a persistent session to be
specified (clean_session=False) when the connection is created.

callback

The function to call to process the subscribed message.

The mqtt_connection.subscribe function returns a future and a packet ID. If the subscription
request was initiated successfully, the packet ID returned is greater than 0. To make sure that the
subscription was received and registered by the message broker, you must wait for the result of the
asynchronous operation to return, as shown in the code example.

The callback function

The callback in the pubsub.py sample processes the subscribed messages as the device receives
them.

def on_message_received(topic, payload, **kwargs):
 print("Received message from topic '{}': {}".format(topic, payload))
 global received_count
 received_count += 1
 if received_count == args.count:
 received_all_event.set()

topic

The message’s topic

This is the specific topic name of the message received, even if you subscribed to a topic filter.

payload

The message payload

The format for this is application specific.

kwargs

Possible additional arguments as described in mqtt.Connection.subscribe.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 288

https://awslabs.github.io/aws-crt-python/api/mqtt.html#awscrt.mqtt.Connection.subscribe

AWS IoT Core Developer Guide

In the pubsub.py sample, on_message_received only displays the topic and its payload. It also
counts the messages received to end the program after the limit is reached.

Your app would evaluate the topic and the payload to determine what actions to perform.

Device disconnection and reconnection

The pubsub.py sample includes callback functions that are called when the device is disconnected
and when the connection is re-established. What actions your device takes on these events is
application specific.

When a device connects for the first time, it must subscribe to topics to receive. If a device's session
is present when it reconnects, its subscriptions are restored, and any stored messages from those
subscriptions are sent to the device after it reconnects.

If a device's session no longer exists when it reconnects, it must resubscribe to its subscriptions.
Persistent sessions have a limited lifetime and can expire when the device is disconnected for too
long.

Connect your device and communicate with AWS IoT Core

This section presents some exercises to help you explore different aspects of connecting your
device to AWS IoT Core. For these exercises, you’ll use the MQTT test client in the AWS IoT console
to see what your device publishes and to publish messages to your device. These exercises use the
pubsub.py sample from the AWS IoT Device SDK v2 for Python and build on your experience with
Getting started with AWS IoT Core tutorials.

In this section, you'll:

• Subscribe to wild card topic filters

• Process topic filter subscriptions

• Publish messages from your device

For these exercises, you'll start from the pubsub.py sample program.

Note

These exercises assume that you completed the Getting started with AWS IoT Core tutorials
and use the terminal window for your device from that tutorial.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 289

https://console.aws.amazon.com/iot/home#/test
https://github.com/aws/aws-iot-device-sdk-python-v2/blob/master/samples/pubsub.py
https://github.com/aws/aws-iot-device-sdk-python-v2/tree/master/samples#sample-apps-for-the-aws-iot-device-sdk-v2-for-python

AWS IoT Core Developer Guide

Subscribe to wild card topic filters

In this exercise, you’ll modify the command line used to call pubsub.py to subscribe to a wild card
topic filter and process the messages received based on the message’s topic.

Exercise procedure

For this exercise, imagine that your device contains a temperature control and a light control. It
uses these topic names to identify the messages about them.

1. Before starting the exercise, try running this command from the Getting started with AWS IoT
Core tutorials on your device to make sure that everything is ready for the exercise.

cd ~/aws-iot-device-sdk-python-v2/samples
python3 pubsub.py --topic topic_1 --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/
certs/device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-endpoint

You should see the same output as you saw in the Getting started tutorial.

2. For this exercise, change these command line parameters.

Action Command line parameter Effect

add --message "" Configure pubsub.py to
listen only

add --count 2 End the program after
receiving two messages

change --topic device/+/
details

Define the topic filter to
subscribe to

Making these changes to the initial command line results in this command line. Enter this
command in the terminal window for your device.

python3 pubsub.py --message "" --count 2 --topic device/+/details --ca_file
 ~/certs/Amazon-root-CA-1.pem --cert ~/certs/device.pem.crt --key ~/certs/
private.pem.key --endpoint your-iot-endpoint

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 290

AWS IoT Core Developer Guide

The program should display something like this:

Connecting to a3qexamplesffp-ats.iot.us-west-2.amazonaws.com with client ID
 'test-24d7cdcc-cc01-458c-8488-2d05849691e1'...
Connected!
Subscribing to topic 'device/+/details'...
Subscribed with QoS.AT_LEAST_ONCE
Waiting for all messages to be received...

If you see something like this on your terminal, your device is ready and listening for messages
where the topic names start with device and end with /detail. So, let's test that.

3. Here are a couple of messages that your device might receive.

Topic name Message payload

device/temp/details { "desiredTemp": 20, "currentT
emp": 15 }

device/light/details { "desiredLight": 100, "currentL
ight": 50 }

4. Using the MQTT test client in the AWS IoT console, send the messages described in the
previous step to your device.

a. Open the MQTT test client in the AWS IoT console.

b. In Subscribe to a topic, in the Subscription topic field, enter the topic filter: device/+/
details, and then choose Subscribe to topic.

c. In the Subscriptions column of the MQTT test client, choose device/+/details.

d. For each of the topics in the preceding table, do the following in the MQTT test client:

1. In Publish, enter the value from the Topic name column in the table.

2. In the message payload field below the topic name, enter the value from the Message
payload column in the table.

3. Watch the terminal window where pubsub.py is running and, in the MQTT test client,
choose Publish to topic.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 291

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

You should see that the message was received by pubsub.py in the terminal window.

Exercise result

With this, pubsub.py, subscribed to the messages using a wild card topic filter, received them, and
displayed them in the terminal window. Notice how you subscribed to a single topic filter, and the
callback function was called to process messages having two distinct topics.

Process topic filter subscriptions

Building on the previous exercise, modify the pubsub.py sample app to evaluate the message
topics and process the subscribed messages based on the topic.

Exercise procedure

To evaluate the message topic

1. Copy pubsub.py to pubsub2.py.

2. Open pubsub2.py in your favorite text editor or IDE.

3. In pubsub2.py, find the on_message_received function.

4. In on_message_received, insert the following code after the line that starts
with print("Received message and before the line that starts with global
received_count.

 topic_parsed = False
 if "/" in topic:
 parsed_topic = topic.split("/")
 if len(parsed_topic) == 3:
 # this topic has the correct format
 if (parsed_topic[0] == 'device') and (parsed_topic[2] == 'details'):
 # this is a topic we care about, so check the 2nd element
 if (parsed_topic[1] == 'temp'):
 print("Received temperature request: {}".format(payload))
 topic_parsed = True
 if (parsed_topic[1] == 'light'):
 print("Received light request: {}".format(payload))
 topic_parsed = True
 if not topic_parsed:

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 292

AWS IoT Core Developer Guide

 print("Unrecognized message topic.")

5. Save your changes and run the modified program by using this command line.

python3 pubsub2.py --message "" --count 2 --topic device/+/details --ca_file
 ~/certs/Amazon-root-CA-1.pem --cert ~/certs/device.pem.crt --key ~/certs/
private.pem.key --endpoint your-iot-endpoint

6. In the AWS IoT console, open the MQTT test client.

7. In Subscribe to a topic, in the Subscription topic field, enter the topic filter: device/+/
details, and then choose Subscribe to topic.

8. In the Subscriptions column of the MQTT test client, choose device/+/details.

9. For each of the topics in this table, do the following in the MQTT test client:

Topic name Message payload

device/temp/details { "desiredTemp": 20, "currentT
emp": 15 }

device/light/details { "desiredLight": 100, "currentL
ight": 50 }

1. In Publish, enter the value from the Topic name column in the table.

2. In the message payload field below the topic name, enter the value from the Message
payload column in the table.

3. Watch the terminal window where pubsub.py is running and, in the MQTT test client,
choose Publish to topic.

You should see that the message was received by pubsub.py in the terminal window.

You should see something similar to this in your terminal window.

Connecting to a3qexamplesffp-ats.iot.us-west-2.amazonaws.com with client ID 'test-
af794be0-7542-45a0-b0af-0b0ea7474517'...
Connected!
Subscribing to topic 'device/+/details'...

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 293

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

Subscribed with QoS.AT_LEAST_ONCE
Waiting for all messages to be received...
Received message from topic 'device/light/details': b'{ "desiredLight": 100,
 "currentLight": 50 }'
Received light request: b'{ "desiredLight": 100, "currentLight": 50 }'
Received message from topic 'device/temp/details': b'{ "desiredTemp": 20,
 "currentTemp": 15 }'
Received temperature request: b'{ "desiredTemp": 20, "currentTemp": 15 }'
2 message(s) received.
Disconnecting...
Disconnected!

Exercise result

In this exercise, you added code so the sample app would recognize and process multiple messages
in the callback function. With this, your device could receive messages and act on them.

Another way for your device to receive and process multiple messages is to subscribe to different
messages separately and assign each subscription to its own callback function.

Publish messages from your device

You can use the pubsub.py sample app to publish messages from your device. While it will publish
messages as it is, the messages can't be read as JSON documents. This exercise modifies the
sample app to be able to publish JSON documents in the message payload that can be read by
AWS IoT Core.

Exercise procedure

In this exercise, the following message will be sent with the device/data topic.

{
 "timestamp": 1601048303,
 "sensorId": 28,
 "sensorData": [
 {
 "sensorName": "Wind speed",
 "sensorValue": 34.2211224
 }
]
}

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 294

AWS IoT Core Developer Guide

To prepare your MQTT test client to monitor the messages from this exercise

1. In Subscribe to a topic, in the Subscription topic field, enter the topic filter: device/data,
and then choose Subscribe to topic.

2. In the Subscriptions column of the MQTT test client, choose device/data.

3. Keep the MQTT test client window open to wait for messages from your device.

To send JSON documents with the pubsub.py sample app

1. On your device, copy pubsub.py to pubsub3.py.

2. Edit pubsub3.py to change how it formats the messages it publishes.

a. Open pubsub3.py in a text editor.

b. Locate this line of code:

message = "{} [{}]".format(message_string, publish_count)

c. Change it to:

message = "{}".format(message_string)

d. Locate this line of code:

message_json = json.dumps(message)

e. Change it to:

message = "{}".json.dumps(json.loads(message))

f. Save your changes.

3. On your device, run this command to send the message two times.

python3 pubsub3.py --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/certs/
device.pem.crt --key ~/certs/private.pem.key --topic device/data --count 2 --
message '{"timestamp":1601048303,"sensorId":28,"sensorData":[{"sensorName":"Wind
 speed","sensorValue":34.2211224}]}' --endpoint your-iot-endpoint

4. In the MQTT test client, check to see that it has interpreted and formatted the JSON document
in the message payload, such as this:

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 295

AWS IoT Core Developer Guide

By default, pubsub3.py also subscribes to the messages it sends. You should see that it received
the messages in the app’s output. The terminal window should look something like this.

Connecting to a3qEXAMPLEsffp-ats.iot.us-west-2.amazonaws.com with client ID
 'test-5cff18ae-1e92-4c38-a9d4-7b9771afc52f'...
Connected!
Subscribing to topic 'device/data'...
Subscribed with QoS.AT_LEAST_ONCE
Sending 2 message(s)
Publishing message to topic 'device/data':
 {"timestamp":1601048303,"sensorId":28,"sensorData":[{"sensorName":"Wind
 speed","sensorValue":34.2211224}]}
Received message from topic 'device/data':
 b'{"timestamp":1601048303,"sensorId":28,"sensorData":[{"sensorName":"Wind
 speed","sensorValue":34.2211224}]}'
Publishing message to topic 'device/data':
 {"timestamp":1601048303,"sensorId":28,"sensorData":[{"sensorName":"Wind
 speed","sensorValue":34.2211224}]}
Received message from topic 'device/data':
 b'{"timestamp":1601048303,"sensorId":28,"sensorData":[{"sensorName":"Wind
 speed","sensorValue":34.2211224}]}'
2 message(s) received.
Disconnecting...
Disconnected!

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 296

AWS IoT Core Developer Guide

Exercise result

With this, your device can generate messages to send to AWS IoT Core to test basic connectivity
and provide device messages for AWS IoT Core to process. For example, you could use this app to
send test data from your device to test AWS IoT rule actions.

Review the results

The examples in this tutorial gave you hands-on experience with the basics of how devices can
communicate with AWS IoT Core—a fundamental part of your AWS IoT solution. When your
devices are able to communicate with AWS IoT Core, they can pass messages to AWS services
and other devices on which they can act. Likewise, AWS services and other devices can process
information that results in messages sent back to your devices.

When you are ready to explore AWS IoT Core further, try these tutorials:

• the section called “Sending an Amazon SNS notification”

• the section called “Storing device data in a DynamoDB table”

• the section called “Formatting a notification by using an AWS Lambda function”

Tutorial: Using the AWS IoT Device SDK for Embedded C

This section describes how to run the AWS IoT Device SDK for Embedded C.

Procedures in this section

• Step1: Install the AWS IoT Device SDK for Embedded C

• Step 2: Configure the sample app

• Step 3: Build and run the sample application

Step1: Install the AWS IoT Device SDK for Embedded C

The AWS IoT Device SDK for Embedded C is generally targeted at resource constrained devices that
require an optimized C language runtime. You can use the SDK on any operating system and host
it on any processor type (for example, MCUs and MPUs). If you have more memory and processing
resources available, we recommend that you use one of the higher order AWS IoT Device and
Mobile SDKs (for example, C++, Java, JavaScript, and Python).

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 297

AWS IoT Core Developer Guide

In general, the AWS IoT Device SDK for Embedded C is intended for systems that use MCUs or low-
end MPUs that run embedded operating systems. For the programming example in this section, we
assume your device uses Linux.

Example

1. Download the AWS IoT Device SDK for Embedded C to your device from GitHub.

git clone https://github.com/aws/aws-iot-device-sdk-embedded-c.git --recurse-
submodules

This creates a directory named aws-iot-device-sdk-embedded-c in the current directory.

2. Navigate to that directory and checkout the latest release. Please see github.com/aws/aws-
iot-device-sdk-embedded-C/tags for the latest release tag.

cd aws-iot-device-sdk-embedded-c
git checkout latest-release-tag

3. Install OpenSSL version 1.1.0 or later. The OpenSSL development libraries are usually called
"libssl-dev" or "openssl-devel" when installed through a package manager.

sudo apt-get install libssl-dev

Step 2: Configure the sample app

The AWS IoT Device SDK for Embedded C includes sample applications for you to try. For simplicity,
this tutorial uses the mqtt_demo_mutual_auth application, that illustrates how to connect to the
AWS IoT Core message broker and subscribe and publish to MQTT topics.

1. Copy the certificate and private key you created in Getting started with AWS IoT Core into the
build/bin/certificates directory.

Note

Device and root CA certificates are subject to expiration or revocation. If these
certificates expire or are revoked, you must copy a new CA certificate or private key and
device certificate onto your device.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 298

https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C/tags
https://github.com/aws/aws-iot-device-sdk-embedded-C/tags

AWS IoT Core Developer Guide

2. You must configure the sample with your personal AWS IoT Core endpoint, private key,
certificate, and root CA certificate. Navigate to the aws-iot-device-sdk-embedded-c/
demos/mqtt/mqtt_demo_mutual_auth directory.

If you have the AWS CLI installed, you can use this command to find your account's endpoint
URL.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

If you don't have the AWS CLI installed, open your AWS IoT console. From the navigation pane,
choose Manage, and then choose Things. Choose the IoT thing for your device, and then
choose Interact. Your endpoint is displayed in the HTTPS section of the thing details page.

3. Open the demo_config.h file and update the values for the following:

AWS_IOT_ENDPOINT

Your personal endpoint.

CLIENT_CERT_PATH

Your certificate file path, for example certificates/device.pem.crt".

CLIENT_PRIVATE_KEY_PATH

Your private key file name, for example certificates/private.pem.key.

For example:

// Get from demo_config.h
// ===
#define AWS_IOT_ENDPOINT "my-endpoint-ats.iot.us-
east-1.amazonaws.com"
#define AWS_MQTT_PORT 8883
#define CLIENT_IDENTIFIER "testclient"
#define ROOT_CA_CERT_PATH "certificates/AmazonRootCA1.crt"
#define CLIENT_CERT_PATH "certificates/my-device-cert.pem.crt"
#define CLIENT_PRIVATE_KEY_PATH "certificates/my-device-private-key.pem.key"
// ===

4. Check to see if you have CMake installed on your device by using this command.

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 299

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

cmake --version

If you see the version information for the compiler, you can continue to the next section.

If you get an error or don't see any information, then you'll need to install the cmake package
using this command.

sudo apt-get install cmake

Run the cmake --version command again and confirm that CMake has been installed and that
you are ready to continue.

5. Check to see if you have the development tools installed on your device by using this
command.

gcc --version

If you see the version information for the compiler, you can continue to the next section.

If you get an error or don't see any compiler information, you'll need to install the build-
essential package using this command.

sudo apt-get install build-essential

Run the gcc --version command again and confirm that the build tools have been installed
and that you are ready to continue.

Step 3: Build and run the sample application

To run the AWS IoT Device SDK for Embedded C sample applications

1. Navigate to aws-iot-device-sdk-embedded-c and create a build directory.

mkdir build && cd build

2. Enter the following CMake command to generate the Makefiles needed to build.

cmake ..

Connecting a device to AWS IoT Core by using the AWS IoT Device SDK 300

AWS IoT Core Developer Guide

3. Enter the following command to build the executable app file.

make

4. Run the mqtt_demo_mutual_auth app with this command.

cd bin
./mqtt_demo_mutual_auth

You should see output similar to the following:

Your device is now connected to AWS IoT using the AWS IoT Device SDK for Embedded C.

You can also use the AWS IoT console to view the MQTT messages that the sample app is
publishing. For information about how to use the MQTT client in the AWS IoT console, see the
section called “View MQTT messages with the AWS IoT MQTT client” .

Creating AWS IoT rules to route device data to other services

These tutorials show you how to create and test AWS IoT rules using some of the more common
rule actions.

Creating AWS IoT rules to route device data to other services 301

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

AWS IoT rules send data from your devices to other AWS services. They listen for specific MQTT
messages, format the data in the message payloads, and send the result to other AWS services.

We recommend that you try these in the order they are shown here, even if your goal is to create a
rule that uses a Lambda function or something more complex. The tutorials are presented in order
from basic to complex. They present new concepts incrementally to help you learn the concepts
you can use to create the rule actions that don't have a specific tutorial.

Note

AWS IoT rules help you send the data from your IoT devices to other AWS services. To do
that successfully, however, you need a working knowledge of the other services where you
want to send data. While these tutorials provide the necessary information to complete the
tasks, you might find it helpful to learn more about the services you want to send data to
before you use them in your solution. A detailed explanation of the other AWS services is
outside of the scope of these tutorials.

Tutorial scenario overview

The scenario for these tutorials is that of a weather sensor device that periodically publishes its
data. There are many such sensor devices in this imaginary system. The tutorials in this section,
however, focus on a single device while showing how you might accommodate multiple sensors.

The tutorials in this section show you how to use AWS IoT rules to do the following tasks with this
imaginary system of weather sensor devices.

• Tutorial: Republishing an MQTT message

This tutorial shows how to republish an MQTT message received from the weather sensors as a
message that contains only the sensor ID and the temperature value. It uses only AWS IoT Core
services and demonstrates a simple SQL query and how to use the MQTT client to test your rule.

• Tutorial: Sending an Amazon SNS notification

This tutorial shows how to send an SNS message when a value from a weather sensor device
exceeds a specific value. It builds on the concepts presented in the previous tutorial and adds
how to work with another AWS service, the Amazon Simple Notification Service (Amazon SNS).

If you're new to Amazon SNS, review its Getting started exercises before you start this tutorial.

Creating AWS IoT rules to route device data to other services 302

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

AWS IoT Core Developer Guide

• Tutorial: Storing device data in a DynamoDB table

This tutorial shows how to store the data from the weather sensor devices in a database table.
It uses the rule query statement and substitution templates to format the message data for the
destination service, Amazon DynamoDB.

If you're new to DynamoDB, review its Getting started exercises before you start this tutorial.

• Tutorial: Formatting a notification by using an AWS Lambda function

This tutorial shows how to call a Lambda function to reformat the device data and then send it
as a text message. It adds a Python script and AWS SDK functions in an AWS Lambda function
to format with the message payload data from the weather sensor devices and send a text
message.

If you're new to Lambda, review its Getting started exercises before you start this tutorial.

AWS IoT rule overview

All of these tutorials create AWS IoT rules.

For an AWS IoT rule to send the data from a device to another AWS service, it uses:

• A rule query statement that consists of:

• A SQL SELECT clause that selects and formats the data from the message payload

• A topic filter (the FROM object in the rule query statement) that identifies the messages to use

• An optional conditional statement (a SQL WHERE clause) that specifies specific conditions on
which to act

• At least one rule action

Devices publish messages to MQTT topics. The topic filter in the SQL SELECT statement identifies
the MQTT topics to apply the rule to. The fields specified in the SQL SELECT statement format the
data from the incoming MQTT message payload for use by the rule's actions. For a complete list of
rule actions, see AWS IoT Rule Actions.

Tutorials in this section

• Tutorial: Republishing an MQTT message

• Tutorial: Sending an Amazon SNS notification

Creating AWS IoT rules to route device data to other services 303

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

AWS IoT Core Developer Guide

• Tutorial: Storing device data in a DynamoDB table

• Tutorial: Formatting a notification by using an AWS Lambda function

Tutorial: Republishing an MQTT message

This tutorial demonstrates how to create an AWS IoT rule that publishes an MQTT message when
a specified MQTT message is received. The incoming message payload can be modified by the
rule before it's published. This makes it possible to create messages that are tailored to specific
applications without the need to alter your device or its firmware. You can also use the filtering
aspect of a rule to publish messages only when a specific condition is met.

The messages republished by a rule act like messages sent by any other AWS IoT device or client.
Devices can subscribe to the republished messages the same way they can subscribe to any other
MQTT message topic.

What you'll learn in this tutorial:

• How to use simple SQL queries and functions in a rule query statement

• How to use the MQTT client to test an AWS IoT rule

This tutorial takes about 30 minutes to complete.

In this tutorial, you'll:

• Review MQTT topics and AWS IoT rules

• Step 1: Create an AWS IoT rule to republish an MQTT message

• Step 2: Test your new rule

• Step 3: Review the results and next steps

Before you start this tutorial, make sure that you have:

• Set up your AWS account

You'll need your AWS account and AWS IoT console to complete this tutorial.

• Reviewed View MQTT messages with the AWS IoT MQTT client

Be sure you can use the MQTT client to subscribe and publish to a topic. You'll use the MQTT
client to test your new rule in this procedure.

Creating AWS IoT rules to route device data to other services 304

AWS IoT Core Developer Guide

Review MQTT topics and AWS IoT rules

Before talking about AWS IoT rules, it helps to understand the MQTT protocol. In IoT solutions,
the MQTT protocol offers some advantages over other network communication protocols, such as
HTTP, which makes it a popular choice for use by IoT devices. This section reviews the key aspects
of MQTT as they apply to this tutorial. For information about how MQTT compares to HTTP, see
Choosing a protocol for your device communication.

MQTT protocol

The MQTT protocol uses a publish/subscribe communication model with its host. To send data,
devices publish messages that are identified by topics to the AWS IoT message broker. To receive
messages from the message broker, devices subscribe to the topics they will receive by sending
topic filters in subscription requests to the message broker. The AWS IoT rules engine receives
MQTT messages from the message broker.

AWS IoT rules

AWS IoT rules consist of a rule query statement and one or more rule actions. When the AWS IoT
rules engine receives an MQTT message, these elements act on the message as follows.

• Rule query statement

The rule's query statement describes the MQTT topics to use, interprets the data from the
message payload, and formats the data as described by a SQL statement that is similar to
statements used by popular SQL databases. The result of the query statement is the data that is
sent to the rule's actions.

• Rule action

Each rule action in a rule acts on the data that results from the rule's query statement. AWS IoT
supports many rule actions. In this tutorial, however, you'll concentrate on the Republish rule
action, which publishes the result of the query statement as an MQTT message with a specific
topic.

Step 1: Create an AWS IoT rule to republish an MQTT message

The AWS IoT rule that you'll create in this tutorial subscribes to the device/device_id/data
MQTT topics where device_id is the ID of the device that sent the message. These topics are
described by a topic filter as device/+/data, where the + is a wildcard character that matches
any string between the two forward slash characters.

Creating AWS IoT rules to route device data to other services 305

AWS IoT Core Developer Guide

When the rule receives a message from a matching topic, it republishes the device_id and
temperature values as a new MQTT message with the device/data/temp topic.

For example, the payload of an MQTT message with the device/22/data topic looks like this:

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

The rule takes the temperature value from the message payload, and the device_id from
the topic, and republishes them as an MQTT message with the device/data/temp topic and a
message payload that looks like this:

{
 "device_id": "22",
 "temperature": 28
}

With this rule, devices that only need the device's ID and the temperature data subscribe to the
device/data/temp topic to receive only that information.

To create a rule that republishes an MQTT message

1. Open the Rules hub of the AWS IoT console.

2. In Rules, choose Create and start creating your new rule.

3. In the top part of Create a rule:

a. In Name, enter the rule's name. For this tutorial, name it republish_temp.

Remember that a rule name must be unique within your Account and Region, and it can't
have any spaces. We've used an underscore character in this name to separate the two
words in the rule's name.

b. In Description, describe the rule.

Creating AWS IoT rules to route device data to other services 306

https://console.aws.amazon.com/iot/home#/rulehub

AWS IoT Core Developer Guide

A meaningful description helps you remember what this rule does and why you created it.
The description can be as long as needed, so be as detailed as possible.

4. In Rule query statement of Create a rule:

a. In Using SQL version, select 2016-03-23.

b. In the Rule query statement edit box, enter the statement:

SELECT topic(2) as device_id, temperature FROM 'device/+/data'

This statement:

• Listens for MQTT messages with a topic that matches the device/+/data topic filter.

• Selects the second element from the topic string and assigns it to the device_id field.

• Selects the value temperature field from the message payload and assigns it to the
temperature field.

5. In Set one or more actions:

a. To open up the list of rule actions for this rule, choose Add action.

b. In Select an action, choose Republish a message to an AWS IoT topic.

c. At the bottom of the action list, choose Configure action to open the selected action's
configuration page.

6. In Configure action:

a. In Topic, enter device/data/temp. This is the MQTT topic of the message that this rule
will publish.

b. In Quality of Service, choose 0 - The message is delivered zero or more times.

c. In Choose or create a role to grant AWS IoT access to perform this action:

i. Choose Create Role. The Create a new role dialog box opens.

ii. Enter a name that describes the new role. In this tutorial, use republish_role.

When you create a new role, the correct policies to perform the rule action are
created and attached to the new role. If you change the topic of this rule action or use
this role in another rule action, you must update the policy for that role to authorize
the new topic or action. To update an existing role, choose Update role in this section.

Creating AWS IoT rules to route device data to other services 307

AWS IoT Core Developer Guide

iii. Choose Create Role to create the role and close the dialog box.

d. Choose Add action to add the action to the rule and return to the Create a rule page.

7. The Republish a message to an AWS IoT topic action is now listed in Set one or more actions.

In the new action's tile, below Republish a message to an AWS IoT topic, you can see the
topic to which your republish action will publish.

This is the only rule action you'll add to this rule.

8. In Create a rule, scroll down to the bottom and choose Create rule to create the rule and
complete this step.

Step 2: Test your new rule

To test your new rule, you'll use the MQTT client to publish and subscribe to the MQTT messages
used by this rule.

Open the MQTT client in the AWS IoT console in a new window. This will let you edit the rule
without losing the configuration of your MQTT client. The MQTT client does not retain any
subscriptions or message logs if you leave it to go to another page in the console.

To use the MQTT client to test your rule

1. In the MQTT client in the AWS IoT console, subscribe to the input topics, in this case, device/
+/data.

a. In the MQTT client, under Subscriptions, choose Subscribe to a topic.

b. In Subscription topic, enter the topic of the input topic filter, device/+/data.

c. Keep the rest of the fields at their default settings.

d. Choose Subscribe to topic.

In the Subscriptions column, under Publish to a topic, device/+/data appears.

2. Subscribe to the topic that your rule will publish: device/data/temp.

a. Under Subscriptions, choose Subscribe to a topic again, and in Subscription topic, enter
the topic of the republished message, device/data/temp.

b. Keep the rest of the fields at their default settings.

c. Choose Subscribe to topic.
Creating AWS IoT rules to route device data to other services 308

https://console.aws.amazon.com/iot/home#/test
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

In the Subscriptions column, under device/+/data, device/data/temp appears.

3. Publish a message to the input topic with a specific device ID, device/22/data. You can't
publish to MQTT topics that contain wildcard characters.

a. In the MQTT client, under Subscriptions, choose Publish to topic.

b. In the Publish field, enter the input topic name, device/22/data.

c. Copy the sample data shown here and, in the edit box below the topic name, paste the
sample data.

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. To send your MQTT message, choose Publish to topic.

4. Review the messages that were sent.

a. In the MQTT client, under Subscriptions, there is a green dot next to the two topics to
which you subscribed earlier.

The green dots indicate that one or more new messages have been received since the last
time you looked at them.

b. Under Subscriptions, choose device/+/data to check that the message payload matches
what you just published and looks like this:

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

Creating AWS IoT rules to route device data to other services 309

AWS IoT Core Developer Guide

c. Under Subscriptions, choose device/data/temp to check that your republished message
payload looks like this:

{
 "device_id": "22",
 "temperature": 28
}

Notice that the device_id value is a quoted string and the temperature value is
numeric. This is because the topic() function extracted the string from the input
message's topic name while the temperature value uses the numeric value from the
input message's payload.

If you want to make the device_id value a numeric value, replace topic(2) in the rule
query statement with:

cast(topic(2) AS DECIMAL)

Note that casting the topic(2) value to a numeric value will only work if that part of the
topic contains only numeric characters.

5. If you see that the correct message was published to the device/data/temp topic, then your
rule worked. See what more you can learn about the Republish rule action in the next section.

If you don't see that the correct message was published to either the device/+/data or device/
data/temp topics, check the troubleshooting tips.

Troubleshooting your Republish message rule

Here are some things to check in case you're not seeing the results you expect.

• You got an error banner

If an error appeared when you published the input message, correct that error first. The
following steps might help you correct that error.

• You don't see the input message in the MQTT client

Creating AWS IoT rules to route device data to other services 310

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-topic

AWS IoT Core Developer Guide

Every time you publish your input message to the device/22/data topic, that message should
appear in the MQTT client if you subscribed to the device/+/data topic filter as described in
the procedure.

Things to check

• Check the topic filter you subscribed to

If you subscribed to the input message topic as described in the procedure, you should see a
copy of the input message every time you publish it.

If you don't see the message, check the topic name you subscribed to and compare it to
the topic to which you published. Topic names are case sensitive and the topic to which you
subscribed must be identical to the topic to which you published the message payload.

• Check the message publish function

In the MQTT client, under Subscriptions, choose device/+/data, check the topic of the publish
message, and then choose Publish to topic. You should see the message payload from the edit
box below the topic appear in the message list.

• You don't see your republished message in the MQTT client

For your rule to work, it must have the correct policy that authorizes it to receive and republish a
message and it must receive the message.

Things to check

• Check the AWS Region of your MQTT client and the rule that you created

The console in which you're running the MQTT client must be in the same AWS Region as the
rule you created.

• Check the input message topic in the rule query statement

For the rule to work, it must receive a message with the topic name that matches the topic
filter in the FROM clause of the rule query statement.

Check the spelling of the topic filter in the rule query statement with that of the topic in the
MQTT client. Topic names are case sensitive and the message's topic must match the topic
filter in the rule query statement.

• Check the contents of the input message payload

Creating AWS IoT rules to route device data to other services 311

AWS IoT Core Developer Guide

For the rule to work, it must find the data field in the message payload that is declared in the
SELECT statement.

Check the spelling of the temperature field in the rule query statement with that of the
message payload in the MQTT client. Field names are case sensitive and the temperature
field in the rule query statement must be identical to the temperature field in the message
payload.

Make sure that the JSON document in the message payload is correctly formatted. If the JSON
has any errors, such as a missing comma, the rule will not be able to read it.

• Check the republished message topic in the rule action

The topic to which the Republish rule action publishes the new message must match the topic
to which you subscribed in the MQTT client.

Open the rule you created in the console and check the topic to which the rule action will
republish the message.

• Check the role being used by the rule

The rule action must have permission to receive the original topic and publish the new topic.

The policies that authorize the rule to receive message data and republish it are specific to the
topics used. If you change the topic used to republish the message data, you must update the
rule action's role to update its policy to match the current topic.

If you suspect this is the problem, edit the Republish rule action and create a new role. New
roles created by the rule action receive the authorizations necessary to perform these actions.

Step 3: Review the results and next steps

In this tutorial

• You used a simple SQL query and a couple of functions in a rule query statement to produce a
new MQTT message.

• You created a rule that republished that new message.

• You used the MQTT client to test your AWS IoT rule.

Creating AWS IoT rules to route device data to other services 312

AWS IoT Core Developer Guide

Next steps

After you republish a few messages with this rule, try experimenting with it to see how changing
some aspects of the tutorial affect the republished message. Here are some ideas to get you
started.

• Change the device_id in the input message's topic and observe the effect in the republished
message payload.

• Change the fields selected in the rule query statement and observe the effect in the republished
message payload.

• Try the next tutorial in this series and learn how to Tutorial: Sending an Amazon SNS
notification.

The Republish rule action used in this tutorial can also help you debug rule query statements. For
example, you can add this action to a rule to see how its rule query statement is formatting the
data used by its rule actions.

Tutorial: Sending an Amazon SNS notification

This tutorial demonstrates how to create an AWS IoT rule that sends MQTT message data to an
Amazon SNS topic so that it can be sent as an SMS text message.

In this tutorial, you create a rule that sends message data from a weather sensor to all subscribers
of an Amazon SNS topic, whenever the temperature exceeds the value set in the rule. The rule
detects when the reported temperature exceeds the value set by the rule, and then creates a new
message payload that includes only the device ID, the reported temperature, and the temperature
limit that was exceeded. The rule sends the new message payload as a JSON document to an SNS
topic, which notifies all subscribers to the SNS topic.

What you'll learn in this tutorial:

• How to create and test an Amazon SNS notification

• How to call an Amazon SNS notification from an AWS IoT rule

• How to use simple SQL queries and functions in a rule query statement

• How to use the MQTT client to test an AWS IoT rule

This tutorial takes about 30 minutes to complete.

Creating AWS IoT rules to route device data to other services 313

AWS IoT Core Developer Guide

In this tutorial, you'll:

• Step 1: Create an Amazon SNS topic that sends an SMS text message

• Step 2: Create an AWS IoT rule to send the text message

• Step 3: Test the AWS IoT rule and Amazon SNS notification

• Step 4: Review the results and next steps

Before you start this tutorial, make sure that you have:

• Set up your AWS account

You'll need your AWS account and AWS IoT console to complete this tutorial.

• Reviewed View MQTT messages with the AWS IoT MQTT client

Be sure you can use the MQTT client to subscribe and publish to a topic. You'll use the MQTT
client to test your new rule in this procedure.

• Reviewed the Amazon Simple Notification Service

If you haven't used Amazon SNS before, review Setting up access for Amazon SNS. If you've
already completed other AWS IoT tutorials, your AWS account should already be configured
correctly.

Step 1: Create an Amazon SNS topic that sends an SMS text message

To create an Amazon SNS topic that sends an SMS text message

1. Create an Amazon SNS topic.

a. Sign in to the Amazon SNS console.

b. In the left navigation pane, choose Topics.

c. On the Topics page, choose Create topic.

d. In Details, choose the Standard type. By default, the console creates a FIFO topic.

e. In Name, enter the SNS topic name. For this tutorial, enter high_temp_notice.

f. Scroll to the end of the page and choose Create topic.

The console opens the new topic's Details page.

2. Create an Amazon SNS subscription.

Creating AWS IoT rules to route device data to other services 314

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/sns-setting-up.html
https://console.aws.amazon.com/sns/home

AWS IoT Core Developer Guide

Note

The phone number that you use in this subscription might incur text messaging
charges from the messages you will send in this tutorial.

a. In the high_temp_notice topic's details page, choose Create subscription.

b. In Create subscription, in the Details section, in the Protocol list, choose SMS.

c. In Endpoint, enter the number of a phone that can receive text messages. Be sure to enter
it such that it starts with a +, includes the country and area code, and doesn't include any
other punctuation characters.

d. Choose Create subscription.

3. Test the Amazon SNS notification.

a. In the Amazon SNS console, in the left navigation pane, choose Topics.

b. To open the topic's details page, in Topics, in the list of topics, choose high_temp_notice.

c. To open the Publish message to topic page, in the high_temp_notice details page,
choose Publish message.

d. In Publish message to topic, in the Message body section, in Message body to send to
the endpoint, enter a short message.

e. Scroll down to the bottom of the page and choose Publish message.

f. On the phone with the number you used earlier when creating the subscription, confirm
that the message was received.

If you did not receive the test message, double check the phone number and your phone's
settings.

Make sure you can publish test messages from the Amazon SNS console before you continue
the tutorial.

Step 2: Create an AWS IoT rule to send the text message

The AWS IoT rule that you'll create in this tutorial subscribes to the device/device_id/data
MQTT topics where device_id is the ID of the device that sent the message. These topics

Creating AWS IoT rules to route device data to other services 315

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sns/home

AWS IoT Core Developer Guide

are described in a topic filter as device/+/data, where the + is a wildcard character that
matches any string between the two forward slash characters. This rule also tests the value of the
temperature field in the message payload.

When the rule receives a message from a matching topic, it takes the device_id from the topic
name, the temperature value from the message payload, and adds a constant value for the limit
it's testing, and sends these values as a JSON document to an Amazon SNS notification topic.

For example, an MQTT message from weather sensor device number 32 uses the device/32/
data topic and has a message payload that looks like this:

{
 "temperature": 38,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

The rule's rule query statement takes the temperature value from the message payload, the
device_id from the topic name, and adds the constant max_temperature value to send a
message payload that looks like this to the Amazon SNS topic:

{
 "device_id": "32",
 "reported_temperature": 38,
 "max_temperature": 30
}

To create an AWS IoT rule to detect an over-limit temperature value and create the data to send
to the Amazon SNS topic

1. Open the Rules hub of the AWS IoT console.

2. If this is your first rule, choose Create, or Create a rule.

3. In Create a rule:

a. In Name, enter temp_limit_notify.

Creating AWS IoT rules to route device data to other services 316

https://console.aws.amazon.com/iot/home#/rulehub

AWS IoT Core Developer Guide

Remember that a rule name must be unique within your AWS account and Region, and it
can't have any spaces. We've used an underscore character in this name to separate the
words in the rule's name.

b. In Description, describe the rule.

A meaningful description makes it easier to remember what this rule does and why you
created it. The description can be as long as needed, so be as detailed as possible.

4. In Rule query statement of Create a rule:

a. In Using SQL version, select 2016-03-23.

b. In the Rule query statement edit box, enter the statement:

SELECT topic(2) as device_id,
 temperature as reported_temperature,
 30 as max_temperature
 FROM 'device/+/data'
 WHERE temperature > 30

This statement:

• Listens for MQTT messages with a topic that matches the device/+/data topic filter
and that have a temperature value greater than 30.

• Selects the second element from the topic string and assigns it to the device_id field.

• Selects the value temperature field from the message payload and assigns it to the
reported_temperature field.

• Creates a constant value 30 to represent the limit value and assigns it to the
max_temperature field.

5. To open up the list of rule actions for this rule, in Set one or more actions, choose Add action.

6. In Select an action, choose Send a message as an SNS push notification.

7. To open the selected action's configuration page, at the bottom of the action list, choose
Configure action.

8. In Configure action:

a. In SNS target, choose Select, find your SNS topic named high_temp_notice, and choose
Select.

b. In Message format, choose RAW.

Creating AWS IoT rules to route device data to other services 317

AWS IoT Core Developer Guide

c. In Choose or create a role to grant AWS IoT access to perform this action, choose Create
Role.

d. In Create a new role, in Name, enter a unique name for the new role. For this tutorial, use
sns_rule_role.

e. Choose Create role.

If you're repeating this tutorial or reusing an existing role, choose Update role before
continuing. This updates the role's policy document to work with the SNS target.

9. Choose Add action and return to the Create a rule page.

In the new action's tile, below Send a message as an SNS push notification, you can see the
SNS topic that your rule will call.

This is the only rule action you'll add to this rule.

10. To create the rule and complete this step, in Create a rule, scroll down to the bottom and
choose Create rule.

Step 3: Test the AWS IoT rule and Amazon SNS notification

To test your new rule, you'll use the MQTT client to publish and subscribe to the MQTT messages
used by this rule.

Open the MQTT client in the AWS IoT console in a new window. This will let you edit the rule
without losing the configuration of your MQTT client. If you leave the MQTT client to go to another
page in the console, it won't retain any subscriptions or message logs.

To use the MQTT client to test your rule

1. In the MQTT client in the AWS IoT console, subscribe to the input topics, in this case, device/
+/data.

a. In the MQTT client, under Subscriptions, choose Subscribe to a topic.

b. In Subscription topic, enter the topic of the input topic filter, device/+/data.

c. Keep the rest of the fields at their default settings.

d. Choose Subscribe to topic.

In the Subscriptions column, under Publish to a topic, device/+/data appears.

Creating AWS IoT rules to route device data to other services 318

https://console.aws.amazon.com/iot/home#/test
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

2. Publish a message to the input topic with a specific device ID, device/32/data. You can't
publish to MQTT topics that contain wildcard characters.

a. In the MQTT client, under Subscriptions, choose Publish to topic.

b. In the Publish field, enter the input topic name, device/32/data.

c. Copy the sample data shown here and, in the edit box below the topic name, paste the
sample data.

{
 "temperature": 38,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. Choose Publish to topic to publish your MQTT message.

3. Confirm that the text message was sent.

a. In the MQTT client, under Subscriptions, there is a green dot next to the topic to which
you subscribed earlier.

The green dot indicates that one or more new messages have been received since the last
time you looked at them.

b. Under Subscriptions, choose device/+/data to check that the message payload matches
what you just published and looks like this:

{
 "temperature": 38,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

Creating AWS IoT rules to route device data to other services 319

AWS IoT Core Developer Guide

c. Check the phone that you used to subscribe to the SNS topic and confirm the contents of
the message payload look like this:

{"device_id":"32","reported_temperature":38,"max_temperature":30}

Notice that the device_id value is a quoted string and the temperature value is
numeric. This is because the topic() function extracted the string from the input
message's topic name while the temperature value uses the numeric value from the
input message's payload.

If you want to make the device_id value a numeric value, replace topic(2) in the rule
query statement with:

cast(topic(2) AS DECIMAL)

Note that casting the topic(2) value to a numeric, DECIMAL value will only work if that
part of the topic contains only numeric characters.

4. Try sending an MQTT message in which the temperature does not exceed the limit.

a. In the MQTT client, under Subscriptions, choose Publish to topic.

b. In the Publish field, enter the input topic name, device/33/data.

c. Copy the sample data shown here and, in the edit box below the topic name, paste the
sample data.

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. To send your MQTT message, choose Publish to topic.

Creating AWS IoT rules to route device data to other services 320

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-topic

AWS IoT Core Developer Guide

You should see the message that you sent in the device/+/data subscription. However,
because the temperature value is below the max temperature in the rule query statement, you
shouldn't receive a text message.

If you don't see the correct behavior, check the troubleshooting tips.

Troubleshooting your SNS message rule

Here are some things to check, in case you're not seeing the results you expect.

• You got an error banner

If an error appeared when you published the input message, correct that error first. The
following steps might help you correct that error.

• You don't see the input message in the MQTT client

Every time you publish your input message to the device/22/data topic, that message should
appear in the MQTT client, if you subscribed to the device/+/data topic filter as described in
the procedure.

Things to check

• Check the topic filter you subscribed to

If you subscribed to the input message topic as described in the procedure, you should see a
copy of the input message every time you publish it.

If you don't see the message, check the topic name you subscribed to and compare it to
the topic to which you published. Topic names are case sensitive and the topic to which you
subscribed must be identical to the topic to which you published the message payload.

• Check the message publish function

In the MQTT client, under Subscriptions, choose device/+/data, check the topic of the publish
message, and then choose Publish to topic. You should see the message payload from the edit
box below the topic appear in the message list.

• You don't receive an SMS message

Creating AWS IoT rules to route device data to other services 321

AWS IoT Core Developer Guide

For your rule to work, it must have the correct policy that authorizes it to receive a message and
send an SNS notification, and it must receive the message.

Things to check

• Check the AWS Region of your MQTT client and the rule that you created

The console in which you're running the MQTT client must be in the same AWS Region as the
rule you created.

• Check that the temperature value in the message payload exceeds the test threshold

If the temperature value is less than or equal to 30, as defined in the rule query statement, the
rule will not perform any of its actions.

• Check the input message topic in the rule query statement

For the rule to work, it must receive a message with the topic name that matches the topic
filter in the FROM clause of the rule query statement.

Check the spelling of the topic filter in the rule query statement with that of the topic in the
MQTT client. Topic names are case sensitive and the message's topic must match the topic
filter in the rule query statement.

• Check the contents of the input message payload

For the rule to work, it must find the data field in the message payload that is declared in the
SELECT statement.

Check the spelling of the temperature field in the rule query statement with that of the
message payload in the MQTT client. Field names are case sensitive and the temperature
field in the rule query statement must be identical to the temperature field in the message
payload.

Make sure that the JSON document in the message payload is correctly formatted. If the JSON
has any errors, such as a missing comma, the rule will not be able to read it.

• Check the republished message topic in the rule action

The topic to which the Republish rule action publishes the new message must match the topic
to which you subscribed in the MQTT client.

Creating AWS IoT rules to route device data to other services 322

AWS IoT Core Developer Guide

Open the rule you created in the console and check the topic to which the rule action will
republish the message.

• Check the role being used by the rule

The rule action must have permission to receive the original topic and publish the new topic.

The policies that authorize the rule to receive message data and republish it are specific to the
topics used. If you change the topic used to republish the message data, you must update the
rule action's role to update its policy to match the current topic.

If you suspect this is the problem, edit the Republish rule action and create a new role. New
roles created by the rule action receive the authorizations necessary to perform these actions.

Step 4: Review the results and next steps

In this tutorial:

• You created and tested an Amazon SNS notification topic and subscription.

• You used a simple SQL query and functions in a rule query statement to create a new message
for your notification.

• You created an AWS IoT rule to send an Amazon SNS notification that used your customized
message payload.

• You used the MQTT client to test your AWS IoT rule.

Next steps

After you send a few text messages with this rule, try experimenting with it to see how changing
some aspects of the tutorial affect the message and when it's sent. Here are some ideas to get you
started.

• Change the device_id in the input message's topic and observe the effect in the text message
contents.

• Change the fields selected in the rule query statement and observe the effect in the text
message contents.

• Change the test in the rule query statement to test for a minimum temperature instead of a
maximum temperature. Remember to change the name of max_temperature!

Creating AWS IoT rules to route device data to other services 323

AWS IoT Core Developer Guide

• Add a republish rule action to send an MQTT message when an SNS notification is sent.

• Try the next tutorial in this series and learn how to Tutorial: Storing device data in a DynamoDB
table.

Tutorial: Storing device data in a DynamoDB table

This tutorial demonstrates how to create an AWS IoT rule that sends message data to a DynamoDB
table.

In this tutorial, you create a rule that sends message data from an imaginary weather sensor device
to a DynamoDB table. The rule formats the data from many weather sensors such that they can be
added to a single database table.

What you'll learn in this tutorial

• How to create a DynamoDB table

• How to send message data to a DynamoDB table from an AWS IoT rule

• How to use substitution templates in an AWS IoT rule

• How to use simple SQL queries and functions in a rule query statement

• How to use the MQTT client to test an AWS IoT rule

This tutorial takes about 30 minutes to complete.

In this tutorial, you'll:

• Step 1: Create the DynamoDB table for this tutorial

• Step 2: Create an AWS IoT rule to send data to the DynamoDB table

• Step 3: Test the AWS IoT rule and DynamoDB table

• Step 4: Review the results and next steps

Before you start this tutorial, make sure that you have:

• Set up your AWS account

You'll need your AWS account and AWS IoT console to complete this tutorial.

• Reviewed View MQTT messages with the AWS IoT MQTT client

Creating AWS IoT rules to route device data to other services 324

AWS IoT Core Developer Guide

Be sure you can use the MQTT client to subscribe and publish to a topic. You'll use the MQTT
client to test your new rule in this procedure.

• Reviewed the Amazon DynamoDB overview

If you've not used DynamoDB before, review Getting Started with DynamoDB to become familiar
with the basic concepts and operations of DynamoDB.

Step 1: Create the DynamoDB table for this tutorial

In this tutorial, you'll create a DynamoDB table with these attributes to record the data from the
imaginary weather sensor devices:

• sample_time is a primary key and describes the time the sample was recorded.

• device_id is a sort key and describes the device that provided the sample

• device_data is the data received from the device and formatted by the rule query statement

To create the DynamoDB table for this tutorial

1. Open the DynamoDB console, and then choose Create table.

2. In Create table:

a. In Table name, enter the table name: wx_data.

b. In Partition key, enter sample_time, and in the option list next to the field, choose
Number.

c. In Sort key, enter device_id, and in the option list next to the field, choose Number.

d. At the bottom of the page, choose Create.

You'll define device_data later, when you configure the DynamoDB rule action.

Step 2: Create an AWS IoT rule to send data to the DynamoDB table

In this step, you'll use the rule query statement to format the data from the imaginary weather
sensor devices to write to the database table.

A sample message payload received from a weather sensor device looks like this:

{

Creating AWS IoT rules to route device data to other services 325

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://console.aws.amazon.com/dynamodb/home

AWS IoT Core Developer Guide

 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

For the database entry, you'll use the rule query statement to flatten the structure of the message
payload to look like this:

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind_velocity": 22,
 "wind_bearing": 255
}

In this rule, you'll also use a couple of Substitution templates. Substitution templates are
expressions that let you insert dynamic values from functions and message data.

To create the AWS IoT rule to send data to the DynamoDB table

1. Open the Rules hub of the AWS IoT console. Or, you can open the AWS IoT homepage within
the AWS Management Console and navigate to Message routing>Rules.

2. To start creating your new rule in Rules, choose Create rule.

3. In Rule properties:

a. In Rule name, enter wx_data_ddb.

Remember that a rule name must be unique within your AWS account and Region, and it
can't have any spaces. We've used an underscore character in this name to separate the
two words in the rule's name.

b. In Rule description, describe the rule.

A meaningful description makes it easier to remember what this rule does and why you
created it. The description can be as long as needed, so be as detailed as possible.

4. Choose Next to continue.

Creating AWS IoT rules to route device data to other services 326

https://console.aws.amazon.com/iot/home#/rulehub

AWS IoT Core Developer Guide

5. In SQL statement:

a. In SQL version, select 2016-03-23.

b. In the SQL statement edit box, enter the statement:

SELECT temperature, humidity, barometer,
 wind.velocity as wind_velocity,
 wind.bearing as wind_bearing,
FROM 'device/+/data'

This statement:

• Listens for MQTT messages with a topic that matches the device/+/data topic filter.

• Formats the elements of the wind attribute as individual attributes.

• Passes the temperature, humidity, and barometer attributes unchanged.

6. Choose Next to continue.

7. In Rule actions:

a. To open the list of rule actions for this rule, in Action 1, choose DynamoDB.

Note

Make sure that you choose DynamoDB and not DynamoDBv2 as the rule action.

b. In Table name, choose the name of the DynamoDB table you created in a previous step:
wx_data.

The Partition key type and Sort key type fields are filled with the values from your
DynamoDB table.

c. In Partition key, enter sample_time.

d. In Partition key value, enter ${timestamp()}.

This is the first of the Substitution templates you'll use in this rule. Instead of using
a value from the message payload, it will use the value returned from the timestamp
function. To learn more, see timestamp in the AWS IoT Core Developer Guide.

e. In Sort key, enter device_id.

f. In Sort key value, enter ${cast(topic(2) AS DECIMAL)}.
Creating AWS IoT rules to route device data to other services 327

AWS IoT Core Developer Guide

This is the second one of the Substitution templates you'll use in this rule. It inserts the
value of the second element in topic name, which is the device's ID, after it casts it to a
DECIMAL value to match the numeric format of the key. To learn more about topics, see
topic in the AWS IoT Core Developer Guide. Or to learn more about casting, see cast in the
AWS IoT Core Developer Guide.

g. In Write message data to this column, enter device_data.

This will create the device_data column in the DynamoDB table.

h. Leave Operation blank.

i. In IAM role, choose Create new role.

j. In the Create role dialog box, for Role name, enter wx_ddb_role. This new role
will automatically contain a policy with a prefix of "aws-iot-rule" that will allow the
wx_data_ddb rule to send data to the wx_data DynamoDB table you created.

k. In IAM role, choose wx_ddb_role.

l. At the bottom of the page, choose Next.

8. At the bottom of the Review and create page, choose Create to create the rule.

Step 3: Test the AWS IoT rule and DynamoDB table

To test the new rule, you'll use the MQTT client to publish and subscribe to the MQTT messages
used in this test.

Open the MQTT client in the AWS IoT console in a new window. This will let you edit the rule
without losing the configuration of your MQTT client. The MQTT client does not retain any
subscriptions or message logs if you leave it to go to another page in the console. You'll also want
a separate console window open to the DynamoDB Tables hub in the AWS IoT console to view the
new entries that your rule sends.

To use the MQTT client to test your rule

1. In the MQTT client in the AWS IoT console, subscribe to the input topic, device/+/data.

a. In the MQTT client, choose Subscribe to a topic.

b. For Topic filter, enter the topic of the input topic filter, device/+/data.

c. Choose Subscribe.

Creating AWS IoT rules to route device data to other services 328

https://console.aws.amazon.com/iot/home#/test
https://console.aws.amazon.com/dynamodb/home#tables:
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

2. Now, publish a message to the input topic with a specific device ID, device/22/data. You
can't publish to MQTT topics that contain wildcard characters.

a. In the MQTT client, choose Publish to a topic.

b. For Topic name, enter the input topic name, device/22/data.

c. For Message payload, enter the following sample data.

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. To publish the MQTT message, choose Publish.

e. Now, in the MQTT client, choose Subscribe to a topic. In the Subscribe column, choose
the device/+/data subscription. Confirm that the sample data from the previous step
appears there.

3. Check to see the row in the DynamoDB table that your rule created.

a. In the DynamoDB Tables hub in the AWS IoT console, choose wx_data, and then choose
the Items tab.

If you're already on the Items tab, you might need to refresh the display by choosing the
refresh icon in the upper-right corner of the table's header.

b. Notice that the sample_time values in the table are links and open one. If you just sent
your first message, it will be the only one in the list.

This link displays all the data in that row of the table.

c. Expand the device_data entry to see the data that resulted from the rule query
statement.

d. Explore the different representations of the data that are available in this display. You can
also edit the data in this display.

e. After you have finished reviewing this row of data, to save any changes you made, choose
Save, or to exit without saving any changes, choose Cancel.

Creating AWS IoT rules to route device data to other services 329

https://console.aws.amazon.com/dynamodb/home#tables:

AWS IoT Core Developer Guide

If you don't see the correct behavior, check the troubleshooting tips.

Troubleshooting your DynamoDB rule

Here are some things to check in case you're not seeing the results you expect.

• You got an error banner

If an error appeared when you published the input message, correct that error first. The
following steps might help you correct that error.

• You don't see the input message in the MQTT client

Every time you publish your input message to the device/22/data topic, that message should
appear in the MQTT client if you subscribed to the device/+/data topic filter as described in
the procedure.

Things to check

• Check the topic filter you subscribed to

If you subscribed to the input message topic as described in the procedure, you should see a
copy of the input message every time you publish it.

If you don't see the message, check the topic name you subscribed to and compare it to
the topic to which you published. Topic names are case sensitive and the topic to which you
subscribed must be identical to the topic to which you published the message payload.

• Check the message publish function

In the MQTT client, under Subscriptions, choose device/+/data, check the topic of the publish
message, and then choose Publish to topic. You should see the message payload from the edit
box below the topic appear in the message list.

• You don't see your data in the DynamoDB table

The first thing to do is to refresh the display by choosing the refresh icon in the upper-right
corner of the table's header. If that doesn't display the data you're looking for, check the
following.

Things to check

• Check the AWS Region of your MQTT client and the rule that you created
Creating AWS IoT rules to route device data to other services 330

AWS IoT Core Developer Guide

The console in which you're running the MQTT client must be in the same AWS Region as the
rule you created.

• Check the input message topic in the rule query statement

For the rule to work, it must receive a message with the topic name that matches the topic
filter in the FROM clause of the rule query statement.

Check the spelling of the topic filter in the rule query statement with that of the topic in the
MQTT client. Topic names are case sensitive and the message's topic must match the topic
filter in the rule query statement.

• Check the contents of the input message payload

For the rule to work, it must find the data field in the message payload that is declared in the
SELECT statement.

Check the spelling of the temperature field in the rule query statement with that of the
message payload in the MQTT client. Field names are case sensitive and the temperature
field in the rule query statement must be identical to the temperature field in the message
payload.

Make sure that the JSON document in the message payload is correctly formatted. If the JSON
has any errors, such as a missing comma, the rule will not be able to read it.

• Check the key and field names used in the rule action

The field names used in the topic rule must match those found in the JSON message payload
of the published message.

Open the rule you created in the console and check the field names in the rule action
configuration with those used in the MQTT client.

• Check the role being used by the rule

The rule action must have permission to receive the original topic and publish the new topic.

The policies that authorize the rule to receive message data and update the DynamoDB table
are specific to the topics used. If you change the topic or DynamoDB table name used by the
rule, you must update the rule action's role to update its policy to match.

Creating AWS IoT rules to route device data to other services 331

AWS IoT Core Developer Guide

If you suspect this is the problem, edit the rule action and create a new role. New roles created
by the rule action receive the authorizations necessary to perform these actions.

Step 4: Review the results and next steps

After you send a few messages to the DynamoDB table with this rule, try experimenting with it
to see how changing some aspects from the tutorial affect the data written to the table. Here are
some ideas to get you started.

• Change the device_id in the input message's topic and observe the effect on the data. You
could use this to simulate receiving data from multiple weather sensors.

• Change the fields selected in the rule query statement and observe the effect on the data. You
could use this to filter the data stored in the table.

• Add a republish rule action to send an MQTT message for each row added to the table. You could
use this for debugging.

After you have completed this tutorial, check out the section called “Formatting a notification by
using an AWS Lambda function”.

Tutorial: Formatting a notification by using an AWS Lambda function

This tutorial demonstrates how to send MQTT message data to an AWS Lambda action for
formatting and sending to another AWS service. In this tutorial, the AWS Lambda action uses the
AWS SDK to send the formatted message to the Amazon SNS topic you created in the tutorial
about how to the section called “Sending an Amazon SNS notification”.

In the tutorial about how to the section called “Sending an Amazon SNS notification”, the JSON
document that resulted from the rule's query statement was sent as the body of the text message.
The result was a text message that looked something like this example:

{"device_id":"32","reported_temperature":38,"max_temperature":30}

In this tutorial, you'll use an AWS Lambda rule action to call an AWS Lambda function that formats
the data from the rule query statement into a friendlier format, such as this example:

Device 32 reports a temperature of 38, which exceeds the limit of 30.

Creating AWS IoT rules to route device data to other services 332

AWS IoT Core Developer Guide

The AWS Lambda function you'll create in this tutorial formats the message string by using the
data from the rule query statement and calls the SNS publish function of the AWS SDK to create
the notification.

What you'll learn in this tutorial

• How to create and test an AWS Lambda function

• How to use the AWS SDK in an AWS Lambda function to publish an Amazon SNS notification

• How to use simple SQL queries and functions in a rule query statement

• How to use the MQTT client to test an AWS IoT rule

This tutorial takes about 45 minutes to complete.

In this tutorial, you'll:

• Step 1: Create an AWS Lambda function that sends a text message

• Step 2: Create an AWS IoT rule with an AWS Lambda rule action

• Step 3: Test the AWS IoT rule and AWS Lambda rule action

• Step 4: Review the results and next steps

Before you start this tutorial, make sure that you have:

• Set up your AWS account

You'll need your AWS account and AWS IoT console to complete this tutorial.

• Reviewed View MQTT messages with the AWS IoT MQTT client

Be sure you can use the MQTT client to subscribe and publish to a topic. You'll use the MQTT
client to test your new rule in this procedure.

• Completed the other rules tutorials in this section

This tutorial requires the SNS notification topic you created in the tutorial about how to the
section called “Sending an Amazon SNS notification”. It also assumes that you've completed the
other rules-related tutorials in this section.

• Reviewed the AWS Lambda overview

If you haven't used AWS Lambda before, review AWS Lambda and Getting started with Lambda
to learn its terms and concepts.

Creating AWS IoT rules to route device data to other services 333

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sns.html#SNS.Client.publish
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

AWS IoT Core Developer Guide

Step 1: Create an AWS Lambda function that sends a text message

The AWS Lambda function in this tutorial receives the result of the rule query statement, inserts
the elements into a text string, and sends the resulting string to Amazon SNS as the message in a
notification.

Unlike the tutorial about how to the section called “Sending an Amazon SNS notification”, which
used an AWS IoT rule action to send the notification, this tutorial sends the notification from
the Lambda function by using a function of the AWS SDK. The actual Amazon SNS notification
topic used in this tutorial, however, is the same one that you used in the tutorial about how to the
section called “Sending an Amazon SNS notification”.

To create an AWS Lambda function that sends a text message

1. Create a new AWS Lambda function.

a. In the AWS Lambda console, choose Create function.

b. In Create function, select Use a blueprint.

Search for and select the hello-world-python blueprint, and then choose Configure.

c. In Basic information:

i. In Function name, enter the name of this function, format-high-temp-
notification.

ii. In Execution role, choose Create a new role from AWS policy templates.

iii. In Role name, enter the name of the new role, format-high-temp-
notification-role.

iv. In Policy templates - optional, search for and select Amazon SNS publish policy.

v. Choose Create function.

2. Modify the blueprint code to format and send an Amazon SNS notification.

a. After you created your function, you should see the format-high-temp-notification
details page. If you don't, open it from the Lambda Functions page.

b. In the format-high-temp-notification details page, choose the Configuration tab and
scroll to the Function code panel.

c. In the Function code window, in the Environment pane, choose the Python file,
lambda_function.py.

Creating AWS IoT rules to route device data to other services 334

https://console.aws.amazon.com/lambda/home
https://console.aws.amazon.com/lambda/home#/functions

AWS IoT Core Developer Guide

d. In the Function code window, delete all of the original program code from the blueprint
and replace it with this code.

import boto3
#
expects event parameter to contain:
{
"device_id": "32",
"reported_temperature": 38,
"max_temperature": 30,
"notify_topic_arn": "arn:aws:sns:us-
east-1:57EXAMPLE833:high_temp_notice"
}

sends a plain text string to be used in a text message
#
"Device {0} reports a temperature of {1}, which exceeds the limit of
 {2}."

where:
{0} is the device_id value
{1} is the reported_temperature value
{2} is the max_temperature value
#
def lambda_handler(event, context):

 # Create an SNS client to send notification
 sns = boto3.client('sns')

 # Format text message from data
 message_text = "Device {0} reports a temperature of {1}, which exceeds the
 limit of {2}.".format(
 str(event['device_id']),
 str(event['reported_temperature']),
 str(event['max_temperature'])
)

 # Publish the formatted message
 response = sns.publish(
 TopicArn = event['notify_topic_arn'],
 Message = message_text
)

Creating AWS IoT rules to route device data to other services 335

AWS IoT Core Developer Guide

 return response

e. Choose Deploy.

3. In a new window, look up the Amazon Resource Name (ARN) of your Amazon SNS topic from
the tutorial about how to the section called “Sending an Amazon SNS notification”.

a. In a new window, open the Topics page of the Amazon SNS console.

b. In the Topics page, find the high_temp_notice notification topic in the list of Amazon SNS
topics.

c. Find the ARN of the high_temp_notice notification topic to use in the next step.

4. Create a test case for your Lambda function.

a. In the Lambda Functions page of the console, on the format-high-temp-notification
details page, choose Select a test event in the upper right corner of the page (even
though it looks disabled), and then choose Configure test events.

b. In Configure test event, choose Create new test event.

c. In Event name, enter SampleRuleOutput.

d. In the JSON editor below Event name, paste this sample JSON document. This is an
example of what your AWS IoT rule will send to the Lambda function.

{
 "device_id": "32",
 "reported_temperature": 38,
 "max_temperature": 30,
 "notify_topic_arn": "arn:aws:sns:us-east-1:57EXAMPLE833:high_temp_notice"
}

e. Refer to the window that has the ARN of the high_temp_notice notification topic and
copy the ARN value.

f. Replace the notify_topic_arn value in the JSON editor with the ARN from your
notification topic.

Keep this window open so you can use this ARN value again when you create the AWS IoT
rule.

g. Choose Create.

5. Test the function with sample data.

Creating AWS IoT rules to route device data to other services 336

https://console.aws.amazon.com/sns/v3/home#/topics
https://console.aws.amazon.com/lambda/home#/functions

AWS IoT Core Developer Guide

a. In the format-high-temp-notification details page, in the upper-right corner of the page,
confirm that SampleRuleOutput appears next to the Test button. If it doesn't, choose it
from the list of available test events.

b. To send the sample rule output message to your function, choose Test.

If the function and the notification both worked, you will get a text message on the phone that
subscribed to the notification.

If you didn't get a text message on the phone, check the result of the operation. In the Function
code panel, in the Execution result tab, review the response to find any errors that occurred. Don't
continue to the next step until your function can send the notification to your phone.

Step 2: Create an AWS IoT rule with an AWS Lambda rule action

In this step, you'll use the rule query statement to format the data from the imaginary weather
sensor device to send to a Lambda function, which will format and send a text message.

A sample message payload received from the weather devices looks like this:

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

In this rule, you'll use the rule query statement to create a message payload for the Lambda
function that looks like this:

{
 "device_id": "32",
 "reported_temperature": 38,
 "max_temperature": 30,
 "notify_topic_arn": "arn:aws:sns:us-east-1:57EXAMPLE833:high_temp_notice"
}

Creating AWS IoT rules to route device data to other services 337

AWS IoT Core Developer Guide

This contains all the information the Lambda function needs to format and send the correct text
message.

To create the AWS IoT rule to call a Lambda function

1. Open the Rules hub of the AWS IoT console.

2. To start creating your new rule in Rules, choose Create.

3. In the top part of Create a rule:

a. In Name, enter the rule's name, wx_friendly_text.

Remember that a rule name must be unique within your AWS account and Region, and it
can't have any spaces. We've used an underscore character in this name to separate the
two words in the rule's name.

b. In Description, describe the rule.

A meaningful description makes it easier to remember what this rule does and why you
created it. The description can be as long as needed, so be as detailed as possible.

4. In Rule query statement of Create a rule:

a. In Using SQL version, select 2016-03-23.

b. In the Rule query statement edit box, enter the statement:

SELECT
 cast(topic(2) AS DECIMAL) as device_id,
 temperature as reported_temperature,
 30 as max_temperature,
 'arn:aws:sns:us-east-1:57EXAMPLE833:high_temp_notice' as notify_topic_arn
FROM 'device/+/data' WHERE temperature > 30

This statement:

• Listens for MQTT messages with a topic that matches the device/+/data topic filter
and that have a temperature value greater than 30.

• Selects the second element from the topic string, converts it to a decimal number, and
then assigns it to the device_id field.

• Selects the value of the temperature field from the message payload and assigns it to
the reported_temperature field.

Creating AWS IoT rules to route device data to other services 338

https://console.aws.amazon.com/iot/home#/rulehub

AWS IoT Core Developer Guide

• Creates a constant value, 30, to represent the limit value and assigns it to the
max_temperature field.

• Creates a constant value for the notify_topic_arn field.

c. Refer to the window that has the ARN of the high_temp_notice notification topic and
copy the ARN value.

d. Replace the ARN value (arn:aws:sns:us-
east-1:57EXAMPLE833:high_temp_notice) in the rule query statement editor with
the ARN of your notification topic.

5. In Set one or more actions:

a. To open up the list of rule actions for this rule, choose Add action.

b. In Select an action, choose Send a message to a Lambda function.

c. To open the selected action's configuration page, at the bottom of the action list, choose
Configure action.

6. In Configure action:

a. In Function name, choose Select.

b. Choose format-high-temp-notification.

c. At the bottom of Configure action, choose Add action.

d. To create the rule, at the bottom of Create a rule, choose Create rule.

Step 3: Test the AWS IoT rule and AWS Lambda rule action

To test your new rule, you'll use the MQTT client to publish and subscribe to the MQTT messages
used by this rule.

Open the MQTT client in the AWS IoT console in a new window. Now you can edit the rule without
losing the configuration of your MQTT client. If you leave the MQTT client to go to another page in
the console, you'll lose your subscriptions or message logs.

To use the MQTT client to test your rule

1. In the MQTT client in the AWS IoT console, subscribe to the input topics, in this case, device/
+/data.

a. In the MQTT client, under Subscriptions, choose Subscribe to a topic.

Creating AWS IoT rules to route device data to other services 339

https://console.aws.amazon.com/iot/home#/test
https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

b. In Subscription topic, enter the topic of the input topic filter, device/+/data.

c. Keep the rest of the fields at their default settings.

d. Choose Subscribe to topic.

In the Subscriptions column, under Publish to a topic, device/+/data appears.

2. Publish a message to the input topic with a specific device ID, device/32/data. You can't
publish to MQTT topics that contain wildcard characters.

a. In the MQTT client, under Subscriptions, choose Publish to topic.

b. In the Publish field, enter the input topic name, device/32/data.

c. Copy the sample data shown here and, in the edit box below the topic name, paste the
sample data.

{
 "temperature": 38,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. To publish your MQTT message, choose Publish to topic.

3. Confirm that the text message was sent.

a. In the MQTT client, under Subscriptions, there is a green dot next to the topic to which
you subscribed earlier.

The green dot indicates that one or more new messages have been received since the last
time you looked at them.

b. Under Subscriptions, choose device/+/data to check that the message payload matches
what you just published and looks like this:

{
 "temperature": 38,
 "humidity": 80,
 "barometer": 1013,
 "wind": {

Creating AWS IoT rules to route device data to other services 340

AWS IoT Core Developer Guide

 "velocity": 22,
 "bearing": 255
 }
}

c. Check the phone that you used to subscribe to the SNS topic and confirm the contents of
the message payload look like this:

Device 32 reports a temperature of 38, which exceeds the limit of 30.

If you change the topic ID element in the message topic, remember that casting the
topic(2) value to a numeric value will only work if that element in the message topic
contains only numeric characters.

4. Try sending an MQTT message in which the temperature does not exceed the limit.

a. In the MQTT client, under Subscriptions, choose Publish to topic.

b. In the Publish field, enter the input topic name, device/33/data.

c. Copy the sample data shown here and, in the edit box below the topic name, paste the
sample data.

{
 "temperature": 28,
 "humidity": 80,
 "barometer": 1013,
 "wind": {
 "velocity": 22,
 "bearing": 255
 }
}

d. To send your MQTT message, choose Publish to topic.

You should see the message that you sent in the device/+/data subscription; however,
because the temperature value is below the max temperature in the rule query statement, you
shouldn't receive a text message.

If you don't see the correct behavior, check the troubleshooting tips.

Creating AWS IoT rules to route device data to other services 341

AWS IoT Core Developer Guide

Troubleshooting your AWS Lambda rule and notification

Here are some things to check, in case you're not seeing the results you expect.

• You got an error banner

If an error appeared when you published the input message, correct that error first. The
following steps might help you correct that error.

• You don't see the input message in the MQTT client

Every time you publish your input message to the device/32/data topic, that message should
appear in the MQTT client, if you subscribed to the device/+/data topic filter as described in
the procedure.

Things to check

• Check the topic filter you subscribed to

If you subscribed to the input message topic as described in the procedure, you should see a
copy of the input message every time you publish it.

If you don't see the message, check the topic name you subscribed to and compare it to
the topic to which you published. Topic names are case sensitive and the topic to which you
subscribed must be identical to the topic to which you published the message payload.

• Check the message publish function

In the MQTT client, under Subscriptions, choose device/+/data, check the topic of the publish
message, and then choose Publish to topic. You should see the message payload from the edit
box below the topic appear in the message list.

• You don't receive an SMS message

For your rule to work, it must have the correct policy that authorizes it to receive a message and
send an SNS notification, and it must receive the message.

Things to check

• Check the AWS Region of your MQTT client and the rule that you created

The console in which you're running the MQTT client must be in the same AWS Region as the
rule you created.

• Check that the temperature value in the message payload exceeds the test threshold

Creating AWS IoT rules to route device data to other services 342

AWS IoT Core Developer Guide

If the temperature value is less than or equal to 30, as defined in the rule query statement, the
rule will not perform any of its actions.

• Check the input message topic in the rule query statement

For the rule to work, it must receive a message with the topic name that matches the topic
filter in the FROM clause of the rule query statement.

Check the spelling of the topic filter in the rule query statement with that of the topic in the
MQTT client. Topic names are case sensitive and the message's topic must match the topic
filter in the rule query statement.

• Check the contents of the input message payload

For the rule to work, it must find the data field in the message payload that is declared in the
SELECT statement.

Check the spelling of the temperature field in the rule query statement with that of the
message payload in the MQTT client. Field names are case sensitive and the temperature
field in the rule query statement must be identical to the temperature field in the message
payload.

Make sure that the JSON document in the message payload is correctly formatted. If the JSON
has any errors, such as a missing comma, the rule will not be able to read it.

• Check the Amazon SNS notification

In Step 1: Create an Amazon SNS topic that sends an SMS text message, refer to step 3 that
describes how to test the Amazon SNS notification and test the notification to make sure the
notification works.

• Check the Lambda function

In Step 1: Create an AWS Lambda function that sends a text message, refer to step 5 that
describes how to test the Lambda function using test data and test the Lambda function.

• Check the role being used by the rule

The rule action must have permission to receive the original topic and publish the new topic.

The policies that authorize the rule to receive message data and republish it are specific to the
topics used. If you change the topic used to republish the message data, you must update the
rule action's role to update its policy to match the current topic.

Creating AWS IoT rules to route device data to other services 343

AWS IoT Core Developer Guide

If you suspect this is the problem, edit the Republish rule action and create a new role. New
roles created by the rule action receive the authorizations necessary to perform these actions.

Step 4: Review the results and next steps

In this tutorial:

• You created an AWS IoT rule to call a Lambda function that sent an Amazon SNS notification
that used your customized message payload.

• You used a simple SQL query and functions in a rule query statement to create a new message
payload for your Lambda function.

• You used the MQTT client to test your AWS IoT rule.

Next steps

After you send a few text messages with this rule, try experimenting with it to see how changing
some aspects of the tutorial affect the message and when it's sent. Here are some ideas to get you
started.

• Change the device_id in the input message's topic and observe the effect in the text message
contents.

• Change the fields selected in the rule query statement, update the Lambda function to use them
in a new message, and observe the effect in the text message contents.

• Change the test in the rule query statement to test for a minimum temperature instead of a
maximum temperature. Update the Lambda function to format a new message and remember to
change the name of max_temperature.

• To learn more about how to find errors that might occur while you're developing and using AWS
IoT rules, see Monitoring AWS IoT.

Retaining device state while the device is offline with Device Shadows

These tutorials show you how to use the AWS IoT Device Shadow service to store and update
the state information of a device. The Shadow document, which is a JSON document, shows the
change in the device's state based on the messages published by a device, local app, or service. In
this tutorial, the Shadow document shows the change in the color of a light bulb. These tutorials

Retaining device state while the device is offline with Device Shadows 344

AWS IoT Core Developer Guide

also show how the shadow stores this information even when the device is disconnected from the
internet, and passes the latest state information back to the device when it comes back online and
requests this information.

We recommend that you try these tutorials in the order they're shown here, starting with the AWS
IoT resources you need to create and the necessary hardware setup, which also helps you learn the
concepts incrementally. These tutorials show how to configure and connect a Raspberry Pi device
for use with AWS IoT. If you don't have the required hardware, you can follow these tutorials by
adapting them to a device of your choice or by creating a virtual device with Amazon EC2.

Tutorial scenario overview

The scenario for these tutorials is a local app or service that changes the color of a light bulb
and that publishes its data to reserved shadow topics. These tutorials are similar to the Device
Shadow functionality described in the interactive getting started tutorial and are implemented on
a Raspberry Pi device. The tutorials in this section focus on a single, classic shadow while showing
how you might accommodate named shadows or multiple devices.

The following tutorials will help you learn how to use the AWS IoT Device Shadow service.

• Tutorial: Preparing your Raspberry Pi to run the shadow application

This tutorial shows how to set up a Raspberry Pi device for connecting with AWS IoT. You'll also
create an AWS IoT policy document and a thing resource, download the certificates, and then
attach the policy to that thing resource. This tutorial takes about 30 minutes to complete.

• Tutorial: Installing the Device SDK and running the sample application for Device Shadows

This tutorial shows how to install the required tools, software, and the AWS IoT Device SDK for
Python, and then run the sample shadow application. This tutorial builds on concepts presented
in Connect a Raspberry Pi or other device and takes 20 minutes to complete.

• Tutorial: Interacting with Device Shadow using the sample app and the MQTT test client

This tutorial shows how you use the shadow.py sample app and AWS IoT console to observe
the interaction between AWS IoT Device Shadows and the state changes of the light bulb. The
tutorial also shows how to send MQTT messages to the Device Shadow's reserved topics. This
tutorial can take 45 minutes to complete.

AWS IoT Device Shadow overview

Retaining device state while the device is offline with Device Shadows 345

AWS IoT Core Developer Guide

A Device Shadow is a persistent, virtual representation of a device that is managed by a thing
resource you create in the AWS IoT registry. The Shadow document is a JSON or a JavaScript
notation doc that is used to store and retrieve the current state information for a device. You
can use the shadow to get and set the state of a device over MQTT topics or HTTP REST APIs,
regardless of whether the device is connected to the internet.

A Shadow document contains a state property that describes these aspects of the device's state.

• desired: Apps specify the desired states of device properties by updating the desired object.

• reported: Devices report their current state in the reported object.

• delta: AWS IoT reports differences between the desired and the reported state in the delta
object.

Here is an example of a Shadow state document.

{
 "state": {
 "desired": {
 "color": "green"
 },
 "reported": {
 "color": "blue"
 },
 "delta": {
 "color": "green"
 }
 }
}

To update a device's Shadow document, you can use the reserved MQTT topics, the Device Shadow
REST APIs that support the GET, UPDATE, and DELETE operations with HTTP, and the AWS IoT CLI.

In the previous example, say you want to change the desired color to yellow. To do this, send a
request to the UpdateThingShadow API or publish a message to the Update topic, $aws/things/
THING_NAME/shadow/update.

{
 "state": {
 "desired": {
 "color": yellow

Retaining device state while the device is offline with Device Shadows 346

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-data/index.html

AWS IoT Core Developer Guide

 }
 }
}

Updates affect only the fields specified in the request. After successfully updating the Device
Shadow, AWS IoT publishes the new desired state to the delta topic, $aws/things/
THING_NAME/shadow/delta. The Shadow document in this case looks like this:

{
 "state": {
 "desired": {
 "color": yellow
 },
 "reported": {
 "color": green
 },
 "delta": {
 "color": yellow
 }
 }
}

The new state is then reported to the AWS IoT Device Shadow using the Update topic $aws/
things/THING_NAME/shadow/update with the following JSON message:

{
 "state": {
 "reported": {
 "color": yellow
 }
 }
}

If you want to get the current state information, send a request to the GetThingShadow API or
publish an MQTT message to the Get topic, $aws/things/THING_NAME/shadow/get.

For more information about using the Device Shadow service, see AWS IoT Device Shadow service.

For more information about using Device Shadows in devices, apps, and services, see Using
shadows in devices and Using shadows in apps and services.

For information about interacting with AWS IoT shadows, see Interacting with shadows.

Retaining device state while the device is offline with Device Shadows 347

AWS IoT Core Developer Guide

For information about the MQTT reserved topics and HTTP REST APIs, see Device Shadow MQTT
topics and Device Shadow REST API.

Tutorial: Preparing your Raspberry Pi to run the shadow application

This tutorial demonstrates how to set up and configure a Raspberry Pi device and create the AWS
IoT resources that a device requires to connect and exchange MQTT messages.

Note

If you're planning to the section called “Create a virtual device with Amazon EC2”, you
can skip this page and continue to the section called “Configure your device”. You'll create
these resources when you create your virtual thing. If you would like to use a different
device instead of the Raspberry Pi, you can try to follow these tutorials by adapting them
to a device of your choice.

In this tutorial, you'll learn how to:

• Set up a Raspberry Pi device and configure it for use with AWS IoT.

• Create an AWS IoT policy document, which authorizes your device to interact with AWS IoT
services.

• Create a thing resource in AWS IoT the X.509 device certificates, and then attach the policy
document.

The thing is the virtual representation of your device in the AWS IoT registry. The certificate
authenticates your device to AWS IoT Core, and the policy document authorizes your device to
interact with AWS IoT.

How to run this tutorial

To run the shadow.py sample application for Device Shadows, you'll need a Raspberry Pi device
that connects to AWS IoT. We recommend that you follow this tutorial in the order it's presented
here, starting with setting up the Raspberry Pi and it's accessories, and then creating a policy and
attaching the policy to a thing resource that you create. You can then follow this tutorial by using
the graphical user interface (GUI) supported by the Raspberry Pi to open the AWS IoT console on
the device's web browser, which also makes it easier to download the certificates directly to your
Raspberry Pi for connecting to AWS IoT.

Retaining device state while the device is offline with Device Shadows 348

AWS IoT Core Developer Guide

Before you start this tutorial, make sure that you have:

• An AWS account. If you don't have one, complete the steps described in Set up your AWS account
before you continue. You'll need your AWS account and AWS IoT console to complete this
tutorial.

• The Raspberry Pi and its necessary accessories. You'll need:

• A Raspberry Pi 3 Model B or more recent model. This tutorial might work on earlier versions of
the Raspberry Pi, but we haven't tested it.

• Raspberry Pi OS (32-bit) or later. We recommend using the latest version of the Raspberry Pi
OS. Earlier versions of the OS might work, but we haven't tested it.

• An Ethernet or Wi-Fi connection.

• Keyboard, mouse, monitor, cables, and power supplies.

This tutorial takes about 30 minutes to complete.

Step 1: Set up and configure Raspberry Pi device

In this section, we'll configure a Raspberry Pi device for use with AWS IoT.

Important

Adapting these instructions to other devices and operating systems can be challenging.
You'll need to understand your device well enough to be able to interpret these instructions
and apply them to your device. If you encounter difficulties, you might try one of the other
device options as an alternative, such as Create a virtual device with Amazon EC2 or Use
your Windows or Linux PC or Mac as an AWS IoT device.

You'll need to configure your Raspberry Pi such that it can start the operating system (OS), connect
to the internet, and allow you to interact with it at a command line interface. You can also use the
graphical user interface (GUI) supported with the Raspberry Pi to open the AWS IoT console and
run the rest of this tutorial.

To set up the Raspberry Pi

1. Insert the SD card into the MicroSD card slot on the Raspberry Pi. Some SD cards come pre-
loaded with an installation manager that prompts you with a menu to install the OS after
booting up the board. You can also use the Raspberry Pi imager to install the OS on your card.

Retaining device state while the device is offline with Device Shadows 349

https://www.raspberrypi.org/products/
https://www.raspberrypi.org/downloads/raspberry-pi-os/

AWS IoT Core Developer Guide

2. Connect an HDMI TV or monitor to the HDMI cable that connects to the HDMI port of the
Raspberry Pi.

3. Connect the keyboard and mouse to the USB ports of the Raspberry Pi and then plug in the
power adapter to boot up the board.

After the Raspberry Pi boots up, if the SD card came pre-loaded with the installation manager, a
menu appears to install the operating system. If you have trouble installing the OS, you can try
the following steps. For more information about setting up the Raspberry Pi, see Setting up your
Raspberry Pi.

If you're having trouble setting up the Raspberry Pi:

• Check whether you inserted the SD card before booting up the board. If you plug in the SD card
after booting up the board, the installation menu might not appear.

• Make sure that the TV or monitor is turned on and the correct input is selected.

• Ensure that you are using Raspberry Pi compatible software.

After you have installed and configured the Raspberry Pi OS, open the Raspberry Pi's web browser
and navigate to the AWS IoT Core console to continue the rest of the steps in this tutorial.

If you can open the AWS IoT Core console, you're Raspberry Pi is ready and you can continue to the
section called “Provisioning your device in AWS IoT ”.

If you're having trouble or need additional help, see Getting help for your Raspberry Pi.

Tutorial: Provisioning your device in AWS IoT

This section creates the AWS IoT Core resources that your tutorial will use.

Steps to provision your device in AWS IoT

• Step 1: Create an AWS IoT policy for the Device Shadow

• Step 2: Create a thing resource and attach the policy to the thing

• Step 3: Review the results and next steps

Step 1: Create an AWS IoT policy for the Device Shadow

X.509 certificates authenticate your device with AWS IoT Core. AWS IoT policies are attached to
the certificate that permits the device to perform AWS IoT operations, such as subscribing or

Retaining device state while the device is offline with Device Shadows 350

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/5

AWS IoT Core Developer Guide

publishing to MQTT reserved topics used by the Device Shadow service. Your device presents its
certificate when it connects and sends messages to AWS IoT Core.

In this procedure, you'll create a policy that allows your device to perform the AWS IoT operations
necessary to run the example program. We recommend that you create a policy that grants only
the permissions required to perform the task. You create the AWS IoT policy first, and then attach
it to the device certificate that you'll create later.

To create an AWS IoT policy

1. On the left menu, choose Secure, and then choose Policies. If your account has existing
policies, choose Create, otherwise, on the You don’t have a policy yet page, choose Create a
policy.

2. On the Create a policy page:

a. Enter a name for the policy in the Name field (for example,
My_Device_Shadow_policy). Do not use personally identifiable information in your
policy names.

b. In the policy document, you describe connect, subscribe, receive, and publish actions that
give the device permission to publish and subscribe to the MQTT reserved topics.

Copy the following sample policy and paste it in your policy document. Replace
thingname with the name of the thing that you'll create (for example, My_light_bulb),
region with the AWS IoT Region where you're using the services, and account with your
AWS account number. For more information about AWS IoT policies, see AWS IoT Core
policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/get",
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/update"
]
 },

Retaining device state while the device is offline with Device Shadows 351

AWS IoT Core Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/get/
accepted",
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/get/
rejected",
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/update/
accepted",
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/update/
rejected",
 "arn:aws:iot:region:account:topic/$aws/things/thingname/shadow/update/
delta"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingname/shadow/
get/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingname/shadow/
get/rejected",
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingname/shadow/
update/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingname/shadow/
update/rejected",
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingname/shadow/
update/delta"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:region:account:client/test-*"
 }
]
}

Retaining device state while the device is offline with Device Shadows 352

AWS IoT Core Developer Guide

Step 2: Create a thing resource and attach the policy to the thing

Devices connected to AWS IoT can be represented by thing resources in the AWS IoT registry. A
thing resource represents a specific device or logical entity, such as the light bulb in this tutorial.

To learn how to create a thing in AWS IoT, follow the steps described in Create a thing object. Here
are some key things to note as you follow the steps in that tutorial:

1. Choose Create a single thing, and in the Name field, enter a name for the thing that is the same
as the thingname (for example, My_light_bulb) you specified when you created the policy
earlier.

You can't change a thing name after it has been created. If you gave it a different name other
than thingname, create a new thing with name as thingname and delete the old thing.

Note

Do not use personally identifiable information in your thing name. The thing name can
appear in unencrypted communications and reports.

2. We recommend that you download each of the certificate files on the Certificate created! page
into a location where you can easily find them. You'll need to install these files for running the
sample application.

We recommend that you download the files into a certs subdirectory in your home directory
on the Raspberry Pi and name each of them with a simpler name as suggested in the following
table.

Certificate file names

File File path

Root CA certificate ~/certs/Amazon-root-CA-1.pem

Device certificate ~/certs/device.pem.crt

Private key ~/certs/private.pem.key

3. After you activate the certificate to enable connections to AWS IoT, choose Attach
a policy and make sure you attach the policy that you created earlier (for example,
My_Device_Shadow_policy) to the thing.

Retaining device state while the device is offline with Device Shadows 353

AWS IoT Core Developer Guide

After you've created a thing, you can see your thing resource displayed in the list of things in the
AWS IoT console.

Step 3: Review the results and next steps

In this tutorial, you learned how to:

• Set up and configure the Raspberry Pi device.

• Create an AWS IoT policy document that authorizes your device to interact with AWS IoT
services.

• Create a thing resource and associated X.509 device certificate, and attach the policy document
to it.

Next steps

You can now install the AWS IoT device SDK for Python, run the shadow.py sample application,
and use Device Shadows to control the state. For more information about how to run this tutorial,
see Tutorial: Installing the Device SDK and running the sample application for Device Shadows.

Tutorial: Installing the Device SDK and running the sample application for Device
Shadows

This section shows how you can install the required software and the AWS IoT Device SDK for
Python and run the shadow.py sample application to edit the Shadow document and control the
shadow's state.

In this tutorial, you'll learn how to:

• Use the installed software and AWS IoT Device SDK for Python to run the sample app.

• Learn how entering a value using the sample app publishes the desired value in the AWS IoT
console.

• Review the shadow.py sample app and how it uses the MQTT protocol to update the shadow's
state.

Before you run this tutorial:

Retaining device state while the device is offline with Device Shadows 354

AWS IoT Core Developer Guide

You must have set up your AWS account, configured your Raspberry Pi device, and created an
AWS IoT thing and policy that gives the device permissions to publish and subscribe to the MQTT
reserved topics of the Device Shadow service. For more information, see Tutorial: Preparing your
Raspberry Pi to run the shadow application.

You must have also installed Git, Python, and the AWS IoT Device SDK for Python. This tutorial
builds on the concepts presented in the tutorial Connect a Raspberry Pi or other device. If you
haven't tried that tutorial, we recommend that you follow the steps described in that tutorial
to install the certificate files and Device SDK and then come back to this tutorial to run the
shadow.py sample app.

In this tutorial, you'll:

• Step 1: Run the shadow.py sample app

• Step 2: Review the shadow.py Device SDK sample app

• Step 3: Troubleshoot problems with the shadow.py sample app

• Step 4: Review the results and next steps

This tutorial takes about 20 minutes to complete.

Step 1: Run the shadow.py sample app

Before you run the shadow.py sample app, you'll need the following information in addition to
the names and location of the certificate files that you installed.

Application parameter values

Parameter Where to find the value

your-iot-thing-name Name of the AWS IoT thing that you created
earlier in the section called “Step 2: Create a
thing resource and attach the policy to the
thing”.

To find this value, in the AWS IoT console,
choose Manage, and then choose Things.

your-iot-endpoint The your-iot-endpoint value has a
format of: endpoint_id -ats.iot.

Retaining device state while the device is offline with Device Shadows 355

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Parameter Where to find the value

region.amazonaws.com , for example,
a3qj468EXAMPLE-ats.iot.us-w
est-2.amazonaws.com . To find this
value:

1. In the AWS IoT console, choose Manage,
and then choose Things.

2. Choose the IoT thing you created for your
device, My_light_bulb, that you used
earlier, and then choose Interact. On
the thing details page, your endpoint is
displayed in the HTTPS section.

Install and run the sample app

1. Navigate to the sample app directory.

cd ~/aws-iot-device-sdk-python-v2/samples

2. In the command line window, replace your-iot-endpoint and your-iot-thing-name as
indicated and run this command.

python3 shadow.py --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/certs/
device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-endpoint --
thing_name your-iot-thing-name

3. Observe that the sample app:

1. Connects to the AWS IoT service for your account.

2. Subscribes to Delta events and Update and Get responses.

3. Prompts you to enter a desired value in the terminal.

4. Displays output similar to the following:

Connecting to a3qEXAMPLEffp-ats.iot.us-west-2.amazonaws.com with client ID
 'test-0c8ae2ff-cc87-49d2-a82a-ae7ba1d0ca5a'...

Retaining device state while the device is offline with Device Shadows 356

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Connected!
Subscribing to Delta events...
Subscribing to Update responses...
Subscribing to Get responses...
Requesting current shadow state...
Launching thread to read user input...
Finished getting initial shadow state.
Shadow contains reported value 'off'.
Enter desired value:

Note

If you're having trouble running the shadow.py sample app, review the section called
“Step 3: Troubleshoot problems with the shadow.py sample app”. To get additional
information that might help you correct the problem, add the --verbosity debug
parameter to the command line so the sample app displays detailed messages about what
it’s doing.

Enter values and observe the updates in Shadow document

You can enter values in the terminal to specify the desired value, which also updates the
reported value. Say you enter the color yellow in the terminal. The reported value is also
updated to the color yellow. The following shows the messages displayed in the terminal:

Enter desired value:
yellow
Changed local shadow value to 'yellow'.
Updating reported shadow value to 'yellow'...
Update request published.
Finished updating reported shadow value to 'yellow'.

When you publish this update request, AWS IoT creates a default, classic shadow for the thing
resource. You can observe the update request that you published to the reported and desired
values in the AWS IoT console by looking at the Shadow document for the thing resource that you
created (for example, My_light_bulb). To see the update in the Shadow document:

1. In the AWS IoT console, choose Manage and then choose Things.

Retaining device state while the device is offline with Device Shadows 357

AWS IoT Core Developer Guide

2. In the list of things displayed, select the thing that you created, choose Shadows, and then
choose Classic Shadow.

The Shadow document should look similar to the following, showing the reported and desired
values set to the color yellow. You see these values in the Shadow state section of the document.

{
"desired": {
 "welcome": "aws-iot",
 "color": "yellow"
},
"reported": {
 "welcome": "aws-iot",
 "color": "yellow"
}
}

You also see a Metadata section that contains the timestamp information and version number of
the request.

You can use the state document version to ensure you are updating the most recent version of a
device's Shadow document. If you send another update request, the version number increments by
1. When you supply a version with an update request, the service rejects the request with an HTTP
409 conflict response code if the current version of the state document doesn't match the version
supplied.

{
"metadata": {
 "desired": {
 "welcome": {
 "timestamp": 1620156892
 },
 "color": {
 "timestamp": 1620156893
 }
 },
 "reported": {
 "welcome": {
 "timestamp": 1620156892
 },
 "color": {

Retaining device state while the device is offline with Device Shadows 358

AWS IoT Core Developer Guide

 "timestamp": 1620156893
 }
 }
},
"version": 10
}

To learn more about the Shadow document and observe changes to the state information, proceed
to the next tutorial Tutorial: Interacting with Device Shadow using the sample app and the MQTT
test client as described in the Step 4: Review the results and next steps section of this tutorial.
Optionally, you can also learn about the shadow.py sample code and how it uses the MQTT
protocol in the following section.

Step 2: Review the shadow.py Device SDK sample app

This section reviews the shadow.py sample app from the AWS IoT Device SDK v2 for Python
used in this tutorial. Here, we'll review how it connects to AWS IoT Core by using the MQTT and
MQTT over WSS protocol. The AWS common runtime (AWS-CRT) library provides the low-level
communication protocol support and is included with the AWS IoT Device SDK v2 for Python.

While this tutorial uses MQTT and MQTT over WSS, AWS IoT supports devices that publish HTTPS
requests. For an example of a Python program that sends an HTTP message from a device, see the
HTTPS code example using Python’s requests library.

For information about how you can make an informed decision about which protocol to use for
your device communications, review the Choosing a protocol for your device communication.

MQTT

The shadow.py sample calls mtls_from_path (shown here) in the mqtt_connection_builder
to establish a connection with AWS IoT Core by using the MQTT protocol. mtls_from_path uses
X.509 certificates and TLS v1.2 to authenticate the device. The AWS-CRT library handles the lower-
level details of that connection.

mqtt_connection = mqtt_connection_builder.mtls_from_path(
 endpoint=args.endpoint,
 cert_filepath=args.cert,
 pri_key_filepath=args.key,
 ca_filepath=args.ca_file,
 client_bootstrap=client_bootstrap,

Retaining device state while the device is offline with Device Shadows 359

https://github.com/awslabs/aws-crt-python#aws-crt-python
https://github.com/awslabs/aws-crt-python/blob/89207bcf1387177034e02fe29e8e469ca45e39b7/awscrt/awsiot_mqtt_connection_builder.py

AWS IoT Core Developer Guide

 on_connection_interrupted=on_connection_interrupted,
 on_connection_resumed=on_connection_resumed,
 client_id=args.client_id,
 clean_session=False,
 keep_alive_secs=6
)

• endpoint is your AWS IoT endpoint that you passed in from the command line and client_id
is the ID that uniquely identifies this device in the AWS Region.

• cert_filepath, pri_key_filepath, and ca_filepath are the paths to the device's
certificate and private key files, and the root CA file.

• client_bootstrap is the common runtime object that handles
socket communication activities, and is instantiated prior to the call to
mqtt_connection_builder.mtls_from_path.

• on_connection_interrupted and on_connection_resumed are callback functions to call
when the device’s connection is interrupted and resumed.

• clean_session is whether to start a new, persistent session, or if one is present, reconnect
to an existing one. keep_alive_secs is the keep alive value, in seconds, to send in the
CONNECT request. A ping will automatically be sent at this interval. The server assumes that the
connection is lost if it doesn't receive a ping after 1.5 times this value.

The shadow.py sample also calls websockets_with_default_aws_signing in the
mqtt_connection_builder to establish a connection with AWS IoT Core using MQTT protocol
over WSS. MQTT over WSS also uses the same parameters as MQTT and takes these additional
parameters:

• region is the AWS signing Region used by Signature V4 authentication,
and credentials_provider is the AWS credentials provided to use
for authentication. The Region is passed from the command line, and the
credentials_provider object is instantiated just prior to the call to
mqtt_connection_builder.websockets_with_default_aws_signing.

• websocket_proxy_options is the HTTP proxy options, if using a proxy host.
In the shadow.py sample app, this value is instantiated just prior to the call to
mqtt_connection_builder.websockets_with_default_aws_signing.

Subscribe to Shadow topics and events

Retaining device state while the device is offline with Device Shadows 360

https://github.com/awslabs/aws-crt-python/blob/89207bcf1387177034e02fe29e8e469ca45e39b7/awscrt/awsiot_mqtt_connection_builder.py

AWS IoT Core Developer Guide

The shadow.py sample attempts to establish a connection and waits to be fully connected. If it's
not connected, commands are queued up. Once connected, the sample subscribes to delta events
and update and get messages, and publishes messages with a Quality of Service (QoS) level of 1
(mqtt.QoS.AT_LEAST_ONCE).

When a device subscribes to a message with QoS level 1, the message broker saves the messages
that the device is subscribed to until they can be sent to the device. The message broker resends
the messages until it receives a PUBACK response from the device.

For more information about the MQTT protocol, see Review the MQTT protocol and MQTT.

For more information about how MQTT, MQTT over WSS, persistent sessions, and QoS levels that
are used in this tutorial, see Review the pubsub.py Device SDK sample app.

Step 3: Troubleshoot problems with the shadow.py sample app

When you run the shadow.py sample app, you should see some messages displayed in the
terminal and a prompt to enter a desired value. If the program throws an error, then to debug
the error, you can start by checking whether you ran the correct command for your system.

In some cases, the error message might indicate connection issues and look similar to: Host name
was invalid for dns resolution or Connection was closed unexpectedly. In such
cases, here are some things you can check:

• Check the endpoint address in the command

Review the endpoint argument in the command you entered to run the sample app, (for
example, a3qEXAMPLEffp-ats.iot.us-west-2.amazonaws.com) and check this value in the
AWS IoT console.

To check whether you used the correct value:

1. In the AWS IoT console, choose Manage and then choose Things.

2. Choose the thing you created for your sample app (for example, My_light_bulb) and then
choose Interact.

On the thing details page, your endpoint is displayed in the HTTPS section. You should also see a
message that says: This thing already appears to be connected.

• Check certificate activation

Certificates authenticate your device with AWS IoT Core.

Retaining device state while the device is offline with Device Shadows 361

AWS IoT Core Developer Guide

To check whether your certificate is active:

1. In the AWS IoT console, choose Manage and then choose Things.

2. Choose the thing you created for your sample app (for example, My_light_bulb) and then
choose Security.

3. Select the certificate and then, from the certificate's details page, choose Select the certificate
and then, from the certificate's details page, choose Actions.

If in the dropdown list Activate isn't available and you can only choose Deactivate, your
certificate is active. If not, choose Activate and rerun the sample program.

If the program still doesn't run, check the certificate file names in the certs folder.

• Check the policy attached to the thing resource

While certificates authenticate your device, AWS IoT policies permit the device to perform AWS
IoT operations, such as subscribing or publishing to MQTT reserved topics.

To check whether the correct policy is attached:

1. Find the certificate as described previously, and then choose Policies.

2. Choose the policy displayed and check whether it describes the connect, subscribe,
receive, and publish actions that give the device permission to publish and subscribe to
the MQTT reserved topics.

For a sample policy, see Step 1: Create an AWS IoT policy for the Device Shadow.

If you see error messages that indicate trouble connecting to AWS IoT, it could be because of the
permissions you're using for the policy. If that's the case, we recommend that you start with a
policy that provides full access to AWS IoT resources and then rerun the sample program. You
can either edit the current policy, or choose the current policy, choose Detach, and then create
another policy that provides full access and attach it to your thing resource. You can later restrict
the policy to only the actions and policies you need to run the program.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:*"

Retaining device state while the device is offline with Device Shadows 362

AWS IoT Core Developer Guide

],
 "Resource": "*"
 }
]
}

• Check your Device SDK installation

If the program still doesn't run, you can reinstall the Device SDK to make sure that your SDK
installation is complete and correct.

Step 4: Review the results and next steps

In this tutorial, you learned how to:

• Install the required software, tools, and the AWS IoT Device SDK for Python.

• Understand how the sample app, shadow.py, uses the MQTT protocol for retrieving and
updating the shadow's current state.

• Run the sample app for Device Shadows and observe the update to the Shadow document in the
AWS IoT console. You also learned to troubleshoot any issues and fix errors when running the
program.

Next steps

You can now run the shadow.py sample application and use Device Shadows to control the state.
You can observe the updates to the Shadow document in the AWS IoT Console and observe delta
events that the sample app responds to. Using the MQTT test client, you can subscribe to the
reserved shadow topics and observe messages received by the topics when running the sample
program. For more information about how to run this tutorial, see Tutorial: Interacting with Device
Shadow using the sample app and the MQTT test client.

Tutorial: Interacting with Device Shadow using the sample app and the MQTT test
client

To interact with the shadow.py sample app, enter a value in the terminal for the desired value.
For example, you can specify colors that resemble the traffic lights and AWS IoT responds to the
request and updates the reported values.

Retaining device state while the device is offline with Device Shadows 363

AWS IoT Core Developer Guide

In this tutorial, you'll learn how to:

• Use the shadow.py sample app to specify desired states and update the shadow's current state.

• Edit the Shadow document to observe delta events and how the shadow.py sample app
responds to it.

• Use the MQTT test client to subscribe to shadow topics and observe updates when you run the
sample program.

Before you run this tutorial, you must have:

Set up your AWS account, configured your Raspberry Pi device, and created an AWS IoT thing and
policy. You must have also installed the required software, Device SDK, certificate files, and run
the sample program in the terminal. For more information, see the previous tutorials Tutorial:
Preparing your Raspberry Pi to run the shadow application and Step 1: Run the shadow.py sample
app. You must complete these tutorials if you haven't already.

In this tutorial, you'll:

• Step 1: Update desired and reported values using shadow.py sample app

• Step 2: View messages from the shadow.py sample app in the MQTT test client

• Step 3: Troubleshoot errors with Device Shadow interactions

• Step 4: Review the results and next steps

This tutorial takes about 45 minutes to complete.

Step 1: Update desired and reported values using shadow.py sample app

In the previous tutorial Step 1: Run the shadow.py sample app, you learned how to observe a
message published to the Shadow document in the AWS IoT console when you enter a desired
value as described in the section Tutorial: Installing the Device SDK and running the sample
application for Device Shadows.

In the previous example, we set the desired color to yellow. After you enter each value, the
terminal prompts you to enter another desired value. If you again enter the same value
(yellow), the app recognizes this and prompts you to enter a new desired value.

Enter desired value:
yellow

Retaining device state while the device is offline with Device Shadows 364

AWS IoT Core Developer Guide

Local value is already 'yellow'.
Enter desired value:

Now, say that you enter the color green. AWS IoT responds to the request and updates the
reported value to green. This is how the update happens when the desired state is different
from the reported state, causing a delta.

How the shadow.py sample app simulates Device Shadow interactions:

1. Enter a desired value (say yellow) in the terminal to publish the desired state.

2. As the desired state is different from the reported state (say the color green), a delta occurs,
and the app that is subscribed to the delta receives this message.

3. The app responds to the message and updates its state to the desired value, yellow.

4. The app then publishes an update message with the new reported value of the device's state,
yellow.

Following shows the messages displayed in the terminal that shows how the update request is
published.

Enter desired value:
green
Changed local shadow value to 'green'.
Updating reported shadow value to 'green'...
Update request published.
Finished updating reported shadow value to 'green'.

In the AWS IoT console, the Shadow document reflects the updated value to green for both the
reported and desired fields, and the version number is incremented by 1. For example, if the
previous version number was displayed as 10, the current version number will display as 11.

Note

Deleting a shadow doesn't reset the version number to 0. You'll see that the shadow
version is incremented by 1 when you publish an update request or create another shadow
with the same name.

Edit the Shadow document to observe delta events

Retaining device state while the device is offline with Device Shadows 365

AWS IoT Core Developer Guide

The shadow.py sample app is also subscribed to delta events, and responds when there is a
change to the desired value. For example, you can change the desired value to the color red.
To do this, in the AWS IoT console, edit the Shadow document by clicking Edit and then set the
desired value to red in the JSON, while keeping the reported value to green. Before you save
the changes, keep the terminal on the Raspberry Pi open as you'll see messages displayed in the
terminal when the change occurs.

{
"desired": {
 "welcome": "aws-iot",
 "color": "red"
},
"reported": {
 "welcome": "aws-iot",
 "color": "green"
}
}

After you save the new value, the shadow.py sample app responds to this change and displays
messages in the terminal indicating the delta. You should then see the following messages appear
below the prompt for entering the desired value.

Enter desired value:
Received shadow delta event.
Delta reports that desired value is 'red'. Changing local value...
Changed local shadow value to 'red'.
Updating reported shadow value to 'red'...
Finished updating reported shadow value to 'red'.
Enter desired value:
Update request published.
Finished updating reported shadow value to 'red'.

Step 2: View messages from the shadow.py sample app in the MQTT test client

You can use the MQTT test client in the AWS IoT console to monitor MQTT messages that are
passed in your AWS account. By subscribing to reserved MQTT topics used by the Device Shadow
service, you can observe the messages received by the topics when running the sample app.

If you haven't already used the MQTT test client, you can review View MQTT messages with
the AWS IoT MQTT client. This helps you learn how to use the MQTT test client in the AWS IoT
console to view MQTT messages as they pass through the message broker.

Retaining device state while the device is offline with Device Shadows 366

AWS IoT Core Developer Guide

1. Open the MQTT test client

Open the MQTT test client in the AWS IoT console in a new window so that you can observe
the messages received by the MQTT topics without losing the configuration of your MQTT test
client. The MQTT test client doesn't retain any subscriptions or message logs if you leave it to
go to another page in the console. For this section of the tutorial, you can have the Shadow
document of your AWS IoT thing and the MQTT test client open in separate windows to more
easily observe the interaction with Device Shadows.

2. Subscribe to the MQTT reserved Shadow topics

You can use the MQTT test client to enter the names of the Device Shadow's MQTT reserved
topics and subscribe to them to receive updates when running the shadow.py sample app. To
subscribe to the topics:

a. In the MQTT test client in the AWS IoT console, choose Subscribe to a topic.

b. In the Topic filter section, enter: $aws/things/thingname/shadow/update/#. Here,
thingname is the name of the thing resource that you created earlier (for example,
My_light_bulb).

c. Keep the default values for the additional configuration settings, and then choose
Subscribe.

By using the # wildcard in the topic subscription, you can subscribe to multiple MQTT topics
at the same time and observe all the messages that are exchanged between the device and its
Shadow in a single window. For more information about the wildcard characters and their use,
see MQTT topics.

3. Run shadow.py sample program and observe messages

In your command line window of the Raspberry Pi, if you've disconnected the program, run the
sample app again and watch the messages in the MQTT test client in the AWS IoT console.

a. Run the following command to restart the sample program. Replace your-iot-thing-
name and your-iot-endpoint with the names of the AWS IoT thing that you created
earlier (for example, My_light_bulb), and the endpoint to interact with the device.

cd ~/aws-iot-device-sdk-python-v2/samples

Retaining device state while the device is offline with Device Shadows 367

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

python3 shadow.py --ca_file ~/certs/Amazon-root-CA-1.pem --cert ~/certs/
device.pem.crt --key ~/certs/private.pem.key --endpoint your-iot-endpoint --
thing_name your-iot-thing-name

The shadow.py sample app then runs and retrieves the current shadow state. If you've
deleted the shadow or cleared the current states, the program sets the current value to
off and then prompts you to enter a desired value.

Connecting to a3qEXAMPLEffp-ats.iot.us-west-2.amazonaws.com with client ID
 'test-0c8ae2ff-cc87-49d2-a82a-ae7ba1d0ca5a'...
Connected!
Subscribing to Delta events...
Subscribing to Update responses...
Subscribing to Get responses...
Requesting current shadow state...
Launching thread to read user input...
Finished getting initial shadow state.
Shadow document lacks 'color' property. Setting defaults...
Changed local shadow value to 'off'.
Updating reported shadow value to 'off'...
Update request published.
Finished updating reported shadow value to 'off'...
Enter desired value:

On the other hand, if the program was running and you restarted it, you'll see the latest
color value reported in the terminal. In the MQTT test client, you'll see an update to the
topics $aws/things/thingname/shadow/get and $aws/things/thingname/shadow/
get/accepted.

Suppose that the latest color reported was green. Following shows the contents of the
$aws/things/thingname/shadow/get/accepted JSON file.

{
"state": {
 "desired": {
 "welcome": "aws-iot",
 "color": "green"
 },
 "reported": {
 "welcome": "aws-iot",
 "color": "green"

Retaining device state while the device is offline with Device Shadows 368

AWS IoT Core Developer Guide

 }
},
"metadata": {
 "desired": {
 "welcome": {
 "timestamp": 1620156892
 },
 "color": {
 "timestamp": 1620161643
 }
 },
 "reported": {
 "welcome": {
 "timestamp": 1620156892
 },
 "color": {
 "timestamp": 1620161643
 }
 }
},
"version": 10,
"timestamp": 1620173908
}

b. Enter a desired value in the terminal, such as yellow. The shadow.py sample app
responds and displays the following messages in the terminal that show the change in the
reported value to yellow.

Enter desired value:
yellow
Changed local shadow value to 'yellow'.
Updating reported shadow value to 'yellow'...
Update request published.
Finished updating reported shadow value to 'yellow'.

In the MQTT test client in the AWS IoT console, under Subscriptions, you see that the
following topics received a message:

• $aws/things/thingname/shadow/update: shows that both desired and updated
values change to the color yellow.

Retaining device state while the device is offline with Device Shadows 369

AWS IoT Core Developer Guide

• $aws/things/thingname/shadow/update/accepted: shows the current values of the
desired and reported states and their metadata and version information.

• $aws/things/thingname/shadow/update/documents: shows the previous and
current values of the desired and reported states and their metadata and version
information.

As the document $aws/things/thingname/shadow/update/documents also contains
information that is contained in the other two topics, we can review it to see the state
information. The previous state shows the reported value set to green, its metadata
and version information, and the current state that shows the reported value updated to
yellow.

{
"previous": {
 "state": {
 "desired": {
 "welcome": "aws-iot",
 "color": "green"
 },
 "reported": {
 "welcome": "aws-iot",
 "color": "green"
 }
 },
 "metadata": {
 "desired": {
 "welcome": {
 "timestamp": 1617297888
 },
 "color": {
 "timestamp": 1617297898
 }
 },
 "reported": {
 "welcome": {
 "timestamp": 1617297888
 },
 "color": {
 "timestamp": 1617297898
 }

Retaining device state while the device is offline with Device Shadows 370

AWS IoT Core Developer Guide

 }
 },
 "version": 10
},
"current": {
 "state": {
 "desired": {
 "welcome": "aws-iot",
 "color": "yellow"
 },
 "reported": {
 "welcome": "aws-iot",
 "color": "yellow"
 }
 },
 "metadata": {
 "desired": {
 "welcome": {
 "timestamp": 1617297888
 },
 "color": {
 "timestamp": 1617297904
 }
 },
 "reported": {
 "welcome": {
 "timestamp": 1617297888
 },
 "color": {
 "timestamp": 1617297904
 }
 }
 },
 "version": 11
},
"timestamp": 1617297904
}

c. Now, if you enter another desired value, you see further changes to the reported
values and message updates received by these topics. The version number also increments
by 1. For example, if you enter the value green, the previous state reports the value
yellow and the current state reports the value green.

Retaining device state while the device is offline with Device Shadows 371

AWS IoT Core Developer Guide

4. Edit Shadow document to observe delta events

To observe changes to the delta topic, edit the Shadow document in the AWS IoT console.
For example, you can change the desired value to the color red. To do this, in the AWS IoT
console, choose Edit and then set the desired value to red in the JSON, while keeping the
reported value set to green. Before you save the change, keep the terminal open as you'll
see the delta message reported in the terminal.

{
"desired": {
 "welcome": "aws-iot",
 "color": "red"
},
"reported": {
 "welcome": "aws-iot",
 "color": "green"
}
}

The shadow.py sample app responds to this change and displays messages in the terminal
indicating the delta. In the MQTT test client, the update topics will have received a message
showing changes to the desired and reported values.

You also see that the topic $aws/things/thingname/shadow/update/delta received a
message. To see the message, choose this topic, which is listed under Subscriptions.

{
"version": 13,
"timestamp": 1617318480,
"state": {
 "color": "red"
},
"metadata": {
 "color": {
 "timestamp": 1617318480
 }
}
}

Retaining device state while the device is offline with Device Shadows 372

AWS IoT Core Developer Guide

Step 3: Troubleshoot errors with Device Shadow interactions

When you run the Shadow sample app, you might encounter issues with observing interactions
with the Device Shadow service.

If the program runs successfully and prompts you to enter a desired value, you should be able to
observe the Device Shadow interactions by using the Shadow document and the MQTT test client
as described previously. However, if you're unable to see the interactions, here are some things you
can check:

• Check the thing name and its shadow in the AWS IoT console

If you don't see the messages in the Shadow document, review the command and make sure it
matches the thing name in the AWS IoT console. You can also check whether you have a classic
shadow by choosing your thing resource and then choosing Shadows. This tutorial focuses
primarily on interactions with the classic shadow.

You can also confirm that the device you used is connected to the internet. In the AWS IoT
console, choose the thing you created earlier, and then choose Interact. On the thing details
page, you should see a message here that says: This thing already appears to be
connected.

• Check the MQTT reserved topics you subscribed to

If you don't see the messages appear in the MQTT test client, check whether the topics
you subscribed to are formatted correctly. MQTT Device Shadow topics have a format
$aws/things/thingname/shadow/ and might have update, get, or delete following it
depending on actions you want to perform on the shadow. This tutorial uses the topic $aws/
things/thingname/shadow/# so make sure you entered it correctly when subscribing to the
topic in the Topic filter section of the test client.

As you enter the topic name, make sure that the thingname is the same as the name of the
AWS IoT thing that you created earlier. You can also subscribe to additional MQTT topics to see
if an update has been successfully performed. For example, you can subscribe to the topic $aws/
things/thingname/shadow/update/rejected to receive a message whenever an update request
failed so that you can debug connection issues. For more information about the reserved topics,
see the section called “Shadow topics” and Device Shadow MQTT topics.

Retaining device state while the device is offline with Device Shadows 373

AWS IoT Core Developer Guide

Step 4: Review the results and next steps

In this tutorial, you learned how to:

• Use the shadow.py sample app to specify desired states and update the shadow's current state.

• Edit the Shadow document to observe delta events and how the shadow.py sample app
responds to it.

• Use the MQTT test client to subscribe to shadow topics and observe updates when you run the
sample program.

Next steps

You can subscribe to additional MQTT reserved topics to observe updates to the shadow
application. For example, if you only subscribe to the topic $aws/things/thingname/shadow/
update/accepted, you'll see only the current state information when an update is successfully
performed.

You can also subscribe to additional shadow topics to debug issues or learn more about the Device
Shadow interactions and also debug any issues with the Device Shadow interactions. For more
information, see the section called “Shadow topics” and Device Shadow MQTT topics.

You can also choose to extend your application by using named shadows or by using additional
hardware connected with the Raspberry Pi for the LEDs and observe changes to their state using
messages sent from the terminal.

For more information about the Device Shadow service and using the service in devices, apps, and
services, see AWS IoT Device Shadow service, Using shadows in devices, and Using shadows in apps
and services.

Tutorial: Creating a custom authorizer for AWS IoT Core

This tutorial demonstrates the steps to create, validate, and use Custom Authentication by using
the AWS CLI. Optionally, using this tutorial, you can use Postman to send data to AWS IoT Core by
using the HTTP Publish API.

This tutorial show you how to create a sample Lambda function that implements the authorization
and authentication logic and a custom authorizer using the create-authorizer call with token
signing enabled. The authorizer is then validated using the test-invoke-authorizer, and finally you

Creating a custom authorizer for AWS IoT Core 374

AWS IoT Core Developer Guide

can send data to AWS IoT Core by using the HTTP Publish API to a test MQTT topic. Sample request
will specify the authorizer to invoke by using the x-amz-customauthorizer-name header and
pass the token-key-name and x-amz-customauthorizer-signature in request headers.

What you'll learn in this tutorial:

• How to create a Lambda function to be a custom authorizer handler

• How to create a custom authorizer using the AWS CLI with token signing enabled

• How to test your custom authorizer using the test-invoke-authorizer command

• How to publish an MQTT topic by using Postman and validate the request with your custom
authorizer

This tutorial takes about 60 minutes to complete.

In this tutorial, you'll:

• Step 1: Create a Lambda function for your custom authorizer

• Step 2: Create a public and private key pair for your custom authorizer

• Step 3: Create a customer authorizer resource and its authorization

• Step 4: Test the authorizer by calling test-invoke-authorizer

• Step 5: Test publishing MQTT message using Postman

• Step 6: View messages in MQTT test client

• Step 7: Review the results and next steps

• Step 8: Clean up

Before you start this tutorial, make sure that you have:

• Set up your AWS account

You'll need your AWS account and AWS IoT console to complete this tutorial.

The account you use for this tutorial works best when it includes at least these AWS managed
policies:

• IAMFullAccess

• AWSIoTFullAccess

• AWSLambda_FullAccess

Creating a custom authorizer for AWS IoT Core 375

https://www.postman.com/
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/IAMFullAccess$jsonEditor
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTFullAccess$jsonEditor
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSLambda_FullAccess$jsonEditor

AWS IoT Core Developer Guide

Important

The IAM policies used in this tutorial are more permissive than you should follow in a
production implementation. In a production environment, make sure that your account
and resource policies grant only the necessary permissions.
When you create IAM policies for production, determine what access users and roles
need, and then design the policies that allow them to perform only those tasks.
For more information, see Security best practices in IAM

• Installed the AWS CLI

For information about how to install the AWS CLI, see Installing the AWS CLI. This tutorial
requires AWS CLI version aws-cli/2.1.3 Python/3.7.4 Darwin/18.7.0 exe/x86_64 or
later.

• OpenSSL tools

The examples in this tutorial use LibreSSL 2.6.5. You can also use OpenSSL v1.1.1i tools for this
tutorial.

• Reviewed the AWS Lambda overview

If you haven't used AWS Lambda before, review AWS Lambda and Getting started with Lambda
to learn its terms and concepts.

• Reviewed how to build requests in Postman

For more information, see Building requests.

• Removed custom authorizers from previous tutorial

Your AWS account can have only a limited number of custom authorizers configured at one time.
For information about how to remove a custom authorizer, see the section called “Step 8: Clean
up”.

Step 1: Create a Lambda function for your custom authorizer

Custom authentication in AWS IoT Core uses authorizer resources that you create to authenticate
and authorize clients. The function you'll create in this section authenticates and authorizes clients
as they connect to AWS IoT Core and access AWS IoT resources.

Creating a custom authorizer for AWS IoT Core 376

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://www.libressl.org/
https://www.openssl.org/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://learning.postman.com/docs/sending-requests/requests/
https://docs.aws.amazon.com/iot/latest/apireference/API_AuthorizerDescription.html

AWS IoT Core Developer Guide

The Lambda function does the following:

• If a request comes from test-invoke-authorizer, it returns an IAM policy with a Deny action.

• If a request comes from Passport using HTTP and the actionToken parameter has a value of
allow, it returns an IAM policy with an Allow action. Otherwise, it returns an IAM policy with a
Deny action.

To create the Lambda function for your custom authorizer

1. In the Lambda console, open Functions.

2. Choose Create function.

3. Confirm Author from scratch is selected.

4. Under Basic information:

a. In Function name, enter custom-auth-function.

b. In Runtime, confirm Node.js 18.x

5. Choose Create function.

Lambda creates a Node.js function and an execution role that grants the function permission
to upload logs. The Lambda function assumes the execution role when you invoke your
function and uses the execution role to create credentials for the AWS SDK and to read data
from event sources.

6. To see the function's code and configuration in the AWS Cloud9 editor, choose custom-auth-
function in the designer window, and then choose index.js in the navigation pane of the
editor.

For scripting languages such as Node.js, Lambda includes a basic function that returns a
success response. You can use the AWS Cloud9 editor to edit your function as long as your
source code doesn't exceed 3 MB.

7. Replace the index.js code in the editor with the following code:

// A simple Lambda function for an authorizer. It demonstrates
// How to parse a CLI and Http password to generate a response.

export const handler = async (event, context, callback) => {

 //Http parameter to initiate allow/deny request

Creating a custom authorizer for AWS IoT Core 377

https://console.aws.amazon.com/lambda/home#
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html

AWS IoT Core Developer Guide

 const HTTP_PARAM_NAME='actionToken';
 const ALLOW_ACTION = 'Allow';
 const DENY_ACTION = 'Deny';

 //Event data passed to Lambda function
 var event_str = JSON.stringify(event);
 console.log('Complete event :'+ event_str);

 //Read protocolData from the event json passed to Lambda function
 var protocolData = event.protocolData;
 console.log('protocolData value---> ' + protocolData);

 //Get the dynamic account ID from function's ARN to be used
 // as full resource for IAM policy
 var ACCOUNT_ID = context.invokedFunctionArn.split(":")[4];
 console.log("ACCOUNT_ID---"+ACCOUNT_ID);

 //Get the dynamic region from function's ARN to be used
 // as full resource for IAM policy
 var REGION = context.invokedFunctionArn.split(":")[3];
 console.log("REGION---"+REGION);

 //protocolData data will be undefined if testing is done via CLI.
 // This will help to test the set up.
 if (protocolData === undefined) {

 //If CLI testing, pass deny action as this is for testing purpose only.
 console.log('Using the test-invoke-authorizer cli for testing only');
 callback(null, generateAuthResponse(DENY_ACTION,ACCOUNT_ID,REGION));

 } else{

 //Http Testing from Postman
 //Get the query string from the request
 var queryString = event.protocolData.http.queryString;
 console.log('queryString values -- ' + queryString);
 /* global URLSearchParams */
 const params = new URLSearchParams(queryString);
 var action = params.get(HTTP_PARAM_NAME);

 if(action!=null && action.toLowerCase() === 'allow'){

 callback(null, generateAuthResponse(ALLOW_ACTION,ACCOUNT_ID,REGION));

Creating a custom authorizer for AWS IoT Core 378

AWS IoT Core Developer Guide

 }else{

 callback(null, generateAuthResponse(DENY_ACTION,ACCOUNT_ID,REGION));

 }

 }

};

// Helper function to generate the authorization IAM response.
var generateAuthResponse = function(effect,ACCOUNT_ID,REGION) {

 var full_resource = "arn:aws:iot:"+ REGION + ":" + ACCOUNT_ID + ":*";
 console.log("full_resource---"+full_resource);

 var authResponse = {};
 authResponse.isAuthenticated = true;
 authResponse.principalId = 'principalId';

 var policyDocument = {};
 policyDocument.Version = '2012-10-17';
 policyDocument.Statement = [];
 var statement = {};
 statement.Action = 'iot:*';
 statement.Effect = effect;
 statement.Resource = full_resource;
 policyDocument.Statement[0] = statement;
 authResponse.policyDocuments = [policyDocument];
 authResponse.disconnectAfterInSeconds = 3600;
 authResponse.refreshAfterInSeconds = 600;

 console.log('custom auth policy function called from http');
 console.log('authResponse --> ' + JSON.stringify(authResponse));
 console.log(authResponse.policyDocuments[0]);

 return authResponse;
}

8. Choose Deploy.

9. After Changes deployed appears above the editor:

a. Scroll to the Function overview section above the editor.

Creating a custom authorizer for AWS IoT Core 379

AWS IoT Core Developer Guide

b. Copy the Function ARN and save it to use later in this tutorial.

10. Test your function.

a. Choose the Test tab.

b. Using the default test settings, choose Invoke.

c. If the test succeeded, in the Execution results, open the Details view. You should see the
policy document that the function returned.

If the test failed or you don't see a policy document, review the code to find and correct
the errors.

Step 2: Create a public and private key pair for your custom authorizer

Your custom authorizer requires a public and private key to authenticate it. The commands in this
section use OpenSSL tools to create this key pair.

To create the public and private key pair for your custom authorizer

1. Create the private key file.

openssl genrsa -out private-key.pem 4096

2. Verify the private key file you just created.

openssl rsa -check -in private-key.pem -noout

If the command doesn't display any errors, the private key file is valid.

3. Create the public key file.

openssl rsa -in private-key.pem -pubout -out public-key.pem

4. Verify the public key file.

openssl pkey -inform PEM -pubin -in public-key.pem -noout

If the command doesn't display any errors, the public key file is valid.

Creating a custom authorizer for AWS IoT Core 380

AWS IoT Core Developer Guide

Step 3: Create a customer authorizer resource and its authorization

The AWS IoT custom authorizer is the resource that ties together all the elements created in the
previous steps. In this section, you'll create a custom authorizer resource and give it permission to
run the Lambda function you created earlier. You can create a custom authorizer resource by using
the AWS IoT console, the AWS CLI, or the AWS API.

For this tutorial, you only need to create one custom authorizer. This section describes how to
create by using the AWS IoT console and the AWS CLI, so you can use the method that is most
convenient for you. There's no difference between the custom authorizer resources created by
either method.

Create a customer authorizer resource

Choose one of these options to create your custom authorizer resource

• Create a custom authorizer by using the AWS IoT console

• Create a custom authorizer using the AWS CLI

To create a custom authorizer (console)

1. Open the Custom authorizer page of the AWS IoT console, and choose Create Authorizer.

2. In Create Authorizer:

a. In Authorizer name, enter my-new-authorizer.

b. In Authorizer status, check Active.

c. In Authorizer function, choose the Lambda function you created earlier.

d. In Token validation - optional:

i. Toggle on Token validation.

ii. In Token key name, enter tokenKeyName.

iii. Choose Add key.

iv. In Key name, enter FirstKey.

v. In Public key, enter the contents of the public-key.pem file. Be sure to include
the lines from the file with -----BEGIN PUBLIC KEY----- and -----END
PUBLIC KEY----- and don't add or remove any line feeds, carriage returns, or other

Creating a custom authorizer for AWS IoT Core 381

https://console.aws.amazon.com/iot/home#/authorizerhub

AWS IoT Core Developer Guide

characters from the file contents. The string that you enter should look something
like this example.

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAvEBzOk4vhN+3LgslvEWt
sLCqNmt5Damas3bmiTRvq2gjRJ6KXGTGQChqArAJwL1a9dkS9+maaXC3vc6xzx9z
QPu/vQOe5tyzz1MsKdmtFGxMqQ3qjEXAMPLEOmqyUKPP5mff58k6ePSfXAnzBH0q
lg2HioefrpU5OSAnpuRAjYKofKjbc2Vrn6N2G7hV+IfTBvCElf0csalS/Rk4phD5
oa4Y0GHISRnevypg5C8n9Rrz91PWGqP6M/q5DNJJXjMyleG92hQgu1N696bn5Dw8
FhedszFa6b2x6xrItZFzewNQkPMLMFhNrQIIyvshtT/F1LVCS5+v8AQ8UGGDfZmv
QeqAMAF7WgagDMXcfgKSVU8yid2sIm56qsCLMvD2Sq8Lgzpey9N5ON1o1Cvldwvc
KrJJtgwW6hVqRGuShnownLpgG86M6neZ5sRMbVNZO8OzcobLngJ0Ibw9KkcUdklW
gvZ6HEJqBY2XE70iEXAMPLETPHzhqvK6Ei1HGxpHsXx6BNft582J1VpgYjXha8oa
/NN7l7Zbj/euAb41IVtmX8JrD9z613d1iM5L8HluJlUzn62Q+VeNV2tdA7MfPfMC
8btGYladFAnitThaz6+F0VSBJPu7pZQoLnqyEp5zLMtF+kFl2yOBmGAP0RBivRd9
JWBUCG0bqcLQPeQyjbXSOfUCAwEAAQ==
-----END PUBLIC KEY-----

3. Choose Create authorizer.

4. If the custom authorizer resource was created, you'll see the list of custom authorizers and
your new custom authorizer should appear in the list and you can continue to the next section
to test it.

If you see an error, review the error and try to create your custom authorizer again and double-
check the entries. Note that each custom authorizer resource must have a unique name.

To create a custom authorizer (AWS CLI)

1. Substitute your values for authorizer-function-arn and token-signing-public-
keys, and then run the following command:

aws iot create-authorizer \
--authorizer-name "my-new-authorizer" \
--token-key-name "tokenKeyName" \
--status ACTIVE \
--no-signing-disabled \
--authorizer-function-arn "arn:aws:lambda:Region:57EXAMPLE833:function:custom-auth-
function" \
--token-signing-public-keys FirstKey="-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAvEBzOk4vhN+3LgslvEWt
sLCqNmt5Damas3bmiTRvq2gjRJ6KXGTGQChqArAJwL1a9dkS9+maaXC3vc6xzx9z

Creating a custom authorizer for AWS IoT Core 382

AWS IoT Core Developer Guide

QPu/vQOe5tyzz1MsKdmtFGxMqQ3qjEXAMPLEOmqyUKPP5mff58k6ePSfXAnzBH0q
lg2HioefrpU5OSAnpuRAjYKofKjbc2Vrn6N2G7hV+IfTBvCElf0csalS/Rk4phD5
oa4Y0GHISRnevypg5C8n9Rrz91PWGqP6M/q5DNJJXjMyleG92hQgu1N696bn5Dw8
FhedszFa6b2x6xrItZFzewNQkPMLMFhNrQIIyvshtT/F1LVCS5+v8AQ8UGGDfZmv
QeqAMAF7WgagDMXcfgKSVU8yid2sIm56qsCLMvD2Sq8Lgzpey9N5ON1o1Cvldwvc
KrJJtgwW6hVqRGuShnownLpgG86M6neZ5sRMbVNZO8OzcobLngJ0Ibw9KkcUdklW
gvZ6HEJqBY2XE70iEXAMPLETPHzhqvK6Ei1HGxpHsXx6BNft582J1VpgYjXha8oa
/NN7l7Zbj/euAb41IVtmX8JrD9z613d1iM5L8HluJlUzn62Q+VeNV2tdA7MfPfMC
8btGYladFAnitThaz6+F0VSBJPu7pZQoLnqyEp5zLMtF+kFl2yOBmGAP0RBivRd9
JWBUCG0bqcLQPeQyjbXSOfUCAwEAAQ==
-----END PUBLIC KEY-----"

Where:

• The authorizer-function-arn value is the Amazon Resource Name (ARN) of the
Lambda function you created for your custom authorizer.

• The token-signing-public-keys value includes the name of the key, FirstKey, and
the contents of the public-key.pem file. Be sure to include the lines from the file with
-----BEGIN PUBLIC KEY----- and -----END PUBLIC KEY----- and don't add or
remove any line feeds, carriage returns, or other characters from the file contents.

Note: be careful entering the public key as any alteration to the public key value makes it
unusable.

2. If the custom authorizer is created, the command returns the name and ARN of the new
resource, such as the following.

{
 "authorizerName": "my-new-authorizer",
 "authorizerArn": "arn:aws:iot:Region:57EXAMPLE833:authorizer/my-new-authorizer"
}

Save the authorizerArn value for use in the next step.

Remember that each custom authorizer resource must have a unique name.

Creating a custom authorizer for AWS IoT Core 383

AWS IoT Core Developer Guide

Authorize the custom authorizer resource

In this section, you'll grant permission the custom authorizer resource that you just created
permission to run the Lambda function. To grant the permission, you can use the add-permission
CLI command.

Grant permission to your Lambda function using the AWS CLI

1. After inserting your values, enter the following command. Note that the statement-id value
must be unique. Replace Id-1234 with another value if you have run this tutorial before or if
you get a ResourceConflictException error.

aws lambda add-permission \
--function-name "custom-auth-function" \
--principal "iot.amazonaws.com" \
--action "lambda:InvokeFunction" \
--statement-id "Id-1234" \
--source-arn authorizerArn

2. If the command succeeds, it returns a permission statement, such as this example. You can
continue to the next section to test the custom authorizer.

{
 "Statement": "{\"Sid\":\"Id-1234\",\"Effect\":\"Allow\",\"Principal
\":{\"Service\":\"iot.amazonaws.com\"},\"Action\":\"lambda:InvokeFunction
\",\"Resource\":\"arn:aws:lambda:Region:57EXAMPLE833:function:custom-
auth-function\",\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":
\"arn:aws:lambda:Region:57EXAMPLE833:function:custom-auth-function\"}}}"
}

If the command doesn't succeed, it returns an error, such as this example. You'll need to review
and correct the error before you continue.

An error occurred (AccessDeniedException) when calling the AddPermission operation:
 User: arn:aws:iam::57EXAMPLE833:user/EXAMPLE-1 is not authorized to perform:
 lambda:AddPer
mission on resource: arn:aws:lambda:Region:57EXAMPLE833:function:custom-auth-
function

Creating a custom authorizer for AWS IoT Core 384

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

AWS IoT Core Developer Guide

Step 4: Test the authorizer by calling test-invoke-authorizer

With all the resources defined, in this section, you'll call test-invoke-authorizer from the command
line to test the authorization pass.

Note that when invoking the authorizer from the command line, protocolData is not defined,
so the authorizer will always return a DENY document. This test does, however, confirm that your
custom authorizer and Lambda function are configured correctly--even if it doesn't fully test the
Lambda function.

To test your custom authorizer and its Lambda function by using the AWS CLI

1. In the directory that has the private-key.pem file you created in a previous step, run the
following command.

echo -n "tokenKeyValue" | openssl dgst -sha256 -sign private-key.pem | openssl
 base64 -A

This command creates a signature string to use in the next step. The signature string looks
something like this:

dBwykzlb+fo+JmSGdwoGr8dyC2qB/IyLefJJr+rbCvmu9Jl4KHAA9DG+V
+MMWu09YSA86+64Y3Gt4tOykpZqn9mn
VB1wyxp+0bDZh8hmqUAUH3fwi3fPjBvCa4cwNuLQNqBZzbCvsluv7i2IMjEg
+CPY0zrWt1jr9BikgGPDxWkjaeeh
bQHHTo357TegKs9pP30Uf4TrxypNmFswA5k7QIc01n4bIyRTm90OyZ94R4bdJsHNig1JePgnuOBvMGCEFE09jGjj
szEHfgAUAQIWXiVGQj16BU1xKpTGSiTAwheLKUjITOEXAMPLECK3aHKYKY
+d1vTvdthKtYHBq8MjhzJ0kggbt29V
QJCb8RilN/P5+vcVniSXWPplyB5jkYs9UvG08REoy64AtizfUhvSul/r/F3VV8ITtQp3aXiUtcspACi6ca
+tsDuX
f3LzCwQQF/YSUy02u5XkWn
+sto6KCkpNlkD0wU8gl3+kOzxrthnQ8gEajd5Iylx230iqcXo3osjPha7JDyWM5o+K
EWckTe91I1mokDr5sJ4JXixvnJTVSx1li49IalW4en1DAkc1a0s2U2UNm236EXAMPLELotyh7h
+flFeloZlAWQFH
xRlXsPqiVKS1ZIUClaZWprh/orDJplpiWfBgBIOgokJIDGP9gwhXIIk7zWrGmWpMK9o=

Copy this signature string to use in the next step. Be careful not to include any extra characters
or leave any out.

2. In this command, replace the token-signature value with the signature string from the
previous step and run this command to test your authorizer.

Creating a custom authorizer for AWS IoT Core 385

AWS IoT Core Developer Guide

aws iot test-invoke-authorizer \
--authorizer-name my-new-authorizer \
--token tokenKeyValue \
--token-signature dBwykzlb+fo+JmSGdwoGr8dyC2qB/IyLefJJr
+rbCvmu9Jl4KHAA9DG+V+MMWu09YSA86+64Y3Gt4tOykpZqn9mnVB1wyxp
+0bDZh8hmqUAUH3fwi3fPjBvCa4cwNuLQNqBZzbCvsluv7i2IMjEg
+CPY0zrWt1jr9BikgGPDxWkjaeehbQHHTo357TegKs9pP30Uf4TrxypNmFswA5k7QIc01n4bIyRTm90OyZ94R4bdJsHNig1JePgnuOBvMGCEFE09jGjjszEHfgAUAQIWXiVGQj16BU1xKpTGSiTAwheLKUjITOEXAMPLECK3aHKYKY
+d1vTvdthKtYHBq8MjhzJ0kggbt29VQJCb8RilN/
P5+vcVniSXWPplyB5jkYs9UvG08REoy64AtizfUhvSul/r/F3VV8ITtQp3aXiUtcspACi6ca
+tsDuXf3LzCwQQF/YSUy02u5XkWn
+sto6KCkpNlkD0wU8gl3+kOzxrthnQ8gEajd5Iylx230iqcXo3osjPha7JDyWM5o
+KEWckTe91I1mokDr5sJ4JXixvnJTVSx1li49IalW4en1DAkc1a0s2U2UNm236EXAMPLELotyh7h
+flFeloZlAWQFHxRlXsPqiVKS1ZIUClaZWprh/orDJplpiWfBgBIOgokJIDGP9gwhXIIk7zWrGmWpMK9o=

If the command is successful, it returns the information generated by your customer authorizer
function, such as this example.

{
 "isAuthenticated": true,
 "principalId": "principalId",
 "policyDocuments": [
 "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Action\":\"iot:*\",\"Effect
\":\"Deny\",\"Resource\":\"arn:aws:iot:Region:57EXAMPLE833:*\"}]}"
],
 "refreshAfterInSeconds": 600,
 "disconnectAfterInSeconds": 3600
}

If the command returns an error, review the error and double-check the commands you used in
this section.

Step 5: Test publishing MQTT message using Postman

1. To get your device data endpoint from the command line, call describe-endpoint as shown
here

aws iot describe-endpoint --output text --endpoint-type iot:Data-ATS

Save this address for use as the device_data_endpoint_address in a later step.

Creating a custom authorizer for AWS IoT Core 386

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html

AWS IoT Core Developer Guide

2. Open a new Postman window and create a new HTTP POST request.

a. From your computer, open the Postman app.

b. In Postman, in the File menu, choose New....

c. In the New dialog box, choose Request.

d. In Save request,

i. In Request name enter Custom authorizer test request.

ii. In Select a collection or folder to save to: choose or create a collection into which to
save this request.

iii. Choose Save to collection_name.

3. Create the POST request to test your custom authorizer.

a. In the request method selector next to the URL field, choose POST.

b. In the URL field, create the URL for your request by using the following URL with the
device_data_endpoint_address from the describe-endpoint command in a previous
step.

https://device_data_endpoint_address:443/topics/test/cust-auth/topic?
qos=0&actionToken=allow

Note that this URL includes the actionToken=allow query parameter that will tell your
Lambda function to return a policy document that allows access to AWS IoT. After you
enter the URL, the query parameters also appear in the Params tab of Postman.

c. In the Auth tab, in the Type field, choose No Auth.

d. In the Headers tab:

i. If there's a Host key that's checked, uncheck this one.

ii. At the bottom of the list of headers add these new headers and confirm they are
checked. Replace the Host value with your device_data_endpoint_address and
the x-amz-customauthorizer-signature value with the signature string that
you used with the test-invoke-authorize command in the previous section.

Creating a custom authorizer for AWS IoT Core 387

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html

AWS IoT Core Developer Guide

Key Value

x-amz-customauthorizer-name my-new-authorizer

Host device_data_endpoint_addres
s

tokenKeyName tokenKeyValue

x-amz-customauthorizer-sign
ature

dBwykzlb+fo+JmSGdwoGr8dyC2q
B/IyLefJJr+rbCvmu9Jl4KHAA9D
G+V+MMWu09YSA86+64Y3Gt4tOyk
pZqn9mnVB1wyxp+0bDZh8hmqUAU
H3fwi3fPjBvCa4cwNuLQNqBZzbC
vsluv7i2IMjEg+CPY0zrWt1jr9B
ikgGPDxWkjaeehbQHHTo357TegK
s9pP30Uf4TrxypNmFswA5k7QIc0
1n4bIyRTm90OyZ94R4bdJsHNig1
JePgnuOBvMGCEFE09jGjjszEHfg
AUAQIWXiVGQj16BU1xKpTGSiTAw
heLKUjITOEXAMPLECK3aHKYKY+d
1vTvdthKtYHBq8MjhzJ0kggbt29
VQJCb8RilN/P5+vcVniSXWPplyB
5jkYs9UvG08REoy64AtizfUhvSu
l/r/F3VV8ITtQp3aXiUtcspACi6
ca+tsDuXf3LzCwQQF/YSUy02u5X
kWn+sto6KCkpNlkD0wU8gl3+kOz
xrthnQ8gEajd5Iylx230iqcXo3o
sjPha7JDyWM5o+KEWckTe91I1mo
kDr5sJ4JXixvnJTVSx1li49IalW
4en1DAkc1a0s2U2UNm236EXAMPL
ELotyh7h+flFeloZlAWQFHxRlXs
PqiVKS1ZIUClaZWprh/orDJplpi
WfBgBIOgokJIDGP9gwhXIIk7zWr
GmWpMK9o=

Creating a custom authorizer for AWS IoT Core 388

AWS IoT Core Developer Guide

e. In the Body tab:

i. In the data format option box, choose Raw.

ii. In the data type list, choose JavaScript.

iii. In the text field, enter this JSON message payload for your test message:

{
 "data_mode": "test",
 "vibration": 200,
 "temperature": 40
}

4. Choose Send to send the request.

If the request was successful, it returns:

{
 "message": "OK",
 "traceId": "ff35c33f-409a-ea90-b06f-fbEXAMPLE25c"
}

The successful response indicates that your custom authorizer allowed the connection to AWS
IoT and that the test message was delivered to broker in AWS IoT Core.

If it returns an error, review error message, the device_data_endpoint_address, the
signature string, and the other header values.

Keep this request in Postman for use in the next section.

Step 6: View messages in MQTT test client

In the previous step, you sent simulated device messages to AWS IoT by using Postman. The
successful response indicated that your custom authorizer allowed the connection to AWS IoT and
that the test message was delivered to broker in AWS IoT Core. In this section, you'll use the MQTT
test client in the AWS IoT console to see the message contents from that message as other devices
and services might.

To see the test messages authorized by your custom authorizer

1. In the AWS IoT console, open the MQTT test client.

Creating a custom authorizer for AWS IoT Core 389

https://console.aws.amazon.com/iot/home#/test

AWS IoT Core Developer Guide

2. In the Subscribe to topic tab, in Topic filter, enter test/cust-auth/topic, which is the
message topic used in the Postman example from the previous section.

3. Choose Subscribe.

Keep this window visible for the next step.

4. In Postman, in the request you created for the previous section, choose Send.

Review the response to make sure it was successful. If not, troubleshoot the error as the
previous section describes.

5. In the MQTT test client, you should see a new entry that shows the message topic and, if
expanded, the message payload from the request you sent from Postman.

If you don't see your messages in the MQTT test client, here are some things to check:

• Make sure your Postman request returned successfully. If AWS IoT rejects the connection and
returns an error, the message in the request doesn't get passed to the message broker.

• Make sure the AWS account and AWS Region used to open the AWS IoT console are the same
as you're using in the Postman URL.

• Make sure you've entered the topic correctly in the MQTT test client. The topic filter is case-
sensitive. If in doubt, you can also subscribe to the # topic, which subscribes to all MQTT
messages that pass through the message broker the AWS account and AWS Region used to
open the AWS IoT console.

Step 7: Review the results and next steps

In this tutorial:

• You created a Lambda function to be a custom authorizer handler

• You created a custom authorizer with token signing enabled

• You tested your custom authorizer using the test-invoke-authorizer command

• You published an MQTT topic by using Postman and validate the request with your custom
authorizer

• You used the MQTT test client to view the messages sent from your Postman test

Next steps

Creating a custom authorizer for AWS IoT Core 390

https://www.postman.com/

AWS IoT Core Developer Guide

After you send some messages from Postman to verify that the custom authorizer is working, try
experimenting to see how changing different aspects of this tutorial affect the results. Here are
some examples to get you started.

• Change the signature string so that it's no longer valid to see how unauthorized connection
attempts are handled. You should get an error response, such as this one, and the message
should not appear in the MQTT test client.

{
 "message": "Forbidden",
 "traceId": "15969756-a4a4-917c-b47a-5433e25b1356"
}

• To learn more about how to find errors that might occur while you're developing and using AWS
IoT rules, see Monitoring AWS IoT.

Step 8: Clean up

If you'd like repeat this tutorial, you might need to remove some of your custom authorizers. Your
AWS account can have only a limited number of custom authorizers configured at one time and
you can get a LimitExceededException when you try to add a new one without removing an
existing custom authorizer.

To remove a custom authorizer (console)

1. Open the Custom authorizer page of the AWS IoT console, and in the list of custom
authorizers, find the custom authorizer to remove.

2. Open the Custom authorizer details page and, from the Actions menu, choose Edit.

3. Uncheck the Activate authorizer, and then choose Update.

You can't delete a custom authorizer while it's active.

4. From the Custom authorizer details page, open the Actions menu, and choose Delete.

To remove a custom authorizer (AWS CLI)

1. List the custom authorizers that you have installed and find the name of the custom authorizer
you want to delete.

Creating a custom authorizer for AWS IoT Core 391

https://console.aws.amazon.com/iot/home#/authorizerhub

AWS IoT Core Developer Guide

aws iot list-authorizers

2. Set the custom authorizer to inactive by running this command after replacing
Custom_Auth_Name with the authorizerName of the custom authorizer to delete.

aws iot update-authorizer --status INACTIVE --authorizer-name Custom_Auth_Name

3. Delete the custom authorizer by running this command after replacing Custom_Auth_Name
with the authorizerName of the custom authorizer to delete.

aws iot delete-authorizer --authorizer-name Custom_Auth_Name

Tutorial: Monitoring soil moisture with AWS IoT and Raspberry Pi

This tutorial shows you how to use a Raspberry Pi, a moisture sensor, and AWS IoT to monitor the
soil moisture level for a house plant or garden. The Raspberry Pi runs code that reads the moisture
level and temperature from the sensor and then sends the data to AWS IoT. You create a rule in
AWS IoT that sends an email to an address subscribed to an Amazon SNS topic when the moisture
level falls below a threshold.

Note

This tutorial might not be up to date. Some references might have been superseded since
this topic was originally published.

Contents

• Prerequisites

• Setting up AWS IoT

• Step 1: Create the AWS IoT policy

• Step 2: Create the AWS IoT thing, certificate, and private key

• Step 3: Create an Amazon SNS topic and subscription

• Step 4: Create an AWS IoT rule to send an email

• Setting up your Raspberry Pi and moisture sensor

Monitoring soil moisture with AWS IoT and Raspberry Pi 392

https://www.raspberrypi.org/

AWS IoT Core Developer Guide

Prerequisites

To complete this tutorial, you need:

• An AWS account.

• An IAM user with administrator permissions.

• A development computer running Windows, macOS, Linux, or Unix to access the AWS IoT
console.

• A Raspberry Pi 3B or 4B running the latest Raspbian OS. For installation instructions, see
Installing operating system images on the Rasberry Pi website.

• A monitor, keyboard, mouse, and Wi-Fi network or Ethernet connection for your Raspberry Pi.

• A Raspberry Pi-compatible moisture sensor. The sensor used in this tutorial is an Adafruit
STEMMA I2C Capacitive Moisture Sensor with a JST 4-pin to female socket cable header.

Setting up AWS IoT

To complete this tutorial, you need to create the following resources. To connect a device to AWS
IoT, you create an IoT thing, a device certificate, and an AWS IoT policy.

• An AWS IoT thing.

A thing represents a physical device (in this case, your Rasberry Pi) and contains static metadata
about the device.

• A device certificate.

All devices must have a device certificate to connect to and authenticate with AWS IoT.

• An AWS IoT policy.

Each device certificate has one or more AWS IoT policies associated with it. These policies
determine which AWS IoT resources the device can access.

• An AWS IoT root CA certificate.

Devices and other clients use an AWS IoT root CA certificate to authenticate the AWS IoT server
with which they are communicating. For more information, see Server authentication.

• An AWS IoT rule.

Monitoring soil moisture with AWS IoT and Raspberry Pi 393

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/3950

AWS IoT Core Developer Guide

A rule contains a query and one or more rule actions. The query extracts data from device
messages to determine if the message data should be processed. The rule action specifies what
to do if the data matches the query.

• An Amazon SNS topic and topic subscription.

The rule listens for moisture data from your Raspberry Pi. If the value is below a threshold,
it sends a message to the Amazon SNS topic. Amazon SNS sends that message to all email
addresses subscribed to the topic.

Step 1: Create the AWS IoT policy

Create an AWS IoT policy that allows your Raspberry Pi to connect and send messages to AWS IoT.

1. In the AWS IoT console, if a Get started button appears, choose it. Otherwise, in the navigation
pane, expand Security, and then choose Policies.

2. If a You don't have any policies yet dialog box appears, choose Create a policy. Otherwise,
choose Create.

3. Enter a name for the AWS IoT policy (for example, MoistureSensorPolicy).

4. In the Add statements section, replace the existing policy with the following JSON. Replace
region and account with your AWS Region and AWS account number.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:region:account:client/RaspberryPi"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Publish",
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
update",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
delete",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/get"
]

Monitoring soil moisture with AWS IoT and Raspberry Pi 394

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
update/accepted",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
delete/accepted",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/get/
accepted",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
update/rejected",
 "arn:aws:iot:region:account:topic/$aws/things/RaspberryPi/shadow/
delete/rejected"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/RaspberryPi/shadow/
update/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/things/RaspberryPi/shadow/
delete/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/things/RaspberryPi/shadow/
get/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/things/RaspberryPi/shadow/
update/rejected",
 "arn:aws:iot:region:account:topicfilter/$aws/things/RaspberryPi/shadow/
delete/rejected"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": "arn:aws:iot:region:account:thing/RaspberryPi"

 }
]

Monitoring soil moisture with AWS IoT and Raspberry Pi 395

AWS IoT Core Developer Guide

}

5. Choose Create.

Step 2: Create the AWS IoT thing, certificate, and private key

Create a thing in the AWS IoT registry to represent your Raspberry Pi.

1. In the AWS IoT console, in the navigation pane, choose Manage, and then choose Things.

2. If a You don't have any things yet dialog box is displayed, choose Register a thing. Otherwise,
choose Create.

3. On the Creating AWS IoT things page, choose Create a single thing.

4. On the Add your device to the device registry page, enter a name for your IoT thing (for
example, RaspberryPi), and then choose Next. You can't change the name of a thing after
you create it. To change a thing's name, you must create a new thing, give it the new name,
and then delete the old thing.

5. On the Add a certificate for your thing page, choose Create certificate.

6. Choose the Download links to download the certificate, private key, and root CA certificate.

Important

This is the only time you can download your certificate and private key.

7. To activate the certificate, choose Activate. The certificate must be active for a device to
connect to AWS IoT.

8. Choose Attach a policy.

9. For Add a policy for your thing, choose MoistureSensorPolicy, and then choose Register
Thing.

Step 3: Create an Amazon SNS topic and subscription

Create an Amazon SNS topic and subscription.

1. From the AWS SNS console, in the navigation pane, choose Topics, and then choose Create
topic.

2. Choose type as Standard and enter a name for the topic (for example,
MoistureSensorTopic).

Monitoring soil moisture with AWS IoT and Raspberry Pi 396

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/sns/home

AWS IoT Core Developer Guide

3. Enter a display name for the topic (for example, Moisture Sensor Topic). This is the name
displayed for your topic in the Amazon SNS console.

4. Choose Create topic.

5. In the Amazon SNS topic detail page, choose Create subscription.

6. For Protocol, choose Email.

7. For Endpoint, enter your email address.

8. Choose Create subscription.

9. Open your email client and look for a message with the subject MoistureSensorTopic.
Open the email and click the Confirm subscription link.

Important

You won't receive any email alerts from this Amazon SNS topic until you confirm the
subscription.

You should receive an email message with the text you typed.

Step 4: Create an AWS IoT rule to send an email

An AWS IoT rule defines a query and one or more actions to take when a message is received from
a device. The AWS IoT rules engine listens for messages sent by devices and uses the data in the
messages to determine if some action should be taken. For more information, see Rules for AWS
IoT.

In this tutorial, your Raspberry Pi publishes messages on aws/things/RaspberryPi/shadow/
update. This is an internal MQTT topic used by devices and the Thing Shadow service. The
Raspberry Pi publishes messages that have the following form:

{
 "reported": {
 "moisture" : moisture-reading,
 "temp" : temperature-reading
 }
}

Monitoring soil moisture with AWS IoT and Raspberry Pi 397

AWS IoT Core Developer Guide

You create a query that extracts the moisture and temperature data from the incoming message.
You also create an Amazon SNS action that takes the data and sends it to Amazon SNS topic
subscribers if the moisture reading is below a threshold value.

Create an Amazon SNS rule

1. In the AWS IoT console, choose Message routing and then choose Rules. If a You don't have
any rules yet dialog box appears, choose Create a rule. Otherwise, choose Create rule.

2. In the Rule properties page, enter a Rule name such as MoistureSensorRule, and provide a
short Rule description such as Sends an alert when soil moisture level readings
are too low.

3. Choose Next and configure your SQL statement. Choose SQL version as 2016-03-23, and
enter the following AWS IoT SQL query statement:

SELECT * FROM '$aws/things/RaspberryPi/shadow/update/accepted' WHERE
 state.reported.moisture < 400

This statement triggers the rule action when the moisture reading is less than 400.

Note

You might have to use a different value. After you have the code running on your
Raspberry Pi, you can see the values that you get from your sensor by touching the
sensor, placing it in water, or placing it in a planter.

4. Choose Next and attach rule actions. For Action 1, choose Simple Notification Service. The
description for this rule action is Send a message as an SNS push notification.

5. For SNS topic, choose the topic that you created in Step 3: Create an Amazon SNS topic and
subscription, MoistureSensorTopic, and leave the Message format as RAW. For IAM role,
choose Create a new role. Enter a name for the role, for example, LowMoistureTopicRole,
and then choose Create role.

6. Choose Next to review and then choose Create to create the rule.

Setting up your Raspberry Pi and moisture sensor

Monitoring soil moisture with AWS IoT and Raspberry Pi 398

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Insert your microSD card into the Raspberry Pi, connect your monitor, keyboard, mouse, and, if
you're not using Wi-Fi, Ethernet cable. Do not connect the power cable yet.

Connect the JST jumper cable to the moisture sensor. The other side of the jumper has four wires:

• Green: I2C SCL

• White: I2C SDA

• Red: power (3.5 V)

• Black: ground

Hold the Raspberry Pi with the Ethernet jack on the right. In this orientation, there are two rows
of GPIO pins at the top. Connect the wires from the moisture sensor to the bottom row of pins
in the following order. Starting at the left-most pin, connect red (power), white (SDA), and green
(SCL). Skip one pin, and then connect the black (ground) wire. For more information, see Python
Computer Wiring.

Attach the power cable to the Raspberry Pi and plug the other end into a wall socket to turn it on.

Configure your Raspberry Pi

1. On Welcome to Raspberry Pi, choose Next.

2. Choose your country, language, timezone, and keyboard layout. Choose Next.

3. Enter a password for your Raspberry Pi, and then choose Next.

4. Choose your Wi-Fi network, and then choose Next. If you aren't using a Wi-Fi network, choose
Skip.

5. Choose Next to check for software updates. When the updates are complete, choose Restart
to restart your Raspberry Pi.

After your Raspberry Pi starts up, enable the I2C interface.

1. In the upper left corner of the Raspbian desktop, click the Raspberry icon, choose Preferences,
and then choose Raspberry Pi Configuration.

2. On the Interfaces tab, for I2C, choose Enable.

3. Choose OK.

Monitoring soil moisture with AWS IoT and Raspberry Pi 399

https://learn.adafruit.com/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor/python-circuitpython-test
https://learn.adafruit.com/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor/python-circuitpython-test

AWS IoT Core Developer Guide

The libraries for the Adafruit STEMMA moisture sensor are written for CircuitPython. To run them
on a Raspberry Pi, you need to install the latest version of Python 3.

1. Run the following commands from a command prompt to update your Raspberry Pi software:

sudo apt-get update

sudo apt-get upgrade

2. Run the following command to update your Python 3 installation:

sudo pip3 install --upgrade setuptools

3. Run the following command to install the Raspberry Pi GPIO libraries:

pip3 install RPI.GPIO

4. Run the following command to install the Adafruit Blinka libraries:

pip3 install adafruit-blinka

For more information, see Installing CircuitPython Libraries on Raspberry Pi.

5. Run the following command to install the Adafruit Seesaw libraries:

sudo pip3 install adafruit-circuitpython-seesaw

6. Run the following command to install the AWS IoT Device SDK for Python:

pip3 install AWSIoTPythonSDK

Your Raspberry Pi now has all of the required libraries. Create a file called moistureSensor.py
and copy the following Python code into the file:

from adafruit_seesaw.seesaw import Seesaw
from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTShadowClient
from board import SCL, SDA

import logging
import time
import json
import argparse
import busio

Monitoring soil moisture with AWS IoT and Raspberry Pi 400

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

AWS IoT Core Developer Guide

Shadow JSON schema:
#
{
"state": {
"desired":{
"moisture":<INT VALUE>,
"temp":<INT VALUE>
}
}
}

Function called when a shadow is updated
def customShadowCallback_Update(payload, responseStatus, token):

 # Display status and data from update request
 if responseStatus == "timeout":
 print("Update request " + token + " time out!")

 if responseStatus == "accepted":
 payloadDict = json.loads(payload)
 print("~~~~~~~~~~~~~~~~~~~~~~~")
 print("Update request with token: " + token + " accepted!")
 print("moisture: " + str(payloadDict["state"]["reported"]["moisture"]))
 print("temperature: " + str(payloadDict["state"]["reported"]["temp"]))
 print("~~~~~~~~~~~~~~~~~~~~~~~\n\n")

 if responseStatus == "rejected":
 print("Update request " + token + " rejected!")

Function called when a shadow is deleted
def customShadowCallback_Delete(payload, responseStatus, token):

 # Display status and data from delete request
 if responseStatus == "timeout":
 print("Delete request " + token + " time out!")

 if responseStatus == "accepted":
 print("~~~~~~~~~~~~~~~~~~~~~~~")
 print("Delete request with token: " + token + " accepted!")
 print("~~~~~~~~~~~~~~~~~~~~~~~\n\n")

 if responseStatus == "rejected":
 print("Delete request " + token + " rejected!")

Monitoring soil moisture with AWS IoT and Raspberry Pi 401

AWS IoT Core Developer Guide

Read in command-line parameters
def parseArgs():

 parser = argparse.ArgumentParser()
 parser.add_argument("-e", "--endpoint", action="store", required=True, dest="host",
 help="Your device data endpoint")
 parser.add_argument("-r", "--rootCA", action="store", required=True,
 dest="rootCAPath", help="Root CA file path")
 parser.add_argument("-c", "--cert", action="store", dest="certificatePath",
 help="Certificate file path")
 parser.add_argument("-k", "--key", action="store", dest="privateKeyPath",
 help="Private key file path")
 parser.add_argument("-p", "--port", action="store", dest="port", type=int,
 help="Port number override")
 parser.add_argument("-n", "--thingName", action="store", dest="thingName",
 default="Bot", help="Targeted thing name")
 parser.add_argument("-id", "--clientId", action="store", dest="clientId",
 default="basicShadowUpdater", help="Targeted client id")

 args = parser.parse_args()
 return args

Configure logging
AWSIoTMQTTShadowClient writes data to the log
def configureLogging():

 logger = logging.getLogger("AWSIoTPythonSDK.core")
 logger.setLevel(logging.DEBUG)
 streamHandler = logging.StreamHandler()
 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s -
 %(message)s')
 streamHandler.setFormatter(formatter)
 logger.addHandler(streamHandler)

Parse command line arguments
args = parseArgs()

if not args.certificatePath or not args.privateKeyPath:
 parser.error("Missing credentials for authentication.")
 exit(2)

Monitoring soil moisture with AWS IoT and Raspberry Pi 402

AWS IoT Core Developer Guide

If no --port argument is passed, default to 8883
if not args.port:
 args.port = 8883

Init AWSIoTMQTTShadowClient
myAWSIoTMQTTShadowClient = None
myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient(args.clientId)
myAWSIoTMQTTShadowClient.configureEndpoint(args.host, args.port)
myAWSIoTMQTTShadowClient.configureCredentials(args.rootCAPath, args.privateKeyPath,
 args.certificatePath)

AWSIoTMQTTShadowClient connection configuration
myAWSIoTMQTTShadowClient.configureAutoReconnectBackoffTime(1, 32, 20)
myAWSIoTMQTTShadowClient.configureConnectDisconnectTimeout(10) # 10 sec
myAWSIoTMQTTShadowClient.configureMQTTOperationTimeout(5) # 5 sec

Initialize Raspberry Pi's I2C interface
i2c_bus = busio.I2C(SCL, SDA)

Intialize SeeSaw, Adafruit's Circuit Python library
ss = Seesaw(i2c_bus, addr=0x36)

Connect to AWS IoT
myAWSIoTMQTTShadowClient.connect()

Create a device shadow handler, use this to update and delete shadow document
deviceShadowHandler =
 myAWSIoTMQTTShadowClient.createShadowHandlerWithName(args.thingName, True)

Delete current shadow JSON doc
deviceShadowHandler.shadowDelete(customShadowCallback_Delete, 5)

Read data from moisture sensor and update shadow
while True:

 # read moisture level through capacitive touch pad
 moistureLevel = ss.moisture_read()

 # read temperature from the temperature sensor
 temp = ss.get_temp()

 # Display moisture and temp readings
 print("Moisture Level: {}".format(moistureLevel))

Monitoring soil moisture with AWS IoT and Raspberry Pi 403

AWS IoT Core Developer Guide

 print("Temperature: {}".format(temp))

 # Create message payload
 payload = {"state":{"reported":{"moisture":str(moistureLevel),"temp":str(temp)}}}

 # Update shadow
 deviceShadowHandler.shadowUpdate(json.dumps(payload), customShadowCallback_Update,
 5)
 time.sleep(1)

Save the file to a place you can find it. Run moistureSensor.py from the command line with the
following parameters:

endpoint

Your custom AWS IoT endpoint. For more information, see Device Shadow REST API.

rootCA

The full path to your AWS IoT root CA certificate.

cert

The full path to your AWS IoT device certificate.

key

The full path to your AWS IoT device certificate private key.

thingName

Your thing name (in this case, RaspberryPi).

clientId

The MQTT client ID. Use RaspberryPi.

The command line should look like this:

python3 moistureSensor.py --endpoint your-endpoint --rootCA ~/certs/
AmazonRootCA1.pem --cert ~/certs/raspberrypi-certificate.pem.crt --key
~/certs/raspberrypi-private.pem.key --thingName RaspberryPi --clientId
RaspberryPi

Try touching the sensor, putting it in a planter, or putting it in a glass of water to see how the
sensor responds to various levels of moisture. If needed, you can change the threshold value in the

Monitoring soil moisture with AWS IoT and Raspberry Pi 404

AWS IoT Core Developer Guide

MoistureSensorRule. When the moisture sensor reading goes below the value specified in your
rule's SQL query statement, AWS IoT publishes a message to the Amazon SNS topic. You should
receive an email message that contains the moisture and temperature data.

After you have verified receipt of email messages from Amazon SNS, press CTRL+C to stop the
Python program. It is unlikely that the Python program will send enough messages to incur
charges, but it is a best practice to stop the program when you are done.

Monitoring soil moisture with AWS IoT and Raspberry Pi 405

AWS IoT Core Developer Guide

Managing devices with AWS IoT

AWS IoT provides a registry that helps you manage things. A thing is a representation of a specific
device or logical entity. It can be a physical device or sensor (for example, a light bulb or a switch
on a wall). It can also be a logical entity like an instance of an application or physical entity that
does not connect to AWS IoT but is related to other devices that do (for example, a car that has
engine sensors or a control panel).

Information about a thing is stored in the registry as JSON data. Here is an example thing:

{
 "version": 3,
 "thingName": "MyLightBulb",
 "defaultClientId": "MyLightBulb",
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 }
}

Things are identified by a name. Things can also have attributes, which are name-value pairs you
can use to store information about the thing, such as its serial number or manufacturer.

A typical device use case involves the use of the thing name as the default MQTT client ID.
Although we don't enforce a mapping between a thing's registry name and its use of MQTT client
IDs, certificates, or shadow state, we recommend you choose a thing name and use it as the MQTT
client ID for both the registry and the Device Shadow service. This provides organization and
convenience to your IoT fleet without removing the flexibility of the underlying device certificate
model or shadows.

You don't need to create a thing in the registry to connect a device to AWS IoT. Adding things to
the registry allows you to manage and search for devices more easily.

How to manage things with the registry

You use the AWS IoT console, AWS IoT API, or the AWS CLI to interact with the registry. The
following sections show how to use the CLI to work with the registry.

How to manage things with the registry 406

AWS IoT Core Developer Guide

When naming your thing objects:

• Don't use personally identifiable information in your thing name. The thing name can appear in
unencrypted communications and reports.

Create a thing

The following command shows how to use the AWS IoT CreateThing command from the CLI to
create a thing. You can't change a thing's name after you create it. To change a thing's name, create
a new thing, give it the new name, and then delete the old thing.

$ aws iot create-thing --thing-name "MyLightBulb" --attribute-payload "{\"attributes\":
 {\"wattage\":\"75\", \"model\":\"123\"}}"

The CreateThing command displays the name and Amazon Resource Name (ARN) of your new
thing:

{
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/MyLightBulb",
 "thingName": "MyLightBulb",
 "thingId": "12345678abcdefgh12345678ijklmnop12345678"
}

Note

We don't recommend using personally identifiable information in your thing names.

For more information, see create-thing from the AWS CLI Command Reference.

List things

You can use the ListThings command to list all things in your account:

$ aws iot list-things

{

Create a thing 407

https://docs.aws.amazon.com/cli/latest/reference/iot/create-thing.html

AWS IoT Core Developer Guide

 "things": [
 {
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyLightBulb"
 },
 {
 "attributes": {
 "numOfStates":"3"
 },
 "version": 11,
 "thingName": "MyWallSwitch"
 }
]
}

You can use the ListThings command to search for all things of a specific thing type:

$ aws iot list-things --thing-type-name "LightBulb"

{
 "things": [
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyRGBLight"
 },
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MySecondLightBulb"
 }

List things 408

AWS IoT Core Developer Guide

]
}

You can use the ListThings command to search for all things that have an attribute with a specific
value. This command searches up to three attributes.

$ aws iot list-things --attribute-name "wattage" --attribute-value "75"

{
 "things": [
 {
 "thingTypeName": "StopLight",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 3,
 "thingName": "MyLightBulb"
 },
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MyRGBLight"
 },
 {
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1,
 "thingName": "MySecondLightBulb"
 }
]
}

For more information, see list-things from the AWS CLI Command Reference.

List things 409

https://docs.aws.amazon.com/cli/latest/reference/iot/list-things.html

AWS IoT Core Developer Guide

Describe things

You can use the DescribeThing command to display more detailed information about a thing:

$ aws iot describe-thing --thing-name "MyLightBulb"
{
 "version": 3,
 "thingName": "MyLightBulb",
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/MyLightBulb",
 "thingId": "12345678abcdefgh12345678ijklmnop12345678",
 "defaultClientId": "MyLightBulb",
 "thingTypeName": "StopLight",
 "attributes": {
 "model": "123",
 "wattage": "75"
 }
}

For more information, see describe-thing from the AWS CLI Command Reference.

Update a thing

You can use the UpdateThing command to update a thing. This command updates only the thing's
attributes. You can't change a thing's name. To change a thing's name, create a new thing, give it
the new name, and then delete the old thing.

$ aws iot update-thing --thing-name "MyLightBulb" --attribute-payload "{\"attributes\":
 {\"wattage\":\"150\", \"model\":\"456\"}}"

The UpdateThing command does not produce output. You can use the DescribeThing command to
see the result:

$ aws iot describe-thing --thing-name "MyLightBulb"
{
 "attributes": {
 "model": "456",
 "wattage": "150"
 },
 "version": 2,
 "thingName": "MyLightBulb"

Describe things 410

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-thing.html

AWS IoT Core Developer Guide

}

For more information, see update-thing from the AWS CLI Command Reference.

Delete a thing

You can use the DeleteThing command to delete a thing:

$ aws iot delete-thing --thing-name "MyThing"

This command returns successfully with no error if the deletion is successful or you specify a thing
that doesn't exist.

For more information, see delete-thing from the AWS CLI Command Reference.

Attach a principal to a thing

A physical device must have an X.509 certificate to communicate with AWS IoT. You can associate
the certificate on your device with the thing in the registry that represents your device. To attach a
certificate to your thing, use the AttachThingPrincipal command:

$ aws iot attach-thing-principal --thing-name "MyLightBulb" --principal
 "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847"

The AttachThingPrincipal command does not produce any output.

For more information, see attach-thing-principal from the AWS CLI Command Reference.

Detach a principal from a thing

You can use the DetachThingPrincipal command to detach a certificate from a thing:

$ aws iot detach-thing-principal --thing-name "MyLightBulb" --principal
 "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847"

The DetachThingPrincipal command doesn't produce any output.

Delete a thing 411

https://docs.aws.amazon.com/cli/latest/reference/iot/update-thing.html
https://docs.aws.amazon.com/cli/latest/reference/iot/delete-thing.html
https://docs.aws.amazon.com/cli/latest/reference/iot/attach-thing-principal.html

AWS IoT Core Developer Guide

For more information, see detach-thing-principal from the AWS CLI Command Reference.

Thing types

Thing types allow you to store description and configuration information that is common to
all things associated with the same thing type. This simplifies the management of things in
the registry. For example, you can define a LightBulb thing type. All things associated with the
LightBulb thing type share a set of attributes: serial number, manufacturer, and wattage. When
you create a thing of type LightBulb (or change the type of an existing thing to LightBulb) you can
specify values for each of the attributes defined in the LightBulb thing type.

Although thing types are optional, their use makes it easier to discover things.

• Things with a thing type can have up to 50 attributes.

• Things without a thing type can have up to three attributes.

• A thing can be associated with only one thing type.

• There is no limit on the number of thing types you can create in your account.

Thing types are immutable. You can't change a thing type name after it has been created. You can
deprecate a thing type at any time to prevent new things from being associated with it. You can
also delete thing types that have no things associated with them.

Create a thing type

You can use the CreateThingType command to create a thing type:

$ aws iot create-thing-type

 --thing-type-name "LightBulb" --thing-type-properties
 "thingTypeDescription=light bulb type, searchableAttributes=wattage,model"

The CreateThingType command returns a response that contains the thing type and its ARN:

{
 "thingTypeName": "LightBulb",
 "thingTypeId": "df9c2d8c-894d-46a9-8192-9068d01b2886",
 "thingTypeArn": "arn:aws:iot:us-west-2:123456789012:thingtype/LightBulb"
}

Thing types 412

https://docs.aws.amazon.com/cli/latest/reference/iot/detach-thing-principal.html

AWS IoT Core Developer Guide

List thing types

You can use the ListThingTypes command to list thing types:

$ aws iot list-thing-types

The ListThingTypes command returns a list of the thing types defined in your AWS account:

{
 "thingTypes": [
 {
 "thingTypeName": "LightBulb",
 "thingTypeProperties": {
 "searchableAttributes": [
 "wattage",
 "model"
],
 "thingTypeDescription": "light bulb type"
 },
 "thingTypeMetadata": {
 "deprecated": false,
 "creationDate": 1468423800950
 }
 }
]
}

Describe a thing type

You can use the DescribeThingType command to get information about a thing type:

$ aws iot describe-thing-type --thing-type-name "LightBulb"

The DescribeThingType command returns information about the specified type:

{
 "thingTypeProperties": {
 "searchableAttributes": [
 "model",
 "wattage"
],

List thing types 413

AWS IoT Core Developer Guide

 "thingTypeDescription": "light bulb type"
 },
 "thingTypeId": "df9c2d8c-894d-46a9-8192-9068d01b2886",
 "thingTypeArn": "arn:aws:iot:us-west-2:123456789012:thingtype/LightBulb",
 "thingTypeName": "LightBulb",
 "thingTypeMetadata": {
 "deprecated": false,
 "creationDate": 1544466338.399
 }
}

Associate a thing type with a thing

You can use the CreateThing command to specify a thing type when you create a thing:

$ aws iot create-thing --thing-name "MyLightBulb" --thing-type-name "LightBulb" --
attribute-payload "{\"attributes\": {\"wattage\":\"75\", \"model\":\"123\"}}"

You can use the UpdateThing command at any time to change the thing type associated with a
thing:

$ aws iot update-thing --thing-name "MyLightBulb"
 --thing-type-name "LightBulb" --attribute-payload "{\"attributes\":
 {\"wattage\":\"75\", \"model\":\"123\"}}"

You can also use the UpdateThing command to disassociate a thing from a thing type.

Deprecate a thing type

Thing types are immutable. They can't be changed after they are defined. You can, however,
deprecate a thing type to prevent users from associating any new things with it. All existing things
associated with the thing type are unchanged.

To deprecate a thing type, use the DeprecateThingType command:

$ aws iot deprecate-thing-type --thing-type-name "myThingType"

You can use the DescribeThingType command to see the result:

$ aws iot describe-thing-type --thing-type-name "StopLight":

Associate a thing type with a thing 414

AWS IoT Core Developer Guide

{
 "thingTypeName": "StopLight",
 "thingTypeProperties": {
 "searchableAttributes": [
 "wattage",
 "numOfLights",
 "model"
],
 "thingTypeDescription": "traffic light type",
 },
 "thingTypeMetadata": {
 "deprecated": true,
 "creationDate": 1468425854308,
 "deprecationDate": 1468446026349
 }
}

Deprecating a thing type is a reversible operation. You can undo a deprecation by using the --
undo-deprecate flag with the DeprecateThingType CLI command:

$ aws iot deprecate-thing-type --thing-type-name "myThingType" --undo-deprecate

You can use the DescribeThingType CLI command to see the result:

$ aws iot describe-thing-type --thing-type-name "StopLight":

{
 "thingTypeName": "StopLight",
 "thingTypeArn": "arn:aws:iot:us-east-1:123456789012:thingtype/StopLight",
 "thingTypeId": "12345678abcdefgh12345678ijklmnop12345678"
 "thingTypeProperties": {
 "searchableAttributes": [
 "wattage",
 "numOfLights",
 "model"
],
 "thingTypeDescription": "traffic light type"
 },
 "thingTypeMetadata": {
 "deprecated": false,
 "creationDate": 1468425854308,

Deprecate a thing type 415

AWS IoT Core Developer Guide

 }
}

Delete a thing type

You can delete thing types only after they have been deprecated. To delete a thing type, use the
DeleteThingType command:

$ aws iot delete-thing-type --thing-type-name "StopLight"

Note

Before you can delete a tying type, wait for five minutes after you deprecate it.

Static thing groups

Static thing groups allow you to manage several things at once by categorizing them into groups.
Static thing groups contain a group of things that are managed by using the console, CLI, or the
API. Dynamic thing groups, on the other hand, contain things that match a specified query. Static
thing groups can also contain other static thing groups — you can build a hierarchy of groups. You
can attach a policy to a parent group and it is inherited by its child groups, and by all of the things
in the group and in its child groups. This makes control of permissions easy for large numbers of
things.

Note

Thing group policies don't allow access to AWS IoT Greengrass data plane operations. To
allow a thing access to an AWS IoT Greengrass data plane operation, add the permission
to an AWS IoT policy that you attach to the thing's certificate. For more information, see
Device authentication and authorization in the AWS IoT Greengrass developer guide.

Here are the things you can do with static thing groups:

• Create, describe or delete a group.

• Add a thing to a group, or to more than one group.

• Remove a thing from a group.

Delete a thing type 416

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth#iot-policies.html

AWS IoT Core Developer Guide

• List the groups you have created.

• List all child groups of a group (its direct and indirect descendants.)

• List the things in a group, including all the things in its child groups.

• List all ancestor groups of a group (its direct and indirect parents.)

• Add, delete or update the attributes of a group. (Attributes are name-value pairs you can use to
store information about a group.)

• Attach or detach a policy to or from a group.

• List the policies attached to a group.

• List the policies inherited by a thing (by virtue of the policies attached to its group, or one of its
parent groups.)

• Configure logging options for things in a group. See Configure AWS IoT logging.

• Create jobs that are sent to and executed on every thing in a group and its child groups. See
Jobs.

Note

When a thing is attached to a static thing group to which an AWS IoT Core policy is
attached to, the thing name must match the client ID.

Here are some limitations of static thing groups:

• A group can have at most one direct parent.

• If a group is a child of another group, specify this at the time it is created.

• You can't change a group's parent later, so be sure to plan your group hierarchy and create a
parent group before you create any child groups it contains.

•
The number of groups to which a thing can belong is limited.

• You can't add a thing to more than one group in the same hierarchy. (In other words, you can't
add a thing to two groups that share a common parent.)

• You can't rename a group.

• Thing group names can't contain international characters, such as û, é and ñ.

• Don't use personally identifiable information in your thing group name. The thing group name
can appear in unencrypted communications and reports.

Static thing groups 417

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-limits

AWS IoT Core Developer Guide

Attaching and detaching policies to groups can enhance the security of your AWS IoT operations in
a number of significant ways. The per-device method of attaching a policy to a certificate, which
is then attached to a thing, is time consuming and makes it difficult to quickly update or change
policies across a fleet of devices. Having a policy attached to the thing's group saves steps when
it is time to rotate the certificates on a thing. And policies are dynamically applied to things when
they change group membership, so you aren't required to re-create a complex set of permissions
each time a device changes membership in a group.

Create a static thing group

Use the CreateThingGroup command to create a static thing group:

$ aws iot create-thing-group --thing-group-name LightBulbs

The CreateThingGroup command returns a response that contains the static thing group's name,
ID, and ARN:

{
 "thingGroupName": "LightBulbs",
 "thingGroupId": "abcdefgh12345678ijklmnop12345678qrstuvwx",
 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/LightBulbs"
}

Note

We don't recommend using personally identifiable information in your thing group names.

Here is an example that specifies a parent of the static thing group when it is created:

$ aws iot create-thing-group --thing-group-name RedLights --parent-group-name
 LightBulbs

As before, the CreateThingGroup command returns a response that contains the static thing
group's name,, ID, and ARN:

{
 "thingGroupName": "RedLights",
 "thingGroupId": "abcdefgh12345678ijklmnop12345678qrstuvwx",

Create a static thing group 418

AWS IoT Core Developer Guide

 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights",
}

Important

Keep in mind the following limits when creating thing group hierarchies:

• A thing group can have only one direct parent.

• The number of direct child groups a thing group can have is limited.

• The maximum depth of a group hierarchy is limited.

• The number of attributes a thing group can have is limited. (Attributes are name-value
pairs you can use to store information about a group.) The lengths of each attribute
name and each value are also limited.

Describe a thing group

You can use the DescribeThingGroup command to get information about a thing group:

$ aws iot describe-thing-group --thing-group-name RedLights

The DescribeThingGroup command returns information about the specified group:

{
 "thingGroupName": "RedLights",
 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights",
 "thingGroupId": "12345678abcdefgh12345678ijklmnop12345678",
 "version": 1,
 "thingGroupMetadata": {
 "creationDate": 1478299948.882
 "parentGroupName": "Lights",
 "rootToParentThingGroups": [
 {
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
ShinyObjects",
 "groupName": "ShinyObjects"
 },
 {
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/LightBulbs",
 "groupName": "LightBulbs"

Describe a thing group 419

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits

AWS IoT Core Developer Guide

 }
]
 },
 "thingGroupProperties": {
 "attributePayload": {
 "attributes": {
 "brightness": "3400_lumens"
 },
 },
 "thingGroupDescription": "string"
 },
}

Add a thing to a static thing group

You can use the AddThingToThingGroup command to add a thing to a static thing group:

$ aws iot add-thing-to-thing-group --thing-name MyLightBulb --thing-group-name
 RedLights

The AddThingToThingGroup command does not produce any output.

Important

You can add a thing to a maximum of 10 groups. But you can't add a thing to more than
one group in the same hierarchy. (In other words, you can't add a thing to two groups which
share a common parent.)
If a thing belongs to as many thing groups as possible, and one or more of those groups is
a dynamic thing group, you can use the overrideDynamicGroups flag to make static groups
take priority over dynamic groups.

Remove a thing from a static thing group

You can use the RemoveThingFromThingGroup command to remove a thing from a group:

$ aws iot remove-thing-from-thing-group --thing-name MyLightBulb --thing-group-name
 RedLights

The RemoveThingFromThingGroup command does not produce any output.

Add a thing to a static thing group 420

https://docs.aws.amazon.com/iot/latest/apireference/API_AddThingToThingGroup.html#iot-AddThingToThingGroup-request-overrideDynamicGroups

AWS IoT Core Developer Guide

List things in a thing group

You can use the ListThingsInThingGroup command to list the things that belong to a group:

$ aws iot list-things-in-thing-group --thing-group-name LightBulbs

The ListThingsInThingGroup command returns a list of the things in the given group:

{
 "things":[
 "TestThingA"
]
}

With the --recursive parameter, you can list things belonging to a group and those in any of its
child groups:

$ aws iot list-things-in-thing-group --thing-group-name LightBulbs --recursive

{
 "things":[
 "TestThingA",
 "MyLightBulb"
]
}

Note

This operation is eventually consistent. In other words, changes to the thing group might
not be reflected at once.

List thing groups

You can use the ListThingGroups command to list your account's thing groups:

$ aws iot list-thing-groups

The ListThingGroups command returns a list of the thing groups in your AWS account:

List things in a thing group 421

https://web.stanford.edu/class/cs345d-01/rl/eventually-consistent.pdf

AWS IoT Core Developer Guide

{
 "thingGroups": [
 {
 "groupName": "LightBulbs",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/LightBulbs"
 },
 {
 "groupName": "RedLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights"
 },
 {
 "groupName": "RedLEDLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLEDLights"
 },
 {
 "groupName": "RedIncandescentLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
RedIncandescentLights"
 }
 {
 "groupName": "ReplaceableObjects",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
ReplaceableObjects"
 }
]
}

Use the optional filters to list those groups that have a given group as parent (--parent-group)
or groups whose name begins with a given prefix (--name-prefix-filter.) The --recursive
parameter allows you to list all children groups, not just direct child groups of a thing group:

$ aws iot list-thing-groups --parent-group LightBulbs

In this case, the ListThingGroups command returns a list of the direct child groups of the thing
group defined in your AWS account:

{
 "childGroups":[
 {
 "groupName": "RedLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights"
 }

List thing groups 422

AWS IoT Core Developer Guide

]
}

Use the --recursive parameter with the ListThingGroups command to list all child groups of a
thing group, not just direct children:

$ aws iot list-thing-groups --parent-group LightBulbs --recursive

The ListThingGroups command returns a list of all child groups of the thing group:

{
 "childGroups":[
 {
 "groupName": "RedLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights"
 },
 {
 "groupName": "RedLEDLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLEDLights"
 },
 {
 "groupName": "RedIncandescentLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
RedIncandescentLights"
 }
]
}

Note

This operation is eventually consistent. In other words, changes to the thing group might
not be reflected at once.

List groups for a thing

You can use the ListThingGroupsForThing command to list the direct groups that a thing belongs
to:

$ aws iot list-thing-groups-for-thing --thing-name MyLightBulb

List groups for a thing 423

https://web.stanford.edu/class/cs345d-01/rl/eventually-consistent.pdf

AWS IoT Core Developer Guide

The ListThingGroupsForThing command returns a list of the direct thing groups that this thing
belongs to:

{
 "thingGroups":[
 {
 "groupName": "LightBulbs",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/LightBulbs"
 },
 {
 "groupName": "RedLights",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/RedLights"
 },
 {
 "groupName": "ReplaceableObjects",
 "groupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
ReplaceableObjects"
 }
]
}

Update a static thing group

You can use the UpdateThingGroup command to update the attributes of a static thing group:

$ aws iot update-thing-group --thing-group-name "LightBulbs" --thing-group-properties
 "thingGroupDescription=\"this is a test group\", attributePayload=\"{\"attributes
\"={\"Owner\"=\"150\",\"modelNames\"=\"456\"}}"

The UpdateThingGroup command returns a response that contains the group's version number
after the update:

{
 "version": 4
}

Note

The number of attributes that a thing can have is limited.

Update a static thing group 424

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-limits

AWS IoT Core Developer Guide

Delete a thing group

To delete a thing group, use the DeleteThingGroup command:

$ aws iot delete-thing-group --thing-group-name "RedLights"

The DeleteThingGroup command does not produce any output.

Important

If you try to delete a thing group that has child thing groups, you receive an error:

A client error (InvalidRequestException) occurred when calling the
 DeleteThingGroup
operation: Cannot delete thing group : RedLights when there are still child
 groups attached to it.

Before you delete the group, delete any child groups first.

You can delete a group that has child things, but any permissions granted to the things by
membership in the group no longer apply. Before deleting a group that has a policy attached,
check carefully that removing those permissions would not stop the things in the group from
being able to function properly. Also, commands that show which groups a thing belongs to (for
example, ListGroupsForThing) might continue to show the group while records in the cloud are
being updated.

Attach a policy to a static thing group

You can use the AttachPolicy command to attach a policy to a static thing group and so, by
extension, to all things in that group and things in any of its child groups:

$ aws iot attach-policy \
 --target "arn:aws:iot:us-west-2:123456789012:thinggroup/LightBulbs" \
 --policy-name "myLightBulbPolicy"

The AttachPolicy command does not produce any output

Delete a thing group 425

AWS IoT Core Developer Guide

Important

You can attach a maximum number of two policies to a group.

Note

We don't recommend using personally identifiable information in your policy names.

The --target parameter can be a thing group ARN (as above), a certificate ARN, or an Amazon
Cognito Identity. For more information about policies, certificates and authentication, see
Authentication.

For more information, see AWS IoT Core policies.

Detach a policy from a static thing group

You can use the DetachPolicy command to detach a policy from a group and so, by extension, to
all things in that group and things in any of its child groups:

$ aws iot detach-policy --target "arn:aws:iot:us-west-2:123456789012:thinggroup/
LightBulbs" --policy-name "myLightBulbPolicy"

The DetachPolicy command does not produce any output.

List the policies attached to a static thing group

You can use the ListAttachedPolicies command to list the policies attached to a static thing group:

$ aws iot list-attached-policies --target "arn:aws:iot:us-
west-2:123456789012:thinggroup/RedLights"

The --target parameter can be a thing group ARN (as above), a certificate ARN, or an Amazon
Cognito identity.

Add the optional --recursive parameter to include all policies attached to the group's parent
groups.

Detach a policy from a static thing group 426

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html

AWS IoT Core Developer Guide

The ListAttachedPolicies command returns a list of policies:

{
 "policies": [
 "MyLightBulbPolicy"
 ...
]
}

List the groups for a policy

You can use the ListTargetsForPolicy command to list the targets, including any groups, that a
policy is attached to:

$ aws iot list-targets-for-policy --policy-name "MyLightBulbPolicy"

Add the optional --page-size number parameter to specify the maximum number of results to
be returned for each query, and the --marker string parameter on subsequent calls to retrieve
the next set of results, if any.

The ListTargetsForPolicy command returns a list of targets and the token to use to retrieve more
results:

{
 "nextMarker": "string",
 "targets": ["string" ...]
}

Get effective policies for a thing

You can use the GetEffectivePolicies command to list the policies in effect for a thing, including
the policies attached to any groups the thing belongs to (whether the group is a direct parent or
indirect ancestor):

$ aws iot get-effective-policies \
 --thing-name "MyLightBulb" \
 --principal "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847"

List the groups for a policy 427

AWS IoT Core Developer Guide

Use the --principal parameter to specify the ARN of the certificate attached to the thing. If
you are using Amazon Cognito identity authentication, use the --cognito-identity-pool-
id parameter and, optionally, add the --principal parameter to specify an Amazon Cognito
identity. If you specify only the --cognito-identity-pool-id, the policies associated with that
identity pool's role for unauthenticated users are returned. If you use both, the policies associated
with that identity pool's role for authenticated users are returned.

The --thing-name parameter is optional and can be used instead of the --principal
parameter. When used, the policies attached to any group the thing belongs to, and the policies
attached to any parent groups of these groups (up to the root group in the hierarchy) are returned.

The GetEffectivePolicies command returns a list of policies:

{
 "effectivePolicies": [
 {
 "policyArn": "string",
 "policyDocument": "string",
 "policyName": "string"
 }
 ...
]
}

Test authorization for MQTT actions

You can use the TestAuthorization command to test whether an MQTT action (Publish,
Subscribe) is allowed for a thing:

aws iot test-authorization \
 --principal "arn:aws:iot:us-east-1:123456789012:cert/
a0c01f5835079de0a7514643d68ef8414ab739a1e94ee4162977b02b12842847" \
 --auth-infos "{\"actionType\": \"PUBLISH\", \"resources\": [\"arn:aws:iot:us-
east-1:123456789012:topic/my/topic\"]}"

Use the --principal parameter to specify the ARN of the certificate attached to the thing. If
using Amazon Cognito Identity authentication, specify a Cognito Identity as the --principal
or use the --cognito-identity-pool-id parameter, or both. (If you specify only the --
cognito-identity-pool-id then the policies associated with that identity pool's role for

Test authorization for MQTT actions 428

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

AWS IoT Core Developer Guide

unauthenticated users are considered. If you use both, the policies associated with that identity
pool's role for authenticated users are considered.

Specify one or more MQTT actions you want to test by listing sets of resources and action types
following the --auth-infos parameter. The actionType field should contain "PUBLISH",
"SUBSCRIBE", "RECEIVE", or "CONNECT". The resources field should contain a list of resource
ARNs. See AWS IoT Core policies for more information.

You can test the effects of adding policies by specifying them with the --policy-names-to-add
parameter. Or you can test the effects of removing policies by them with the --policy-names-
to-skip parameter.

You can use the optional --client-id parameter to further refine your results.

The TestAuthorization command returns details on actions that were allowed or denied for each
set of --auth-infos queries you specified:

{
 "authResults": [
 {
 "allowed": {
 "policies": [
 {
 "policyArn": "string",
 "policyName": "string"
 }
]
 },
 "authDecision": "string",
 "authInfo": {
 "actionType": "string",
 "resources": ["string"]
 },
 "denied": {
 "explicitDeny": {
 "policies": [
 {
 "policyArn": "string",
 "policyName": "string"
 }
]
 },

Test authorization for MQTT actions 429

AWS IoT Core Developer Guide

 "implicitDeny": {
 "policies": [
 {
 "policyArn": "string",
 "policyName": "string"
 }
]
 }
 },
 "missingContextValues": ["string"]
 }
]
}

Dynamic thing groups

Dynamic thing groups are created from specific search queries in the registry. Search query
parameters such as device connectivity, device shadow creation, and AWS IoT Device Defender
violations data support this. Dynamic thing groups require fleet indexing enabled to index, search,
and aggregate your devices' data. You can preview the things in a dynamic thing group using a
fleet indexing search query before creating it. For more information, see Fleet indexing and Query
syntax.

Note

Dynamic thing group operations are metered under registry operations. For more
information, see AWS IoT Core additional metering details.

Dynamic thing groups differ from static thing groups in the following ways:

• Thing membership is not explicitly defined. To create a dynamic thing group, define a search
query string to determine group membership.

• Dynamic thing groups can't be part of a hierarchy.

• Dynamic thing groups can't have policies applied to them.

• You use a different set of commands to create, update, and delete dynamic thing groups. For all
other operations, you use the same commands for both types of thing groups.

• The number of dynamic groups per AWS account is limited.

Dynamic thing groups 430

https://aws.amazon.com/iot-core/pricing/additional-details/
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits

AWS IoT Core Developer Guide

• Don't use personally identifiable information in your thing group name. The thing group name
can appear in unencrypted communications and reports.

For more information about static thing groups, see Static thing groups.

Use cases of dynamic thing groups

You can use dynamic thing groups for the following use cases:

Specify a dynamic thing group as a target for a job

Creating a continuous job with a dynamic thing group as target allows you to automatically target
devices when they meet the desired criteria. The criteria can be the connectivity state or any
criteria stored in registry or shadow such as software version or model. If a thing doesn’t appear in
the dynamic thing group, it won’t receive the job document from the job.

For example, if your device fleet requires a firmware update to minimize the risk of interruption
during the update process, and you only want to update the firmware on devices with a battery
life greater than 80%. You can create a dynamic thing group called 80PercentBatteryLife that only
includes devices with a battery life above 80% and use it as the target for your job. Only devices
that meet your battery life criteria will receive the firmware update. As devices reach the 80%
battery life criteria, they are automatically added to the dynamic thing group and will receive the
firmware update.

You may also have multiple device models with different firmware or operating system,
necessitating different versions of new software updates. This is the most common use case for
dynamic groups with continuous jobs, where you can create a dynamic group for each device
model, firmware and OS combination. You can then set up continuous jobs to each of these
dynamic groups to push software updates as devices automatically become members of these
groups based on the defined criteria.

For more information about specifying thing groups as job targets, see CreateJob.

Use dynamic group membership changes to perform desired actions

Each time a device is added to or removed from a dynamic thing group, a notification is sent to
an MQTT topic as part of registry event updates. You can configure AWS IoT Core rules to interact
with AWS services based on the dynamic group membership updates and take desired actions.
Example actions include writing to Amazon DynamoDB, invoking a Lambda function, or sending a
notification to Amazon SNS.

Use cases of dynamic thing groups 431

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/developerguide/registry-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

AWS IoT Core Developer Guide

Add devices to a dynamic thing group for automatic violation detection

AWS IoT Device Defender Detect customers can define a security profile on a dynamic thing group.
Devices of the dynamic thing group are automatically detected for violations by the security profile
defined on the group.

Set log levels on dynamic thing groups to observe devices with fine-grained
logging

You can specify a log level on a dynamic thing group. This is useful if you only want to customize
logging level and detail for devices that meet certain criteria. For example, if you suspect devices
with certain firmware version are causing errors on a specific rule's published topic, you might want
to set detailed logging to debug these issues. In this case, you can create a dynamic group for all
devices that have this firmware version, which we assume is stored as a registry attribute or in a
device shadow. You can then set a debug level, with logging target defined as this dynamic thing
group. For more information about fine-grained logging, see Monitor AWS IoT using CloudWatch
Logs. For more information about how to specify a logging level for a specific thing group, see
Configure resource-specific logging in AWS IoT.

Create a dynamic thing group

Use the CreateDynamicThingGroup command to create a dynamic thing group. To create a
dynamic thing group for the 80PercentBatteryLife scenario, use the create-dynamic-thing-group
CLI command:

$ aws iot create-dynamic-thing-group --thing-group-name "80PercentBatteryLife" --query-
string "attributes.batterylife80"

Note

Don't use personally identifiable information in your dynamic thing group names.

The CreateDynamicThingGroup command returns a response. The response contains the index
name, query string, query version, thing group name, thing group ID, and the Amazon Resource
Name (ARN) of your thing group:

{

Create a dynamic thing group 432

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html#fine-grained-logging
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html#fine-grained-logging
https://docs.aws.amazon.com/iot/latest/developerguide/configure-logging.html#fine-logging-cli

AWS IoT Core Developer Guide

 "indexName": "AWS_Things",
 "queryVersion": "2017-09-30",
 "thingGroupName": "80PercentBatteryLife",
 "thingGroupArn": "arn:aws:iot:us-
west-2:123456789012:thinggroup/80PercentBatteryLife",
 "queryString": "attributes.batterylife80\n",
 "thingGroupId": "abcdefgh12345678ijklmnop12345678qrstuvwx"
}

The creation of dynamic thing groups doesn't happen at once. The dynamic thing group backfill
takes time to complete. When you create a dynamic thing group, the status of the group is set to
BUILDING. When the backfill is complete, the status changes to ACTIVE. To check the status of
your dynamic thing group, use the DescribeThingGroup command.

Describe a dynamic thing group

Use the DescribeThingGroup command to get information about a dynamic thing group:

$ aws iot describe-thing-group --thing-group-name "80PercentBatteryLife"

The DescribeThingGroup command returns information about the specified group:

{
 "status": "ACTIVE",
 "indexName": "AWS_Things",
 "thingGroupName": "80PercentBatteryLife",
 "thingGroupArn": "arn:aws:iot:us-
west-2:123456789012:thinggroup/80PercentBatteryLife",
 "queryString": "attributes.batterylife80\n",
 "version": 1,
 "thingGroupMetadata": {
 "creationDate": 1548716921.289
 },
 "thingGroupProperties": {},
 "queryVersion": "2017-09-30",
 "thingGroupId": "84dd9b5b-2b98-4c65-84e4-be0e1ecf4fd8"
}

Running DescribeThingGroup on a dynamic thing group returns attributes that are specific to the
dynamic thing groups. Example return attributes are the queryString and the status.

Describe a dynamic thing group 433

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeThingGroup.html

AWS IoT Core Developer Guide

The status of a dynamic thing group can take the following values:

ACTIVE

The dynamic thing group is ready for use.

BUILDING

The dynamic thing group is being created, and thing membership is being processed.

REBUILDING

The dynamic thing group's membership is being updated, following the adjustment of the
group's search query.

Note

After you create a dynamic thing group, use it regardless of its status. Only dynamic thing
groups with an ACTIVE status include all of the things that match the search query for that
dynamic thing group. Dynamic thing groups with BUILDING and REBUILDING statuses
might not include all of the things that match the search query.

Update a dynamic thing group

Use the UpdateDynamicThingGroup command to update the attributes of a dynamic thing group,
including the group's search query. The following command updates two attributes. One is the
thing group description, and the other is the query string that changes the membership criteria to
battery life > 85:

$ aws iot update-dynamic-thing-group --thing-group-name "80PercentBatteryLife" --thing-
group-properties "thingGroupDescription=\"This thing group contains devices with a
 battery life greater than 85 percent.\"" --query-string "attributes.batterylife85"

The UpdateDynamicThingGroup command returns a response that contains the group's version
number after the update:

{
 "version": 2

Update a dynamic thing group 434

AWS IoT Core Developer Guide

}

The update of a dynamic thing group doesn't happen at once. The dynamic thing group backfill
takes time to complete. When you update a dynamic thing group, the status of the group changes
to REBUILDING while the group updates its membership. When the backfill is complete, the status
changes to ACTIVE. To check the status of your dynamic thing group, use the DescribeThingGroup
command.

Delete a dynamic thing group

Use the DeleteDynamicThingGroup command to delete a dynamic thing group:

$ aws iot delete-dynamic-thing-group --thing-group-name "80PercentBatteryLife"

The DeleteDynamicThingGroup command doesn't produce any output.

Commands that show which groups a thing belongs to (for example, ListGroupsForThing) might
continue to show the group while records in the cloud are being updated.

Dynamic and Static Thing Group Limitations

Dynamic thing groups and static thing groups share the following limitations:

• The number of attributes that a thing group can have is limited.

• The number of groups to which a thing can belong is limited.

• You can't rename thing groups.

• Thing group names can't contain international characters, such as û, é, and ñ.

Dynamic Thing Group Limitations

Dynamic thing groups have the following limitations:

Fleet indexing

With the fleet indexing service enabled, you can perform search queries on your fleet of devices.
You can create and manage dynamic thing groups after the fleet indexing backfill is completed.
The completion time for the backfill process is directly affeted by the size of your device fleet

Delete a dynamic thing group 435

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeThingGroup.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits

AWS IoT Core Developer Guide

registered with the AWS Cloud. After you enable the fleet indexing service for dynamic thing
groups, you cannot disable it until you delete all of your dynamic thing groups.

Note

If you have permissions to query the fleet index, you can access the data of things across
the entire fleet.

The number of dynamic thing groups is limited

The number of dynamic thing groups is limited.

Successful commands can log errors

When you create or update a dynamic thing group, it's possible that some things are eligible
for inclusion in a dynamic thing group, but they are not added to it. That scenario will
cause a succeessful create or update command while logging an error and generating an
AddThingToDynamicThingGroupsFailed metric. A single metric can represent multiple log
entries.

An error log entry in the CloudWatch log is created when the following occurs:

• An eligible thing can't be added to a dynamic thing group.

• A thing is removed from a dynamic thing group to add it to another group.

When a thing becomes eligible to be added to a dynamic thing group, consider the following:

• Is the thing already in as many groups as it can be? (See limits)

• NO: The thing is added to the dynamic thing group.

• YES: Is the thing a member of any dynamic thing groups?

• NO: The thing can't be added to the dynamic thing group, an error is logged, and an
AddThingToDynamicThingGroupsFailed metric is generated.

• YES: Is the dynamic thing group to join older than any dynamic thing group that the thing is
already a member of?

• NO: The thing can't be added to the dynamic thing group, an error is logged, and an
AddThingToDynamicThingGroupsFailed metric is generated.

Dynamic Thing Group Limitations 436

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-group-limits
https://docs.aws.amazon.com/iot/latest/apireference/cwl-format.html#dynamic-group-logs
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-limits

AWS IoT Core Developer Guide

• YES: Remove the thing from the most recent dynamic thing group, log an error,
and add the thing to the dynamic thing group. This generates an error and an
AddThingToDynamicThingGroupsFailed metric for the dynamic thing group from
which the thing was removed.

When a thing in a dynamic thing group no longer meets the search query, the thing is removed
from the dynamic thing group. Likewise, when a thing is updated to meet a dynamic thing group's
search query, the thing is then added to the group as previously described. These additions and
removals are normal and don't produce error log entries.

With overrideDynamicGroups enabled, static groups take priority over dynamic
groups

The number of groups to which a thing can belong is limited. When you use the
AddThingToThingGroup or UpdateThingGroupsForThing commands to update thing membership,
adding the --overrideDynamicGroups parameter gives static thing groups priority over
dynamic thing groups.

When you add a thing to a static thing group, consider the following:

• Does the thing already belong to the maximum number of groups?

• NO: The thing is added to the static thing group.

• YES: Is the thing in any dynamic groups?

• NO: The thing can't be added to the thing group. The command raises an exception.

• YES: Was --overrideDynamicGroups enabled?

• NO: The thing can't be added to the thing group. The command raises an exception.

• YES: The thing is removed from the most recently created dynamic thing group, an error
is logged, and an AddThingToDynamicThingGroupsFailed metric is generated for the
dynamic thing group from which the thing was removed. Then, the thing is added to the
static thing group.

Older dynamic thing groups take priority over newer ones

The number of groups to which a thing can belong is limited. When a create or update operation
creates additional group eligibility for a thing and the thing has reached its group limit, removal
from another dynamic thing group can occur to enable this addition. For more information about

Dynamic Thing Group Limitations 437

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-limits
https://docs.aws.amazon.com/iot/latest/apireference/API_AddThingToThingGroup.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateThingGroupsForThing.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#thing-limits

AWS IoT Core Developer Guide

how this occurs, see Successful commands can log errors and With overrideDynamicGroups
enabled, static groups take priority over dynamic groups for examples.

When a thing is removed from a dynamic thing group, an error is logged and an event is raised.

You can't apply policies to dynamic thing groups

Attempting to apply a policy to a dynamic thing group generates an exception.

Dynamic thing group membership is eventually consistent

Only the final state of a thing is evaluated for the registry. Intermediary states can be skipped
if states are updated rapidly. Avoid associating a rule or job with a dynamic thing group whose
membership depends on an intermediary state.

Dynamic Thing Group Limitations 438

AWS IoT Core Developer Guide

Tagging your AWS IoT resources

To help you manage and organize your thing groups, thing types, topic rules, jobs, scheduled audits
and security profiles you can optionally assign your own metadata to each of these resources in the
form of tags. This section describes tags and shows you how to create them.

To help you manage your costs related to things, you can create billing groups that contain things.
You can then assign tags that contain your metadata to each of these billing groups. This section
also discusses billing groups and the commands available to create and manage them.

Tag basics

You can use tags to categorize your AWS IoT resources in different ways (for example, by purpose,
owner, or environment). This is useful when you have many resources of the same type — you can
quickly identify a resource based on the tags you've assigned to it. Each tag consists of a key and
optional value, both of which you define. For example, you can define a set of tags for your thing
types that helps you track devices by type. We recommend that you create a set of tag keys that
meets your needs for each kind of resource. Using a consistent set of tag keys makes it easier for
you to manage your resources.

You can search for and filter resources based on the tags you add or apply. You can also use billing
group tags to categorize and track your costs. You can also use tags to control access to your
resources as described in Using tags with IAM policies.

For ease of use, the Tag Editor in the AWS Management Console provides a central, unified way to
create and manage your tags. For more information, see Working with Tag Editor in Working with
the AWS Management Console.

You can also work with tags using the AWS CLI and the AWS IoT API. You can associate tags with
thing groups, thing types, topic rules, jobs, security profiles, policies, billing groups, and the
packages and versions associated with things when you create them by using the Tags field in the
following commands:

• CreateBillingGroup

• CreateDestination

• CreateDeviceProfile

Tag basics 439

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateBillingGroup
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CreateDestination.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CreateDeviceProfile.html

AWS IoT Core Developer Guide

• CreateDynamicThingGroup

• CreateJob

• CreateOTAUpdate

• CreatePolicy

• CreateScheduledAudit

• CreateSecurityProfile

• CreateServiceProfile

• CreateStream

• CreateThingGroup

• CreateThingType

• CreateTopicRule

• CreateWirelessGateway

• CreateWirelessDevice

You can add, modify, or delete tags for existing resources that support tagging by using the
following commands:

• TagResource

• ListTagsForResource

• UntagResource

You can edit tag keys and values, and you can remove tags from a resource at any time. You can set
the value of a tag to an empty string, but you can't set the value of a tag to null. If you add a tag
that has the same key as an existing tag on that resource, the new value overwrites the old value. If
you delete a resource, any tags associated with the resource are also deleted.

Tag restrictions and limitations

The following basic restrictions apply to tags:

• Maximum number of tags per resource — 50

• Maximum key length — 127 Unicode characters in UTF-8

• Maximum value length — 255 Unicode characters in UTF-8

Tag restrictions and limitations 440

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateDynamicThingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateOTAUpdate
https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePolicy.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateScheduledAudit
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateSecurityProfile
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CreateServiceProfile.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateThingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateThingType
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateTopicRule
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CreateWirelessGateway.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CreateWirelessDevice.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TagResource
https://docs.aws.amazon.com/iot/latest/apireference/API_ListTagsForResource
https://docs.aws.amazon.com/iot/latest/apireference/API_UntagResource

AWS IoT Core Developer Guide

• Tag keys and values are case sensitive.

• Do not use the aws: prefix in your tag names or values. It's reserved for AWS use. You can't edit
or delete tag names or values with this prefix. Tags with this prefix don't count against your tags
per resource limit.

• If your tagging schema is used across multiple services and resources, remember that other
services might have restrictions on allowed characters. Allowed characters include letters, spaces,
and numbers representable in UTF-8, and the following special characters: + - = . _ : / @.

Using tags with IAM policies

You can apply tag-based resource-level permissions in the IAM policies you use for AWS IoT API
actions. This gives you better control over what resources a user can create, modify, or use. You use
the Condition element (also called the Condition block) with the following condition context
keys and values in an IAM policy to control user access (permissions) based on a resource's tags:

• Use aws:ResourceTag/tag-key: tag-value to allow or deny user actions on resources with
specific tags.

• Use aws:RequestTag/tag-key: tag-value to require that a specific tag be used (or not
used) when making an API request to create or modify a resource that allows tags.

• Use aws:TagKeys: [tag-key, ...] to require that a specific set of tag keys be used (or not
used) when making an API request to create or modify a resource that allows tags.

Note

The condition context keys and values in an IAM policy apply only to those AWS IoT actions
where an identifier for a resource capable of being tagged is a required parameter. For
example, the use of DescribeEndpoint is not allowed or denied on the basis of condition
context keys and values because no taggable resource (thing groups, thing types, topic
rules, jobs, or security profile) is referenced in this request. For more information about
AWS IoT resources that are taggable and condition keys they support, read Actions,
resources, and condition keys for AWS IoT.

For more information about using tags, see Controlling Access Using Tags in the AWS Identity and
Access Management User Guide. The IAM JSON Policy Reference section of that guide has detailed

Using tags with IAM policies 441

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS IoT Core Developer Guide

syntax, descriptions, and examples of the elements, variables, and evaluation logic of JSON policies
in IAM.

The following example policy applies two tag-based restrictions for the ThingGroup actions. An
IAM user restricted by this policy:

• Can't create a thing group the tag "env=prod" (in the example, see the line "aws:RequestTag/
env" : "prod").

• Can't modify or access a thing group that has an existing tag "env=prod" (in the example, see the
line "aws:ResourceTag/env" : "prod").

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": "iot:CreateThingGroup",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/env": "prod"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:UpdateThingGroup"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/env": "prod"
 }
 }
 },
 {
 "Effect": "Allow",

Using tags with IAM policies 442

AWS IoT Core Developer Guide

 "Action": [
 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:UpdateThingGroup"
],
 "Resource": "*"
 }
]
}

You can also specify multiple tag values for a given tag key by enclosing them in a list, like this:

 "StringEquals" : {
 "aws:ResourceTag/env" : ["dev", "test"]
 }

Note

If you allow or deny users access to resources based on tags, you must consider explicitly
denying users the ability to add those tags to or remove them from the same resources.
Otherwise, it's possible for a user to circumvent your restrictions and gain access to a
resource by modifying its tags.

Billing groups

AWS IoT doesn't allow you to directly apply tags to individual things, but it does allow you to place
things in billing groups and to apply tags to these. For AWS IoT, allocation of cost and usage data
based on tags is limited to billing groups.

AWS IoT Core for LoRaWAN resources, such as wireless devices and gateways, can't be added to
billing groups. However, they can be associated with AWS IoT things, which can be added to billing
groups.

The following commands are available:

• AddThingToBillingGroup adds a thing to a billing group.

• CreateBillingGroup creates a billing group.

Billing groups 443

https://docs.aws.amazon.com/iot/latest/apireference/API_AddThingToBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateBillingGroup

AWS IoT Core Developer Guide

• DeleteBillingGroup deletes the billing group.

• DescribeBillingGroup returns information about a billing group.

• ListBillingGroups lists the billing groups you have created.

• ListThingsInBillingGroup lists the things you have added to the given billing group.

• RemoveThingFromBillingGroup removes the given thing from the billing group.

• UpdateBillingGroup updates information about the billing group.

• CreateThing allows you to specify a billing group for the thing when you create it.

• DescribeThing returns the description of a thing including the billing group the thing belongs to,
if any.

The AWS IoT Wireless API provides these actions to associate wireless devices and gateways with
AWS IoT things.

• AssociateWirelessDeviceWithThing

• AssociateWirelessGatewayWithThing

Viewing cost allocation and usage data

You can use billing group tags to categorize and track your costs. When you apply tags to billing
groups (and so to the things they include), AWS generates a cost allocation report as a comma-
separated value (CSV) file with your usage and costs aggregated by your tags. You can apply tags
that represent business categories (such as cost centers, application names, or owners) to organize
your costs across multiple services. For more information about using tags for cost allocation, see
Use Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

Note

To accurately associate usage and cost data with those things you have placed in billing
groups, each device or application must:

• Be registered as a thing in AWS IoT. For more information, see Managing devices with
AWS IoT.

• Connect to the AWS IoT message broker through MQTT using only the thing's name
as the client ID. For more information, see the section called “Device communication
protocols”.

Viewing cost allocation and usage data 444

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_ListBillingGroups
https://docs.aws.amazon.com/iot/latest/apireference/API_ListThingsInBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_RemoveThingFromBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateBillingGroup
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateThing
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeThing
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_AssociateWirelessDeviceWithThing.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_AssociateWirelessGatewayWithThing.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/

AWS IoT Core Developer Guide

• Authenticate using a client certificate associated with the thing.

The following pricing dimensions are available for billing groups (based on the activity of things
associated with the billing group):

• Connectivity (based on the thing name used as the client ID to connect).

• Messaging (based on messages inbound from, and outbound to, a thing; MQTT only).

• Shadow operations (based on the thing whose message triggered a shadow update).

• Rules triggered (based on the thing whose inbound message triggered the rule; does not apply
to those rules triggered by MQTT lifecycle events).

• Thing index updates (based on the thing that was added to the index).

• Remote actions (based on the thing updated).

• AWS IoT Device Defender detect reports (based on the thing whose activity is reported).

Cost and usage data based on tags (and reported for a billing group) doesn't reflect the following
activities:

• Device registry operations (including updates to things, thing groups, and thing types). For more
information, see Managing devices with AWS IoT).

• Thing group index updates (when adding a thing group).

• Index search queries.

• Device provisioning.

• AWS IoT Device Defender audit reports.

Viewing cost allocation and usage data 445

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/device-defender-detect.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/device-defender-audit.html

AWS IoT Core Developer Guide

Security in AWS IoT

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS IoT, see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS IoT. The following topics show you how to configure AWS IoT to meet your security and
compliance objectives. You also learn how to use other AWS services that help you to monitor and
secure your AWS IoT resources.

Topics

• AWS IoT security

• Authentication

• Authorization

• Data protection in AWS IoT Core

• Identity and access management for AWS IoT

• Logging and Monitoring

• Compliance validation for AWS IoT Core

• Resilience in AWS IoT Core

• Using AWS IoT Core with interface VPC endpoints

• Infrastructure security in AWS IoT

446

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS IoT Core Developer Guide

• Security monitoring of production fleets or devices with AWS IoT Core

• Security best practices in AWS IoT Core

• AWS training and certification

AWS IoT security

Each connected device or client must have a credential to interact with AWS IoT. All traffic to and
from AWS IoT is sent securely over Transport Layer Security (TLS). AWS cloud security mechanisms
protect data as it moves between AWS IoT and other AWS services.

• You are responsible for managing device credentials (X.509 certificates, AWS credentials, Amazon
Cognito identities, federated identities, or custom authentication tokens) and policies in AWS IoT.
For more information, see Key management in AWS IoT. You are responsible for assigning unique
identities to each device and managing the permissions for each device or group of devices.

• Your devices connect to AWS IoT using X.509 certificates or Amazon Cognito identities over a
secure TLS connection. During research and development, and for some applications that make
API calls or use WebSockets, you can also authenticate using IAM users and groups or custom
authentication tokens. For more information, see IAM users, groups, and roles.

• When using AWS IoT authentication, the message broker is responsible for authenticating your
devices, securely ingesting device data, and granting or denying access permissions you specify
for your devices using AWS IoT policies.

Security in AWS IoT 447

AWS IoT Core Developer Guide

• When using custom authentication, a custom authorizer is responsible for authenticating your
devices and granting or denying access permissions you specify for your devices using AWS IoT or
IAM policies.

• The AWS IoT rules engine forwards device data to other devices or other AWS services according
to rules you define. It uses AWS Identity and Access Management to securely transfer data to its
final destination. For more information, see Identity and access management for AWS IoT.

Authentication

Authentication is a mechanism where you verify the identity of a client or a server. Server
authentication is the process where devices or other clients ensure they are communicating with
an actual AWS IoT endpoint. Client authentication is the process where devices or other clients
authenticate themselves with AWS IoT.

AWS training and certification

Take the following course to learn about authentication in AWS IoT: Deep Dive into AWS IoT
Authentication and Authorization.

X.509 Certificate overview

X.509 certificates are digital certificates that use the X.509 public key infrastructure standard to
associate a public key with an identity contained in a certificate. X.509 certificates are issued by a
trusted entity called a certification authority (CA). The CA maintains one or more special certificates
called CA certificates that it uses to issue X.509 certificates. Only the certification authority has
access to CA certificates. X.509 certificate chains are used both for server authentication by clients
and client authentication by the server.

Server authentication

When your device or other client attempts to connect to AWS IoT Core, the AWS IoT Core server
will send an X.509 certificate that your device uses to authenticate the server. Authentication takes
place at the TLS layer through validation of the X.509 certificate chain. This is the same method
used by your browser when you visit an HTTPS URL. If you want to use certificates from your own
certificate authority, see Manage your CA certificates.

When your devices or other clients establish a TLS connection to an AWS IoT Core endpoint, AWS
IoT Core presents a certificate chain that the devices use to verify that they're communicating with

Authentication 448

https://www.aws.training/Details/Curriculum?id=42335
https://www.aws.training/Details/Curriculum?id=42335
https://en.wikipedia.org/wiki/X.509

AWS IoT Core Developer Guide

AWS IoT Core and not another server impersonating AWS IoT Core. The chain that is presented
depends on a combination of the type of endpoint the device is connecting to and the cipher suite
that the client and AWS IoT Core negotiated during the TLS handshake.

Endpoint types

AWS IoT Core supports two different data endpoint types, iot:Data and iot:Data-ATS.
iot:Data endpoints present a certificate signed by the VeriSign Class 3 Public Primary G5 root
CA certificate. iot:Data-ATS endpoints present a server certificate signed by an Amazon Trust
Services CA.

Certificates presented by ATS endpoints are cross signed by Starfield. Some TLS client
implementations require validation of the root of trust and require that the Starfield CA certificates
are installed in the client's trust stores.

Warning

Using a method of certificate pinning that hashes the whole certificate (including the issuer
name, and so on) is not recommended because this will cause certificate verification to fail
because the ATS certificates we provide are cross signed by Starfield and have a different
issuer name.

Important

Use iot:Data-ATS endpoints unless your device requires Symantec or Verisign CA
certificates. Symantec and Verisign certificates have been deprecated and are no longer
supported by most web browsers.

You can use the describe-endpoint command to create your ATS endpoint.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The describe-endpoint command returns an endpoint in the following format.

account-specific-prefix.iot.your-region.amazonaws.com

Server authentication 449

https://www.digicert.com/kb/digicert-root-certificates.htm
https://www.digicert.com/kb/digicert-root-certificates.htm
https://www.amazontrust.com/repository/
https://www.amazontrust.com/repository/

AWS IoT Core Developer Guide

Note

The first time describe-endpoint is called, an endpoint is created. All subsequent calls
to describe-endpoint return the same endpoint.

For backward-compatibility, AWS IoT Core still supports Symantec endpoints. For more
information, see How AWS IoT Core is Helping Customers Navigate the Upcoming Distrust of
Symantec Certificate Authorities. Devices operating on ATS endpoints are fully interoperable
with devices operating on Symantec endpoints in the same account and do not require any re-
registration.

Note

To see your iot:Data-ATS endpoint in the AWS IoT Core console, choose Settings.
The console displays only the iot:Data-ATS endpoint. By default, the describe-
endpoint command displays the iot:Data endpoint for backward compatibility. To see
the iot:Data-ATS endpoint, specify the --endpointType parameter, as in the previous
example.

Creating an IotDataPlaneClient with the AWS SDK for Java

By default, the AWS SDK for Java - Version 2 creates an IotDataPlaneClient by using an
iot:Data endpoint. To create a client that uses an iot:Data-ATS endpoint, you must do the
following.

• Create an iot:Data-ATS endpoint by using the DescribeEndpoint API.

• Specify that endpoint when you create the IotDataPlaneClient.

The following example performs both of these operations.

public void setup() throws Exception {
 IotClient client =
 IotClient.builder().credentialsProvider(CREDENTIALS_PROVIDER_CHAIN).region(Region.US_EAST_1).build();
 String endpoint = client.describeEndpoint(r -> r.endpointType("iot:Data-
ATS")).endpointAddress();
 iot = IotDataPlaneClient.builder()
 .credentialsProvider(CREDENTIALS_PROVIDER_CHAIN)

Server authentication 450

https://aws.amazon.com/blogs/iot/aws-iot-core-ats-endpoints
https://aws.amazon.com/blogs/iot/aws-iot-core-ats-endpoints
https://github.com/aws/aws-sdk-java-v2
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint.html

AWS IoT Core Developer Guide

 .endpointOverride(URI.create("https://" + endpoint))
 .region(Region.US_EAST_1)
 .build();
}

CA certificates for server authentication

Depending on which type of data endpoint you are using and which cipher suite you have
negotiated, AWS IoT Core server authentication certificates are signed by one of the following root
CA certificates:

Amazon Trust Services Endpoints (preferred)

Note

You might need to right click these links and select Save link as... to save these certificates
as files.

• RSA 2048 bit key: Amazon Root CA 1.

• RSA 4096 bit key: Amazon Root CA 2. Reserved for future use.

• ECC 256 bit key: Amazon Root CA 3.

• ECC 384 bit key: Amazon Root CA 4. Reserved for future use.

These certificates are all cross-signed by the Starfield Root CA Certificate. All new AWS IoT Core
regions, beginning with the May 9, 2018 launch of AWS IoT Core in the Asia Pacific (Mumbai)
Region, serve only ATS certificates.

VeriSign Endpoints (legacy)

• RSA 2048 bit key: VeriSign Class 3 Public Primary G5 root CA certificate

Server authentication guidelines

There are many variables that can affect a device's ability to validate the AWS IoT Core server
authentication certificate. For example, devices may be too memory constrained to hold all
possible root CA certificates, or devices may implement a non-standard method of certificate
validation. For these reasons we suggest following these guidelines:

Server authentication 451

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA3.pem
https://www.amazontrust.com/repository/SFSRootCAG2.pem
https://www.digicert.com/kb/digicert-root-certificates.htm

AWS IoT Core Developer Guide

• We recommend that you use your ATS endpoint and install all supported Amazon Root CA
certificates.

• If you cannot store all of these certificates on your device and if your devices do not use ECC-
based validation, you can omit the Amazon Root CA 3 and Amazon Root CA 4 ECC certificates. If
your devices do not implement RSA-based certificate validation, you can omit the Amazon Root
CA 1 and Amazon Root CA 2 RSA certificates. You might need to right click these links and select
Save link as... to save these certificates as files.

• If you are experiencing server certificate validation issues when connecting to your ATS endpoint,
try adding the relevant cross-signed Amazon Root CA certificate to your trust store. You might
need to right click these links and select Save link as... to save these certificates as files.

• Cross-signed Amazon Root CA 1

• Cross-signed Amazon Root CA 2 - Reserved for future use.

• Cross-signed Amazon Root CA 3

• Cross-signed Amazon Root CA 4 - Reserved for future use.

• If you are experiencing server certificate validation issues, your device may need to explicitly
trust the root CA. Try adding the Starfield Root CA Certificate to your trust store.

• If you still experience issues after executing the steps above, please contact AWS Developer
Support.

Note

CA certificates have an expiration date after which they cannot be used to validate a
server's certificate. CA certificates might have to be replaced before their expiration date.
Make sure that you can update the root CA certificates on all of your devices or clients to
help ensure ongoing connectivity and to keep up to date with security best practices.

Note

When connecting to AWS IoT Core in your device code, pass the certificate into the API you
are using to connect. The API you use will vary by SDK. For more information, see the AWS
IoT Core Device SDKs.

Server authentication 452

https://www.amazontrust.com/repository/AmazonRootCA3.pem
https://www.amazontrust.com/repository/AmazonRootCA4.pem
https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://www.amazontrust.com/repository/AmazonRootCA2.pem
https://www.amazontrust.com/repository/G2-RootCA1.pem
https://www.amazontrust.com/repository/G2-RootCA2.pem
https://www.amazontrust.com/repository/G2-RootCA3.pem
https://www.amazontrust.com/repository/G2-RootCA4.pem
https://www.amazontrust.com/repository/SFSRootCAG2.pem
https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/developers/

AWS IoT Core Developer Guide

Client authentication

AWS IoT supports three types of identity principals for device or client authentication:

• X.509 client certificates

• IAM users, groups, and roles

• Amazon Cognito identities

These identities can be used with devices, mobile, web, or desktop applications. They can even be
used by a user typing AWS IoT command line interface (CLI) commands. Typically, AWS IoT devices
use X.509 certificates, while mobile applications use Amazon Cognito identities. Web and desktop
applications use IAM or federated identities. AWS CLI commands use IAM. For more information
about IAM identities, see Identity and access management for AWS IoT.

X.509 client certificates

X.509 certificates provide AWS IoT with the ability to authenticate client and device connections.
Client certificates must be registered with AWS IoT before a client can communicate with AWS IoT.
A client certificate can be registered in multiple AWS accounts in the same AWS Region to facilitate
moving devices between your AWS accounts in the same region. See Using X.509 client certificates
in multiple AWS accounts with multi-account registration for more information.

We recommend that each device or client be given a unique certificate to enable fine-grained
client management actions, including certificate revocation. Devices and clients must also support
rotation and replacement of certificates to help ensure smooth operation as certificates expire.

For information about using X.509 certificates to support more than a few devices, see Device
provisioning to review the different certificate management and provisioning options that AWS IoT
supports.

AWS IoT supports these types of X.509 client certificates:

• X.509 certificates generated by AWS IoT

• X.509 certificates signed by a CA registered with AWS IoT.

• X.509 certificates signed by a CA that is not registered with AWS IoT.

This section describes how to manage X.509 certificates in AWS IoT. You can use the AWS IoT
console or AWS CLI to perform these certificate operations:

Client authentication 453

AWS IoT Core Developer Guide

• Create AWS IoT client certificates

• Create your own client certificates

• Register a client certificate

• Activate or deactivate a client certificate

• Revoke a client certificate

For more information about the AWS CLI commands that perform these operations, see AWS IoT
CLI Reference.

Using X.509 client certificates

X.509 certificates authenticate client and device connections to AWS IoT. X.509 certificates provide
several benefits over other identification and authentication mechanisms. X.509 certificates
enable asymmetric keys to be used with devices. For example, you could burn private keys into
secure storage on a device so that sensitive cryptographic material never leaves the device. X.509
certificates provide stronger client authentication over other schemes, such as user name and
password or bearer tokens, because the private key never leaves the device.

AWS IoT authenticates client certificates using the TLS protocol's client authentication mode. TLS
support is available in many programming languages and operating systems and is commonly
used for encrypting data. In TLS client authentication, AWS IoT requests an X.509 client certificate
and validates the certificate's status and AWS account against a registry of certificates. It then
challenges the client for proof of ownership of the private key that corresponds to the public key
contained in the certificate. AWS IoT requires clients to send the Server Name Indication (SNI)
extension to the Transport Layer Security (TLS) protocol. For more information on configuring the
SNI extension, see Transport security in AWS IoT Core.

To facilitate a secure and consistent client connection to AWS IoT core, a X.509 client certificate
must possess the following:

• Registered in AWS IoT Core. For more information, see Register a client certificate.

• Have a status state of ACTIVE. For more information, see Activate or deactivate a client
certificate.

• Not yet reached the certificate expiration date.

You can create client certificates that use the Amazon Root CA and you can use your own client
certificates signed by another certificate authority (CA). For more information about using the

Client authentication 454

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://tools.ietf.org/html/rfc3546#section-3.1
https://tools.ietf.org/html/rfc3546#section-3.1

AWS IoT Core Developer Guide

AWS IoT console to create certificates that use the Amazon Root CA, see Create AWS IoT client
certificates. For more information about using your own X.509 certificates, see Create your own
client certificates.

The date and time when certificates signed by a CA certificate expire are set when the certificate
is created. X.509 certificates generated by AWS IoT expire at midnight UTC on December 31, 2049
(2049-12-31T23:59:59Z).

AWS IoT Device Defender can perform audits on your AWS account and devices supporting
common IoT security best practices. This includes managing the expiration dates of X.509
certificates signed by your CA or the Amazon Root CA. For more information on managing a
certificate's expiration date, see Device certificate expiring and CA certificate expiring.

On the official AWS IoT blog, a deeper dive into the management of device certificate rotation and
security best practices is explored in How to manage IoT device certificate rotation using AWS IoT.

Using X.509 client certificates in multiple AWS accounts with multi-account registration

Multi-account registration makes it possible to move devices between your AWS accounts in
the same Region or in different Regions. You can register, test, and configure a device in a
pre-production account, and then register and use the same device and device certificate in
a production account. You can also register the client certificate on the device or the device
certificates without a CA that is registered with AWS IoT. For more information, see Register a client
certificate signed by an unregistered CA (CLI).

Note

Certificates used for multi-account registration are supported on the iot:Data-ATS,
iot:Data (legacy), iot:Jobs, and iot:CredentialProvider endpoint types. For
more information about AWS IoT device endpoints, see AWS IoT device data and service
endpoints.

Devices that use multi-account registration must send the Server Name Indication (SNI) extension
to the Transport Layer Security (TLS) protocol and provide the complete endpoint address in
the host_name field, when they connect to AWS IoT. AWS IoT uses the endpoint address in
host_name to route the connection to the correct AWS IoT account. Existing devices that don't
send a valid endpoint address in host_name will continue to work, but they will not be able to use
the features that require this information. For more information about the SNI extension and to

Client authentication 455

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-device-cert-approaching-expiration.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-ca-cert-approaching-expiration.html
https://aws.amazon.com/blogs/iot/how-to-manage-iot-device-certificate-rotation-using-aws-iot/
https://tools.ietf.org/html/rfc3546#section-3.1

AWS IoT Core Developer Guide

learn how to identify the endpoint address for the host_name field, see Transport security in AWS
IoT Core.

To use multi-account registration

1. You can register the device certificates with a CA. You can register the signing CA in multiple
accounts in SNI_ONLY mode and use that CA to register the same client certificate to multiple
accounts. For more information, see Register a CA certificate in SNI_ONLY mode (CLI) -
Recommended.

2. You can register the device certificates without a CA. See Register a client certificate signed by
an unregistered CA (CLI). Registering a CA is optional. You're not required to register the CA
that signed the device certificates with AWS IoT.

Certificate signing algorithms supported by AWS IoT

AWS IoT supports the following certificate-signing algorithms:

• SHA256WITHRSA

• SHA384WITHRSA

• SHA512WITHRSA

• SHA256WITHRSAANDMGF1 (RSASSA-PSS)

• SHA384WITHRSAANDMGF1 (RSASSA-PSS)

• SHA512WITHRSAANDMGF1 (RSASSA-PSS)

• DSA_WITH_SHA256

• ECDSA-WITH-SHA256

• ECDSA-WITH-SHA384

• ECDSA-WITH-SHA512

For more information about certificate authentication and security, see Device certificate key
quality.

Note

The certificate signing request (CSR) must include a public key. The key can be either an
RSA key with a length of at least 2,048 bits or an ECC key from NIST P-256, NIST P-384, or

Client authentication 456

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-device-cert-key-quality.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-device-cert-key-quality.html

AWS IoT Core Developer Guide

NIST P-521 curves. For more information, see CreateCertificateFromCsr in the AWS IoT API
Reference Guide.

Key algorithms supported by AWS IoT

The table below shows how key algorithms are supported:

Key algorithm Certificate signing
algorithm

TLS version Supported? Yes or
No

RSA with a key size of at
least 2048 bits

All TLS 1.2 TLS 1.3 Yes

ECC NIST P-256/P-384/
P-521

All TLS 1.2 TLS 1.3 Yes

RSA-PSS with a key size of
at least 2048 bits

All TLS 1.2 No

RSA-PSS with a key size of
at least 2048 bits

All TLS 1.3 Yes

To create a certificate using CreateCertificateFromCSR, you can use a supported key algorithm to
generate a public key for your CSR. To register your own certificate using RegisterCertificate or
RegisterCertificateWithoutCA, you can use a supported key algorithm to generate a public key for
the certificate.

For more information, see Security policies.

Create AWS IoT client certificates

AWS IoT provides client certificates that are signed by the Amazon Root certificate authority (CA).

This topic describes how to create a client certificate signed by the Amazon Root certificate
authority and download the certificate files. After you create the client certificate files, you must
install them on the client.

Client authentication 457

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateFromCsr.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateFromCsr.html
https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterCertificate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterCertificateWithoutCA.html
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-policy-table

AWS IoT Core Developer Guide

Note

Each X.509 client certificate provided by AWS IoT holds issuer and subject attributes that
you set at the time of certificate creation. The certificate attributes are immutable only
after the certificate is created.

You can use the AWS IoT console or the AWS CLI to create an AWS IoT certificate signed by the
Amazon Root certificate authority.

Create an AWS IoT certificate (console)

To create an AWS IoT certificate using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the navigation pane, choose Security, then choose Certificates, and then choose Create.

3. Choose One-click certificate creation (recommended) - Create certificate.

4. From the Certificate created page, download the client certificate files for the thing, public
key, and private key to a secure location. These certificates generated by AWS IoT are only
available for use with AWS IoT services.

If you also need the Amazon Root CA certificate file, this page also has the link to the page
where you can download it.

5. A client certificate has now been created and registered with AWS IoT. You must activate the
certificate before you use it in a client.

To activate the client certificate now, choose Activate. If you don't want to activate the
certificate now, see Activate a client certificate (console) to learn how to activate the certificate
later.

6. If you want to attach a policy to the certificate, choose Attach a policy.

If you don't want to attach a policy now, choose Done to finish. You can attach a policy later.

After you complete the procedure, install the certificate files on the client.

Client authentication 458

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Create an AWS IoT certificate (CLI)

The AWS CLI provides the create-keys-and-certificate command to create client certificates signed
by the Amazon Root certificate authority. This command, however, does not download the Amazon
Root CA certificate file. You can download the Amazon Root CA certificate file from CA certificates
for server authentication.

This command creates private key, public key, and X.509 certificate files and registers and activates
the certificate with AWS IoT.

aws iot create-keys-and-certificate \
 --set-as-active \
 --certificate-pem-outfile certificate_filename.pem \
 --public-key-outfile public_filename.key \
 --private-key-outfile private_filename.key

If you don't want to activate the certificate when you create and register it, this command creates
private key, public key, and X.509 certificate files and registers the certificate, but it does not
activate it. Activate a client certificate (CLI) describes how to activate the certificate later.

aws iot create-keys-and-certificate \
 --no-set-as-active \
 --certificate-pem-outfile certificate_filename.pem \
 --public-key-outfile public_filename.key \
 --private-key-outfile private_filename.key

Install the certificate files on the client.

Create your own client certificates

AWS IoT supports client certificates signed by any root or intermediate certificate authorities (CA).
AWS IoT uses CA certificates to verify the ownership of certificates. To use device certificates signed
by a CA that’s not Amazon’s CA, the CA’s certificate must be registered with AWS IoT so that we can
verify the device certificate’s ownership.

AWS IoT supports multiple ways for bringing your own certificates (BYOC):

• First, register the CA that’s used for signing the client certificates and then register individual
client certificates. If you want to register the device or client to its client certificate when it first

Client authentication 459

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-keys-and-certificate.html

AWS IoT Core Developer Guide

connects to AWS IoT (also known as Just-in-Time Provisioning), you must register the signing CA
with AWS IoT and activate auto-registration.

• If you can’t register the signing CA, you can choose to register client certificates without CA. For
devices registered without CA, you’ll need to present Server Name Indication (SNI) when you
connect them to AWS IoT.

Note

To register client certificates using CA, you must register the signing CA with AWS IoT, not
any other CAs in the hierarchy.

Note

A CA certificate can be registered in DEFAULT mode by only one account in a Region. A CA
certificate can be registered in SNI_ONLY mode by multiple accounts in a Region.

For more information about using X.509 certificates to support more than a few devices, see Device
provisioning to review the different certificate management and provisioning options that AWS IoT
supports.

Topics

• Manage your CA certificates

• Create a client certificate using your CA certificate

Manage your CA certificates

This section describes common tasks for managing your own certificate authority (CA) certificates.

You can register your certificate authority (CA) with AWS IoT if you are using client certificates
signed by a CA that AWS IoT doesn't recognize.

If you want clients to automatically register their client certificates with AWS IoT when they first
connect, the CA that signed the client certificates must be registered with AWS IoT. Otherwise, you
don't need to register the CA certificate that signed the client certificates.

Client authentication 460

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html
https://www.rfc-editor.org/rfc/rfc3546#section-3.1

AWS IoT Core Developer Guide

Note

A CA certificate can be registered in DEFAULT mode by only one account in a Region. A CA
certificate can be registered in SNI_ONLY mode by multiple accounts in a Region.

Topics:

• Create a CA certificate

• Register your CA certificate

• Deactivate a CA certificate

Create a CA certificate

If you do not have a CA certificate, you can use OpenSSL v1.1.1i tools to create one.

Note

You can't perform this procedure in the AWS IoT console.

To create a CA certificate using OpenSSL v1.1.1i tools

1. Generate a key pair.

openssl genrsa -out root_CA_key_filename.key 2048

2. Use the private key from the key pair to generate a CA certificate.

openssl req -x509 -new -nodes \
 -key root_CA_key_filename.key \
 -sha256 -days 1024 \
 -out root_CA_cert_filename.pem

Register your CA certificate

These procedures describe how to register a certificate from a certificate authority (CA) that's not
Amazon's CA. AWS IoT Core uses CA certificates to verify the ownership of certificates. To use

Client authentication 461

https://www.openssl.org/
https://www.openssl.org/

AWS IoT Core Developer Guide

device certificates signed by a CA that's not Amazon's CA, you must register the CA certificate with
AWS IoT Core so that it can verify the device certificate's ownership.

Register a CA certificate (console)

Note

To register a CA certificate in the console, start in the console at Register CA certificate. You
can register your CA in Multi-account mode and without the need to provide a verification
certificate or access to the private key. A CA can be registered in Multi-account mode by
multiple AWS accounts in the same AWS Region. You can register your CA in Single-account
mode by providing a verification certificate and proof of ownership of CA’s private key.

Register a CA certificate (CLI)

You can register a CA certificate in DEFAULT mode or SNI_ONLY mode. A CA can be registered
in DEFAULT mode by one AWS account in one AWS Region. A CA can be registered in SNI_ONLY
mode by multiple AWS accounts in the same AWS Region. For more information about CA
certificate mode, see certificateMode.

Note

We recommend that you register a CA in SNI_ONLY mode. You don't need to provide a
verification certificate or access to the private key, and you can register the CA by multiple
AWS accounts in the same AWS Region.

Register a CA certificate in SNI_ONLY mode (CLI) - Recommended

Prerequisites

Make sure you have the following available on your computer before you continue:

• The root CA's certificate file (referenced in the following example as
root_CA_cert_filename.pem)

• OpenSSL v1.1.1i or later

Client authentication 462

https://console.aws.amazon.com/iot/home#/create/cacertificate
https://docs.aws.amazon.com/iot/latest/apireference/API_CACertificateDescription.html#iot-Type-CACertificateDescription-certificateMode
https://www.openssl.org/

AWS IoT Core Developer Guide

To register a CA certificate in SNI_ONLY mode using the AWS CLI

1. Register the CA certificate with AWS IoT. Using the register-ca-certificate command, enter
the CA certificate file name. For more information, see register-ca-certificate in the AWS CLI
Command Reference.

aws iot register-ca-certificate \
 --ca-certificate file://root_CA_cert_filename.pem \
 --certificate-mode SNI_ONLY

If successful, this command returns the certificateId.

2. At this point, the CA certificate has been registered with AWS IoT but is inactive. The CA
certificate must be active before you can register any client certificates that it has signed.

This step activates the CA certificate.

To activate the CA certificate, use the update-certificate command as follows. For more
information, see update-certificate in the AWS CLI Command Reference.

aws iot update-ca-certificate \
 --certificate-id certificateId \
 --new-status ACTIVE

To see the status of the CA certificate, use the describe-ca-certificate command. For more
information, see describe-ca-certificate in the AWS CLI Command Reference.

Register a CA certificate in DEFAULT mode (CLI)

Prerequisites

Make sure you have the following available on your computer before you continue:

• The root CA's certificate file (referenced in the following example as
root_CA_cert_filename.pem)

• The root CA certificate's private key file (referenced in the following example as
root_CA_key_filename.key)

• OpenSSL v1.1.1i or later

Client authentication 463

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/register-ca-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-ca-certificate.html
https://www.openssl.org/

AWS IoT Core Developer Guide

To register a CA certificate in DEFAULT mode using the AWS CLI

1. To get a registration code from AWS IoT, use get-registration-code. Save the returned
registrationCode to use as the Common Name of the private key verification certificate. For
more information, see get-registration-code in the AWS CLI Command Reference.

aws iot get-registration-code

2. Generate a key pair for the private key verification certificate:

openssl genrsa -out verification_cert_key_filename.key 2048

3. Create a certificate signing request (CSR) for the private key verification certificate. Set
the Common Name field of the certificate to the registrationCode returned by get-
registration-code.

openssl req -new \
 -key verification_cert_key_filename.key \
 -out verification_cert_csr_filename.csr

You are prompted for some information, including the Common Name for the certificate.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
 State or Province Name (full name) []:
 Locality Name (for example, city) []:
 Organization Name (for example, company) []:
 Organizational Unit Name (for example, section) []:
 Common Name (e.g. server FQDN or YOUR name) []:your_registration_code
 Email Address []:

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:

Client authentication 464

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/get-registration-code.html

AWS IoT Core Developer Guide

4. Use the CSR to create a private key verification certificate:

openssl x509 -req \
 -in verification_cert_csr_filename.csr \
 -CA root_CA_cert_filename.pem \
 -CAkey root_CA_key_filename.key \
 -CAcreateserial \
 -out verification_cert_filename.pem \
 -days 500 -sha256

5. Register the CA certificate with AWS IoT. Pass in the CA certificate file name and the private
key verification certificate file name to the register-ca-certificate command, as follows. For
more information, see register-ca-certificate in the AWS CLI Command Reference.

aws iot register-ca-certificate \
 --ca-certificate file://root_CA_cert_filename.pem \
 --verification-cert file://verification_cert_filename.pem

This command returns the certificateId, if successful.

6. At this point, the CA certificate has been registered with AWS IoT but is not active. The CA
certificate must be active before you can register any client certificates it has signed.

This step activates the CA certificate.

To activate the CA certificate, use the update-certificate command as follows. For more
information, see update-certificate in the AWS CLI Command Reference.

aws iot update-ca-certificate \
 --certificate-id certificateId \
 --new-status ACTIVE

To see the status of the CA certificate, use the describe-ca-certificate command. For more
information, see describe-ca-certificate in the AWS CLI Command Reference.

Client authentication 465

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/register-ca-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-ca-certificate.html

AWS IoT Core Developer Guide

Create a CA verification certificate to register the CA certificate in the console

Note

This procedure is only for use if you are registering a CA certificate from the AWS IoT
console.
If you did not come to this procedure from the AWS IoT console, start the CA certificate
registration process in the console at Register CA certificate.

Make sure you have the following available on the same computer before you continue:

• The root CA's certificate file (referenced in the following example as
root_CA_cert_filename.pem)

• The root CA certificate's private key file (referenced in the following example as
root_CA_key_filename.key)

• OpenSSL v1.1.1i or later

To use the command line interface to create a CA verification certificate to register your CA
certificate in the console

1. Replace verification_cert_key_filename.key with the name of the verification
certificate key file that you want to create (for example, verification_cert.key). Then run
this command to generate a key pair for the private key verification certificate:

openssl genrsa -out verification_cert_key_filename.key 2048

2. Replace verification_cert_key_filename.key with the name of the key file that you
created in step 1.

Replace verification_cert_csr_filename.csr with the name of the certificate signing
request (CSR) file that you want to create. For example, verification_cert.csr.

Run this command to create the CSR file.

openssl req -new \
 -key verification_cert_key_filename.key \
 -out verification_cert_csr_filename.csr

Client authentication 466

https://console.aws.amazon.com/iot/home#/create/cacertificate
https://www.openssl.org/

AWS IoT Core Developer Guide

The command prompts you for additional information that's explained later.

3. In the AWS IoT console, in the Verification certificate container, copy the registration code.

4. The information that the openssl command prompts you for is shown in the following
example. Except for the Common Name field, you can enter your own values or keep them
blank.

In the Common Name field, paste the registration code that you copied in the previous step.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
 State or Province Name (full name) []:
 Locality Name (for example, city) []:
 Organization Name (for example, company) []:
 Organizational Unit Name (for example, section) []:
 Common Name (e.g. server FQDN or YOUR name) []:your_registration_code
 Email Address []:

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:

After you finish, the command creates the CSR file.

5. Replace verification_cert_csr_filename.csr with the
verification_cert_csr_filename.csr you used in the previous step.

Replace root_CA_cert_filename.pem with the file name of the CA certificate that you
want to register.

Replace root_CA_key_filename.key with the file name of the CA certificate's private key
file.

Client authentication 467

AWS IoT Core Developer Guide

Replace verification_cert_filename.pem with the file name of the verification
certificate that you want to create. For example, verification_cert.pem.

openssl x509 -req \
 -in verification_cert_csr_filename.csr \
 -CA root_CA_cert_filename.pem \
 -CAkey root_CA_key_filename.key \
 -CAcreateserial \
 -out verification_cert_filename.pem \
 -days 500 -sha256

6. After the OpenSSL command completes, you should have these files ready to use for when you
return to the console.

• Your CA certificate file (root_CA_cert_filename.pem used in the previous command)

• The verification certificate that you created in the previous step
(verification_cert_filename.pem used in the previous command)

Deactivate a CA certificate

When a certificate authority (CA) certificate is enabled for automatic client certificate registration,
AWS IoT checks the CA certificate to make sure the CA is ACTIVE. If the CA certificate is INACTIVE,
AWS IoT doesn't allow the client certificate to be registered.

By setting the CA certificate to INACTIVE, you prevent any new client certificates issued by the CA
from being registered automatically.

Note

Any registered client certificates that were signed by the compromised CA certificate
continue to work until you explicitly revoke each one of them.

Deactivate a CA certificate (console)

To deactivate a CA certificate using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose CAs.

Client authentication 468

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

3. In the list of certificate authorities, find the one that you want to deactivate, and choose the
ellipsis icon to open the option menu.

4. On the option menu, choose Deactivate.

The certificate authority should show as Inactive in the list.

Note

The AWS IoT console does not provide a way to list the certificates that were signed by the
CA you deactivated. For an AWS CLI option to list those certificates, see Deactivate a CA
certificate (CLI).

Deactivate a CA certificate (CLI)

The AWS CLI provides the update-ca-certificate command to deactivate a CA certificate.

aws iot update-ca-certificate \
 --certificate-id certificateId \
 --new-status INACTIVE

Use the list-certificates-by-ca command to get a list of all registered client certificates that were
signed by the specified CA. For each client certificate signed by the specified CA certificate, use the
update-certificate command to revoke the client certificate to prevent it from being used.

Use the describe-ca-certificate command to see the status of the CA certificate.

Create a client certificate using your CA certificate

You can use your own certificate authority (CA) to create client certificates. The client certificate
must be registered with AWS IoT before use. For information about the registration options for
your client certificates, see Register a client certificate.

Create a client certificate (CLI)

Note

You can't perform this procedure in the AWS IoT console.

Client authentication 469

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-ca-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-certificates-by-ca.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-ca-certificate.html

AWS IoT Core Developer Guide

To create a client certificate using the AWS CLI

1. Generate a key pair.

openssl genrsa -out device_cert_key_filename.key 2048

2. Create a CSR for the client certificate.

openssl req -new \
 -key device_cert_key_filename.key \
 -out device_cert_csr_filename.csr

You are prompted for some information, as shown here:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
 State or Province Name (full name) []:
 Locality Name (for example, city) []:
 Organization Name (for example, company) []:
 Organizational Unit Name (for example, section) []:
 Common Name (e.g. server FQDN or YOUR name) []:
 Email Address []:

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:

3. Create a client certificate from the CSR.

openssl x509 -req \
 -in device_cert_csr_filename.csr \
 -CA root_CA_cert_filename.pem \
 -CAkey root_CA_key_filename.key \
 -CAcreateserial \
 -out device_cert_filename.pem \

Client authentication 470

AWS IoT Core Developer Guide

 -days 500 -sha256

At this point, the client certificate has been created, but it has not yet been registered with AWS
IoT. For information about how and when to register the client certificate, see Register a client
certificate.

Register a client certificate

Client certificates must be registered with AWS IoT to enable communications between the client
and AWS IoT. You can register each client certificate manually, or you can configure the client
certificates to register automatically when the client connects to AWS IoT for the first time.

If you want your clients and devices to register their client certificates when they first connect, you
must Register your CA certificate used to sign the client certificate with AWS IoT in the Regions in
which you want to use it. The Amazon Root CA is automatically registered with AWS IoT.

Client certificates can be shared by AWS accounts and Regions. The procedures in these topics
must be performed in each account and Region in which you want to use the client certificate.
The registration of a client certificate in one account or Region is not automatically recognized by
another.

Note

Clients that use the Transport Layer Security (TLS) protocol to connect to AWS IoT must
support the Server Name Indication (SNI) extension to TLS. For more information, see
Transport security in AWS IoT Core.

Topics

• Register a client certificate manually

• Register a client certificate when the client connects to AWS IoT just-in-time registration (JITR)

Register a client certificate manually

You can register a client certificate manually by using the AWS IoT console and AWS CLI.

The registration procedure to use depends on whether the certificate will be shared by AWS
accounts and Regions. The registration of a client certificate in one account or Region is not
automatically recognized by another.

Client authentication 471

https://tools.ietf.org/html/rfc3546#section-3.1

AWS IoT Core Developer Guide

The procedures in this topic must be performed in each account and Region in which you want to
use the client certificate. Client certificates can be shared by AWS accounts and Regions.

Register a client certificate signed by a registered CA (console)

Note

Before you perform this procedure, make sure that you have the client certificate's .pem file
and that the client certificate was signed by a CA that you have registered with AWS IoT.

To register an existing certificate with AWS IoT using the console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the navigation pane, under the Manage section, choose Security, and then choose
Certificates.

3. On the Certificates page in the Certificates dialog box, choose Add certificate, and then
choose Register certificates.

4. On the Register certificate page in the Certificates to upload dialog box, do the following:

• Choose CA is registered with AWS IoT.

• From Choose a CA certificate, select your Certification authority.

• Choose Register a new CA to register a new Certification authority that's not registered
with AWS IoT.

• Leave Choose a CA certificate blank if Amazon Root certificate authority is your
certification authority.

• Select up to 10 certificates to upload and register with AWS IoT.

• Use the certificate files you created in Create AWS IoT client certificates and Create a client
certificate using your CA certificate.

• Choose Activate or Deactivate. If you choose Deactive, Activate or deactivate a client
certificate explains how to activate your certificate after certificate registration.

• Choose Register.

On the Certificates page in the Certificates dialog box, your registered certificates will now appear.

Client authentication 472

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Register a client certificate signed by an unregistered CA (console)

Note

Before you perform this procedure, make sure that you have the client certificate's .pem
file.

To register an existing certificate with AWS IoT using the console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates, and then choose Create.

3. On Create a certificate, locate the Use my certificate entry, and choose Get started.

4. On Select a CA, choose Next.

5. On Register existing device certificates, choose Select certificates, and select up to 10
certificate files to register.

6. After closing the file dialog box, select whether you want to activate or revoke the client
certificates when you register them.

If you don't activate a certificate when it is registered, Activate a client certificate (console)
describes how to activate it later.

If a certificate is revoked when it is registered, it can't be activated later.

After you choose the certificate files to register, and select the actions to take after
registration, select Register certificates.

The client certificates that are registered successfully appear in the list of certificates.

Register a client certificate signed by a registered CA (CLI)

Note

Before you perform this procedure, make sure that you have the certificate authority
(CA) .pem and the client certificate's .pem file. The client certificate must be signed by a
certificate authority (CA) that you have registered with AWS IoT.

Client authentication 473

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Use the register-certificate command to register, but not activate, a client certificate.

aws iot register-certificate \
 --certificate-pem file://device_cert_filename.pem \
 --ca-certificate-pem file://ca_cert_filename.pem

The client certificate is registered with AWS IoT, but it is not active yet. See Activate a client
certificate (CLI) for information on how to activate it later.

You can also activate the client certificate when you register it by using this command.

aws iot register-certificate \
 --set-as-active \
 --certificate-pem file://device_cert_filename.pem \
 --ca-certificate-pem file://ca_cert_filename.pem

For more information about activating the certificate so that it can be used to connect to AWS IoT,
see Activate or deactivate a client certificate

Register a client certificate signed by an unregistered CA (CLI)

Note

Before you perform this procedure, make sure that you have the certificate's .pem file.

Use the register-certificate-without-ca command to register, but not activate, a client certificate.

aws iot register-certificate-without-ca \
 --certificate-pem file://device_cert_filename.pem

The client certificate is registered with AWS IoT, but it is not active yet. See Activate a client
certificate (CLI) for information on how to activate it later.

You can also activate the client certificate when you register it by using this command.

aws iot register-certificate-without-ca \
 --status ACTIVE \
 --certificate-pem file://device_cert_filename.pem

Client authentication 474

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/register-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/register-certificate-without-ca.html

AWS IoT Core Developer Guide

For more information about activating the certificate so that it can be used to connect to AWS IoT,
see Activate or deactivate a client certificate.

Register a client certificate when the client connects to AWS IoT just-in-time registration (JITR)

You can configure a CA certificate to enable client certificates it has signed to register with AWS IoT
automatically the first time the client connects to AWS IoT.

To register client certificates when a client connects to AWS IoT for the first time, you must enable
the CA certificate for automatic registration and configure the first connection by the client to
provide the required certificates.

Configure a CA certificate to support automatic registration (console)

To configure a CA certificate to support automatic client certificate registration using the AWS
IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose CAs.

3. In the list of certificate authorities, find the one for which you want to enable automatic
registration, and open the option menu by using the ellipsis icon.

4. On the option menu, choose Enable auto-registration.

Note

The auto-registration status is not shown in the list of certificate authorities. To see the
auto-registration status of a certificate authority, you must open the Details page of the
certificate authority.

Configure a CA certificate to support automatic registration (CLI)

If you have already registered your CA certificate with AWS IoT, use the update-ca-certificate
command to set autoRegistrationStatus of the CA certificate to ENABLE.

aws iot update-ca-certificate \
--certificate-id caCertificateId \
--new-auto-registration-status ENABLE

Client authentication 475

https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-ca-certificate.html

AWS IoT Core Developer Guide

If you want to enable autoRegistrationStatus when you register the CA certificate, use the
register-ca-certificate command.

aws iot register-ca-certificate \
--allow-auto-registration \
--ca-certificate file://root_CA_cert_filename.pem \
--verification-cert file://verification_cert_filename.pem

Use the describe-ca-certificate command to see the status of the CA certificate.

Configure the first connection by a client for automatic registration

When a client attempts to connect to AWS IoT for the first time, the client certificate signed
by your CA certificate must be present on the client during the Transport Layer Security (TLS)
handshake.

When the client connects to AWS IoT, use the client certificate you created in Create AWS
IoT client certificates or Create your own client certificates. AWS IoT recognizes the CA
certificate as a registered CA certificate, registers the client certificate, and sets its status to
PENDING_ACTIVATION. This means that the client certificate was automatically registered and is
awaiting activation. The client certificate's state must be ACTIVE before it can be used to connect
to AWS IoT. See Activate or deactivate a client certificate for information on activating a client
certificate.

Note

You can provision devices using AWS IoT Core just-in-time registration (JITR) feature
without having to send the entire trust chain on devices' first connection to AWS IoT Core.
Presenting the CA certificate is optional but the device is required to send the Server Name
Indication (SNI) extension when they connect.

When AWS IoT automatically registers a certificate or when a client presents a certificate in the
PENDING_ACTIVATION status, AWS IoT publishes a message to the following MQTT topic:

$aws/events/certificates/registered/caCertificateId

Where caCertificateId is the ID of the CA certificate that issued the client certificate.

The message published to this topic has the following structure:

Client authentication 476

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/register-ca-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-ca-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-create.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-create.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

AWS IoT Core Developer Guide

{
 "certificateId": "certificateId",
 "caCertificateId": "caCertificateId",
 "timestamp": timestamp,
 "certificateStatus": "PENDING_ACTIVATION",
 "awsAccountId": "awsAccountId",
 "certificateRegistrationTimestamp": "certificateRegistrationTimestamp"
}

You can create a rule that listens on this topic and performs some actions. We recommend that you
create a Lambda rule that verifies the client certificate is not on a certificate revocation list (CRL),
activates the certificate, and creates and attaches a policy to the certificate. The policy determines
which resources the client can access. For more information about how to create a Lambda rule
that listens on the $aws/events/certificates/registered/caCertificateID topic and
performs these actions, see just-in-time registration of Client Certificates on AWS IoT.

If any error or exception occurs during the auto-registration of the client certificates, AWS IoT
sends events or messages to your logs in CloudWatch Logs. For more information about setting up
the logs for your account, see the Amazon CloudWatch documentation.

Activate or deactivate a client certificate

AWS IoT verifies that a client certificate is active when it authenticates a connection.

You can create and register client certificates without activating them so they can't be used until
you want to use them. You can also deactivate active client certificates to disable them temporarily.
Finally, you can revoke client certificates to prevent them from any future use.

Activate a client certificate (console)

To activate a client certificate using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

3. In the list of certificates, locate the certificate that you want to activate, and open the option
menu by using the ellipsis icon.

4. In the option menu, choose Activate.

The certificate should show as Active in the list of certificates.

Client authentication 477

https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Deactivate a client certificate (console)

To deactivate a client certificate using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

3. In the list of certificates, locate the certificate that you want to deactivate, and open the
option menu by using the ellipsis icon.

4. In the option menu, choose Deactivate.

The certificate should show as Inactive in the list of certificates.

Activate a client certificate (CLI)

The AWS CLI provides the update-certificate command to activate a certificate.

aws iot update-certificate \
 --certificate-id certificateId \
 --new-status ACTIVE

If the command was successful, the certificate's status will be ACTIVE. Run describe-certificate to
see the certificate's status.

aws iot describe-certificate \
 --certificate-id certificateId

Deactivate a client certificate (CLI)

The AWS CLI provides the update-certificate command to deactivate a certificate.

aws iot update-certificate \
 --certificate-id certificateId \
 --new-status INACTIVE

If the command was successful, the certificate's status will be INACTIVE. Run describe-certificate
to see the certificate's status.

aws iot describe-certificate \

Client authentication 478

https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-certificate.html

AWS IoT Core Developer Guide

 --certificate-id certificateId

Attach a thing or policy to a client certificate

When you create and register a certificate separate from an AWS IoT thing, it will not have any
policies that authorize any AWS IoT operations, nor will it be associated with any AWS IoT thing
object. This section describes how to add these relationships to a registered certificate.

Important

To complete these procedures, you must have already created the thing or policy that you
want to attach to the certificate.

The certificate authenticates a device with AWS IoT so that it can connect. Attaching the certificate
to a thing resource establishes the relationship between the device (by way of the certificate)
and the thing resource. To authorize the device to perform AWS IoT actions, such as to allow the
device to connect and publish messages, an appropriate policy must be attached to the device's
certificate.

Attach a thing to a client certificate (console)

You will need the name of the thing object to complete this procedure.

To attach a thing object to a registered certificate

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

3. In the list of certificates, locate the certificate to which you want to attach a policy, open the
certificate's option menu by choosing the ellipsis icon, and choose Attach thing.

4. In the pop-up, locate the name of the thing you want to attach to the certificate, choose its
check box, and choose Attach.

The thing object should now appear in the list of things on the certificate's details page.

Attach a policy to a client certificate (console)

You will need the name of the policy object to complete this procedure.

Client authentication 479

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

To attach a policy object to a registered certificate

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

3. In the list of certificates, locate the certificate to which you want to attach a policy, open the
certificate's option menu by choosing the ellipsis icon, and choose Attach policy.

4. In the pop-up, locate the name of the policy you want to attach to the certificate, choose its
check box, and choose Attach.

The policy object should now appear in the list of policies on the certificate's details page.

Attach a thing to a client certificate (CLI)

The AWS CLI provides the attach-thing-principal command to attach a thing object to a
certificate.

aws iot attach-thing-principal \
 --principal certificateArn \
 --thing-name thingName

Attach a policy to a client certificate (CLI)

The AWS CLI provides the attach-policy command to attach a policy object to a certificate.

aws iot attach-policy \
 --target certificateArn \
 --policy-name policyName

Revoke a client certificate

If you detect suspicious activity on a registered client certificate, you can revoke it so that it can't
be used again.

Note

Once a certificate is revoked, it's status can't be changed. That is, the certificate status can't
be changed to Active or any other status.

Client authentication 480

https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/attach-thing-principal.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/attach-policy.html

AWS IoT Core Developer Guide

Revoke a client certificate (console)

To revoke a client certificate using the AWS IoT console

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

3. In the list of certificates, locate the certificate that you want to revoke, and open the option
menu by using the ellipsis icon.

4. In the option menu, choose Revoke.

If the certificate was successfully revoked, it will show as Revoked in the list of certificates.

Revoke a client certificate (CLI)

The AWS CLI provides the update-certificate command to revoke a certificate.

aws iot update-certificate \
 --certificate-id certificateId \
 --new-status REVOKED

If the command was successful, the certificate's status will be REVOKED. Run describe-certificate to
see the certificate's status.

aws iot describe-certificate \
 --certificate-id certificateId

Transfer a certificate to another account

X.509 certificates that belong to one AWS account can be transferred to another AWS account.

To transfer an X.509 certificate from one AWS account to another

1. the section called “Begin a certificate transfer”

The certificate must be deactivated and detached from all policies and things before initiating
the transfer.

2. the section called “Accept or reject a certificate transfer”

The receiving account must explicitly accept or reject the transferred certificate. After the
receiving account accepts the certificate, the certificate must be activated before use.

Client authentication 481

https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-certificate.html

AWS IoT Core Developer Guide

3. the section called “Cancel a certificate transfer”

The originating account can cancel a transfer, if the certificate has not been accepted.

Begin a certificate transfer

You can begin to transfer a certificate to another AWS account by using the AWS IoT console or the
AWS CLI.

Begin a certificate transfer (console)

To complete this procedure, you'll need the ID of the certificate that you want to transfer.

Do this procedure from the account with the certificate to transfer.

To begin to transfer a certificate to another AWS account

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

Choose the certificate with an Active or Inactive status that you want to transfer and open its
details page.

3. On the certificate's Details page, in the Actions menu, if the Deactivate option is available,
choose the Deactivate option to deactivate the certificate.

4. On the certificate's Details page, in the left menu, choose Policies.

5. On the certificate's Policies page, if there are any policies attached to the certificate, detach
each one by opening the policy's options menu and choosing Detach.

The certificate must not have any attached policies before you continue.

6. On the certificate's Policies page, in the left menu, choose Things.

7. On the certificate's Things page, if there are any things attached to the certificate, detach each
one by opening the thing's options menu and choosing Detach.

The certificate must not have any attached things before you continue.

8. On the certificate's Things page, in the left menu, choose Details.

9. On the certificate's Details page, in the Actions menu, choose Start transfer to open the Start
transfer dialog box.

Client authentication 482

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

10. In the Start transfer dialog box, enter the AWS account number of the account to receive the
certificate and an optional short message.

11. Choose Start transfer to transfer the certificate.

The console should display a message that indicates the success or failure of the transfer. If the
transfer was started, the certificate's status is updated to Transferred.

Begin a certificate transfer (CLI)

To complete this procedure, you'll need the certificateId and the certificateArn of the
certificate that you want to transfer.

Do this procedure from the account with the certificate to transfer.

To begin to transfer a certificate to another AWS account

1. Use the update-certificate command to deactivate the certificate.

aws iot update-certificate --certificate-id certificateId --new-status INACTIVE

2. Detach all policies.

1. Use the list-attached-policies command to list the policies attached to the certificate.

aws iot list-attached-policies --target certificateArn

2. For each attached policy, use the detach-policy command to detach the policy.

aws iot detach-policy --target certificateArn --policy-name policy-name

3. Detach all things.

1. Use the list-principal-things command to list the things attached to the certificate.

aws iot list-principal-things --principal certificateArn

2. For each attached thing, use the detach-thing-principal command to detach the thing.

aws iot detach-thing-principal --principal certificateArn --thing-name thing-name

4. Use the transfer-certificate command to start the certificate transfer.

Client authentication 483

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-certificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-attached-policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/detach-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-principal-things.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/detach-thing-principal.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/transfer-certificate.html

AWS IoT Core Developer Guide

aws iot transfer-certificate --certificate-id certificateId --target-aws-
account account-id

Accept or reject a certificate transfer

You can accept or reject a certificate transferred to you AWS account from another AWS account by
using the AWS IoT console or the AWS CLI.

Accept or reject a certificate transfer (console)

To complete this procedure, you'll need the ID of the certificate that was transferred to your
account.

Do this procedure from the account receiving the certificate that was transferred.

To accept or reject a certificate that was transferred to your AWS account

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

Choose the certificate with a status of Pending transfer that you want to accept or reject and
open its details page.

3. On the certificate's Details page, in the Actions menu,

• To accept the certificate, choose Accept transfer.

• To not accept the certificate, choose Reject transfer.

Accept or reject a certificate transfer (CLI)

To complete this procedure, you'll need the certificateId of the certificate transfer that you
want to accept or reject.

Do this procedure from the account receiving the certificate that was transferred.

To accept or reject a certificate that was transferred to your AWS account

1. Use the accept-certificate-transfer command to accept the certificate.

aws iot accept-certificate-transfer --certificate-id certificateId

Client authentication 484

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/accept-certificate-transfer.html

AWS IoT Core Developer Guide

2. Use the reject-certificate-transfer command to reject the certificate.

aws iot reject-certificate-transfer --certificate-id certificateId

Cancel a certificate transfer

You can cancel a certificate transfer before it has been accepted by using the AWS IoT console or
the AWS CLI.

Cancel a certificate transfer (console)

To complete this procedure, you'll need the ID of the certificate transfer that you want to cancel.

Do this procedure from the account that initiated the certificate transfer.

To cancel a certificate transfer

1. Sign in to the AWS Management Console and open the AWS IoT console.

2. In the left navigation pane, choose Secure, choose Certificates.

Choose the certificate with Transferred status whose transfer you want to cancel and open its
options menu.

3. On the certificate's options menu, choose the Revoke transfer option to cancel the certificate
transfer.

Important

Be careful not to mistake the Revoke transfer option with the Revoke option.
The Revoke transfer option cancels the certificate transfer, while the Revoke option
makes the certificate irreversibly unusable by AWS IoT.

Cancel a certificate transfer (CLI)

To complete this procedure, you'll need the certificateId of the certificate transfer that you
want to cancel.

Do this procedure from the account that initiated the certificate transfer.

Use the cancel-certificate-transfer command to cancel the certificate transfer.

Client authentication 485

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/reject-certificate-transfer.html
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/cancel-certificate-transfer.html

AWS IoT Core Developer Guide

aws iot cancel-certificate-transfer --certificate-id certificateId

IAM users, groups, and roles

IAM users, groups, and roles are the standard mechanisms for managing identity and
authentication in AWS. You can use them to connect to AWS IoT HTTP interfaces using the AWS
SDK and AWS CLI.

IAM roles also allow AWS IoT to access other AWS resources in your account on your behalf. For
example, if you want to have a device publish its state to a DynamoDB table, IAM roles allow AWS
IoT to interact with Amazon DynamoDB. For more information, see IAM Roles.

For message broker connections over HTTP, AWS IoT authenticates users, groups, and roles using
the Signature Version 4 signing process. For information, see Signing AWS API Requests.

When using AWS Signature Version 4 with AWS IoT, clients must support the following in their TLS
implementation:

• TLS 1.2

• SHA-256 RSA certificate signature validation

• One of the cipher suites from the TLS cipher suite support section

For information, see Identity and access management for AWS IoT.

Amazon Cognito identities

Amazon Cognito Identity enables you to create temporary, limited privilege AWS credentials for
use in mobile and web applications. When you use Amazon Cognito Identity, create identity pools
that create unique identities for your users and authenticate them with identity providers like Login
with Amazon, Facebook, and Google. You can also use Amazon Cognito identities with your own
developer authenticated identities. For more information, see Amazon Cognito Identity.

To use Amazon Cognito Identity, define an Amazon Cognito identity pool that is associated with
an IAM role. The IAM role is associated with an IAM policy that grants identities from your identity
pool permission to access AWS resources like calling AWS services.

Amazon Cognito Identity creates unauthenticated and authenticated identities. Unauthenticated
identities are used for guest users in a mobile or web application who want to use the app without

Client authentication 486

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS IoT Core Developer Guide

signing in. Unauthenticated users are granted only those permissions specified in the IAM policy
associated with the identity pool.

When you use authenticated identities, in addition to the IAM policy attached to the identity pool,
you must attach an AWS IoT policy to an Amazon Cognito Identity. To attach an AWS IoT policy,
use the AttachPolicy API and give permissions to an individual user of your AWS IoT application.
You can use the AWS IoT policy to assign fine-grained permissions for specific customers and their
devices.

Authenticated and unauthenticated users are different identity types. If you don't attach an AWS
IoT policy to the Amazon Cognito Identity, an authenticated user fails authorization in AWS IoT
and doesn't have access to AWS IoT resources and actions. For more information about creating
policies for Amazon Cognito identities, see Publish/Subscribe policy examples and Authorization
with Amazon Cognito identities.

Custom authentication and authorization

AWS IoT Core lets you define custom authorizers so that you can manage your own client
authentication and authorization. This is useful when you need to use authentication mechanisms
other than the ones that AWS IoT Core natively supports. (For more information about the natively
supported mechanisms, see the section called “Client authentication”).

For example, if you are migrating existing devices in the field to AWS IoT Core and these devices
use a custom bearer token or MQTT user name and password to authenticate, you can migrate
them to AWS IoT Core without having to provision new identities for them. You can use custom
authentication with any of the communication protocols that AWS IoT Core supports. For more
information about the protocols that AWS IoT Core supports, see the section called “Device
communication protocols”.

Custom authentication and authorization 487

https://docs.aws.amazon.com/iot/latest/apireference/API_AttachPolicy.html

AWS IoT Core Developer Guide

Topics

• Understanding the custom authentication workflow

• Creating and managing custom authorizers

• Connecting to AWS IoT Core by using custom authentication

• Troubleshooting your authorizers

Understanding the custom authentication workflow

Custom authentication enables you to define how to authenticate and authorize clients by
using authorizer resources. Each authorizer contains a reference to a customer-managed
Lambda function, an optional public key for validating device credentials, and additional
configuration information. The following diagram illustrates the authorization workflow for
custom authentication in AWS IoT Core.

AWS IoT Core custom authentication and authorization workflow

The following list explains each step in the custom authentication and authorization workflow.

1. A device connects to a customer’s AWS IoT Core data endpoint by using one of the supported
the section called “Device communication protocols”. The device passes credentials in either the

Custom authentication and authorization 488

https://docs.aws.amazon.com/iot/latest/apireference/API_AuthorizerDescription.html

AWS IoT Core Developer Guide

request’s header fields or query parameters (for the HTTP Publish or MQTT over WebSockets
protocols), or in the user name and password field of the MQTT CONNECT message (for the
MQTT and MQTT over WebSockets protocols).

2. AWS IoT Core checks for one of two conditions:

• The incoming request specifies an authorizer.

• The AWS IoT Core data endpoint receiving the request has a default authorizer configured for
it.

If AWS IoT Core finds an authorizer in either of these ways, AWS IoT Core triggers the Lambda
function associated with the authorizer.

3. (Optional) If you've enabled token signing, AWS IoT Core validates the request signature by
using the public key stored in the authorizer before triggering the Lambda function. If validation
fails, AWS IoT Core stops the request without invoking the Lambda function.

4. The Lambda function receives the credentials and connection metadata in the request and
makes an authentication decision.

5. The Lambda function returns the results of the authentication decision and an AWS IoT Core
policy document that specifies what actions are allowed in the connection. The Lambda function
also returns information that specifies how often AWS IoT Core revalidates the credentials in the
request by invoking the Lambda function.

6. AWS IoT Core evaluates activity on the connection against the policy it has received from the
Lambda function.

7. After the connection is established and your custom authorizer Lambda is initially invoked,
the next invocation can be delayed for up to 5 minutes on idle connections without any MQTT
operations. After that, subsequent invocations will follow the refresh interval in your custom
authorizer Lambda. This approach can prevent excessive invocations that could exceed the
Lambda concurrency limit of your AWS account.

Scaling considerations

Because a Lambda function handles authentication and authorization for your authorizer, the
function is subject to Lambda pricing and service limits, such as concurrent execution rate. For
more information about Lambda pricing, see Lambda Pricing. You can manage the load on your
Lambda function by adjusting the refreshAfterInSeconds and disconnectAfterInSeconds
parameters in your Lambda function response. For more information about the contents of your
Lambda function response, see the section called “Defining your Lambda function”.

Custom authentication and authorization 489

https://aws.amazon.com/lambda/pricing/

AWS IoT Core Developer Guide

Note

If you leave signing enabled, you can prevent excessive triggering of your Lambda by
unrecognized clients. Consider this before you disable signing in your authorizer.

Note

The Lambda function timeout limit for custom authorizer is 5 seconds.

Creating and managing custom authorizers

AWS IoT Core implements custom authentication and authorization schemes by using authorizer
resources. Each authorizer consists of the following components:

• Name: A unique user-defined string that identifies the authorizer.

• Lambda function ARN: The Amazon Resource Name (ARN) of the Lambda function that
implements the authorization and authentication logic.

• Token key name: The key name used to extract the token from the HTTP headers, query
parameters, or MQTT CONNECT user name in order to perform signature validation. This value is
required if signing is enabled in your authorizer.

• Signing disabled flag (optional): A Boolean value that specifies whether to disable the signing
requirement on credentials. This is useful for scenarios where signing the credentials doesn't
make sense, such as authentication schemes that use MQTT user name and password. The
default value is false, so signing is enabled by default.

• Token signing public key: The public key that AWS IoT Core uses to validate the token signature.
Its minimum length is 2,048 bits. This value is required if signing is enabled in your authorizer.

Lambda charges you for the number of times your Lambda function runs and for the amount of
time it takes for the code in your function to execute. For more information about Lambda pricing,
see Lambda Pricing. For more information about creating Lambda functions, see the Lambda
Developer Guide.

Custom authentication and authorization 490

https://docs.aws.amazon.com/iot/latest/apireference/API_AuthorizerDescription.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AuthorizerDescription.html
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

AWS IoT Core Developer Guide

Note

If you leave signing enabled, you can prevent excessive triggering of your Lambda by
unrecognized clients. Consider this before you disable signing in your authorizer.

Note

The Lambda function timeout limit for custom authorizer is 5 seconds.

Defining your Lambda function

When AWS IoT Core invokes your authorizer, it triggers the associated Lambda associated with
the authorizer with an event that contains the following JSON object. The example JSON object
contains all of the possible fields. Any fields that aren't relevant to the connection request aren't
included.

{
 "token" :"aToken",
 "signatureVerified": Boolean, // Indicates whether the device gateway has validated
 the signature.
 "protocols": ["tls", "http", "mqtt"], // Indicates which protocols to expect for
 the request.
 "protocolData": {
 "tls" : {
 "serverName": "serverName" // The server name indication (SNI) host_name
 string.
 },
 "http": {
 "headers": {
 "#{name}": "#{value}"
 },
 "queryString": "?#{name}=#{value}"
 },
 "mqtt": {
 "username": "myUserName",
 "password": "myPassword", // A base64-encoded string.
 "clientId": "myClientId" // Included in the event only when the device
 sends the value.
 }

Custom authentication and authorization 491

AWS IoT Core Developer Guide

 },
 "connectionMetadata": {
 "id": UUID // The connection ID. You can use this for logging.
 },
}

The Lambda function should use this information to authenticate the incoming connection and
decide what actions are permitted in the connection. The function should send a response that
contains the following values.

• isAuthenticated: A Boolean value that indicates whether the request is authenticated.

• principalId: An alphanumeric string that acts as an identifier for the token sent by the
custom authorization request. The value must be an alphanumeric string with at least one,
and no more than 128, characters and match this regular expression (regex) pattern: ([a-zA-
Z0-9]){1,128}. Special characters that are not alphanumeric are not allowed for use with
the principalId in AWS IoT Core. Refer to the documentation for other AWS services if non-
alphanumeric special characters are allowed for the principalId.

• policyDocuments: A list of JSON-formatted AWS IoT Core policy documents For more
information about creating AWS IoT Core policies, see the section called “AWS IoT Core policies”.
The maximum number of policy documents is 10 policy documents. Each policy document can
contain a maximum of 2,048 characters.

• disconnectAfterInSeconds: An integer that specifies the maximum duration (in seconds)
of the connection to the AWS IoT Core gateway. The minimum value is 300 seconds, and the
maximum value is 86,400 seconds. The default value is 86,400.

• refreshAfterInSeconds: An integer that specifies the interval between policy refreshes.
When this interval passes, AWS IoT Core invokes the Lambda function to allow for policy
refreshes. The minimum value is 300 seconds, and the maximum value is 86,400 seconds.

 The following JSON object contains an example of a response that your Lambda function can
send.

{
"isAuthenticated":true, //A Boolean that determines whether client can connect.
"principalId": "xxxxxxxx", //A string that identifies the connection in logs.
"disconnectAfterInSeconds": 86400,
"refreshAfterInSeconds": 300,
 "policyDocuments": [
 {

Custom authentication and authorization 492

AWS IoT Core Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "iot:Publish",
 "Effect": "Allow",
 "Resource": "arn:aws:iot:us-east-1:<your_aws_account_id>:topic/
customauthtesting"
 }
]
 }
]
}

The policyDocument value must contain a valid AWS IoT Core policy document. For more
information about AWS IoT Core policies, see the section called “AWS IoT Core policies”. In MQTT
over TLS and MQTT over WebSockets connections, AWS IoT Core caches this policy for the interval
specified in the value of the refreshAfterInSeconds field. In the case of HTTP connections
the Lambda function is called for every authorization request unless your device is using HTTP
persistent connections (also called HTTP keep-alive or HTTP connection reuse) you can choose
to enable caching when configuring the authorizer. During this interval, AWS IoT Core authorizes
actions in an established connection against this cached policy without triggering your Lambda
function again. If failures occur during custom authentication, AWS IoT Core terminates the
connection. AWS IoT Core also terminates the connection if it has been open for longer than the
value specified in the disconnectAfterInSecondsparameter.

The following JavaScript contains a sample Node.js Lambda function that looks for a password in
the MQTT Connect message with a value of test and returns a policy that grants permission to
connect to AWS IoT Core with a client named myClientName and publish to a topic that contains
the same client name. If it doesn't find the expected password, it returns a policy that denies those
two actions.

// A simple Lambda function for an authorizer. It demonstrates
// how to parse an MQTT password and generate a response.

exports.handler = function(event, context, callback) {
 var uname = event.protocolData.mqtt.username;
 var pwd = event.protocolData.mqtt.password;
 var buff = new Buffer(pwd, 'base64');
 var passwd = buff.toString('ascii');
 switch (passwd) {
 case 'test':

Custom authentication and authorization 493

AWS IoT Core Developer Guide

 callback(null, generateAuthResponse(passwd, 'Allow'));
 break;
 default:
 callback(null, generateAuthResponse(passwd, 'Deny'));
 }
};

// Helper function to generate the authorization response.
var generateAuthResponse = function(token, effect) {
 var authResponse = {};
 authResponse.isAuthenticated = true;
 authResponse.principalId = 'TEST123';

 var policyDocument = {};
 policyDocument.Version = '2012-10-17';
 policyDocument.Statement = [];
 var publishStatement = {};
 var connectStatement = {};
 connectStatement.Action = ["iot:Connect"];
 connectStatement.Effect = effect;
 connectStatement.Resource = ["arn:aws:iot:us-east-1:123456789012:client/
myClientName"];
 publishStatement.Action = ["iot:Publish"];
 publishStatement.Effect = effect;
 publishStatement.Resource = ["arn:aws:iot:us-east-1:123456789012:topic/telemetry/
myClientName"];
 policyDocument.Statement[0] = connectStatement;
 policyDocument.Statement[1] = publishStatement;
 authResponse.policyDocuments = [policyDocument];
 authResponse.disconnectAfterInSeconds = 3600;
 authResponse.refreshAfterInSeconds = 300;

 return authResponse;
}

The preceding Lambda function returns the following JSON when it receives the expected
password of test in the MQTT Connect message. The values of the password and principalId
properties will be the values from the MQTT Connect message.

{
 "password": "password",
 "isAuthenticated": true,
 "principalId": "principalId",

Custom authentication and authorization 494

AWS IoT Core Developer Guide

 "policyDocuments": [
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "iot:Connect",
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": "iot:Publish",
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:accountId:topic/telemetry/${iot:ClientId}"
 },
 {
 "Action": "iot:Subscribe",
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:accountId:topicfilter/telemetry/
${iot:ClientId}"
 },
 {
 "Action": "iot:Receive",
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:accountId:topic/telemetry/${iot:ClientId}"
 }
]
 }
],
 "disconnectAfterInSeconds": 3600,
 "refreshAfterInSeconds": 300
}

Creating an authorizer

You can create an authorizer by using the CreateAuthorizer API. The following example describes
the command.

aws iot create-authorizer
--authorizer-name MyAuthorizer
--authorizer-function-arn arn:aws:lambda:us-
west-2:<account_id>:function:MyAuthorizerFunction //The ARN of the Lambda function.
[--token-key-name MyAuthorizerToken //The key used to extract the token from headers.
[--token-signing-public-keys FirstKey=

Custom authentication and authorization 495

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateAuthorizer.html

AWS IoT Core Developer Guide

 "-----BEGIN PUBLIC KEY-----
 [...insert your public key here...]
 -----END PUBLIC KEY-----"
[--status ACTIVE]
[--tags <value>]
[--signing-disabled | --no-signing-disabled]

You can use the signing-disabled parameter to opt out of signature validation for each
invocation of your authorizer. We strongly recommend that you do not disable signing unless you
have to. Signature validation protects you against excessive invocations of your Lambda function
from unknown devices. You can't update the signing-disabled status of an authorizer after you
create it. To change this behavior, you must create another custom authorizer with a different value
for the signing-disabled parameter.

Values for the tokenKeyName and tokenSigningPublicKeys parameters are optional if you
have disabled signing. They are required values if signing is enabled.

After you create your Lambda function and the custom authorizer, you must explicitly grant the
AWS IoT Core service permission to invoke the function on your behalf. You can do this with the
following command.

aws lambda add-permission --function-name <lambda_function_name> --
principal iot.amazonaws.com --source-arn <authorizer_arn> --statement-id
Id-123 --action "lambda:InvokeFunction"

Testing your authorizers

You can use the TestInvokeAuthorizer API to test the invocation and return values of your
authorizer. This API enables you to specify protocol metadata and test the signature validation in
your authorizer.

The following tabs show how to use the AWS CLI to test your authorizer.

Unix-like

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER \
--token TOKEN_VALUE --token-signature TOKEN_SIGNATURE

Windows CMD

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER ^

Custom authentication and authorization 496

https://docs.aws.amazon.com/iot/latest/apireference/API_TestInvokeAuthorizer.html

AWS IoT Core Developer Guide

--token TOKEN_VALUE --token-signature TOKEN_SIGNATURE

Windows PowerShell

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER `
--token TOKEN_VALUE --token-signature TOKEN_SIGNATURE

The value of the token-signature parameter is the signed token. To learn how to obtain this
value, see the section called “Signing the token”.

If your authorizer takes a user name and password, you can pass this information by using the --
mqtt-context parameter. The following tabs show how to use the TestInvokeAuthorizer
API to send a JSON object that contains a user name, password, and client name to your custom
authorizer.

Unix-like

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER \
--mqtt-context '{"username": "USER_NAME", "password": "dGVzdA==",
 "clientId":"CLIENT_NAME"}'

Windows CMD

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER ^
--mqtt-context '{"username": "USER_NAME", "password": "dGVzdA==",
 "clientId":"CLIENT_NAME"}'

Windows PowerShell

aws iot test-invoke-authorizer --authorizer-name NAME_OF_AUTHORIZER `
--mqtt-context '{"username": "USER_NAME", "password": "dGVzdA==",
 "clientId":"CLIENT_NAME"}'

The password must be base64-encoded. The following example shows how to encode a password
in a Unix-like environment.

echo -n PASSWORD | base64

Custom authentication and authorization 497

AWS IoT Core Developer Guide

Managing custom authorizers

You can manage your authorizers by using the following APIs.

• ListAuthorizers: Show all authorizers in your account.

• DescribeAuthorizer: Displays properties of the specified authorizer. These values include creation
date, last modified date, and other attributes.

• SetDefaultAuthorizer: Specifies the default authorizer for your AWS IoT Core data endpoints.
AWS IoT Core uses this authorizer if a device doesn't pass AWS IoT Core credentials and doesn't
specify an authorizer. For more information about using AWS IoT Core credentials, see the
section called “Client authentication”.

• UpdateAuthorizer: Changes the status, token key name, or public keys for the specified
authorizer.

• DeleteAuthorizer: Deletes the specified authorizer.

Note

You can't update an authorizer's signing requirement. This means that you can't disable
signing in an existing authorizer that requires it. You also can't require signing in an existing
authorizer that doesn't require it.

Connecting to AWS IoT Core by using custom authentication

Devices can connect to AWS IoT Core by using custom authentication with any protocol that AWS
IoT Core supports for device messaging. For more information about supported communication
protocols, see the section called “Device communication protocols”. The connection data that you
pass to your authorizer Lambda function depends on the protocol you use. For more information
about creating your authorizer Lambda function, see the section called “Defining your Lambda
function”. The following sections explain how to connect to authenticate by using each supported
protocol.

HTTPS

Devices sending data to AWS IoT Core by using the HTTP Publish API can pass credentials either
through request headers or query parameters in their HTTP POST requests. Devices can specify an
authorizer to invoke by using the x-amz-customauthorizer-name header or query parameter. If

Custom authentication and authorization 498

https://docs.aws.amazon.com/iot/latest/apireference/API_ListAuthorizers.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeAuthorizer.html
https://docs.aws.amazon.com/iot/latest/apireference/API_SetDefaultAuthorizer.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateAuthorizer.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteAuthorizer.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_Publish.html

AWS IoT Core Developer Guide

you have token signing enabled in your authorizer, you must pass the token-key-name and
x-amz-customauthorizer-signature in either request headers or query parameters. Note
that the token-signature value must be URL-encoded when using JavaScript from within the
browser.

Note

The customer authorizer for the HTTPS protocol only supports publish operations. For
more information about the HTTPS protocol, see the section called “Device communication
protocols”.

The following example requests show how you pass these parameters in both request headers and
query parameters.

//Passing credentials via headers
POST /topics/topic?qos=qos HTTP/1.1
Host: your-endpoint
x-amz-customauthorizer-signature: token-signature
token-key-name: token-value
x-amz-customauthorizer-name: authorizer-name

//Passing credentials via query parameters
POST /topics/topic?qos=qos&x-amz-customauthorizer-signature=token-signature&token-key-
name=token-value HTTP/1.1

MQTT

Devices connecting to AWS IoT Core by using an MQTT connection can pass credentials through
the username and password fields of MQTT messages. The username value can also optionally
contain a query string that passes additional values (including a token, signature, and authorizer
name) to your authorizer. You can use this query string if you want to use a token-based
authentication scheme instead of username and password values.

Note

Data in the password field is base64-encoded by AWS IoT Core. Your Lambda function must
decode it.

Custom authentication and authorization 499

AWS IoT Core Developer Guide

The following example contains a username string that contains extra parameters that specify a
token and signature.

username?x-amz-customauthorizer-name=authorizer-name&x-amz-customauthorizer-
signature=token-signature&token-key-name=token-value

To invoke an authorizer, devices connecting to AWS IoT Core by using MQTT and custom
authentication must connect on port 443. They also must pass the Application Layer Protocol
Negotiation (ALPN) TLS extension with a value of mqtt and the Server Name Indication (SNI)
extension with the host name of their AWS IoT Core data endpoint. To avoid potential errors,
the value for x-amz-customauthorizer-signature should be URL encoded. We also highly
recommend that the values of x-amz-customauthorizer-name and token-key-name be URL
encoded. For more information about these values, see the section called “Device communication
protocols”. The V2 AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client can configure both
of these extensions.

MQTT over WebSockets

Devices connecting to AWS IoT Core by using MQTT over WebSockets can pass credentials in one of
the two following ways.

• Through request headers or query parameters in the HTTP UPGRADE request to establish the
WebSockets connection.

• Through the username and password fields in the MQTT CONNECT message.

If you pass credentials through the MQTT connect message, the ALPN and SNI TLS extensions
are required. For more information about these extensions, see the section called “MQTT”. The
following example demonstrates how to pass credentials through the HTTP Upgrade request.

GET /mqtt HTTP/1.1
Host: your-endpoint
Upgrade: WebSocket
Connection: Upgrade
x-amz-customauthorizer-signature: token-signature
token-key-name: token-value
sec-WebSocket-Key: any random base64 value
sec-websocket-protocol: mqtt
sec-WebSocket-Version: websocket version

Custom authentication and authorization 500

AWS IoT Core Developer Guide

Signing the token

You must sign the token with the private key of the public-private key pair that you used in the
create-authorizer call. The following examples show how to create the token signature by
using a UNIX-like command and JavaScript. They use the SHA-256 hash algorithm to encode the
signature.

Command line

echo -n TOKEN_VALUE | openssl dgst -sha256 -sign PEM encoded RSA private key |
 openssl base64

JavaScript

const crypto = require('crypto')

const key = "PEM encoded RSA private key"

const k = crypto.createPrivateKey(key)
let sign = crypto.createSign('SHA256')
sign.write(t)
sign.end()
const s = sign.sign(k, 'base64')

Troubleshooting your authorizers

This topic walks through common issues that can cause problems in custom authentication
workflows and steps for resolving them. To troubleshoot issues most effectively, enable
CloudWatch logs for AWS IoT Core and set the log level to DEBUG. You can enable CloudWatch
logs in the AWS IoT Core console (https://console.aws.amazon.com/iot/). For more information
about enabling and configuring logs for AWS IoT Core, see the section called “Configure AWS IoT
logging”.

Note

If you leave the log level at DEBUG for long periods of time, CloudWatch might store
large amounts of logging data. This can increase your CloudWatch charges. Consider

Custom authentication and authorization 501

https://console.aws.amazon.com/iot/

AWS IoT Core Developer Guide

using resource-based logging to increase the verbosity for only devices in a particular
thing group. For more information about resource-based logging, see the section called
“Configure AWS IoT logging”. Also, when you're done troubleshooting, reduce the log level
to a less verbose level.

Before you start troubleshooting, review the section called “Understanding the custom
authentication workflow” for a high-level view of the custom authentication process. This helps
you understand where to look for the source of a problem.

This topic discusses the following two areas for you to investigate.

• Issues related to your authorizer's Lambda function.

• Issues related to your device.

Check for issues in your authorizer’s Lambda function

Perform the following steps to make sure that your devices’ connection attempts are invoking your
Lambda function.

1. Verify which Lambda function is associated with your authorizer.

You can do this by calling the DescribeAuthorizer API or by clicking on the desired authorizer in
the Secure section of the AWS IoT Core console.

2. Check the invocation metrics for the Lambda function. Perform the following steps to do this.

a. Open the AWS Lambda console (https://console.aws.amazon.com/lambda/) and select
the function that is associated with your authorizer.

b. Choose the Monitor tab and view metrics for the time frame that is relevant to your
problem.

3. If you see no invocations, verify that AWS IoT Core has permission to invoke your Lambda
function. If you see invocations, skip to the next step. Perform the following steps to verify
that your Lambda function has the required permissions.

a. Choose the Permissions tab for your function in the AWS Lambda console.

b. Find the Resource-based Policy section at the bottom of the page. If your Lambda
function has the required permissions, the policy looks like the following example.

Custom authentication and authorization 502

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeAuthorizer.html
https://console.aws.amazon.com/lambda/

AWS IoT Core Developer Guide

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "Id123",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-
east-1:111111111111:function:FunctionName",
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:iot:us-east-1:111111111111:authorizer/
AuthorizerName"
 },
 "StringEquals": {
 "AWS:SourceAccount": "111111111111"
 }
 }
 }
]
}

c. This policy grants the InvokeFunction permission on your function to the AWS IoT Core
principal. If you don't see it, you'll have to add it by using the AddPermission API. The
following example shows you how to do this by using the AWS CLI.

aws lambda add-permission --function-name FunctionName --principal
 iot.amazonaws.com --source-arn AuthorizerARn --statement-id Id-123 --action
 "lambda:InvokeFunction"

4. If you see invocations, verify that there are no errors. An error might indicate that the Lambda
function isn't properly handling the connection event that AWS IoT Core sends to it.

For information about handling the event in your Lambda function, see the section called
“Defining your Lambda function”. You can use the test feature in the AWS Lambda console
(https://console.aws.amazon.com/lambda/) to hard-code test values in the function to make
sure that the function is handling events correctly.

Custom authentication and authorization 503

https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
https://console.aws.amazon.com/lambda/

AWS IoT Core Developer Guide

5. If you see invocations with no errors, but your devices are not able to connect (or publish,
subscribe, and receive messages), the issue might be that the policy that your Lambda function
returns doesn't give permissions for the actions that your devices are trying to take. Perform
the following steps to determine whether anything is wrong with the policy that the function
returns.

a. Use an Amazon CloudWatch Logs Insights query to scan logs over a short period of time
to check for failures. The following example query sorts events by timestamp and looks
for failures.

display clientId, eventType, status, @timestamp | sort @timestamp desc | filter
 status = "Failure"

b. Update your Lambda function to log the data that it's returning to AWS IoT Core and the
event that triggers the function. You can use these logs to inspect the policy that the
function creates.

6. If you see invocations with no errors, but your devices are not able to connect (or publish,
subscribe, and receive messages), another reason can be that your Lambda function exceeds
the timeout limit. The Lambda function timeout limit for custom authorizer is 5 seconds. You
can check the function duration in CloudWatch logs or metrics.

Investigating device issues

If you find no issues with invoking your Lambda function or with the policy that the function
returns, look for problems with your devices' connection attempts. Malformed connection requests
can cause AWS IoT Core not to trigger your authorizer. Connection problems can occur at both the
TLS and application layers.

Possible TLS layer issues:

• Customers must pass either a hostname header (HTTP, MQTT over WebSockets) or the
Server Name Indication TLS extension (HTTP, MQTT over WebSockets, MQTT) in all custom
authentication requests. In both cases, the value passed must match one of your account’s
AWS IoT Core data endpoints. These are the endpoints that are returned when you perform the
following CLI commands.

• aws iot describe-endpoint --endpoint-type iot:Data-ATS

Custom authentication and authorization 504

AWS IoT Core Developer Guide

• aws iot describe-endpoint --endpoint-type iot:Data (for legacy VeriSign
endpoints)

• Devices that use custom authentication for MQTT connections must also pass the Application
Layer Protocol Negotiation (ALPN) TLS extension with a value of mqtt.

• Custom authentication is currently available only on port 443.

Possible application layer issues:

• If signing is enabled (the signingDisabled field is false in your authorizer), look for the
following signature issues.

• Make sure that you're passing the token signature in either the x-amz-customauthorizer-
signatureheader or in a query string parameter.

• Make sure that the service isn't signing a value other than the token.

• Make sure that you pass the token in the header or query parameter that you specified in the
token-key-name field in your authorizer.

• Make sure that the authorizer name you pass in the x-amz-customauthorizer-name header
or query string parameter is valid or that you have a default authorizer defined for your account.

Authorization

Authorization is the process of granting permissions to an authenticated identity. You grant
permissions in AWS IoT Core using AWS IoT Core and IAM policies. This topic covers AWS IoT Core
policies. For more information about IAM policies, see Identity and access management for AWS
IoT and How AWS IoT works with IAM.

AWS IoT Core policies determine what an authenticated identity can do. An authenticated
identity is used by devices, mobile applications, web applications, and desktop applications.
An authenticated identity can even be a user typing AWS IoT Core CLI commands. An identity
can execute AWS IoT Core operations only if it has a policy that grants it permission for those
operations.

Both AWS IoT Core policies and IAM policies are used with AWS IoT Core to control the operations
an identity (also called a principal) can perform. The policy type you use depends on the type of
identity you are using to authenticate with AWS IoT Core.

AWS IoT Core operations are divided into two groups:

Authorization 505

AWS IoT Core Developer Guide

• Control plane API allows you to perform administrative tasks like creating or updating
certificates, things, rules, and so on.

• Data plane API allows you send data to and receive data from AWS IoT Core.

The type of policy you use depends on whether you are using control plane or data plane API.

The following table shows the identity types, the protocols they use, and the policy types that can
be used for authorization.

AWS IoT Core data plane API and policy types

Protocol and
authentic
ation
mechanism

SDK Identity type Policy type

MQTT over
TLS/TCP,
TLS mutual
authentic
ation (port
8883 or

443)†)

AWS IoT
Device SDK

X.509
certificates

AWS IoT Core
policy

Authentic
ated Amazon
Cognito
identity

IAM and AWS
IoT Core
policies

Unauthent
icated
Amazon
Cognito
identity

IAM policy

MQTT over
HTTPS/
WebSocket,
AWS SigV4
authentic
ation (port
443)

AWS Mobile
SDK

IAM, or
federated
identity

IAM policy

Authorization 506

AWS IoT Core Developer Guide

Protocol and
authentic
ation
mechanism

SDK Identity type Policy type

HTTPS, AWS
Signature
Version 4
authentic
ation (port
443)

AWS CLI

Amazon
Cognito, IAM,
or federated
identity

IAM policy

HTTPS,
TLS mutual
authentic
ation (port
8443)

No SDK
support

X.509
certificates

AWS IoT Core
policy

HTTPS over
custom
authentic
ation (Port
443)

AWS IoT
Device SDK

Custom
authorizer

Custom
authorizer
policy

AWS IoT Core control plane API and policy types

Protocol and
authentic
ation
mechanism

SDK Identity type Policy type

HTTPS AWS
Signature
Version 4
authentic
ation (port
443)

AWS CLI

Amazon
Cognito
identity

IAM policy

Authorization 507

AWS IoT Core Developer Guide

Protocol and
authentic
ation
mechanism

SDK Identity type Policy type

IAM, or
federated
identity

IAM policy

AWS IoT Core policies are attached to X.509 certificates, Amazon Cognito identities, or thing
groups. IAM policies are attached to an IAM user, group, or role. If you use the AWS IoT console
or the AWS IoT Core CLI to attach the policy (to a certificate, Amazon Cognito Identity, or thing
group), you use an AWS IoT Core policy. Otherwise, you use an IAM policy. AWS IoT Core policies
attached to a thing group applies to any thing within that thing group. For the AWS IoT Core policy
to take effect, the clientId and the thing name must match.

Policy-based authorization is a powerful tool. It gives you complete control over what a device,
user, or application can do in AWS IoT Core. For example, consider a device connecting to AWS IoT
Core with a certificate. You can allow the device to access all MQTT topics, or you can restrict its
access to a single topic. In another example, consider a user typing CLI commands at the command
line. By using a policy, you can allow or deny access to any command or AWS IoT Core resource for
the user. You can also control an application's access to AWS IoT Core resources.

Changes made to a policy can take a few minutes to become effective because of how AWS IoT
caches the policy documents. That is, it may take a few minutes to access a resource that has
recently been granted access, and a resource may be accessible for several minutes after its access
has been revoked.

AWS training and certification

For information about authorization in AWS IoT Core, take the Deep Dive into AWS IoT Core
Authentication and Authorization course on the AWS Training and Certification website.

AWS IoT Core policies

AWS IoT Core policies are JSON documents. They follow the same conventions as IAM policies.
AWS IoT Core supports named policies so many identities can reference the same policy document.
Named policies are versioned so they can be easily rolled back.

AWS training and certification 508

https://www.aws.training/Details/Curriculum?id=42335
https://www.aws.training/Details/Curriculum?id=42335

AWS IoT Core Developer Guide

AWS IoT Core policies allow you to control access to the AWS IoT Core data plane. The AWS IoT
Core data plane consists of operations that allow you to connect to the AWS IoT Core message
broker, send and receive MQTT messages, and get or update a thing's Device Shadow.

An AWS IoT Core policy is a JSON document that contains one or more policy statements. Each
statement contains:

• Effect, which specifies whether the action is allowed or denied.

• Action, which specifies the action the policy is allowing or denying.

• Resource, which specifies the resource or resources on which the action is allowed or denied.

Changes made to a policy can take anywhere between 6 and 8 minutes to become effective
because of how AWS IoT caches the policy documents. That is, it may take a few minutes to access
a resource that has recently been granted access, and a resource may be accessible for several
minutes after its access has been revoked.

AWS IoT Core policies can be attached to X.509 certificates, Amazon Cognito identities, and thing
groups. The policies attached to a thing group apply to any thing within that group. For the policy
to take effect, the clientId and the thing name must match. AWS IoT Core policies follow the
same policy evaluation logic as IAM policies. By default, all policies are implicitly denied. An explicit
allow in any identity-based or resource-based policy overrides the default behavior. An explicit
deny in any policy overrides any allows. For more information, see Policy evaluation logic in the
AWS Identity and Access Management User Guide.

Topics

• AWS IoT Core policy actions

• AWS IoT Core action resources

• AWS IoT Core policy variables

• Cross-service confused deputy prevention

• AWS IoT Core policy examples

• Authorization with Amazon Cognito identities

AWS IoT Core policy actions

The following policy actions are defined by AWS IoT Core:

AWS IoT Core policies 509

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS IoT Core Developer Guide

MQTT Policy Actions

iot:Connect

Represents the permission to connect to the AWS IoT Core message broker. The iot:Connect
permission is checked every time a CONNECT request is sent to the broker. The message broker
doesn't allow two clients with the same client ID to stay connected at the same time. After
the second client connects, the broker closes the existing connection. Use the iot:Connect
permission to ensure only authorized clients using a specific client ID can connect.

iot:GetRetainedMessage

Represents the permission to get the contents of a single retained message. Retained
messages are the messages that were published with the RETAIN flag set and stored by
AWS IoT Core. For permission to get a list of all the account's retained messages, see
iot:ListRetainedMessages.

iot:ListRetainedMessages

Represents the permission to retrieve summary information about the account's retained
messages, but not the contents of the messages. Retained messages are the messages that
were published with the RETAIN flag set and stored by AWS IoT Core. The resource ARN
specified for this action must be *. For permission to get the contents of a single retained
message, see iot:GetRetainedMessage.

iot:Publish

Represents the permission to publish an MQTT topic. This permission is checked every time a
PUBLISH request is sent to the broker. You can use this to allow clients to publish to specific
topic patterns.

Note

To grant iot:Publish permission, you must also grant iot:Connect permission.

iot:Receive

Represents the permission to receive a message from AWS IoT Core. The iot:Receive
permission is confirmed every time a message is delivered to a client. Because this permission
is checked on every delivery, you can use it to revoke permissions to clients that are currently
subscribed to a topic.

AWS IoT Core policies 510

AWS IoT Core Developer Guide

iot:RetainPublish

Represents the permission to publish an MQTT message with the RETAIN flag set.

Note

To grant iot:RetainPublish permission, you must also grant iot:Publish
permission.

iot:Subscribe

Represents the permission to subscribe to a topic filter. This permission is checked every time a
SUBSCRIBE request is sent to the broker. Use it to allow clients to subscribe to topics that match
specific topic patterns.

Note

To grant iot:Subscribe permission, you must also grant iot:Connect permission.

Device Shadow Policy Actions

iot:DeleteThingShadow

Represents the permission to delete a thing's Device Shadow. The iot:DeleteThingShadow
permission is checked every time a request is made to delete a thing's Device Shadow contents.

iot:GetThingShadow

Represents the permission to retrieve a thing's Device Shadow. The iot:GetThingShadow
permission is checked every time a request is made to retrieve a thing's Device Shadow
contents.

iot:ListNamedShadowsForThing

Represents the permission to list a thing's named Shadows. The
iot:ListNamedShadowsForThing permission is checked every time a request is made to list
a thing's named Shadows.

AWS IoT Core policies 511

AWS IoT Core Developer Guide

iot:UpdateThingShadow

Represents the permission to update a device's shadow. The iot:UpdateThingShadow
permission is checked every time a request is made to update a thing's Device Shadow contents.

Note

The job execution policy actions apply only for the HTTP TLS endpoint. If you use the
MQTT endpoint, you must use MQTT policy actions defined in this topic.
For an example of a job execution policy that demonstrates this, see the section called
“Basic job policy example” that works with the MQTT protocol.

Job Executions AWS IoT Core Policy Actions

iot:DescribeJobExecution

Represents the permission to retrieve a job execution for a given thing. The
iot:DescribeJobExecution permission is checked every time a request is made to get a job
execution.

iot:GetPendingJobExecutions

Represents the permission to retrieve the list of jobs that are not in a terminal status for a thing.
The iot:GetPendingJobExecutions permission is checked every time a request is made to
retrieve the list.

iot:UpdateJobExecution

Represents the permission to update a job execution. The iot:UpdateJobExecution
permission is checked every time a request is made to update the state of a job execution.

iot:StartNextPendingJobExecution

Represents the permission to get and start the next pending job execution for a
thing. (That is, to update a job execution with status QUEUED to IN_PROGRESS.) The
iot:StartNextPendingJobExecution permission is checked every time a request is made
to start the next pending job execution.

AWS IoT Core policies 512

AWS IoT Core Developer Guide

AWS IoT Core Credential Provider Policy Action

iot:AssumeRoleWithCertificate

Represents the permission to call AWS IoT Core credential provider to assume an IAM role with
certificate-based authentication. The iot:AssumeRoleWithCertificate permission is
checked every time a request is made to AWS IoT Core credential provider to assume a role.

AWS IoT Core action resources

To specify a resource for an AWS IoT Core policy action, use the Amazon Resource Name (ARN) of
the resource. All resource ARNs follow the following format:

arn:partition:iot:region:AWS-account-ID:Resource-type/Resource-name

The following table shows the resource to specify for each action type. The ARN examples are for
the account ID 123456789012, in the partition aws, and specific to the region us-east-1. For
more information about the formats for ARNs, see Amazon Resource Names (ARNs) from the AWS
Identity and Access Management User Guide.

Action Resource
type

Resource name ARN example

iot:Connect client The client's client ID arn:aws:iot:us-eas
t-1:123456789012:c
lient/myClientId

iot:Delet
eThingSha
dow

thing The thing's name, and the
shadow's name, if applicabl
e

arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne arn:aws:iot:us-
east-1:123456789012:t
hing/thingOne/shadowOne

iot:Descr
ibeJobExe
cution

thing The thing's name arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne

AWS IoT Core policies 513

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

AWS IoT Core Developer Guide

Action Resource
type

Resource name ARN example

iot:GetPe
ndingJobE
xecutions

thing The thing's name arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne

iot:GetRe
tainedMes
sage

topic A retained message topic arn:aws:iot:us-eas
t-1:123456789012:topic/
myTopicName

iot:GetTh
ingShadow

thing The thing's name, and the
shadow's name, if applicabl
e

arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne arn:aws:iot:us-
east-1:123456789012:t
hing/thingOne/shadowOne

iot:ListN
amedShado
wsForThing

All All *

iot:ListR
etainedMe
ssages

All All *

iot:Publish topic A topic string arn:aws:iot:us-eas
t-1:123456789012:topic/
myTopicName

iot:Receive topic A topic string arn:aws:iot:us-eas
t-1:123456789012:topic/
myTopicName

iot:Retai
nPublish

topic A topic to publish with the
RETAIN flag set

arn:aws:iot:us-eas
t-1:123456789012:topic/
myTopicName

AWS IoT Core policies 514

AWS IoT Core Developer Guide

Action Resource
type

Resource name ARN example

iot:Start
NextPendi
ngJobExec
ution

thing The thing's name arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne

iot:Subsc
ribe

topicfilt
er

A topic filter string arn:aws:iot:us-eas
t-1:123456789012:t
opicfilter/myTopic
Filter

iot:Updat
eJobExecu
tion

thing The thing's name arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne

iot:Updat
eThingSha
dow

thing The thing's name, and the
shadow's name, if applicabl
e

arn:aws:iot:us-eas
t-1:123456789012:thing/
thingOne arn:aws:iot:us-
east-1:123456789012:t
hing/thingOne/shadowOne

iot:Assum
eRoleWith
Certificate

rolealiasA role alias that points to a
role ARN

arn:aws:iot:us-eas
t-1:123456789012:r
olealias/Credentia
lProviderRole_alias

AWS IoT Core policy variables

AWS IoT Core defines policy variables that can be used in AWS IoT Core policies in the Resource
or Condition block. When a policy is evaluated, the policy variables are replaced by actual
values. For example, if a device is connected to the AWS IoT Core message broker with a client
ID of 100-234-3456, the iot:ClientId policy variable is replaced in the policy document by
100-234-3456.

AWS IoT Core policies 515

AWS IoT Core Developer Guide

AWS IoT Core policies can use wildcard characters and follow a similar convention to IAM policies.
Inserting an * (asterik) in the string can be treated as a wildcard, matching any characters. For
example, you can use * to describe multiple MQTT topic names in the Resource attribute of a
policy. The characters + and # are treated as literal strings in a policy. For an example policy that
shows how to use wildcards, see Using wildcard characters in MQTT and AWS IoT Core policies.

You can also use predefined policy variables with fixed values to represent characters that
otherwise have special meaning. These special characters include $(*), $(?), and $($). For more
information about policy variables and the special characters, see IAM Policy elements: Variables
and tags and Creating a condition with multiple keys or values.

Topics

• Basic AWS IoT Core policy variables

• Thing policy variables

• X.509 Certificate AWS IoT Core policy variables

Basic AWS IoT Core policy variables

AWS IoT Core defines the following basic policy variables:

• iot:ClientId: The client ID used to connect to the AWS IoT Core message broker.

• aws:SourceIp: The IP address of the client connected to the AWS IoT Core message broker.

The following AWS IoT Core policy shows a policy that uses policy variables. aws:SourceIp can be
used in the Condition element of your policy to allow principals to make API requests only within a
specific address range. For examples, see Authorizing users and cloud services to use AWS IoT Jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientid1"
]

AWS IoT Core policies 516

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

AWS IoT Core Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/my/topic/${iot:ClientId}"
],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "123.45.167.89"
 }
 }
 }
]
}

In these examples, ${iot:ClientId} is replaced by the ID of the client connected to the
AWS IoT Core message broker when the policy is evaluated. When you use policy variables like
${iot:ClientId}, you can inadvertently open access to unintended topics. For example, if you
use a policy that uses ${iot:ClientId} to specify a topic filter:

{
 "Effect": "Allow",
 "Action": ["iot:Subscribe"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/my/${iot:ClientId}/topic"
]
}

A client can connect using + as the client ID. This would allow the user to subscribe to any
topic that matches the topic filter my/+/topic. To protect against such security gaps, use the
iot:Connect policy action to control which client IDs can connect. For example, this policy allows
only those clients whose client ID is clientid1 to connect:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

AWS IoT Core policies 517

AWS IoT Core Developer Guide

 "Action": ["iot:Connect"],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientid1"
]
 }
]
}

Note

Using the policy variable ${iot:ClientId} with Connect is not recommended. There is
no check on the value of ClientId, so an attacher with a different client's ID can pass the
validation but cause disconnection. Because any ClientId is allowed, setting a random
client ID can bypass thing group policies.

Thing policy variables

Thing policy variables allow you to write AWS IoT Core policies that grant or deny permissions
based on thing properties like thing names, thing types, and thing attribute values. You can use
thing policy variables to apply the same policy to control many AWS IoT Core devices. For more
information about device provisioning, see Device Provisioning. The thing name is obtained from
the client ID in the MQTT Connect message sent when a thing connects to AWS IoT Core.

Keep the following in mind when using thing policy variables in AWS IoT Core policies.

• Use the AttachThingPrincipal API to attach certificates or principals (authenticated Amazon
Cognito identities) to a thing.

• When you're replacing thing names with thing policy variables, the value of clientId in the
MQTT connect message or the TLS connection must exactly match the thing name.

The following thing policy variables are available:

• iot:Connection.Thing.ThingName

This resolves to the name of the thing in the AWS IoT Core registry for which the policy is
being evaluated. AWS IoT Core uses the certificate the device presents when it authenticates to
determine which thing to use to verify the connection. This policy variable is only available when
a device connects over MQTT or MQTT over the WebSocket protocol.

AWS IoT Core policies 518

iot-provision.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AttachThingPrincipal.html

AWS IoT Core Developer Guide

• iot:Connection.Thing.ThingTypeName

This resolves to the thing type associated with the thing for which the policy is being evaluated.
The client ID of the MQTT/WebSocket connection must be the same as the thing name. This
policy variable is available only when connecting over MQTT or MQTT over the WebSocket
protocol.

• iot:Connection.Thing.Attributes[attributeName]

This resolves to the value of the specified attribute associated with the thing for which the policy
is being evaluated. A thing can have up to 50 attributes. Each attribute is available as a policy
variable: iot:Connection.Thing.Attributes[attributeName] where attributeName
is the name of the attribute. The client ID of the MQTT/WebSocket connection must be the same
as the thing name. This policy variable is only available when connecting over MQTT or MQTT
over the WebSocket protocol.

• iot:Connection.Thing.IsAttached

iot:Connection.Thing.IsAttached: ["true"] enforces that only the devices that are
both registered in AWS IoT and attached to principal can access the permissions inside the policy.
You can use this variable to prevent a device from connecting to AWS IoT Core if it presents a
certificate that is not attached to an IoT thing in the AWS IoT Core registry.This variable has
values true or false indicating that the connecting thing is attached to the certificate or
Amazon Cognito identity in the registry using AttachThingPrincipal API. Thing name is taken as
client Id.

X.509 Certificate AWS IoT Core policy variables

X.509 certificate policy variables assist with writing AWS IoT Core policies. These policies grant
permissions based on X.509 certificate attributes. The following sections describe how to use these
certificate policy variables.

Important

If your X.509 certificate doesn't include a particular certificate attribute but the
corresponding certificate policy variable is used in your policy document, the policy
evaluation might lead to unexpected behavior.

AWS IoT Core policies 519

https://docs.aws.amazon.com/iot/latest/apireference/API_AttachThingPrincipal.html

AWS IoT Core Developer Guide

CertificateId

In the RegisterCertificate API, the certificateId appears in the response body. To get
information about your certificate, use the certificateId in DescribeCertificate.

Issuer attributes

The following AWS IoT Core policy variables support the allowing or denying of permissions, based
on certificate attributes set by the certificate issuer.

• iot:Certificate.Issuer.DistinguishedNameQualifier

• iot:Certificate.Issuer.Country

• iot:Certificate.Issuer.Organization

• iot:Certificate.Issuer.OrganizationalUnit

• iot:Certificate.Issuer.State

• iot:Certificate.Issuer.CommonName

• iot:Certificate.Issuer.SerialNumber

• iot:Certificate.Issuer.Title

• iot:Certificate.Issuer.Surname

• iot:Certificate.Issuer.GivenName

• iot:Certificate.Issuer.Initials

• iot:Certificate.Issuer.Pseudonym

• iot:Certificate.Issuer.GenerationQualifier

Subject attributes

The following AWS IoT Core policy variables support the granting or denying of permissions, based
on certificate subject attributes set by the certificate issuer.

• iot:Certificate.Subject.DistinguishedNameQualifier

• iot:Certificate.Subject.Country

• iot:Certificate.Subject.Organization

• iot:Certificate.Subject.OrganizationalUnit

• iot:Certificate.Subject.State

• iot:Certificate.Subject.CommonName

AWS IoT Core policies 520

https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterCertificate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeCertificate.html

AWS IoT Core Developer Guide

• iot:Certificate.Subject.SerialNumber

• iot:Certificate.Subject.Title

• iot:Certificate.Subject.Surname

• iot:Certificate.Subject.GivenName

• iot:Certificate.Subject.Initials

• iot:Certificate.Subject.Pseudonym

• iot:Certificate.Subject.GenerationQualifier

X.509 certificates provide these attributes with the option to contain one or more values. By
default, the policy variables for each multi-value attribute return the first value. For example, the
Certificate.Subject.Country attribute might contain a list of country names, but when
evaluated in a policy, iot:Certificate.Subject.Country is replaced by the first country
name.

You can request a specific attribute value other than the first value by using a one-based index. For
example, iot:Certificate.Subject.Country.1 is replaced by the second country name in
the Certificate.Subject.Country attribute. If you specify an index value that does not exist
(for example, if you ask for a third value when there are only two values assigned to the attribute),
no substitution is made and authorization fails. You can use the .List suffix on the policy variable
name to specify all values of the attribute.

Issuer alternate name attributes

The following AWS IoT Core policy variables support the granting or denying of permissions, based
on issuer alternate name attributes set by the certificate issuer.

• iot:Certificate.Issuer.AlternativeName.RFC822Name

• iot:Certificate.Issuer.AlternativeName.DNSName

• iot:Certificate.Issuer.AlternativeName.DirectoryName

• iot:Certificate.Issuer.AlternativeName.UniformResourceIdentifier

• iot:Certificate.Issuer.AlternativeName.IPAddress

Subject alternate name attributes

The following AWS IoT Core policy variables support the granting or denying of permissions, based
on subject alternate name attributes set by the certificate issuer.

AWS IoT Core policies 521

AWS IoT Core Developer Guide

• iot:Certificate.Subject.AlternativeName.RFC822Name

• iot:Certificate.Subject.AlternativeName.DNSName

• iot:Certificate.Subject.AlternativeName.DirectoryName

• iot:Certificate.Subject.AlternativeName.UniformResourceIdentifier

• iot:Certificate.Subject.AlternativeName.IPAddress

Other attributes

You can use iot:Certificate.SerialNumber to allow or deny access to AWS IoT Core
resources, based on the serial number of a certificate. The iot:Certificate.AvailableKeys
policy variable contains the name of all certificate policy variables that contain values.

Using X.509 certificate policy variables

This topic provides details of how to use certificate policy variables. X.509 certificate policy
variables are essential when you create AWS IoT Core policies that give permissions based on X.509
certificate attributes. If your X.509 certificate doesn't include a particular certificate attribute
but the corresponding certificate policy variable is used in your policy document, the policy
evaluation might lead to unexpected behavior. This is because the missing policy variable doesn't
get evaluated in the policy statement.

In this topic:

• X.509 certificate example

• Using certificate issuer attributes as certificate policy variables

• Using certificate subject attributes as certificate policy variables

• Using certificate Issuer alternate name attributes as certificate policy variables

• Using certificate subject alternate name attributes as certificate policy variables

• Using other certificate attribute as a certificate policy variable

• X.509 Certificate policy variable limitations

• Example policies using certificate policy variables

X.509 certificate example

A typical X.509 certificate might appear as follows. This example certificate includes certificate
attributes. During the evaluation of AWS IoT Core policies, the following certificate attributes will

AWS IoT Core policies 522

AWS IoT Core Developer Guide

be populated as certificate policy variables: Serial Number, Issuer, Subject, X509v3 Issuer
Alternative Name, and X509v3 Subject Alternative Name.

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 92:12:85:cb:b7:a5:e0:86
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=IoT Devices, OU=SmartHome, ST=WA, CN=IoT Devices Primary CA,
 GN=Primary CA1/initials=XY/dnQualifier=Example corp,
 SN=SmartHome/ title=CA1/pseudonym=Primary_CA/generationQualifier=2/serialNumber=987

 Validity
 Not Before: Mar 26 03:25:40 2024 GMT
 Not After : Apr 28 03:25:40 2025 GMT
 Subject: C=US, O=IoT Devices, OU=LightBulb, ST=NY, CN=LightBulb Device Cert,
 GN=Bulb/initials=ZZ/dnQualifier=Bulb001,
 SN=Multi Color/title=RGB/pseudonym=RGB Device/generationQualifier=4/
serialNumber=123
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)
 Modulus:
 << REDACTED >>
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Key Usage:
 Digital Signature, Non Repudiation, Key Encipherment
 X509v3 Subject Alternative Name:
 DNS:example.com, IP Address:1.2.3.4, URI:ResourceIdentifier001,
 email:device1@example.com, DirName:/C=US/O=IoT/OU=SmartHome/CN=LightBulbCert
 X509v3 Issuer Alternative Name:
 DNS:issuer.com, IP Address:5.6.7.8, URI:PrimarySignerCA,
 email:primary@issuer.com, DirName:/C=US/O=Issuer/OU=IoT Devices/CN=Primary Issuer CA
 Signature Algorithm: sha256WithRSAEncryption
 << REDACTED >>

AWS IoT Core policies 523

AWS IoT Core Developer Guide

Using certificate issuer attributes as certificate policy variables

The following table provides details of how certificate issuer attributes will be populated in an AWS
IoT Core policy.

Issuer attributes to be populated in a policy

Certificate issuer attributes Certificate policy variables

• C=US

• O=IoT Devices

• OU=SmartHome

• ST=WA

• CN=IoT Devices Primary CA

• GN=Primary CA1

• initials=XY

• dnQualifier=Example corp

• SN=SmartHome

• title=CA1

• pseudonym=Primary_CA

• generationQualifier=2

• serialNumber=987

• iot:Certificate.Issuer.Country = US

• iot:Certificate.Issuer.Organization = IoT
Devices

• iot:Certificate.Issuer.OrganizationalUnit
= SmartHome

• iot:Certificate.Issuer.State = WA

• iot:Certificate.Issuer.CommonName = IoT
Devices Primary CA

• iot:Certificate.Issuer.GivenName = Primary
CA1

• iot:Certificate.Issuer.initials = XY

• iot:Certificate.Issuer.Distinguished
NameQualifier = Example corp

• iot:Certificate.Issuer.Surname = SmartHome

• iot:Certificate.Issuer.Title = CA1

• iot:Certificate.Issuer.Pseudonym =
Primary_CA

• iot:Certificate.Issuer.GenerationQualifier
= 2

• iot:Certificate.Issuer.SerialNumber = 987

Using certificate subject attributes as certificate policy variables

The following table provides details of how certificate subject attributes will be populated in an
AWS IoT Core policy.

AWS IoT Core policies 524

AWS IoT Core Developer Guide

Subject attributes to be populated in a policy

Certificate subject attributes Certificate policy variables

• C=US

• O=IoT Devices

• ST=NY

• CN=LightBulb Device Cert

• GN=Bulb

• initials=ZZ

• dnQualifier=Bulb001

• SN=Multi Color

• title=RGB

• pseudonym=RGB Device

• generationQualifier=4

• serialNumber=123

• iot:Certificate.Subject.Country = US

• iot:Certificate.Subject.Organization = IoT
Devices

• iot:Certificate.Subject.State = NY

• iot:Certificate.Subject.CommonName =
LightBulb Device Cert

• iot:Certificate.Subject.GivenName = Bulb

• iot:Certificate.Subject.initials = ZZ

• iot:Certificate.Subject.Distinguishe
dNameQualifier = Bulb001

• iot:Certificate.Subject.Surname = Multi
Color

• iot:Certificate.Subject.Title = RGB

• iot:Certificate.Subject.Pseudonym = RGB
Device

• iot:Certificate.Subject.GenerationQu
alifier = 4

• iot:Certificate.Subject.SerialNumber = 123

Using certificate Issuer alternate name attributes as certificate policy variables

The following table provides details of how certificate issuer alternate name attributes will be
populated in an AWS IoT Core policy.

Issuer alternate name attributes to be populated in a policy

X509v3 Issuer Alternative
Name

Attribute in a policy

• DNS:issuer.com

• IP Address:5.6.7.8

• iot:Certificate.Issuer.AlternativeNa
me.DNSName = issuer.com

AWS IoT Core policies 525

AWS IoT Core Developer Guide

X509v3 Issuer Alternative
Name

Attribute in a policy

• URI:PrimarySignerCA

• email:primary@issuer.com

• DirName:/C=US/O=Is
suer/OU=IoT Devices/C
N=Primary Issuer CA

• iot:Certificate.Issuer.AlternativeNa
me.IPAddress = 5.6.7.8

• iot:Certificate.Issuer.AlternativeNa
me.UniformResourceIdentifier = PrimarySi
gnerCA

• iot:Certificate.Issuer.AlternativeNa
me.RFC822Name = primary@issuer.com

• iot:Certificate.Issuer.AlternativeNa
me.DirectoryName = cn=Primary Issuer
CA,ou=IoT Devices,o=Issuer,c=US

Using certificate subject alternate name attributes as certificate policy variables

The following table provides details of how certificate subject alternate name attributes will be
populated in an AWS IoT Core policy.

Subject alternate name attributes to be populated in a policy

X509v3 Subject Alternative
Name

Attribute in a policy

• DNS:example.com

• IP Address:1.2.3.4

• URI:ResourceIdentifier001

• email:device1@exam
ple.com

• DirName:/C=US/O=IoT/
OU=SmartHome/CN=
LightBulbCert

• iot:Certificate.Subject.AlternativeN
ame.DNSName = example.com

• iot:Certificate.Subject.AlternativeN
ame.IPAddress = 1.2.3.4

• iot:Certificate.Subject.AlternativeN
ame.UniformResourceIdentifier = ResourceI
dentifier001

• iot:Certificate.Subject.AlternativeN
ame.RFC822Name = device1@example.com

• iot:Certificate.Subject.AlternativeN
ame.DirectoryName = cn=LightBulbCert,o
u=SmartHome,o=IoT,c=US

AWS IoT Core policies 526

AWS IoT Core Developer Guide

Using other certificate attribute as a certificate policy variable

The following table provides details of how other certificate attributes will be populated in an AWS
IoT Core policy.

Other attributes to be populated in a policy

Other certificate attribute Certificate policy variable

Serial Number:
92:12:85:cb:b7:a5:
e0:86

iot:Certificate.SerialNumber = 105256223
89124227206

X.509 Certificate policy variable limitations

The following limitations apply to X.509 certificate policy variables:

Missing policy variables

If your X.509 certificate doesn't include a particular certificate attribute but the corresponding
certificate policy variable is used in your policy document, the policy evaluation might lead to
unexpected behavior. This is because the missing policy variable doesn't get evaluated in the
policy statement.

Certificate SerialNumber format

AWS IoT Core treats the certificate serial number as the string representation of a decimal
integer. For example, if a policy only allows connections with Client ID matching the certificate
serial number, the client ID must be the serial number in decimal format.

Wildcards

If wildcard characters are present in certificate attributes, the policy variable is not replaced
by the certificate attribute value. This will leave the ${policy-variable} text in the policy
document. This might cause authorization failure. The following wildcard characters can be
used: *, $, +, ?, and #.

Array fields

Certificate attributes that contain arrays are limited to five items. Additional items are ignored.

AWS IoT Core policies 527

AWS IoT Core Developer Guide

String length

All string values are limited to 1024 characters. If a certificate attribute contains a string longer
than 1024 characters, the policy variable is not replaced by the certificate attribute value. This
will leave the ${policy-variable} in the policy document. This might cause authorization
failure.

Special Characters

Any special character, such as ,, ", \, +, =, <, > and ; must be prefixed with a backslash (\)
when used in a policy variable. For example, Amazon Web Services O=Amazon.com Inc.
L=Seattle ST=Washington C=US becomes Amazon Web Service O\=Amazon.com
Inc. L\=Seattle ST\=Washington C\=US.

Example policies using certificate policy variables

The following policy document allows connections with client ID that matches the
certificate serial number and publishing to the topic that matches the pattern:
${iot:Certificate.Subject.Organization}/device-stats/${iot:ClientId}/*.

Important

If your X.509 certificate doesn't include a particular certificate attribute but
the corresponding certificate policy variable is used in your policy document,
the policy evaluation might lead to unexpected behavior. This is because the
missing policy variable doesn't get evaluated in the policy statement. For
example, if you attach the following policy document to a certificate that doesn't
contain the iot:Certificate.Subject.Organization attribute, the
iot:Certificate.Subject.Organization certificate policy variables won't be
populated during the policy evaluation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],

AWS IoT Core policies 528

AWS IoT Core Developer Guide

 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Certificate.SerialNumber}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/${iot:Certificate.Subject.Organization}/
device-stats/${iot:ClientId}/*"
]
 }
]
}

You can also use the Null condition operator to ensure that the certificate policy variables
used in a policy are populated during policy evaluation. The following policy document allows
iot:Connect with certificates only when the Certificate Serial Number and Certificate Subject
Common name attributes are present.

All of the certificate policy variables have String values, so all of the String condition operators are
supported.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/*"
],
 "Condition": {
 "Null": {
 "iot:Certificate.SerialNumber": "false",
 "iot:Certificate.Subject.CommonName": "false"
 }
 }
 }

AWS IoT Core policies 529

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String

AWS IoT Core Developer Guide

]
}

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission
to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-
service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). The calling
service can be manipulated to use its permissions to act on another customer's resources in a way
it shouldn't otherwise have permission to access. To prevent this, AWS provides tools that help you
protect your data for all services with service principals that have been given access to resources in
your account.

To limit the permissions that AWS IoT gives another service to the resource, we recommend using
the aws:SourceArn and aws:SourceAccount global condition context keys in resource policies.
If you use both global condition context keys, the aws:SourceAccount value and the account in
the aws:SourceArn value must use the same account ID when used in the same policy statement.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full Amazon Resource Name
(ARN) of the resource. For AWS IoT, your aws:SourceArn must comply with the format:
arn:aws:iot:region:account-id:*. Make sure that the region matches your AWS IoT
Region and the account-id matches your customer account ID.

The following example shows how to prevent the confused deputy problem by using the
aws:SourceArn and aws:SourceAccount global condition context keys in the AWS IoT role
trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {

AWS IoT Core policies 530

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Core Developer Guide

 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:iot:us-east-1:123456789012:*"
 }
 }
 }
]
}

AWS IoT Core policy examples

The example policies in this section illustrate the policy documents used to complete common
tasks in AWS IoT Core. You can use them as examples to start from when creating the policies for
your solutions.

The examples in this section use these policy elements:

• the section called “AWS IoT Core policy actions”

• the section called “AWS IoT Core action resources”

• the section called “Identity-based policy examples”

• the section called “Basic AWS IoT Core policy variables”

• the section called “X.509 Certificate AWS IoT Core policy variables”

Policy examples in this section:

• Connect policy examples

• Publish/Subscribe policy examples

• Connect and publish policy examples

• Retained message policy examples

• Certificate policy examples

• Thing policy examples

• Basic job policy example

Connect policy examples

The following policy denies permission to client IDs client1 and client2 to connect to AWS
IoT Core, while allowing devices to connect using a client ID. The client ID matches the name of a

AWS IoT Core policies 531

AWS IoT Core Developer Guide

thing that's registered in the AWS IoT Core registry and attached to the principal that's used for
connection:

Note

For registered devices, we recommend that you use thing policy variables for Connect
actions and attach the thing to the principal that's used for the connection.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1",
 "arn:aws:iot:us-east-1:123456789012:client/client2"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 }
]
}

The following policy grants permission to connect to AWS IoT Core with client ID client1. This
policy example is for unregistered devices.

AWS IoT Core policies 532

AWS IoT Core Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1"
]
 }
]
}

MQTT persistent sessions policy examples

connectAttributes allow you to specify what attributes you want to use in your connect
message in your IAM policies such as PersistentConnect and LastWill. For more information,
see Using connectAttributes.

The following policy allows connect with PersistentConnect feature:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 }
]
}

AWS IoT Core policies 533

AWS IoT Core Developer Guide

The following policy disallows PersistentConnect, other features are allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringNotEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 }
]
}

The above policy can also be expressed using StringEquals, any other feature including new
feature is allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {

AWS IoT Core policies 534

AWS IoT Core Developer Guide

 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 }
]
}

The following policy allows connect by both PersistentConnect and LastWill, any other new
feature is not allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect",
 "LastWill"
]
 }
 }
 }
]
}

The following policy allows clean connect by clients with or without LastWill, no other features
will be allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

AWS IoT Core policies 535

AWS IoT Core Developer Guide

 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "LastWill"
]
 }
 }
 }
]
}

The following policy only allows connect using default features:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": []
 }
 }
 }
]
}

The following policy allows connect only with PersistentConnect, any new feature is allowed as
long as the connection uses PersistentConnect:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

AWS IoT Core policies 536

AWS IoT Core Developer Guide

 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 }
]
}

The following policy states the connect must have both PersistentConnect and LastWill
usage, no new feature is allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect",
 "LastWill"
]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {

AWS IoT Core policies 537

AWS IoT Core Developer Guide

 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "LastWill"
]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": []
 }
 }
 }
]
}

The following policy must not have PersistentConnect but can have LastWill, any other new
feature is not allowed:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",

AWS IoT Core policies 538

AWS IoT Core Developer Guide

 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "LastWill"
]
 }
 }
 }
]
}

The following policy allows connect only by clients that have a LastWill with topic "my/
lastwill/topicName", any feature is allowed as long as it uses the LastWill topic:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ArnEquals": {

AWS IoT Core policies 539

AWS IoT Core Developer Guide

 "iot:LastWillTopic": "arn:aws:iot:region:account-id:topic/my/
lastwill/topicName"
 }
 }
 }
]
}

The following policy only allows clean connect using a specific LastWillTopic, any feature is
allowed as long as it uses the LastWillTopic:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:client/client1",
 "Condition": {
 "ArnEquals": {
 "iot:LastWillTopic": "arn:aws:iot:region:account-id:topic/my/
lastwill/topicName"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Connect"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:ConnectAttributes": [
 "PersistentConnect"
]
 }
 }
 }
]
}

AWS IoT Core policies 540

AWS IoT Core Developer Guide

Publish/Subscribe policy examples

The policy you use depends on how you're connecting to AWS IoT Core. You can connect to AWS
IoT Core by using an MQTT client, HTTP, or WebSocket. When you connect with an MQTT client,
you're authenticating with an X.509 certificate. When you connect over HTTP or the WebSocket
protocol, you're authenticating with Signature Version 4 and Amazon Cognito.

Note

For registered devices, we recommend that you use thing policy variables for Connect
actions and attach the thing to the principal that's used for the connection.

In this section:

• Using wildcard characters in MQTT and AWS IoT Core policies

• Policies to publish, subscribe and receive messages to/from specific topics

• Policies to publish, subscribe and receive messages to/from topics with a specific prefix

• Policies to publish, subscribe and receive messages to/from topics specific to each device

• Policies to publish, subscribe and receive messages to/from topics with thing attribute in topic
name

• Policies to deny publishing messages to subtopics of a topic name

• Policies to deny receiving messages from subtopics of a topic name

• Policies to subscribe to topics using MQTT wildcard characters

• Policies for HTTP and WebSocket clients

Using wildcard characters in MQTT and AWS IoT Core policies

MQTT and AWS IoT Core policies have different wildcard characters and you should choose them
after careful consideration. In MQTT, the wildcard characters + and # are used in MQTT topic filters
to subscribe to multiple topic names. AWS IoT Core policies use * and ? as wildcard characters and
follow the conventions of IAM policies. In a policy document, the * represents any combination
of characters and a question mark ? represents any single character. In policy documents, the
MQTT wildcard characters, + and # are treated as those characters with no special meaning. To
describe multiple topic names and topic filters in the resource attribute of a policy, use the * and
? wildcard characters in place of the MQTT wildcard characters.

AWS IoT Core policies 541

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html#topicfilters
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html#policies-grammar-json

AWS IoT Core Developer Guide

When you choose the wildcard characters to use in a policy document, consider that the *
character is not confined to a single topic level. The + character is confined to a single topic level in
an MQTT topic filter. To help constrain a wildcard specification to a single MQTT topic filter level,
consider using multiple ? characters. For more information about using wildcard characters in a
policy resource and more examples of what they match, see Using wildcards in resource ARNs.

The table below shows the different wildcard characters used in MQTT and AWS IoT Core policies
for MQTT clients.

Wildcard
character

Is MQTT
wildcard
character

Example in
MQTT

Is AWS IoT
Core policy
wildcard
character

Example in AWS IoT Core
policies for MQTT clients

Yes some/# No N/A

+ Yes some/+/to
pic

No N/A

* No N/A Yes topicfilter/some/*/topic

topicfilter/some/s
ensor*/topic

? No N/A Yes topic/some/?????/topic

topicfilter/some/s
ensor???/topic

Policies to publish, subscribe and receive messages to/from specific topics

The following shows examples for registered and unregistered devices to publish, subscribe and
receive messages to/from the topic named "some_specific_topic". The examples also highlight
that Publish and Receive use "topic" as the resource, and Subscribe uses "topicfilter" as the
resource.

AWS IoT Core policies 542

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html#reference_policies_elements_resource_wildcards

AWS IoT Core Developer Guide

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. It also provides Publish,
Subscribe and Receive permissions for the topic named "some_specific_topic".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/some_specific_topic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/some_specific_topic"
]
 },
 {
 "Effect": "Allow",

AWS IoT Core policies 543

AWS IoT Core Developer Guide

 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/some_specific_topic"
]
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. It also provides Publish, Subscribe and
Receive permissions for the topic named "some_specific_topic".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/some_specific_topic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"

AWS IoT Core policies 544

AWS IoT Core Developer Guide

],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/some_specific_topic"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/some_specific_topic"
]
 }
]
}

Policies to publish, subscribe and receive messages to/from topics with a specific prefix

The following shows examples for registered and unregistered devices to publish, subscribe and
receive messages to/from topics prefixed with "topic_prefix".

Note

Note the use of the wildcard character * in this example. Although * is useful to provide
permissions for multiple topic names in a single statement, it can lead to unintended
consequences by providing more privileges to devices than required. So we recommend
that you only use the wildcard character * after careful consideration.

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. It also provides Publish,
Subscribe and Receive permissions for topics prefixed with "topic_prefix".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

AWS IoT Core policies 545

AWS IoT Core Developer Guide

 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/topic_prefix*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/topic_prefix*"
]
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. It also provides Publish, Subscribe and
Receive permissions for topics prefixed with "topic_prefix".

{
 "Version": "2012-10-17",
 "Statement": [

AWS IoT Core policies 546

AWS IoT Core Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/topic_prefix*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/topic_prefix*"
]
 }
]
}

Policies to publish, subscribe and receive messages to/from topics specific to each device

The following shows examples for registered and unregistered devices to publish, subscribe and
receive messages to/from topics that are specific to the given device.

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. It provides permission to publish

AWS IoT Core policies 547

AWS IoT Core Developer Guide

to the thing-specific topic (sensor/device/${iot:Connection.Thing.ThingName})
and also subscribe to and receive from the thing-specific topic (command/device/
${iot:Connection.Thing.ThingName}). If the thing name in the registry is "thing1", the
device will be able to publish to the topic "sensor/device/thing1". The device will also be able to
subscribe to and receive from the topic "command/device/thing1".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/sensor/device/
${iot:Connection.Thing.ThingName}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/command/device/
${iot:Connection.Thing.ThingName}"
]
 },

AWS IoT Core policies 548

AWS IoT Core Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/command/device/
${iot:Connection.Thing.ThingName}"
]
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. It provides permission to publish to the
client-specific topic (sensor/device/${iot:ClientId}), and also subscribe to and receive
from the client-specific topic (command/device/${iot:ClientId}). If the device connects
with clientId as clientId1, it will be able to publish to the topic "sensor/device/clientId1". The
device will also be able to subscribe to and receive from the topic device/clientId1/
command.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],

AWS IoT Core policies 549

AWS IoT Core Developer Guide

 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/sensor/device/
${iot:Connection.Thing.ThingName}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/command/device/
${iot:Connection.Thing.ThingName}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/command/device/
${iot:Connection.Thing.ThingName}"
]
 }
]
}

Policies to publish, subscribe and receive messages to/from topics with thing attribute in topic
name

The following shows an example for registered devices to publish, subscribe and receive messages
to/from topics whose names include thing attributes.

Note

Thing attributes only exist for devices registered in AWS IoT Core Registry. There is no
corresponding example for unregistered devices.

AWS IoT Core policies 550

AWS IoT Core Developer Guide

Registered devices

For devices registered in AWS IoT Core registry, the following policy
allows devices to connect with clientId that matches the name of a thing
in the registry. It provides permission to publish to the topic (sensor/
${iot:Connection.Thing.Attributes[version]}), and subscribe to and receive from
the topic (command/${iot:Connection.Thing.Attributes[location]}) where the
topic name includes thing attributes. If the thing name in the registry has version=v1 and
location=Seattle, the device will be able to publish to the topic "sensor/v1", and subscribe
to and receive from the topic "command/Seattle".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/sensor/
${iot:Connection.Thing.Attributes[version]}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"

AWS IoT Core policies 551

AWS IoT Core Developer Guide

],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/command/
${iot:Connection.Thing.Attributes[location]}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/command/
${iot:Connection.Thing.Attributes[location]}"
]
 }
]
}

Unregistered devices

Because thing attributes only exist for devices registered in AWS IoT Core registry, there is no
corresponding example for unregistered things.

Policies to deny publishing messages to subtopics of a topic name

The following shows examples for registered and unregistered devices to publish messages to all
topics except certain subtopics.

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. It provides permission to publish
to all topics prefixed with "department/" but not to the "department/admins" subtopic.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"

AWS IoT Core policies 552

AWS IoT Core Developer Guide

],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/department/*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/department/admins"
]
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. It provides permission to publish to all
topics prefixed with "department/" but not to the "department/admins" subtopic.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

AWS IoT Core policies 553

AWS IoT Core Developer Guide

 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/department/*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/department/admins"
]
 }
]
}

Policies to deny receiving messages from subtopics of a topic name

The following shows examples for registered and unregistered devices to subscribe to and receive
messages from topics with specific prefixes except certain subtopics.

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. The policy allows devices to
subscribe to any topic prefixed with "topic_prefix". By using NotResource in the statement
for iot:Receive, we allow the device to receive messages from all topics that the device
has subscribed to, except the topics prefixed with "topic_prefix/restricted". For example, with
this policy, devices can subscribe to "topic_prefix/topic1" and even "topic_prefix/restricted",

AWS IoT Core policies 554

AWS IoT Core Developer Guide

however, they will only receive messages from the topic "topic_prefix/topic1" and no messages
from the topic "topic_prefix/restricted".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/topic_prefix/*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "NotResource": "arn:aws:iot:us-east-1:123456789012:topic/topic_prefix/restricted/
*"
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. The policy allows devices to subscribe
to any topic prefixed with "topic_prefix". By using NotResource in the statement for
iot:Receive, we allow the device to receive messages from all topics that the device has
subscribed to, except topics prefixed with "topic_prefix/restricted". For example, with this policy,
devices can subscribe to "topic_prefix/topic1" and even "topic_prefix/restricted". However, they

AWS IoT Core policies 555

AWS IoT Core Developer Guide

will only receive messages from the topic "topic_prefix/topic1" and no messages from the topic
"topic_prefix/restricted".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/
topic_prefix/*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "NotResource": "arn:aws:iot:us-east-1:123456789012:topic/topic_prefix/
restricted/*"
 }
]
}

Policies to subscribe to topics using MQTT wildcard characters

MQTT wildcard characters + and # are treated as literal strings, but they are not treated as
wildcards when used in AWS IoT Core policies. In MQTT, + and # are treated as wildcards only when
subscribing to a topic filter but as a literal string in all other contexts. We recommend that you only
use these MQTT wildcards as part of AWS IoT Core policies after careful consideration.

The following shows examples for registered and unregistered things using MQTT wildcards in AWS
IoT Core policies. These wildcards are treated as literal strings.

AWS IoT Core policies 556

AWS IoT Core Developer Guide

Registered devices

For devices registered in AWS IoT Core registry, the following policy allows devices to connect
with clientId that matches the name of a thing in the registry. The policy allows devices
to subscribe to the topics "department/+/employees" and "location/#". Because + and #
are treated as literal strings in AWS IoT Core policies, devices can subscribe to the topic
"department/+/employees" but not to the topic "department/engineering/employees".
Similarly, devices can subscribe to the topic "location/#" but not to the topic "location/Seattle".
However, once the device subscribes to the topic "department/+/employees", the policy will
allow them to receive messages from the topic "department/engineering/employees". Similarly,
once the device subscribes to the topic "location/#", they will receive messages from the topic
"location/Seattle" as well.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/department/+/
employees"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/location/#"
 },
 {

AWS IoT Core policies 557

AWS IoT Core Developer Guide

 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topic/*"
 }
]
}

Unregistered devices

For devices not registered in AWS IoT Core registry, the following policy allows devices to
connect using either clientId1, clientId2 or clientId3. The policy allows devices to subscribe to
the topics of "department/+/employees" and "location/#". Because + and # are treated as literal
strings in AWS IoT Core policies, devices can subscribe to the topic "department/+/employees"
but not to the topic "department/engineering/employees". Similarly, devices can subscribe
to the topic "location/#" but not "location/Seattle". However, once the device subscribes to
the topic "department/+/employees", the policy will allow them to receive messages from the
topic "department/engineering/employees". Similarly, once the device subscribes to the topic
"location/#", they will receive messages from the topic "location/Seattle" as well.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/clientId1",
 "arn:aws:iot:us-east-1:123456789012:client/clientId2",
 "arn:aws:iot:us-east-1:123456789012:client/clientId3"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/department/
+/employees"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",

AWS IoT Core policies 558

AWS IoT Core Developer Guide

 "Resource": "arn:aws:iot:us-east-1:123456789012:topicfilter/location/#"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource": "arn:aws:iot:us-east-1:123456789012:topic/*"
 }
]
}

Policies for HTTP and WebSocket clients

When you connect over HTTP or the WebSocket protocol, you're authenticating with
Signature Version 4 and Amazon Cognito. Amazon Cognito identities can be authenticated
or unauthenticated. Authenticated identities belong to users who are authenticated by any
supported identity provider. Unauthenticated identities typically belong to guest users who do
not authenticate with an identity provider. Amazon Cognito provides a unique identifier and AWS
credentials to support unauthenticated identities. For more information, see the section called
“Authorization with Amazon Cognito identities”.

For the following operations, AWS IoT Core uses AWS IoT Core policies attached to Amazon
Cognito identities through the AttachPolicy API. This scopes down the permissions attached to
the Amazon Cognito Identity pool with authenticated identities.

• iot:Connect

• iot:Publish

• iot:Subscribe

• iot:Receive

• iot:GetThingShadow

• iot:UpdateThingShadow

• iot:DeleteThingShadow

That means an Amazon Cognito Identity needs permission from the IAM role policy and the AWS
IoT Core policy. You attach the IAM role policy to the pool and the AWS IoT Core policy to the
Amazon Cognito Identity through the AWS IoT Core AttachPolicy API.

AWS IoT Core policies 559

AWS IoT Core Developer Guide

Authenticated and unauthenticated users are different identity types. If you don't attach an AWS
IoT policy to the Amazon Cognito Identity, an authenticated user fails authorization in AWS IoT and
doesn't have access to AWS IoT resources and actions.

Note

For other AWS IoT Core operations or for unauthenticated identities, AWS IoT Core does
not scope down the permissions attached to the Amazon Cognito identity pool role. For
both authenticated and unauthenticated identities, this is the most permissive policy that
we recommend you attach to the Amazon Cognito pool role.

HTTP

To allow unauthenticated Amazon Cognito identities to publish messages over HTTP on a topic
specific to the Amazon Cognito Identity, attach the following IAM policy to the Amazon Cognito
Identity pool role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/${cognito-
identity.amazonaws.com:sub}"]
 }
]
}

To allow authenticated users, attach the preceding policy to the Amazon Cognito Identity pool role
and to the Amazon Cognito Identity using the AWS IoT Core AttachPolicy API.

Note

When authorizing Amazon Cognito identities, AWS IoT Core considers both policies and
grants the least privileges specified. An action is allowed only if both policies allow the
requested action. If either policy disallows an action, that action is unauthorized.

AWS IoT Core policies 560

https://docs.aws.amazon.com/iot/latest/apireference/API_AttachPolicy.html

AWS IoT Core Developer Guide

MQTT

To allow unauthenticated Amazon Cognito identities to publish MQTT messages over WebSocket
on a topic specific to the Amazon Cognito Identity in your account, attach the following IAM policy
to the Amazon Cognito Identity pool role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/${cognito-
identity.amazonaws.com:sub}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/${cognito-
identity.amazonaws.com:sub}"]
 }
]
}

To allow authenticated users, attach the preceding policy to the Amazon Cognito Identity pool role
and to the Amazon Cognito Identity using the AWS IoT Core AttachPolicy API.

Note

When authorizing Amazon Cognito identities, AWS IoT Core considers both and grants the
least privileges specified. An action is allowed only if both policies allow the requested
action. If either policy disallows an action, that action is unauthorized.

Connect and publish policy examples

For devices registered as things in the AWS IoT Core registry, the following policy grants permission
to connect to AWS IoT Core with a client ID that matches the thing name and restricts the device to

AWS IoT Core policies 561

https://docs.aws.amazon.com/iot/latest/apireference/API_AttachPolicy.html

AWS IoT Core Developer Guide

publishing on a client-ID or thing name-specific MQTT topic. For a connection to be successful, the
thing name must be registered in the AWS IoT Core registry and be authenticated using an identity
or principal attached to the thing:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.ThingName}"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 }
]
}

For devices not registered as things in the AWS IoT Core registry, the following policy grants
permission to connect to AWS IoT Core with client ID client1 and restricts the device to
publishing on a clientID-specific MQTT topic:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/${iot:ClientId}"]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/client1"]
 }
]
}

AWS IoT Core policies 562

AWS IoT Core Developer Guide

Retained message policy examples

Using retained messages requires specific policies. Retained messages are MQTT messages
published with the RETAIN flag set and stored by AWS IoT Core. This section presents examples of
policies that allow common uses of retained messages.

In this section:

• Policy to connect and publish retained messages

• Policy to connect and publish retained Will messages

• Policy to list and get retained messages

Policy to connect and publish retained messages

For a device to publish retained messages, the device must be able to connect, publish (any MQTT
message), and publish MQTT retained messages. The following policy grants these permissions for
the topic: device/sample/configuration to client device1. For another example that grants
permission to connect, see the section called “Connect and publish policy examples”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/device1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:RetainPublish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/device/sample/configuration"
]
 }
]

AWS IoT Core policies 563

AWS IoT Core Developer Guide

}

Policy to connect and publish retained Will messages

Clients can configure a message that AWS IoT Core will publish when the client disconnects
unexpectedly. MQTT calls such a message a Will message. A client must have an additional
condition added to its connect permission to include them.

The following policy document grants all clients permission to connect and publish a Will message,
identified by its topic, will, that AWS IoT Core will also retain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/device1"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "iot:ConnectAttributes": [
 "LastWill"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:RetainPublish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/will"
]
 }
]
}

AWS IoT Core policies 564

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Will_Flag

AWS IoT Core Developer Guide

Policy to list and get retained messages

Services and applications can access retained messages without the need to support an MQTT
client by calling ListRetainedMessages and GetRetainedMessage. The services and
applications that call these actions must be authorized by using a policy such as the following
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:ListRetainedMessages"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/device1"
],
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetRetainedMessage"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/foo"
]
 }
]
}

Certificate policy examples

For devices registered in AWS IoT Core registry, the following policy grants permission to connect
to AWS IoT Core with a client ID that matches a thing name, and to publish to a topic whose name
is equal to the certificateId of the certificate the device used to authenticate itself:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

AWS IoT Core policies 565

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_ListRetainedMessages.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_GetRetainedMessage.html

AWS IoT Core Developer Guide

 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:CertificateId}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 }
]
}

For devices not registered in the AWS IoT Core registry, the following policy grants permission
to connect to AWS IoT Core with client IDs, client1, client2, and client3 and to publish
to a topic whose name is equal to the certificateId of the certificate the device used to
authenticate itself:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:CertificateId}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1",
 "arn:aws:iot:us-east-1:123456789012:client/client2",
 "arn:aws:iot:us-east-1:123456789012:client/client3"
]

AWS IoT Core policies 566

AWS IoT Core Developer Guide

 }
]
}

For devices registered in AWS IoT Core registry, the following policy grants permission to connect
to AWS IoT Core with a client ID that matches the thing name, and to publish to a topic whose
name is equal to the subject's CommonName field of the certificate the device used to authenticate
itself:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:Certificate.Subject.CommonName}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 }
]
}

Note

In this example, the certificate's subject common name is used as the topic identifier, with
the assumption that the subject common name is unique for each registered certificate. If
the certificates are shared across multiple devices, the subject common name is the same
for all the devices that share this certificate, thereby allowing publish privileges to the same
topic from multiple devices (not recommended).

AWS IoT Core policies 567

AWS IoT Core Developer Guide

For devices not registered in AWS IoT Core registry, the following policy grants permission to
connect to AWS IoT Core with client IDs, client1, client2, and client3 and to publish to a
topic whose name is equal to the subject's CommonName field of the certificate the device used to
authenticate itself:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/
${iot:Certificate.Subject.CommonName}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1",
 "arn:aws:iot:us-east-1:123456789012:client/client2",
 "arn:aws:iot:us-east-1:123456789012:client/client3"
]
 }
]
}

Note

In this example, the certificate's subject common name is used as the topic identifier, with
the assumption that the subject common name is unique for each registered certificate. If
the certificates are shared across multiple devices, the subject common name is the same
for all the devices that share this certificate, thereby allowing publish privileges to the same
topic from multiple devices (not recommended).

For devices registered in the AWS IoT Core registry, the following policy grants permission to
connect to AWS IoT Core with a client ID that matches the thing name, and to publish to a topic

AWS IoT Core policies 568

AWS IoT Core Developer Guide

whose name is prefixed with admin/ when the certificate used to authenticate the device has its
Subject.CommonName.2 field set to Administrator:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin/*"],
 "Condition": {
 "StringEquals": {
 "iot:Certificate.Subject.CommonName.2": "Administrator"
 }
 }
 }
]
}

For devices not registered in AWS IoT Core registry, the following policy grants permission to
connect to AWS IoT Core with client IDs client1, client2, and client3 and to publish to a
topic whose name is prefixed with admin/ when the certificate used to authenticate the device has
its Subject.CommonName.2 field set to Administrator:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],

AWS IoT Core policies 569

AWS IoT Core Developer Guide

 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1",
 "arn:aws:iot:us-east-1:123456789012:client/client2",
 "arn:aws:iot:us-east-1:123456789012:client/client3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin/*"],
 "Condition": {
 "StringEquals": {
 "iot:Certificate.Subject.CommonName.2": "Administrator"
 }
 }
 }
]
}

For devices registered in AWS IoT Core registry, the following policy allows a device to use its thing
name to publish on a specific topic that consists of admin/ followed by the ThingName when the
certificate used to authenticate the device has any one of its Subject.CommonName fields set to
Administrator:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],

AWS IoT Core policies 570

AWS IoT Core Developer Guide

 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin/
${iot:Connection.Thing.ThingName}"],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:Certificate.Subject.CommonName.List": "Administrator"
 }
 }
 }
]
}

For devices not registered in AWS IoT Core registry, the following policy grants permission
to connect to AWS IoT Core with client IDs client1, client2, and client3 and to publish
to the topic admin when the certificate used to authenticate the device has any one of its
Subject.CommonName fields set to Administrator:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1",
 "arn:aws:iot:us-east-1:123456789012:client/client2",
 "arn:aws:iot:us-east-1:123456789012:client/client3"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/admin"],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iot:Certificate.Subject.CommonName.List": "Administrator"
 }
 }
 }
]

AWS IoT Core policies 571

AWS IoT Core Developer Guide

}

Thing policy examples

The following policy allows a device to connect if the certificate used to authenticate with AWS IoT
Core is attached to the thing for which the policy is being evaluated:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["iot:Connect"],
 "Resource":["*"],
 "Condition": {
 "Bool": {
 "iot:Connection.Thing.IsAttached": ["true"]
 }
 }
 }
]
}

The following policy allows a device to publish if the certificate is attached to a thing with
a particular thing type and if the thing has an attribute of attributeName with value
attributeValue. For more information about thing policy variables, see Thing policy variables.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:topic/device/stats",
 "Condition": {
 "StringEquals": {
 "iot:Connection.Thing.Attributes[attributeName]": "attributeValue",
 "iot:Connection.Thing.ThingTypeName": "Thing_Type_Name"
 },
 "Bool": {

AWS IoT Core policies 572

AWS IoT Core Developer Guide

 "iot:Connection.Thing.IsAttached": "true"
 }
 }
 }
]
}

The following policy allows a device to publish to a topic that starts with an attribute of the thing.
If the device certificate is not associated with the thing, this variable won't be resolved and will
result in an access denied error. For more information about thing policy variables, see Thing policy
variables.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": "arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.Attributes[attributeName]}/*"
 }
]
}

Basic job policy example

This sample shows the policy statments required for a job target that's a single device to receive a
job request and communicate job execution status with AWS IoT.

Replace us-west-2:57EXAMPLE833 with your AWS Region, a colon character (:), and your 12-
digit AWS account number, and then replace uniqueThingName with the name of the thing
resource that represents the device in AWS IoT.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"

AWS IoT Core policies 573

AWS IoT Core Developer Guide

],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:client/uniqueThingName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/pubtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/events/job/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/events/jobExecution/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName/jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/test/dc/subtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/$aws/events/jobExecution/*",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topicfilter/$aws/things/uniqueThingName/
jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/test/dc/subtopic",
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName/jobs/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:DescribeJobExecution",
 "iot:GetPendingJobExecutions",

AWS IoT Core policies 574

AWS IoT Core Developer Guide

 "iot:StartNextPendingJobExecution",
 "iot:UpdateJobExecution"
],
 "Resource": [
 "arn:aws:iot:us-west-2:57EXAMPLE833:topic/$aws/things/uniqueThingName"
]
 }
]
}

Authorization with Amazon Cognito identities

There are two types of Amazon Cognito identities: unauthenticated and authenticated. If your app
supports unauthenticated Amazon Cognito identities, no authentication is performed, so you don't
know who the user is.

Unauthenticated Identities: For unauthenticated Amazon Cognito identities, you grant
permissions by attaching an IAM role to an unauthenticated identity pool. We recommend that you
only grant access to those resources you want available to unknown users.

Important

For unauthenticated Amazon Cognito users connecting to AWS IoT Core, we recommend
that you give access to very limited resources in IAM policies.

Authenticated Identities: For authenticated Amazon Cognito identities, you need to specify
permissions in two places:

• Attach an IAM policy to the authenticated Amazon Cognito Identity pool and

• Attach an AWS IoT Core policy to the Amazon Cognito Identity (authenticated user).

Policy examples for unauthenticated and authenticated Amazon Cognito users connecting to
AWS IoT Core

The following example shows permissions in both the IAM policy and the IoT policy of an Amazon
Cognito identity. The authenticated user wants to publish to a device specific topic (e.g. device/
DEVICE_ID/status).

AWS IoT Core policies 575

AWS IoT Core Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/Client_ID"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/device/Device_ID/status"
]
 }
]
}

The following example shows the permissions in an IAM policy of an Amazon Cognito
unauthenticated role. The unauthenticated user wants to publish to non-device specific topics that
do not require authentication.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/*"
]
 },
 {
 "Effect": "Allow",

AWS IoT Core policies 576

AWS IoT Core Developer Guide

 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/non_device_specific_topic"
]
 }
]
}

GitHub examples

The following example web applications on GitHub show how to incorporate policy attachment to
authenticated users into the user signup and authentication process.

• MQTT publish/subscribe React web application using AWS Amplify and the AWS IoT Device SDK
for JavaScript

• MQTT publish/subscribe React web application using AWS Amplify, the AWS IoT Device SDK for
JavaScript, and a Lambda function

Amplify is a set of tools and services that helps you build web and mobile applications that
integrate with AWS services. For more information about Amplify, see Amplify Framework
Documentation,.

Both examples perform the following steps.

1. When a user signs up for an account, the application creates an Amazon Cognito user pool and
identity.

2. When a user authenticates, the application creates and attaches a policy to the identity. This
gives the user publish and subscribe permissions.

3. The user can use the application to publish and subscribe to MQTT topics.

The first example uses the AttachPolicy API operation directly inside the authentication
operation. The following example demonstrates how to implement this API call inside a React web
application that uses Amplify and the AWS IoT Device SDK for JavaScript.

function attachPolicy(id, policyName) {

AWS IoT Core policies 577

https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-cp
https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-cp
https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-lambda
https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-lambda
https://docs.amplify.aws/
https://docs.amplify.aws/

AWS IoT Core Developer Guide

 var Iot = new AWS.Iot({region: AWSConfiguration.region, apiVersion:
 AWSConfiguration.apiVersion, endpoint: AWSConfiguration.endpoint});
 var params = {policyName: policyName, target: id};

 console.log("Attach IoT Policy: " + policyName + " with cognito identity id: " +
 id);
 Iot.attachPolicy(params, function(err, data) {
 if (err) {
 if (err.code !== 'ResourceAlreadyExistsException') {
 console.log(err);
 }
 }
 else {
 console.log("Successfully attached policy with the identity", data);
 }
 });
}

This code appears in the AuthDisplay.js file.

The second example implements the AttachPolicy API operation in a Lambda function. The
following example shows how the Lambda uses this API call.

iot.attachPolicy(params, function(err, data) {
 if (err) {
 if (err.code !== 'ResourceAlreadyExistsException') {
 console.log(err);
 res.json({error: err, url: req.url, body: req.body});
 }
 }
 else {
 console.log(data);
 res.json({success: 'Create and attach policy call succeed!', url: req.url,
 body: req.body});
 }
 });

This code appears inside the iot.GetPolicy function in the app.js file.

AWS IoT Core policies 578

https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-cp/blob/d1c307b36357be934db9dda020140fa337709cd9/src/AuthDisplay.js#L45
https://github.com/aws-samples/aws-amplify-react-iot-pub-sub-using-lambda/blob/e493039581d2aff0faa3949086deead20a2c5385/amplify/backend/function/amplifyiotlambda/src/app.js#L50

AWS IoT Core Developer Guide

Note

When you call the function with AWS credentials that you obtain through Amazon
Cognito Identity pools, the context object in your Lambda function contains a value for
context.cognito_identity_id. For more information, see the following.

• AWS Lambda context object in Node.js

• AWS Lambda context object in Python

• AWS Lambda context object in Ruby

• AWS Lambda context object in Java

• AWS Lambda context object in Go

• AWS Lambda context object in C#

• AWS Lambda context object in PowerShell

Authorizing direct calls to AWS services using AWS IoT Core credential
provider

Devices can use X.509 certificates to connect to AWS IoT Core using TLS mutual authentication
protocols. Other AWS services do not support certificate-based authentication, but they can be
called using AWS credentials in AWS Signature Version 4 format. The Signature Version 4 algorithm
normally requires the caller to have an access key ID and a secret access key. AWS IoT Core has
a credentials provider that allows you to use the built-in X.509 certificate as the unique device
identity to authenticate AWS requests. This eliminates the need to store an access key ID and a
secret access key on your device.

The credentials provider authenticates a caller using an X.509 certificate and issues a temporary,
limited-privilege security token. The token can be used to sign and authenticate any AWS request.
This way of authenticating your AWS requests requires you to create and configure an AWS Identity
and Access Management (IAM) role and attach appropriate IAM policies to the role so that the
credentials provider can assume the role on your behalf. For more information about AWS IoT Core
and IAM, see Identity and access management for AWS IoT.

AWS IoT requires devices to send the Server Name Indication (SNI) extension to the Transport Layer
Security (TLS) protocol and provide the complete endpoint address in the host_name field. The
host_name field must contain the endpoint you are calling, and it must be:

Authorizing direct calls to AWS services using AWS IoT Core credential provider 579

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-context.html
https://docs.aws.amazon.com/lambda/latest/dg/python-context.html
https://docs.aws.amazon.com/lambda/latest/dg/ruby-context.html
https://docs.aws.amazon.com/lambda/latest/dg/java-context.html
https://docs.aws.amazon.com/lambda/latest/dg/golang-context.html
https://docs.aws.amazon.com/lambda/latest/dg/csharp-context.html
https://docs.aws.amazon.com/lambda/latest/dg/powershell-context.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
x509-client-certs.html
https://docs.aws.amazon.com/service-authorization/latest/reference/id_roles.html
https://docs.aws.amazon.com/service-authorization/latest/reference/id_roles.html
https://www.rfc-editor.org/rfc/rfc3546#section-3.1

AWS IoT Core Developer Guide

• The endpointAddress returned by aws iot describe-endpoint --endpoint-type
iot:CredentialProvider.

Connections attempted by devices without the correct host_name value will fail.

The following diagram illustrates the credentials provider workflow.

1. The AWS IoT Core device makes an HTTPS request to the credentials provider for a security
token. The request includes the device X.509 certificate for authentication.

2. The credentials provider forwards the request to the AWS IoT Core authentication and
authorization module to validate the certificate and verify that the device has permission to
request the security token.

Authorizing direct calls to AWS services using AWS IoT Core credential provider 580

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html

AWS IoT Core Developer Guide

3. If the certificate is valid and has permission to request a security token, the AWS IoT Core
authentication and authorization module returns success. Otherwise, it sends an exception to
the device.

4. After successfully validating the certificate, the credentials provider invokes the AWS Security
Token Service (AWS STS) to assume the IAM role that you created for it.

5. AWS STS returns a temporary, limited-privilege security token to the credentials provider.

6. The credentials provider returns the security token to the device.

7. The device uses the security token to sign an AWS request with AWS Signature Version 4.

8. The requested service invokes IAM to validate the signature and authorize the request against
access policies attached to the IAM role that you created for the credentials provider.

9. If IAM validates the signature successfully and authorizes the request, the request is successful.
Otherwise, IAM sends an exception.

The following section describes how to use a certificate to get a security token. It is written with
the assumption that you have already registered a device and created and activated your own
certificate for it.

How to use a certificate to get a security token

1. Configure the IAM role that the credentials provider assumes on behalf of your device. Attach
the following trust policy to the role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "credentials.iot.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

For each AWS service that you want to call, attach an access policy to the role. The credentials
provider supports the following policy variables:

• credentials-iot:ThingName

• credentials-iot:ThingTypeName

• credentials-iot:AwsCertificateId

Authorizing direct calls to AWS services using AWS IoT Core credential provider 581

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
register-device.html
device-certs-your-own.html
device-certs-your-own.html

AWS IoT Core Developer Guide

When the device provides the thing name in its request to an AWS service, the credentials
provider adds credentials-iot:ThingName and credentials-iot:ThingTypeName
as context variables to the security token. The credentials provider provides credentials-
iot:AwsCertificateId as a context variable even if the device doesn't provide the thing
name in the request. You pass the thing name as the value of the x-amzn-iot-thingname
HTTP request header.

These three variables work for IAM policies only, not AWS IoT Core policies.

2. Make sure that the user who performs the next step (creating a role alias) has permission to
pass the newly created role to AWS IoT Core. The following policy gives both iam:GetRole
and iam:PassRole permissions to an AWS user. The iam:GetRole permission allows the
user to get information about the role that you've just created. The iam:PassRole permission
allows the user to pass the role to another AWS service.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::your AWS account id:role/your role name"
 }
}

3. Create an AWS IoT Core role alias. The device that is going to make direct calls to AWS services
must know which role ARN to use when connecting to AWS IoT Core. Hard-coding the role
ARN is not a good solution because it requires you to update the device whenever the role
ARN changes. A better solution is to use the CreateRoleAlias API to create a role alias that
points to the role ARN. If the role ARN changes, you simply update the role alias. No change is
required on the device. This API takes the following parameters:

roleAlias

Required. An arbitrary string that identifies the role alias. It serves as the primary key in
the role alias data model. It contains 1-128 characters and must include only alphanumeric

Authorizing direct calls to AWS services using AWS IoT Core credential provider 582

AWS IoT Core Developer Guide

characters and the =, @, and - symbols. Uppercase and lowercase alphabetic characters are
allowed.

roleArn

Required. The ARN of the role to which the role alias refers.

credentialDurationSeconds

Optional. How long (in seconds) the credential is valid. The minimum value is 900 seconds
(15 minutes). The maximum value is 43,200 seconds (12 hours). The default value is 3,600
seconds (1 hour).

Important

The AWS IoT Core Credential Provider can issue a credential with a maximum
lifetime is 43,200 seconds (12 hours). Having the credential be valid for up to 12
hours can help reduce the number of calls to the credential provider by caching the
credential longer.
The credentialDurationSeconds value must be less than or equal to the
maximum session duration of the IAM role that the role alias references. For more
information, see Modifying a role maximum session duration (AWS API) from the
AWS Identity and Access Management User Guide.

For more information about this API, see CreateRoleAlias.

4. Attach a policy to the device certificate. The policy attached to the device certificate must
grant the device permission to assume the role. You do this by granting permission for the
iot:AssumeRoleWithCertificate action to the role alias, as in the following example.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"iot:AssumeRoleWithCertificate",
 "Resource":"arn:aws:iot:your region:your_aws_account_id:rolealias/your
 role alias"
 }
]

Authorizing direct calls to AWS services using AWS IoT Core credential provider 583

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-api.html#roles-modify_max-session-duration-api
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateRoleAlias.html

AWS IoT Core Developer Guide

}

5. Make an HTTPS request to the credentials provider to get a security token. Supply the
following information:

• Certificate: Because this is an HTTP request over TLS mutual authentication, you must
provide the certificate and the private key to your client while making the request. Use the
same certificate and private key you used when you registered your certificate with AWS IoT
Core.

To make sure your device is communicating with AWS IoT Core (and not a service
impersonating it), see Server Authentication, follow the links to download the appropriate
CA certificates, and then copy them to your device.

• RoleAlias: The name of the role alias that you created for the credentials provider.

• ThingName: The thing name that you created when you registered your AWS IoT Core thing.
This is passed as the value of the x-amzn-iot-thingname HTTP header. This value is
required only if you are using thing attributes as policy variables in AWS IoT Core or IAM
policies.

Note

The ThingName that you provide in x-amzn-iot-thingname must match the name
of the AWS IoT Thing resource assigned to a cert. If it doesn't match, a 403 error is
returned.

Run the following command in the AWS CLI to obtain the credentials provider endpoint for
your AWS account. For more information about this API, see DescribeEndpoint.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The following JSON object is sample output of the describe-endpoint command. It contains
the endpointAddress that you use to request a security token.

{
 "endpointAddress": "your_aws_account_specific_prefix.credentials.iot.your
 region.amazonaws.com"
}

Authorizing direct calls to AWS services using AWS IoT Core credential provider 584

x509-client-certs.html#server-authentication
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint.html

AWS IoT Core Developer Guide

Use the endpoint to make an HTTPS request to the credentials provider to return a security
token. The following example command uses curl, but you can use any HTTP client.

curl --cert your certificate --key your device certificate key pair -H "x-amzn-iot-
thingname: your thing name" --cacert AmazonRootCA1.pem https://your endpoint /role-
aliases/your role alias/credentials

This command returns a security token object that contains an accessKeyId, a
secretAccessKey, a sessionToken, and an expiration. The following JSON object is sample
output of the curl command.

 {"credentials":{"accessKeyId":"access key","secretAccessKey":"secret access
 key","sessionToken":"session token","expiration":"2018-01-18T09:18:06Z"}}

You can then use the accessKeyId, secretAccessKey, and sessionToken values to sign
requests to AWS services. For an end-to-end demonstration, see How to Eliminate the Need
for Hard-Coded AWS Credentials in Devices by Using the AWS IoT Credential Provider blog
post on the AWS Security Blog.

Cross account access with IAM

AWS IoT Core allows you to enable a principal to publish or subscribe to a topic that is defined in
an AWS account not owned by the principal. You configure cross account access by creating an IAM
policy and IAM role and then attaching the policy to the role.

First, create a customer managed IAM policy as described in Creating IAM Policies, just like you
would for other users and certificates in your AWS account.

For devices registered in AWS IoT Core registry, the following policy grants permission to devices
connect to AWS IoT Core using a client ID that matches the device's thing name and to publish to
the my/topic/thing-name where thing-name is the device's thing name:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Cross account access with IAM 585

https://aws.amazon.com/blogs/security/how-to-eliminate-the-need-for-hardcoded-aws-credentials-in-devices-by-using-the-aws-iot-credentials-provider/
https://aws.amazon.com/blogs/security/how-to-eliminate-the-need-for-hardcoded-aws-credentials-in-devices-by-using-the-aws-iot-credentials-provider/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS IoT Core Developer Guide

 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/my/topic/
${iot:Connection.Thing.ThingName}"],
 }
]
}

For devices not registered in AWS IoT Core registry, the following policy grants permission to a
device to use the thing name client1 registered in your account's (123456789012) AWS IoT
Core registry to connect to AWS IoT Core and to publish to a client ID-specific topic whose name is
prefixed with my/topic/:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/client1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/my/topic/${iot:ClientId}"
]

Cross account access with IAM 586

AWS IoT Core Developer Guide

 }
]
}

Next, follow the steps in Creating a role to delegate permissions to an IAM user. Enter the account
ID of the AWS account with which you want to share access. Then, in the final step, attach the
policy you just created to the role. If, at a later time, you need to modify the AWS account ID to
which you are granting access, you can use the following trust policy format to do so:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam:us-east-1:567890123456:user/MyUser"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Data protection in AWS IoT Core

The AWS shared responsibility model applies to data protection in AWS IoT Core. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

Data protection 587

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS IoT Core Developer Guide

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS IoT or other AWS services using the console, API, AWS CLI, or AWS SDKs.
Any data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

AWS IoT devices gather data, perform some manipulation on that data, and then send that data
to another web service. You might choose to store some data on your device for a short period of
time. You're responsible for providing any data protection on that data at rest. When your device
sends data to AWS IoT, it does so over a TLS connection as discussed later in this section. AWS IoT
devices can send data to any AWS service. For more information about each service's data security,
see the documentation for that service. AWS IoT can be configured to write logs to CloudWatch
Logs and log AWS IoT API calls to AWS CloudTrail. For more information about data security for
these services, see Authentication and Access Control for Amazon CloudWatch and Encrypting
CloudTrail Log Files with AWS KMS-Managed Keys.

Data encryption in AWS IoT

By default, all AWS IoT data in transit and at rest is encrypted. Data in transit is encrypted using
TLS, and data at rest is encrypted using AWS owned keys. AWS IoT does not currently support
customer-managed AWS KMS keys (KMS keys) from AWS Key Management Service (AWS KMS);
however, Device Advisor and AWS IoT Wireless use only an AWS owned key to encrypt customer
data.

Data encryption in AWS IoT 588

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html

AWS IoT Core Developer Guide

Transport security in AWS IoT Core

TLS (Transport Layer Security) is a cryptographic protocol that is designed for secure
communication over a computer network. The AWS IoT Core Device Gateway requires customers
to encrypt all communication while in-transit by using TLS for connections from devices to the
Gateway. TLS is used to achieve confidentiality of the application protocols (MQTT, HTTP, and
WebSocket) supported by AWS IoT Core. TLS support is available in a number of programming
languages and operating systems. Data within AWS is encrypted by the specific AWS service. For
more information about data encryption on other AWS services, see the security documentation
for that service.

Contents

• TLS protocols

• Security policies

• Important notes for transport security in AWS IoT Core

• Transport security for LoRaWAN wireless devices

TLS protocols

AWS IoT Core supports the following versions of the TLS protocol:

• TLS 1.3

• TLS 1.2

With AWS IoT Core, you can configure the TLS settings (for TLS 1.2 and TLS 1.3) in domain
configurations. For more information, see ???.

Security policies

A security policy is a combination of TLS protocols and their ciphers that determine which
protocols and ciphers are supported during TLS negotiations between a client and a server. You can
configure your devices to use predefined security policies based on your needs. Note that AWS IoT
Core doesn't support custom security policies.

You can choose one of the predefined security policies for your devices when connecting them to
AWS IoT Core. The names of the most recent predefined security policies in AWS IoT Core include
version information based on the year and month that they were released. The default predefined

Transport security in AWS IoT Core 589

https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.3

AWS IoT Core Developer Guide

security policy is IoTSecurityPolicy_TLS13_1_2_2022_10. To specify a security policy, you
can use the AWS IoT console or the AWS CLI. For more information, see ???.

The following table describes the most recent predefined security policies that AWS IoT Core
supports. The IotSecurityPolicy_ has been removed from policy names in the heading row so
that they fit.

Security
policy

TLS13_1_3
_2022_10

TLS13_1_2
_2022_10

TLS12_1_2
_2022_10

TLS12_1_0
_2016_01*

TLS12_1_0
_2015_01*

TCP Port 443/8443/
8883

443/8443/
8883

443/8443/
8883

443 8443/8883 443 8443/8883

TLS Protocols

TLS 1.2 ✓ ✓ ✓ ✓ ✓ ✓

TLS 1.3 ✓ ✓

TLS Ciphers

TLS_AES_1
28_GCM_SH
A256

✓ ✓

TLS_AES_2
56_GCM_SH
A384

✓ ✓

TLS_CHACH
A20_POLY1
305_SHA25
6

✓ ✓

ECDHE-
RSA-
AES128-
GCM-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

Transport security in AWS IoT Core 590

AWS IoT Core Developer Guide

Security
policy

TLS13_1_3
_2022_10

TLS13_1_2
_2022_10

TLS12_1_2
_2022_10

TLS12_1_0
_2016_01*

TLS12_1_0
_2015_01*

ECDHE-
RSA-
AES128-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
RSA-
AES128-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
RSA-
AES256-
GCM-
SHA384

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
RSA-
AES256-
SHA384

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
RSA-
AES256-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

AES128-
GCM-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

AES128-
SHA256

 ✓ ✓ ✓ ✓ ✓

AES128-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

Transport security in AWS IoT Core 591

AWS IoT Core Developer Guide

Security
policy

TLS13_1_3
_2022_10

TLS13_1_2
_2022_10

TLS12_1_2
_2022_10

TLS12_1_0
_2016_01*

TLS12_1_0
_2015_01*

AES256-
GCM-
SHA384

 ✓ ✓ ✓ ✓ ✓ ✓

AES256-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

AES256-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

DHE-
RSA-A
ES256-
SHA

 ✓ ✓

ECDHE-
ECDSA-
AES128
-GCM-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
ECDSA-
AES128-
SHA256

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
ECDSA-
AES128-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

Transport security in AWS IoT Core 592

AWS IoT Core Developer Guide

Security
policy

TLS13_1_3
_2022_10

TLS13_1_2
_2022_10

TLS12_1_2
_2022_10

TLS12_1_0
_2016_01*

TLS12_1_0
_2015_01*

ECDHE-
ECDSA-
AES256
-GCM-
SHA384

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
ECDSA-
AES256-
SHA384

 ✓ ✓ ✓ ✓ ✓ ✓

ECDHE-
ECDSA-
AES256-
SHA

 ✓ ✓ ✓ ✓ ✓ ✓

Note

TLS12_1_0_2016_01 is only available in the following AWS Regions: ap-east-1, ap-
northeast-2, ap-south-1, ap-southeast-2, ca-central-1, cn-north-1, cn-northwest-1, eu-
north-1, eu-west-2, eu-west-3, me-south-1, sa-east-1, us-east-2, us-gov-west-1, us-gov-
west-2, us-west-1.
TLS12_1_0_2015_01 is only available in the following AWS Regions: ap-northeast-1, ap-
southeast-1, eu-central-1, eu-west-1, us-east-1, us-west-2.

Important notes for transport security in AWS IoT Core

For devices that connect to AWS IoT Core using MQTT, TLS encrypts the connection between the
devices and the broker, and AWS IoT Core uses TLS client authentication to identify devices. For
more information, see Client authentication. For devices that connect to AWS IoT Core using HTTP,
TLS encrypts the connection between the devices and the broker, and authentication is delegated
to AWS Signature Version 4. For more information, see Signing requests with Signature Version 4 in
the AWS General Reference.

Transport security in AWS IoT Core 593

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/http.html
https://docs.aws.amazon.com/general/latest/gr/create-signed-request.html

AWS IoT Core Developer Guide

When you connect devices to AWS IoT Core, sending the Server Name Indication (SNI) extension is
not required but highly recommended. To use features such as multi-account registration, custom
domains, VPC endpoints, and configured TLS policies, you must use the SNI extension and provide
the complete endpoint address in the host_name field. The host_name field must contain the
endpoint you are calling. That endpoint must be one of the following:

• The endpointAddress returned by aws iot describe-endpoint --endpoint-type
iot:Data-ATS

• The domainName returned by aws iot describe-domain-configuration –-domain-
configuration-name "domain_configuration_name"

Connections attempted by devices with the incorrect or invalid host_name value will fail. AWS IoT
Core will log failures to CloudWatch for the authentication type of Custom Authentication.

AWS IoT Core doesn't support the SessionTicket TLS extension.

Transport security for LoRaWAN wireless devices

LoRaWAN devices follow the security practices described in LoRaWAN ™ SECURITY: A White Paper
Prepared for the LoRa Alliance™ by Gemalto, Actility, and Semtech.

For more information about transport security with LoRaWAN devices, see LoRaWAN data and
transport security.

Data encryption in AWS IoT

Data protection refers to protecting data while in-transit (as it travels to and from AWS IoT) and
at rest (while it is stored on devices or by other AWS services). All data sent to AWS IoT is sent over
an TLS connection using MQTT, HTTPS, and WebSocket protocols, making it secure by default
while in transit. AWS IoT devices collect data and then send it to other AWS services for further
processing. For more information about data encryption on other AWS services, see the security
documentation for that service.

FreeRTOS provides a PKCS#11 library that abstracts key storage, accessing cryptographic objects
and managing sessions. It is your responsibility to use this library to encrypt data at rest on your
devices. For more information, see FreeRTOS Public Key Cryptography Standard (PKCS) #11
Library.

Data encryption 594

https://tools.ietf.org/html/rfc3546#section-3.1
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html#multiple-account-cert
https://docs.aws.amazon.com/iot/latest/developerguide/iot-custom-endpoints-configurable-custom.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-custom-endpoints-configurable-custom.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-endpoints-tls-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-domain-configuration.html
https://docs.aws.amazon.com/iot/latest/developerguide/custom-authentication.html
https://www.ietf.org/rfc/rfc5077.txt
https://lora-alliance.org/sites/default/files/2019-05/lorawan_security_whitepaper.pdf
https://lora-alliance.org/sites/default/files/2019-05/lorawan_security_whitepaper.pdf
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-lorawan-security.html
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-lorawan-security.html
https://docs.aws.amazon.com/freertos/latest/userguide/security-pkcs.html
https://docs.aws.amazon.com/freertos/latest/userguide/security-pkcs.html

AWS IoT Core Developer Guide

Device Advisor

Encryption in transit

Data sent to and from Device Advisor is encrypted in transit. All data sent to and from the service
when using the Device Advisor APIs is encrypted using Signature Version 4. For more information
about how AWS API requests are signed, see Signing AWS API requests. All data sent from your test
devices to your Device Advisor test endpoint is sent over a TLS connection so it is secure by default
in transit.

Key management in AWS IoT

All connections to AWS IoT are done using TLS, so no client-side encryption keys are necessary for
the initial TLS connection.

Devices must authenticate using an X.509 certificate or an Amazon Cognito Identity. You can have
AWS IoT generate a certificate for you, in which case it will generate a public/private key pair. If
you are using the AWS IoT console you will be prompted to download the certificate and keys. If
you are using the create-keys-and-certificate CLI command, the certificate and keys are
returned by the CLI command. You are responsible for copying the certificate and private key onto
your device and keeping it safe.

AWS IoT does not currently support customer-managed AWS KMS keys (KMS keys) from AWS Key
Management Service (AWS KMS); however, Device Advisor and AWS IoT Wireless use only an AWS
owned key to encrypt customer data.

Device Advisor

All data sent to Device Advisor when using the AWS APIs is encrypted at rest. Device Advisor
encrypts all of your data at rest using KMS keys stored and managed in AWS Key Management
Service. Device Advisor encrypts your data using AWS owned keys. For more information about
AWS owned keys, see AWS owned keys.

Identity and access management for AWS IoT

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS IoT resources. IAM is an AWS service that you can use
with no additional charge.

Identity and access management 595

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-keys-and-certificate.html
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

AWS IoT Core Developer Guide

Topics

• Audience

• Authenticating with IAM identities

• Managing access using policies

• How AWS IoT works with IAM

• AWS IoT identity-based policy examples

• AWS managed policies for AWS IoT

• Troubleshooting AWS IoT identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT.

Service user – If you use the AWS IoT service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more AWS IoT features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in AWS IoT,
see Troubleshooting AWS IoT identity and access.

Service administrator – If you're in charge of AWS IoT resources at your company, you probably
have full access to AWS IoT. It's your job to determine which AWS IoT features and resources your
service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with AWS IoT, see How AWS
IoT works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS IoT. To view example AWS IoT identity-based policies
that you can use in IAM, see AWS IoT identity-based policy examples.

Authenticating with IAM identities

In AWS IoT identities can be device (X.509) certificates, Amazon Cognito identities, or IAM users or
groups. This topic discusses IAM identities only. For more information about the other identities
that AWS IoT supports, see Client authentication.

Audience 596

AWS IoT Core Developer Guide

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating

Authenticating with IAM identities 597

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS IoT Core Developer Guide

IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource

Authenticating with IAM identities 598

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS IoT Core Developer Guide

(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Authenticating with IAM identities 599

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS IoT Core Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 600

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

AWS IoT Core Developer Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's

Managing access using policies 601

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html

AWS IoT Core Developer Guide

permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS IoT works with IAM

Before you use IAM to manage access to AWS IoT, you should understand which IAM features are
available to use with AWS IoT. To get a high-level view of how AWS IoT and other AWS services
work with IAM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

• AWS IoT identity-based policies

• AWS IoT resource-based policies

• Authorization based on AWS IoT tags

• AWS IoT IAM roles

AWS IoT identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. AWS IoT supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API

How AWS IoT works with IAM 602

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements.html

AWS IoT Core Developer Guide

operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

The following table lists the IAM IoT actions, the associated AWS IoT API, and the resource the
action manipulates.

Policy actions AWS IoT API Resources

iot:Accep
tCertific
ateTransfer

AcceptCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

Note

The AWS account specified in the ARN must be
the account to which the certificate is being
transferred.

iot:AddTh
ingToThin
gGroup

AddThingT
oThingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Assoc
iateTarge
tsWithJob

Associate
TargetsWithJob

none

iot:AttachPolicy AttachPolicy arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

or

arn:aws:iot: region:account-id :cert/cert-
id

iot:Attac
hPrincipalPolicy

AttachPri
ncipalPolicy

arn:aws:iot: region:account-id :cert/cert-
id

How AWS IoT works with IAM 603

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Attac
hSecurityProfile

AttachSec
urityProfile

arn:aws:iot: region:account-id :security
profile/ security-profile-name

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:Attac
hThingPrincipal

AttachThi
ngPrincipal

arn:aws:iot: region:account-id :cert/cert-
id

iot:CancelCertific
ateTransfer

CancelCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

Note

The AWS account specified in the ARN must be
the account to which the certificate is being
transferred.

iot:CancelJob CancelJob arn:aws:iot: region:account-id :job/job-id

iot:Cance
lJobExecution

CancelJob
Execution

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Clear
DefaultAu
thorizer

ClearDefa
ultAuthorizer

None

iot:Creat
eAuthorizer

CreateAuthorizer arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

iot:CreateCertific
ateFromCsr

CreateCer
tificateFromCsr

*

iot:Creat
eDimension

CreateDim
ension

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

How AWS IoT works with IAM 604

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:CreateJob CreateJob arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

iot:Creat
eJobTemplate

CreateJob
Template

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

iot:Creat
eKeysAndC
ertificate

CreateKey
sAndCertificate

*

iot:CreatePolicy CreatePolicy arn:aws:iot: region:account-i
d :policy/policy-name

iot:Creat
ePolicyVersion

CreatePol
icyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

Note

This must be an AWS IoT policy, not an IAM
policy.

iot:Creat
eRoleAlias

CreateRoleAlias (parameter: roleAlias)

arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

How AWS IoT works with IAM 605

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Creat
eSecurityProfile

CreateSec
urityProfile

arn:aws:iot: region:account-id :security
profile/ security-profile-name

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:CreateThing CreateThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Creat
eThingGroup

CreateThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

for group being created and for parent group, if used

iot:Creat
eThingType

CreateThingType arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:Creat
eTopicRule

CreateTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:Delet
eAuthorizer

DeleteAut
horizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-name

iot:Delet
eCACertificate

DeleteCAC
ertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

iot:DeleteCertific
ate

DeleteCertificate arn:aws:iot: region:account-id :cert/cert-
id

iot:Delet
eDimension

DeleteDim
ension

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:DeleteJob DeleteJob arn:aws:iot: region:account-id :job/job-id

iot:Delet
eJobTemplate

DeleteJob
Template

arn:aws:iot: region:account-id :job/job-
template-id

How AWS IoT works with IAM 606

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Delet
eJobExecution

DeleteJob
Execution

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-i
d :thing/thing-name

iot:DeletePolicy DeletePolicy arn:aws:iot: region:account-i
d :policy/policy-name

iot:Delet
ePolicyVersion

DeletePol
icyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

iot:Delet
eRegistra
tionCode

DeleteReg
istrationCode

*

iot:Delet
eRoleAlias

DeleteRoleAlias arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:Delet
eSecurityProfile

DeleteSec
urityProfile

arn:aws:iot: region:account-id :security
profile/ security-profile-name

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:DeleteThing DeleteThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Delet
eThingGroup

DeleteThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Delet
eThingType

DeleteThingType arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:Delet
eTopicRule

DeleteTopicRule arn:aws:iot: region:account-id :rule/rule-
name

How AWS IoT works with IAM 607

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Delet
eV2Loggin
gLevel

DeleteV2L
oggingLevel

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Depre
cateThingType

Deprecate
ThingType

arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:Descr
ibeAuthorizer

DescribeA
uthorizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

(parameter: authorizerName)
none

iot:Descr
ibeCACertificate

DescribeC
ACertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

iot:Descr
ibeCertificate

DescribeC
ertificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Descr
ibeDefaul
tAuthorizer

DescribeD
efaultAuthorizer

None

iot:Descr
ibeEndpoint

DescribeE
ndpoint

*

iot:Descr
ibeEventC
onfigurations

DescribeE
ventConfi
gurations

none

iot:Descr
ibeIndex

DescribeIndex arn:aws:iot: region:account-i
d :index/index-name

iot:DescribeJob DescribeJob arn:aws:iot: region:account-id :job/job-id

iot:Descr
ibeJobExecution

DescribeJ
obExecution

None

How AWS IoT works with IAM 608

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Descr
ibeJobTemplate

DescribeJ
obTemplate

arn:aws:iot: region:account-id :job/job-
template-id

iot:Descr
ibeRoleAlias

DescribeR
oleAlias

arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:Descr
ibeThing

DescribeThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Descr
ibeThingGroup

DescribeT
hingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Descr
ibeThingR
egistrationTask

DescribeT
hingRegis
trationTask

None

iot:Descr
ibeThingType

DescribeT
hingType

arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:DetachPolicy DetachPolicy arn:aws:iot: region:account-id :cert/cert-
id

or

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Detac
hPrincipalPolicy

DetachPri
ncipalPolicy

arn:aws:iot: region:account-id :cert/cert-
id

iot:Detac
hSecurityProfile

DetachSec
urityProfile

arn:aws:iot: region:account-id :security
profile/ security-profile-name

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:Detac
hThingPrincipal

DetachThi
ngPrincipal

arn:aws:iot: region:account-id :cert/cert-
id

How AWS IoT works with IAM 609

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Disab
leTopicRule

DisableTo
picRule

arn:aws:iot: region:account-id :rule/rule-
name

iot:Enabl
eTopicRule

EnableTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:GetEf
fectivePolicies

GetEffect
ivePolicies

arn:aws:iot: region:account-id :cert/cert-
id

iot:GetIn
dexingCon
figuration

GetIndexi
ngConfiguration

None

iot:GetJo
bDocument

GetJobDoc
ument

arn:aws:iot: region:account-id :job/job-id

iot:GetLo
ggingOptions

GetLoggin
gOptions

*

iot:GetPolicy GetPolicy arn:aws:iot: region:account-i
d :policy/policy-name

iot:GetPo
licyVersion

GetPolicyVersion arn:aws:iot: region:account-i
d :policy/policy-name

iot:GetRe
gistrationCode

GetRegist
rationCode

*

iot:GetTopicRule GetTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:ListA
ttachedPolicies

ListAttac
hedPolicies

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

or

arn:aws:iot: region:account-id :cert/cert-
id

How AWS IoT works with IAM 610

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListA
uthorizers

ListAuthorizers None

iot:ListCACertific
ates

ListCACer
tificates

*

iot:ListCertificat
es

ListCertificates *

iot:ListCertificat
esByCA

ListCerti
ficatesByCA

*

iot:ListIndices ListIndices None

iot:ListJ
obExecuti
onsForJob

ListJobEx
ecutionsForJob

None

iot:ListJ
obExecuti
onsForThing

ListJobEx
ecutionsF
orThing

None

iot:ListJobs ListJobs arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

if thingGroupName parameter used

iot:ListJ
obTemplates

ListJobs None

iot:ListO
utgoingCe
rtificates

ListOutgo
ingCertificates

*

iot:ListPolicies ListPolicies *

iot:ListPolicyPrin
cipals

ListPolic
yPrincipals

*

How AWS IoT works with IAM 611

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListPolicyVers
ions

ListPolic
yVersions

arn:aws:iot: region:account-i
d :policy/policy-name

iot:ListPrincipalP
olicies

ListPrincipalPolic
ies

arn:aws:iot: region:account-id :cert/cert-
id

iot:ListPrincipalT
hings

ListPrinc
ipalThings

arn:aws:iot: region:account-id :cert/cert-
id

iot:ListR
oleAliases

ListRoleAliases None

iot:ListT
argetsForPolicy

ListTarge
tsForPolicy

arn:aws:iot: region:account-i
d :policy/policy-name

iot:ListT
hingGroups

ListThingGroups None

iot:ListT
hingGroup
sForThing

ListThing
GroupsForThing

arn:aws:iot: region:account-i
d :thing/thing-name

iot:ListT
hingPrincipals

ListThing
Principals

arn:aws:iot: region:account-i
d :thing/thing-name

iot:ListT
hingRegis
trationTa
skReports

ListThing
Registrat
ionTaskReports

None

iot:ListT
hingRegis
trationTasks

ListThing
Registrat
ionTasks

None

iot:ListT
hingTypes

ListThingTypes *

How AWS IoT works with IAM 612

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListThings ListThings *

iot:ListT
hingsInTh
ingGroup

ListThing
sInThingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:ListT
opicRules

ListTopicRules *

iot:ListV
2LoggingLevels

ListV2Log
gingLevels

None

iot:Regis
terCACertificate

RegisterC
ACertificate

*

iot:RegisterCertif
icate

RegisterC
ertificate

*

iot:Regis
terThing

RegisterThing None

iot:RejectCertific
ateTransfer

RejectCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

iot:Remov
eThingFro
mThingGroup

RemoveThi
ngFromThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Repla
ceTopicRule

ReplaceTo
picRule

arn:aws:iot: region:account-id :rule/rule-
name

iot:SearchIndex SearchIndex arn:aws:iot: region:account-i
d :index/index-id

iot:SetDe
faultAuthorizer

SetDefaul
tAuthorizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

How AWS IoT works with IAM 613

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:SetDe
faultPoli
cyVersion

SetDefaul
tPolicyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

iot:SetLo
ggingOptions

SetLoggin
gOptions

arn:aws:iot: region:account-id :role/role-
name

iot:SetV2
LoggingLevel

SetV2Logg
ingLevel

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:SetV2
LoggingOptions

SetV2Logg
ingOptions

arn:aws:iot: region:account-id :role/role-
name

iot:Start
ThingRegi
strationTask

StartThin
gRegistra
tionTask

None

iot:StopT
hingRegis
trationTask

StopThing
RegistrationTask

None

iot:TestA
uthorization

TestAutho
rization

arn:aws:iot: region:account-id :cert/cert-
id

iot:TestI
nvokeAuthorizer

TestInvok
eAuthorizer

None

iot:Trans
ferCertificate

TransferC
ertificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Updat
eAuthorizer

UpdateAut
horizer

arn:aws:iot: region:account-id :authoriz
erfunction/ authorizer-function-name

iot:Updat
eCACertificate

UpdateCAC
ertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

How AWS IoT works with IAM 614

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Updat
eCertificate

UpdateCer
tificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Updat
eDimension

UpdateDim
ension

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:Updat
eEventCon
figurations

UpdateEve
ntConfigurations

None

iot:Updat
eIndexing
Configuration

UpdateInd
exingConf
iguration

None

iot:Updat
eRoleAlias

UpdateRoleAlias arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:Updat
eSecurityProfile

UpdateSec
urityProfile

arn:aws:iot: region:account-id :security
profile/ security-profile-name

arn:aws:iot: region:account-id :dimensio
n/ dimension-name

iot:UpdateThing UpdateThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Updat
eThingGroup

UpdateThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Updat
eThingGro
upsForThing

UpdateThi
ngGroupsF
orThing

arn:aws:iot: region:account-i
d :thing/thing-name

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

Policy actions in AWS IoT use the following prefix before the action: iot:. For example, to grant
someone permission to list all IoT things registered in their AWS account with the ListThings

How AWS IoT works with IAM 615

AWS IoT Core Developer Guide

API, you include the iot:ListThings action in their policy. Policy statements must include either
an Action or NotAction element. AWS IoT defines its own set of actions that describe tasks that
you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "ec2:action1",
 "ec2:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "iot:Describe*"

To see a list of AWS IoT actions, see Actions Defined by AWS IoT in the IAM User Guide.

Device Advisor actions

The following table lists the IAM IoT Device Advisor actions, the associated AWS IoT Device Advisor
API, and the resource the action manipulates.

Policy actions AWS IoT API Resources

iotdevice
advisor:C
reateSuit
eDefinition

CreateSui
teDefinition

None

iotdevice
advisor:D
eleteSuit
eDefinition

DeleteSui
teDefinition

arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

iotdevice
advisor:G
etSuiteDe
finition

GetSuiteD
efinition

arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

How AWS IoT works with IAM 616

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-actions-as-permissions

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iotdevice
advisor:G
etSuiteRun

GetSuiteRun arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-run-id

iotdevice
advisor:G
etSuiteRu
nReport

GetSuiteR
unReport

arn:aws:iotdeviceadvisor: region:account-
id :suiterun/ suite-definition-id /suite-
run-id

iotdevice
advisor:L
istSuiteD
efinitions

ListSuite
Definitions

None

iotdevice
advisor:L
istSuiteRuns

ListSuiteRuns arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

iotdevice
advisor:L
istTagsFo
rResource

ListTagsF
orResource

arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

arn:aws:iotdeviceadvisor: region:account-
id :suiterun/suite-definition-id/ suite-
run-id

iotdevice
advisor:S
tartSuiteRun

StartSuiteRun arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

iotdevice
advisor:T
agResource

TagResource arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

arn:aws:iotdeviceadvisor: region:account-
id :suiterun/suite-definition-id/ suite-
run-id

How AWS IoT works with IAM 617

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iotdevice
advisor:U
ntagResource

UntagResource arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

arn:aws:iotdeviceadvisor: region:account-
id :suiterun/suite-definition-id/ suite-
run-id

iotdevice
advisor:U
pdateSuit
eDefinition

UpdateSui
teDefinition

arn:aws:iotdeviceadvisor: region:account-
id :suitedefinition/ suite-definition-id

iotdevice
advisor:S
topSuiteRun

StopSuiteRun arn:aws:iotdeviceadvisor: region:account-
id :suiterun/suite-definition-id/ suite-
run-id

Policy actions in AWS IoT Device Advisor use the following prefix before the action:
iotdeviceadvisor:. For example, to grant someone permission to list all suite
definitions registered in their AWS account with the ListSuiteDefinitions API, you include the
iotdeviceadvisor:ListSuiteDefinitions action in their policy.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

How AWS IoT works with IAM 618

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS IoT Core Developer Guide

AWS IoT resources

Policy actions AWS IoT API Resources

iot:Accep
tCertific
ateTransfer

AcceptCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

Note

The AWS account specified in the ARN must be
the account to which the certificate is being
transferred.

iot:AddTh
ingToThin
gGroup

AddThingT
oThingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Assoc
iateTarge
tsWithJob

Associate
TargetsWithJob

None

iot:AttachPolicy AttachPolicy arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

or

arn:aws:iot: region:account-id :cert/cert-
id

iot:Attac
hPrincipalPolicy

AttachPri
ncipalPolicy

arn:aws:iot: region:account-id :cert/cert-
id

iot:Attac
hThingPrincipal

AttachThi
ngPrincipal

arn:aws:iot: region:account-id :cert/cert-
id

iot:CancelCertific
ateTransfer

CancelCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

How AWS IoT works with IAM 619

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

Note

The AWS account specified in the ARN must be
the account to which the certificate is being
transferred.

iot:CancelJob CancelJob arn:aws:iot: region:account-id :job/job-id

iot:Cance
lJobExecution

CancelJob
Execution

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Clear
DefaultAu
thorizer

ClearDefa
ultAuthorizer

None

iot:Creat
eAuthorizer

CreateAuthorizer arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

iot:CreateCertific
ateFromCsr

CreateCer
tificateFromCsr

*

iot:CreateJob CreateJob arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

How AWS IoT works with IAM 620

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Creat
eJobTemplate

CreateJob
Template

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

iot:Creat
eKeysAndC
ertificate

CreateKey
sAndCertificate

*

iot:CreatePolicy CreatePolicy arn:aws:iot: region:account-i
d :policy/policy-name

CreatePol
icyVersion

iot:Creat
ePolicyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

Note

This must be an AWS IoT policy, not an IAM
policy.

iot:Creat
eRoleAlias

CreateRoleAlias (parameter: roleAlias)

arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:CreateThing CreateThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Creat
eThingGroup

CreateThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

for group being created and for parent group, if used

iot:Creat
eThingType

CreateThingType arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

How AWS IoT works with IAM 621

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Creat
eTopicRule

CreateTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:Delet
eAuthorizer

DeleteAut
horizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-name

iot:Delet
eCACertificate

DeleteCAC
ertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

iot:DeleteCertific
ate

DeleteCertificate arn:aws:iot: region:account-id :cert/cert-
id

iot:DeleteJob DeleteJob arn:aws:iot: region:account-id :job/job-id

iot:Delet
eJobExecution

DeleteJob
Execution

arn:aws:iot: region:account-id :job/job-id

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Delet
eJobTemplate

DeleteJob
Template

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

iot:DeletePolicy DeletePolicy arn:aws:iot: region:account-i
d :policy/policy-name

iot:Delet
ePolicyVersion

DeletePol
icyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

iot:Delet
eRegistra
tionCode

DeleteReg
istrationCode

*

iot:Delet
eRoleAlias

DeleteRoleAlias arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:DeleteThing DeleteThing arn:aws:iot: region:account-i
d :thing/thing-name

How AWS IoT works with IAM 622

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Delet
eThingGroup

DeleteThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Delet
eThingType

DeleteThingType arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:Delet
eTopicRule

DeleteTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:Delet
eV2Loggin
gLevel

DeleteV2L
oggingLevel

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Depre
cateThingType

Deprecate
ThingType

arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:Descr
ibeAuthorizer

DescribeA
uthorizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

(parameter: authorizerName)
none

iot:Descr
ibeCACertificate

DescribeC
ACertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

iot:Descr
ibeCertificate

DescribeC
ertificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Descr
ibeDefaul
tAuthorizer

DescribeD
efaultAuthorizer

None

iot:Descr
ibeEndpoint

DescribeE
ndpoint

*

How AWS IoT works with IAM 623

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Descr
ibeEventC
onfigurations

DescribeE
ventConfi
gurations

none

iot:Descr
ibeIndex

DescribeIndex arn:aws:iot: region:account-i
d :index/index-name

iot:DescribeJob DescribeJob arn:aws:iot: region:account-id :job/job-id

iot:Descr
ibeJobExecution

DescribeJ
obExecution

None

iot:Descr
ibeJobTemplate

DescribeJ
obTemplate

arn:aws:iot: region:account-id :jobtempl
ate/ job-template-id

iot:Descr
ibeRoleAlias

DescribeR
oleAlias

arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:Descr
ibeThing

DescribeThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Descr
ibeThingGroup

DescribeT
hingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:Descr
ibeThingR
egistrationTask

DescribeT
hingRegis
trationTask

None

iot:Descr
ibeThingType

DescribeT
hingType

arn:aws:iot: region:account-id :thingtyp
e/ thing-type-name

iot:DetachPolicy DetachPolicy arn:aws:iot: region:account-id :cert/cert-
id

or

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

How AWS IoT works with IAM 624

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Detac
hPrincipalPolicy

DetachPri
ncipalPolicy

arn:aws:iot: region:account-id :cert/cert-
id

iot:Detac
hThingPrincipal

DetachThi
ngPrincipal

arn:aws:iot: region:account-id :cert/cert-
id

iot:Disab
leTopicRule

DisableTo
picRule

arn:aws:iot: region:account-id :rule/rule-
name

iot:Enabl
eTopicRule

EnableTopicRule arn:aws:iot: region:account-id :rule/rule-
name

iot:GetEf
fectivePolicies

GetEffect
ivePolicies

arn:aws:iot: region:account-id :cert/cert-
id

iot:GetIn
dexingCon
figuration

GetIndexi
ngConfiguration

None

iot:GetJo
bDocument

GetJobDoc
ument

arn:aws:iot: region:account-id :job/job-id

iot:GetLo
ggingOptions

GetLoggin
gOptions

*

iot:GetPolicy GetPolicy arn:aws:iot: region:account-i
d :policy/policy-name

iot:GetPo
licyVersion

GetPolicyVersion arn:aws:iot: region:account-i
d :policy/policy-name

iot:GetRe
gistrationCode

GetRegist
rationCode

*

iot:GetTopicRule GetTopicRule arn:aws:iot: region:account-id :rule/rule-
name

How AWS IoT works with IAM 625

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListA
ttachedPolicies

ListAttac
hedPolicies

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

or

arn:aws:iot: region:account-id :cert/cert-
id

iot:ListA
uthorizers

ListAuthorizers None

iot:ListCACertific
ates

ListCACer
tificates

*

iot:ListCertificat
es

ListCertificates *

iot:ListCertificat
esByCA

ListCerti
ficatesByCA

*

iot:ListIndices ListIndices None

iot:ListJ
obExecuti
onsForJob

ListJobEx
ecutionsForJob

None

iot:ListJ
obExecuti
onsForThing

ListJobEx
ecutionsF
orThing

None

iot:ListJobs ListJobs arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

if thingGroupName parameter used

iot:ListJ
obTemplates

ListJobTe
mplates

None

How AWS IoT works with IAM 626

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListO
utgoingCe
rtificates

ListOutgo
ingCertificates

*

iot:ListPolicies ListPolicies *

iot:ListPolicyPrin
cipals

ListPolic
yPrincipals

arn:aws:iot: region:account-i
d :policy/policy-name

iot:ListPolicyVers
ions

ListPolic
yVersions

arn:aws:iot: region:account-i
d :policy/policy-name

iot:ListPrincipalP
olicies

ListPrincipalPolic
ies

arn:aws:iot: region:account-id :cert/cert-
id

iot:ListPrincipalT
hings

ListPrinc
ipalThings

arn:aws:iot: region:account-id :cert/cert-
id

iot:ListR
oleAliases

ListRoleAliases None

iot:ListT
argetsForPolicy

ListTarge
tsForPolicy

arn:aws:iot: region:account-i
d :policy/policy-name

iot:ListT
hingGroups

ListThingGroups None

iot:ListT
hingGroup
sForThing

ListThing
GroupsForThing

arn:aws:iot: region:account-i
d :thing/thing-name

iot:ListT
hingPrincipals

ListThing
Principals

arn:aws:iot: region:account-i
d :thing/thing-name

How AWS IoT works with IAM 627

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:ListT
hingRegis
trationTa
skReports

ListThing
Registrat
ionTaskReports

None

iot:ListT
hingRegis
trationTasks

ListThing
Registrat
ionTasks

None

iot:ListT
hingTypes

ListThingTypes *

iot:ListThings ListThings *

iot:ListT
hingsInTh
ingGroup

ListThing
sInThingGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

iot:ListT
opicRules

ListTopicRules *

iot:ListV
2LoggingLevels

ListV2Log
gingLevels

None

iot:Regis
terCACertificate

RegisterC
ACertificate

*

iot:RegisterCertif
icate

RegisterC
ertificate

*

iot:Regis
terThing

RegisterThing None

iot:RejectCertific
ateTransfer

RejectCer
tificateTransfer

arn:aws:iot: region:account-id :cert/cert-
id

How AWS IoT works with IAM 628

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Remov
eThingFro
mThingGroup

RemoveThi
ngFromThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

arn:aws:iot: region:account-i
d :thing/thing-name

iot:Repla
ceTopicRule

ReplaceTo
picRule

arn:aws:iot: region:account-id :rule/rule-
name

iot:SearchIndex SearchIndex arn:aws:iot: region:account-i
d :index/index-id

iot:SetDe
faultAuthorizer

SetDefaul
tAuthorizer

arn:aws:iot: region:account-id :authoriz
er/ authorizer-function-name

iot:SetDe
faultPoli
cyVersion

SetDefaul
tPolicyVersion

arn:aws:iot: region:account-i
d :policy/policy-name

iot:SetLo
ggingOptions

SetLoggin
gOptions

*

iot:SetV2
LoggingLevel

SetV2Logg
ingLevel

*

iot:SetV2
LoggingOptions

SetV2Logg
ingOptions

*

iot:Start
ThingRegi
strationTask

StartThin
gRegistra
tionTask

None

iot:StopT
hingRegis
trationTask

StopThing
RegistrationTask

None

How AWS IoT works with IAM 629

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:TestA
uthorization

TestAutho
rization

arn:aws:iot: region:account-id :cert/cert-
id

iot:TestI
nvokeAuthorizer

TestInvok
eAuthorizer

None

iot:Trans
ferCertificate

TransferC
ertificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Updat
eAuthorizer

UpdateAut
horizer

arn:aws:iot: region:account-id :authoriz
erfunction/ authorizer-function-name

iot:Updat
eCACertificate

UpdateCAC
ertificate

arn:aws:iot: region:account-i
d :cacert/cert-id

iot:Updat
eCertificate

UpdateCer
tificate

arn:aws:iot: region:account-id :cert/cert-
id

iot:Updat
eEventCon
figurations

UpdateEve
ntConfigurations

None

iot:Updat
eIndexing
Configuration

UpdateInd
exingConf
iguration

None

iot:Updat
eRoleAlias

UpdateRoleAlias arn:aws:iot: region:account-id :rolealia
s/ role-alias-name

iot:UpdateThing UpdateThing arn:aws:iot: region:account-i
d :thing/thing-name

iot:Updat
eThingGroup

UpdateThi
ngGroup

arn:aws:iot: region:account-id :thinggro
up/ thing-group-name

How AWS IoT works with IAM 630

AWS IoT Core Developer Guide

Policy actions AWS IoT API Resources

iot:Updat
eThingGro
upsForThing

UpdateThi
ngGroupsF
orThing

arn:aws:iot: region:account-i
d :thing/thing-name

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

Some AWS IoT actions, such as those for creating resources, cannot be performed on a specific
resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To see a list of AWS IoT resource types and their ARNs, see Resources Defined by AWS IoT in the
IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions
Defined by AWS IoT.

Device Advisor resources

To define resource-level restrictions for AWS IoT Device Advisor IAM policies, use the following
resource ARN formats for suite definitions and suite runs.

Suite definition resource ARN format

arn:aws:iotdeviceadvisor:region:account-id:suitedefinition/suite-
definition-id

Suite run resource ARN format

arn:aws:iotdeviceadvisor:region:account-id:suiterun/suite-definition-
id/suite-run-id

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use

How AWS IoT works with IAM 631

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-actions-as-permissions

AWS IoT Core Developer Guide

condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

AWS IoT defines its own set of condition keys and also supports using some global condition keys.
To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide.

AWS IoT condition keys

AWS IoT
condition keys

Description Type

aws:Reque
stTag/
${tag-key}

A tag key that
is present in the
request that the
user makes to
AWS IoT.

String

aws:Resou
rceTag/${
tag-key}

The tag key
component of
a tag attached
to an AWS IoT
resource.

String

aws:TagKeys The list of all the
tag key names
associated with

String

How AWS IoT works with IAM 632

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_condition-keys.html

AWS IoT Core Developer Guide

AWS IoT
condition keys

Description Type

the resource in
the request.

To see a list of AWS IoT condition keys, see Condition Keys for AWS IoT in the IAM User Guide. To
learn with which actions and resources you can use a condition key, see Actions Defined by AWS
IoT.

Examples

To view examples of AWS IoT identity-based policies, see AWS IoT identity-based policy examples.

AWS IoT resource-based policies

Resource-based policies are JSON policy documents that specify what actions a specified principal
can perform on the AWS IoT resource and under what conditions.

AWS IoT does not support IAM resource-based policies. It does, however, support AWS IoT
resource-based policies. For more information, see AWS IoT Core policies.

Authorization based on AWS IoT tags

You can attach tags to AWS IoT resources or pass tags in a request to AWS IoT. To control access
based on tags, you provide tag information in the condition element of a policy using the
iot:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys.
For more information, see Using tags with IAM policies. For more information about tagging AWS
IoT resources, see Tagging your AWS IoT resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Viewing AWS IoT resources based on tags.

AWS IoT IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

How AWS IoT works with IAM 633

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements_condition.html
https://docs.aws.amazon.com/service-authorization/latest/reference/id_roles.html

AWS IoT Core Developer Guide

Using temporary credentials with AWS IoT

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

AWS IoT supports using temporary credentials.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

AWS IoT does not supports service-linked roles.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS IoT identity-based policy examples

By default, IAM users and roles don't have permission to create or modify AWS IoT resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the AWS IoT console

• Allow users to view their own permissions

Identity-based policy examples 634

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/service-authorization/latest/reference/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/service-authorization/latest/reference/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/service-authorization/latest/reference/access_policies_create.html#access_policies_create-json-editor

AWS IoT Core Developer Guide

• Viewing AWS IoT resources based on tags

• Viewing AWS IoT Device Advisor resources based on tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS IoT resources
in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

Identity-based policy examples 635

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

AWS IoT Core Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS IoT console

To access the AWS IoT console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the AWS IoT resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

To ensure that those entities can still use the AWS IoT console, also attach the following
AWS managed policy to the entities: AWSIoTFullAccess. For more information, see Adding
Permissions to a User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",

Identity-based policy examples 636

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/service-authorization/latest/reference/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/service-authorization/latest/reference/id_users_change-permissions.html#users_change_permissions-add-console

AWS IoT Core Developer Guide

 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Viewing AWS IoT resources based on tags

You can use conditions in your identity-based policy to control access to AWS IoT resources based
on tags. This example shows how you might create a policy that allows viewing a thing. However,
permission is granted only if the thing tag Owner has the value of that user's user name. This policy
also grants the permissions necessary to complete this action on the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListBillingGroupsInConsole",
 "Effect": "Allow",
 "Action": "iot:ListBillingGroups",
 "Resource": "*"
 },
 {
 "Sid": "ViewBillingGroupsIfOwner",
 "Effect": "Allow",
 "Action": "iot:DescribeBillingGroup",
 "Resource": "arn:aws:iot:*:*:billinggroup/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

Identity-based policy examples 637

AWS IoT Core Developer Guide

You can attach this policy to the IAM users in your account. If a user named richard-roe
attempts to view an AWS IoT billing group, the billing group must be tagged Owner=richard-
roe or owner=richard-roe. Otherwise, he is denied access. The condition tag key Owner
matches both Owner and owner because condition key names are not case-sensitive. For more
information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

Viewing AWS IoT Device Advisor resources based on tags

You can use conditions in your identity-based policy to control access to AWS IoT Device Advisor
resources based on tags. The following example shows how you can create a policy that allows
viewing a particular suite definition. However, permission is granted only if the suite definition
tag has SuiteType set to the value of MQTT. This policy also grants the permissions necessary to
complete this action on the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewSuiteDefinition",
 "Effect": "Allow",
 "Action": "iotdeviceadvisor:GetSuiteDefinition",
 "Resource": "arn:aws:iotdeviceadvisor:*:*:suitedefinition/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/SuiteType": "MQTT"}
 }
 }
]
}

AWS managed policies for AWS IoT

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS managed policies 638

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS IoT Core Developer Guide

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

Note

AWS IoT works with both AWS IoT and IAM policies. This topic discusses only IAM policies,
which defines a policy action for control plane and data plane API operations. See also AWS
IoT Core policies.

AWS managed policy: AWSIoTConfigAccess

You can attach the AWSIoTConfigAccess policy to your IAM identities.

This policy grants the associated identity permissions that allow access to all AWS IoT configuration
operations. This policy can affect data processing and storage. To view this policy in the AWS
Management Console, see AWSIoTConfigAccess.

Permissions details

This policy includes the following permissions.

• iot – Retrieve AWS IoT data and perform IoT configuration actions.

AWS managed policies 639

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTConfigAccess$jsonEditor?section=permissions

AWS IoT Core Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:AcceptCertificateTransfer",
 "iot:AddThingToThingGroup",
 "iot:AssociateTargetsWithJob",
 "iot:AttachPolicy",
 "iot:AttachPrincipalPolicy",
 "iot:AttachThingPrincipal",
 "iot:CancelCertificateTransfer",
 "iot:CancelJob",
 "iot:CancelJobExecution",
 "iot:ClearDefaultAuthorizer",
 "iot:CreateAuthorizer",
 "iot:CreateCertificateFromCsr",
 "iot:CreateJob",
 "iot:CreateKeysAndCertificate",
 "iot:CreateOTAUpdate",
 "iot:CreatePolicy",
 "iot:CreatePolicyVersion",
 "iot:CreateRoleAlias",
 "iot:CreateStream",
 "iot:CreateThing",
 "iot:CreateThingGroup",
 "iot:CreateThingType",
 "iot:CreateTopicRule",
 "iot:DeleteAuthorizer",
 "iot:DeleteCACertificate",
 "iot:DeleteCertificate",
 "iot:DeleteJob",
 "iot:DeleteJobExecution",
 "iot:DeleteOTAUpdate",
 "iot:DeletePolicy",
 "iot:DeletePolicyVersion",
 "iot:DeleteRegistrationCode",
 "iot:DeleteRoleAlias",
 "iot:DeleteStream",
 "iot:DeleteThing",
 "iot:DeleteThingGroup",
 "iot:DeleteThingType",

AWS managed policies 640

AWS IoT Core Developer Guide

 "iot:DeleteTopicRule",
 "iot:DeleteV2LoggingLevel",
 "iot:DeprecateThingType",
 "iot:DescribeAuthorizer",
 "iot:DescribeCACertificate",
 "iot:DescribeCertificate",
 "iot:DescribeDefaultAuthorizer",
 "iot:DescribeEndpoint",
 "iot:DescribeEventConfigurations",
 "iot:DescribeIndex",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:DescribeRoleAlias",
 "iot:DescribeStream",
 "iot:DescribeThing",
 "iot:DescribeThingGroup",
 "iot:DescribeThingRegistrationTask",
 "iot:DescribeThingType",
 "iot:DetachPolicy",
 "iot:DetachPrincipalPolicy",
 "iot:DetachThingPrincipal",
 "iot:DisableTopicRule",
 "iot:EnableTopicRule",
 "iot:GetEffectivePolicies",
 "iot:GetIndexingConfiguration",
 "iot:GetJobDocument",
 "iot:GetLoggingOptions",
 "iot:GetOTAUpdate",
 "iot:GetPolicy",
 "iot:GetPolicyVersion",
 "iot:GetRegistrationCode",
 "iot:GetTopicRule",
 "iot:GetV2LoggingOptions",
 "iot:ListAttachedPolicies",
 "iot:ListAuthorizers",
 "iot:ListCACertificates",
 "iot:ListCertificates",
 "iot:ListCertificatesByCA",
 "iot:ListIndices",
 "iot:ListJobExecutionsForJob",
 "iot:ListJobExecutionsForThing",
 "iot:ListJobs",
 "iot:ListOTAUpdates",
 "iot:ListOutgoingCertificates",

AWS managed policies 641

AWS IoT Core Developer Guide

 "iot:ListPolicies",
 "iot:ListPolicyPrincipals",
 "iot:ListPolicyVersions",
 "iot:ListPrincipalPolicies",
 "iot:ListPrincipalThings",
 "iot:ListRoleAliases",
 "iot:ListStreams",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroups",
 "iot:ListThingGroupsForThing",
 "iot:ListThingPrincipals",
 "iot:ListThingRegistrationTaskReports",
 "iot:ListThingRegistrationTasks",
 "iot:ListThings",
 "iot:ListThingsInThingGroup",
 "iot:ListThingTypes",
 "iot:ListTopicRules",
 "iot:ListV2LoggingLevels",
 "iot:RegisterCACertificate",
 "iot:RegisterCertificate",
 "iot:RegisterThing",
 "iot:RejectCertificateTransfer",
 "iot:RemoveThingFromThingGroup",
 "iot:ReplaceTopicRule",
 "iot:SearchIndex",
 "iot:SetDefaultAuthorizer",
 "iot:SetDefaultPolicyVersion",
 "iot:SetLoggingOptions",
 "iot:SetV2LoggingLevel",
 "iot:SetV2LoggingOptions",
 "iot:StartThingRegistrationTask",
 "iot:StopThingRegistrationTask",
 "iot:TestAuthorization",
 "iot:TestInvokeAuthorizer",
 "iot:TransferCertificate",
 "iot:UpdateAuthorizer",
 "iot:UpdateCACertificate",
 "iot:UpdateCertificate",
 "iot:UpdateEventConfigurations",
 "iot:UpdateIndexingConfiguration",
 "iot:UpdateRoleAlias",
 "iot:UpdateStream",
 "iot:UpdateThing",
 "iot:UpdateThingGroup",

AWS managed policies 642

AWS IoT Core Developer Guide

 "iot:UpdateThingGroupsForThing",
 "iot:UpdateAccountAuditConfiguration",
 "iot:DescribeAccountAuditConfiguration",
 "iot:DeleteAccountAuditConfiguration",
 "iot:StartOnDemandAuditTask",
 "iot:CancelAuditTask",
 "iot:DescribeAuditTask",
 "iot:ListAuditTasks",
 "iot:CreateScheduledAudit",
 "iot:UpdateScheduledAudit",
 "iot:DeleteScheduledAudit",
 "iot:DescribeScheduledAudit",
 "iot:ListScheduledAudits",
 "iot:ListAuditFindings",
 "iot:CreateSecurityProfile",
 "iot:DescribeSecurityProfile",
 "iot:UpdateSecurityProfile",
 "iot:DeleteSecurityProfile",
 "iot:AttachSecurityProfile",
 "iot:DetachSecurityProfile",
 "iot:ListSecurityProfiles",
 "iot:ListSecurityProfilesForTarget",
 "iot:ListTargetsForSecurityProfile",
 "iot:ListActiveViolations",
 "iot:ListViolationEvents",
 "iot:ValidateSecurityProfileBehaviors"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSIoTConfigReadOnlyAccess

You can attach the AWSIoTConfigReadOnlyAccess policy to your IAM identities.

This policy grants the associated identity permissions that allow read-only access to all
AWS IoT configuration operations. To view this policy in the AWS Management Console, see
AWSIoTConfigReadOnlyAccess.

Permissions details

AWS managed policies 643

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTConfigReadOnlyAccess$jsonEditor?section=permissions

AWS IoT Core Developer Guide

This policy includes the following permissions.

• iot – Perform read-only operations of IoT configuration actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:DescribeAuthorizer",
 "iot:DescribeCACertificate",
 "iot:DescribeCertificate",
 "iot:DescribeDefaultAuthorizer",
 "iot:DescribeEndpoint",
 "iot:DescribeEventConfigurations",
 "iot:DescribeIndex",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:DescribeRoleAlias",
 "iot:DescribeStream",
 "iot:DescribeThing",
 "iot:DescribeThingGroup",
 "iot:DescribeThingRegistrationTask",
 "iot:DescribeThingType",
 "iot:GetEffectivePolicies",
 "iot:GetIndexingConfiguration",
 "iot:GetJobDocument",
 "iot:GetLoggingOptions",
 "iot:GetOTAUpdate",
 "iot:GetPolicy",
 "iot:GetPolicyVersion",
 "iot:GetRegistrationCode",
 "iot:GetTopicRule",
 "iot:GetV2LoggingOptions",
 "iot:ListAttachedPolicies",
 "iot:ListAuthorizers",
 "iot:ListCACertificates",
 "iot:ListCertificates",
 "iot:ListCertificatesByCA",
 "iot:ListIndices",

AWS managed policies 644

AWS IoT Core Developer Guide

 "iot:ListJobExecutionsForJob",
 "iot:ListJobExecutionsForThing",
 "iot:ListJobs",
 "iot:ListOTAUpdates",
 "iot:ListOutgoingCertificates",
 "iot:ListPolicies",
 "iot:ListPolicyPrincipals",
 "iot:ListPolicyVersions",
 "iot:ListPrincipalPolicies",
 "iot:ListPrincipalThings",
 "iot:ListRoleAliases",
 "iot:ListStreams",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroups",
 "iot:ListThingGroupsForThing",
 "iot:ListThingPrincipals",
 "iot:ListThingRegistrationTaskReports",
 "iot:ListThingRegistrationTasks",
 "iot:ListThings",
 "iot:ListThingsInThingGroup",
 "iot:ListThingTypes",
 "iot:ListTopicRules",
 "iot:ListV2LoggingLevels",
 "iot:SearchIndex",
 "iot:TestAuthorization",
 "iot:TestInvokeAuthorizer",
 "iot:DescribeAccountAuditConfiguration",
 "iot:DescribeAuditTask",
 "iot:ListAuditTasks",
 "iot:DescribeScheduledAudit",
 "iot:ListScheduledAudits",
 "iot:ListAuditFindings",
 "iot:DescribeSecurityProfile",
 "iot:ListSecurityProfiles",
 "iot:ListSecurityProfilesForTarget",
 "iot:ListTargetsForSecurityProfile",
 "iot:ListActiveViolations",
 "iot:ListViolationEvents",
 "iot:ValidateSecurityProfileBehaviors"
],
 "Resource": "*"
 }
]

AWS managed policies 645

AWS IoT Core Developer Guide

}

AWS managed policy: AWSIoTDataAccess

You can attach the AWSIoTDataAccess policy to your IAM identities.

This policy grants the associated identity permissions that allow access to all AWS IoT data
operations. Data operations send data over MQTT or HTTP protocols. To view this policy in the
AWS Management Console, see AWSIoTDataAccess.

Permissions details

This policy includes the following permissions.

• iot – Retrieve AWS IoT data and allow full access to AWS IoT messaging actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow",
 "iot:ListNamedShadowsForThing"
],
 "Resource": "*"
 }
]
}

AWS managed policies 646

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTDataAccess?section=permissions

AWS IoT Core Developer Guide

AWS managed policy: AWSIoTFullAccess

You can attach the AWSIoTFullAccess policy to your IAM identities.

This policy grants the associated identity permissions that allow access to all AWS IoT
configuration and messaging operations. To view this policy in the AWS Management Console, see
AWSIoTFullAccess.

Permissions details

This policy includes the following permissions.

• iot – Retrieve AWS IoT data and allow full access to AWS IoT configuration and messaging
actions.

• iotjobsdata – Retrieve AWS IoT Jobs data and allow full access to AWS IoT Jobs data plane API
operations.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:*",
 "iotjobsdata:*"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSIoTLogging

AWS managed policies 647

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTFullAccess?section=permissions

AWS IoT Core Developer Guide

You can attach the AWSIoTLogging policy to your IAM identities.

This policy grants the associated identity permissions that allow access to create Amazon
CloudWatch Logs groups and stream logs to the groups. This policy is attached to your CloudWatch
logging role. To view this policy in the AWS Management Console, see AWSIoTLogging.

Permissions details

This policy includes the following permissions.

• logs – Retrieve CloudWatch logs. Also allows creation of CloudWatch Logs groups and stream
logs to the groups.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:PutMetricFilter",
 "logs:PutRetentionPolicy",
 "logs:GetLogEvents",
 "logs:DeleteLogStream"
],
 "Resource": [
 "*"
]
 }
]
}

AWS managed policy: AWSIoTOTAUpdate

AWS managed policies 648

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTLogging?section=permissions

AWS IoT Core Developer Guide

You can attach the AWSIoTOTAUpdate policy to your IAM identities.

This policy grants the associated identity permissions that allow access to create AWS IoT jobs,
AWS IoT code signing jobs, and to describe AWS code signer jobs. To view this policy in the AWS
Management Console, see AWSIoTOTAUpdate.

Permissions details

This policy includes the following permissions.

• iot – Create AWS IoT jobs and code signing jobs.

• signer – Perform creation of AWS code signer jobs.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iot:CreateJob",
 "signer:DescribeSigningJob"
],
 "Resource": "*"
 }
}

AWS managed policy: AWSIoTRuleActions

You can attach the AWSIoTRuleActions policy to your IAM identities.

This policy grants the associated identity permissions that allow access to all AWS services
supported in AWS IoT rule actions. To view this policy in the AWS Management Console, see
AWSIoTRuleActions.

Permissions details

AWS managed policies 649

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTOTAUpdate?section=permissions
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTRuleActions?section=permissions

AWS IoT Core Developer Guide

This policy includes the following permissions.

• iot - Perform actions for publishing rule action messages.

• dynamodb - Insert a message into a DynamoDB table or split a message into multiple columns of
a DynamoDB table.

• s3 - Store an object in an Amazon S3 bucket.

• kinesis - Send a message to an Amazon Kinesis stream object.

• firehose - Insert a record in a Firehose stream object.

• cloudwatch - Change CloudWatch alarm state or send message data to CloudWatch metric.

• sns - Perform operation to publish a notification using Amazon SNS. This operation is scoped to
AWS IoT SNS topics.

• sqs - Insert a message to add to the SQS queue.

• es - Send a message to the OpenSearch Service service.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "kinesis:PutRecord",
 "iot:Publish",
 "s3:PutObject",
 "sns:Publish",
 "sqs:SendMessage*",
 "cloudwatch:SetAlarmState",
 "cloudwatch:PutMetricData",
 "es:ESHttpPut",
 "firehose:PutRecord"
],
 "Resource": "*"
 }
}

AWS managed policy: AWSIoTThingsRegistration

AWS managed policies 650

AWS IoT Core Developer Guide

You can attach the AWSIoTThingsRegistration policy to your IAM identities.

This policy grants the associated identity permissions that allow access to register things in bulk
using the StartThingRegistrationTask API. This policy can affect data processing and
storage. To view this policy in the AWS Management Console, see AWSIoTThingsRegistration.

Permissions details

This policy includes the following permissions.

• iot - Perform actions for creating things and attaching policies and certificates when registering
in bulk.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:AddThingToThingGroup",
 "iot:AttachPolicy",
 "iot:AttachPrincipalPolicy",
 "iot:AttachThingPrincipal",
 "iot:CreateCertificateFromCsr",
 "iot:CreatePolicy",
 "iot:CreateThing",
 "iot:DescribeCertificate",
 "iot:DescribeThing",
 "iot:DescribeThingGroup",
 "iot:DescribeThingType",
 "iot:DetachPolicy",
 "iot:DetachThingPrincipal",
 "iot:GetPolicy",
 "iot:ListAttachedPolicies",
 "iot:ListPolicyPrincipals",
 "iot:ListPrincipalPolicies",
 "iot:ListPrincipalThings",

AWS managed policies 651

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTThingsRegistration?section=permissions

AWS IoT Core Developer Guide

 "iot:ListTargetsForPolicy",
 "iot:ListThingGroupsForThing",
 "iot:ListThingPrincipals",
 "iot:RegisterCertificate",
 "iot:RegisterThing",
 "iot:RemoveThingFromThingGroup",
 "iot:UpdateCertificate",
 "iot:UpdateThing",
 "iot:UpdateThingGroupsForThing",
 "iot:AddThingToBillingGroup",
 "iot:DescribeBillingGroup",
 "iot:RemoveThingFromBillingGroup"
],
 "Resource": [
 "*"
]
 }
]
}

AWS IoT updates to AWS managed policies

View details about updates to AWS managed policies for AWS IoT since this service began tracking
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
AWS IoT Document history page.

Change Description Date

AWSIoTFullAccess – Update to
an existing policy

AWS IoT added new permissio
ns to allow users to access
AWS IoT Jobs data plane API
operations using the HTTP
protocol.

A new IAM policy prefix,
iotjobsdata: , provides
you finer grained access
control to access AWS IoT

May 11, 2022

AWS managed policies 652

AWS IoT Core Developer Guide

Change Description Date

Jobs data plane endpoints
. For control plane API
operations, you still use
the iot: prefix. For more
information, see AWS IoT
Core policies for HTTPS
protocol.

AWS IoT started tracking
changes

AWS IoT started tracking
changes for its AWS managed
policies.

May 11, 2022

Troubleshooting AWS IoT identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT and IAM.

Topics

• I am not authorized to perform an action in AWS IoT

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS IoT resources

I am not authorized to perform an action in AWS IoT

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the IAM user, mateojackson, tries to use the console to
view details about a thing resource but doesn't have the iot:DescribeThing permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 iot:DescribeThing on resource: MyIoTThing

In this case, the policy for the mateojackson user must be updated to allow access to the thing
resource by using the iot:DescribeThing action.

Troubleshooting 653

AWS IoT Core Developer Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Using AWS IoT Device Advisor

If you're using AWS IoT Device Advisor, the following example error occurs when the user
mateojackson tries to use the console to view details about a suite definition but doesn't have
the iotdeviceadvisor:GetSuiteDefinition permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 iotdeviceadvisor:GetSuiteDefinition on resource: MySuiteDefinition

In this case, the policy for the mateojackson user must be updated to allow access to the
MySuiteDefinition resource using the iotdeviceadvisor:GetSuiteDefinition action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS IoT. However, the action requires the service to have permissions that
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS IoT resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support

Troubleshooting 654

AWS IoT Core Developer Guide

resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS IoT supports these features, see How AWS IoT works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and Monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of
AWS IoT and your AWS solutions. You should collect monitoring data from all parts of your AWS
solution so that you can more easily debug a multi-point failure, if one occurs. For information on
logging and monitoring procedures, see Monitoring AWS IoT

Monitoring Tools

AWS provides tools that you can use to monitor AWS IoT. You can configure some of these tools to
do the monitoring for you. Some of the tools require manual intervention. We recommend that you
automate monitoring tasks as much as possible.

Automated Monitoring Tools

You can use the following automated monitoring tools to watch AWS IoT and report when
something is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not

Logging and Monitoring 655

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS IoT Core Developer Guide

invoke actions simply because they are in a particular state. The state must have changed and
been maintained for a specified number of periods. For more information, see Monitor AWS IoT
alarms and metrics using Amazon CloudWatch.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. Amazon CloudWatch Logs also allows you to see critical steps AWS IoT Device
Advisor test cases take, generated events and MQTT messages sent from your devices or
AWS IoT Core during test execution. These logs make it possible to debug and take corrective
actions on your devices. For more information, see Monitor AWS IoT using CloudWatch Logs For
more information about using Amazon CloudWatch, see Monitoring Log Files in the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see What Is Amazon CloudWatch Events in the Amazon CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Logging AWS IoT API calls using AWS CloudTrail and also Working with CloudTrail Log Files
in the AWS CloudTrail User Guide.

Manual Monitoring Tools

Another important part of monitoring AWS IoT involves manually monitoring those items that
the CloudWatch alarms don't cover. The AWS IoT, CloudWatch, and other AWS service console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on AWS IoT.

• AWS IoT dashboard shows:

• CA certificates

• Certificates

• Polices

• Rules

• Things

• CloudWatch home page shows:

• Current alarms and status.

• Graphs of alarms and resources.

Monitoring Tools 656

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Core Developer Guide

• Service health status.

You can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.

• Create and edit alarms to be notified of problems.

Compliance validation for AWS IoT Core

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of

Compliance validation 657

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

AWS IoT Core Developer Guide

Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS IoT Core

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

AWS IoT Core stores information about your devices in the device registry. It also stores CA
certificates, device certificates, and device shadow data. In the event of hardware or network
failures, this data is automatically replicated across Availability Zones but not across Regions.

AWS IoT Core publishes MQTT events when the device registry is updated. You can use these
messages to back up your registry data and save it somewhere, like a DynamoDB table. You are
responsible for saving certificates that AWS IoT Core creates for you or those you create yourself.
Device shadow stores state data about your devices and can be resent when a device comes back
online. AWS IoT Device Advisor stores information about your test suite configuration. This data is
automatically replicated in the event of hardware or network failures.

Resilience 658

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS IoT Core Developer Guide

AWS IoT Core resources are Region-specific and aren't replicated across AWS Regions unless you
specifically do so.

For information about Security best practices, see Security best practices in AWS IoT Core.

Using AWS IoT Core with interface VPC endpoints

With AWS IoT Core, you can create IoT data endpoints within your virtual private cloud (VPC) by
using interface VPC endpoints. Interface VPC endpoints are powered by AWS PrivateLink, an AWS
technology that you can use to access services running on AWS by using private IP addresses. For
more information, see Amazon Virtual Private Cloud.

To connect devices in the field on remote networks, such as a corporate network to your Amazon
VPC, refer to the options listed in the Network-to-Amazon VPC connectivity matrix.

Contents

• Creating VPC endpoints for AWS IoT Core data plane

• Creating VPC endpoints for AWS IoT Core credential provider

• Creating an Amazon VPC interface endpoint

• Configuring private hosted zone

• Controlling Access to AWS IoT Core over VPC endpoints

• Limitations

• Scaling VPC endpoints with AWS IoT Core

• Using custom domains with VPC endpoints

• Availability of VPC endpoints for AWS IoT Core

Creating VPC endpoints for AWS IoT Core data plane

You can create a VPC endpoint for AWS IoT Core data plane API to connect your devices to AWS
IoT services and other AWS services. To get started with VPC endpoints, create an interface VPC
endpoint and select AWS IoT Core as the AWS service. If you are using the CLI, first call describe-
vpc-endpoint-services to ensure that you are choosing an Availability Zone where AWS IoT Core is
present in your particular AWS Region. For example, in us-east-1, this command would look like:

aws ec2 describe-vpc-endpoint-services --service-name com.amazonaws.us-east-1.iot.data

Using AWS IoT Core with VPC endpoints 659

https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-devices.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoint-services.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoint-services.html

AWS IoT Core Developer Guide

Note

The VPC feature for automatically creating a DNS record is disabled. To connect to these
endpoints, you must manually create a Private DNS record. For more information about
Private VPC DNS records, see Private DNS for interface endpoints. For more information
about AWS IoT Core VPC limitations, see Limitations.

To connect MQTT clients to the VPC endpoint interfaces:

• You must manually create DNS records in a private hosted zone that is attached to your VPC. To
get started, see Creating a private hosted zone.

• Within your private hosted zone, create an alias record for each elastic network interface IP for
the VPC endpoint. If you have multiple network interface IPs for multiple VPC endpoints, create
weighted DNS records with equal weights across all the weighted records. These IP addresses are
available from the DescribeNetworkInterfaces API call when filtered by the VPC endpoint ID in
the description field.

See the detailed instructions below to Create an Amazon VPC interface endpoint and Configure
private hosted zone for AWS IoT Core data plane.

Creating VPC endpoints for AWS IoT Core credential provider

You can create a VPC endpoint for AWS IoT Core credential provider to connect devices using client
certificate-based authentication and get temporary AWS credentials in AWS Signature Version 4
format. To get started with VPC endpoints for AWS IoT Core credential provider, run the create-
vpc-endpoint CLI command to create an interface VPC endpoint and select AWS IoT Core credential
provider as the AWS service. To ensure that you are choosing an Availability Zone where AWS IoT
Core is present in your particular AWS Region, your first run the describe-vpc-endpoint-services
command. For example, in us-east-1, this command would look like:

aws ec2 describe-vpc-endpoint-services --service-name com.amazonaws.us-
east-1.iot.credentials

Creating VPC endpoints for AWS IoT Core credential provider 660

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zone-private-creating.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoint-services.html

AWS IoT Core Developer Guide

Note

The VPC feature for automatically creating a DNS record is disabled. To connect to these
endpoints, you must manually create a Private DNS record. For more information about
Private VPC DNS records, see Private DNS for interface endpoints. For more information
about AWS IoT Core VPC limitations, see Limitations.

To connect HTTP clients to the VPC endpoint interfaces:

• You must manually create DNS records in a private hosted zone that is attached to your VPC. To
get started, see Creating A private hosted zone.

• Within your private hosted zone, create an alias record for each elastic network interface IP for
the VPC endpoint. If you have multiple network interface IPs for multiple VPC endpoints, create
weighted DNS records with equal weights across all the weighted records. These IP addresses are
available from the DescribeNetworkInterfaces API call when filtered by the VPC endpoint ID in
the description field.

See the detailed instructions below to Create an Amazon VPC interface endpoint and Configure
private hosted zone for AWS IoT Core credential provider.

Creating an Amazon VPC interface endpoint

You can create an interface VPC endpoint to connect to AWS services powered by AWS PrivateLink.
Use the following procedure to create an interface VPC endpoint that connects to AWS IoT Core
data plane or AWS IoT Core credential provider. For more information, see Access an AWS service
using an interface VPC endpoint.

Note

The processes to create an Amazon VPC interface endpoint for AWS IoT Core data plane
and AWS IoT Core credential provider are similar, but you must make endpoint specific
changes to make the connection work.

To create an interface VPC endpoint using VPC Endpoints console

Creating an Amazon VPC interface endpoint 661

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zone-private-creating.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://console.aws.amazon.com/vpc/home#/endpoints

AWS IoT Core Developer Guide

1. Navigate to the VPC Endpoints console, under Virtual private cloud on the left menu, choose
Endpoints then Create Endpoint.

2. In the Create endpoint page, specify the following information.

• Choose AWS services for Service category.

• For Service Name, search by entering the keyword iot. In the list of iot services displayed,
choose the endpoint.

If you create a VPC endpoint for AWS IoT Core data plane, choose the AWS IoT
Core data plane API endpoint for your Region. The endpoint will be of the format
com.amazonaws.region.iot.data.

If you create a VPC endpoint for AWS IoT Core credential provider, choose the AWS IoT
Core credential provider endpoint for your Region. The endpoint will be of the format
com.amazonaws.region.iot.credentials.

Note

The service name for AWS IoT Core data plane in China Region will be of the format
cn.com.amazonaws.region.iot.data. Creating VPC endpoints for AWS IoT Core
credential provider is not supported in China Region.

• For VPC and Subnets, choose the VPC where you want to create the endpoint, and the
Availability Zones (AZs) in which you want to create the endpoint network.

• For Enable DNS name, make sure that Enable for this endpoint is not selected. Neither AWS
IoT Core data plane nor AWS IoT Core credential provider supports private DNS names yet.

• For Security group, choose the security groups you want to associate with the endpoint
network interfaces.

• Optionally, you can add or remove tags. Tags are name-value pairs that you use to associate
with your endpoint.

3. To create your VPC endpoint, choose Create endpoint.

After you create the AWS PrivateLink endpoint, in the Details tab of your endpoint, you'll see a list
of DNS names. You can use one of these DNS names you created in this section to configure your
private hosted zone.

Creating an Amazon VPC interface endpoint 662

https://console.aws.amazon.com/vpc/home#/endpoints

AWS IoT Core Developer Guide

Configuring private hosted zone

You can use one of these DNS names you created in the previous section to configure your private
hosted zone.

For AWS IoT Core data plane

The DNS name must be your domain configuration name or your IoT:Data-ATS endpoint. An
example DNS name can be: xxx-ats.data.iot.region.amazonaws.com.

For AWS IoT Core credential provider

The DNS name must be your iot:CredentialProvider endpoint. An example DNS name can
be: xxxx.credentials.iot.region.amazonaws.com.

Note

The processes to configure private hosted zone for AWS IoT Core data plane and AWS IoT
Core credential provider are similar, but you must make endpoint specific changes to make
the connection work.

Create a private hosted zone

To create a private hosted zone using Route 53 console

1. Navigate to the Route 53 Hosted zones console and choose Create hosted zone.

2. In the Create hosted zone page, specify the following information.

• For Domain name, enter the endpoint address for your iot:Data-ATS or
iot:CredentialProvider endpoint. The following AWS CLI command shows how
to get the endpoint through a public network: aws iot describe-endpoint --
endpoint-type iot:Data-ATS, or aws iot describe-endpoint --endpoint-type
iot:CredentialProvider.

Note

If you're using custom domains, see Using custom domains with VPC endpoints.
Custom domains are not supported for AWS IoT Core credential provider.

Configuring private hosted zone 663

https://console.aws.amazon.com/route53/v2/hostedzones#/
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html#VPC-custom-domains

AWS IoT Core Developer Guide

• For Type, choose Private hosted zone.

• Optionally, you can add or remove tags to associate with your hosted zone.

3. To create your private hosted zone, choose Create hosted zone.

For more information, see Creating a private hosted zone.

Create a record

After you have created a private hosted zone, you can create a record that tells the DNS how you
want traffic to be routed to that domain.

To create a record

1. In the list of hosted zones displayed, choose the private hosted zone that you created earlier and
choose Create record.

2. Use the wizard method to create the record. If the console presents you the Quick create
method, choose Switch to wizard.

3. Choose Simple Routing for Routing policy and then choose Next.

4. In the Configure records page, choose Define simple record.

5. In the Define simple record page:

• For Record name, enter iot:Data-ATS endpoint or iot:CredentialProvider endpoint.
This must be the same as the private hosted zone name.

• For Record type, keep the value as A - Routes traffic to an IPv4 address and
some AWS resources.

• For Value/Route traffic to, choose Alias to VPC endpoint. Then choose your Region and then
choose the endpoint that you created previously, as described in ??? from the list of endpoints
displayed.

6. Choose Define simple record to create your record.

Controlling Access to AWS IoT Core over VPC endpoints

You can restrict device access to AWS IoT Core to be allowed only through VPC endpoint by using
VPC condition context keys. AWS IoT Core supports the following VPC related context keys:

• SourceVpc

Controlling Access to AWS IoT Core over VPC endpoints 664

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zone-private-creating.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpc

AWS IoT Core Developer Guide

• SourceVpce

• VPCSourceIp

Note

AWS IoT Core doesn't support Endpoints policies for VPC endpoints.

For example, the following policy grants permission to connect to AWS IoT Core using a client ID
that matches the thing name, and to publish to any topic prefixed by the thing name, conditional
on the device connecting to a VPC endpoint with a particular VPC Endpoint ID. This policy would
deny connection attempts to your public IoT data endpoint.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceVpce": "vpce-1a2b3c4d"
 }
 }

 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.ThingName}/*"
]

Controlling Access to AWS IoT Core over VPC endpoints 665

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpce
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-vpcsourceip
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies

AWS IoT Core Developer Guide

 }
]
}

Limitations

VPC endpoints are currently supported only for AWS IoT Core data endpoints and AWS IoT Core
credential provider endpoints.

Limitations of IoT data VPC endpoints

This section covers the limitations of IoT data VPC endpoints.

• MQTT keep alive periods are limited to 230 seconds. Keep alive periods longer than that will be
automatically reduced to 230 seconds.

• Each VPC endpoint supports 100,000 total concurrent connected devices. If you require more
connections see Scaling VPC endpoints with AWS IoT Core.

• VPC endpoints support IPv4 traffic only.

• VPC endpoints will serve ATS certificates only, except for custom domains.

• VPC endpoint policies are not supported.

• For VPC endpoints that are created for the AWS IoT Core data plane, AWS IoT Core doesn't
support using zonal or regional public DNS records.

Limitations of credential provider endpoints

This section covers the limitations of credential provider VPC endpoints.

• VPC endpoints support IPv4 traffic only.

• VPC endpoints will serve ATS certificates only.

• VPC endpoint policies are not supported.

• Custom domains are not supported for credential provider endpoints.

• For VPC endpoints that are created for the AWS IoT Core credential provider, AWS IoT Core
doesn't support using zonal or regional public DNS records.

Limitations 666

https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-devices.html#iot-connect-device-endpoints
https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.htm
https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.htm
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS IoT Core Developer Guide

Scaling VPC endpoints with AWS IoT Core

AWS IoT Core Interface VPC endpoints are limited to 100,000 connected devices over a single
interface endpoint. If your use case calls for more concurrent connections to the broker, then we
recommend using multiple VPC endpoints and manually routing your devices across your interface
endpoints. When creating private DNS records to route traffic to your VPC endpoints, make sure
to create as many weighted records as you have VPC endpoints to distribute traffic across your
multiple endpoints.

Using custom domains with VPC endpoints

If you want to use custom domains with VPC endpoints, you must create your custom domain
name records in a private hosted zone and create routing records in Route53. For more
information, see Creating A private hosted zone.

Note

Custom domains are only supported for AWS IoT Core data endpoints.

Availability of VPC endpoints for AWS IoT Core

AWS IoT Core Interface VPC endpoints are available in all AWS IoT Core supported regions. AWS
IoT Core Interface VPC endpoints for AWS IoT Core credential provider are not supported in China
Region and AWS GovCloud (US) Regions.

Infrastructure security in AWS IoT

As a collection of managed services, AWS IoT is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access AWS IoT through the network. Clients must support
Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with perfect
forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-
Hellman (ECDHE). Most modern systems, such as Java 7 and later, support these modes. For more
information, see Transport security in AWS IoT Core.

Scaling VPC endpoints with AWS IoT Core 667

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zone-private-creating.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

AWS IoT Core Developer Guide

Requests must be signed by using an access key ID and a secret access key that is associated with
an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

Security monitoring of production fleets or devices with AWS
IoT Core

IoT fleets can consist of large numbers of devices that have diverse capabilities, are long-lived,
and are geographically distributed. These characteristics make fleet setup complex and prone to
errors. And because devices are often constrained in computational power, memory, and storage
capabilities, this limits the use of encryption and other forms of security on the devices themselves.
Also, devices often use software with known vulnerabilities. These factors make IoT fleets an
attractive target for hackers and make it difficult to secure your device fleet on an ongoing basis.

AWS IoT Device Defender addresses these challenges by providing tools to identify security issues
and deviations from best practices. You can use AWS IoT Device Defender to analyze, audit, and
monitor connected devices to detect abnormal behavior, and mitigate security risks. AWS IoT
Device Defender can audit device fleets to ensure they adhere to security best practices and
detect abnormal behavior on devices. This makes it possible to enforce consistent security policies
across your AWS IoT device fleet and respond quickly when devices are compromised. For more
information, see AWS IoT Device Defender.

AWS IoT Device Advisor pushes updates and patches your fleet as needed. AWS IoT Device Advisor
updates test cases automatically. The test cases that you select are always with latest version. For
more information, see Device Advisor.

Security best practices in AWS IoT Core

This section contains information about security best practices for AWS IoT Core. For information
about security rules for Industrial IoT solutions, see Ten security golden rules for Industrial IoT
solutions.

Protecting MQTT connections in AWS IoT

AWS IoT Core is a managed cloud service that makes it possible for connected devices to interact
with cloud applications and other devices easily and securely. AWS IoT Core supports HTTP,
WebSocket, and MQTT, a lightweight communication protocol specifically designed to tolerate
intermittent connections. If you are connecting to AWS IoT using MQTT, each of your connections

Security monitoring 668

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/
https://aws.amazon.com/iot-core/
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/MQTT

AWS IoT Core Developer Guide

must be associated with an identifier known as a client ID. MQTT client IDs uniquely identify MQTT
connections. If a new connection is established using a client ID that is already claimed for another
connection, the AWS IoT message broker drops the old connection to allow the new connection.
Client IDs must be unique within each AWS account and each AWS Region. This means that you
don't need to enforce global uniqueness of client IDs outside of your AWS account or across
Regions within your AWS account.

The impact and severity of dropping MQTT connections on your device fleet depends on many
factors. These include:

• Your use case (for example, the data your devices send to AWS IoT, how much data, and the
frequency that the data is sent).

• Your MQTT client configuration (for example, auto reconnect settings, associated back-off
timings, and use of MQTT persistent sessions).

• Device resource constraints.

• The root cause of the disconnections, its aggressiveness, and persistence.

To avoid client ID conflicts and their potential negative impacts, make sure that each device or
mobile application has an AWS IoT or IAM policy that restricts which client IDs can be used for
MQTT connections to the AWS IoT message broker. For example, you can use an IAM policy to
prevent a device from unintentionally closing another device's connection by using a client ID that
is already in use. For more information, see Authorization.

All devices in your fleet must have credentials with privileges that authorize intended actions
only, which include (but not limited to) AWS IoT MQTT actions such as publishing messages or
subscribing to topics with specific scope and context. The specific permission policies can vary
for your use cases. Identify the permission policies that best meet your business and security
requirements.

To simplify creation and management of permission policies, you can use AWS IoT Core policy
variables and IAM policy variables. Policy variables can be placed in a policy and when the policy
is evaluated, the variables are replaced by values that come from the device's request. Using
policy variables, you can create a single policy for granting permissions to multiple devices.
You can identify the relevant policy variables for your use case based on your AWS IoT account
configuration, authentication mechanism, and network protocol used in connecting to AWS IoT
message broker. However, to write the best permission policies, consider the specifics of your use
case and your threat model.

Protecting MQTT connections in AWS IoT 669

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://en.wikipedia.org/wiki/Threat_model

AWS IoT Core Developer Guide

For example, if you registered your devices in the AWS IoT registry, you can use thing policy
variables in AWS IoT policies to grant or deny permissions based on thing properties like thing
names, thing types, and thing attribute values. The thing name is obtained from the client ID in
the MQTT connect message sent when a thing connects to AWS IoT. The thing policy variables
are replaced when a thing connects to AWS IoT over MQTT using TLS mutual authentication or
MQTT over the WebSocket protocol using authenticated Amazon Cognito identities. You can use
the AttachThingPrincipal API to attach certificates and authenticated Amazon Cognito identities to
a thing. iot:Connection.Thing.ThingName is a useful thing policy variable to enforce client ID
restrictions. The following example AWS IoT policy requires a registered thing's name to be used as
the client ID for MQTT connections to the AWS IoT message broker:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/${iot:Connection.Thing.ThingName}"
]
 }
]
}

If you want to identify ongoing client ID conflicts, you can enable and use CloudWatch Logs for
AWS IoT. For every MQTT connection that the AWS IoT message broker disconnects due to client ID
conflicts, a log record similar to the following is generated:

{
 "timestamp": "2019-04-28 22:05:30.105",
 "logLevel": "ERROR",
 "traceId": "02a04a93-0b3a-b608-a27c-1ae8ebdb032a",
 "accountId": "123456789012",
 "status": "Failure",
 "eventType": "Disconnect",
 "protocol": "MQTT",
 "clientId": "clientId01",
 "principalId": "1670fcf6de55adc1930169142405c4a2493d9eb5487127cd0091ca0193a3d3f6",
 "sourceIp": "203.0.113.1",
 "sourcePort": 21335,
 "reason": "DUPLICATE_CLIENT_ID",

Protecting MQTT connections in AWS IoT 670

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identities.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AttachThingPrincipal.html

AWS IoT Core Developer Guide

 "details": "A new connection was established with the same client ID"
}

You can use a CloudWatch Logs filter such as {$.reason= "DUPLICATE_CLIENT_ID" } to
search for instances of client ID conflicts or to set up CloudWatch metric filters and corresponding
CloudWatch alarms for continuous monitoring and reporting.

You can use AWS IoT Device Defender to identify overly permissive AWS IoT and IAM policies. AWS
IoT Device Defender also provides an audit check that notifies you if multiple devices in your fleet
are connecting to the AWS IoT message broker using the same client ID.

You can use AWS IoT Device Advisor to validate that your devices can reliably connect to AWS IoT
Core and follow security best practices.

See also

• AWS IoT Core

• AWS IoT's Security Features

• AWS IoT Core policy variables

• IAM Policy Variables

• Amazon Cognito Identity

• AWS IoT Device Defender

• CloudWatch Logs for AWS IoT

Keep your device's clock in sync

It's important to have an accurate time on your device. X.509 certificates have an expiry date
and time. The clock on your device is used to verify that a server certificate is still valid. If you're
building commercial IoT devices, remember that your products may be stored for extended periods
before being sold. Real-time clocks can drift during this time and batteries can get discharged, so
setting time in the factory is not sufficient.

For most systems, this means that the device's software must include a network time protocol
(NTP) client. The device should wait until it synchronizes with an NTP server before it tries to
connect to AWS IoT Core. If this isn't possible, the system should provide a way for a user to set the
device's time so that subsequent connections succeed.

Keep your device's clock in sync 671

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringPolicyExamples.html
https://aws.amazon.com/iot-device-defender/
https://aws.amazon.com/iot-core/
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_variables.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identities.html
https://aws.amazon.com/iot-device-defender/

AWS IoT Core Developer Guide

After the device synchronizes with an NTP server, it can open a connection with AWS IoT Core. How
much clock skew that is allowed depends on what you're trying to do with the connection.

Validate the server certificate

The first thing a device does to interact with AWS IoT is to open a secure connection. When you
connect your device to AWS IoT, ensure that you're talking to AWS IoT and not another server
impersonating AWS IoT. Each of the AWS IoT servers is provisioned with a certificate issued for
the iot.amazonaws.com domain. This certificate was issued to AWS IoT by a trusted certificate
authority that verified our identity and ownership of the domain.

One of the first things AWS IoT Core does when a device connects is send the device a server
certificate. Devices can verify that they were expecting to connect to iot.amazonaws.com and
that the server on the end of that connection possesses a certificate from a trusted authority for
that domain.

TLS certificates are in X.509 format and include a variety of information such as the organization's
name, location, domain name, and a validity period. The validity period is specified as a pair of time
values called notBefore and notAfter. Services like AWS IoT Core use limited validity periods
(for example, one year) for their server certificates and begin serving new ones before the old ones
expire.

Use a single identity per device

Use a single identity per client. Devices generally use X.509 client certificates. Web and mobile
applications use Amazon Cognito Identity. This enables you to apply fine-grained permissions to
your devices.

For example, you have an application that consists of a mobile phone device that receives status
updates from two different smart home objects – a light bulb and a thermostat. The light bulb
sends the status of its battery level, and a thermostat sends messages that report the temperature.

AWS IoT authenticates devices individually and treats each connection individually. You can apply
fine-grained access controls using authorization policies. You can define a policy for the thermostat
that allows it to publish to a topic space. You can define a separate policy for the light bulb that
allows it to publish to a different topic space. Finally, you can define a policy for the mobile app
that only allows it to connect and subscribe to the topics for the thermostat and the light bulb to
receive messages from these devices.

Validate the server certificate 672

AWS IoT Core Developer Guide

Apply the principle of least privilege and scope down the permissions per device as much as
possible. All devices or users should have an AWS IoT policy in AWS IoT that only allows it to
connect with a known client ID, and to publish and subscribe to an identified and fixed set of
topics.

Use a second AWS Region as backup

Consider storing a copy of your data in a second AWS Region as a backup. Note that the AWS
solution named Disaster Recovery for AWS IoT is no longer available. While the associated GitHub
library remains accessible, AWS deprecated it in July 2023 and no longer provides maintenance
or support for it. To implement your own solutions or to explore additional support options, visit
Contact AWS. If there is an AWS Technical Account Manager associated with your account, reach
out to them for help.

Use just in time provisioning

Manually creating and provisioning each device can be time consuming. AWS IoT provides a way to
define a template to provision devices when they first connect to AWS IoT. For more information,
see Just-in-time provisioning.

Permissions to run AWS IoT Device Advisor tests

The following policy template shows the minimum permissions and IAM entity required to run AWS
IoT Device Advisor test cases. You will need to replace your-device-role-arn with the device
role Amazon Resource Name (ARN) that you created under the prerequisites.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "your-device-role-arn",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "iotdeviceadvisor.amazonaws.com"
 }
 }
 },
 {

Use a second AWS Region as backup 673

https://aws.amazon.com/solutions/implementations/disaster-recovery-for-aws-iot/
https://github.com/awslabs/disaster-recovery-for-aws-iot
https://github.com/awslabs/disaster-recovery-for-aws-iot
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-workflow.html#device-advisor-workflow-prereqs

AWS IoT Core Developer Guide

 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke*",
 "iam:ListRoles", // Required to list device roles in the Device
 Advisor console
 "iot:Connect",
 "iot:CreateJob",
 "iot:DeleteJob",
 "iot:DescribeCertificate",
 "iot:DescribeEndpoint",
 "iot:DescribeJobExecution",
 "iot:DescribeJob",
 "iot:DescribeThing",
 "iot:GetPendingJobExecutions",
 "iot:GetPolicy",
 "iot:ListAttachedPolicies",
 "iot:ListCertificates",
 "iot:ListPrincipalPolicies",
 "iot:ListThingPrincipals",
 "iot:ListThings",
 "iot:Publish",
 "iot:StartNextPendingJobExecution",
 "iot:UpdateJobExecution",
 "iot:UpdateThingShadow",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:PutRetentionPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "VisualEditor2",
 "Effect": "Allow",
 "Action": "iotdeviceadvisor:*",
 "Resource": "*"
 }
]
}

Permissions to run AWS IoT Device Advisor tests 674

AWS IoT Core Developer Guide

Cross-service confused deputy prevention for Device Advisor

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Device Advisor gives another service to the
resource. If you use both global condition context keys, the aws:SourceAccount value and the
account in the aws:SourceArn value must use the same account ID when used in the same policy
statement.

The value of aws:SourceArn must be the ARN of your suite definition resource. The suite
definition resource refers to the test suite you created with Device Advisor.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:iotdeviceadvisor:*:account-id:suitedefinition/*

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in Device Advisor to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "iotdeviceadvisor.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {

Cross-service confused deputy prevention for Device Advisor 675

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Core Developer Guide

 "aws:SourceArn": "arn:aws:iotdeviceadvisor:us-
east-1:123456789012:suitedefinition/ygp6rxa3tzvn"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

AWS training and certification

Take the following course to learn about key concepts for AWS IoT security: AWS IoT Security
Primer.

AWS training and certification 676

https://www.aws.training/Details/Curriculum?id=42304
https://www.aws.training/Details/Curriculum?id=42304

AWS IoT Core Developer Guide

Monitoring AWS IoT

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
IoT and your AWS solutions.

We strongly encourage you to collect monitoring data from all parts of your AWS solution to make
it easier to debug a multi-point failure, if one occurs. Start by creating a monitoring plan that
answers the following questions. If you're not sure how to answer these, you can still continue to
enable logging and establish your performance baselines.

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Your next step is to enable logging and establish a baseline of normal AWS IoT performance in
your environment by measuring performance at various times and under different load conditions.
As you monitor AWS IoT, keep historical monitoring data so that you can compare it with current
performance data. This will help you identify normal performance patterns and performance
anomalies, and devise methods to address issues.

To establish your baseline performance for AWS IoT, you should monitor these metrics to start. You
can always monitor more metrics later.

• PublishIn.Success

• PublishOut.Success

• Subscribe.Success

• Ping.Success

• Connect.Success

• GetThingShadow.Accepted

• UpdateThingShadow.Accepted

• DeleteThingShadow.Accepted

677

AWS IoT Core Developer Guide

• RulesExecuted

The topics in this section can help you start logging and monitoring AWS IoT.

Topics

• Configure AWS IoT logging

• Monitor AWS IoT alarms and metrics using Amazon CloudWatch

• Monitor AWS IoT using CloudWatch Logs

• Upload device-side logs to Amazon CloudWatch

• Logging AWS IoT API calls using AWS CloudTrail

Configure AWS IoT logging

You must enable logging by using the AWS IoT console, CLI, or API before you can monitor and log
AWS IoT activity.

You can enable logging for all of AWS IoT or only specific thing groups. You can configure AWS
IoT logging by using the AWS IoT console, CLI, or API; however, you must use the CLI or API to
configure logging for specific thing groups.

When considering how to configure your AWS IoT logging, the default logging configuration
determines how AWS IoT activity will be logged unless specified otherwise. Starting out, you might
want to obtain detailed logs with a default log level of INFO or DEBUG. After reviewing the initial
logs, you can change the default log level to a less verbose level such as WARN or ERROR and set a
more verbose resource-specific log level on resources that might need more attention. Log levels
can be changed whenever you want.

This topic covers cloud-side logging in AWS IoT. For information on device-side logging and
monitoring, see Upload device-side logs to CloudWatch.

For information on logging and monitoring AWS IoT Greengrass, see Logging and monitoring in
AWS IoT Greengrass. As of June 30, 2023, the AWS IoT Greengrass Core software has migrated to
AWS IoT Greengrass Version 2.

Configure AWS IoT logging 678

https://docs.aws.amazon.com/iot/latest/developerguide/upload-device-logs-to-cloudwatch.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/logging-and-monitoring.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/logging-and-monitoring.html

AWS IoT Core Developer Guide

Configure logging role and policy

Before you can enable logging in AWS IoT, you must create an IAM role and a policy that gives AWS
permission to monitor AWS IoT activity on your behalf. You can also generate an IAM role with the
policies needed in the Logs section of the AWS IoT console.

Note

Before you enable AWS IoT logging, make sure you understand the CloudWatch Logs access
permissions. Users with access to CloudWatch Logs can see debugging information from
your devices. For more information, see Authentication and Access Control for Amazon
CloudWatch Logs.
If you expect high traffic patterns in AWS IoT Core due to load testing, consider turning off
IoT logging to prevent throttling. If high traffic is detected, our service may disable logging
in your account.

Following shows how to create a logging role and policy for AWS IoT Core resources.

Create a logging role

To create a logging role, open the Roles hub of the IAM console and choose Create role.

1. Under Select trusted entity, choose AWS Service. Then choose IoT under Use case. If you
don't see IoT, enter and search IoT from the Use cases for other AWS services: drop-down
menu. Select Next.

2. On the Add permissions page, you will see the policies that are automatically attached to the
service role. Choose Next.

3. On the Name, review, and create page, enter a Role name and Role description for the role,
then choose Create role.

4. In the list of Roles, find the role you created, open it, and copy the Role ARN (logging-role-
arn) to use when you Configure default logging in the AWS IoT (console).

Logging role policy

The following policy documents provide the role policy and trust policy that allow AWS IoT to
submit log entries to CloudWatch on your behalf. If you also allowed AWS IoT Core for LoRaWAN to
submit log entries, you'll see a policy document created for you that logs both activities.

Configure logging role and policy 679

https://console.aws.amazon.com/iot/home#/settings/logging
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/iam/home#/roles

AWS IoT Core Developer Guide

Note

These documents were created for you when you created the logging role. The documents
have variables, ${partition}, ${region}, and ${accountId}, that you must replace
with your values.

Role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:PutMetricFilter",
 "logs:PutRetentionPolicy",
 "iot:GetLoggingOptions",
 "iot:SetLoggingOptions",
 "iot:SetV2LoggingOptions",
 "iot:GetV2LoggingOptions",
 "iot:SetV2LoggingLevel",
 "iot:ListV2LoggingLevels",
 "iot:DeleteV2LoggingLevel"
],
 "Resource": [
 "arn:${partition}:logs:${region}:${accountId}:log-group:AWSIotLogsV2:*"
]
 }
]
}

Trust policy to log only AWS IoT Core activity:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",

Configure logging role and policy 680

AWS IoT Core Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Configure default logging in the AWS IoT (console)

This section describes how use the AWS IoT console to configure logging for all of AWS IoT. To
configure logging for only specific thing groups, you must use the CLI or API. For information about
configuring logging for specific thing groups, see Configure resource-specific logging in AWS IoT
(CLI).

To use the AWS IoT console to configure default logging for all of AWS IoT

1. Sign in to the AWS IoT console. For more information, see Open the AWS IoT console.

2. In the left navigation pane, choose Settings. In the Logs section of the Settings page, choose
Manage logs.

The Logs page displays the logging role and level of verbosity used by all of AWS IoT.

3. On the Logs page, choose Select role to specify a role that you created in Create a logging
role, or Create Role to create a new role to use for logging.

Configure default logging in the AWS IoT (console) 681

AWS IoT Core Developer Guide

4. Choose the Log level that describes the level of detail of the log entries that you want to
appear in the CloudWatch logs.

5. Choose Update to save your changes.

After you've enabled logging, visit Viewing AWS IoT logs in the CloudWatch console to learn more
about viewing the log entries.

Configure default logging in AWS IoT (CLI)

This section describes how to configure global logging for AWS IoT by using the CLI.

Note

You need the Amazon Resource Name (ARN) of the role that you want to use. If you need to
create a role to use for logging, see Create a logging role before continuing.

Configure default logging in AWS IoT (CLI) 682

AWS IoT Core Developer Guide

The principal used to call the API must have Pass role permissions for your logging role.

You can also perform this procedure with the API by using the methods in the AWS API that
correspond to the CLI commands shown here.

To use the CLI to configure default logging for AWS IoT

1. Use the set-v2-logging-options command to set the logging options for your account.

aws iot set-v2-logging-options \
 --role-arn logging-role-arn \
 --default-log-level log-level

where:

--role-arn

The role ARN that grants AWS IoT permission to write to your logs in CloudWatch Logs.

--default-log-level

The log level to use. Valid values are: ERROR, WARN, INFO, DEBUG, or DISABLED

--no-disable-all-logs

An optional parameter that enables all AWS IoT logging. Use this parameter to enable
logging when it is currently disabled.

--disable-all-logs

An optional parameter that disables all AWS IoT logging. Use this parameter to disable
logging when it is currently enabled.

2. Use the get-v2-logging-options command to get your current logging options.

aws iot get-v2-logging-options

After you've enabled logging, visit Viewing AWS IoT logs in the CloudWatch console to learn more
about viewing the log entries.

Configure default logging in AWS IoT (CLI) 683

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/set-v2-logging-options.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/get-v2-logging-options.html

AWS IoT Core Developer Guide

Note

AWS IoT continues to support older commands (set-logging-options and get-logging-
options) to set and get global logging on your account. Be aware that when these
commands are used, the resulting logs contain plain-text, rather than JSON payloads
and logging latency is generally higher. No further improvements will be made to the
implementation of these older commands. We recommend that you use the "v2" versions
to configure your logging options and, when possible, change legacy applications that use
the older versions.

Configure resource-specific logging in AWS IoT (CLI)

This section describes how to configure resource-specific logging for AWS IoT by using the CLI.
Resource-specific logging allows you to specify a logging level for a specific thing group.

Thing groups can contain other thing groups to create a hierarchical relationship. This procedure
describes how to configure the logging of a single thing group. You can apply this procedure to
the parent thing group in a hierarchy to configure the logging for all thing groups in the hierarchy.
You can also apply this procedure to a child thing group to override the logging configuration of its
parent.

In addition to thing groups, you can also log targets such as a device's client ID, source IP, and
principal ID.

Note

You need the Amazon Resource Name (ARN) of the role you want to use. If you need to
create a role to use for logging, see Create a logging role before continuing.
The principal used to call the API must have Pass role permissions for your logging role.

You can also perform this procedure with the API by using the methods in the AWS API that
correspond to the CLI commands shown here.

To use the CLI to configure resource-specific logging for AWS IoT

1. Use the set-v2-logging-options command to set the logging options for your account.

Configure resource-specific logging in AWS IoT (CLI) 684

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/set-v2-logging-options.html

AWS IoT Core Developer Guide

aws iot set-v2-logging-options \
 --role-arn logging-role-arn \
 --default-log-level log-level

where:

--role-arn

The role ARN that grants AWS IoT permission to write to your logs in CloudWatch Logs.

--default-log-level

The log level to use. Valid values are: ERROR, WARN, INFO, DEBUG, or DISABLED

--no-disable-all-logs

An optional parameter that enables all AWS IoT logging. Use this parameter to enable
logging when it is currently disabled.

--disable-all-logs

An optional parameter that disables all AWS IoT logging. Use this parameter to disable
logging when it is currently enabled.

2. Use the set-v2-logging-level command to configure resource-specific logging for a thing
group.

aws iot set-v2-logging-level \
 --log-target targetType=THING_GROUP,targetName=thing_group_name \
 --log-level log_level

--log-target

The type and name of the resource for which you are configuring logging. The
target_type value must be one of: THING_GROUP | CLIENT_ID | SOURCE_IP |
PRINCIPAL_ID. The log-target parameter value can be text, as shown in the preceding
command example, or a JSON string, such as the following example.

aws iot set-v2-logging-level \
 --log-target '{"targetType": "THING_GROUP","targetName":
 "thing_group_name"}' \
 --log-level log_level

Configure resource-specific logging in AWS IoT (CLI) 685

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/set-v2-logging-level.html

AWS IoT Core Developer Guide

--log-level

The logging level used when generating logs for the specified resource. Valid values are:
DEBUG, INFO, ERROR, WARN, and DISABLED

aws iot set-v2-logging-level \
 --log-target targetType=CLIENT_ID,targetName=ClientId1 \
 --log-level DEBUG

3. Use the list-v2-logging-levels command to list the currently configured logging levels.

aws iot list-v2-logging-levels

4. Use the delete-v2-logging-level command to delete a resource-specific logging level, such as
the following examples.

aws iot delete-v2-logging-level \
 --target-type "THING_GROUP" \
 --target-name "thing_group_name"

aws iot delete-v2-logging-level \
 --target-type=CLIENT_ID
 --target-name=ClientId1

--targetType

The target_type value must be one of: THING_GROUP | CLIENT_ID | SOURCE_IP |
PRINCIPAL_ID.

--targetName

The name of the thing group for which to remove the logging level.

After you've enabled logging, visit Viewing AWS IoT logs in the CloudWatch console to learn more
about viewing the log entries.

Log levels

These log levels determine the events that are logged and apply to default and resource-specific
log levels.

Log levels 686

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-v2-logging-levels.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/delete-v2-logging-level.html

AWS IoT Core Developer Guide

ERROR

Any error that causes an operation to fail.

Logs include ERROR information only.

WARN

Anything that can potentially cause inconsistencies in the system, but might not cause the
operation to fail.

Logs include ERROR and WARN information.

INFO

High-level information about the flow of things.

Logs include INFO, ERROR, and WARN information.

DEBUG

Information that might be helpful when debugging a problem.

Logs include DEBUG, INFO, ERROR, and WARN information.

DISABLED

All logging is disabled.

Monitor AWS IoT alarms and metrics using Amazon
CloudWatch

You can monitor AWS IoT using CloudWatch, which collects and processes raw data from AWS
IoT into readable, near real-time metrics. These statistics are recorded for a period of two weeks,
so that you can access historical information and gain a better perspective on how your web
application or service is performing. By default, AWS IoT metric data is sent automatically to
CloudWatch in one minute intervals. For more information, see What Are Amazon CloudWatch,
Amazon CloudWatch Events, and Amazon CloudWatch Logs? in the Amazon CloudWatch User
Guide.

Monitor AWS IoT alarms and metrics using Amazon CloudWatch 687

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

AWS IoT Core Developer Guide

Using AWS IoT metrics

The metrics reported by AWS IoT provide information that you can analyze in different ways. The
following use cases are based on a scenario where you have ten things that connect to the internet
once a day. Each day:

• Ten things connect to AWS IoT at roughly the same time.

• Each thing subscribes to a topic filter, and then waits for an hour before disconnecting. During
this period, things communicate with one another and learn more about the state of the world.

• Each thing publishes some perception it has based on its newly found data using
UpdateThingShadow.

• Each thing disconnects from AWS IoT.

To help you get started, these topics explore some of the questions that you might have.

• How can I be notified if my things do not connect successfully each day?

• How can I be notified if my things are not publishing data each day?

• How can I be notified if my thing's shadow updates are being rejected each day?

• How can I create a CloudWatch alarm for Jobs?

More about CloudWatch alarms and metrics

• Creating CloudWatch alarms to monitor AWS IoT

• AWS IoT metrics and dimensions

Creating CloudWatch alarms to monitor AWS IoT

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes
state. An alarm watches a single metric over a time period you specify. When the value of
the metric exceeds a given threshold over a number of time periods, one or more actions are
performed. The action can be a notification sent to an Amazon SNS topic or Auto Scaling policy.
Alarms trigger actions for sustained state changes only. CloudWatch alarms do not trigger actions
simply because they are in a particular state; the state must have changed and been maintained for
a specified number of periods.

The following topics describe some examples of using CloudWatch alarms.

Using AWS IoT metrics 688

AWS IoT Core Developer Guide

• How can I be notified if my things do not connect successfully each day?

• How can I be notified if my things are not publishing data each day?

• How can I be notified if my thing's shadow updates are being rejected each day?

• How can I create a CloudWatch alarm for jobs?

You can see all the metrics that CloudWatch alarms can monitor at AWS IoT metrics and
dimensions.

How can I be notified if my things do not connect successfully each day?

1. Create an Amazon SNS topic named things-not-connecting-successfully, and record
its Amazon Resource Name (ARN). This procedure will refer to your topic's ARN as sns-topic-
arn.

For more information on how to create an Amazon SNS notification, see Getting Started with
Amazon SNS.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name ConnectSuccessAlarm \
 --alarm-description "Alarm when my Things don't connect successfully" \
 --namespace AWS/IoT \
 --metric-name Connect.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --evaluation-periods 1 \
 --alarm-actions sns-topic-arn

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name ConnectSuccessAlarm --state-reason
 "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name ConnectSuccessAlarm --state-reason
 "initializing" --state-value ALARM

Creating CloudWatch alarms in AWS IoT 689

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

AWS IoT Core Developer Guide

4. Verify that the alarm appears in your CloudWatch console.

How can I be notified if my things are not publishing data each day?

1. Create an Amazon SNS topic named things-not-publishing-data, and record its Amazon
Resource Name (ARN). This procedure will refer to your topic's ARN as sns-topic-arn.

For more information on how to create an Amazon SNS notification, see Getting Started with
Amazon SNS.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name PublishInSuccessAlarm\
 --alarm-description "Alarm when my Things don't publish their data \
 --namespace AWS/IoT \
 --metric-name PublishIn.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --evaluation-periods 1 \
 --alarm-actions sns-topic-arn

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name PublishInSuccessAlarm --state-reason
 "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name PublishInSuccessAlarm --state-reason
 "initializing" --state-value ALARM

4. Verify that the alarm appears in your CloudWatch console.

How can I be notified if my thing's shadow updates are being rejected each day?

1. Create an Amazon SNS topic named things-shadow-updates-rejected, and record its
Amazon Resource Name (ARN). This procedure will refer to your topic's ARN as sns-topic-
arn.

Creating CloudWatch alarms in AWS IoT 690

https://console.aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://console.aws.amazon.com/cloudwatch

AWS IoT Core Developer Guide

For more information on how to create an Amazon SNS notification, see Getting Started with
Amazon SNS.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name UpdateThingShadowSuccessAlarm \
 --alarm-description "Alarm when my Things Shadow updates are getting rejected"
 \
 --namespace AWS/IoT \
 --metric-name UpdateThingShadow.Success \
 --dimensions Name=Protocol,Value=MQTT \
 --statistic Sum \
 --threshold 10 \
 --comparison-operator LessThanThreshold \
 --period 86400 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions sns-topic-arn

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name UpdateThingShadowSuccessAlarm --state-
reason "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name UpdateThingShadowSuccessAlarm --state-
reason "initializing" --state-value ALARM

4. Verify that the alarm appears in your CloudWatch console.

How can I create a CloudWatch alarm for jobs?

The Jobs service provides CloudWatch metrics for you to monitor your jobs. You can create
CloudWatch alarms to monitor any Jobs metrics.

The following command creates a CloudWatch alarm to monitor the total number of failed job
executions for Job SampleOTAJob and notifies you when more than 20 job executions have failed.
The alarm monitors the Jobs metric FailedJobExecutionTotalCount by checking the reported
value every 300 seconds. It is activated when a single reported value is greater than 20, meaning

Creating CloudWatch alarms in AWS IoT 691

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://console.aws.amazon.com/cloudwatch

AWS IoT Core Developer Guide

there were more than 20 failed job executions since the job started. When the alarm goes off, it
sends a notification to the provided Amazon SNS topic.

aws cloudwatch put-metric-alarm \
 --alarm-name TotalFailedJobExecution-SampleOTAJob \
 --alarm-description "Alarm when total number of failed job execution exceeds the
 threshold for SampleOTAJob" \
 --namespace AWS/IoT \
 --metric-name FailedJobExecutionTotalCount \
 --dimensions Name=JobId,Value=SampleOTAJob \
 --statistic Sum \
 --threshold 20 \
 --comparison-operator GreaterThanThreshold \
 --period 300 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:<AWS_REGION>:<AWS_ACCOUNT_ID>:SampleOTAJob-has-too-
many-failed-job-ececutions

The following command creates a CloudWatch alarm to monitor the number of failed job
executions for Job SampleOTAJob in a given period. It then notifies you when more than
five job executions have failed during that period. The alarm monitors the Jobs metric
FailedJobExecutionCount by checking the reported value every 3600 seconds. It is activated
when a single reported value is greater than 5, meaning there were more than 5 failed job
executions in the past hour. When the alarm goes off, it sends a notification to the provided
Amazon SNS topic.

aws cloudwatch put-metric-alarm \
 --alarm-name FailedJobExecution-SampleOTAJob \
 --alarm-description "Alarm when number of failed job execution per hour exceeds the
 threshold for SampleOTAJob" \
 --namespace AWS/IoT \
 --metric-name FailedJobExecutionCount \
 --dimensions Name=JobId,Value=SampleOTAJob \
 --statistic Sum \
 --threshold 5 \
 --comparison-operator GreaterThanThreshold \
 --period 3600 \
 --unit Count \
 --evaluation-periods 1 \

Creating CloudWatch alarms in AWS IoT 692

AWS IoT Core Developer Guide

 --alarm-actions arn:aws:sns:<AWS_REGION>:<AWS_ACCOUNT_ID>:SampleOTAJob-has-too-
many-failed-job-ececutions-per-hour

AWS IoT metrics and dimensions

When you interact with AWS IoT, the service sends the following metrics and dimensions to
CloudWatch every minute. You can use the following procedures to view the metrics for AWS IoT.

To view metrics (CloudWatch console)

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console.

2. In the navigation pane, choose Metrics and then choose All metrics.

3. In the Browse tab, search for AWS IoT to view the list of metrics.

To view metrics (CLI)

• At a command prompt, use the following command:

aws cloudwatch list-metrics --namespace "AWS/IoT"

CloudWatch displays the following groups of metrics for AWS IoT:

• AWS IoT metrics

• AWS IoT Core credential provider metrics

• Server certificate OCSP stapling metric

• Rule metrics

• Rule action metrics

• HTTP action specific metrics

• Message broker metrics

• Device shadow metrics

• Jobs metrics

• Device Defender audit metrics

AWS IoT metrics and dimensions 693

https://console.aws.amazon.com/cloudwatch

AWS IoT Core Developer Guide

• Device Defender detect metrics

• Device provisioning metrics

• LoRaWAN metrics

• Fleet indexing metrics

• Dimensions for metrics

AWS IoT metrics

Metric Description

AddThingToDynamicThingGroup
sFailed

The number of failure events associated with
adding a thing to a dynamic thing group. The
DynamicThingGroupName dimension contains
the name of the dynamic groups that failed to add
things.

NumLogBatchesFailedToPublis
hThrottled

The singular batch of log events that has failed to
publish due to throttling errors.

NumLogEventsFailedToPublish
Throttled

The number of log events within the batch that
have failed to publish due to throttling errors.

AWS IoT Core credential provider metrics

Metric Description

CredentialExchangeSuccess The number of successful AssumeRoleWithCert
ificate requests to AWS IoT Core credentials
provider.

AWS IoT metrics and dimensions 694

AWS IoT Core Developer Guide

Server certificate OCSP stapling metric

Metric Description

RetrieveOCSPStapleData.Success The OCSP response has been received and
processed successfully. This response will be
included during the TLS handshake for the
configured domain. The DomainConfiguratio
nName dimension contains the name of configure
d domain with enabled server certificate OCSP
stapling.

Rule metrics

Metric Description

ParseError The number of JSON parse errors that occurred in
messages published on a topic on which a rule is
listening. The RuleName dimension contains the
name of the rule.

RuleMessageThrottled The number of messages throttled by the rules
engine because of malicious behavior or because
the number of messages exceeds the rules engine's
throttle limit. The RuleName dimension contains
the name of the rule to be triggered.

RuleNotFound The rule to be triggered could not be found. The
RuleName dimension contains the name of the rule.

RulesExecuted The number of AWS IoT rules executed.

TopicMatch The number of incoming messages published on
a topic on which a rule is listening. The RuleName
dimension contains the name of the rule.

AWS IoT metrics and dimensions 695

AWS IoT Core Developer Guide

Rule action metrics

Metric Description

Failure The number of failed rule action invocations. The
RuleName dimension contains the name of the
rule that specifies the action. The ActionType
dimension contains the type of action that was
invoked.

Success The number of successful rule action invocations.
The RuleName dimension contains the name of
the rule that specifies the action. The ActionTyp
e dimension contains the type of action that was
invoked.

ErrorActionFailure The number of failed error actions. The RuleName
dimension contains the name of the rule that
specifies the action. The ActionType dimension
contains the type of action that was invoked.

ErrorActionSuccess The number of successful error actions. The
RuleName dimension contains the name of the
rule that specifies the action. The ActionType
dimension contains the type of action that was
invoked.

HTTP action specific metrics

Metric Description

HttpCode_Other Generated if the status code of the response from
the downstream web service/application is not 2xx,
4xx or 5xx.

AWS IoT metrics and dimensions 696

AWS IoT Core Developer Guide

Metric Description

HttpCode_4XX Generated if the status code of the response from
the downstream web service/application is between
400 and 499.

HttpCode_5XX Generated if the status code of the response from
the downstream web service/application is between
500 and 599.

HttpInvalidUrl Generated if an endpoint URL, after substitut
ion templates are replaced, does not start with
https://.

HttpRequestTimeout Generated if the downstream web service/a
pplication does not return response within request
timeout limit. For more information, see Service
Quotas.

HttpUnknownHost Generated if the URL is valid, but the service does
not exist or is unreachable.

Message broker metrics

Note

The message broker metrics are displayed in the CloudWatch console under Protocol
Metrics.

Metric Description

Connect.AuthError The number of connection requests that could
not be authorized by the message broker. The
Protocol dimension contains the protocol used to
send the CONNECT message.

AWS IoT metrics and dimensions 697

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot

AWS IoT Core Developer Guide

Metric Description

Connect.ClientError The number of connection requests rejected
because the MQTT message did not meet the
requirements defined in AWS IoT quotas. The
Protocol dimension contains the protocol used to
send the CONNECT message.

Connect.ClientIDThrottle The number of connection requests throttled
because the client exceeded the allowed connect
request rate for a specific client ID. The Protocol
dimension contains the protocol used to send the
CONNECT message.

Connect.ServerError The number of connection requests that failed
because an internal error occurred. The Protocol
dimension contains the protocol used to send the
CONNECT message.

Connect.Success The number of successful connections to the
message broker. The Protocol dimension contains
the protocol used to send the CONNECT message.

Connect.Throttle The number of connection requests that were
throttled because the account exceeded the allowed
connect request rate. The Protocol dimension
 contains the protocol used to send the CONNECT
message.

Ping.Success The number of ping messages received by the
message broker. The Protocol dimension contains
the protocol used to send the ping message.

PublishIn.AuthError The number of publish requests the message broker
was unable to authorize. The Protocol dimension
contains the protocol used to publish the message.
HTTP Publish doesn't support this metric.

AWS IoT metrics and dimensions 698

AWS IoT Core Developer Guide

Metric Description

PublishIn.ClientError The number of publish requests rejected by the
message broker because the message did not meet
the requirements defined in AWS IoT quotas. The
Protocol dimension contains the protocol used to
publish the message. HTTP Publish doesn't support
this metric.

PublishIn.ServerError The number of publish requests the message broker
failed to process because an internal error occurred.
The Protocol dimension contains the protocol
used to send the PUBLISH message. HTTP Publish
doesn't support this metric.

PublishIn.Success The number of publish requests successfully
processed by the message broker. The Protocol
dimension contains the protocol used to send the
PUBLISH message.

PublishIn.Throttle The number of publish request that were throttled
because the client exceeded the allowed inbound
message rate. The Protocol dimension contains
the protocol used to send the PUBLISH message.
HTTP Publish doesn't support this metric.

PublishOut.AuthError The number of publish requests made by the
message broker that could not be authorized by
AWS IoT. The Protocol dimension contains the
protocol used to send the PUBLISH message.

PublishOut.ClientError The number of publish requests made by the
message broker that were rejected because the
message did not meet the requirements defined in
AWS IoT quotas. The Protocol dimension contains
the protocol used to send the PUBLISH message.

AWS IoT metrics and dimensions 699

AWS IoT Core Developer Guide

Metric Description

PublishOut.Success The number of publish requests successfully made
by the message broker. The Protocol dimension
contains the protocol used to send the PUBLISH
message.

PublishOut.Throttle The number of publish requests that were throttled
because the client exceeded the allowed outbound
message rate. The Protocol dimension contains
the protocol used to send the PUBLISH message.

PublishRetained.AuthError The number of publish requests with the RETAIN
flag set that the message broker was unable to
authorize. The Protocol dimension contains the
protocol used to send the PUBLISH message.

PublishRetained.ServerError The number of retained publish requests the
message broker failed to process because an
internal error occurred. The Protocol dimension
contains the protocol used to send the PUBLISH
message.

PublishRetained.Success The number of publish requests with the RETAIN
flag set that were successfully processed by the
message broker. The Protocol dimension contains
the protocol used to send the PUBLISH message.

PublishRetained.Throttle The number of publish requests with the RETAIN
flag set that were throttled because the client
exceeded the allowed inbound message rate. The
Protocol dimension contains the protocol used to
send the PUBLISH message.

AWS IoT metrics and dimensions 700

AWS IoT Core Developer Guide

Metric Description

Queued.Success The number of stored messages that were successfu
lly processed by the message broker for clients that
were disconnected from their persistent session.
Messages with a QoS of 1 are stored while a client
with a persistent session is disconnected.

Queued.Throttle The number of messages that couldn't be stored
and were throttled while clients with persisten
t sessions were disconnected. This occurs when
clients exceed the Queued messages per second per
account limit. Messages with a QoS of 1 are stored
while a client with a persistent session is disconnec
ted.

Queued.ServerError The number of messages that haven't been stored
for a persistent session because of an internal error.
When clients with a persistent session are disconnec
ted, messages with a Quality of Service (QoS) of 1
are stored.

Subscribe.AuthError The number of subscription requests made by a
client that could not be authorized. The Protocol
dimension contains the protocol used to send the
SUBSCRIBE message.

Subscribe.ClientError The number of subscribe requests that were
rejected because the SUBSCRIBE message did not
meet the requirements defined in AWS IoT quotas.
The Protocol dimension contains the protocol
used to send the SUBSCRIBE message.

Subscribe.ServerError The number of subscribe requests that were
rejected because an internal error occurred. The
Protocol dimension contains the protocol used to
send the SUBSCRIBE message.

AWS IoT metrics and dimensions 701

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#genref_queued_messages_per_second_per_account
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#genref_queued_messages_per_second_per_account

AWS IoT Core Developer Guide

Metric Description

Subscribe.Success The number of subscribe requests that were
successfully processed by the message broker. The
Protocol dimension contains the protocol used to
send the SUBSCRIBE message.

Subscribe.Throttle The number of subscribe requests that were
throttled because the client exceeded the allowed
subscribe request rate. The Protocol dimension
 contains the protocol used to send the SUBSCRIBE

 message.

Throttle.Exceeded This metric will display in CloudWatch when an
MQTT client is throttled on packets per second per
connection level limits. This metric doesn't apply to
HTTP connections.

Unsubscribe.ClientError The number of unsubscribe requests that were
rejected because the UNSUBSCRIBE message did
not meet the requirements defined in AWS IoT
quotas. The Protocol dimension contains the
protocol used to send the UNSUBSCRIBE message.

Unsubscribe.ServerError The number of unsubscribe requests that were
rejected because an internal error occurred. The
Protocol dimension contains the protocol used to
send the UNSUBSCRIBE message.

Unsubscribe.Success The number of unsubscribe requests that were
successfully processed by the message broker. The
Protocol dimension contains the protocol used to
send the UNSUBSCRIBE message.

AWS IoT metrics and dimensions 702

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Core Developer Guide

Metric Description

Unsubscribe.Throttle The number of unsubscribe requests that were
rejected because the client exceeded the allowed
unsubscribe request rate. The Protocol dimension
contains the protocol used to send the UNSUBSCRI
BE message.

Device shadow metrics

Note

The device shadow metrics are displayed in the CloudWatch console under Protocol
Metrics.

Metric Description

DeleteThingShadow.Accepted The number of DeleteThingShadow requests
processed successfully. The Protocol dimension
contains the protocol used to make the request.

GetThingShadow.Accepted The number of GetThingShadow requests
processed successfully. The Protocol dimension
contains the protocol used to make the request.

ListThingShadow.Accepted The number of ListThingShadow requests
processed successfully. The Protocol dimension
contains the protocol used to make the request.

UpdateThingShadow.Accepted The number of UpdateThingShadow requests
processed successfully. The Protocol dimension
contains the protocol used to make the request.

AWS IoT metrics and dimensions 703

AWS IoT Core Developer Guide

Jobs metrics

Metric Description

CanceledJobExecutionCount The number of job executions whose status has
changed to CANCELED within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

CanceledJobExecutionTotalCo
unt

The total number of job executions whose status is
CANCELED for the given job. The JobId dimension
contains the ID of the job.

ClientErrorCount The number of client errors generated while
executing the job. The JobId dimension contains
the ID of the job.

FailedJobExecutionCount The number of job executions whose status has
changed to FAILED within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

FailedJobExecutionTotalCount The total number of job executions whose status
is FAILED for the given job. The JobId dimension
contains the ID of the job.

InProgressJobExecutionCount The number of job executions whose status has
changed to IN_PROGRESS within a time period
that is determined by CloudWatch. (For more
information about CloudWatch metrics, see Amazon
CloudWatch Metrics.) The JobId dimension
contains the ID of the job.

AWS IoT metrics and dimensions 704

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric

AWS IoT Core Developer Guide

Metric Description

InProgressJobExecutionTotal
Count

The total number of job executions whose status
is IN_PROGRESS for the given job. The JobId
dimension contains the ID of the job.

RejectedJobExecutionTotalCo
unt

The total number of job executions whose status is
REJECTED for the given job. The JobId dimension
contains the ID of the job.

RemovedJobExecutionTotalCou
nt

The total number of job executions whose status is
REMOVED for the given job. The JobId dimension
contains the ID of the job.

QueuedJobExecutionCount The number of job executions whose status has
changed to QUEUED within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

QueuedJobExecutionTotalCount The total number of job executions whose status
is QUEUED for the given job. The JobId dimension
contains the ID of the job.

RejectedJobExecutionCount The number of job executions whose status has
changed to REJECTED within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

RemovedJobExecutionCount The number of job executions whose status has
changed to REMOVED within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

AWS IoT metrics and dimensions 705

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric

AWS IoT Core Developer Guide

Metric Description

ServerErrorCount The number of server errors generated while
executing the job. The JobId dimension contains
the ID of the job.

SuccededJobExecutionCount The number of job executions whose status has
changed to SUCCESS within a time period that is
determined by CloudWatch. (For more information
about CloudWatch metrics, see Amazon CloudWatc
h Metrics.) The JobId dimension contains the ID of
the job.

SuccededJobExecutionTotalCo
unt

The total number of job executions whose status is
SUCCESS for the given job. The JobId dimension
contains the ID of the job.

Device Defender audit metrics

Metric Description

NonCompliantResources The number of resources that were found to be
noncompliant with a check. The system reports the
number of resources that were out of compliance
for each check of each audit performed.

ResourcesEvaluated The number of resources that were evaluated for
compliance. The system reports the number of
resources that were evaluated for each check of
each audit performed.

MisconfiguredDeviceDefender
Notification

Notifies you when your SNS configuration for AWS
IoT Device Defender is misconfigured.

Dimensions

AWS IoT metrics and dimensions 706

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Metric

AWS IoT Core Developer Guide

Device Defender detect metrics

Metric Description

NumOfMetricsExported The number of metrics exported for a cloud-side,
device-side, or custom metric. The system reports
the number of metrics exported for the account,
for a specific metric. This metric is available only for
customers using metrics export.

NumOfMetricsSkipped The number of metrics skipped for a cloud-side,
device-side, or custom metric. The system reports
the number of metrics skipped for the account,
for a specific metric due to insufficient permissio
ns provided to Device Defender Detect to publish
to the mqtt topic. This metric is available only for
customers using metrics export.

NumOfMetricsExceedingSizeLi
mit

The number of metrics skipped for export for a
cloud-side, device-side, or custom metric due to
size exceeding MQTT message size constraints. The
system reports the number of metrics skipped for
export for the account, for a specific metric due to
size exceeding MQTT message size constraints. This
metric is available only for customers using metrics
export.

Violations The number of new violations of security profile
behaviors that have been found since the last time
an evaluation was performed. The system reports
the number of new violations for the account, for a
specific security profile, and for a specific behavior
of a specific security profile.

ViolationsCleared The number of violations of security profile
behaviors that have been resolved since the last
time an evaluation was performed. The system
reports the number of resolved violations for the

AWS IoT metrics and dimensions 707

AWS IoT Core Developer Guide

Metric Description

account, for a specific security profile, and for a
specific behavior of a specific security profile.

ViolationsInvalidated The number of violations of security profile
behaviors for which information is no longer
available since the last time an evaluation was
performed (because the reporting device stopped
reporting, or is no longer being monitored for some
reason). The system reports the number of invalidat
ed violations for the entire account, for a specific
security profile, and for a specific behavior of a
specific security profile.

MisconfiguredDeviceDefender
Notification

Notifies you when your SNS configuration for AWS
IoT Device Defender is misconfigured.

Dimensions

Device provisioning metrics

AWS IoT Fleet provisioning metrics

Metric Description

ApproximateNumberOfThingsRe
gistered

The count of things that have been registered by
Fleet Provisioning.

While the count is generally accurate, the distribut
ed architecture of AWS IoT Core makes it difficult to
maintain a precise count of registered things.

The statistic to use for this metric is:

• Max to report the total number of things that
have been registered. For a count of things
registered during the CloudWatch aggregation

AWS IoT metrics and dimensions 708

AWS IoT Core Developer Guide

Metric Description

window, see the RegisterThingFailed
metric.

Dimensions: ClaimCertificateId

CreateKeysAndCertificateFai
led

The number of failures that occurred by calls to the
CreateKeysAndCertificate MQTT API.

The metric is emitted in both Success (value = 0)
and Failure (value = 1) cases. This metric can be
used to track the number of certificates created
and registered during the CloudWatch-supported
aggregation windows, such as 5 min. or 1 hour.

The statistics available for this metric are:

• Sum to report the number of failed calls.

• SampleCount to report the total number of
successful and failed calls.

CreateCertificateFromCsrFai
led

The number of failures that occurred by calls to the
CreateCertificateFromCsr MQTT API.

The metric is emitted in both Success (value =
0) and Failure (value = 1) cases. This metric can
be used to track the number of things registere
d during the CloudWatch-supported aggregation
windows, such as 5 min. or 1 hour.

The statistics available for this metric are:

• Sum to report the number of failed calls.

• SampleCount to report the total number of
successful and failed calls.

AWS IoT metrics and dimensions 709

AWS IoT Core Developer Guide

Metric Description

RegisterThingFailed The number of failures that occurred by calls to the
RegisterThing MQTT API.

The metric is emitted in both Success (value =
0) and Failure (value = 1) cases. This metric can
be used to track the number of things registere
d during the CloudWatch-supported aggregation
windows, such as 5 min. or 1 hour. For the total
number of things registered , see the Approxima
teNumberOfThingsRegistered metric.

The statistics available for this metric are:

• Sum to report the number of failed calls.

• SampleCount to report the total number of
successful and failed calls.

Dimensions: TemplateName

Just-in-time provisioning metrics

Metric Description

ProvisionThing.ClientError The number of times a device failed to provision
due to a client error. For example, the policy
specified in the template did not exist.

ProvisionThing.ServerError The number of times a device failed to provision
due to a server error. Customers can retry to
provision the device after waiting and they can
contact AWS IoT if the issue remains the same.

ProvisionThing.Success The number of times a device was successfully
provisioned.

AWS IoT metrics and dimensions 710

AWS IoT Core Developer Guide

LoRaWAN metrics

The following table shows the metrics for AWS IoT Core for LoRaWAN. For more information, see
AWS IoT Core for LoRaWAN metrics.

AWS IoT Core for LoRaWAN metrics

Metric Description

Active devices/gateways The number of active LoRaWAN devices and
gateways in your account.

Uplink message count The number of uplink messages that are sent within
a specified time duration for all active gateways and
devices in your AWS account. Uplink messages are
messages that are sent from your device to AWS IoT
Core for LoRaWAN.

Downlink message count The number of downlink messages that are sent
within a specified time duration for all active
gateways and devices in your AWS account.
Downlink messages are messages that are sent from
AWS IoT Core for LoRaWAN to your device.

Message loss rate After you've added your device and connected to
AWS IoT Core for LoRaWAN, your device can initiate
an uplink message to start exchanging messages
with the cloud. You can use this metric to then track
the rate of uplink messages that are lost.

Join metrics After you've added your device and gateway, you
perform a join procedure so that your device can
send uplink data and communicate with AWS IoT
Core for LoRaWAN. You can use this metric to
obtain information about join metrics for all active
devices in your AWS account.

Average received signal strength
indicator (RSSI)

You can use this metric to monitor the average
RSSI (Received signal strength indicator) within the

AWS IoT metrics and dimensions 711

https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-lorawan-metrics.html

AWS IoT Core Developer Guide

Metric Description

specified time duration. RSSI is a measurement that
indicates if the signal is strong enough for a good
wireless connection. This value is negative and must
be closer to zero for a strong connection.

Average signal to noise ratio (SNR) You can use this metric to monitor the average SNR
(Signal-to-noise ratio) within the specified time
duration. SNR is a measurement that indicates if the
received signal is strong enough compared to the
noise level for a good wireless connection. The SNR
value is positive and must be greater than zero to
indicate that the signal power is stronger than the
noise power.

Gateway availability You can use this metric to obtain information about
the availability of this gateway within a specified
time duration. This metric displays the websocket
connection time of this gateway for a specified time
duration.

Just-in-time provisioning metrics

Metric Description

ProvisionThing.ClientError The number of times a device failed to provision
due to a client error. For example, the policy
specified in the template did not exist.

ProvisionThing.ServerError The number of times a device failed to provision
due to a server error. Customers can retry to
provision the device after waiting and they can
contact AWS IoT if the issue remains the same.

ProvisionThing.Success The number of times a device was successfully
provisioned.

AWS IoT metrics and dimensions 712

AWS IoT Core Developer Guide

Fleet indexing metrics

AWS IoT fleet indexing metrics

Metric Description

NamedShadowCountForDynamicG
roupQueryLimitExceeded

A maximum of 25 named shadows per thing are
processed for query terms that are not data source
specific in dynamic thing groups. When this limit is
breached for a thing, the NamedShadowCountFo
rDynamicGroupQueryLimitExceeded
event type will be emitted.

Dimensions for metrics

Metrics use the namespace and provide metrics for the following dimensions

Dimension Description

ActionType The action type specified by the rule that triggered
the request.

BehaviorName The name of the Device Defender Detect security
profile behavior that is being monitored.

ClaimCertificateId The certificateId of the claim used to
provision the devices.

CheckName The name of the Device Defender audit check
whose results are being monitored.

JobId The ID of the job whose progress or message
connection success/failure is being monitored.

Protocol The protocol used to make the request. Valid values
are: MQTT or HTTP

RuleName The name of the rule triggered by the request.

AWS IoT metrics and dimensions 713

AWS IoT Core Developer Guide

Dimension Description

ScheduledAuditName The name of the Device Defender scheduled audit
whose check results are being monitored. This has
the value OnDemand if the results reported are for
an audit that was performed on demand.

SecurityProfileName The name of the Device Defender Detect security
profile whose behaviors are being monitored.

TemplateName The name of the provisioning template.

SourceArn Refers to the security profile for detect or the
account arn for audit.

RoleArn Refers to the role Device Defender attempted to
assume.

TopicArn Refers to the SNS topic Device Defender attempted
to publish to.

AWS IoT metrics and dimensions 714

AWS IoT Core Developer Guide

Dimension Description

Error Gives a short description of the Error received while
attempting to publish to the SNS topic. Possible
values are:

• "KMSKeyNotFound": indicates the KMS key does
not exist for the topic.

• "InvalidTopicName": indicates the SNS Topic is
not valid.

• "KMSAccessDenied": indicates that the role does
not have permissions to the KMS key for the
Topic.

• "AuthorizationError": indicates that the role
provided does not authorize Device Defender to
publish to the SNS topic.

• "SNSTopicNotFound": indicates the provided SNS
topic does not exist.

• "FailureToAssumeRole": indicates that the role
provided does not authorize Device Defender to
assume the role.

• "CrossRegionSNSTopic": indicates that the SNS
topic exists in a different region.

Monitor AWS IoT using CloudWatch Logs

When AWS IoT logging is enabled, AWS IoT sends progress events about each message as it passes
from your devices through the message broker and rules engine. In the CloudWatch console,
CloudWatch logs appear in a log group named AWSIotLogs.

For more information about CloudWatch Logs, see CloudWatch Logs. For information about
supported AWS IoT CloudWatch Logs, see CloudWatch Logs AWS IoT log entries.

Monitor AWS IoT using CloudWatch Logs 715

https://console.aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS IoT Core Developer Guide

Viewing AWS IoT logs in the CloudWatch console

Note

The AWSIotLogsV2 log group is not visible in the CloudWatch console until:

• You've enabled logging in AWS IoT. For more info on how to enable logging in AWS IoT,
see Configure AWS IoT logging

• Some log entries have been written by AWS IoT operations.

To view your AWS IoT logs in the CloudWatch console

1. Browse to https://console.aws.amazon.com/cloudwatch/. In the navigation pane, choose Log
groups.

2. In the Filter text box, enter AWSIotLogsV2 , and then press Enter.

3. Double-click the AWSIotLogsV2 log group.

4. Choose Search All. A complete list of the AWS IoT logs generated for your account is
displayed.

5. Choose the expand icon to look at an individual stream.

You can also enter a query in the Filter events text box. Here are some interesting queries to try:

• { $.logLevel = "INFO" }

Find all logs that have a log level of INFO.

• { $.status = "Success" }

Find all logs that have a status of Success.

• { $.status = "Success" && $.eventType = "GetThingShadow" }

Find all logs that have a status of Success and an event type of GetThingShadow.

For more information about creating filter expressions, see CloudWatch Logs Queries.

Viewing AWS IoT logs in the CloudWatch console 716

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

AWS IoT Core Developer Guide

CloudWatch Logs AWS IoT log entries

Each component of AWS IoT generates its own log entries. Each log entry has an eventType that
specifies the operation that caused the log entry to be generated. This section describes the log
entries generated by the following AWS IoT components.

Topics

• Message broker log entries

• Server certificate OCSP log entries

• Device Shadow log entries

• Rules engine log entries

• Job log entries

• Device provisioning log entries

• Dynamic thing group log entries

• Fleet indexing log entries

• Common CloudWatch Logs attributes

Message broker log entries

The AWS IoT message broker generates log entries for the following events:

Topics

• Connect log entry

• Disconnect log entry

• GetRetainedMessage log entry

• ListRetainedMessage log entry

• Publish-In log entry

• Publish-Out log entry

• Queued log entry

• Subscribe log entry

CloudWatch Logs AWS IoT log entries 717

AWS IoT Core Developer Guide

Connect log entry

The AWS IoT message broker generates a log entry with an eventType of Connect when an
MQTT client connects.

Connect log entry example

{
 "timestamp": "2017-08-10 15:37:23.476",
 "logLevel": "INFO",
 "traceId": "20b23f3f-d7f1-feae-169f-82263394fbdb",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Connect",
 "protocol": "MQTT",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490
}

In addition to the Common CloudWatch Logs attributes, Connect log entries contain the following
attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

sourceIp

The IP address where the request originated.

sourcePort

The port where the request originated.

CloudWatch Logs AWS IoT log entries 718

AWS IoT Core Developer Guide

Disconnect log entry

The AWS IoT message broker generates a log entry with an eventType of Disconnect when an
MQTT client disconnects.

Disconnect log entry example

{
 "timestamp": "2017-08-10 15:37:23.476",
 "logLevel": "INFO",
 "traceId": "20b23f3f-d7f1-feae-169f-82263394fbdb",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Disconnect",
 "protocol": "MQTT",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490,
 "reason": "DUPLICATE_CLIENT_ID",
 "details": "A new connection was established with the same client ID",
 "disconnectReason": "CLIENT_INITIATED_DISCONNECT"
}

In addition to the Common CloudWatch Logs attributes, Disconnect log entries contain the
following attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

sourceIp

The IP address where the request originated.

sourcePort

The port where the request originated.

CloudWatch Logs AWS IoT log entries 719

AWS IoT Core Developer Guide

reason

The reason why the client is disconnecting.

details

A brief explanation of the error.

disconnectReason

The reason why the client is disconnecting.

GetRetainedMessage log entry

The AWS IoT message broker generates a log entry with an eventType of GetRetainedMessage
when GetRetainedMessage is called.

GetRetainedMessage log entry example

{
 "timestamp": "2017-08-07 18:47:56.664",
 "logLevel": "INFO",
 "traceId": "1a60d02e-15b9-605b-7096-a9f584a6ad3f",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "GetRetainedMessage",
 "protocol": "HTTP",
 "topicName": "a/b/c",
 "qos": "1",
 "lastModifiedDate": "2017-08-07 18:47:56.664"
}

In addition to the Common CloudWatch Logs attributes, GetRetainedMessage log entries
contain the following attributes:

lastModifiedDate

The Epoch date and time, in milliseconds, when the retained message was stored by AWS IoT.

protocol

The protocol used to make the request. Valid value: HTTP.

CloudWatch Logs AWS IoT log entries 720

https://docs.aws.amazon.com/iot/latest/developerguide/API_iotdata_GetRetainedMessage.html

AWS IoT Core Developer Guide

qos

The Quality of Service (QoS) level used in the publish request. Valid values are 0 or 1.

topicName

The name of the subscribed topic.

ListRetainedMessage log entry

The AWS IoT message broker generates a log entry with an eventType of
ListRetainedMessage when ListRetainedMessages is called.

ListRetainedMessage log entry example

{
 "timestamp": "2017-08-07 18:47:56.664",
 "logLevel": "INFO",
 "traceId": "1a60d02e-15b9-605b-7096-a9f584a6ad3f",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "ListRetainedMessage",
 "protocol": "HTTP"
}

In addition to the Common CloudWatch Logs attributes, ListRetainedMessage log entries
contains the following attribute:

protocol

The protocol used to make the request. Valid value: HTTP.

Publish-In log entry

When the AWS IoT message broker receives an MQTT message, it generates a log entry with an
eventType of Publish-In.

Publish-In log entry example

{

CloudWatch Logs AWS IoT log entries 721

AWS IoT Core Developer Guide

 "timestamp": "2017-08-10 15:39:30.961",
 "logLevel": "INFO",
 "traceId": "672ec480-31ce-fd8b-b5fb-22e3ac420699",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Publish-In",
 "protocol": "MQTT",
 "topicName": "$aws/things/MyThing/shadow/get",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId":
 "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490,
 "retain": "True"
 }

In addition to the Common CloudWatch Logs attributes, Publish-In log entries contain the
following attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

retain

The attribute used when a message has the RETAIN flag set with a value of True. If the
message doesn't have the RETAIN flag set, this attribute doesn't appear in the log entry. For
more information, see MQTT retained messages.

sourceIp

The IP address where the request originated.

sourcePort

The port where the request originated.

CloudWatch Logs AWS IoT log entries 722

AWS IoT Core Developer Guide

topicName

The name of the subscribed topic.

Publish-Out log entry

When the message broker publishes an MQTT message, it generates a log entry with an
eventType of Publish-Out

Publish-Out log entry example

{
 "timestamp": "2017-08-10 15:39:30.961",
 "logLevel": "INFO",
 "traceId": "672ec480-31ce-fd8b-b5fb-22e3ac420699",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Publish-Out",
 "protocol": "MQTT",
 "topicName": "$aws/things/MyThing/shadow/get",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490
}

In addition to the Common CloudWatch Logs attributes, Publish-Out log entries contain the
following attributes:

clientId

The ID of the subscribed client that receives messages on that MQTT topic.

principalId

The ID of the principal making the request.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

sourceIp

The IP address where the request originated.

CloudWatch Logs AWS IoT log entries 723

AWS IoT Core Developer Guide

sourcePort

The port where the request originated.

topicName

The name of the subscribed topic.

Queued log entry

When a device with a persistent session is disconnected, the MQTT message broker stores the
device's messages and AWS IoT generates log entries with an eventType of Queued. For more
information about MQTT persistent sessions, see MQTT persistent sessions.

Queued server error log entry example

{
 "timestamp": "2022-08-10 15:39:30.961",
 "logLevel": "ERROR",
 "traceId": "672ec480-31ce-fd8b-b5fb-22e3ac420699",
 "accountId": "123456789012",
 "topicName": "$aws/things/MyThing/get",
 "clientId": "123123123",
 "qos": "1",
 "protocol": "MQTT",
 "eventType": "Queued",
 "status": "Failure",
 "details": "Server Error"
}

In addition to the Common CloudWatch Logs attributes, Queued server error log entries contain
the following attributes:

clientId

The ID of the client to which the message is queued.

details

Server Error

A server error prevented the message from being stored.

CloudWatch Logs AWS IoT log entries 724

AWS IoT Core Developer Guide

protocol

The protocol used to make the request. The value will always be MQTT.

qos

The Quality of Service (QoS) level of the request. The value will always be 1 because the
messages with QoS of 0 aren't stored.

topicName

The name of the subscribed topic.

Queued success log entry example

{
 "timestamp": "2022-08-10 15:39:30.961",
 "logLevel": "INFO",
 "traceId": "672ec480-31ce-fd8b-b5fb-22e3ac420699",
 "accountId": "123456789012",
 "topicName": "$aws/things/MyThing/get",
 "clientId": "123123123",
 "qos": "1",
 "protocol": "MQTT",
 "eventType": "Queued",
 "status": "Success"
}

In addition to the Common CloudWatch Logs attributes, Queued success log entries contain the
following attributes:

clientId

The ID of the client to which the message is queued.

protocol

The protocol used to make the request. The value will always be MQTT.

qos

The Quality of Service (QoS) level of the request. The value will always be 1 because the
messages with QoS of 0 aren't stored.

CloudWatch Logs AWS IoT log entries 725

AWS IoT Core Developer Guide

topicName

The name of the subscribed topic.

Queued throttled log entry example

{
 "timestamp": "2022-08-10 15:39:30.961",
 "logLevel": "ERROR",
 "traceId": "672ec480-31ce-fd8b-b5fb-22e3ac420699",
 "accountId": "123456789012",
 "topicName": "$aws/things/MyThing/get",
 "clientId": "123123123",
 "qos": "1",
 "protocol": "MQTT",
 "eventType": "Queued",
 "status": "Failure",
 "details": "Throttled while queueing offline message"
}

In addition to the Common CloudWatch Logs attributes, Queued throttled log entries contain the
following attributes:

clientId

The ID of the client to which the message is queued.

details

Throttled while queueing offline message

The client exceeded the Queued messages per second per account limit, so the
message wasn't stored.

protocol

The protocol used to make the request. The value will always be MQTT.

qos

The Quality of Service (QoS) level of the request. The value will always be 1 because the
messages with QoS of 0 aren't stored.

CloudWatch Logs AWS IoT log entries 726

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#genref_queued_messages_per_second_per_account

AWS IoT Core Developer Guide

topicName

The name of the subscribed topic.

Subscribe log entry

The AWS IoT message broker generates a log entry with an eventType of Subscribe when an
MQTT client subscribes to a topic.

MQTT 3 Subscribe log entry example

{
 "timestamp": "2017-08-10 15:39:04.413",
 "logLevel": "INFO",
 "traceId": "7aa5c38d-1b49-3753-15dc-513ce4ab9fa6",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Subscribe",
 "protocol": "MQTT",
 "topicName": "$aws/things/MyThing/shadow/#",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490
}

In addition to the Common CloudWatch Logs attributes, Subscribe log entries contain the
following attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

sourceIp

The IP address where the request originated.

CloudWatch Logs AWS IoT log entries 727

AWS IoT Core Developer Guide

sourcePort

The port where the request originated.

topicName

The name of the subscribed topic.

MQTT 5 Subscribe log entry example

{
 "timestamp": "2022-11-30 16:24:15.628",
 "logLevel": "INFO",
 "traceId": "7aa5c38d-1b49-3753-15dc-513ce4ab9fa6",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "Subscribe",
 "protocol": "MQTT",
 "topicName": "test/topic1,$invalid/reserved/topic",
 "subscriptions": [
 {
 "topicName": "test/topic1",
 "reasonCode": 1
 },
 {
 "topicName": "$invalid/reserved/topic",
 "reasonCode": 143
 }
],
 "clientId": "abf27092886e49a8a5c1922749736453",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "sourceIp": "205.251.233.181",
 "sourcePort": 13490
}

For MQTT 5 Subscribe operations, in addition to the Common CloudWatch Logs attributes and
the MQTT 3 Subscribe log entry attributes, MQTT 5 Subscribe log entries contain the following
attribute:

subscriptions

A list of mappings between the requested topics in the Subscribe request and the individual
MQTT 5 reason code. For more information, see MQTT reason codes.

CloudWatch Logs AWS IoT log entries 728

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt5-reason-codes

AWS IoT Core Developer Guide

Server certificate OCSP log entries

AWS IoT Core generates log entries for the following event:

Topics

• RetrieveOCSPStapleData log entry

RetrieveOCSPStapleData log entry

AWS IoT Core generates a log entry with an eventType of RetrieveOCSPStapleData when the
server retrieves the OCSP staple data.

RetrieveOCSPStapleData log entry examples

The following is a log entry example of Success.

{
 "timestamp": "2024-01-30 15:39:30.961",
 "logLevel": "INFO",
 "traceId": "180532b7-0cc7-057b-687a-5ca1824838f5",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "RetrieveOCSPStapleData",
 "domainConfigName": "test-domain-config-name",
 "connectionDetails": {
 "httpStatusCode": "200",
 "ocspResponderUri": "http://ocsp.example.com",
 "sourceIp": "205.251.233.181",
 "targetIp": "250.15.5.3"
 },
 "ocspRequestDetails": {
 "requesterName": "iot.amazonaws.com",
 "requestCertId":
 "30:3A:30:09:06:05:2B:0E:03:02:1A:05:00:04:14:9C:FF:90:A1:97:B0:4D:6C:01:B9:69:96:D8:3E:E7:A2:51:7F:30:C4:04:14:7C:84:78:AE:12:58:71:38:0C:65:FC:17:77:7D:14:DD:69:73:71:46:02:01:01"
 },
 "ocspResponseDetails": {
 "responseCertId":
 "30:3A:30:09:06:05:2B:0E:03:02:1A:05:00:04:14:9C:FF:90:A1:97:B0:4D:6C:01:B9:69:96:D8:3E:E7:A2:51:7F:30:C4:04:14:7C:84:78:AE:12:58:71:38:0C:65:FC:17:77:7D:14:DD:69:73:71:46:02:01:01",
 "ocspResponseStatus": "successful",
 "certStatus": "good",
 "signature":
 "4C:6F:63:61:6C:20:52:65:73:70:6F:6E:64:65:72:20:53:69:67:6E:61:74:75:72:65",
 "thisUpdateTime": "Jan 31 01:21:02 2024 UTC",

CloudWatch Logs AWS IoT log entries 729

AWS IoT Core Developer Guide

 "nextUpdateTime": "Feb 02 00:21:02 2024 UTC",
 "producedAtTime": "Jan 31 01:37:03 2024 UTC",
 "stapledDataPayloadSize": "XXX"
 }
}

The following is a log entry example of Failure.

{
 "timestamp": "2024-01-30 15:39:30.961",
 "logLevel": "ERROR",
 "traceId": "180532b7-0cc7-057b-687a-5ca1824838f5",
 "accountId": "123456789012",
 "status": "Failure",
 "reason": "A non 2xx HTTP response was received from the OCSP responder.",
 "eventType": "RetrieveOCSPStapleData",
 "domainConfigName": "test-domain-config-name",
 "connectionDetails": {
 "httpStatusCode": "444",
 "ocspResponderUri": "http://ocsp.example.com",
 "sourceIp": "205.251.233.181",
 "targetIp": "250.15.5.3"
 },
 "ocspRequestDetails": {
 "requesterName": "iot.amazonaws.com",
 "requestCertId":
 "30:3A:30:09:06:05:2B:0E:03:02:1A:05:00:04:14:9C:FF:90:A1:97:B0:4D:6C:01:B9:69:96:D8:3E:E7:A2:51:7F:30:C4:04:14:7C:84:78:AE:12:58:71:38:0C:65:FC:17:77:7D:14:DD:69:73:71:46:02:01:01"
 }
}

For the RetrieveOCSPStaple operation, in addition to the Common CloudWatch Logs attributes,
the log entries contain the following attributes:

reason

The reason why the operation fails.

domainConfigName

The name of your domain configuration.

connectionDetails

A brief explanation of the connection details.

CloudWatch Logs AWS IoT log entries 730

AWS IoT Core Developer Guide

• httpStatusCode

HTTP status codes that are returned by the OCSP responder in response to the client's
request made to the server.

• ocspResponderUri

The OCSP responder URI that AWS IoT Core fetches from the server certificate.

• sourceIp

The source IP address of the AWS IoT Core server.

• targetIp

The target IP address of the OCSP responder.

ocspRequestDetails

Details of the OCSP request.

• requesterName

The identifier for the AWS IoT Core server that sends a request to the OCSP responder.

• requestCertId

The certificate ID of the request. This is the ID of the certificate for which the OCSP response
is being requested.

ocspResponseDetails

Details of the OCSP response.

• responseCertId

The certificate ID of the OCSP response.

• ocspResponseStatus

The status of the OCSP response.

• certStatus

The status of the certificate.

• signature

The signature that's applied to the response by a trusted entity.

CloudWatch Logs AWS IoT log entries 731

AWS IoT Core Developer Guide

• thisUpdateTime

The time at which the status being indicated is known to be correct.

• nextUpdateTime

The time at or before which newer information will be available about the status of the
certificate.

• producedAtTime

The time at which the OCSP responder signed this response.

• stapledDataPayloadSize

The payload size of the stapled data.

Device Shadow log entries

The AWS IoT Device Shadow service generates log entries for the following events:

Topics

• DeleteThingShadow log entry

• GetThingShadow log entry

• UpdateThingShadow log entry

DeleteThingShadow log entry

The Device Shadow service generates a log entry with an eventType of DeleteThingShadow
when a request to delete a device's shadow is received.

DeleteThingShadow log entry example

{
 "timestamp": "2017-08-07 18:47:56.664",
 "logLevel": "INFO",
 "traceId": "1a60d02e-15b9-605b-7096-a9f584a6ad3f",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "DeleteThingShadow",
 "protocol": "MQTT",
 "deviceShadowName": "Jack",

CloudWatch Logs AWS IoT log entries 732

AWS IoT Core Developer Guide

 "topicName": "$aws/things/Jack/shadow/delete"
}

In addition to the Common CloudWatch Logs attributes, DeleteThingShadow log entries contain
the following attributes:

deviceShadowName

The name of the shadow to update.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

topicName

The name of the topic on which the request was published.

GetThingShadow log entry

The Device Shadow service generates a log entry with an eventType of GetThingShadow when a
get request for a shadow is received.

GetThingShadow log entry example

{
 "timestamp": "2017-08-09 17:56:30.941",
 "logLevel": "INFO",
 "traceId": "b575f19a-97a2-cf72-0ed0-c64a783a2504",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "GetThingShadow",
 "protocol": "MQTT",
 "deviceShadowName": "MyThing",
 "topicName": "$aws/things/MyThing/shadow/get"
}

In addition to the Common CloudWatch Logs attributes, GetThingShadow log entries contain the
following attributes:

deviceShadowName

The name of the requested shadow.

CloudWatch Logs AWS IoT log entries 733

AWS IoT Core Developer Guide

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

topicName

The name of the topic on which the request was published.

UpdateThingShadow log entry

The Device Shadow service generates a log entry with an eventType of UpdateThingShadow
when a request to update a device's shadow is received.

UpdateThingShadow log entry example

{
 "timestamp": "2017-08-07 18:43:59.436",
 "logLevel": "INFO",
 "traceId": "d0074ba8-0c4b-a400-69df-76326d414c28",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "UpdateThingShadow",
 "protocol": "MQTT",
 "deviceShadowName": "Jack",
 "topicName": "$aws/things/Jack/shadow/update"
}

In addition to the Common CloudWatch Logs attributes, UpdateThingShadow log entries contain
the following attributes:

deviceShadowName

The name of the shadow to update.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

topicName

The name of the topic on which the request was published.

CloudWatch Logs AWS IoT log entries 734

AWS IoT Core Developer Guide

Rules engine log entries

The AWS IoT rules engine generates logs for the following events:

Topics

• FunctionExecution log entry

• RuleExecution log entry

• RuleMatch log entry

• RuleExecutionThrottled log entry

• RuleNotFound log entry

• StartingRuleExecution log entry

FunctionExecution log entry

The rules engine generates a log entry with an eventType of FunctionExecution when a rule's
SQL query calls an external function. An external function is called when a rule's action makes an
HTTP request to AWS IoT or another web service (for example, calling get_thing_shadow or
machinelearning_predict).

FunctionExecution log entry example

{
 "timestamp": "2017-07-13 18:33:51.903",
 "logLevel": "DEBUG",
 "traceId": "180532b7-0cc7-057b-687a-5ca1824838f5",
 "status": "Success",
 "eventType": "FunctionExecution",
 "clientId": "N/A",
 "topicName":"rules/test",
 "ruleName": "ruleTestPredict",
 "ruleAction": "MachinelearningPredict",
 "resources": {
 "ModelId": "predict-model"
 },
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167"
}

In addition to the Common CloudWatch Logs attributes, FunctionExecution log entries contain
the following attributes:

CloudWatch Logs AWS IoT log entries 735

AWS IoT Core Developer Guide

clientId

N/A for FunctionExecution logs.

principalId

The ID of the principal making the request.

resources

A collection of resources used by the rule's actions.

ruleName

The name of the matching rule.

topicName

The name of the subscribed topic.

RuleExecution log entry

When the AWS IoT rules engine triggers a rule's action, it generates a RuleExecution log entry.

RuleExecution log entry example

{
 "timestamp": "2017-08-10 16:32:46.070",
 "logLevel": "INFO",
 "traceId": "30aa7ccc-1d23-0b97-aa7b-76196d83537e",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "RuleExecution",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "topicName": "rules/test",
 "ruleName": "JSONLogsRule",
 "ruleAction": "RepublishAction",
 "resources": {
 "RepublishTopic": "rules/republish"
 },
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167"
}

In addition to the Common CloudWatch Logs attributes, RuleExecution log entries contain the
following attributes:

CloudWatch Logs AWS IoT log entries 736

AWS IoT Core Developer Guide

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

resources

A collection of resources used by the rule's actions.

ruleAction

The name of the action triggered.

ruleName

The name of the matching rule.

topicName

The name of the subscribed topic.

RuleMatch log entry

The AWS IoT rules engine generates a log entry with an eventType of RuleMatch when the
message broker receives a message that matches a rule.

RuleMatch log entry example

{
 "timestamp": "2017-08-10 16:32:46.002",
 "logLevel": "INFO",
 "traceId": "30aa7ccc-1d23-0b97-aa7b-76196d83537e",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "RuleMatch",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "topicName": "rules/test",
 "ruleName": "JSONLogsRule",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167"
}

CloudWatch Logs AWS IoT log entries 737

AWS IoT Core Developer Guide

In addition to the Common CloudWatch Logs attributes, RuleMatch log entries contain the
following attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

ruleName

The name of the matching rule.

topicName

The name of the subscribed topic.

RuleExecutionThrottled log entry

When an execution is throttled, the AWS IoT rules engine generates a log entry with an
eventType of RuleExecutionThrottled.

RuleExecutionThrottled log entry example

{
 "timestamp": "2017-10-04 19:25:46.070",
 "logLevel": "ERROR",
 "traceId": "30aa7ccc-1d23-0b97-aa7b-76196d83537e",
 "accountId": "123456789012",
 "status": "Failure",
 "eventType": "RuleMessageThrottled",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "topicName": "$aws/rules/example_rule",
 "ruleName": "example_rule",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "reason": "RuleExecutionThrottled",
 "details": "Exection of Rule example_rule throttled"
}

In addition to the Common CloudWatch Logs attributes, RuleExecutionThrottled log entries
contain the following attributes:

CloudWatch Logs AWS IoT log entries 738

AWS IoT Core Developer Guide

clientId

The ID of the client making the request.

details

A brief explanation of the error.

principalId

The ID of the principal making the request.

reason

The string "RuleExecutionThrottled".

ruleName

The name of the rule to be triggered.

topicName

The name of the topic that was published.

RuleNotFound log entry

When the AWS IoT rules engine cannot find a rule with a given name, it generates a log entry with
an eventType of RuleNotFound.

RuleNotFound log entry example

{
 "timestamp": "2017-10-04 19:25:46.070",
 "logLevel": "ERROR",
 "traceId": "30aa7ccc-1d23-0b97-aa7b-76196d83537e",
 "accountId": "123456789012",
 "status": "Failure",
 "eventType": "RuleNotFound",
 "clientId": "abf27092886e49a8a5c1922749736453",
 "topicName": "$aws/rules/example_rule",
 "ruleName": "example_rule",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167",
 "reason": "RuleNotFound",
 "details": "Rule example_rule not found"

CloudWatch Logs AWS IoT log entries 739

AWS IoT Core Developer Guide

}

In addition to the Common CloudWatch Logs attributes, RuleNotFound log entries contain the
following attributes:

clientId

The ID of the client making the request.

details

A brief explanation of the error.

principalId

The ID of the principal making the request.

reason

The string "RuleNotFound".

ruleName

The name of the rule that could not be found.

topicName

The name of the topic that was published.

StartingRuleExecution log entry

When the AWS IoT rules engine starts to trigger a rule's action, it generates a log entry with an
eventType of StartingRuleExecution.

StartingRuleExecution log entry example

{
 "timestamp": "2017-08-10 16:32:46.002",
 "logLevel": "DEBUG",
 "traceId": "30aa7ccc-1d23-0b97-aa7b-76196d83537e",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "StartingRuleExecution",

CloudWatch Logs AWS IoT log entries 740

AWS IoT Core Developer Guide

 "clientId": "abf27092886e49a8a5c1922749736453",
 "topicName": "rules/test",
 "ruleName": "JSONLogsRule",
 "ruleAction": "RepublishAction",
 "principalId": "145179c40e2219e18a909d896a5340b74cf97a39641beec2fc3eeafc5a932167"
}

In addition to the Common CloudWatch Logs attributes, rule- log entries contain the following
attributes:

clientId

The ID of the client making the request.

principalId

The ID of the principal making the request.

ruleAction

The name of the action triggered.

ruleName

The name of the matching rule.

topicName

The name of the subscribed topic.

Job log entries

The AWS IoT Job service generates log entries for the following events. Log entries are generated
when an MQTT or HTTP request is received from the device.

Topics

• DescribeJobExecution log entry

• GetPendingJobExecution log entry

• ReportFinalJobExecutionCount log entry

• StartNextPendingJobExecution log entry

• UpdateJobExecution log entry

CloudWatch Logs AWS IoT log entries 741

AWS IoT Core Developer Guide

DescribeJobExecution log entry

The AWS IoT Jobs service generates a log entry with an eventType of DescribeJobExecution
when the service receives a request to describe a job execution.

DescribeJobExecution log entry example

{
 "timestamp": "2017-08-10 19:13:22.841",
 "logLevel": "DEBUG",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "DescribeJobExecution",
 "protocol": "MQTT",
 "clientId": "thingOne",
 "jobId": "002",
 "topicName": "$aws/things/thingOne/jobs/002/get",
 "clientToken": "myToken",
 "details": "The request status is SUCCESS."
}

In addition to the Common CloudWatch Logs attributes, GetJobExecution log entries contain
the following attributes:

clientId

The ID of the client making the request.

clientToken

A unique, case-sensitive identifier to ensure the idempotency of the request. For more
information, see How to Ensure Idempotency.

details

Other information from the Jobs service.

jobId

The job ID for the job execution.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

CloudWatch Logs AWS IoT log entries 742

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Run_Instance_Idempotency.html

AWS IoT Core Developer Guide

topicName

The topic used to make the request.

GetPendingJobExecution log entry

The AWS IoT Jobs service generates a log entry with an eventType of
GetPendingJobExecution when the service receives a job execution request.

GetPendingJobExecution log entry example

{
 "timestamp": "2018-06-13 17:45:17.197",
 "logLevel": "DEBUG",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "GetPendingJobExecution",
 "protocol": "MQTT",
 "clientId": "299966ad-54de-40b4-99d3-4fc8b52da0c5",
 "topicName": "$aws/things/299966ad-54de-40b4-99d3-4fc8b52da0c5/jobs/get",
 "clientToken": "24b9a741-15a7-44fc-bd3c-1ff2e34e5e82",
 "details": "The request status is SUCCESS."
}

In addition to the Common CloudWatch Logs attributes, GetPendingJobExecution log entries
contain the following attributes:

clientId

The ID of the client making the request.

clientToken

A unique, case sensitive identifier to ensure the idempotency of the request. For more
information, see How to Ensure Idempotency.

details

Other information from the Jobs service.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

CloudWatch Logs AWS IoT log entries 743

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Run_Instance_Idempotency.html

AWS IoT Core Developer Guide

topicName

The name of the subscribed topic.

ReportFinalJobExecutionCount log entry

The AWS IoT Jobs service generates a log entry with an entryType of
ReportFinalJobExecutionCount when a job is completed.

ReportFinalJobExecutionCount log entry example

{
 "timestamp": "2017-08-10 19:44:16.776",
 "logLevel": "INFO",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "ReportFinalJobExecutionCount",
 "jobId": "002",
 "details": "Job 002 completed. QUEUED job execution count: 0 IN_PROGRESS job
 execution count: 0 FAILED job execution count: 0 SUCCEEDED job execution count: 1
 CANCELED job execution count: 0 REJECTED job execution count: 0 REMOVED job execution
 count: 0"
}

In addition to the Common CloudWatch Logs attributes, ReportFinalJobExecutionCount log
entries contain the following attributes:

details

Other information from the Jobs service.

jobId

The job ID for the job execution.

StartNextPendingJobExecution log entry

When it receives a request to start the next pending job execution, the AWS IoT Jobs service
generates a log entry with an eventType of StartNextPendingJobExecution.

StartNextPendingJobExecution log entry example

{

CloudWatch Logs AWS IoT log entries 744

AWS IoT Core Developer Guide

 "timestamp": "2018-06-13 17:49:51.036",
 "logLevel": "DEBUG",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "StartNextPendingJobExecution",
 "protocol": "MQTT",
 "clientId": "95c47808-b1ca-4794-bc68-a588d6d9216c",
 "topicName": "$aws/things/95c47808-b1ca-4794-bc68-a588d6d9216c/jobs/start-next",
 "clientToken": "bd7447c4-3a05-49f4-8517-dd89b2c68d94",
 "details": "The request status is SUCCESS."
}

In addition to the Common CloudWatch Logs attributes, StartNextPendingJobExecution log
entries contain the following attributes:

clientId

The ID of the client making the request.

clientToken

A unique, case sensitive identifier to ensure the idempotency of the request. For more
information, see How to Ensure Idempotency.

details

Other information from the Jobs service.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

topicName

The topic used to make the request.

UpdateJobExecution log entry

The AWS IoT Jobs service generates a log entry with an eventType of UpdateJobExecution
when the service receives a request to update a job execution.

UpdateJobExecution log entry example

{

CloudWatch Logs AWS IoT log entries 745

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Run_Instance_Idempotency.html

AWS IoT Core Developer Guide

 "timestamp": "2017-08-10 19:25:14.758",
 "logLevel": "DEBUG",
 "accountId": "123456789012",
 "status": "Success",
 "eventType": "UpdateJobExecution",
 "protocol": "MQTT",
 "clientId": "thingOne",
 "jobId": "002",
 "topicName": "$aws/things/thingOne/jobs/002/update",
 "clientToken": "myClientToken",
 "versionNumber": "1",
 "details": "The destination status is IN_PROGRESS. The request status is SUCCESS."
}

In addition to the Common CloudWatch Logs attributes, UpdateJobExecution log entries
contain the following attributes:

clientId

The ID of the client making the request.

clientToken

A unique, case sensitive identifier to ensure the idempotency of the request. For more
information, see How to Ensure Idempotency.

details

Other information from the Jobs service.

jobId

The job ID for the job execution.

protocol

The protocol used to make the request. Valid values are MQTT or HTTP.

topicName

The topic used to make the request.

versionNumber

The version of the job execution.

CloudWatch Logs AWS IoT log entries 746

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/Run_Instance_Idempotency.html

AWS IoT Core Developer Guide

Device provisioning log entries

The AWS IoT Device Provisioning service generates logs for the following events.

Topics

• GetDeviceCredentials log entry

• ProvisionDevice log entry

GetDeviceCredentials log entry

The AWS IoT Device Provisioning service generates a log entry with an eventType of
GetDeviceCredential when a client calls GetDeviceCredential.

GetDeviceCredentials log entry example

{
 "timestamp" : "2019-02-20 20:31:22.932",
 "logLevel" : "INFO",
 "traceId" : "8d9c016f-6cc7-441e-8909-7ee3d5563405",
 "accountId" : "123456789101",
 "status" : "Success",
 "eventType" : "GetDeviceCredentials",
 "deviceCertificateId" :
 "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
 "details" : "Additional details about this log."
}

In addition to the Common CloudWatch Logs attributes, GetDeviceCredentials log entries
contain the following attributes:

details

A brief explanation of the error.

deviceCertificateId

The ID of the device certificate.

CloudWatch Logs AWS IoT log entries 747

AWS IoT Core Developer Guide

ProvisionDevice log entry

The AWS IoT Device Provisioning service generates a log entry with an eventType of
ProvisionDevice when a client calls ProvisionDevice.

ProvisionDevice log entry example

{
 "timestamp" : "2019-02-20 20:31:22.932",
 "logLevel" : "INFO",
 "traceId" : "8d9c016f-6cc7-441e-8909-7ee3d5563405",
 "accountId" : "123456789101",
 "status" : "Success",
 "eventType" : "ProvisionDevice",
 "provisioningTemplateName" : "myTemplate",
 "deviceCertificateId" :
 "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
 "details" : "Additional details about this log."
 }

In addition to the Common CloudWatch Logs attributes, ProvisionDevice log entries contain
the following attributes:

details

A brief explanation of the error.

deviceCertificateId

The ID of the device certificate.

provisioningTemplateName

The name of the provisioning template.

Dynamic thing group log entries

AWS IoT Dynamic Thing Groups generate logs for the following event.

Topics

• AddThingToDynamicThingGroupsFailed log entry

CloudWatch Logs AWS IoT log entries 748

AWS IoT Core Developer Guide

AddThingToDynamicThingGroupsFailed log entry

When AWS IoT was not able to add a thing to the specified dynamic groups, it generates a log
entry with an eventType of AddThingToDynamicThingGroupsFailed. This happens when
a thing met the criteria to be in the dynamic thing group; however, it could not be added to the
dynamic group or it was removed from the dynamic group. This can happen because:

• The thing already belongs to the maximum number of groups.

• The --override-dynamic-groups option was used to add the thing to a static thing group. It was
removed from a dynamic thing group to make that possible.

For more information, see Dynamic Thing Group Limitations and Conflicts.

AddThingToDynamicThingGroupsFailed log entry example

This example shows the log entry of an AddThingToDynamicThingGroupsFailed error.
In this example, TestThing met the criteria to be in the dynamic thing groups listed in
dynamicThingGroupNames, but could not be added to those dynamic groups, as described in
reason.

{
 "timestamp": "2020-03-16 22:24:43.804",
 "logLevel": "ERROR",
 "traceId": "70b1f2f5-d95e-f897-9dcc-31e68c3e1a30",
 "accountId": "57EXAMPLE833",
 "status": "Failure",
 "eventType": "AddThingToDynamicThingGroupsFailed",
 "thingName": "TestThing",
 "dynamicThingGroupNames": [
 "DynamicThingGroup11",
 "DynamicThingGroup12",
 "DynamicThingGroup13",
 "DynamicThingGroup14"
],
 "reason": "The thing failed to be added to the given dynamic thing group(s) because
 the thing already belongs to the maximum allowed number of groups."
}

In addition to the Common CloudWatch Logs attributes,
AddThingToDynamicThingGroupsFailed log entries contain the following attributes:

CloudWatch Logs AWS IoT log entries 749

AWS IoT Core Developer Guide

dynamicThingGroupNames

An array of the dynamic thing groups to which the thing could not be added.

reason

The reason why the thing could not be added to the dynamic thing groups.

thingName

The name of the thing that could not be added to a dynamic thing group.

Fleet indexing log entries

AWS IoT fleet indexing generates log entries for the following events.

Topics

• NamedShadowCountForDynamicGroupQueryLimitExceeded log entry

NamedShadowCountForDynamicGroupQueryLimitExceeded log entry

A maximum of 25 named shadows per thing are processed for query terms that are
not data source specific in dynamic groups. When this limit is breached for a thing, the
NamedShadowCountForDynamicGroupQueryLimitExceeded event type will be emitted.

NamedShadowCountForDynamicGroupQueryLimitExceeded log entry example

This example shows the log entry of a
NamedShadowCountForDynamicGroupQueryLimitExceeded error. In this example, all-values
based DynamicGroup results can be inaccurate, as described in the reason field.

{
"timestamp": "2020-03-16 22:24:43.804",
"logLevel": "ERROR",
"traceId": "70b1f2f5-d95e-f897-9dcc-31e68c3e1a30",
"accountId": "571032923833",
"status": "Failure",
"eventType": "NamedShadowCountForDynamicGroupQueryLimitExceeded",
"thingName": "TestThing",
"reason": "A maximum of 25 named shadows per thing are processed for non-data source
 specific query terms in dynamic groups."
}

CloudWatch Logs AWS IoT log entries 750

AWS IoT Core Developer Guide

Common CloudWatch Logs attributes

All CloudWatch Logs log entries include these attributes:

accountId

Your AWS account ID.

eventType

The event type for which the log was generated. The value of the event type depends on the
event that generated the log entry. Each log entry description includes the value of eventType
for that log entry.

logLevel

The log level being used. For more information, see the section called “Log levels”.

status

The status of the request.

timestamp

The human-readable UTC timestamp of when the client connected to the AWS IoT message
broker.

traceId

A randomly generated identifier that can be used to correlate all logs for a specific request.

Upload device-side logs to Amazon CloudWatch

You can upload historical, device-side logs into Amazon CloudWatch to monitor and analyze a
device's activity in the field. Device-side logs can include system, application, and device logs files.
This process uses a CloudWatch Logs rules action parameter to publish device-side logs into a
customer-defined log group.

How it works

The process begins when an AWS IoT device sends MQTT messages containing formatted log
files to an AWS IoT topic. An AWS IoT rule monitors the message topic and sends the log files to a
CloudWatch Logs group that you define. You can then review and analyze the information.

Upload device-side logs to Amazon CloudWatch 751

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

AWS IoT Core Developer Guide

Topics

• MQTT topics

• Rule action

MQTT topics

Choose an MQTT topic name space that you will use to publish the logs. We recommend using
this format for the common topic space, $aws/rules/things/thing_name/logs, and this
format for error topics, $aws/rules/things/thing_name/logs/errors. The naming structure
for logs and error topics is recommended, but not required. For more information, see Designing
MQTT Topics for AWS IoT Core.

By using the recommended common topic space, you utilize AWS IoT Basic Ingest reserved topics.
AWS IoT Basic Ingest securely sends device data to the AWS services that are supported by AWS IoT
rule actions. It removes the publish/subscribe message broker from the ingestion path, making it
more cost effective. For more information, see Reducing messaging costs with Basic Ingest.

If you use batchMode to upload log files, your messages must follow a specific format that
includes a UNIX timestamp and message. For more information, see the MQTT message format
requirements for batchMode topic within CloudWatch Logs rule action.

Rule action

When AWS IoT receives the MQTT messages from the client devices, an AWS IoT rule monitors the
customer-defined topic and publishes the contents into a CloudWatch log group that you define.
This process uses a CloudWatch Logs rule action to monitor MQTT for batches of log files. For more
information, see the CloudWatch Logs AWS IoT rule action.

Batch mode

batchMode is a Boolean parameter within the AWS IoT CloudWatch Logs rule action. This
parameter is optional and is off (false) by default. To upload device-side log files in batches, you
must turn this parameter on (true) when you create the AWS IoT rule. For more information, see
CloudWatch Logs in the AWS IoT rule actions section.

Uploading device-side logs by using AWS IoT rules

You can use the AWS IoT rules engine to upload log records from existing device-side log files
(system, application, and device-client logs) to Amazon CloudWatch. When device-side logs

Uploading device-side logs by using AWS IoT rules 752

https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloudwatch-logs-rule-action.html#cloudwatch-logs-rule-action-message-format
https://docs.aws.amazon.com/iot/latest/developerguide/cloudwatch-logs-rule-action.html#cloudwatch-logs-rule-action-message-format
https://docs.aws.amazon.com/iot/latest/developerguide/cloudwatch-logs-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloudwatch-logs-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloudwatch-logs-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html

AWS IoT Core Developer Guide

are published to an MQTT topic, the CloudWatch Logs rules action transfers the messages to
CloudWatch Logs. This process outlines how to upload device logs in batches using the rules action
batchMode parameter turned on (set to true).

To begin uploading device-side logs to CloudWatch, complete the following prerequisites.

Prerequisites

Before you begin, do the following:

• Create at least one target IoT device that's registered with AWS IoT Core as an AWS IoT thing. For
more information, see Create a thing object.

• Determine the MQTT topic space for ingestion and errors. For more information about MQTT
topics and recommended naming conventions, see the MQTT topics MQTT topics section in
Upload device-side logs to Amazon CloudWatch.

For more information about these prerequisites, see Upload device-side logs to CloudWatch.

Creating a CloudWatch log group

To create a CloudWatch log group, complete the following steps. Choose the appropriate tab
depending on whether you prefer to perform the steps through the AWS Management Console or
the AWS Command Line Interface (AWS CLI).

AWS Management Console

To create a CloudWatch log group by using the AWS Management Console

1. Open the AWS Management Console and navigate to CloudWatch.

2. On the navigation bar, choose Logs, and then Log groups.

3. Choose Create log group.

4. Update the Log group name and, optionally, update the Retention setting fields.

5. Choose Create.

Uploading device-side logs by using AWS IoT rules 753

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing
https://docs.aws.amazon.com/iot/latest/developerguide/upload-device-logs-to-cloudwatch.html#upload-mqtt-topics-overview
https://docs.aws.amazon.com/iot/latest/developerguide/upload-device-logs-to-cloudwatch.html
https://docs.aws.amazon.com/iot/latest/developerguide/upload-device-logs-to-cloudwatch
https://console.aws.amazon.com/cloudwatch

AWS IoT Core Developer Guide

AWS CLI

To create a CloudWatch log group by using the AWS CLI

1. To create the log group, run the following command. For more information, see create-
log-group in the AWS CLI v2 Command Reference.

Replace the log group name in the example (uploadLogsGroup) with your preferred
name.

aws logs create-log-group --log-group-name uploadLogsGroup

2. To confirm that the log group was created correctly, run the following command.

aws logs describe-log-groups --log-group-name-prefix uploadLogsGroup

Sample output:

{
 "logGroups": [
 {
 "logGroupName": "uploadLogsGroup",
 "creationTime": 1674521804657,
 "metricFilterCount": 0,
 "arn": "arn:aws:logs:us-east-1:111122223333:log-
group:uploadLogsGroup:*",
 "storedBytes": 0
 }
]
}

Creating a topic rule

To create an AWS IoT rule, complete the following steps. Choose the appropriate tab depending
on whether you prefer to perform the steps through the AWS Management Console or the AWS
Command Line Interface (AWS CLI).

Uploading device-side logs by using AWS IoT rules 754

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/create-log-group.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/create-log-group.html

AWS IoT Core Developer Guide

AWS Management Console

To create a topic rule by using the AWS Management Console

1. Open the Rule hub.

a. Open the AWS Management Console and navigate to AWS IoT .

b. On the navigation bar, choose Message routing and then Rules.

c. Choose Create rule.

2. Enter the rule properties.

a. Enter an alphanumeric Rule name.

b. (Optional) Enter a Rule description and Tags.

c. Choose Next.

3. Enter a SQL statement.

a. Enter a SQL statement using the MQTT topic that you defined for ingestion.

For example, SELECT * FROM '$aws/rules/things/thing_name/logs'

b. Choose Next.

4. Enter rule actions.

a. On the Action 1 menu, choose CloudWatch logs.

b. Choose the Log group name and then choose the log group that you created.

c. Select Use batch mode.

d. Specify the IAM role for the rule.

If you have an IAM role for the rule, do the following.

1. On the IAM role menu, choose your IAM role.

If you don't have an IAM role for the rule, do the following.

1. Choose Create new role.

2. For Role name, enter a unique name and choose Create.

3. Confirm that the IAM role name is correct in the IAM role field.

e. Choose Next.

Uploading device-side logs by using AWS IoT rules 755

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

5. Review the template configuration.

a. Review the settings for the Job template to verify they're correct.

b. When you're done, choose Create.

AWS CLI

To create an IAM role and a topic rule by using the AWS CLI

1. Create an IAM role that grants rights to the AWS IoT rule.

a. Create an IAM policy.

To create an IAM policy, run the following command. Make sure you update the
policy-name parameter value. For more information, see create-policy in the
AWS CLI v2 Command Reference.

Note

If you're using a Microsoft Windows operating system, you might need to
replace the end of line marker (\) with a tick (`) or another character.

aws iam create-policy \
 --policy-name uploadLogsPolicy \
 --policy-document \
'{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iot:CreateTopicRule",
 "iot:Publish",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:GetLogEvents"
],
 "Resource": "*"
 }

Uploading device-side logs by using AWS IoT rules 756

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html

AWS IoT Core Developer Guide

}'

b. Copy the policy ARN from your output into a text editor.

Sample output:

{
 "Policy": {
 "PolicyName": "uploadLogsPolicy",
 "PermissionsBoundaryUsageCount": 0,
 "CreateDate": "2023-01-23T18:30:10Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "AAABBBCCCDDDEEEFFFGGG",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::111122223333:policy/uploadLogsPolicy",
 "UpdateDate": "2023-01-23T18:30:10Z"
 }
}

c. Create an IAM role and trust policy.

To create an IAM policy, run the following command. Make sure you update the role-
name parameter value. For more information, see create-role in the AWS CLI v2
Command Reference.

aws iam create-role \
--role-name uploadLogsRole \
--assume-role-policy-document \
'{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]

Uploading device-side logs by using AWS IoT rules 757

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-role.html

AWS IoT Core Developer Guide

}'

d. Attach the IAM policy to the rule.

To create an IAM policy, run the following command. Make sure you update the role-
name and policy-arn parameter values. For more information, see attach-role-
policy in the AWS CLI v2 Command Reference.

aws iam attach-role-policy \
--role-name uploadLogsRole \
--policy-arn arn:aws:iam::111122223333:policy/uploadLogsPolicy

e. Review the role.

To confirm that the IAM role was created correctly, run the following command. Make
sure you update the role-name parameter value. For more information, see get-
role in the AWS CLI v2 Command Reference.

aws iam get-role --role-name uploadLogsRole

Sample output:

{
 "Role": {
 "Path": "/",
 "RoleName": "uploadLogsRole",
 "RoleId": "AAABBBCCCDDDEEEFFFGGG",
 "Arn": "arn:aws:iam::111122223333:role/uploadLogsRole",
 "CreateDate": "2023-01-23T19:17:15+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },

Uploading device-side logs by using AWS IoT rules 758

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/attach-role-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/get-role.html

AWS IoT Core Developer Guide

 "Description": "",
 "MaxSessionDuration": 3600,
 "RoleLastUsed": {}
 }
}

2. Create an AWS IoT topic rule in the AWS CLI.

a. To create an AWS IoT topic rule, run the following command. Make sure you update
the --rule-name, sql statement, description, roleARN , and logGroupName
parameter values. For more information, see create-topic-rule in the AWS CLI v2
Command Reference.

aws iot create-topic-rule \
--rule-name uploadLogsRule \
--topic-rule-payload \
 '{
 "sql":"SELECT * FROM 'rules/things/thing_name/logs'",
 "description":"Upload logs test rule",
 "ruleDisabled":false,
 "awsIotSqlVersion":"2016-03-23",
 "actions":[
 {"cloudwatchLogs":
 {"roleArn":"arn:aws:iam::111122223333:role/uploadLogsRole",
 "logGroupName":"uploadLogsGroup",
 "batchMode":true}
 }
]
}'

b. To confirm that the rule was created correctly, run the following command. Make sure
you update the role-name parameter value. For more information, see get-topic-rule
in the AWS CLI v2 Command Reference.

aws iot get-topic-rule --rule-name uploadLogsRule

Sample output:

{
 "ruleArn": "arn:aws:iot:us-east-1:111122223333:rule/uploadLogsRule",
 "rule": {
 "ruleName": "uploadLogsRule",

Uploading device-side logs by using AWS IoT rules 759

https://awscli.amazonaws.com/v2/documentation/api/2.0.34/reference/iot/create-topic-rule.html
https://awscli.amazonaws.com/v2/documentation/api/2.0.34/reference/iot/get-topic-rule.html

AWS IoT Core Developer Guide

 "sql": "SELECT * FROM rules/things/thing_name/logs",
 "description": "Upload logs test rule",
 "createdAt": "2023-01-24T16:28:15+00:00",
 "actions": [
 {
 "cloudwatchLogs": {
 "roleArn": "arn:aws:iam::111122223333:role/
uploadLogsRole",
 "logGroupName": "uploadLogsGroup",
 "batchMode": true
 }
 }
],
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23"
 }
}

Sending device-side logs to AWS IoT

To send device-side logs to AWS IoT

1. To send historical logs to AWS IoT, communicate with your devices to ensure the following.

• The log information is sent to the correct topic namespace as specified within the
Prerequisites section of this procedure.

For example, $aws/rules/things/thing_name/logs

• The MQTT message payload is formatted correctly. For more information about MQTT topic
and recommended naming convention, see the MQTT topics section within Upload device-
side logs to Amazon CloudWatch.

2. Confirm that the MQTT messages are received within the AWS IoT MQTT client.

a. Open the AWS Management Console and navigate to AWS IoT.

b. To view the MQTT test client, on the navigation bar, choose Test, MQTT test client.

c. For Subscribe to a topic, Topic filter, enter the topic namespace.

d. Choose Subscribe.

Uploading device-side logs by using AWS IoT rules 760

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

MQTT messages appear in the Subscriptions and Topic table, as seen in the following.
These messages can take up to five minutes to appear.

Uploading device-side logs by using AWS IoT rules 761

AWS IoT Core Developer Guide

Uploading device-side logs by using AWS IoT rules 762

AWS IoT Core Developer Guide

Viewing the log data

To review your log records in CloudWatch Logs

1. Open the AWS Management Console, and navigate to CloudWatch.

2. On the navigation bar, choose Logs, Logs Insights.

3. On the Select log group(s) menu, choose the log group you specified in the AWS IoT rule.

4. On the Logs insights page, choose Run query.

Logging AWS IoT API calls using AWS CloudTrail

AWS IoT is integrated with AWS CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in AWS IoT. CloudTrail captures all API calls for AWS IoT as events,
including calls from the AWS IoT console and from code calls to the AWS IoT APIs. If you create a
trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including
events for AWS IoT. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT, the IP address from which the request was made,
who made the request, when it was made, and other details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS IoT information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs
in AWS IoT, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS IoT, create a trail. A
trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a
trail in the console, the trail applies to all AWS Regions. The trail logs events from all AWS Regions
in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. You can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail
logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

Logging AWS IoT API calls using AWS CloudTrail 763

https://console.aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations

AWS IoT Core Developer Guide

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Note

AWS IoT data plane actions (device side) are not logged by CloudTrail. Use CloudWatch to
monitor these actions.

Generally speaking, AWS IoT control plane actions that make changes are logged by CloudTrail.
Calls such as CreateThing, CreateKeysAndCertificate, and UpdateCertificate leave CloudTrail
entries, while calls such as ListThings and ListTopicRules do not.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

AWS IoT actions are documented in the AWS IoT API Reference. AWS IoT Wireless actions are
documented in the AWS IoT Wireless API Reference.

Understanding AWS IoT log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AttachPolicy action.

{

Understanding AWS IoT log file entries 764

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/iot/latest/apireference/
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/welcome.html

AWS IoT Core Developer Guide

 "timestamp":"1460159496",
 "AdditionalEventData":"",
 "Annotation":"",
 "ApiVersion":"",
 "ErrorCode":"",
 "ErrorMessage":"",
 "EventID":"8bff4fed-c229-4d2d-8264-4ab28a487505",
 "EventName":"AttachPolicy",
 "EventTime":"2016-04-08T23:51:36Z",
 "EventType":"AwsApiCall",
 "ReadOnly":"",
 "RecipientAccountList":"",
 "RequestID":"d4875df2-fde4-11e5-b829-23bf9b56cbcd",
 "RequestParamters":{
 "principal":"arn:aws:iot:us-
east-1:123456789012:cert/528ce36e8047f6a75ee51ab7beddb4eb268ad41d2ea881a10b67e8e76924d894",
 "policyName":"ExamplePolicyForIoT"
 },
 "Resources":"",
 "ResponseElements":"",
 "SourceIpAddress":"52.90.213.26",
 "UserAgent":"aws-internal/3",
 "UserIdentity":{
 "type":"AssumedRole",
 "principalId":"AKIAI44QH8DHBEXAMPLE",
 "arn":"arn:aws:sts::12345678912:assumed-role/iotmonitor-us-east-1-beta-
InstanceRole-1C5T1YCYMHPYT/i-35d0a4b6",
 "accountId":"222222222222",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"Fri Apr 08 23:51:10 UTC 2016"
 },
 "sessionIssuer":{
 "type":"Role",
 "principalId":"AKIAI44QH8DHBEXAMPLE",
 "arn":"arn:aws:iam::123456789012:role/executionServiceEC2Role/
iotmonitor-us-east-1-beta-InstanceRole-1C5T1YCYMHPYT",
 "accountId":"222222222222",
 "userName":"iotmonitor-us-east-1-InstanceRole-1C5T1YCYMHPYT"
 }
 },
 "invokedBy":{

Understanding AWS IoT log file entries 765

AWS IoT Core Developer Guide

 "serviceAccountId":"111111111111"
 }
 },
 "VpcEndpointId":""
}

Understanding AWS IoT log file entries 766

AWS IoT Core Developer Guide

Rules for AWS IoT

Rules give your devices the ability to interact with AWS services. Rules are analyzed and actions are
performed based on the MQTT topic stream. You can use rules to support the following tasks:

• Augment or filter data received from a device.

• Write data received from a device to an Amazon DynamoDB database.

• Save a file to Amazon S3.

• Send a push notification to all users who are using Amazon SNS.

• Publish data to an Amazon SQS queue.

• Invoke a Lambda function to extract data.

• Process messages from a large number of devices using Amazon Kinesis.

• Send data to Amazon OpenSearch Service.

• Capture a CloudWatch metric.

• Change a CloudWatch alarm.

• Send the data from an MQTT message to Amazon SageMaker to make predictions based on a
machine learning (ML) model.

• Send a message to a Salesforce IoT Input Stream.

• Send message data to an AWS IoT Analytics channel.

• Start process of a Step Functions state machine.

• Send message data to an AWS IoT Events input.

• Send message data to an asset property in AWS IoT SiteWise.

• Send message data to a web application or service.

Your rules can use MQTT messages that pass through the publish/subscribe protocol supported by
the the section called “Device communication protocols”. You can also use the Basic Ingest feature
to securely send device data to the AWS services listed previously, without incurring messaging
costs. The Basic Ingest feature optimizes data flow by removing the publish/subscribe message
broker from the ingestion path. This makes it cost effective while still keeping the security and data
processing features of AWS IoT.

767

https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/iot-core/pricing/

AWS IoT Core Developer Guide

Before AWS IoT can perform these actions, you must grant it permission to access your AWS
resources on your behalf. When the actions are performed, you incur the standard charges for the
AWS services that you use.

Contents

• Granting an AWS IoT rule the access it requires

• Pass role permissions

• Creating an AWS IoT rule

• Viewing your rules

• Deleting a rule

• AWS IoT rule actions

• Troubleshooting a rule

• Accessing cross-account resources using AWS IoT rules

• Error handling (error action)

• Reducing messaging costs with Basic Ingest

• AWS IoT SQL reference

Granting an AWS IoT rule the access it requires

Use IAM roles to control the AWS resources to which each rule has access. Before you create a rule,
you must create an IAM role with a policy that allows access to the required AWS resources. AWS
IoT assumes this role when implementing a rule.

Complete the following steps to create the IAM role and AWS IoT policy that grant an AWS IoT
rule the access it requires (AWS CLI).

1. Save the following trust policy document, which grants AWS IoT permission to assume the
role, to a file named iot-role-trust.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"

Granting an AWS IoT rule the access it requires 768

AWS IoT Core Developer Guide

 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:iot:us-east-1:123456789012:rule/
rulename"
 }
 }
 }
]
}

Use the create-role command to create an IAM role specifying the iot-role-trust.json
file:

aws iam create-role --role-name my-iot-role --assume-role-policy-document
 file://iot-role-trust.json

The output of this command looks like the following:

{
 "Role": {
 "AssumeRolePolicyDocument": "url-encoded-json",
 "RoleId": "AKIAIOSFODNN7EXAMPLE",
 "CreateDate": "2015-09-30T18:43:32.821Z",
 "RoleName": "my-iot-role",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
}

2. Save the following JSON into a file named my-iot-policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:*",

Granting an AWS IoT rule the access it requires 769

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS IoT Core Developer Guide

 "Resource": "*"
 }
]
}

This JSON is an example policy document that grants AWS IoT administrator access to
DynamoDB.

Use the create-policy command to grant AWS IoT access to your AWS resources upon assuming
the role, passing in the my-iot-policy.json file:

aws iam create-policy --policy-name my-iot-policy --policy-document file://my-iot-
policy.json

For more information about how to grant access to AWS services in policies for AWS IoT, see
Creating an AWS IoT rule.

The output of the create-policy command contains the ARN of the policy. Attach the policy to
a role.

{
 "Policy": {
 "PolicyName": "my-iot-policy",
 "CreateDate": "2015-09-30T19:31:18.620Z",
 "AttachmentCount": 0,
 "IsAttachable": true,
 "PolicyId": "ZXR6A36LTYANPAI7NJ5UV",
 "DefaultVersionId": "v1",
 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:policy/my-iot-policy",
 "UpdateDate": "2015-09-30T19:31:18.620Z"
 }
}

3. Use the attach-role-policy command to attach your policy to your role:

aws iam attach-role-policy --role-name my-iot-role --policy-arn
 "arn:aws:iam::123456789012:policy/my-iot-policy"

Granting an AWS IoT rule the access it requires 770

https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS IoT Core Developer Guide

Pass role permissions

Part of a rule definition is an IAM role that grants permission to access resources specified in the
rule's action. The rules engine assumes that role when the rule's action is invoked. The role must be
defined in the same AWS account as the rule.

When creating or replacing a rule you are, in effect, passing a role to the rules engine. The
iam:PassRole permission is required to perform this operation. To verify that you have this
permission, create a policy that grants the iam:PassRole permission and attach it to your IAM
user. The following policy shows how to allow iam:PassRole permission for a role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

In this policy example, the iam:PassRole permission is granted for the role myRole. The role is
specified using the role's ARN. Attach this policy to your IAM user or role that your user belongs to.
For more information, see Working with Managed Policies.

Note

Lambda functions use resource-based policy, where the policy is attached directly to the
Lambda function itself. When you create a rule that invokes a Lambda function, you don't
pass a role, so the user creating the rule doesn't need the iam:PassRole permission. For
more information about Lambda function authorization, see Granting Permissions Using a
Resource Policy.

Pass role permissions 771

https://docs.aws.amazon.com/service-authorization/latest/reference/access_policies_managed-using.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy

AWS IoT Core Developer Guide

Creating an AWS IoT rule

You configure rules to route data from your connected things. Rules consist of the following:

Rule name

The name of the rule.

Note

We do not recommend the use of personally identifiable information in your rule
names.

Optional description

A textual description of the rule.

Note

We do not recommend the use of personally identifiable information in your rule
descriptions.

SQL statement

A simplified SQL syntax to filter messages received on an MQTT topic and push the data
elsewhere. For more information, see AWS IoT SQL reference.

SQL version

The version of the SQL rules engine to use when evaluating the rule. Although this property is
optional, we strongly recommend that you specify the SQL version. The AWS IoT Core console
sets this property to 2016-03-23 by default. If this property is not set, such as in an AWS CLI
command or an AWS CloudFormation template, 2015-10-08 is used. For more information,
see SQL versions.

One or more actions

The actions AWS IoT performs when enacting the rule. For example, you can insert data into
a DynamoDB table, write data to an Amazon S3 bucket, publish to an Amazon SNS topic, or
invoke a Lambda function.

Creating an AWS IoT rule 772

AWS IoT Core Developer Guide

An error action

The action AWS IoT performs when it's unable to perform a rule's action.

When you create a rule, be aware of how much data you're publishing on topics. If you create rules
that include a wildcard topic pattern, they might match a large percentage of your messages. If
this is the case, you might need to increase the capacity of the AWS resources used by the target
actions. Also, if you create a republish rule that includes a wildcard topic pattern, you can end up
with a circular rule that causes an infinite loop.

Note

Creating and updating rules are administrator-level actions. Any user who has permission
to create or update rules is able to access data processed by the rules.

To create a rule (AWS CLI)

Use the create-topic-rule command to create a rule:

aws iot create-topic-rule --rule-name myrule --topic-rule-payload file://myrule.json

The following is an example payload file with a rule that inserts all messages sent to the iot/test
topic into the specified DynamoDB table. The SQL statement filters the messages and the role ARN
grants AWS IoT permission to write to the DynamoDB table.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "dynamoDB": {
 "tableName": "my-dynamodb-table",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role",
 "hashKeyField": "topic",
 "hashKeyValue": "${topic(2)}",
 "rangeKeyField": "timestamp",
 "rangeKeyValue": "${timestamp()}"
 }
 }]

Creating an AWS IoT rule 773

https://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Core Developer Guide

}

The following is an example payload file with a rule that inserts all messages sent to the iot/test
topic into the specified S3 bucket. The SQL statement filters the messages, and the role ARN grants
AWS IoT permission to write to the Amazon S3 bucket.

{
 "awsIotSqlVersion": "2016-03-23",
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "actions": [
 {
 "s3": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_s3",
 "bucketName": "my-bucket",
 "key": "myS3Key"
 }
 }
]
}

The following is an example payload file with a rule that pushes data to Amazon OpenSearch
Service:

{
 "sql":"SELECT *, timestamp() as timestamp FROM 'iot/test'",
 "ruleDisabled":false,
 "awsIotSqlVersion": "2016-03-23",
 "actions":[
 {
 "OpenSearch":{
 "roleArn":"arn:aws:iam::123456789012:role/aws_iot_es",
 "endpoint":"https://my-endpoint",
 "index":"my-index",
 "type":"my-type",
 "id":"${newuuid()}"
 }
 }
]
}

The following is an example payload file with a rule that invokes a Lambda function:

Creating an AWS IoT rule 774

AWS IoT Core Developer Guide

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "lambda": {
 "functionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-lambda-
function"
 }
 }]
}

The following is an example payload file with a rule that publishes to an Amazon SNS topic:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:my-sns-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

The following is an example payload file with a rule that republishes on a different MQTT topic:

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "republish": {
 "topic": "my-mqtt-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

The following is an example payload file with a rule that pushes data to an Amazon Data Firehose
stream:

Creating an AWS IoT rule 775

AWS IoT Core Developer Guide

{
 "sql": "SELECT * FROM 'my-topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "firehose": {
 "roleArn": ""arn:aws:iam::123456789012:role/my-iot-role",
 "deliveryStreamName": "my-stream-name"
 }
 }]
}

The following is an example payload file with a rule that uses the Amazon SageMaker
machinelearning_predict function to republish to a topic if the data in the MQTT payload is
classified as a 1.

{
 "sql": "SELECT * FROM 'iot/test' where machinelearning_predict('my-model',
 'arn:aws:iam::123456789012:role/my-iot-aml-role', *).predictedLabel=1",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "republish": {
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role",
 "topic": "my-mqtt-topic"
 }
 }]
}

The following is an example payload file with a rule that publishes messages to a Salesforce IoT
Cloud input stream.

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "salesforce": {
 "token": "ABCDEFGHI123456789abcdefghi123456789",
 "url": "https://ingestion-cluster-id.my-env.sfdcnow.com/streams/stream-id/
connection-id/my-event"
 }

Creating an AWS IoT rule 776

AWS IoT Core Developer Guide

 }]
}

The following is an example payload file with a rule that starts an execution of a Step Functions
state machine.

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "stepFunctions": {
 "stateMachineName": "myCoolStateMachine",
 "executionNamePrefix": "coolRunning",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

Tagging your rules

To add another layer of specificity to your new or existing rules, you can apply tagging. Tagging
leverages key-value pairs in your rules to provide you with greater control over how and where
your rules are applied to your AWS IoT resources and services. For example, you can limit the scope
of your rule to only apply in your beta environment for pre release testing (Key=environment,
Value=beta) or capturing all messages sent to the iot/test topic from a specific endpoint only
and storing them in an Amazon S3 bucket.

IAM policy example

For an example that shows how to grant tagging permissions for a rule, consider a user that runs
the following command to create a rule and tag it to apply only to their beta environment.

In the example, replace:

• MyTopicRuleName with the name of the rule.

• myrule.json with the name of the policy document.

aws iot create-topic-rule

Tagging your rules 777

AWS IoT Core Developer Guide

 --rule-name MyTopicRuleName
 --topic-rule-payload file://myrule.json
 --tags "environment=beta"

For this example, you must use the following IAM policy:

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Action": ["iot:CreateTopicRule", "iot:TagResource"],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:rule/MyTopicRuleName"
]
 }
}

The above example shows a newly created rule called MyTopicRuleName that applies only to
your beta environment. The iot:TagResource in the policy statement with MyTopicRuleName
specifically called out allows tagging when creating or updating MyTopicRuleName. The
parameter --tags "environment=beta" used when creating the rule limits the scope of
MyTopicRuleName to only your beta environment. If you remove the parameter --tags
"environment=beta", then MyTopicRuleName will apply to all environments.

For more information on creating IAM roles and policies specific to an AWS IoT rule, see Granting
an AWS IoT rule the access it requires

For general information about tagging your resources, see Tagging your AWS IoT resources.

Viewing your rules

Use the list-topic-rules command to list your rules:

aws iot list-topic-rules

Use the get-topic-rule command to get information about a rule:

aws iot get-topic-rule --rule-name myrule

Viewing your rules 778

https://docs.aws.amazon.com/cli/latest/reference/iot/list-topic-rules.html
https://docs.aws.amazon.com/cli/latest/reference/iot/get-topic-rule.html

AWS IoT Core Developer Guide

Deleting a rule

When you are finished with a rule, you can delete it.

To delete a rule (AWS CLI)

Use the delete-topic-rule command to delete a rule:

aws iot delete-topic-rule --rule-name myrule

AWS IoT rule actions

AWS IoT rule actions specify what to do when a rule is invoked. You can define actions to send data
to an Amazon DynamoDB database, send data to Amazon Kinesis Data Streams, invoke an AWS
Lambda function, and so on. AWS IoT supports the following actions in AWS Regions where the
action's service is available.

Rule action Description Name in API

Apache Kafka Sends a message to an
Apache Kafka cluster.

kafka

CloudWatch alarms Changes the state of an
Amazon CloudWatch alarm.

cloudwatchAlarm

CloudWatch Logs Sends a message to Amazon
CloudWatch Logs.

cloudwatchLogs

CloudWatch metrics Sends a message to a
CloudWatch metric.

cloudwatchMetric

DynamoDB Sends a message to a
DynamoDB table.

dynamoDB

DynamoDBv2 Sends message data to
multiple columns in a
DynamoDB table.

dynamoDBv2

Deleting a rule 779

https://docs.aws.amazon.com/cli/latest/reference/iot/delete-topic-rule.html

AWS IoT Core Developer Guide

Rule action Description Name in API

Elasticsearch Sends a message to an
OpenSearch endpoint.

OpenSearch

HTTP Posts a message to an HTTPS
endpoint.

http

IoT Analytics Sends a message to an AWS
IoT Analytics channel.

iotAnalytics

AWS IoT Events Sends a message to an AWS
IoT Events input.

iotEvents

AWS IoT SiteWise Sends message data to AWS
IoT SiteWise asset properties.

iotSiteWise

Firehose Sends a message to a
Firehose delivery stream.

firehose

Kinesis Data Streams Sends a message to a Kinesis
data stream.

kinesis

Lambda Invokes a Lambda function
with message data as input.

lambda

Location Sends location data to
Amazon Location Service.

location

OpenSearch Sends a message to an
Amazon OpenSearch Service
endpoint.

OpenSearch

Republish Republishes a message to
another MQTT topic.

republish

S3 Stores a message in an
Amazon Simple Storage
Service (Amazon S3) bucket.

s3

AWS IoT rule actions 780

AWS IoT Core Developer Guide

Rule action Description Name in API

Salesforce IoT Sends a message to a
Salesforce IoT input stream.

salesforce

SNS Publishes a message as an
Amazon Simple Notification
Service (Amazon SNS) push
notification.

sns

SQS Sends a message to an
Amazon Simple Queue
Service (Amazon SQS) queue.

sqs

Step Functions Starts an AWS Step Functions
state machine.

stepFunctions

the section called “Timestre
am”

Sends a message to an
Amazon Timestream database
table.

timestream

Notes

• Define the rule in the same AWS Region as another service's resource so that the rule
action can interact with that resource.

• The AWS IoT rules engine might make multiple attempts to perform an action if
intermittent errors occur. If all attempts fail, the message is discarded and the error is
available in your CloudWatch Logs. You can specify an error action for each rule that is
invoked after a failure occurs. For more information, see Error handling (error action).

• Some rule actions activate actions in services that integrate with AWS Key Management
Service (AWS KMS) to support data encryption at rest. If you use a customer-managed
AWS KMS key (KMS key) to encrypt data at rest, the service must have permission
to use the KMS key on the caller's behalf. To learn how to manage permissions for
your customer managed KMS key, see the data encryption topics in the appropriate

AWS IoT rule actions 781

AWS IoT Core Developer Guide

service guide. For more information about customer managed KMS keys, see AWS Key
Management Service concepts in the AWS Key Management Service Developer Guide.

Apache Kafka

The Apache Kafka (Kafka) action sends messages directly to your Amazon Managed Streaming
for Apache Kafka (Amazon MSK), Apache Kafka clusters managed by third-party providers such as
Confluent Cloud, or self-managed Apache Kafka clusters for data analysis and visualization.

Note

This topic assumes familiarity with the Apache Kafka platform and related concepts. For
more information about Apache Kafka, see Apache Kafka. MSK Serverless is not supported.
MSK Serverless clusters can only be done via IAM authentication, which Apache Kafka rule
action doesn't currently support.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the ec2:CreateNetworkInterface,
ec2:DescribeNetworkInterfaces, ec2:CreateNetworkInterfacePermission,
ec2:DeleteNetworkInterface, ec2:DescribeSubnets, ec2:DescribeVpcs,
ec2:DescribeVpcAttribute, and ec2:DescribeSecurityGroups operations. This role
creates and manages elastic network interfaces to your Amazon Virtual Private Cloud to reach
your Kafka broker. For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT Core to perform this
rule action.

For more information about network interfaces, see Elastic network interfaces in the Amazon
EC2 User Guide.

The policy attached to the role that you specify should look like the following example.

{
 "Version": "2012-10-17",

Apache Kafka 782

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://www.confluent.io/
https://kafka.apache.org/
https://docs.aws.amazon.com/msk/latest/developerguide/serverless.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

AWS IoT Core Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpcAttribute",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }
]
}

• If you use AWS Secrets Manager to store the credentials required to connect to your
Kafka broker, you must create an IAM role that AWS IoT Core can assume to perform the
secretsmanager:GetSecretValue and secretsmanager:DescribeSecret operations.

The policy attached to the role that you specify should look like the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": [

 "arn:aws:secretsmanager:region:123456789012:secret:kafka_client_truststore-*",
 "arn:aws:secretsmanager:region:123456789012:secret:kafka_keytab-*"
]
 }
]
}

Apache Kafka 783

AWS IoT Core Developer Guide

• You can run your Apache Kafka clusters inside Amazon Virtual Private Cloud (Amazon VPC). You
must create an Amazon VPC destination and use an NAT gateway in your subnets to forward
messages from AWS IoT to a public Kafka cluster. The AWS IoT rules engine creates a network
interface in each of the subnets listed in the VPC destination to route traffic directly to the VPC.
When you create a VPC destination, the AWS IoT rules engine automatically creates a VPC rule
action. For more information about VPC rule actions, see Virtual private cloud (VPC) destinations.

• If you use a customer managed AWS KMS key (KMS key) to encrypt data at rest, the service must
have permission to use the KMS key on the caller's behalf. For more information, see Amazon
MSK encryption in the Amazon Managed Streaming for Apache Kafka Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

destinationArn

The Amazon Resource Name (ARN) of the VPC destination. For information about creating a
VPC destination, see Virtual private cloud (VPC) destinations.

topic

The Kafka topic for messages to be sent to the Kafka broker.

You can substitute this field using a substitution template. For more information, see the
section called “Substitution templates”.

key (optional)

The Kafka message key.

You can substitute this field using a substitution template. For more information, see the
section called “Substitution templates”.

headers (optional)

The list of Kafka headers that you specify. Each header is a key-value pair that you can specify
when you create a Kafka action. You can use these headers to route data from IoT clients to
downstream Kafka clusters without modifying your message payload.

You can substitute this field using a substitution template. To understand how to pass an inline
Rule's function as a substitution template in Kafka Action's header, see Examples. For more
information, see the section called “Substitution templates”.

Apache Kafka 784

https://docs.aws.amazon.com/msk/latest/developerguide/msk-encryption.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-encryption.html

AWS IoT Core Developer Guide

Note

Headers in binary format are not supported.

partition (optional)

The Kafka message partition.

You can substitute this field using a substitution template. For more information, see the
section called “Substitution templates”.

clientProperties

An object that defines the properties of the Apache Kafka producer client.

acks (optional)

The number of acknowledgments the producer requires the server to have received before
considering a request complete.

If you specify 0 as the value, the producer won't wait for any acknowledgment from the
server. If the server doesn't receive the message, the producer won't retry to send the
message.

Valid values: -1, 0, 1, all. The default value is 1.

bootstrap.servers

A list of host and port pairs (for example, host1:port1, host2:port2) used to establish
the initial connection to your Kafka cluster.

compression.type (optional)

The compression type for all data generated by the producer.

Valid values: none, gzip, snappy, lz4, zstd. The default value is none.

security.protocol

The security protocol used to attach to your Kafka broker.

Valid values: SSL, SASL_SSL. The default value is SSL.

Apache Kafka 785

AWS IoT Core Developer Guide

key.serializer

Specifies how to turn the key objects that you provide with theProducerRecord into bytes.

Valid value: StringSerializer.

value.serializer

Specifies how to turn value objects that you provide with the ProducerRecord into bytes.

Valid value: ByteBufferSerializer.

ssl.truststore

The truststore file in base64 format or the location of the truststore file in AWS Secrets
Manager. This value isn't required if your truststore is trusted by Amazon certificate
authorities (CA).

This field supports substitution templates. If you use Secrets Manager to store the
credentials required to connect to your Kafka broker, you can use the get_secret SQL
function to retrieve the value for this field. For more information about substitution
templates, see the section called “Substitution templates”. For more information about
the get_secret SQL function, see the section called “get_secret(secretId, secretType, key,
roleArn)”. If the truststore is in the form of a file, use the SecretBinary parameter. If the
truststore is in the form of a string, use the SecretString parameter.

The maximum size of this value is 65 KB.

ssl.truststore.password

The password for the truststore. This value is required only if you've created a password for
the truststore.

ssl.keystore

The keystore file. This value is required when you specify SSL as the value for
security.protocol.

This field supports substitution templates. Use Secrets Manager to store the credentials
required to connect to your Kafka broker. To retrieve the value for this field, use the
get_secret SQL function. For more information about substitution templates, see the
section called “Substitution templates”. For more information about the get_secret SQL
function, see the section called “get_secret(secretId, secretType, key, roleArn)”. Use the
SecretBinary parameter.

Apache Kafka 786

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/

AWS IoT Core Developer Guide

ssl.keystore.password

The store password for the keystore file. This value is required if you specify a value for
ssl.keystore.

The value of this field can be plaintext . This field also supports substitution templates.
Use Secrets Manager to store the credentials required to connect to your Kafka broker.
To retrieve the value for this field, use the get_secret SQL function. For more
information about substitution templates, see the section called “Substitution templates”.
For more information about the get_secret SQL function, see the section called
“get_secret(secretId, secretType, key, roleArn)”. Use the SecretString parameter.

ssl.key.password

The password of the private key in your keystore file.

This field supports substitution templates. Use Secrets Manager to store the credentials
required to connect to your Kafka broker. To retrieve the value for this field, use the
get_secret SQL function. For more information about substitution templates, see the
section called “Substitution templates”. For more information about the get_secret SQL
function, see the section called “get_secret(secretId, secretType, key, roleArn)”. Use the
SecretString parameter.

sasl.mechanism

The security mechanism used to connect to your Kafka broker. This value is required when
you specify SASL_SSL for security.protocol.

Valid values: PLAIN, SCRAM-SHA-512, GSSAPI.

Note

SCRAM-SHA-512 is the only supported security mechanism in the cn-north-1, cn-
northwest-1, us-gov-east-1, and us-gov-west-1 Regions.

sasl.plain.username

The username used to retrieve the secret string from Secrets Manager. This value is required
when you specify SASL_SSL for security.protocol and PLAIN for sasl.mechanism.

Apache Kafka 787

AWS IoT Core Developer Guide

sasl.plain.password

The password used to retrieve the secret string from Secrets Manager. This value is required
when you specify SASL_SSL for security.protocol and PLAIN for sasl.mechanism.

sasl.scram.username

The username used to retrieve the secret string from Secrets Manager. This value is
required when you specify SASL_SSL for security.protocol and SCRAM-SHA-512 for
sasl.mechanism.

sasl.scram.password

The password used to retrieve the secret string from Secrets Manager. This value is
required when you specify SASL_SSL for security.protocol and SCRAM-SHA-512 for
sasl.mechanism.

sasl.kerberos.keytab

The keytab file for Kerberos authentication in Secrets Manager. This value is required when
you specify SASL_SSL for security.protocol and GSSAPI for sasl.mechanism.

This field supports substitution templates. Use Secrets Manager to store the credentials
required to connect to your Kafka broker. To retrieve the value for this field, use the
get_secret SQL function. For more information about substitution templates, see the
section called “Substitution templates”. For more information about the get_secret SQL
function, see the section called “get_secret(secretId, secretType, key, roleArn)”. Use the
SecretBinary parameter.

sasl.kerberos.service.name

The Kerberos principal name under which Apache Kafka runs. This value is required when
you specify SASL_SSL for security.protocol and GSSAPI for sasl.mechanism.

sasl.kerberos.krb5.kdc

The hostname of the key distribution center (KDC) to which your Apache Kafka
producer client connects. This value is required when you specify SASL_SSL for
security.protocol and GSSAPI for sasl.mechanism.

sasl.kerberos.krb5.realm

The realm to which your Apache Kafka producer client connects. This value is required when
you specify SASL_SSL for security.protocol and GSSAPI for sasl.mechanism.

Apache Kafka 788

AWS IoT Core Developer Guide

sasl.kerberos.principal

The unique Kerberos identity to which Kerberos can assign tickets to access Kerberos-aware
services. This value is required when you specify SASL_SSL for security.protocol and
GSSAPI for sasl.mechanism.

Examples

The following JSON example defines an Apache Kafka action in an AWS IoT rule. The following
example passes the sourceIp() inline function as a substitution template in the Kafka Action
header.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "kafka": {
 "destinationArn": "arn:aws:iot:region:123456789012:ruledestination/vpc/
VPCDestinationARN",
 "topic": "TopicName",
 "clientProperties": {
 "bootstrap.servers": "kafka.com:9092",
 "security.protocol": "SASL_SSL",
 "ssl.truststore": "${get_secret('kafka_client_truststore',
 'SecretBinary','arn:aws:iam::123456789012:role/kafka-get-secret-role-name')}",
 "ssl.truststore.password": "kafka password",
 "sasl.mechanism": "GSSAPI",
 "sasl.kerberos.service.name": "kafka",
 "sasl.kerberos.krb5.kdc": "kerberosdns.com",
 "sasl.kerberos.keytab": "${get_secret('kafka_keytab','SecretBinary',
 'arn:aws:iam::123456789012:role/kafka-get-secret-role-name')}",
 "sasl.kerberos.krb5.realm": "KERBEROSREALM",
 "sasl.kerberos.principal": "kafka-keytab/kafka-keytab.com"
 },
 "headers": [
 {
 "key": "static_header_key",
 "value": "static_header_value"
 },

Apache Kafka 789

https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

AWS IoT Core Developer Guide

 {
 "key": "substitutable_header_key",
 "value": "${value_from_payload}"
 },
 {
 "key": "source_ip",
 "value": "${sourceIp()}"
 }
]
 }
 }
]
 }
}

Important notes about your Kerberos setup

• Your key distribution center (KDC) must be resolvable through private Domain Name System
(DNS) within your target VPC. One possible approach is to add the KDC DNS entry to a private
hosted zone. For more information about this approach, see Working with private hosted zones.

• Each VPC must have DNS resolution enabled. For more information, see Using DNS with your
VPC.

• Network interface security groups and instance-level security groups in the VPC destination must
allow traffic from within your VPC on the following ports.

• TCP traffic on the bootstrap broker listener port (often 9092, but must be within the 9000–
9100 range)

• TCP and UDP traffic on port 88 for the KDC

• SCRAM-SHA-512 is the only supported security mechanism in the cn-north-1, cn-northwest-1,
us-gov-east-1, and us-gov-west-1 Regions.

Virtual private cloud (VPC) destinations

The Apache Kafka rule action routes data to an Apache Kafka cluster in an Amazon Virtual Private
Cloud (Amazon VPC). The VPC configuration used by the Apache Kafka rule action is automatically
enabled when you specify the VPC destination for your rule action.

A VPC destination contains a list of subnets inside the VPC. The rules engine creates an elastic
network interface in each subnet that you specify in this list. For more information about network
interfaces, see Elastic network interfaces in the Amazon EC2 User Guide.

Apache Kafka 790

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

AWS IoT Core Developer Guide

Requirements and considerations

• If you're using a self-managed Apache Kafka cluster that will be accessed using a public endpoint
across the internet:

• Create a NAT gateway for instances in your subnets. The NAT gateway has a public IP address
that can connect to the internet, which allows the rules engine to forward your messages to
the public Kafka cluster.

• Allocate an Elastic IP address with the elastic network interfaces (ENIs) that are created by
the VPC destination. The security groups that you use must be configured to block incoming
traffic.

Note

If the VPC destination is disabled and then re-enabled, you must re-associate the
elastic IPs with the new ENIs.

• If a VPC topic rule destination doesn't receive any traffic for 30 days in a row, it will be disabled.

• If any resources used by the VPC destination change, the destination will be disabled and unable
to be used.

• Some changes that can disable a VPC destination include: deleting the VPC, subnets, security
groups, or the role used; modifying the role to no longer have the necessary permissions; and
disabling the destination.

Pricing

For pricing purposes, a VPC rule action is metered in addition to the action that sends a message to
a resource when the resource is in your VPC. For pricing information, see AWS IoT Core pricing.

Creating virtual private cloud (VPC) topic rule destinations

You create a virtual private cloud (VPC) destination by using the CreateTopicRuleDestination API or
the AWS IoT Core console.

When you create a VPC destination, you must specify the following information.

vpcId

The unique ID of the VPC destination.

Apache Kafka 791

https://aws.amazon.com/iot-core/pricing/
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateTopicRuleDestination.html

AWS IoT Core Developer Guide

subnetIds

A list of subnets in which the rules engine creates elastic network interfaces. The rules engine
allocates a single network interface for each subnet in the list.

securityGroups (optional)

A list of security groups to apply to the network interfaces.

roleArn

The Amazon Resource Name (ARN) of a role that has permission to create network interfaces on
your behalf.

This ARN should have a policy attached to it that looks like the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcAttribute",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateNetworkInterfacePermission",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/VPCDestinationENI": "true"
 }
 }
 },
 {
 "Effect": "Allow",

Apache Kafka 792

AWS IoT Core Developer Guide

 "Action": [
 "ec2:CreateTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateNetworkInterface",
 "aws:RequestTag/VPCDestinationENI": "true"
 }
 }
 }
]
}

Creating a VPC destination by using AWS CLI

The following example shows how to create a VPC destination by using AWS CLI.

aws --region regions iot create-topic-rule-destination --destination-configuration
 'vpcConfiguration={subnetIds=["subnet-
123456789101230456"],securityGroups=[],vpcId="vpc-
123456789101230456",roleArn="arn:aws:iam::123456789012:role/role-name"}'

After you run this command, the VPC destination status will be IN_PROGRESS. After a few
minutes, its status will change to either ERROR (if the command isn't successful) or ENABLED. When
the destination status is ENABLED, it's ready to use.

You can use the following command to get the status of your VPC destination.

aws --region region iot get-topic-rule-destination --arn "VPCDestinationARN"

Creating a VPC destination by using the AWS IoT Core console

The following steps describe how to create a VPC destination by using the AWS IoT Core console.

1. Navigate to the AWS IoT Core console. In the left pane, on the Act tab, choose Destinations.

Apache Kafka 793

AWS IoT Core Developer Guide

2. Enter values for the following fields.

• VPC ID

• Subnet IDs

• Security Group

3. Select a role that has the permissions required to create network interfaces. The preceding
example policy contains these permissions.

When the VPC destination status is ENABLED, it's ready to use.

CloudWatch alarms

The CloudWatch alarm (cloudWatchAlarm) action changes the state of an Amazon CloudWatch
alarm. You can specify the state change reason and value in this call.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the cloudwatch:SetAlarmState operation.
For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

alarmName

The CloudWatch alarm name.

Supports substitution templates: API and AWS CLI only

stateReason

Reason for the alarm change.

Supports substitution templates: Yes

CloudWatch alarms 794

AWS IoT Core Developer Guide

stateValue

The value of the alarm state. Valid values: OK, ALARM, INSUFFICIENT_DATA.

Supports substitution templates: Yes

roleArn

The IAM role that allows access to the CloudWatch alarm. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a CloudWatch alarm action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "cloudwatchAlarm": {
 "alarmName": "IotAlarm",
 "stateReason": "Temperature stabilized.",
 "stateValue": "OK",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw"
 }
 }
]
 }
}

See also

• What is Amazon CloudWatch? in the Amazon CloudWatch User Guide

• Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide

CloudWatch alarms 795

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS IoT Core Developer Guide

CloudWatch Logs

The CloudWatch Logs (cloudwatchLogs) action sends data to Amazon CloudWatch Logs. You can
use batchMode to upload and timestamp multiple device log records in one message. You can also
specify the log group where the action sends data.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the logs:CreateLogStream,
logs:DescribeLogStreams, and logs:PutLogEvents operations. For more information, see
Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use a customer managed AWS KMS key (KMS key) to encrypt log data in CloudWatch
Logs, the service must have permission to use the KMS key on the caller's behalf. For more
information, see Encrypt log data in CloudWatch Logs using AWS KMS in the Amazon
CloudWatch Logs User Guide.

MQTT message format requirements for batchMode

If you use the CloudWatch Logs rule action with batchMode turned off, there are no MQTT
message formatting requirements. (Note: the batchMode parameter's default value is false.)
However, if you use the CloudWatch Logs rule action with batchMode turned on (the parameter
value is true), MQTT messages containing device-side logs must be formatted to contain a
timestamp and a message payload. Note: timestamp represents the time that the event occurred
and is expressed as a number of milliseconds after January 1, 1970 00:00:00 UTC.

The following is an example of the publish format:

[
 {"timestamp": 1673520691093, "message": "Test message 1"},
 {"timestamp": 1673520692879, "message": "Test message 2"},
 {"timestamp": 1673520693442, "message": "Test message 3"}
]

CloudWatch Logs 796

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

AWS IoT Core Developer Guide

Depending on how the device-side logs are generated, they might need to be filtered and
reformatted before they're sent to comply with this requirement. For more information, see MQTT
Message payload.

Independent of the batchMode parameter, message contents must comply with AWS IoT message
size limitations. For more information, see AWS IoT Core endpoints and quotas.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

logGroupName

The CloudWatch log group where the action sends data.

Supports substitution templates: API and AWS CLI only

roleArn

The IAM role that allows access to the CloudWatch log group. For more information, see
Requirements.

Supports substitution templates: No

(optional) batchMode

Indicates whether batches of log records will be extracted and uploaded into CloudWatch.
Values include true or false (default). For more information, see Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a CloudWatch Logs action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "cloudwatchLogs": {

CloudWatch Logs 797

https://docs.aws.amazon.com/iot/latest/developerguide/topicdata.html
https://docs.aws.amazon.com/iot/latest/developerguide/topicdata.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html

AWS IoT Core Developer Guide

 "logGroupName": "IotLogs",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw",
 "batchMode": false
 }
 }
]
 }
}

See also

• What is Amazon CloudWatch Logs? in the Amazon CloudWatch Logs User Guide

CloudWatch metrics

The CloudWatch metric (cloudwatchMetric) action captures an Amazon CloudWatch metric. You
can specify the metric namespace, name, value, unit, and timestamp.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the cloudwatch:PutMetricData operation.
For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

metricName

The CloudWatch metric name.

Supports substitution templates: Yes

metricNamespace

The CloudWatch metric namespace name.

CloudWatch metrics 798

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/

AWS IoT Core Developer Guide

Supports substitution templates: Yes

metricUnit

The metric unit supported by CloudWatch.

Supports substitution templates: Yes

metricValue

A string that contains the CloudWatch metric value.

Supports substitution templates: Yes

metricTimestamp

(Optional) A string that contains the timestamp, expressed in seconds in Unix epoch time.
Defaults to the current Unix epoch time.

Supports substitution templates: Yes

roleArn

The IAM role that allows access to the CloudWatch metric. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a CloudWatch metric action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "cloudwatchMetric": {
 "metricName": "IotMetric",
 "metricNamespace": "IotNamespace",
 "metricUnit": "Count",
 "metricValue": "1",
 "metricTimestamp": "1456821314",

CloudWatch metrics 799

AWS IoT Core Developer Guide

 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw"
 }
 }
]
 }
}

The following JSON example defines a CloudWatch metric action with substitution templates in an
AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "cloudwatchMetric": {
 "metricName": "${topic()}",
 "metricNamespace": "${namespace}",
 "metricUnit": "${unit}",
 "metricValue": "${value}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_cw"
 }
 }
]
 }
}

See also

• What is Amazon CloudWatch? in the Amazon CloudWatch User Guide

• Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide

DynamoDB

The DynamoDB (dynamoDB) action writes all or part of an MQTT message to an Amazon
DynamoDB table.

You can follow a tutorial that shows you how to create and test a rule with a DynamoDB action. For
more information, see Tutorial: Storing device data in a DynamoDB table.

DynamoDB 800

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

AWS IoT Core Developer Guide

Note

This rule writes non-JSON data to DynamoDB as binary data. The DynamoDB console
displays the data as base64-encoded text.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the dynamodb:PutItem operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use a customer managed AWS KMS key (KMS key) to encrypt data at rest in DynamoDB,
the service must have permission to use the KMS key on the caller's behalf. For more
information, see Customer Managed KMS key in the Amazon DynamoDB Getting Started Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

tableName

The name of the DynamoDB table.

Supports substitution templates: API and AWS CLI only

hashKeyField

The name of the hash key (also called the partition key).

Supports substitution templates: API and AWS CLI only

hashKeyType

(Optional) The data type of the hash key (also called the partition key). Valid values: STRING,
NUMBER.

Supports substitution templates: API and AWS CLI only

DynamoDB 801

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html#managed-cmk-customer-managed

AWS IoT Core Developer Guide

hashKeyValue

The value of the hash key. Consider using a substitution template such as ${topic()} or
${timestamp()}.

Supports substitution templates: Yes

rangeKeyField

(Optional) The name of the range key (also called the sort key).

Supports substitution templates: API and AWS CLI only

rangeKeyType

(Optional) The data type of the range key (also called the sort key). Valid values: STRING,
NUMBER.

Supports substitution templates: API and AWS CLI only

rangeKeyValue

(Optional) The value of the range key. Consider using a substitution template such as
${topic()} or ${timestamp()}.

Supports substitution templates: Yes

payloadField

(Optional) The name of the column where the payload is written. If you omit this value, the
payload is written to the column named payload.

Supports substitution templates: Yes

operation

(Optional) The type of operation to be performed. Valid values: INSERT, UPDATE, DELETE.

Supports substitution templates: Yes

roleARN

The IAM role that allows access to the DynamoDB table. For more information, see
Requirements.

DynamoDB 802

AWS IoT Core Developer Guide

Supports substitution templates: No

The data written to the DynamoDB table is the result from the SQL statement of the rule.

Examples

The following JSON example defines a DynamoDB action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * AS message FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "dynamoDB": {
 "tableName": "my_ddb_table",
 "hashKeyField": "key",
 "hashKeyValue": "${topic()}",
 "rangeKeyField": "timestamp",
 "rangeKeyValue": "${timestamp()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_dynamoDB"
 }
 }
]
 }
}

See also

• What is Amazon DynamoDB? in the Amazon DynamoDB Developer Guide

• Getting started with DynamoDB in the Amazon DynamoDB Developer Guide

• Tutorial: Storing device data in a DynamoDB table

DynamoDBv2

The DynamoDBv2 (dynamoDBv2) action writes all or part of an MQTT message to an Amazon
DynamoDB table. Each attribute in the payload is written to a separate column in the DynamoDB
database.

DynamoDBv2 803

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

AWS IoT Core Developer Guide

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the dynamodb:PutItem operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• The MQTT message payload must contain a root-level key that matches the table's primary
partition key and a root-level key that matches the table's primary sort key, if one is defined.

• If you use a customer managed AWS KMS key (KMS key) to encrypt data at rest in DynamoDB,
the service must have permission to use the KMS key on the caller's behalf. For more
information, see Customer Managed KMS key in the Amazon DynamoDB Getting Started Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

putItem

An object that specifies the DynamoDB table to which the message data will be written. This
object must contain the following information:

tableName

The name of the DynamoDB table.

Supports substitution templates: API and AWS CLI only

roleARN

The IAM role that allows access to the DynamoDB table. For more information, see
Requirements.

Supports substitution templates: No

The data written to the DynamoDB table is the result from the SQL statement of the rule.

Examples

The following JSON example defines a DynamoDBv2 action in an AWS IoT rule.

DynamoDBv2 804

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html#managed-cmk-customer-managed

AWS IoT Core Developer Guide

{
 "topicRulePayload": {
 "sql": "SELECT * AS message FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "dynamoDBv2": {
 "putItem": {
 "tableName": "my_ddb_table"
 },
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_dynamoDBv2",
 }
 }
]
 }
}

The following JSON example defines a DynamoDB action with substitution templates in an AWS
IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2015-10-08",
 "actions": [
 {
 "dynamoDBv2": {
 "putItem": {
 "tableName": "${topic()}"
 },
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_dynamoDBv2"
 }
 }
]
 }
}

See also

• What is Amazon DynamoDB? in the Amazon DynamoDB Developer Guide

DynamoDBv2 805

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

AWS IoT Core Developer Guide

• Getting started with DynamoDB in the Amazon DynamoDB Developer Guide

Elasticsearch

The Elasticsearch (elasticsearch) action writes data from MQTT messages to an Amazon
OpenSearch Service domain. You can then use tools like OpenSearch Dashboards to query and
visualize data in OpenSearch Service.

Warning

The Elasticsearch action can only be used by existing rule actions. To create a new rule
action or to update an existing rule action, use the OpenSearch rule action instead. For
more information, see OpenSearch.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the es:ESHttpPut operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use a customer managed AWS KMS key (KMS key) to encrypt data at rest in OpenSearch,
the service must have permission to use the KMS key on the caller's behalf. For more
information, see Encryption of data at rest for Amazon OpenSearch Service in the Amazon
OpenSearch Service Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

endpoint

The endpoint of your service domain.

Supports substitution templates: API and AWS CLI only

Elasticsearch 806

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/encryption-at-rest.html

AWS IoT Core Developer Guide

index

The index where you want to store your data.

Supports substitution templates: Yes

type

The type of document you are storing.

Supports substitution templates: Yes

id

The unique identifier for each document.

Supports substitution templates: Yes

roleARN

The IAM role that allows access to the OpenSearch Service domain. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines an Elasticsearch action in an AWS IoT rule and how you can
specify the fields for the elasticsearch action. For more information, see ElasticsearchAction.

{
 "topicRulePayload": {
 "sql": "SELECT *, timestamp() as timestamp FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "elasticsearch": {
 "endpoint": "https://my-endpoint",
 "index": "my-index",
 "type": "my-type",
 "id": "${newuuid()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_es"
 }
 }

Elasticsearch 807

https://docs.aws.amazon.com/iot/latest/apireference/API_ElasticsearchAction.html

AWS IoT Core Developer Guide

]
 }
}

The following JSON example defines an Elasticsearch action with substitution templates in an AWS
IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "elasticsearch": {
 "endpoint": "https://my-endpoint",
 "index": "${topic()}",
 "type": "${type}",
 "id": "${newuuid()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_es"
 }
 }
]
 }
}

See also

• OpenSearch

• What is Amazon OpenSearch Service?

HTTP

The HTTPS (http) action sends data from an MQTT message to a web application or service.

Requirements

This rule action has the following requirements:

• You must confirm and enable HTTPS endpoints before the rules engine can use them. For more
information, see Working with HTTP topic rule destinations.

HTTP 808

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/

AWS IoT Core Developer Guide

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

url

The HTTPS endpoint where the message is sent using the HTTP POST method. If you use an IP
address in place of a hostname, it must be an IPv4 address. IPv6 addresses are not supported.

Supports substitution templates: Yes

confirmationUrl

(Optional) If specified, AWS IoT uses the confirmation URL to create a matching topic rule
destination. You must enable the topic rule destination before using it in an HTTP action.
For more information, see Working with HTTP topic rule destinations. If you use substitution
templates, you must manually create topic rule destinations before the http action can be
used. confirmationUrl must be a prefix of url.

The relationship between url and confirmationUrl is described by the following:

• If url is hardcoded and confirmationUrl is not provided, we implicitly treat the url field
as the confirmationUrl. AWS IoT creates a topic rule destination for url.

• If url and confirmationUrl are hardcoded, url must begin with confirmationUrl. AWS
IoT creates a topic rule destination for confirmationUrl.

• If url contains a substitution template, you must specify confirmationUrl and url must
begin with confirmationUrl. If confirmationUrl contains substitution templates,
you must manually create topic rule destinations before the http action can be used. If
confirmationUrl does not contain substitution templates, AWS IoT creates a topic rule
destination for confirmationUrl.

Supports substitution templates: Yes

headers

(Optional) The list of headers to include in HTTP requests to the endpoint. Each header must
contain the following information:

key

The key of the header.

Supports substitution templates: No

HTTP 809

AWS IoT Core Developer Guide

value

The value of the header.

Supports substitution templates: Yes

Note

The default content type is application/json when the payload is in JSON format.
Otherwise, it is application/octet-stream. You can overwrite it by specifying the exact
content type in the header with the key content-type (case insensitive).

auth

(Optional) The authentication used by the rules engine to connect to the endpoint URL
specified in the url argument. Currently, Signature Version 4 is the only supported
authentication type. For more information, see HTTP Authorization.

Supports substitution templates: No

Examples

The following JSON example defines an AWS IoT rule with an HTTP action.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "http": {
 "url": "https://www.example.com/subpath",
 "confirmationUrl": "https://www.example.com",
 "headers": [
 {
 "key": "static_header_key",
 "value": "static_header_value"
 },
 {

HTTP 810

https://docs.aws.amazon.com/iot/latest/apireference/API_HttpAuthorization.html

AWS IoT Core Developer Guide

 "key": "substitutable_header_key",
 "value": "${value_from_payload}"
 }
]
 }
 }
]
 }
}

HTTP action retry logic

The AWS IoT rules engine retries the HTTP action according to these rules:

• The rules engine tries to send a message at least once.

• The rules engine retries at most twice. The maximum number of tries is three.

• The rules engine does not attempt a retry if:

• The previous try provided a response larger than 16,384 bytes.

• The downstream web service or application closes the TCP connection after the try.

• The total time to complete a request with retries exceeded the request timeout limit.

• The request returns an HTTP status code other than 429, 500-599.

Note

Standard data transfer costs apply to retries.

See also

• Working with HTTP topic rule destinations

• Route data directly from AWS IoT Core to your web services in the Internet of Things on AWS blog

Working with HTTP topic rule destinations

An HTTP topic rule destination is a web service to which the rules engine can route data from a
topic rule. An AWS IoT Core resource describes the web service for AWS IoT. Topic rule destination
resources can be shared by different rules.

HTTP 811

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/blogs/iot/route-data-directly-from-iot-core-to-your-web-services/

AWS IoT Core Developer Guide

Before AWS IoT Core can send data to another web service, it must confirm that it can access the
service's endpoint.

HTTP topic rule destination overview

An HTTP topic rule destination refers to a web service that supports a confirmation URL and one
or more data collection URLs. The HTTP topic rule destination resource contains the confirmation
URL of your web service. When you configure an HTTP topic rule action, you specify the actual URL
of the endpoint that should receive the data along with the web service's confirmation URL. After
your destination is confirmed, the topic rule sends the result of the SQL statement to the HTTPS
endpoint (and not to the confirmation URL).

An HTTP topic rule destination can be in one of the following states:

ENABLED

The destination has been confirmed and can be used by a rule action. A destination must be
in the ENABLED state for it to be used in a rule. You can only enable a destination that's in
DISABLED status.

DISABLED

The destination has been confirmed but it can't be used by a rule action. This is useful if
you want to temporarily prevent traffic to your endpoint without having to go through the
confirmation process again. You can only disable a destination that's in ENABLED status.

IN_PROGRESS

Confirmation of the destination is in progress.

ERROR

Destination confirmation timed out.

After an HTTP topic rule destination has been confirmed and enabled, it can be used with any rule
in your account.

The following sections describe common actions on HTTP topic rule destinations.

Creating and confirming HTTP topic rule destinations

You create an HTTP topic rule destination by calling the CreateTopicRuleDestination
operation or by using the AWS IoT console.

HTTP 812

AWS IoT Core Developer Guide

After you create a destination, AWS IoT sends a confirmation request to the confirmation URL. The
confirmation request has the following format:

HTTP POST {confirmationUrl}/?confirmationToken={confirmationToken}
Headers:
x-amz-rules-engine-message-type: DestinationConfirmation
x-amz-rules-engine-destination-arn:"arn:aws:iot:us-east-1:123456789012:ruledestination/
http/7a280e37-b9c6-47a2-a751-0703693f46e4"
Content-Type: application/json
Body:
{
 "arn":"arn:aws:iot:us-east-1:123456789012:ruledestination/http/7a280e37-b9c6-47a2-
a751-0703693f46e4",
 "confirmationToken": "AYADeMXLrPrNY2wqJAKsFNn-…NBJndA",
 "enableUrl": "https://iot.us-east-1.amazonaws.com/confirmdestination/
AYADeMXLrPrNY2wqJAKsFNn-…NBJndA",
 "messageType": "DestinationConfirmation"
}

The content of the confirmation request includes the following information:

arn

The Amazon Resource Name (ARN) for the topic rule destination to confirm.

confirmationToken

The confirmation token sent by AWS IoT Core. The token in the example is truncated. Your
token will be longer. You'll need this token to confirm your destination with AWS IoT Core.

enableUrl

The URL to which you browse to confirm a topic rule destination.

messageType

The type of message.

To complete the endpoint confirmation process, you must do one of the following after your
confirmation URL receives the confirmation request.

• Call the enableUrl in the confirmation request, and then call
UpdateTopicRuleDestination to set the topic rule's status to ENABLED.

HTTP 813

AWS IoT Core Developer Guide

• Call the ConfirmTopicRuleDestination operation and passing the confirmationToken
from the confirmation request.

• Copy the confirmationToken and paste it into the destination's confirmation dialog in the
AWS IoT console.

Sending a new confirmation request

To activate a new confirmation message for a destination, call UpdateTopicRuleDestination
and set the topic rule destination's status to IN_PROGRESS.

Repeat the confirmation process after you send a new confirmation request.

Disabling and deleting a topic rule destination

To disable a destination, call UpdateTopicRuleDestination and set the topic rule destination's
status to DISABLED. A topic rule in the DISABLED state can be enabled again without the need to
send a new confirmation request.

To delete a topic rule destination, call DeleteTopicRuleDestination.

Certificate authorities supported by HTTPS endpoints in topic rule destinations

The following certificate authorities are supported by HTTPS endpoints in topic rule destinations.
You can choose one of these supported certificate authorities. The signatures are for reference.
Note that you can't use self-signed certificates because they won't work.

Help us improve this topic

Let us know what you think.

Alias name: swisssignplatinumg2ca
Certificate fingerprints:
 MD5: C9:98:27:77:28:1E:3D:0E:15:3C:84:00:B8:85:03:E6
 SHA1: 56:E0:FA:C0:3B:8F:18:23:55:18:E5:D3:11:CA:E8:C2:43:31:AB:66
 SHA256:
 3B:22:2E:56:67:11:E9:92:30:0D:C0:B1:5A:B9:47:3D:AF:DE:F8:C8:4D:0C:EF:7D:33:17:B4:C1:82:1D:14:36

Alias name: hellenicacademicandresearchinstitutionsrootca2011
Certificate fingerprints:
 MD5: 73:9F:4C:4B:73:5B:79:E9:FA:BA:1C:EF:6E:CB:D5:C9

HTTP 814

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/topic-rule-destinations-ca-list.html

AWS IoT Core Developer Guide

 SHA1: FE:45:65:9B:79:03:5B:98:A1:61:B5:51:2E:AC:DA:58:09:48:22:4D
 SHA256:
 BC:10:4F:15:A4:8B:E7:09:DC:A5:42:A7:E1:D4:B9:DF:6F:05:45:27:E8:02:EA:A9:2D:59:54:44:25:8A:FE:71

Alias name: teliasonerarootcav1
Certificate fingerprints:
 MD5: 37:41:49:1B:18:56:9A:26:F5:AD:C2:66:FB:40:A5:4C
 SHA1: 43:13:BB:96:F1:D5:86:9B:C1:4E:6A:92:F6:CF:F6:34:69:87:82:37
 SHA256:
 DD:69:36:FE:21:F8:F0:77:C1:23:A1:A5:21:C1:22:24:F7:22:55:B7:3E:03:A7:26:06:93:E8:A2:4B:0F:A3:89

Alias name: geotrustprimarycertificationauthority
Certificate fingerprints:
 MD5: 02:26:C3:01:5E:08:30:37:43:A9:D0:7D:CF:37:E6:BF
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C

Alias name: trustisfpsrootca
Certificate fingerprints:
 MD5: 30:C9:E7:1E:6B:E6:14:EB:65:B2:16:69:20:31:67:4D
 SHA1: 3B:C0:38:0B:33:C3:F6:A6:0C:86:15:22:93:D9:DF:F5:4B:81:C0:04
 SHA256:
 C1:B4:82:99:AB:A5:20:8F:E9:63:0A:CE:55:CA:68:A0:3E:DA:5A:51:9C:88:02:A0:D3:A6:73:BE:8F:8E:55:7D

Alias name: quovadisrootca3g3
Certificate fingerprints:
 MD5: DF:7D:B9:AD:54:6F:68:A1:DF:89:57:03:97:43:B0:D7
 SHA1: 48:12:BD:92:3C:A8:C4:39:06:E7:30:6D:27:96:E6:A4:CF:22:2E:7D
 SHA256:
 88:EF:81:DE:20:2E:B0:18:45:2E:43:F8:64:72:5C:EA:5F:BD:1F:C2:D9:D2:05:73:07:09:C5:D8:B8:69:0F:46

Alias name: buypassclass2ca
Certificate fingerprints:
 MD5: 46:A7:D2:FE:45:FB:64:5A:A8:59:90:9B:78:44:9B:29
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48

Alias name: secureglobalca
Certificate fingerprints:
 MD5: CF:F4:27:0D:D4:ED:DC:65:16:49:6D:3D:DA:BF:6E:DE
 SHA1: 3A:44:73:5A:E5:81:90:1F:24:86:61:46:1E:3B:9C:C4:5F:F5:3A:1B

HTTP 815

AWS IoT Core Developer Guide

 SHA256:
 42:00:F5:04:3A:C8:59:0E:BB:52:7D:20:9E:D1:50:30:29:FB:CB:D4:1C:A1:B5:06:EC:27:F1:5A:DE:7D:AC:69

Alias name: chunghwaepkirootca
Certificate fingerprints:
 MD5: 1B:2E:00:CA:26:06:90:3D:AD:FE:6F:15:68:D3:6B:B3
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5

Alias name: verisignclass2g2ca
Certificate fingerprints:
 MD5: 2D:BB:E5:25:D3:D1:65:82:3A:B7:0E:FA:E6:EB:E2:E1
 SHA1: B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D
 SHA256:
 3A:43:E2:20:FE:7F:3E:A9:65:3D:1E:21:74:2E:AC:2B:75:C2:0F:D8:98:03:05:BC:50:2C:AF:8C:2D:9B:41:A1

Alias name: szafirrootca2
Certificate fingerprints:
 MD5: 11:64:C1:89:B0:24:B1:8C:B1:07:7E:89:9E:51:9E:99
 SHA1: E2:52:FA:95:3F:ED:DB:24:60:BD:6E:28:F3:9C:CC:CF:5E:B3:3F:DE
 SHA256:
 A1:33:9D:33:28:1A:0B:56:E5:57:D3:D3:2B:1C:E7:F9:36:7E:B0:94:BD:5F:A7:2A:7E:50:04:C8:DE:D7:CA:FE

Alias name: quovadisrootca1g3
Certificate fingerprints:
 MD5: A4:BC:5B:3F:FE:37:9A:FA:64:F0:E2:FA:05:3D:0B:AB
 SHA1: 1B:8E:EA:57:96:29:1A:C9:39:EA:B8:0A:81:1A:73:73:C0:93:79:67
 SHA256:
 8A:86:6F:D1:B2:76:B5:7E:57:8E:92:1C:65:82:8A:2B:ED:58:E9:F2:F2:88:05:41:34:B7:F1:F4:BF:C9:CC:74

Alias name: utndatacorpsgcca
Certificate fingerprints:
 MD5: B3:A5:3E:77:21:6D:AC:4A:C0:C9:FB:D5:41:3D:CA:06
 SHA1: 58:11:9F:0E:12:82:87:EA:50:FD:D9:87:45:6F:4F:78:DC:FA:D6:D4
 SHA256:
 85:FB:2F:91:DD:12:27:5A:01:45:B6:36:53:4F:84:02:4A:D6:8B:69:B8:EE:88:68:4F:F7:11:37:58:05:B3:48

Alias name: autoridaddecertificacionfirmaprofesionalcifa62634068
Certificate fingerprints:
 MD5: 73:3A:74:7A:EC:BB:A3:96:A6:C2:E4:E2:C8:9B:C0:C3
 SHA1: AE:C5:FB:3F:C8:E1:BF:C4:E5:4F:03:07:5A:9A:E8:00:B7:F7:B6:FA
 SHA256:
 04:04:80:28:BF:1F:28:64:D4:8F:9A:D4:D8:32:94:36:6A:82:88:56:55:3F:3B:14:30:3F:90:14:7F:5D:40:EF

HTTP 816

AWS IoT Core Developer Guide

Alias name: securesignrootca11
Certificate fingerprints:
 MD5: B7:52:74:E2:92:B4:80:93:F2:75:E4:CC:D7:F2:EA:26
 SHA1: 3B:C4:9F:48:F8:F3:73:A0:9C:1E:BD:F8:5B:B1:C3:65:C7:D8:11:B3
 SHA256:
 BF:0F:EE:FB:9E:3A:58:1A:D5:F9:E9:DB:75:89:98:57:43:D2:61:08:5C:4D:31:4F:6F:5D:72:59:AA:42:16:12

Alias name: amazon-ca-g4-acm2
Certificate fingerprints:
 MD5: B2:F1:03:2B:93:64:05:80:B8:A8:17:36:B9:1B:52:3C
 SHA1: A7:E6:45:32:1F:7A:B7:AD:C0:70:EA:73:5F:AB:ED:C3:DA:B4:D0:C8
 SHA256:
 D7:A8:7C:69:95:D0:E2:04:2A:32:70:A7:E2:87:FE:A7:E8:F4:C1:70:62:F7:90:C3:EB:BB:53:F2:AC:39:26:BE

Alias name: isrgrootx1
Certificate fingerprints:
 MD5: 0C:D2:F9:E0:DA:17:73:E9:ED:86:4D:A5:E3:70:E7:4E
 SHA1: CA:BD:2A:79:A1:07:6A:31:F2:1D:25:36:35:CB:03:9D:43:29:A5:E8
 SHA256:
 96:BC:EC:06:26:49:76:F3:74:60:77:9A:CF:28:C5:A7:CF:E8:A3:C0:AA:E1:1A:8F:FC:EE:05:C0:BD:DF:08:C6

Alias name: amazon-ca-g4-acm1
Certificate fingerprints:
 MD5: E2:F1:18:19:61:5C:43:E0:D4:A8:5D:0B:FA:7C:89:1B
 SHA1: F2:0D:28:B6:29:C2:2C:5E:84:05:E6:02:4D:97:FE:8F:A0:84:93:A0
 SHA256:
 B0:11:A4:F7:29:6C:74:D8:2B:F5:62:DF:87:D7:28:C7:1F:B5:8C:F4:E6:73:F2:78:FC:DA:F3:FF:83:A6:8C:87

Alias name: etugracertificationauthority
Certificate fingerprints:
 MD5: B8:A1:03:63:B0:BD:21:71:70:8A:6F:13:3A:BB:79:49
 SHA1: 51:C6:E7:08:49:06:6E:F3:92:D4:5C:A0:0D:6D:A3:62:8F:C3:52:39
 SHA256:
 B0:BF:D5:2B:B0:D7:D9:BD:92:BF:5D:4D:C1:3D:A2:55:C0:2C:54:2F:37:83:65:EA:89:39:11:F5:5E:55:F2:3C

Alias name: geotrustuniversalca2
Certificate fingerprints:
 MD5: 34:FC:B8:D0:36:DB:9E:14:B3:C2:F2:DB:8F:E4:94:C7
 SHA1: 37:9A:19:7B:41:85:45:35:0C:A6:03:69:F3:3C:2E:AF:47:4F:20:79
 SHA256:
 A0:23:4F:3B:C8:52:7C:A5:62:8E:EC:81:AD:5D:69:89:5D:A5:68:0D:C9:1D:1C:B8:47:7F:33:F8:78:B9:5B:0B

Alias name: digicertglobalrootca

HTTP 817

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
 43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:25:7F:89:34:A4:43:C7:01:61

Alias name: staatdernederlandenevrootca
Certificate fingerprints:
 MD5: FC:06:AF:7B:E8:1A:F1:9A:B4:E8:D2:70:1F:C0:F5:BA
 SHA1: 76:E2:7E:C1:4F:DB:82:C1:C0:A6:75:B5:05:BE:3D:29:B4:ED:DB:BB
 SHA256:
 4D:24:91:41:4C:FE:95:67:46:EC:4C:EF:A6:CF:6F:72:E2:8A:13:29:43:2F:9D:8A:90:7A:C4:CB:5D:AD:C1:5A

Alias name: utnuserfirstclientauthemailca
Certificate fingerprints:
 MD5: D7:34:3D:EF:1D:27:09:28:E1:31:02:5B:13:2B:DD:F7
 SHA1: B1:72:B1:A5:6D:95:F9:1F:E5:02:87:E1:4D:37:EA:6A:44:63:76:8A
 SHA256:
 43:F2:57:41:2D:44:0D:62:74:76:97:4F:87:7D:A8:F1:FC:24:44:56:5A:36:7A:E6:0E:DD:C2:7A:41:25:31:AE

Alias name: actalisauthenticationrootca
Certificate fingerprints:
 MD5: 69:C1:0D:4F:07:A3:1B:C3:FE:56:3D:04:BC:11:F6:A6
 SHA1: F3:73:B3:87:06:5A:28:84:8A:F2:F3:4A:CE:19:2B:DD:C7:8E:9C:AC
 SHA256:
 55:92:60:84:EC:96:3A:64:B9:6E:2A:BE:01:CE:0B:A8:6A:64:FB:FE:BC:C7:AA:B5:AF:C1:55:B3:7F:D7:60:66

Alias name: amazonrootca4
Certificate fingerprints:
 MD5: 89:BC:27:D5:EB:17:8D:06:6A:69:D5:FD:89:47:B4:CD
 SHA1: F6:10:84:07:D6:F8:BB:67:98:0C:C2:E2:44:C2:EB:AE:1C:EF:63:BE
 SHA256:
 E3:5D:28:41:9E:D0:20:25:CF:A6:90:38:CD:62:39:62:45:8D:A5:C6:95:FB:DE:A3:C2:2B:0B:FB:25:89:70:92

Alias name: amazonrootca3
Certificate fingerprints:
 MD5: A0:D4:EF:0B:F7:B5:D8:49:95:2A:EC:F5:C4:FC:81:87
 SHA1: 0D:44:DD:8C:3C:8C:1A:1A:58:75:64:81:E9:0F:2E:2A:FF:B3:D2:6E
 SHA256:
 18:CE:6C:FE:7B:F1:4E:60:B2:E3:47:B8:DF:E8:68:CB:31:D0:2E:BB:3A:DA:27:15:69:F5:03:43:B4:6D:B3:A4

Alias name: amazonrootca2
Certificate fingerprints:
 MD5: C8:E5:8D:CE:A8:42:E2:7A:C0:2A:5C:7C:9E:26:BF:66

HTTP 818

AWS IoT Core Developer Guide

 SHA1: 5A:8C:EF:45:D7:A6:98:59:76:7A:8C:8B:44:96:B5:78:CF:47:4B:1A
 SHA256:
 1B:A5:B2:AA:8C:65:40:1A:82:96:01:18:F8:0B:EC:4F:62:30:4D:83:CE:C4:71:3A:19:C3:9C:01:1E:A4:6D:B4

Alias name: amazonrootca1
Certificate fingerprints:
 MD5: 43:C6:BF:AE:EC:FE:AD:2F:18:C6:88:68:30:FC:C8:E6
 SHA1: 8D:A7:F9:65:EC:5E:FC:37:91:0F:1C:6E:59:FD:C1:CC:6A:6E:DE:16
 SHA256:
 8E:CD:E6:88:4F:3D:87:B1:12:5B:A3:1A:C3:FC:B1:3D:70:16:DE:7F:57:CC:90:4F:E1:CB:97:C6:AE:98:19:6E

Alias name: affirmtrustpremium
Certificate fingerprints:
 MD5: C4:5D:0E:48:B6:AC:28:30:4E:0A:BC:F9:38:16:87:57
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A

Alias name: keynectisrootca
Certificate fingerprints:
 MD5: CC:4D:AE:FB:30:6B:D8:38:FE:50:EB:86:61:4B:D2:26
 SHA1: 9C:61:5C:4D:4D:85:10:3A:53:26:C2:4D:BA:EA:E4:A2:D2:D5:CC:97
 SHA256:
 42:10:F1:99:49:9A:9A:C3:3C:8D:E0:2B:A6:DB:AA:14:40:8B:DD:8A:6E:32:46:89:C1:92:2D:06:97:15:A3:32

Alias name: equifaxsecureglobalebusinessca1
Certificate fingerprints:
 MD5: 51:F0:2A:33:F1:F5:55:39:07:F2:16:7A:47:C7:5D:63
 SHA1: 3A:74:CB:7A:47:DB:70:DE:89:1F:24:35:98:64:B8:2D:82:BD:1A:36
 SHA256:
 86:AB:5A:65:71:D3:32:9A:BC:D2:E4:E6:37:66:8B:A8:9C:73:1E:C2:93:B6:CB:A6:0F:71:63:40:A0:91:CE:AE

Alias name: affirmtrustpremiumca
Certificate fingerprints:
 MD5: C4:5D:0E:48:B6:AC:28:30:4E:0A:BC:F9:38:16:87:57
 SHA1: D8:A6:33:2C:E0:03:6F:B1:85:F6:63:4F:7D:6A:06:65:26:32:28:27
 SHA256:
 70:A7:3F:7F:37:6B:60:07:42:48:90:45:34:B1:14:82:D5:BF:0E:69:8E:CC:49:8D:F5:25:77:EB:F2:E9:3B:9A

Alias name: baltimorecodesigningca
Certificate fingerprints:
 MD5: 90:F5:28:49:56:D1:5D:2C:B0:53:D4:4B:EF:6F:90:22
 SHA1: 30:46:D8:C8:88:FF:69:30:C3:4A:FC:CD:49:27:08:7C:60:56:7B:0D

HTTP 819

AWS IoT Core Developer Guide

 SHA256:
 A9:15:45:DB:D2:E1:9C:4C:CD:F9:09:AA:71:90:0D:18:C7:35:1C:89:B3:15:F0:F1:3D:05:C1:3A:8F:FB:46:87

Alias name: gdcatrustauthr5root
Certificate fingerprints:
 MD5: 63:CC:D9:3D:34:35:5C:6F:53:A3:E2:08:70:48:1F:B4
 SHA1: 0F:36:38:5B:81:1A:25:C3:9B:31:4E:83:CA:E9:34:66:70:CC:74:B4
 SHA256:
 BF:FF:8F:D0:44:33:48:7D:6A:8A:A6:0C:1A:29:76:7A:9F:C2:BB:B0:5E:42:0F:71:3A:13:B9:92:89:1D:38:93

Alias name: certinomisrootca
Certificate fingerprints:
 MD5: 14:0A:FD:8D:A8:28:B5:38:69:DB:56:7E:61:22:03:3F
 SHA1: 9D:70:BB:01:A5:A4:A0:18:11:2E:F7:1C:01:B9:32:C5:34:E7:88:A8
 SHA256:
 2A:99:F5:BC:11:74:B7:3C:BB:1D:62:08:84:E0:1C:34:E5:1C:CB:39:78:DA:12:5F:0E:33:26:88:83:BF:41:58

Alias name: verisignclass3publicprimarycertificationauthorityg5
Certificate fingerprints:
 MD5: CB:17:E4:31:67:3E:E2:09:FE:45:57:93:F3:0A:FA:1C
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF

Alias name: verisignclass3publicprimarycertificationauthorityg4
Certificate fingerprints:
 MD5: 3A:52:E1:E7:FD:6F:3A:E3:6F:F3:6F:99:1B:F9:22:41
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79

Alias name: verisignclass3publicprimarycertificationauthorityg3
Certificate fingerprints:
 MD5: CD:68:B6:A7:C7:C4:CE:75:E0:1D:4F:57:44:61:92:09
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44

Alias name: swisssignsilverg2ca
Certificate fingerprints:
 MD5: E0:06:A1:C9:7D:CF:C9:FC:0D:C0:56:75:96:D8:62:13
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5

HTTP 820

AWS IoT Core Developer Guide

Alias name: swisssignsilvercag2
Certificate fingerprints:
 MD5: E0:06:A1:C9:7D:CF:C9:FC:0D:C0:56:75:96:D8:62:13
 SHA1: 9B:AA:E5:9F:56:EE:21:CB:43:5A:BE:25:93:DF:A7:F0:40:D1:1D:CB
 SHA256:
 BE:6C:4D:A2:BB:B9:BA:59:B6:F3:93:97:68:37:42:46:C3:C0:05:99:3F:A9:8F:02:0D:1D:ED:BE:D4:8A:81:D5

Alias name: atostrustedroot2011
Certificate fingerprints:
 MD5: AE:B9:C4:32:4B:AC:7F:5D:66:CC:77:94:BB:2A:77:56
 SHA1: 2B:B1:F5:3E:55:0C:1D:C5:F1:D4:E6:B7:6A:46:4B:55:06:02:AC:21
 SHA256:
 F3:56:BE:A2:44:B7:A9:1E:B3:5D:53:CA:9A:D7:86:4A:CE:01:8E:2D:35:D5:F8:F9:6D:DF:68:A6:F4:1A:A4:74

Alias name: comodoecccertificationauthority
Certificate fingerprints:
 MD5: 7C:62:FF:74:9D:31:53:5E:68:4A:D5:78:AA:1E:BF:23
 SHA1: 9F:74:4E:9F:2B:4D:BA:EC:0F:31:2C:50:B6:56:3B:8E:2D:93:C3:11
 SHA256:
 17:93:92:7A:06:14:54:97:89:AD:CE:2F:8F:34:F7:F0:B6:6D:0F:3A:E3:A3:B8:4D:21:EC:15:DB:BA:4F:AD:C7

Alias name: securetrustca
Certificate fingerprints:
 MD5: DC:32:C3:A7:6D:25:57:C7:68:09:9D:EA:2D:A9:A2:D1
 SHA1: 87:82:C6:C3:04:35:3B:CF:D2:96:92:D2:59:3E:7D:44:D9:34:FF:11
 SHA256:
 F1:C1:B5:0A:E5:A2:0D:D8:03:0E:C9:F6:BC:24:82:3D:D3:67:B5:25:57:59:B4:E7:1B:61:FC:E9:F7:37:5D:73

Alias name: soneraclass1ca
Certificate fingerprints:
 MD5: 33:B7:84:F5:5F:27:D7:68:27:DE:14:DE:12:2A:ED:6F
 SHA1: 07:47:22:01:99:CE:74:B9:7C:B0:3D:79:B2:64:A2:C8:55:E9:33:FF
 SHA256:
 CD:80:82:84:CF:74:6F:F2:FD:6E:B5:8A:A1:D5:9C:4A:D4:B3:CA:56:FD:C6:27:4A:89:26:A7:83:5F:32:31:3D

Alias name: cadisigrootr2
Certificate fingerprints:
 MD5: 26:01:FB:D8:27:A7:17:9A:45:54:38:1A:43:01:3B:03
 SHA1: B5:61:EB:EA:A4:DE:E4:25:4B:69:1A:98:A5:57:47:C2:34:C7:D9:71
 SHA256:
 E2:3D:4A:03:6D:7B:70:E9:F5:95:B1:42:20:79:D2:B9:1E:DF:BB:1F:B6:51:A0:63:3E:AA:8A:9D:C5:F8:07:03

Alias name: cadisigrootr1

HTTP 821

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: BE:EC:11:93:9A:F5:69:21:BC:D7:C1:C0:67:89:CC:2A
 SHA1: 8E:1C:74:F8:A6:20:B9:E5:8A:F4:61:FA:EC:2B:47:56:51:1A:52:C6
 SHA256:
 F9:6F:23:F4:C3:E7:9C:07:7A:46:98:8D:5A:F5:90:06:76:A0:F0:39:CB:64:5D:D1:75:49:B2:16:C8:24:40:CE

Alias name: verisignclass3g5ca
Certificate fingerprints:
 MD5: CB:17:E4:31:67:3E:E2:09:FE:45:57:93:F3:0A:FA:1C
 SHA1: 4E:B6:D5:78:49:9B:1C:CF:5F:58:1E:AD:56:BE:3D:9B:67:44:A5:E5
 SHA256:
 9A:CF:AB:7E:43:C8:D8:80:D0:6B:26:2A:94:DE:EE:E4:B4:65:99:89:C3:D0:CA:F1:9B:AF:64:05:E4:1A:B7:DF

Alias name: utnuserfirsthardwareca
Certificate fingerprints:
 MD5: 4C:56:41:E5:0D:BB:2B:E8:CA:A3:ED:18:08:AD:43:39
 SHA1: 04:83:ED:33:99:AC:36:08:05:87:22:ED:BC:5E:46:00:E3:BE:F9:D7
 SHA256:
 6E:A5:47:41:D0:04:66:7E:ED:1B:48:16:63:4A:A3:A7:9E:6E:4B:96:95:0F:82:79:DA:FC:8D:9B:D8:81:21:37

Alias name: addtrustqualifiedca
Certificate fingerprints:
 MD5: 27:EC:39:47:CD:DA:5A:AF:E2:9A:01:65:21:A9:4C:BB
 SHA1: 4D:23:78:EC:91:95:39:B5:00:7F:75:8F:03:3B:21:1E:C5:4D:8B:CF
 SHA256:
 80:95:21:08:05:DB:4B:BC:35:5E:44:28:D8:FD:6E:C2:CD:E3:AB:5F:B9:7A:99:42:98:8E:B8:F4:DC:D0:60:16

Alias name: verisignclass3g3ca
Certificate fingerprints:
 MD5: CD:68:B6:A7:C7:C4:CE:75:E0:1D:4F:57:44:61:92:09
 SHA1: 13:2D:0D:45:53:4B:69:97:CD:B2:D5:C3:39:E2:55:76:60:9B:5C:C6
 SHA256:
 EB:04:CF:5E:B1:F3:9A:FA:76:2F:2B:B1:20:F2:96:CB:A5:20:C1:B9:7D:B1:58:95:65:B8:1C:B9:A1:7B:72:44

Alias name: thawtepersonalfreemailca
Certificate fingerprints:
 MD5: 53:4B:1D:17:58:58:1A:30:A1:90:F8:6E:5C:F2:CF:65
 SHA1: E6:18:83:AE:84:CA:C1:C1:CD:52:AD:E8:E9:25:2B:45:A6:4F:B7:E2
 SHA256:
 5B:38:BD:12:9E:83:D5:A0:CA:D2:39:21:08:94:90:D5:0D:4A:AE:37:04:28:F8:DD:FF:FF:FA:4C:15:64:E1:84

Alias name: certplusclass3pprimaryca
Certificate fingerprints:
 MD5: E1:4B:52:73:D7:1B:DB:93:30:E5:BD:E4:09:6E:BE:FB

HTTP 822

AWS IoT Core Developer Guide

 SHA1: 21:6B:2A:29:E6:2A:00:CE:82:01:46:D8:24:41:41:B9:25:11:B2:79
 SHA256:
 CC:C8:94:89:37:1B:AD:11:1C:90:61:9B:EA:24:0A:2E:6D:AD:D9:9F:9F:6E:1D:4D:41:E5:8E:D6:DE:3D:02:85

Alias name: swisssigngoldg2ca
Certificate fingerprints:
 MD5: 24:77:D9:A8:91:D1:3B:FA:88:2D:C2:FF:F8:CD:33:93
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95

Alias name: swisssigngoldcag2
Certificate fingerprints:
 MD5: 24:77:D9:A8:91:D1:3B:FA:88:2D:C2:FF:F8:CD:33:93
 SHA1: D8:C5:38:8A:B7:30:1B:1B:6E:D4:7A:E6:45:25:3A:6F:9F:1A:27:61
 SHA256:
 62:DD:0B:E9:B9:F5:0A:16:3E:A0:F8:E7:5C:05:3B:1E:CA:57:EA:55:C8:68:8F:64:7C:68:81:F2:C8:35:7B:95

Alias name: dtrustrootclass3ca22009
Certificate fingerprints:
 MD5: CD:E0:25:69:8D:47:AC:9C:89:35:90:F7:FD:51:3D:2F
 SHA1: 58:E8:AB:B0:36:15:33:FB:80:F7:9B:1B:6D:29:D3:FF:8D:5F:00:F0
 SHA256:
 49:E7:A4:42:AC:F0:EA:62:87:05:00:54:B5:25:64:B6:50:E4:F4:9E:42:E3:48:D6:AA:38:E0:39:E9:57:B1:C1

Alias name: acraizfnmtrcm
Certificate fingerprints:
 MD5: E2:09:04:B4:D3:BD:D1:A0:14:FD:1A:D2:47:C4:57:1D
 SHA1: EC:50:35:07:B2:15:C4:95:62:19:E2:A8:9A:5B:42:99:2C:4C:2C:20
 SHA256:
 EB:C5:57:0C:29:01:8C:4D:67:B1:AA:12:7B:AF:12:F7:03:B4:61:1E:BC:17:B7:DA:B5:57:38:94:17:9B:93:FA

Alias name: securitycommunicationevrootca1
Certificate fingerprints:
 MD5: 22:2D:A6:01:EA:7C:0A:F7:F0:6C:56:43:3F:77:76:D3
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37

Alias name: starfieldclass2ca
Certificate fingerprints:
 MD5: 32:4A:4B:BB:C8:63:69:9B:BE:74:9A:C6:DD:1D:46:24
 SHA1: AD:7E:1C:28:B0:64:EF:8F:60:03:40:20:14:C3:D0:E3:37:0E:B5:8A

HTTP 823

AWS IoT Core Developer Guide

 SHA256:
 14:65:FA:20:53:97:B8:76:FA:A6:F0:A9:95:8E:55:90:E4:0F:CC:7F:AA:4F:B7:C2:C8:67:75:21:FB:5F:B6:58

Alias name: opentrustrootcag3
Certificate fingerprints:
 MD5: 21:37:B4:17:16:92:7B:67:46:70:A9:96:D7:A8:13:24
 SHA1: 6E:26:64:F3:56:BF:34:55:BF:D1:93:3F:7C:01:DE:D8:13:DA:8A:A6
 SHA256:
 B7:C3:62:31:70:6E:81:07:8C:36:7C:B8:96:19:8F:1E:32:08:DD:92:69:49:DD:8F:57:09:A4:10:F7:5B:62:92

Alias name: opentrustrootcag2
Certificate fingerprints:
 MD5: 57:24:B6:59:24:6B:AE:C8:FE:1C:0C:20:F2:C0:4E:EB
 SHA1: 79:5F:88:60:C5:AB:7C:3D:92:E6:CB:F4:8D:E1:45:CD:11:EF:60:0B
 SHA256:
 27:99:58:29:FE:6A:75:15:C1:BF:E8:48:F9:C4:76:1D:B1:6C:22:59:29:25:7B:F4:0D:08:94:F2:9E:A8:BA:F2

Alias name: buypassclass2rootca
Certificate fingerprints:
 MD5: 46:A7:D2:FE:45:FB:64:5A:A8:59:90:9B:78:44:9B:29
 SHA1: 49:0A:75:74:DE:87:0A:47:FE:58:EE:F6:C7:6B:EB:C6:0B:12:40:99
 SHA256:
 9A:11:40:25:19:7C:5B:B9:5D:94:E6:3D:55:CD:43:79:08:47:B6:46:B2:3C:DF:11:AD:A4:A0:0E:FF:15:FB:48

Alias name: opentrustrootcag1
Certificate fingerprints:
 MD5: 76:00:CC:81:29:CD:55:5E:88:6A:7A:2E:F7:4D:39:DA
 SHA1: 79:91:E8:34:F7:E2:EE:DD:08:95:01:52:E9:55:2D:14:E9:58:D5:7E
 SHA256:
 56:C7:71:28:D9:8C:18:D9:1B:4C:FD:FF:BC:25:EE:91:03:D4:75:8E:A2:AB:AD:82:6A:90:F3:45:7D:46:0E:B4

Alias name: globalsignr2ca
Certificate fingerprints:
 MD5: 94:14:77:7E:3E:5E:FD:8F:30:BD:41:B0:CF:E7:D0:30
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E

Alias name: buypassclass3rootca
Certificate fingerprints:
 MD5: 3D:3B:18:9E:2C:64:5A:E8:D5:88:CE:0E:F9:37:C2:EC
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D

HTTP 824

AWS IoT Core Developer Guide

Alias name: ecacc
Certificate fingerprints:
 MD5: EB:F5:9D:29:0D:61:F9:42:1F:7C:C2:BA:6D:E3:15:09
 SHA1: 28:90:3A:63:5B:52:80:FA:E6:77:4C:0B:6D:A7:D6:BA:A6:4A:F2:E8
 SHA256:
 88:49:7F:01:60:2F:31:54:24:6A:E2:8C:4D:5A:EF:10:F1:D8:7E:BB:76:62:6F:4A:E0:B7:F9:5B:A7:96:87:99

Alias name: epkirootcertificationauthority
Certificate fingerprints:
 MD5: 1B:2E:00:CA:26:06:90:3D:AD:FE:6F:15:68:D3:6B:B3
 SHA1: 67:65:0D:F1:7E:8E:7E:5B:82:40:A4:F4:56:4B:CF:E2:3D:69:C6:F0
 SHA256:
 C0:A6:F4:DC:63:A2:4B:FD:CF:54:EF:2A:6A:08:2A:0A:72:DE:35:80:3E:2F:F5:FF:52:7A:E5:D8:72:06:DF:D5

Alias name: verisignclass1g2ca
Certificate fingerprints:
 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83
 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47
 SHA256:
 34:1D:E9:8B:13:92:AB:F7:F4:AB:90:A9:60:CF:25:D4:BD:6E:C6:5B:9A:51:CE:6E:D0:67:D0:0E:C7:CE:9B:7F

Alias name: certigna
Certificate fingerprints:
 MD5: AB:57:A6:5B:7D:42:82:19:B5:D8:58:26:28:5E:FD:FF
 SHA1: B1:2E:13:63:45:86:A4:6F:1A:B2:60:68:37:58:2D:C4:AC:FD:94:97
 SHA256:
 E3:B6:A2:DB:2E:D7:CE:48:84:2F:7A:C5:32:41:C7:B7:1D:54:14:4B:FB:40:C1:1F:3F:1D:0B:42:F5:EE:A1:2D

Alias name: camerfirmaglobalchambersignroot
Certificate fingerprints:
 MD5: C5:E6:7B:BF:06:D0:4F:43:ED:C4:7A:65:8A:FB:6B:19
 SHA1: 33:9B:6B:14:50:24:9B:55:7A:01:87:72:84:D9:E0:2F:C3:D2:D8:E9
 SHA256:
 EF:3C:B4:17:FC:8E:BF:6F:97:87:6C:9E:4E:CE:39:DE:1E:A5:FE:64:91:41:D1:02:8B:7D:11:C0:B2:29:8C:ED

Alias name: cfcaevroot
Certificate fingerprints:
 MD5: 74:E1:B6:ED:26:7A:7A:44:30:33:94:AB:7B:27:81:30
 SHA1: E2:B8:29:4B:55:84:AB:6B:58:C2:90:46:6C:AC:3F:B8:39:8F:84:83
 SHA256:
 5C:C3:D7:8E:4E:1D:5E:45:54:7A:04:E6:87:3E:64:F9:0C:F9:53:6D:1C:CC:2E:F8:00:F3:55:C4:C5:FD:70:FD

Alias name: soneraclass2rootca

HTTP 825

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: A3:EC:75:0F:2E:88:DF:FA:48:01:4E:0B:5C:48:6F:FB
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27

Alias name: certumtrustednetworkca
Certificate fingerprints:
 MD5: D5:E9:81:40:C5:18:69:FC:46:2C:89:75:62:0F:AA:78
 SHA1: 07:E0:32:E0:20:B7:2C:3F:19:2F:06:28:A2:59:3A:19:A7:0F:06:9E
 SHA256:
 5C:58:46:8D:55:F5:8E:49:7E:74:39:82:D2:B5:00:10:B6:D1:65:37:4A:CF:83:A7:D4:A3:2D:B7:68:C4:40:8E

Alias name: securitycommunicationrootca2
Certificate fingerprints:
 MD5: 6C:39:7D:A4:0E:55:59:B2:3F:D6:41:B1:12:50:DE:43
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74
 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6

Alias name: globalsigneccrootcar5
Certificate fingerprints:
 MD5: 9F:AD:3B:1C:02:1E:8A:BA:17:74:38:81:0C:A2:BC:08
 SHA1: 1F:24:C6:30:CD:A4:18:EF:20:69:FF:AD:4F:DD:5F:46:3A:1B:69:AA
 SHA256:
 17:9F:BC:14:8A:3D:D0:0F:D2:4E:A1:34:58:CC:43:BF:A7:F5:9C:81:82:D7:83:A5:13:F6:EB:EC:10:0C:89:24

Alias name: globalsigneccrootcar4
Certificate fingerprints:
 MD5: 20:F0:27:68:D1:7E:A0:9D:0E:E6:2A:CA:DF:5C:89:8E
 SHA1: 69:69:56:2E:40:80:F4:24:A1:E7:19:9F:14:BA:F3:EE:58:AB:6A:BB
 SHA256:
 BE:C9:49:11:C2:95:56:76:DB:6C:0A:55:09:86:D7:6E:3B:A0:05:66:7C:44:2C:97:62:B4:FB:B7:73:DE:22:8C

Alias name: chambersofcommerceroot2008
Certificate fingerprints:
 MD5: 5E:80:9E:84:5A:0E:65:0B:17:02:F3:55:18:2A:3E:D7
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0

Alias name: pscprocert
Certificate fingerprints:
 MD5: E6:24:E9:12:01:AE:0C:DE:8E:85:C4:CE:A3:12:DD:EC

HTTP 826

AWS IoT Core Developer Guide

 SHA1: 70:C1:8D:74:B4:28:81:0A:E4:FD:A5:75:D7:01:9F:99:B0:3D:50:74
 SHA256:
 3C:FC:3C:14:D1:F6:84:FF:17:E3:8C:43:CA:44:0C:00:B9:67:EC:93:3E:8B:FE:06:4C:A1:D7:2C:90:F2:AD:B0

Alias name: thawteprimaryrootcag3
Certificate fingerprints:
 MD5: FB:1B:5D:43:8A:94:CD:44:C6:76:F2:43:4B:47:E7:31
 SHA1: F1:8B:53:8D:1B:E9:03:B6:A6:F0:56:43:5B:17:15:89:CA:F3:6B:F2
 SHA256:
 4B:03:F4:58:07:AD:70:F2:1B:FC:2C:AE:71:C9:FD:E4:60:4C:06:4C:F5:FF:B6:86:BA:E5:DB:AA:D7:FD:D3:4C

Alias name: quovadisrootca
Certificate fingerprints:
 MD5: 27:DE:36:FE:72:B7:00:03:00:9D:F4:F0:1E:6C:04:24
 SHA1: DE:3F:40:BD:50:93:D3:9B:6C:60:F6:DA:BC:07:62:01:00:89:76:C9
 SHA256:
 A4:5E:DE:3B:BB:F0:9C:8A:E1:5C:72:EF:C0:72:68:D6:93:A2:1C:99:6F:D5:1E:67:CA:07:94:60:FD:6D:88:73

Alias name: thawteprimaryrootcag2
Certificate fingerprints:
 MD5: 74:9D:EA:60:24:C4:FD:22:53:3E:CC:3A:72:D9:29:4F
 SHA1: AA:DB:BC:22:23:8F:C4:01:A1:27:BB:38:DD:F4:1D:DB:08:9E:F0:12
 SHA256:
 A4:31:0D:50:AF:18:A6:44:71:90:37:2A:86:AF:AF:8B:95:1F:FB:43:1D:83:7F:1E:56:88:B4:59:71:ED:15:57

Alias name: deprecateditsecca
Certificate fingerprints:
 MD5: A5:96:0C:F6:B5:AB:27:E5:01:C6:00:88:9E:60:33:E5
 SHA1: 12:12:0B:03:0E:15:14:54:F4:DD:B3:F5:DE:13:6E:83:5A:29:72:9D
 SHA256:
 9A:59:DA:86:24:1A:FD:BA:A3:39:FA:9C:FD:21:6A:0B:06:69:4D:E3:7E:37:52:6B:BE:63:C8:BC:83:74:2E:CB

Alias name: usertrustrsacertificationauthority
Certificate fingerprints:
 MD5: 1B:FE:69:D1:91:B7:19:33:A3:72:A8:0F:E1:55:E5:B5
 SHA1: 2B:8F:1B:57:33:0D:BB:A2:D0:7A:6C:51:F7:0E:E9:0D:DA:B9:AD:8E
 SHA256:
 E7:93:C9:B0:2F:D8:AA:13:E2:1C:31:22:8A:CC:B0:81:19:64:3B:74:9C:89:89:64:B1:74:6D:46:C3:D4:CB:D2

Alias name: entrustrootcag2
Certificate fingerprints:
 MD5: 4B:E2:C9:91:96:65:0C:F4:0E:5A:93:92:A0:0A:FE:B2
 SHA1: 8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4

HTTP 827

AWS IoT Core Developer Guide

 SHA256:
 43:DF:57:74:B0:3E:7F:EF:5F:E4:0D:93:1A:7B:ED:F1:BB:2E:6B:42:73:8C:4E:6D:38:41:10:3D:3A:A7:F3:39

Alias name: networksolutionscertificateauthority
Certificate fingerprints:
 MD5: D3:F3:A6:16:C0:FA:6B:1D:59:B1:2D:96:4D:0E:11:2E
 SHA1: 74:F8:A3:C3:EF:E7:B3:90:06:4B:83:90:3C:21:64:60:20:E5:DF:CE
 SHA256:
 15:F0:BA:00:A3:AC:7A:F3:AC:88:4C:07:2B:10:11:A0:77:BD:77:C0:97:F4:01:64:B2:F8:59:8A:BD:83:86:0C

Alias name: trustcenterclass4caii
Certificate fingerprints:
 MD5: 9D:FB:F9:AC:ED:89:33:22:F4:28:48:83:25:23:5B:E0
 SHA1: A6:9A:91:FD:05:7F:13:6A:42:63:0B:B1:76:0D:2D:51:12:0C:16:50
 SHA256:
 32:66:96:7E:59:CD:68:00:8D:9D:D3:20:81:11:85:C7:04:20:5E:8D:95:FD:D8:4F:1C:7B:31:1E:67:04:FC:32

Alias name: oistewisekeyglobalrootgaca
Certificate fingerprints:
 MD5: BC:6C:51:33:A7:E9:D3:66:63:54:15:72:1B:21:92:93
 SHA1: 59:22:A1:E1:5A:EA:16:35:21:F8:98:39:6A:46:46:B0:44:1B:0F:A9
 SHA256:
 41:C9:23:86:6A:B4:CA:D6:B7:AD:57:80:81:58:2E:02:07:97:A6:CB:DF:4F:FF:78:CE:83:96:B3:89:37:D7:F5

Alias name: verisignuniversalrootcertificationauthority
Certificate fingerprints:
 MD5: 8E:AD:B5:01:AA:4D:81:E4:8C:1D:D1:E1:14:00:95:19
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C

Alias name: ttelesecglobalrootclass3ca
Certificate fingerprints:
 MD5: CA:FB:40:A8:4E:39:92:8A:1D:FE:8E:2F:C4:27:EA:EF
 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD

Alias name: starfieldservicesrootg2ca
Certificate fingerprints:
 MD5: 17:35:74:AF:7B:61:1C:EB:F4:F9:3C:E2:EE:40:F9:A2
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5

HTTP 828

AWS IoT Core Developer Guide

Alias name: addtrustexternalroot
Certificate fingerprints:
 MD5: 1D:35:54:04:85:78:B0:3F:42:42:4D:BF:20:73:0A:3F
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2

Alias name: turktrustelektroniksertifikahizmetsaglayicisih5
Certificate fingerprints:
 MD5: DA:70:8E:F0:22:DF:93:26:F6:5F:9F:D3:15:06:52:4E
 SHA1: C4:18:F6:4D:46:D1:DF:00:3D:27:30:13:72:43:A9:12:11:C6:75:FB
 SHA256:
 49:35:1B:90:34:44:C1:85:CC:DC:5C:69:3D:24:D8:55:5C:B2:08:D6:A8:14:13:07:69:9F:4A:F0:63:19:9D:78

Alias name: camerfirmachambersca
Certificate fingerprints:
 MD5: 5E:80:9E:84:5A:0E:65:0B:17:02:F3:55:18:2A:3E:D7
 SHA1: 78:6A:74:AC:76:AB:14:7F:9C:6A:30:50:BA:9E:A8:7E:FE:9A:CE:3C
 SHA256:
 06:3E:4A:FA:C4:91:DF:D3:32:F3:08:9B:85:42:E9:46:17:D8:93:D7:FE:94:4E:10:A7:93:7E:E2:9D:96:93:C0

Alias name: certsignrootca
Certificate fingerprints:
 MD5: 18:98:C0:D6:E9:3A:FC:F9:B0:F5:0C:F7:4B:01:44:17
 SHA1: FA:B7:EE:36:97:26:62:FB:2D:B0:2A:F6:BF:03:FD:E8:7C:4B:2F:9B
 SHA256:
 EA:A9:62:C4:FA:4A:6B:AF:EB:E4:15:19:6D:35:1C:CD:88:8D:4F:53:F3:FA:8A:E6:D7:C4:66:A9:4E:60:42:BB

Alias name: verisignuniversalrootca
Certificate fingerprints:
 MD5: 8E:AD:B5:01:AA:4D:81:E4:8C:1D:D1:E1:14:00:95:19
 SHA1: 36:79:CA:35:66:87:72:30:4D:30:A5:FB:87:3B:0F:A7:7B:B7:0D:54
 SHA256:
 23:99:56:11:27:A5:71:25:DE:8C:EF:EA:61:0D:DF:2F:A0:78:B5:C8:06:7F:4E:82:82:90:BF:B8:60:E8:4B:3C

Alias name: geotrustuniversalca
Certificate fingerprints:
 MD5: 92:65:58:8B:A2:1A:31:72:73:68:5C:B4:A5:7A:07:48
 SHA1: E6:21:F3:35:43:79:05:9A:4B:68:30:9D:8A:2F:74:22:15:87:EC:79
 SHA256:
 A0:45:9B:9F:63:B2:25:59:F5:FA:5D:4C:6D:B3:F9:F7:2F:F1:93:42:03:35:78:F0:73:BF:1D:1B:46:CB:B9:12

HTTP 829

AWS IoT Core Developer Guide

Alias name: luxtrustglobalroot2
Certificate fingerprints:
 MD5: B2:E1:09:00:61:AF:F7:F1:91:6F:C4:AD:8D:5E:3B:7C
 SHA1: 1E:0E:56:19:0A:D1:8B:25:98:B2:04:44:FF:66:8A:04:17:99:5F:3F
 SHA256:
 54:45:5F:71:29:C2:0B:14:47:C4:18:F9:97:16:8F:24:C5:8F:C5:02:3B:F5:DA:5B:E2:EB:6E:1D:D8:90:2E:D5

Alias name: twcaglobalrootca
Certificate fingerprints:
 MD5: F9:03:7E:CF:E6:9E:3C:73:7A:2A:90:07:69:FF:2B:96
 SHA1: 9C:BB:48:53:F6:A4:F6:D3:52:A4:E8:32:52:55:60:13:F5:AD:AF:65
 SHA256:
 59:76:90:07:F7:68:5D:0F:CD:50:87:2F:9F:95:D5:75:5A:5B:2B:45:7D:81:F3:69:2B:61:0A:98:67:2F:0E:1B

Alias name: tubitakkamusmsslkoksertifikasisurum1
Certificate fingerprints:
 MD5: DC:00:81:DC:69:2F:3E:2F:B0:3B:F6:3D:5A:91:8E:49
 SHA1: 31:43:64:9B:EC:CE:27:EC:ED:3A:3F:0B:8F:0D:E4:E8:91:DD:EE:CA
 SHA256:
 46:ED:C3:68:90:46:D5:3A:45:3F:B3:10:4A:B8:0D:CA:EC:65:8B:26:60:EA:16:29:DD:7E:86:79:90:64:87:16

Alias name: affirmtrustnetworkingca
Certificate fingerprints:
 MD5: 42:65:CA:BE:01:9A:9A:4C:A9:8C:41:49:CD:C0:D5:7F
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B

Alias name: affirmtrustcommercialca
Certificate fingerprints:
 MD5: 82:92:BA:5B:EF:CD:8A:6F:A6:3D:55:F9:84:F6:D6:B7
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7

Alias name: godaddyrootcertificateauthorityg2
Certificate fingerprints:
 MD5: 80:3A:BC:22:C1:E6:FB:8D:9B:3B:27:4A:32:1B:9A:01
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA

HTTP 830

AWS IoT Core Developer Guide

Alias name: starfieldrootg2ca
Certificate fingerprints:
 MD5: D6:39:81:C6:52:7E:96:69:FC:FC:CA:66:ED:05:F2:96
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5

Alias name: dtrustrootclass3ca2ev2009
Certificate fingerprints:
 MD5: AA:C6:43:2C:5E:2D:CD:C4:34:C0:50:4F:11:02:4F:B6
 SHA1: 96:C9:1B:0B:95:B4:10:98:42:FA:D0:D8:22:79:FE:60:FA:B9:16:83
 SHA256:
 EE:C5:49:6B:98:8C:E9:86:25:B9:34:09:2E:EC:29:08:BE:D0:B0:F3:16:C2:D4:73:0C:84:EA:F1:F3:D3:48:81

Alias name: buypassclass3ca
Certificate fingerprints:
 MD5: 3D:3B:18:9E:2C:64:5A:E8:D5:88:CE:0E:F9:37:C2:EC
 SHA1: DA:FA:F7:FA:66:84:EC:06:8F:14:50:BD:C7:C2:81:A5:BC:A9:64:57
 SHA256:
 ED:F7:EB:BC:A2:7A:2A:38:4D:38:7B:7D:40:10:C6:66:E2:ED:B4:84:3E:4C:29:B4:AE:1D:5B:93:32:E6:B2:4D

Alias name: verisignclass2g3ca
Certificate fingerprints:
 MD5: F8:BE:C4:63:22:C9:A8:46:74:8B:B8:1D:1E:4A:2B:F6
 SHA1: 61:EF:43:D7:7F:CA:D4:61:51:BC:98:E0:C3:59:12:AF:9F:EB:63:11
 SHA256:
 92:A9:D9:83:3F:E1:94:4D:B3:66:E8:BF:AE:7A:95:B6:48:0C:2D:6C:6C:2A:1B:E6:5D:42:36:B6:08:FC:A1:BB

Alias name: digicerttrustedrootg4
Certificate fingerprints:
 MD5: 78:F2:FC:AA:60:1F:2F:B4:EB:C9:37:BA:53:2E:75:49
 SHA1: DD:FB:16:CD:49:31:C9:73:A2:03:7D:3F:C8:3A:4D:7D:77:5D:05:E4
 SHA256:
 55:2F:7B:DC:F1:A7:AF:9E:6C:E6:72:01:7F:4F:12:AB:F7:72:40:C7:8E:76:1A:C2:03:D1:D9:D2:0A:C8:99:88

Alias name: quovadisrootca2g3
Certificate fingerprints:
 MD5: AF:0C:86:6E:BF:40:2D:7F:0B:3E:12:50:BA:12:3D:06
 SHA1: 09:3C:61:F3:8B:8B:DC:7D:55:DF:75:38:02:05:00:E1:25:F5:C8:36
 SHA256:
 8F:E4:FB:0A:F9:3A:4D:0D:67:DB:0B:EB:B2:3E:37:C7:1B:F3:25:DC:BC:DD:24:0E:A0:4D:AF:58:B4:7E:18:40

Alias name: geotrustprimarycertificationauthorityg3

HTTP 831

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: B5:E8:34:36:C9:10:44:58:48:70:6D:2E:83:D4:B8:05
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4

Alias name: geotrustprimarycertificationauthorityg2
Certificate fingerprints:
 MD5: 01:5E:D8:6B:BD:6F:3D:8E:A1:31:F8:12:E0:98:73:6A
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66

Alias name: godaddyclass2ca
Certificate fingerprints:
 MD5: 91:DE:06:25:AB:DA:FD:32:17:0C:BB:25:17:2A:84:67
 SHA1: 27:96:BA:E6:3F:18:01:E2:77:26:1B:A0:D7:77:70:02:8F:20:EE:E4
 SHA256:
 C3:84:6B:F2:4B:9E:93:CA:64:27:4C:0E:C6:7C:1E:CC:5E:02:4F:FC:AC:D2:D7:40:19:35:0E:81:FE:54:6A:E4

Alias name: trustcoreca1
Certificate fingerprints:
 MD5: 27:92:23:1D:0A:F5:40:7C:E9:E6:6B:9D:D8:F5:E7:6C
 SHA1: 58:D1:DF:95:95:67:6B:63:C0:F0:5B:1C:17:4D:8B:84:0B:C8:78:BD
 SHA256:
 5A:88:5D:B1:9C:01:D9:12:C5:75:93:88:93:8C:AF:BB:DF:03:1A:B2:D4:8E:91:EE:15:58:9B:42:97:1D:03:9C

Alias name: hellenicacademicandresearchinstitutionseccrootca2015
Certificate fingerprints:
 MD5: 81:E5:B4:17:EB:C2:F5:E1:4B:0D:41:7B:49:92:FE:EF
 SHA1: 9F:F1:71:8D:92:D5:9A:F3:7D:74:97:B4:BC:6F:84:68:0B:BA:B6:66
 SHA256:
 44:B5:45:AA:8A:25:E6:5A:73:CA:15:DC:27:FC:36:D2:4C:1C:B9:95:3A:06:65:39:B1:15:82:DC:48:7B:48:33

Alias name: utnuserfirstobjectca
Certificate fingerprints:
 MD5: A7:F2:E4:16:06:41:11:50:30:6B:9C:E3:B4:9C:B0:C9
 SHA1: E1:2D:FB:4B:41:D7:D9:C3:2B:30:51:4B:AC:1D:81:D8:38:5E:2D:46
 SHA256:
 6F:FF:78:E4:00:A7:0C:11:01:1C:D8:59:77:C4:59:FB:5A:F9:6A:3D:F0:54:08:20:D0:F4:B8:60:78:75:E5:8F

Alias name: ttelesecglobalrootclass3
Certificate fingerprints:
 MD5: CA:FB:40:A8:4E:39:92:8A:1D:FE:8E:2F:C4:27:EA:EF

HTTP 832

AWS IoT Core Developer Guide

 SHA1: 55:A6:72:3E:CB:F2:EC:CD:C3:23:74:70:19:9D:2A:BE:11:E3:81:D1
 SHA256:
 FD:73:DA:D3:1C:64:4F:F1:B4:3B:EF:0C:CD:DA:96:71:0B:9C:D9:87:5E:CA:7E:31:70:7A:F3:E9:6D:52:2B:BD

Alias name: ttelesecglobalrootclass2
Certificate fingerprints:
 MD5: 2B:9B:9E:E4:7B:6C:1F:00:72:1A:CC:C1:77:79:DF:6A
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52

Alias name: addtrustclass1ca
Certificate fingerprints:
 MD5: 1E:42:95:02:33:92:6B:B9:5F:C0:7F:DA:D6:B2:4B:FC
 SHA1: CC:AB:0E:A0:4C:23:01:D6:69:7B:DD:37:9F:CD:12:EB:24:E3:94:9D
 SHA256:
 8C:72:09:27:9A:C0:4E:27:5E:16:D0:7F:D3:B7:75:E8:01:54:B5:96:80:46:E3:1F:52:DD:25:76:63:24:E9:A7

Alias name: amzninternalrootca
Certificate fingerprints:
 MD5: 08:09:73:AC:E0:78:41:7C:0A:26:33:51:E8:CF:E6:60
 SHA1: A7:B7:F6:15:8A:FF:1E:C8:85:13:38:BC:93:EB:A2:AB:A4:09:EF:06
 SHA256:
 0E:DE:63:C1:DC:7A:8E:11:F1:AB:BC:05:4F:59:EE:49:9D:62:9A:2F:DE:9C:A7:16:32:A2:64:29:3E:8B:66:AA

Alias name: starfieldrootcertificateauthorityg2
Certificate fingerprints:
 MD5: D6:39:81:C6:52:7E:96:69:FC:FC:CA:66:ED:05:F2:96
 SHA1: B5:1C:06:7C:EE:2B:0C:3D:F8:55:AB:2D:92:F4:FE:39:D4:E7:0F:0E
 SHA256:
 2C:E1:CB:0B:F9:D2:F9:E1:02:99:3F:BE:21:51:52:C3:B2:DD:0C:AB:DE:1C:68:E5:31:9B:83:91:54:DB:B7:F5

Alias name: camerfirmachambersignca
Certificate fingerprints:
 MD5: 9E:80:FF:78:01:0C:2E:C1:36:BD:FE:96:90:6E:08:F3
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA

Alias name: secomscrootca2
Certificate fingerprints:
 MD5: 6C:39:7D:A4:0E:55:59:B2:3F:D6:41:B1:12:50:DE:43
 SHA1: 5F:3B:8C:F2:F8:10:B3:7D:78:B4:CE:EC:19:19:C3:73:34:B9:C7:74

HTTP 833

AWS IoT Core Developer Guide

 SHA256:
 51:3B:2C:EC:B8:10:D4:CD:E5:DD:85:39:1A:DF:C6:C2:DD:60:D8:7B:B7:36:D2:B5:21:48:4A:A4:7A:0E:BE:F6

Alias name: entrustevca
Certificate fingerprints:
 MD5: D6:A5:C3:ED:5D:DD:3E:00:C1:3D:87:92:1F:1D:3F:E4
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C

Alias name: secomscrootca1
Certificate fingerprints:
 MD5: F1:BC:63:6A:54:E0:B5:27:F5:CD:E7:1A:E3:4D:6E:4A
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C

Alias name: affirmtrustcommercial
Certificate fingerprints:
 MD5: 82:92:BA:5B:EF:CD:8A:6F:A6:3D:55:F9:84:F6:D6:B7
 SHA1: F9:B5:B6:32:45:5F:9C:BE:EC:57:5F:80:DC:E9:6E:2C:C7:B2:78:B7
 SHA256:
 03:76:AB:1D:54:C5:F9:80:3C:E4:B2:E2:01:A0:EE:7E:EF:7B:57:B6:36:E8:A9:3C:9B:8D:48:60:C9:6F:5F:A7

Alias name: digicertassuredidrootg3
Certificate fingerprints:
 MD5: 7C:7F:65:31:0C:81:DF:8D:BA:3E:99:E2:5C:AD:6E:FB
 SHA1: F5:17:A2:4F:9A:48:C6:C9:F8:A2:00:26:9F:DC:0F:48:2C:AB:30:89
 SHA256:
 7E:37:CB:8B:4C:47:09:0C:AB:36:55:1B:A6:F4:5D:B8:40:68:0F:BA:16:6A:95:2D:B1:00:71:7F:43:05:3F:C2

Alias name: affirmtrustnetworking
Certificate fingerprints:
 MD5: 42:65:CA:BE:01:9A:9A:4C:A9:8C:41:49:CD:C0:D5:7F
 SHA1: 29:36:21:02:8B:20:ED:02:F5:66:C5:32:D1:D6:ED:90:9F:45:00:2F
 SHA256:
 0A:81:EC:5A:92:97:77:F1:45:90:4A:F3:8D:5D:50:9F:66:B5:E2:C5:8F:CD:B5:31:05:8B:0E:17:F3:F0:B4:1B

Alias name: izenpecom
Certificate fingerprints:
 MD5: A6:B0:CD:85:80:DA:5C:50:34:A3:39:90:2F:55:67:73
 SHA1: 2F:78:3D:25:52:18:A7:4A:65:39:71:B5:2C:A2:9C:45:15:6F:E9:19
 SHA256:
 25:30:CC:8E:98:32:15:02:BA:D9:6F:9B:1F:BA:1B:09:9E:2D:29:9E:0F:45:48:BB:91:4F:36:3B:C0:D4:53:1F

HTTP 834

AWS IoT Core Developer Guide

Alias name: amazon-ca-g4-legacy
Certificate fingerprints:
 MD5: 6C:E5:BD:67:A4:4F:E3:FD:C2:4C:46:E6:06:5B:6D:55
 SHA1: EA:E7:DE:F9:0A:BE:9F:0B:68:CE:B7:24:0D:80:74:03:BF:6E:B1:6E
 SHA256:
 CD:72:C4:7F:B4:AD:28:A4:67:2B:E1:86:47:D4:40:E9:3B:16:2D:95:DB:3C:2F:94:BB:81:D9:09:F7:91:24:5E

Alias name: digicertassuredidrootg2
Certificate fingerprints:
 MD5: 92:38:B9:F8:63:24:82:65:2C:57:33:E6:FE:81:8F:9D
 SHA1: A1:4B:48:D9:43:EE:0A:0E:40:90:4F:3C:E0:A4:C0:91:93:51:5D:3F
 SHA256:
 7D:05:EB:B6:82:33:9F:8C:94:51:EE:09:4E:EB:FE:FA:79:53:A1:14:ED:B2:F4:49:49:45:2F:AB:7D:2F:C1:85

Alias name: comodoaaaservicesroot
Certificate fingerprints:
 MD5: 49:79:04:B0:EB:87:19:AC:47:B0:BC:11:51:9B:74:D0
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49
 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4

Alias name: entrustnetpremium2048secureserverca
Certificate fingerprints:
 MD5: EE:29:31:BC:32:7E:9A:E6:E8:B5:F7:51:B4:34:71:90
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77

Alias name: trustcorrootcertca2
Certificate fingerprints:
 MD5: A2:E1:F8:18:0B:BA:45:D5:C7:41:2A:BB:37:52:45:64
 SHA1: B8:BE:6D:CB:56:F1:55:B9:63:D4:12:CA:4E:06:34:C7:94:B2:1C:C0
 SHA256:
 07:53:E9:40:37:8C:1B:D5:E3:83:6E:39:5D:AE:A5:CB:83:9E:50:46:F1:BD:0E:AE:19:51:CF:10:FE:C7:C9:65

Alias name: entrust2048ca
Certificate fingerprints:
 MD5: EE:29:31:BC:32:7E:9A:E6:E8:B5:F7:51:B4:34:71:90
 SHA1: 50:30:06:09:1D:97:D4:F5:AE:39:F7:CB:E7:92:7D:7D:65:2D:34:31
 SHA256:
 6D:C4:71:72:E0:1C:BC:B0:BF:62:58:0D:89:5F:E2:B8:AC:9A:D4:F8:73:80:1E:0C:10:B9:C8:37:D2:1E:B1:77

Alias name: trustcorrootcertca1

HTTP 835

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: 6E:85:F1:DC:1A:00:D3:22:D5:B2:B2:AC:6B:37:05:45
 SHA1: FF:BD:CD:E7:82:C8:43:5E:3C:6F:26:86:5C:CA:A8:3A:45:5B:C3:0A
 SHA256:
 D4:0E:9C:86:CD:8F:E4:68:C1:77:69:59:F4:9E:A7:74:FA:54:86:84:B6:C4:06:F3:90:92:61:F4:DC:E2:57:5C

Alias name: baltimorecybertrustroot
Certificate fingerprints:
 MD5: AC:B6:94:A5:9C:17:E0:D7:91:52:9B:B1:97:06:A6:E4
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB

Alias name: eecertificationcentrerootca
Certificate fingerprints:
 MD5: 43:5E:88:D4:7D:1A:4A:7E:FD:84:2E:52:EB:01:D4:6F
 SHA1: C9:A8:B9:E7:55:80:5E:58:E3:53:77:A7:25:EB:AF:C3:7B:27:CC:D7
 SHA256:
 3E:84:BA:43:42:90:85:16:E7:75:73:C0:99:2F:09:79:CA:08:4E:46:85:68:1F:F1:95:CC:BA:8A:22:9B:8A:76

Alias name: dstacescax6
Certificate fingerprints:
 MD5: 21:D8:4C:82:2B:99:09:33:A2:EB:14:24:8D:8E:5F:E8
 SHA1: 40:54:DA:6F:1C:3F:40:74:AC:ED:0F:EC:CD:DB:79:D1:53:FB:90:1D
 SHA256:
 76:7C:95:5A:76:41:2C:89:AF:68:8E:90:A1:C7:0F:55:6C:FD:6B:60:25:DB:EA:10:41:6D:7E:B6:83:1F:8C:40

Alias name: comodocertificationauthority
Certificate fingerprints:
 MD5: 5C:48:DC:F7:42:72:EC:56:94:6D:1C:CC:71:35:80:75
 SHA1: 66:31:BF:9E:F7:4F:9E:B6:C9:D5:A6:0C:BA:6A:BE:D1:F7:BD:EF:7B
 SHA256:
 0C:2C:D6:3D:F7:80:6F:A3:99:ED:E8:09:11:6B:57:5B:F8:79:89:F0:65:18:F9:80:8C:86:05:03:17:8B:AF:66

Alias name: thawteserverca
Certificate fingerprints:
 MD5: EE:FE:61:69:65:6E:F8:9C:C6:2A:F4:D7:2B:63:EF:A2
 SHA1: 9F:AD:91:A6:CE:6A:C6:C5:00:47:C4:4E:C9:D4:A5:0D:92:D8:49:79
 SHA256:
 87:C6:78:BF:B8:B2:5F:38:F7:E9:7B:33:69:56:BB:CF:14:4B:BA:CA:A5:36:47:E6:1A:23:25:BC:10:55:31:6B

Alias name: secomvalicertclass1ca
Certificate fingerprints:
 MD5: 65:58:AB:15:AD:57:6C:1E:A8:A7:B5:69:AC:BF:FF:EB

HTTP 836

AWS IoT Core Developer Guide

 SHA1: E5:DF:74:3C:B6:01:C4:9B:98:43:DC:AB:8C:E8:6A:81:10:9F:E4:8E
 SHA256:
 F4:C1:49:55:1A:30:13:A3:5B:C7:BF:FE:17:A7:F3:44:9B:C1:AB:5B:5A:0A:E7:4B:06:C2:3B:90:00:4C:01:04

Alias name: godaddyrootg2ca
Certificate fingerprints:
 MD5: 80:3A:BC:22:C1:E6:FB:8D:9B:3B:27:4A:32:1B:9A:01
 SHA1: 47:BE:AB:C9:22:EA:E8:0E:78:78:34:62:A7:9F:45:C2:54:FD:E6:8B
 SHA256:
 45:14:0B:32:47:EB:9C:C8:C5:B4:F0:D7:B5:30:91:F7:32:92:08:9E:6E:5A:63:E2:74:9D:D3:AC:A9:19:8E:DA

Alias name: globalchambersignroot2008
Certificate fingerprints:
 MD5: 9E:80:FF:78:01:0C:2E:C1:36:BD:FE:96:90:6E:08:F3
 SHA1: 4A:BD:EE:EC:95:0D:35:9C:89:AE:C7:52:A1:2C:5B:29:F6:D6:AA:0C
 SHA256:
 13:63:35:43:93:34:A7:69:80:16:A0:D3:24:DE:72:28:4E:07:9D:7B:52:20:BB:8F:BD:74:78:16:EE:BE:BA:CA

Alias name: equifaxsecureebusinessca1
Certificate fingerprints:
 MD5: 14:C0:08:E5:A3:85:03:A3:BE:78:E9:67:4F:27:CA:EE
 SHA1: AE:E6:3D:70:E3:76:FB:C7:3A:EB:B0:A1:C1:D4:C4:7A:A7:40:B3:F4
 SHA256:
 2E:3A:2B:B5:11:25:05:83:6C:A8:96:8B:E2:CB:37:27:CE:9B:56:84:5C:6E:E9:8E:91:85:10:4A:FB:9A:F5:96

Alias name: quovadisrootca3
Certificate fingerprints:
 MD5: 31:85:3C:62:94:97:63:B9:AA:FD:89:4E:AF:6F:E0:CF
 SHA1: 1F:49:14:F7:D8:74:95:1D:DD:AE:02:C0:BE:FD:3A:2D:82:75:51:85
 SHA256:
 18:F1:FC:7F:20:5D:F8:AD:DD:EB:7F:E0:07:DD:57:E3:AF:37:5A:9C:4D:8D:73:54:6B:F4:F1:FE:D1:E1:8D:35

Alias name: usertrustecccertificationauthority
Certificate fingerprints:
 MD5: FA:68:BC:D9:B5:7F:AD:FD:C9:1D:06:83:28:CC:24:C1
 SHA1: D1:CB:CA:5D:B2:D5:2A:7F:69:3B:67:4D:E5:F0:5A:1D:0C:95:7D:F0
 SHA256:
 4F:F4:60:D5:4B:9C:86:DA:BF:BC:FC:57:12:E0:40:0D:2B:ED:3F:BC:4D:4F:BD:AA:86:E0:6A:DC:D2:A9:AD:7A

Alias name: quovadisrootca2
Certificate fingerprints:
 MD5: 5E:39:7B:DD:F8:BA:EC:82:E9:AC:62:BA:0C:54:00:2B
 SHA1: CA:3A:FB:CF:12:40:36:4B:44:B2:16:20:88:80:48:39:19:93:7C:F7

HTTP 837

AWS IoT Core Developer Guide

 SHA256:
 85:A0:DD:7D:D7:20:AD:B7:FF:05:F8:3D:54:2B:20:9D:C7:FF:45:28:F7:D6:77:B1:83:89:FE:A5:E5:C4:9E:86

Alias name: soneraclass2ca
Certificate fingerprints:
 MD5: A3:EC:75:0F:2E:88:DF:FA:48:01:4E:0B:5C:48:6F:FB
 SHA1: 37:F7:6D:E6:07:7C:90:C5:B1:3E:93:1A:B7:41:10:B4:F2:E4:9A:27
 SHA256:
 79:08:B4:03:14:C1:38:10:0B:51:8D:07:35:80:7F:FB:FC:F8:51:8A:00:95:33:71:05:BA:38:6B:15:3D:D9:27

Alias name: twcarootcertificationauthority
Certificate fingerprints:
 MD5: AA:08:8F:F6:F9:7B:B7:F2:B1:A7:1E:9B:EA:EA:BD:79
 SHA1: CF:9E:87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
 SHA256:
 BF:D8:8F:E1:10:1C:41:AE:3E:80:1B:F8:BE:56:35:0E:E9:BA:D1:A6:B9:BD:51:5E:DC:5C:6D:5B:87:11:AC:44

Alias name: baltimorecybertrustca
Certificate fingerprints:
 MD5: AC:B6:94:A5:9C:17:E0:D7:91:52:9B:B1:97:06:A6:E4
 SHA1: D4:DE:20:D0:5E:66:FC:53:FE:1A:50:88:2C:78:DB:28:52:CA:E4:74
 SHA256:
 16:AF:57:A9:F6:76:B0:AB:12:60:95:AA:5E:BA:DE:F2:2A:B3:11:19:D6:44:AC:95:CD:4B:93:DB:F3:F2:6A:EB

Alias name: cia-crt-g3-01-ca
Certificate fingerprints:
 MD5: E3:66:DD:D6:A0:D5:40:8F:FF:29:E2:C0:CB:6E:62:1A
 SHA1: 2B:EE:2C:BA:A3:1D:B5:FE:60:40:41:95:08:ED:46:82:39:4D:ED:E2
 SHA256:
 20:48:AD:4C:EC:90:7F:FA:4A:15:D4:CE:45:E3:C8:E4:2C:EA:78:33:DC:C7:D3:40:48:FC:60:47:27:42:99:EC

Alias name: entrustrootcertificationauthorityg2
Certificate fingerprints:
 MD5: 4B:E2:C9:91:96:65:0C:F4:0E:5A:93:92:A0:0A:FE:B2
 SHA1: 8C:F4:27:FD:79:0C:3A:D1:66:06:8D:E8:1E:57:EF:BB:93:22:72:D4
 SHA256:
 43:DF:57:74:B0:3E:7F:EF:5F:E4:0D:93:1A:7B:ED:F1:BB:2E:6B:42:73:8C:4E:6D:38:41:10:3D:3A:A7:F3:39

Alias name: verisignclass3g4ca
Certificate fingerprints:
 MD5: 3A:52:E1:E7:FD:6F:3A:E3:6F:F3:6F:99:1B:F9:22:41
 SHA1: 22:D5:D8:DF:8F:02:31:D1:8D:F7:9D:B7:CF:8A:2D:64:C9:3F:6C:3A
 SHA256:
 69:DD:D7:EA:90:BB:57:C9:3E:13:5D:C8:5E:A6:FC:D5:48:0B:60:32:39:BD:C4:54:FC:75:8B:2A:26:CF:7F:79

HTTP 838

AWS IoT Core Developer Guide

Alias name: xrampglobalcaroot
Certificate fingerprints:
 MD5: A1:0B:44:B3:CA:10:D8:00:6E:9D:0F:D8:0F:92:0A:D1
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2

Alias name: identrustcommercialrootca1
Certificate fingerprints:
 MD5: B3:3E:77:73:75:EE:A0:D3:E3:7E:49:63:49:59:BB:C7
 SHA1: DF:71:7E:AA:4A:D9:4E:C9:55:84:99:60:2D:48:DE:5F:BC:F0:3A:25
 SHA256:
 5D:56:49:9B:E4:D2:E0:8B:CF:CA:D0:8A:3E:38:72:3D:50:50:3B:DE:70:69:48:E4:2F:55:60:30:19:E5:28:AE

Alias name: camerfirmachamberscommerceca
Certificate fingerprints:
 MD5: B0:01:EE:14:D9:AF:29:18:94:76:8E:F1:69:33:2A:84
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3

Alias name: verisignclass3g2ca
Certificate fingerprints:
 MD5: A2:33:9B:4C:74:78:73:D4:6C:E7:C1:F3:8D:CB:5C:E9
 SHA1: 85:37:1C:A6:E5:50:14:3D:CE:28:03:47:1B:DE:3A:09:E8:F8:77:0F
 SHA256:
 83:CE:3C:12:29:68:8A:59:3D:48:5F:81:97:3C:0F:91:95:43:1E:DA:37:CC:5E:36:43:0E:79:C7:A8:88:63:8B

Alias name: deutschetelekomrootca2
Certificate fingerprints:
 MD5: 74:01:4A:91:B1:08:C4:58:CE:47:CD:F0:DD:11:53:08
 SHA1: 85:A4:08:C0:9C:19:3E:5D:51:58:7D:CD:D6:13:30:FD:8C:DE:37:BF
 SHA256:
 B6:19:1A:50:D0:C3:97:7F:7D:A9:9B:CD:AA:C8:6A:22:7D:AE:B9:67:9E:C7:0B:A3:B0:C9:D9:22:71:C1:70:D3

Alias name: certumca
Certificate fingerprints:
 MD5: 2C:8F:9F:66:1D:18:90:B1:47:26:9D:8E:86:82:8C:A9
 SHA1: 62:52:DC:40:F7:11:43:A2:2F:DE:9E:F7:34:8E:06:42:51:B1:81:18
 SHA256:
 D8:E0:FE:BC:1D:B2:E3:8D:00:94:0F:37:D2:7D:41:34:4D:99:3E:73:4B:99:D5:65:6D:97:78:D4:D8:14:36:24

Alias name: cybertrustglobalroot

HTTP 839

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: 72:E4:4A:87:E3:69:40:80:77:EA:BC:E3:F4:FF:F0:E1
 SHA1: 5F:43:E5:B1:BF:F8:78:8C:AC:1C:C7:CA:4A:9A:C6:22:2B:CC:34:C6
 SHA256:
 96:0A:DF:00:63:E9:63:56:75:0C:29:65:DD:0A:08:67:DA:0B:9C:BD:6E:77:71:4A:EA:FB:23:49:AB:39:3D:A3

Alias name: globalsignrootca
Certificate fingerprints:
 MD5: 3E:45:52:15:09:51:92:E1:B7:5D:37:9F:B1:87:29:8A
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99

Alias name: secomevrootca1
Certificate fingerprints:
 MD5: 22:2D:A6:01:EA:7C:0A:F7:F0:6C:56:43:3F:77:76:D3
 SHA1: FE:B8:C4:32:DC:F9:76:9A:CE:AE:3D:D8:90:8F:FD:28:86:65:64:7D
 SHA256:
 A2:2D:BA:68:1E:97:37:6E:2D:39:7D:72:8A:AE:3A:9B:62:96:B9:FD:BA:60:BC:2E:11:F6:47:F2:C6:75:FB:37

Alias name: globalsignr3ca
Certificate fingerprints:
 MD5: C5:DF:B8:49:CA:05:13:55:EE:2D:BA:1A:C3:3E:B0:28
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B

Alias name: staatdernederlandenrootcag3
Certificate fingerprints:
 MD5: 0B:46:67:07:DB:10:2F:19:8C:35:50:60:D1:0B:F4:37
 SHA1: D8:EB:6B:41:51:92:59:E0:F3:E7:85:00:C0:3D:B6:88:97:C9:EE:FC
 SHA256:
 3C:4F:B0:B9:5A:B8:B3:00:32:F4:32:B8:6F:53:5F:E1:72:C1:85:D0:FD:39:86:58:37:CF:36:18:7F:A6:F4:28

Alias name: staatdernederlandenrootcag2
Certificate fingerprints:
 MD5: 7C:A5:0F:F8:5B:9A:7D:6D:30:AE:54:5A:E3:42:A2:8A
 SHA1: 59:AF:82:79:91:86:C7:B4:75:07:CB:CF:03:57:46:EB:04:DD:B7:16
 SHA256:
 66:8C:83:94:7D:A6:3B:72:4B:EC:E1:74:3C:31:A0:E6:AE:D0:DB:8E:C5:B3:1B:E3:77:BB:78:4F:91:B6:71:6F

Alias name: aolrootca2
Certificate fingerprints:
 MD5: D6:ED:3C:CA:E2:66:0F:AF:10:43:0D:77:9B:04:09:BF

HTTP 840

AWS IoT Core Developer Guide

 SHA1: 85:B5:FF:67:9B:0C:79:96:1F:C8:6E:44:22:00:46:13:DB:17:92:84
 SHA256:
 7D:3B:46:5A:60:14:E5:26:C0:AF:FC:EE:21:27:D2:31:17:27:AD:81:1C:26:84:2D:00:6A:F3:73:06:CC:80:BD

Alias name: dstrootcax3
Certificate fingerprints:
 MD5: 41:03:52:DC:0F:F7:50:1B:16:F0:02:8E:BA:6F:45:C5
 SHA1: DA:C9:02:4F:54:D8:F6:DF:94:93:5F:B1:73:26:38:CA:6A:D7:7C:13
 SHA256:
 06:87:26:03:31:A7:24:03:D9:09:F1:05:E6:9B:CF:0D:32:E1:BD:24:93:FF:C6:D9:20:6D:11:BC:D6:77:07:39

Alias name: trustcenteruniversalcai
Certificate fingerprints:
 MD5: 45:E1:A5:72:C5:A9:36:64:40:9E:F5:E4:58:84:67:8C
 SHA1: 6B:2F:34:AD:89:58:BE:62:FD:B0:6B:5C:CE:BB:9D:D9:4F:4E:39:F3
 SHA256:
 EB:F3:C0:2A:87:89:B1:FB:7D:51:19:95:D6:63:B7:29:06:D9:13:CE:0D:5E:10:56:8A:8A:77:E2:58:61:67:E7

Alias name: aolrootca1
Certificate fingerprints:
 MD5: 14:F1:08:AD:9D:FA:64:E2:89:E7:1C:CF:A8:AD:7D:5E
 SHA1: 39:21:C1:15:C1:5D:0E:CA:5C:CB:5B:C4:F0:7D:21:D8:05:0B:56:6A
 SHA256:
 77:40:73:12:C6:3A:15:3D:5B:C0:0B:4E:51:75:9C:DF:DA:C2:37:DC:2A:33:B6:79:46:E9:8E:9B:FA:68:0A:E3

Alias name: affirmtrustpremiumecc
Certificate fingerprints:
 MD5: 64:B0:09:55:CF:B1:D5:99:E2:BE:13:AB:A6:5D:EA:4D
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23

Alias name: microseceszignorootca2009
Certificate fingerprints:
 MD5: F8:49:F4:03:BC:44:2D:83:BE:48:69:7D:29:64:FC:B1
 SHA1: 89:DF:74:FE:5C:F4:0F:4A:80:F9:E3:37:7D:54:DA:91:E1:01:31:8E
 SHA256:
 3C:5F:81:FE:A5:FA:B8:2C:64:BF:A2:EA:EC:AF:CD:E8:E0:77:FC:86:20:A7:CA:E5:37:16:3D:F3:6E:DB:F3:78

Alias name: verisignclass1g3ca
Certificate fingerprints:
 MD5: B1:47:BC:18:57:D1:18:A0:78:2D:EC:71:E8:2A:95:73
 SHA1: 20:42:85:DC:F7:EB:76:41:95:57:8E:13:6B:D4:B7:D1:E9:8E:46:A5

HTTP 841

AWS IoT Core Developer Guide

 SHA256:
 CB:B5:AF:18:5E:94:2A:24:02:F9:EA:CB:C0:ED:5B:B8:76:EE:A3:C1:22:36:23:D0:04:47:E4:F3:BA:55:4B:65

Alias name: certplusrootcag2
Certificate fingerprints:
 MD5: A7:EE:C4:78:2D:1B:EE:2D:B9:29:CE:D6:A7:96:32:31
 SHA1: 4F:65:8E:1F:E9:06:D8:28:02:E9:54:47:41:C9:54:25:5D:69:CC:1A
 SHA256:
 6C:C0:50:41:E6:44:5E:74:69:6C:4C:FB:C9:F8:0F:54:3B:7E:AB:BB:44:B4:CE:6F:78:7C:6A:99:71:C4:2F:17

Alias name: certplusrootcag1
Certificate fingerprints:
 MD5: 7F:09:9C:F7:D9:B9:5C:69:69:56:D5:37:3E:14:0D:42
 SHA1: 22:FD:D0:B7:FD:A2:4E:0D:AC:49:2C:A0:AC:A6:7B:6A:1F:E3:F7:66
 SHA256:
 15:2A:40:2B:FC:DF:2C:D5:48:05:4D:22:75:B3:9C:7F:CA:3E:C0:97:80:78:B0:F0:EA:76:E5:61:A6:C7:43:3E

Alias name: addtrustexternalca
Certificate fingerprints:
 MD5: 1D:35:54:04:85:78:B0:3F:42:42:4D:BF:20:73:0A:3F
 SHA1: 02:FA:F3:E2:91:43:54:68:60:78:57:69:4D:F5:E4:5B:68:85:18:68
 SHA256:
 68:7F:A4:51:38:22:78:FF:F0:C8:B1:1F:8D:43:D5:76:67:1C:6E:B2:BC:EA:B4:13:FB:83:D9:65:D0:6D:2F:F2

Alias name: entrustrootcertificationauthority
Certificate fingerprints:
 MD5: D6:A5:C3:ED:5D:DD:3E:00:C1:3D:87:92:1F:1D:3F:E4
 SHA1: B3:1E:B1:B7:40:E3:6C:84:02:DA:DC:37:D4:4D:F5:D4:67:49:52:F9
 SHA256:
 73:C1:76:43:4F:1B:C6:D5:AD:F4:5B:0E:76:E7:27:28:7C:8D:E5:76:16:C1:E6:E6:14:1A:2B:2C:BC:7D:8E:4C

Alias name: verisignclass3ca
Certificate fingerprints:
 MD5: EF:5A:F1:33:EF:F1:CD:BB:51:02:EE:12:14:4B:96:C4
 SHA1: A1:DB:63:93:91:6F:17:E4:18:55:09:40:04:15:C7:02:40:B0:AE:6B
 SHA256:
 A4:B6:B3:99:6F:C2:F3:06:B3:FD:86:81:BD:63:41:3D:8C:50:09:CC:4F:A3:29:C2:CC:F0:E2:FA:1B:14:03:05

Alias name: digicertassuredidrootca
Certificate fingerprints:
 MD5: 87:CE:0B:7B:2A:0E:49:00:E1:58:71:9B:37:A8:93:72
 SHA1: 05:63:B8:63:0D:62:D7:5A:BB:C8:AB:1E:4B:DF:B5:A8:99:B2:4D:43
 SHA256:
 3E:90:99:B5:01:5E:8F:48:6C:00:BC:EA:9D:11:1E:E7:21:FA:BA:35:5A:89:BC:F1:DF:69:56:1E:3D:C6:32:5C

HTTP 842

AWS IoT Core Developer Guide

Alias name: globalsignrootcar3
Certificate fingerprints:
 MD5: C5:DF:B8:49:CA:05:13:55:EE:2D:BA:1A:C3:3E:B0:28
 SHA1: D6:9B:56:11:48:F0:1C:77:C5:45:78:C1:09:26:DF:5B:85:69:76:AD
 SHA256:
 CB:B5:22:D7:B7:F1:27:AD:6A:01:13:86:5B:DF:1C:D4:10:2E:7D:07:59:AF:63:5A:7C:F4:72:0D:C9:63:C5:3B

Alias name: globalsignrootcar2
Certificate fingerprints:
 MD5: 94:14:77:7E:3E:5E:FD:8F:30:BD:41:B0:CF:E7:D0:30
 SHA1: 75:E0:AB:B6:13:85:12:27:1C:04:F8:5F:DD:DE:38:E4:B7:24:2E:FE
 SHA256:
 CA:42:DD:41:74:5F:D0:B8:1E:B9:02:36:2C:F9:D8:BF:71:9D:A1:BD:1B:1E:FC:94:6F:5B:4C:99:F4:2C:1B:9E

Alias name: verisignclass1ca
Certificate fingerprints:
 MD5: 86:AC:DE:2B:C5:6D:C3:D9:8C:28:88:D3:8D:16:13:1E
 SHA1: CE:6A:64:A3:09:E4:2F:BB:D9:85:1C:45:3E:64:09:EA:E8:7D:60:F1
 SHA256:
 51:84:7C:8C:BD:2E:9A:72:C9:1E:29:2D:2A:E2:47:D7:DE:1E:3F:D2:70:54:7A:20:EF:7D:61:0F:38:B8:84:2C

Alias name: thawtepremiumserverca
Certificate fingerprints:
 MD5: A6:6B:60:90:23:9B:3F:2D:BB:98:6F:D6:A7:19:0D:46
 SHA1: E0:AB:05:94:20:72:54:93:05:60:62:02:36:70:F7:CD:2E:FC:66:66
 SHA256:
 3F:9F:27:D5:83:20:4B:9E:09:C8:A3:D2:06:6C:4B:57:D3:A2:47:9C:36:93:65:08:80:50:56:98:10:5D:BC:E9

Alias name: verisigntsaca
Certificate fingerprints:
 MD5: F2:89:95:6E:4D:05:F0:F1:A7:21:55:7D:46:11:BA:47
 SHA1: 20:CE:B1:F0:F5:1C:0E:19:A9:F3:8D:B1:AA:8E:03:8C:AA:7A:C7:01
 SHA256:
 CB:6B:05:D9:E8:E5:7C:D8:82:B1:0B:4D:B7:0D:E4:BB:1D:E4:2B:A4:8A:7B:D0:31:8B:63:5B:F6:E7:78:1A:9D

Alias name: thawteprimaryrootca
Certificate fingerprints:
 MD5: 8C:CA:DC:0B:22:CE:F5:BE:72:AC:41:1A:11:A8:D8:12
 SHA1: 91:C6:D6:EE:3E:8A:C8:63:84:E5:48:C2:99:29:5C:75:6C:81:7B:81
 SHA256:
 8D:72:2F:81:A9:C1:13:C0:79:1D:F1:36:A2:96:6D:B2:6C:95:0A:97:1D:B4:6B:41:99:F4:EA:54:B7:8B:FB:9F

Alias name: visaecommerceroot

HTTP 843

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: FC:11:B8:D8:08:93:30:00:6D:23:F9:7E:EB:52:1E:02
 SHA1: 70:17:9B:86:8C:00:A4:FA:60:91:52:22:3F:9F:3E:32:BD:E0:05:62
 SHA256:
 69:FA:C9:BD:55:FB:0A:C7:8D:53:BB:EE:5C:F1:D5:97:98:9F:D0:AA:AB:20:A2:51:51:BD:F1:73:3E:E7:D1:22

Alias name: digicertglobalrootg3
Certificate fingerprints:
 MD5: F5:5D:A4:50:A5:FB:28:7E:1E:0F:0D:CC:96:57:56:CA
 SHA1: 7E:04:DE:89:6A:3E:66:6D:00:E6:87:D3:3F:FA:D9:3B:E8:3D:34:9E
 SHA256:
 31:AD:66:48:F8:10:41:38:C7:38:F3:9E:A4:32:01:33:39:3E:3A:18:CC:02:29:6E:F9:7C:2A:C9:EF:67:31:D0

Alias name: xrampglobalca
Certificate fingerprints:
 MD5: A1:0B:44:B3:CA:10:D8:00:6E:9D:0F:D8:0F:92:0A:D1
 SHA1: B8:01:86:D1:EB:9C:86:A5:41:04:CF:30:54:F3:4C:52:B7:E5:58:C6
 SHA256:
 CE:CD:DC:90:50:99:D8:DA:DF:C5:B1:D2:09:B7:37:CB:E2:C1:8C:FB:2C:10:C0:FF:0B:CF:0D:32:86:FC:1A:A2

Alias name: digicertglobalrootg2
Certificate fingerprints:
 MD5: E4:A6:8A:C8:54:AC:52:42:46:0A:FD:72:48:1B:2A:44
 SHA1: DF:3C:24:F9:BF:D6:66:76:1B:26:80:73:FE:06:D1:CC:8D:4F:82:A4
 SHA256:
 CB:3C:CB:B7:60:31:E5:E0:13:8F:8D:D3:9A:23:F9:DE:47:FF:C3:5E:43:C1:14:4C:EA:27:D4:6A:5A:B1:CB:5F

Alias name: valicertclass2ca
Certificate fingerprints:
 MD5: A9:23:75:9B:BA:49:36:6E:31:C2:DB:F2:E7:66:BA:87
 SHA1: 31:7A:2A:D0:7F:2B:33:5E:F5:A1:C3:4E:4B:57:E8:B7:D8:F1:FC:A6
 SHA256:
 58:D0:17:27:9C:D4:DC:63:AB:DD:B1:96:A6:C9:90:6C:30:C4:E0:87:83:EA:E8:C1:60:99:54:D6:93:55:59:6B

Alias name: geotrustprimaryca
Certificate fingerprints:
 MD5: 02:26:C3:01:5E:08:30:37:43:A9:D0:7D:CF:37:E6:BF
 SHA1: 32:3C:11:8E:1B:F7:B8:B6:52:54:E2:E2:10:0D:D6:02:90:37:F0:96
 SHA256:
 37:D5:10:06:C5:12:EA:AB:62:64:21:F1:EC:8C:92:01:3F:C5:F8:2A:E9:8E:E5:33:EB:46:19:B8:DE:B4:D0:6C

Alias name: netlockaranyclassgoldfotanusitvany
Certificate fingerprints:
 MD5: C5:A1:B7:FF:73:DD:D6:D7:34:32:18:DF:FC:3C:AD:88

HTTP 844

AWS IoT Core Developer Guide

 SHA1: 06:08:3F:59:3F:15:A1:04:A0:69:A4:6B:A9:03:D0:06:B7:97:09:91
 SHA256:
 6C:61:DA:C3:A2:DE:F0:31:50:6B:E0:36:D2:A6:FE:40:19:94:FB:D1:3D:F9:C8:D4:66:59:92:74:C4:46:EC:98

Alias name: geotrustglobalca
Certificate fingerprints:
 MD5: F7:75:AB:29:FB:51:4E:B7:77:5E:FF:05:3C:99:8E:F5
 SHA1: DE:28:F4:A4:FF:E5:B9:2F:A3:C5:03:D1:A3:49:A7:F9:96:2A:82:12
 SHA256:
 FF:85:6A:2D:25:1D:CD:88:D3:66:56:F4:50:12:67:98:CF:AB:AA:DE:40:79:9C:72:2D:E4:D2:B5:DB:36:A7:3A

Alias name: oistewisekeyglobalrootgbca
Certificate fingerprints:
 MD5: A4:EB:B9:61:28:2E:B7:2F:98:B0:35:26:90:99:51:1D
 SHA1: 0F:F9:40:76:18:D3:D7:6A:4B:98:F0:A8:35:9E:0C:FD:27:AC:CC:ED
 SHA256:
 6B:9C:08:E8:6E:B0:F7:67:CF:AD:65:CD:98:B6:21:49:E5:49:4A:67:F5:84:5E:7B:D1:ED:01:9F:27:B8:6B:D6

Alias name: certumtrustednetworkca2
Certificate fingerprints:
 MD5: 6D:46:9E:D9:25:6D:08:23:5B:5E:74:7D:1E:27:DB:F2
 SHA1: D3:DD:48:3E:2B:BF:4C:05:E8:AF:10:F5:FA:76:26:CF:D3:DC:30:92
 SHA256:
 B6:76:F2:ED:DA:E8:77:5C:D3:6C:B0:F6:3C:D1:D4:60:39:61:F4:9E:62:65:BA:01:3A:2F:03:07:B6:D0:B8:04

Alias name: starfieldservicesrootcertificateauthorityg2
Certificate fingerprints:
 MD5: 17:35:74:AF:7B:61:1C:EB:F4:F9:3C:E2:EE:40:F9:A2
 SHA1: 92:5A:8F:8D:2C:6D:04:E0:66:5F:59:6A:FF:22:D8:63:E8:25:6F:3F
 SHA256:
 56:8D:69:05:A2:C8:87:08:A4:B3:02:51:90:ED:CF:ED:B1:97:4A:60:6A:13:C6:E5:29:0F:CB:2A:E6:3E:DA:B5

Alias name: comodorsacertificationauthority
Certificate fingerprints:
 MD5: 1B:31:B0:71:40:36:CC:14:36:91:AD:C4:3E:FD:EC:18
 SHA1: AF:E5:D2:44:A8:D1:19:42:30:FF:47:9F:E2:F8:97:BB:CD:7A:8C:B4
 SHA256:
 52:F0:E1:C4:E5:8E:C6:29:29:1B:60:31:7F:07:46:71:B8:5D:7E:A8:0D:5B:07:27:34:63:53:4B:32:B4:02:34

Alias name: comodoaaaca
Certificate fingerprints:
 MD5: 49:79:04:B0:EB:87:19:AC:47:B0:BC:11:51:9B:74:D0
 SHA1: D1:EB:23:A4:6D:17:D6:8F:D9:25:64:C2:F1:F1:60:17:64:D8:E3:49

HTTP 845

AWS IoT Core Developer Guide

 SHA256:
 D7:A7:A0:FB:5D:7E:27:31:D7:71:E9:48:4E:BC:DE:F7:1D:5F:0C:3E:0A:29:48:78:2B:C8:3E:E0:EA:69:9E:F4

Alias name: identrustpublicsectorrootca1
Certificate fingerprints:
 MD5: 37:06:A5:B0:FC:89:9D:BA:F4:6B:8C:1A:64:CD:D5:BA
 SHA1: BA:29:41:60:77:98:3F:F4:F3:EF:F2:31:05:3B:2E:EA:6D:4D:45:FD
 SHA256:
 30:D0:89:5A:9A:44:8A:26:20:91:63:55:22:D1:F5:20:10:B5:86:7A:CA:E1:2C:78:EF:95:8F:D4:F4:38:9F:2F

Alias name: certplusclass2primaryca
Certificate fingerprints:
 MD5: 88:2C:8C:52:B8:A2:3C:F3:F7:BB:03:EA:AE:AC:42:0B
 SHA1: 74:20:74:41:72:9C:DD:92:EC:79:31:D8:23:10:8D:C2:81:92:E2:BB
 SHA256:
 0F:99:3C:8A:EF:97:BA:AF:56:87:14:0E:D5:9A:D1:82:1B:B4:AF:AC:F0:AA:9A:58:B5:D5:7A:33:8A:3A:FB:CB

Alias name: ttelesecglobalrootclass2ca
Certificate fingerprints:
 MD5: 2B:9B:9E:E4:7B:6C:1F:00:72:1A:CC:C1:77:79:DF:6A
 SHA1: 59:0D:2D:7D:88:4F:40:2E:61:7E:A5:62:32:17:65:CF:17:D8:94:E9
 SHA256:
 91:E2:F5:78:8D:58:10:EB:A7:BA:58:73:7D:E1:54:8A:8E:CA:CD:01:45:98:BC:0B:14:3E:04:1B:17:05:25:52

Alias name: accvraiz1
Certificate fingerprints:
 MD5: D0:A0:5A:EE:05:B6:09:94:21:A1:7D:F1:B2:29:82:02
 SHA1: 93:05:7A:88:15:C6:4F:CE:88:2F:FA:91:16:52:28:78:BC:53:64:17
 SHA256:
 9A:6E:C0:12:E1:A7:DA:9D:BE:34:19:4D:47:8A:D7:C0:DB:18:22:FB:07:1D:F1:29:81:49:6E:D1:04:38:41:13

Alias name: digicerthighassuranceevrootca
Certificate fingerprints:
 MD5: D4:74:DE:57:5C:39:B2:D3:9C:85:83:C5:C0:65:49:8A
 SHA1: 5F:B7:EE:06:33:E2:59:DB:AD:0C:4C:9A:E6:D3:8F:1A:61:C7:DC:25
 SHA256:
 74:31:E5:F4:C3:C1:CE:46:90:77:4F:0B:61:E0:54:40:88:3B:A9:A0:1E:D0:0B:A6:AB:D7:80:6E:D3:B1:18:CF

Alias name: amzninternalinfoseccag3
Certificate fingerprints:
 MD5: E9:34:94:02:BA:BB:31:6B:22:E6:2B:A9:C4:F0:26:04
 SHA1: B9:B1:CA:38:F7:BF:9C:D2:D4:95:E7:B6:5E:75:32:9B:A8:78:2E:F6
 SHA256:
 81:03:0B:C7:E2:54:DA:7B:F8:B7:45:DB:DD:41:15:89:B5:A3:81:86:FB:4B:29:77:1F:84:0A:18:D9:67:6D:68

HTTP 846

AWS IoT Core Developer Guide

Alias name: cia-crt-g3-02-ca
Certificate fingerprints:
 MD5: FD:B9:23:FD:D3:EB:2D:3E:57:EF:56:FF:DB:D3:E4:B9
 SHA1: 96:4A:BB:A7:BD:DA:FC:97:34:C0:0A:2D:F0:05:98:F7:E6:C6:6F:09
 SHA256:
 93:F1:72:FB:BA:43:31:5C:06:EE:0F:9F:04:89:B8:F6:88:BC:75:15:3C:BE:B4:80:AC:A7:14:3A:F6:FC:4A:C1

Alias name: entrustrootcertificationauthorityec1
Certificate fingerprints:
 MD5: B6:7E:1D:F0:58:C5:49:6C:24:3B:3D:ED:98:18:ED:BC
 SHA1: 20:D8:06:40:DF:9B:25:F5:12:25:3A:11:EA:F7:59:8A:EB:14:B5:47
 SHA256:
 02:ED:0E:B2:8C:14:DA:45:16:5C:56:67:91:70:0D:64:51:D7:FB:56:F0:B2:AB:1D:3B:8E:B0:70:E5:6E:DF:F5

Alias name: securitycommunicationrootca
Certificate fingerprints:
 MD5: F1:BC:63:6A:54:E0:B5:27:F5:CD:E7:1A:E3:4D:6E:4A
 SHA1: 36:B1:2B:49:F9:81:9E:D7:4C:9E:BC:38:0F:C6:56:8F:5D:AC:B2:F7
 SHA256:
 E7:5E:72:ED:9F:56:0E:EC:6E:B4:80:00:73:A4:3F:C3:AD:19:19:5A:39:22:82:01:78:95:97:4A:99:02:6B:6C

Alias name: globalsignca
Certificate fingerprints:
 MD5: 3E:45:52:15:09:51:92:E1:B7:5D:37:9F:B1:87:29:8A
 SHA1: B1:BC:96:8B:D4:F4:9D:62:2A:A8:9A:81:F2:15:01:52:A4:1D:82:9C
 SHA256:
 EB:D4:10:40:E4:BB:3E:C7:42:C9:E3:81:D3:1E:F2:A4:1A:48:B6:68:5C:96:E7:CE:F3:C1:DF:6C:D4:33:1C:99

Alias name: trustcenterclass2caii
Certificate fingerprints:
 MD5: CE:78:33:5C:59:78:01:6E:18:EA:B9:36:A0:B9:2E:23
 SHA1: AE:50:83:ED:7C:F4:5C:BC:8F:61:C6:21:FE:68:5D:79:42:21:15:6E
 SHA256:
 E6:B8:F8:76:64:85:F8:07:AE:7F:8D:AC:16:70:46:1F:07:C0:A1:3E:EF:3A:1F:F7:17:53:8D:7A:BA:D3:91:B4

Alias name: camerfirmachambersofcommerceroot
Certificate fingerprints:
 MD5: B0:01:EE:14:D9:AF:29:18:94:76:8E:F1:69:33:2A:84
 SHA1: 6E:3A:55:A4:19:0C:19:5C:93:84:3C:C0:DB:72:2E:31:30:61:F0:B1
 SHA256:
 0C:25:8A:12:A5:67:4A:EF:25:F2:8B:A7:DC:FA:EC:EE:A3:48:E5:41:E6:F5:CC:4E:E6:3B:71:B3:61:60:6A:C3

Alias name: geotrustprimarycag3

HTTP 847

AWS IoT Core Developer Guide

Certificate fingerprints:
 MD5: B5:E8:34:36:C9:10:44:58:48:70:6D:2E:83:D4:B8:05
 SHA1: 03:9E:ED:B8:0B:E7:A0:3C:69:53:89:3B:20:D2:D9:32:3A:4C:2A:FD
 SHA256:
 B4:78:B8:12:25:0D:F8:78:63:5C:2A:A7:EC:7D:15:5E:AA:62:5E:E8:29:16:E2:CD:29:43:61:88:6C:D1:FB:D4

Alias name: geotrustprimarycag2
Certificate fingerprints:
 MD5: 01:5E:D8:6B:BD:6F:3D:8E:A1:31:F8:12:E0:98:73:6A
 SHA1: 8D:17:84:D5:37:F3:03:7D:EC:70:FE:57:8B:51:9A:99:E6:10:D7:B0
 SHA256:
 5E:DB:7A:C4:3B:82:A0:6A:87:61:E8:D7:BE:49:79:EB:F2:61:1F:7D:D7:9B:F9:1C:1C:6B:56:6A:21:9E:D7:66

Alias name: hongkongpostrootca1
Certificate fingerprints:
 MD5: A8:0D:6F:39:78:B9:43:6D:77:42:6D:98:5A:CC:23:CA
 SHA1: D6:DA:A8:20:8D:09:D2:15:4D:24:B5:2F:CB:34:6E:B2:58:B2:8A:58
 SHA256:
 F9:E6:7D:33:6C:51:00:2A:C0:54:C6:32:02:2D:66:DD:A2:E7:E3:FF:F1:0A:D0:61:ED:31:D8:BB:B4:10:CF:B2

Alias name: affirmtrustpremiumeccca
Certificate fingerprints:
 MD5: 64:B0:09:55:CF:B1:D5:99:E2:BE:13:AB:A6:5D:EA:4D
 SHA1: B8:23:6B:00:2F:1D:16:86:53:01:55:6C:11:A4:37:CA:EB:FF:C3:BB
 SHA256:
 BD:71:FD:F6:DA:97:E4:CF:62:D1:64:7A:DD:25:81:B0:7D:79:AD:F8:39:7E:B4:EC:BA:9C:5E:84:88:82:14:23

Alias name: hellenicacademicandresearchinstitutionsrootca2015
Certificate fingerprints:
 MD5: CA:FF:E2:DB:03:D9:CB:4B:E9:0F:AD:84:FD:7B:18:CE
 SHA1: 01:0C:06:95:A6:98:19:14:FF:BF:5F:C6:B0:B6:95:EA:29:E9:12:A6
 SHA256:
 A0:40:92:9A:02:CE:53:B4:AC:F4:F2:FF:C6:98:1C:E4:49:6F:75:5E:6D:45:FE:0B:2A:69:2B:CD:52:52:3F:36

IoT Analytics

The AWS IoT Analytics (iotAnalytics) action sends data from an MQTT message to an AWS IoT
Analytics channel.

Requirements

This rule action has the following requirements:

IoT Analytics 848

AWS IoT Core Developer Guide

• An IAM role that AWS IoT can assume to perform the iotanalytics:BatchPutMessage
operation. For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

The policy attached to the role you specify should look like the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotanalytics:BatchPutMessage",
 "Resource": [
 "arn:aws:iotanalytics:us-west-2:account-id:channel/mychannel"
]
 }
]
}

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

batchMode

(Optional) Whether to process the action as a batch. The default value is false.

When batchMode is true and the rule SQL statement evaluates to an Array, each Array
element is delivered as a separate message when passed by BatchPutMessage to the AWS IoT
Analytics channel. The resulting array can't have more than 100 messages.

Supports substitution templates: No

channelName

The name of the AWS IoT Analytics channel to which to write the data.

Supports substitution templates: API and AWS CLI only

IoT Analytics 849

https://docs.aws.amazon.com/iotanalytics/latest/APIReference/API_BatchPutMessage.html

AWS IoT Core Developer Guide

roleArn

The IAM role that allows access to the AWS IoT Analytics channel. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines an AWS IoT Analytics action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "iotAnalytics": {
 "channelName": "mychannel",
 "roleArn": "arn:aws:iam::123456789012:role/analyticsRole",
 }
 }
]
 }
}

See also

• What is AWS IoT Analytics? in the AWS IoT Analytics User Guide

• The AWS IoT Analytics console also has a Quick start feature that lets you create a channel,
data store, pipeline, and data store with one click. For more information, see AWS IoT Analytics
console quickstart guide in the AWS IoT Analytics User Guide.

IoT Analytics 850

https://docs.aws.amazon.com/iotanalytics/latest/userguide/
https://docs.aws.amazon.com/iotanalytics/latest/userguide/quickstart.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/quickstart.html

AWS IoT Core Developer Guide

AWS IoT Events

The AWS IoT Events (iotEvents) action sends data from an MQTT message to an AWS IoT Events
input.

Important

If the payload is sent to AWS IoT Core without the Input attribute Key, or if the key
isn't in the same JSON path specified in the key, it will cause the IoT rule to fail with the
error Failed to send message to Iot Events.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the iotevents:BatchPutMessage
operation. For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

AWS IoT Events 851

AWS IoT Core Developer Guide

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

batchMode

(Optional) Whether to process the event actions as a batch. The default value is false.

When batchMode is true and the rule SQL statement evaluates to an Array, each Array
element is treated as a separate message when it's sent to AWS IoT Events by calling
BatchPutMessage. The resulting array can't have more than 10 messages.

When batchMode is true, you can't specify a messageId.

Supports substitution templates: No

inputName

The name of the AWS IoT Events input.

Supports substitution templates: API and AWS CLI only

messageId

(Optional) Use this to verify that only one input (message) with a given messageId is processed
by an AWS IoT Events detector. You can use the ${newuuid()} substitution template to
generate a unique ID for each request.

When batchMode is true, you can't specify a messageId--a new UUID value will be assigned.

Supports substitution templates: Yes

roleArn

The IAM role that allows AWS IoT to send an input to an AWS IoT Events detector. For more
information, see Requirements.

Supports substitution templates: No

Examples

The following JSON example defines an IoT Events action in an AWS IoT rule.

{

AWS IoT Events 852

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

AWS IoT Core Developer Guide

 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "iotEvents": {
 "inputName": "MyIoTEventsInput",
 "messageId": "${newuuid()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_events"
 }
 }
]
 }
}

See also

• What is AWS IoT Events? in the AWS IoT Events Developer Guide

AWS IoT SiteWise

The AWS IoT SiteWise (iotSiteWise) action sends data from an MQTT message to asset
properties in AWS IoT SiteWise.

You can follow a tutorial that shows you how to ingest data from AWS IoT things. For more
information, see the Ingesting data to AWS IoT SiteWise from AWS IoT things tutorial or the
Ingesting data using AWS IoT Core rules section in the AWS IoT SiteWise User Guide.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the
iotsitewise:BatchPutAssetPropertyValue operation. For more information, see Granting
an AWS IoT rule the access it requires.

You can attach the following example trust policy to the role.

{
 "Version": "2012-10-17",

AWS IoT SiteWise 853

https://docs.aws.amazon.com/iotevents/latest/developerguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-data-from-iot-things.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-rules.html

AWS IoT Core Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*"
 }
]
}

To improve security, you can specify an AWS IoT SiteWise asset hierarchy path in the Condition
property. The following example is a trust policy that specifies an asset hierarchy path.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

• When you send data to AWS IoT SiteWise with this action, your data must meet the
requirements of the BatchPutAssetPropertyValue operation. For more information, see
BatchPutAssetPropertyValue in the AWS IoT SiteWise API Reference.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

putAssetPropertyValueEntries

A list of asset property value entries that each contain the following information:

AWS IoT SiteWise 854

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT Core Developer Guide

propertyAlias

(Optional) The property alias associated with your asset property. Specify either a
propertyAlias or both an assetId and a propertyId. For more information about
property aliases, see Mapping industrial data streams to asset properties in the AWS IoT
SiteWise User Guide.

Supports substitution templates: Yes

assetId

(Optional) The ID of the AWS IoT SiteWise asset. Specify either a propertyAlias or both
an assetId and a propertyId.

Supports substitution templates: Yes

propertyId

(Optional) The ID of the asset's property. Specify either a propertyAlias or both an
assetId and a propertyId.

Supports substitution templates: Yes

entryId

(Optional) A unique identifier for this entry. Define the entryId to better track which
message caused an error if failure occurs. Defaults to a new UUID.

Supports substitution templates: Yes

propertyValues

A list of property values to insert that each contain timestamp, quality, and value (TQV) in
the following format:

timestamp

A timestamp structure that contains the following information:

timeInSeconds

A string that contains the time in seconds in Unix epoch time. If your message payload
doesn't have a timestamp, you can use timestamp(), which returns the current time in
milliseconds. To convert that time to seconds, you can use the following substitution
template: ${floor(timestamp() / 1E3)}.

AWS IoT SiteWise 855

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-data-streams.html

AWS IoT Core Developer Guide

Supports substitution templates: Yes

offsetInNanos

(Optional) A string that contains the nanosecond time offset from the time in
seconds. If your message payload doesn't have a timestamp, you can use timestamp(),
which returns the current time in milliseconds. To calculate the nanosecond offset
from that time, you can use the following substitution template: ${(timestamp() %
1E3) * 1E6}.

Supports substitution templates: Yes

Regarding Unix epoch time, AWS IoT SiteWise accepts only entries that have a timestamp
of up to 7 days in the past up to 5 minutes in the future.

quality

(Optional) A string that describes the quality of the value. Valid values: GOOD, BAD,
UNCERTAIN.

Supports substitution templates: Yes

value

A value structure that contains one of the following value fields, depending on the asset
property's data type:

booleanValue

(Optional) A string that contains the Boolean value of the value entry.

Supports substitution templates: Yes

doubleValue

(Optional) A string that contains the double value of the value entry.

Supports substitution templates: Yes

integerValue

(Optional) A string that contains the integer value of the value entry.

Supports substitution templates: Yes

AWS IoT SiteWise 856

AWS IoT Core Developer Guide

stringValue

(Optional) The string value of the value entry.

Supports substitution templates: Yes

roleArn

The ARN of the IAM role that grants AWS IoT permission to send an asset property value to
AWS IoT SiteWise. For more information, see Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a basic IoT SiteWise action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "iotSiteWise": {
 "putAssetPropertyValueEntries": [
 {
 "propertyAlias": "/some/property/alias",
 "propertyValues": [
 {
 "timestamp": {
 "timeInSeconds": "${my.payload.timeInSeconds}"
 },
 "value": {
 "integerValue": "${my.payload.value}"
 }
 }
]
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sitewise"
 }
 }
]

AWS IoT SiteWise 857

AWS IoT Core Developer Guide

 }
}

The following JSON example defines an IoT SiteWise action in an AWS IoT rule. This example uses
the topic as the property alias and the timestamp() function. For example, if you publish data to
/company/windfarm/3/turbine/7/rpm, this action sends the data to the asset property with a
property alias that's the same as the topic that you specified.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM '/company/windfarm/+/turbine/+/+'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "iotSiteWise": {
 "putAssetPropertyValueEntries": [
 {
 "propertyAlias": "${topic()}",
 "propertyValues": [
 {
 "timestamp": {
 "timeInSeconds": "${floor(timestamp() / 1E3)}",
 "offsetInNanos": "${(timestamp() % 1E3) * 1E6}"
 },
 "value": {
 "doubleValue": "${my.payload.value}"
 }
 }
]
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sitewise"
 }
 }
]
 }
}

See also

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide

AWS IoT SiteWise 858

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html

AWS IoT Core Developer Guide

• Ingesting data using AWS IoT Core rules in the AWS IoT SiteWise User Guide

• Ingesting data to AWS IoT SiteWise from AWS IoT things in the AWS IoT SiteWise User Guide

• Troubleshooting an AWS IoT SiteWise rule action in the AWS IoT SiteWise User Guide

Firehose

The Firehose(firehose) action sends data from an MQTT message to an Amazon Data Firehose
stream.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the firehose:PutRecord operation. For
more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use Firehose to send data to an Amazon S3 bucket, and you use an AWS KMS customer
managed AWS KMS key to encrypt data at rest in Amazon S3, Firehose must have access to your
bucket and permission to use the AWS KMS key on the caller's behalf. For more information, see
Grant Firehose access to an Amazon S3 destination in the Amazon Data Firehose Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

batchMode

(Optional) Whether to deliver the Firehose stream as a batch by using PutRecordBatch . The
default value is false.

When batchMode is true and the rule's SQL statement evaluates to an Array, each Array
element forms one record in the PutRecordBatch request. The resulting array can't have more
than 500 records.

Supports substitution templates: No

Firehose 859

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-rules.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-data-from-iot-things.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshoot-rule.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-s3
https://docs.aws.amazon.com/firehose/latest/APIReference/API_PutRecordBatch.html

AWS IoT Core Developer Guide

deliveryStreamName

The Firehose stream to which to write the message data.

Supports substitution templates: API and AWS CLI only

separator

(Optional) A character separator that is used to separate records written to the Firehose stream.
If you omit this parameter, the stream uses no separator. Valid values: , (comma), \t (tab), \n
(newline), \r\n (Windows newline).

Supports substitution templates: No

roleArn

The IAM role that allows access to the Firehose stream. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a Firehose action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "firehose": {
 "deliveryStreamName": "my_firehose_stream",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_firehose"
 }
 }
]
 }
}

The following JSON example defines a Firehose action with substitution templates in an AWS IoT
rule.

Firehose 860

AWS IoT Core Developer Guide

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "firehose": {
 "deliveryStreamName": "${topic()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_firehose"
 }
 }
]
 }
}

See also

• What is Amazon Data Firehose? in the Amazon Data Firehose Developer Guide

Kinesis Data Streams

The Kinesis Data Streams (kinesis) action writes data from an MQTT message to Amazon Kinesis
Data Streams.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the kinesis:PutRecord operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use an AWS KMS customer-managed AWS KMS key (KMS key) to encrypt data at rest in
Kinesis Data Streams, the service must have permission to use the AWS KMS key on the caller's
behalf. For more information, see Permissions to use user-generated AWS KMS keys in the
Amazon Kinesis Data Streams Developer Guide.

Kinesis Data Streams 861

https://docs.aws.amazon.com/firehose/latest/dev/
https://docs.aws.amazon.com/streams/latest/dev/permissions-user-key-KMS.html

AWS IoT Core Developer Guide

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

stream

The Kinesis data stream to which to write data.

Supports substitution templates: API and AWS CLI only

partitionKey

The partition key used to determine to which shard the data is written. The partition key is
usually composed of an expression (for example, ${topic()} or ${timestamp()}).

Supports substitution templates: Yes

roleArn

The ARN of the IAM role that grants AWS IoT permission to access the Kinesis data stream. For
more information, see Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a Kinesis Data Streams action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "kinesis": {
 "streamName": "my_kinesis_stream",
 "partitionKey": "${topic()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_kinesis"
 }
 }
]
 }
}

Kinesis Data Streams 862

AWS IoT Core Developer Guide

The following JSON example defines a Kinesis action with substitution templates in an AWS IoT
rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "kinesis": {
 "streamName": "${topic()}",
 "partitionKey": "${timestamp()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_kinesis"
 }
 }
]
 }
}

See also

• What is Amazon Kinesis Data Streams? in the Amazon Kinesis Data Streams Developer Guide

Lambda

A Lambda (lambda) action invokes an AWS Lambda function, passing in an MQTT message. AWS
IoT invokes Lambda functions asynchronously.

You can follow a tutorial that shows you how to create and test a rule with a Lambda action. For
more information, see Tutorial: Formatting a notification by using an AWS Lambda function.

Requirements

This rule action has the following requirements:

• For AWS IoT to invoke a Lambda function, you must configure a policy that grants the
lambda:InvokeFunction permission to AWS IoT. You can only invoke a Lambda function
defined in the same AWS Region where your Lambda policy exists. Lambda functions use
resource-based policies, so you must attach the policy to the Lambda function itself.

Lambda 863

https://docs.aws.amazon.com/streams/latest/dev/

AWS IoT Core Developer Guide

Use the following AWS CLI command to attach a policy that grants the
lambda:InvokeFunction permission.

aws lambda add-permission --function-name function_name --region region --principal
 iot.amazonaws.com --source-arn arn:aws:iot:region:account-id:rule/rule_name --
source-account account-id --statement-id unique_id --action "lambda:InvokeFunction"

The add-permission command expects the following parameters:

--function-name

Name of the Lambda function. You add a new permission to update the function's resource
policy.

--region

The AWS Region of the function.

--principal

The principal that gets the permission. This should be iot.amazonaws.com to allow AWS
IoT permission to call the Lambda function.

--source-arn

The ARN of the rule. You can use the get-topic-rule AWS CLI command to get the ARN of
a rule.

--source-account

The AWS account where the rule is defined.

--statement-id

A unique statement identifier.

--action

The Lambda action that you want to allow in this statement. To allow AWS IoT to invoke a
Lambda function, specify lambda:InvokeFunction.

Lambda 864

AWS IoT Core Developer Guide

Important

If you add a permission for an AWS IoT principal without providing the source-arn or
source-account, any AWS account that creates a rule with your Lambda action can
activate rules to invoke your Lambda function from AWS IoT.

For more information, see AWS Lambda permissions.

• If you use an AWS KMS customer managed AWS KMS key to encrypt data at rest in Lambda,
the service must have permission to use the AWS KMS key on the caller's behalf. For more
information, see Encryption at rest in the AWS Lambda Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

functionArn

The ARN of the Lambda function to invoke. AWS IoT must have permission to invoke the
function. For more information, see Requirements.

If you don't specify a version or alias for your Lambda function, the most recent version of the
function is shut down. You can specify a version or alias if you want to shut down a specific
version of your Lambda function. To specify a version or alias, append the version or alias to the
ARN of the Lambda function.

arn:aws:lambda:us-east-2:123456789012:function:myLambdaFunction:someAlias

For more information about versioning and aliases, and see AWS Lambda function versioning
and aliases.

Supports substitution templates: API and AWS CLI only

Examples

The following JSON example defines a Lambda action in an AWS IoT rule.

{

Lambda 865

https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/security-dataprotection.html#security-privacy-atrest
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Core Developer Guide

 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "lambda": {
 "functionArn": "arn:aws:lambda:us-
east-2:123456789012:function:myLambdaFunction"
 }
 }
]
 }
}

The following JSON example defines a Lambda action with substitution templates in an AWS IoT
rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "lambda": {
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:
${topic()}"
 }
 }
]
 }
}

See also

• What is AWS Lambda? in the AWS Lambda Developer Guide

• Tutorial: Formatting a notification by using an AWS Lambda function

Lambda 866

https://docs.aws.amazon.com/lambda/latest/dg/

AWS IoT Core Developer Guide

Location

The Location (location) action sends your geographical location data to Amazon Location
Service.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the geo:BatchUpdateDevicePosition
operation. For more information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

deviceId

The unique ID of the device providing the location data. For more information, see DeviceId
from the Amazon Location Service API Reference.

Supports substitution templates: Yes

latitude

A string that evaluates to a double value that represents the latitude of the device's location.

Supports substitution templates: Yes

longitude

A string that evaluates to a double value that represents the longitude of the device's location.

Supports substitution templates: Yes

roleArn

The IAM role that allows access to the Amazon Location Service domain. For more information,
see Requirements.

Location 867

https://docs.aws.amazon.com/location/latest/developerguide/welcome.html
https://docs.aws.amazon.com/location/latest/developerguide/welcome.html
https://docs.aws.amazon.com/location/latest/APIReference/API_DevicePositionUpdate.html

AWS IoT Core Developer Guide

timestamp

The time that the location data was sampled. The default value is the time that the MQTT
message was processed.

The timestamp value consists of the following two values:

• value: An expression that returns a long epoch time value. You can use the the section called
“time_to_epoch(String, String)” function to create a valid timestamp from a date or time
value passed in the message payload. Supports substitution templates: Yes.

• unit: (Optional) The precision of the timestamp value that results from the expression
described in value. Valid values: SECONDS | MILLISECONDS | MICROSECONDS |
NANOSECONDS. The default is MILLISECONDS. Supports substitution templates: API and AWS
CLI only.

trackerName

The name of the tracker resource in Amazon Location in which the location is updated. For more
information, see Tracker from the Amazon Location Service Developer Guide.

Supports substitution templates: API and AWS CLI only

Examples

The following JSON example defines a Location action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "location": {
 "roleArn": "arn:aws:iam::123454962127:role/service-role/ExampleRole",
 "trackerName": "MyTracker",
 "deviceId": "001",
 "sampleTime": {
 "value": "${timestamp()}",
 "unit": "MILLISECONDS"
 },

Location 868

https://docs.aws.amazon.com/location/latest/developerguide/geofence-tracker-concepts.html#tracking-overview

AWS IoT Core Developer Guide

 "latitude": "-12.3456",
 "longitude": "65.4321"
 }
 }
]
 }
}

The following JSON example defines a Location action with substitution templates in an AWS IoT
rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "location": {
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ExampleRole",
 "trackerName": "${TrackerName}",
 "deviceId": "${DeviceID}",
 "timestamp": {
 "value": "${timestamp()}",
 "unit": "MILLISECONDS"
 },
 "latitude": "${get(position, 0)}",
 "longitude": "${get(position, 1)}"
 }
 }
]
 }
}

The following MQTT payload example shows how substitution templates in the preceding example
accesses data. You can use the get-device-position-history CLI command to verify that the MQTT
payload data is delivered in your location tracker.

{
 "TrackerName": "mytracker",
 "DeviceID": "001",
 "position": [

Location 869

https://docs.aws.amazon.com/cli/latest/reference/location/get-device-position-history.html

AWS IoT Core Developer Guide

 "-12.3456",
 "65.4321"
]
}

aws location get-device-position-history --device-id 001 --tracker-name mytracker

{
 "DevicePositions": [
 {
 "DeviceId": "001",
 "Position": [
 -12.3456,
 65.4321
],
 "ReceivedTime": "2022-11-11T01:31:54.464000+00:00",
 "SampleTime": "2022-11-11T01:31:54.308000+00:00"
 }
]
}

See also

• What is Amazon Location Service? in the Amazon Location Service Developer Guide.

OpenSearch

The OpenSearch (openSearch) action writes data from MQTT messages to an Amazon
OpenSearch Service domain. You can then use tools like OpenSearch Dashboards to query and
visualize data in OpenSearch Service.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the es:ESHttpPut operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

OpenSearch 870

https://docs.aws.amazon.com/location/latest/developerguide/welcome.html

AWS IoT Core Developer Guide

• If you use a customer managed AWS KMS key to encrypt data at rest in OpenSearch Service, the
service must have permission to use the KMS key on the caller's behalf. For more information,
see Encryption of data at rest for Amazon OpenSearch Service in the Amazon OpenSearch Service
Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

endpoint

The endpoint of your Amazon OpenSearch Service domain.

Supports substitution templates: API and AWS CLI only

index

The OpenSearch index where you want to store your data.

Supports substitution templates: Yes

type

The type of document you are storing.

Note

For OpenSearch versions later than 1.0, the value of the type parameter must be _doc.
For more information, see the OpenSearch documentation.

Supports substitution templates: Yes

id

The unique identifier for each document.

Supports substitution templates: Yes

roleARN

The IAM role that allows access to the OpenSearch Service domain. For more information, see
Requirements.

Supports substitution templates: No

OpenSearch 871

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/encryption-at-rest.html
https://opensearch.org/docs/1.0/opensearch/rest-api/document-apis/index-document/#response-body-fields

AWS IoT Core Developer Guide

Limitations

The OpenSearch (openSearch) action cannot be used to deliver data to VPC Elasticsearch clusters.

Examples

The following JSON example defines an OpenSearch action in an AWS IoT rule and how you can
specify the fields for the OpenSearch action. For more information, see OpenSearchAction.

{
 "topicRulePayload": {
 "sql": "SELECT *, timestamp() as timestamp FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "openSearch": {
 "endpoint": "https://my-endpoint",
 "index": "my-index",
 "type": "_doc",
 "id": "${newuuid()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_os"
 }
 }
]
 }
}

The following JSON example defines an OpenSearch action with substitution templates in an AWS
IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "openSearch": {
 "endpoint": "https://my-endpoint",
 "index": "${topic()}",
 "type": "${type}",

OpenSearch 872

https://docs.aws.amazon.com/iot/latest/apireference/API_OpenSearchAction.html

AWS IoT Core Developer Guide

 "id": "${newuuid()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_os"
 }
 }
]
 }
}

Note

The the substituted type field works for OpenSearch version 1.0. For any versions later
than 1.0, the value of type must be _doc.

See also

What is Amazon OpenSearch Service? in the Amazon OpenSearch Service Developer Guide

Republish

The republish (republish) action republishes an MQTT message to another MQTT topic.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the iot:Publish operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

headers

MQTT Version 5.0 headers information.

For more information, see RepublishAction and MqttHeaders in the AWS API Reference.

Republish 873

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/
https://docs.aws.amazon.com/iot/latest/apireference/API_RepublishAction.html
https://docs.aws.amazon.com/iot/latest/apireference/API_MqttHeaders.html

AWS IoT Core Developer Guide

topic

The MQTT topic to which to republish the message.

To republish to a reserved topic, which begins with $, use $$ instead. For example, to republish
to the device shadow topic $aws/things/MyThing/shadow/update, specify the topic as $
$aws/things/MyThing/shadow/update.

Note

Republishing to reserved job topics is not supported.
AWS IoT Device Defender reserve topics don't support HTTP publish.

Supports substitution templates: Yes

qos

(Optional) The Quality of Service (QoS) level to use when republishing messages. Valid values:
0, 1. The default value is 0. For more information about MQTT QoS, see MQTT.

Supports substitution templates: No

roleArn

The IAM role that allows AWS IoT to publish to the MQTT topic. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a republish action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {

Republish 874

AWS IoT Core Developer Guide

 "topic": "another/topic",
 "qos": 1,
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_republish"
 }
 }
]
 }
}

The following JSON example defines a republish action with substitution templates in an AWS IoT
rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "${topic()}/republish",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_republish"
 }
 }
]
 }
}

The following JSON example defines a republish action with headers in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "${topic()}/republish",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_republish",
 "headers": {
 "payloadFormatIndicator": "UTF8_DATA",
 "contentType": "rule/contentType",

Republish 875

AWS IoT Core Developer Guide

 "correlationData": "cnVsZSBjb3JyZWxhdGlvbiBkYXRh",
 "userProperties": [
 {
 "key": "ruleKey1",
 "value": "ruleValue1"
 },
 {
 "key": "ruleKey2",
 "value": "ruleValue2"
 }
]
 }
 }
 }
]
 }
}

Note

The original source IP won't be passed though Republish action.

S3

The S3 (s3) action writes the data from an MQTT message to an Amazon Simple Storage Service
(Amazon S3) bucket.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the s3:PutObject operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use an AWS KMS customermanaged AWS KMS key to encrypt data at rest in Amazon
S3, the service must have permission to use the AWS KMS key on the caller's behalf. For more
information, see AWS managed AWS KMS keys and customer managed AWS KMS keys in the
Amazon Simple Storage Service Developer Guide.

S3 876

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html#aws-managed-customer-managed-cmks

AWS IoT Core Developer Guide

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

bucket

The Amazon S3 bucket to which to write data.

Supports substitution templates: API and AWS CLI only

cannedacl

(Optional) The Amazon S3 canned ACL that controls access to the object identified by the object
key. For more information, including allowed values, see Canned ACL.

Supports substitution templates: No

key

The path to the file where the data is written.

Consider an example where this parameter is ${topic()}/${timestamp()} and the rule
receives a message where the topic is some/topic. If the current timestamp is 1460685389,
then this action writes the data to a file called 1460685389 in the some/topic folder of the
S3 bucket.

Note

If you use a static key, AWS IoT overwrites a single file each time the rule invokes. We
recommend that you use the message timestamp or another unique message identifier
so that a new file is saved in Amazon S3 for each message received.

Supports substitution templates: Yes

roleArn

The IAM role that allows access to the Amazon S3 bucket. For more information, see
Requirements.

Supports substitution templates: No

S3 877

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

AWS IoT Core Developer Guide

Examples

The following JSON example defines an S3 action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "s3": {
 "bucketName": "my-bucket",
 "cannedacl": "public-read",
 "key": "${topic()}/${timestamp()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_s3"
 }
 }
]
 }
}

See also

• What is Amazon S3? in the Amazon Simple Storage Service User Guide

Salesforce IoT

The Salesforce IoT (salesforce) action sends data from the MQTT message that triggered the
rule to a Salesforce IoT input stream.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

url

The URL exposed by the Salesforce IoT input stream. The URL is available from the Salesforce
IoT platform when you create an input stream. For more information, see the Salesforce IoT
documentation.

Salesforce IoT 878

https://docs.aws.amazon.com/AmazonS3/latest/dev/

AWS IoT Core Developer Guide

Supports substitution templates: No

token

The token used to authenticate access to the specified Salesforce IoT input stream. The token
is available from the Salesforce IoT platform when you create an input stream. For more
information, see the Salesforce IoT documentation.

Supports substitution templates: No

Examples

The following JSON example defines a Salesforce IoT action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "salesforce": {
 "token": "ABCDEFGHI123456789abcdefghi123456789",
 "url": "https://ingestion-cluster-id.my-env.sfdcnow.com/streams/
stream-id/connection-id/my-event"
 }
 }
]
 }
}

SNS

The SNS (sns) action sends the data from an MQTT message as an Amazon Simple Notification
Service (Amazon SNS) push notification.

You can follow a tutorial that shows you how to create and test a rule with an SNS action. For more
information, see Tutorial: Sending an Amazon SNS notification.

SNS 879

AWS IoT Core Developer Guide

Note

The SNS action doesn't support Amazon SNS FIFO (First-In-First-Out) topics. Because the
rules engine is a fully distributed service, there is no guarantee of message order when the
SNS action is invoked.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the sns:Publish operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use an AWS KMS customer managed-managed AWS KMS key to encrypt data at rest in
Amazon SNS, the service must have permission to use the AWS KMS key on the caller's behalf.
For more information, see Key management in the Amazon Simple Notification Service Developer
Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

targetArn

The SNS topic or individual device to which the push notification is sent.

Supports substitution templates: API and AWS CLI only

messageFormat

(Optional) The message format. Amazon SNS uses this setting to determine if the payload
should be parsed and if relevant platform-specific parts of the payload should be extracted.
Valid values: JSON, RAW. Defaults to RAW.

Supports substitution templates: No

roleArn

The IAM role that allows access to SNS. For more information, see Requirements.

SNS 880

https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/sns-key-management.html

AWS IoT Core Developer Guide

Supports substitution templates: No

Examples

The following JSON example defines an SNS action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-east-2:123456789012:my_sns_topic",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sns"
 }
 }
]
 }
}

The following JSON example defines an SNS action with substitution templates in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-east-1:123456789012:${topic()}",
 "messageFormat": "JSON",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sns"
 }
 }
]
 }
}

SNS 881

AWS IoT Core Developer Guide

See also

• What is Amazon Simple Notification Service? in the Amazon Simple Notification Service Developer
Guide

• Tutorial: Sending an Amazon SNS notification

SQS

The SQS (sqs) action sends data from an MQTT message to an Amazon Simple Queue Service
(Amazon SQS) queue.

Note

The SQS action doesn't support Amazon SQS FIFO (First-In-First-Out) queues. Because the
rules engine is a fully distributed service, there is no guarantee of message order when the
SQS action is triggered.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the sqs:SendMessage operation. For more
information, see Granting an AWS IoT rule the access it requires.

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

• If you use an AWS KMS customer managed AWS KMS key to encrypt data at rest in Amazon
SQS, the service must have permission to use the AWS KMS key on the caller's behalf. For more
information, see Key management in the Amazon Simple Queue Service Developer Guide.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

SQS 882

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html

AWS IoT Core Developer Guide

queueUrl

The URL of the Amazon SQS queue to which to write the data. The region in this URL doesn't
need to be the same AWS Region as your AWS IoT rule.

Note

There can be additional charges for data transfer cross AWS Regions using the SQS rule
action. For more information, see Amazon SQS pricing.

Supports substitution templates: API and AWS CLI only

useBase64

Set this parameter to true to configure the rule action to base64-encode the message data
before it writes the data to the Amazon SQS queue. Defaults to false.

Supports substitution templates: No

roleArn

The IAM role that allows access to the Amazon SQS queue. For more information, see
Requirements.

Supports substitution templates: No

Examples

The following JSON example defines an SQS action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sqs": {
 "queueUrl": "https://sqs.us-east-2.amazonaws.com/123456789012/
my_sqs_queue",

SQS 883

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://aws.amazon.com/sqs/pricing/

AWS IoT Core Developer Guide

 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sqs"
 }
 }
]
 }
}

The following JSON example defines an SQS action with substitution templates in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sqs": {
 "queueUrl": "https://sqs.us-east-2.amazonaws.com/123456789012/
${topic()}",
 "useBase64": true,
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_sqs"
 }
 }
]
 }
}

See also

• What is Amazon Simple Queue Service? in the Amazon Simple Queue Service Developer Guide

Step Functions

The Step Functions (stepFunctions) action starts an AWS Step Functions state machine.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the states:StartExecution operation. For
more information, see Granting an AWS IoT rule the access it requires.

Step Functions 884

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

AWS IoT Core Developer Guide

In the AWS IoT console, you can choose or create a role to allow AWS IoT to perform this rule
action.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

stateMachineName

The name of the Step Functions state machine to start.

Supports substitution templates: API and AWS CLI only

executionNamePrefix

(Optional) The name given to the state machine execution consists of this prefix followed by
a UUID. Step Functions creates a unique name for each state machine execution if one is not
provided.

Supports substitution templates: Yes

roleArn

The ARN of the role that grants AWS IoT permission to start the state machine. For more
information, see Requirements.

Supports substitution templates: No

Examples

The following JSON example defines a Step Functions action in an AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "stepFunctions": {
 "stateMachineName": "myStateMachine",
 "executionNamePrefix": "myExecution",

Step Functions 885

AWS IoT Core Developer Guide

 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_step_functions"
 }
 }
]
 }
}

See also

• What is AWS Step Functions? in the AWS Step Functions Developer Guide

Timestream

The Timestream rule action writes attributes (measures) from an MQTT message into an Amazon
Timestream table. For more information about Amazon Timestream, see What Is Amazon
Timestream?.

Note

Amazon Timestream is not available in all AWS Regions. If Amazon Timestream is not
available in your Region, it won't appear in the list of rule actions.

The attributes that this rule stores in the Timestream database are those that result from the rule's
query statement. The value of each attribute in the query statement's result is parsed to infer its
data type (as in a the section called “DynamoDBv2” action). Each attribute's value is written to its
own record in the Timestream table. To specify or change an attribute's data type, use the cast()
function in the query statement. For more information about the contents of each Timestream
record, see the section called “Timestream record content”.

Note

With SQL V2 (2016-03-23), numeric values that are whole numbers, such as 10.0, are
converted their Integer representation (10). Explicitly casting them to a Decimal value,
such as by using the cast() function, does not prevent this behavior—the result is still an
Integer value. This can cause type mismatch errors that prevent data from being recorded
in the Timestream database. To process whole number numeric values as Decimal values,
use SQL V1 (2015-10-08) for the rule query statement.

Timestream 886

https://docs.aws.amazon.com/step-functions/latest/dg/
https://docs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html
https://docs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html

AWS IoT Core Developer Guide

Note

The maximum number of values that a Timestream rule action can write into an Amazon
Timestream table is 100. For more information, see Amazon Timestream Quota's Reference.

Requirements

This rule action has the following requirements:

• An IAM role that AWS IoT can assume to perform the timestream:DescribeEndpoints and
timestream:WriteRecords operations. For more information, see Granting an AWS IoT rule
the access it requires.

In the AWS IoT console, you can choose, update, or create a role to allow AWS IoT to perform this
rule action.

• If you use a customer- AWS KMS to encrypt data at rest in Timestream, the service must have
permission to use the AWS KMS key on the caller's behalf. For more information, see How AWS
services use AWS KMS.

Parameters

When you create an AWS IoT rule with this action, you must specify the following information:

databaseName

The name of an Amazon Timestream database that has the table to receive the records this
action creates. See also tableName.

Supports substitution templates: API and AWS CLI only

dimensions

Metadata attributes of the time series that are written in each measure record. For example,
the name and Availability Zone of an EC2 instance or the name of the manufacturer of a wind
turbine are dimensions.

name

The metadata dimension name. This is the name of the column in the database table record.

Timestream 887

https://docs.aws.amazon.com/timestream/latest/developerguide/ts-limits.html#limits.default
https://docs.aws.amazon.com/kms/latest/developerguide/service-integration.html
https://docs.aws.amazon.com/kms/latest/developerguide/service-integration.html

AWS IoT Core Developer Guide

Dimensions can't be named: measure_name, measure_value, or time. These names are
reserved. Dimension names can't start with ts_ or measure_value and they can't contain
the colon (:) character.

Supports substitution templates: No

value

The value to write in this column of the database record.

Supports substitution templates: Yes

roleArn

The Amazon Resource Name (ARN) of the role that grants AWS IoT permission to write to the
Timestream database table. For more information, see Requirements.

Supports substitution templates: No

tableName

The name of the database table into which to write the measure records. See also
databaseName.

Supports substitution templates: API and AWS CLI only

timestamp

The value to use for the entry's timestamp. If blank, the time that the entry was processed is
used.

unit

The precision of the timestamp value that results from the expression described in value.

Valid values: SECONDS | MILLISECONDS | MICROSECONDS | NANOSECONDS. The default is
MILLISECONDS.

value

An expression that returns a long epoch time value.

You can use the the section called “time_to_epoch(String, String)” function to create a valid
timestamp from a date or time value passed in the message payload.

Timestream 888

AWS IoT Core Developer Guide

Timestream record content

The data written to the Amazon Timestream table by this action include a timestamp, metadata
from the Timestream rule action, and the result of the rule's query statement.

For each attribute (measure) in the result of the query statement, this rule action writes a record to
the specified Timestream table with these columns.

Column name Attribute type Value Comments

dimension-name DIMENSION The value specified in
the Timestream rule
action entry.

Each Dimension
 specified in the rule
action entry creates
a column in the
Timestream database
with the dimension's
name.

measure_name MEASURE_NAME The attribute's name The name of the
attribute in the
result of the query
statement whose
value is specified
in the measure_v
alue:: data-type

 column.

measure_v
alue::data-type

MEASURE_VALUE The value of the
attribute in the
result of the query
statement. The
attribute's name is in
the measure_name
column.

The value is interpret
ed* and cast as
the most suitable
match of: bigint,
boolean, double,
or varchar. Amazon
Timestream creates
a separate column
for each data type.
The value in the
message can be cast

Timestream 889

AWS IoT Core Developer Guide

Column name Attribute type Value Comments

to another data type
by using the cast()
function in the rule's
query statement.

time TIMESTAMP The date and time
of the record in the
database.

This value is assigned
by rules engine or
the timestamp

 property, if it is
defined.

* The attribute value read from the message payload is interpreted as follows. See the the section
called “Examples” for an illustration of each of these cases.

• An unquoted value of true or false is interpreted as a boolean type.

• A decimal numeric is interpreted as a double type.

• A numeric value without a decimal point is interpreted as a bigint type.

• A quoted string is interpreted as a varchar type.

• Objects and array values are converted to JSON strings and stored as a varchar type.

Examples

The following JSON example defines a Timestream rule action with a substitution template in an
AWS IoT rule.

{
 "topicRulePayload": {
 "sql": "SELECT * FROM 'iot/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "timestream": {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_timestream",
 "tableName": "devices_metrics",
 "dimensions": [

Timestream 890

AWS IoT Core Developer Guide

 {
 "name": "device_id",
 "value": "${clientId()}"
 },
 {
 "name": "device_firmware_sku",
 "value": "My Static Metadata"
 }
],
 "databaseName": "record_devices"
 }
 }
]
 }
}

Using the Timestream topic rule action defined in the previous example with the following
message payload results in the Amazon Timestream records written in the table that follows.

{
 "boolean_value": true,
 "integer_value": 123456789012,
 "double_value": 123.456789012,
 "string_value": "String value",
 "boolean_value_as_string": "true",
 "integer_value_as_string": "123456789012",
 "double_value_as_string": "123.456789012",
 "array_of_integers": [23,36,56,72],
 "array of strings": ["red", "green","blue"],
 "complex_value": {
 "simple_element": 42,
 "array_of_integers": [23,36,56,72],
 "array of strings": ["red", "green","blue"]
 }
}

The following table displays the database columns and records that using the specified topic
rule action to process the previous message payload creates. The device_firmware_sku and
device_id columns are the DIMENSIONS defined in the topic rule action. The Timestream topic
rule action creates the time column and the measure_name and measure_value::* columns,
which it fills with the values from the result of the topic rule action's query statement.

Timestream 891

AWS IoT Core Developer Guide

device_fi
rmware_sk
u

device_id measure_n
ame

measure_v
alue::big
int

measure_v
alue::var
char

measure_v
alue::dou
ble

measure_v
alue::boo
lean

time

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

complex_v
alue

- {"simple_
element":
42,"array
_of_integ
ers":[23,
36,56,72]
,"array of
strings":
["red","g
reen","bl
ue"]}

- - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

integer_v
alue_as_s
tring

- 123456789
012

- - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

boolean_v
alue

- - - TRUE 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

integer_v
alue

123456789
012

- - - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

string_va
lue

- String
value

- - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

array_of_
integers

- [23,36,56
,72]

- - 2020-08-2
6 22:42:16.
423000000

Timestream 892

AWS IoT Core Developer Guide

device_fi
rmware_sk
u

device_id measure_n
ame

measure_v
alue::big
int

measure_v
alue::var
char

measure_v
alue::dou
ble

measure_v
alue::boo
lean

time

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

array of
strings

- ["red","g
reen","bl
ue"]

- - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

boolean_v
alue_as_s
tring

- TRUE - - 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

double_va
lue

- - 123.45678
9012

- 2020-08-2
6 22:42:16.
423000000

My Static
Metadata

iotconsol
e-159EXAM
PLE738-0

double_va
lue_as_st
ring

- 123.45679 - - 2020-08-2
6 22:42:16.
423000000

Troubleshooting a rule

If you have an issue with your rules, we recommend that you activate CloudWatch Logs. You can
analyze your logs to determine whether the issue is authorization or whether, for example, a
WHERE clause condition didn't match. For more information, see Setting Up CloudWatch Logs.

Accessing cross-account resources using AWS IoT rules

You can configure AWS IoT rules for cross-account access so that data ingested on MQTT topics of
one account can be routed into the AWS services, such as Amazon SQS and Lambda, of another
account. The following explains how to set up AWS IoT rules for cross-account data ingestion, from
an MQTT topic in one account, to a destination in another account.

Cross-account rules can be configured using resource-based permissions on the destination
resource. Therefore, only destinations that support resource-based permissions can be enabled
for the cross-account access with AWS IoT rules. The supported destinations include Amazon SQS,
Amazon SNS, Amazon S3, and AWS Lambda.

Troubleshooting a rule 893

https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html#TypesPermissions

AWS IoT Core Developer Guide

Note

For the supported destinations, except for Amazon SQS, you must define the rule in the
same AWS Region as another service's resource so that the rule action can interact with
that resource. For more information about AWS IoT rule actions, see AWS IoT rule actions.
For more information about rule's SQS action, see ???.

Prerequisites

• Familiarity with AWS IoT rules

• An understanding of IAM users, roles, and resource-based permission

• Having AWS CLI installed

Cross-account setup for Amazon SQS

Scenario: Account A sends data from an MQTT message to account B's Amazon SQS queue.

AWS account Account referred to
as

Description

1111-1111
-1111

Account A Rule action: sqs:SendMessage

2222-2222
-2222

Account B Amazon SQS queue

• ARN: arn:aws:sqs:region:2222-222
2-2222:ExampleQueue

• URL: https://sqs.region.amazonaw
s.com/2222-2222-2222/Exampl
eQueue

Prerequisites 894

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html#TypesPermissions
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Core Developer Guide

Note

Your destination Amazon SQS queue doesn't have to be in the same AWS Region as your
AWS IoT rule. For more information about rule's SQS action, see ???.

Do the Account A tasks

Note

To run the following commands, your IAM user should have permissions to
iot:CreateTopicRule with the rule's Amazon Resource Name (ARN) as a resource, and
permissions to iam:PassRole action with a resource as the role's ARN.

1. Configure AWS CLI using account A’s IAM user.

2. Create an IAM role that trusts AWS IoT rules engine, and attaches a policy that allows access
to account B's Amazon SQS queue. See example commands and policy documents in Granting
AWS IoT the required access.

3. To create a rule that is attached to a topic, run the create-topic-rule command.

aws iot create-topic-rule --rule-name myRule --topic-rule-payload file://./my-
rule.json

The following is an example payload file with a rule that inserts all messages sent to the iot/
test topic into the specified Amazon SQS queue. The SQL statement filters the messages and
the role ARN grants AWS IoT permissions to add the message to the Amazon SQS queue.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sqs": {
 "queueUrl": "https://sqs.region.amazonaws.com/2222-2222-2222/ExampleQueue",
 "roleArn": "arn:aws:iam::1111-1111-1111:role/my-iot-role",
 "useBase64": false
 }

Cross-account setup for Amazon SQS 895

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Core Developer Guide

 }
]
}

For more information about how to define an Amazon SQS action in an AWS IoT rule, see AWS
IoT rule actions - Amazon SQS.

Do the Account B tasks

1. Configure AWS CLI using account B’s IAM user.

2. To give permissions for the Amazon SQS queue resource to account A, run the add-permission
command.

aws sqs add-permission --queue-url https://sqs.region.amazonaws.com/2222-2222-2222/
ExampleQueue --label SendMessagesToMyQueue --aws-account-ids 1111-1111-1111 --
actions SendMessage

Cross-account setup for Amazon SNS

Scenario: Account A sends data from an MQTT message to an Amazon SNS topic of account B.

AWS account Account referred to
as

Description

1111-1111
-1111

Account A Rule action: sns:Publish

2222-2222
-2222

Account B Amazon SNS topic ARN: arn:aws:sns:region
:2222-2222-2222:ExampleTopic

Cross-account setup for Amazon SNS 896

https://docs.aws.amazon.com/iot/latest/developerguide/sqs-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/sqs-rule-action.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/add-permission.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/add-permission.html

AWS IoT Core Developer Guide

Do the Account A tasks

Notes

To run the following commands, your IAM user should have permissions to
iot:CreateTopicRule with rule ARN as a resource and permissions to the
iam:PassRole action with a resource as role ARN.

1. Configure AWS CLI using account A’s IAM user.

2. Create an IAM role that trusts AWS IoT rules engine, and attaches a policy that allows access
to account B's Amazon SNS topic. For example commands and policy documents, see Granting
AWS IoT the required access.

3. To create a rule that is attached to a topic, run the create-topic-rule command.

aws iot create-topic-rule --rule-name myRule --topic-rule-payload file://./my-
rule.json

The following is an example payload file with a rule that inserts all messages sent to the iot/
test topic into the specified Amazon SNS topic. The SQL statement filters the messages, and
the role ARN grants AWS IoT permissions to send the message to the Amazon SNS topic.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:region:2222-2222-2222:ExampleTopic",
 "roleArn": "arn:aws:iam::1111-1111-1111:role/my-iot-role"
 }
 }
]
}

For more information about how to define an Amazon SNS action in an AWS IoT rule, see AWS
IoT rule actions - Amazon SNS.

Cross-account setup for Amazon SNS 897

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/sns-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/sns-rule-action.html

AWS IoT Core Developer Guide

Do the Account B tasks

1. Configure AWS CLI using account B’s IAM user.

2. To give permission on the Amazon SNS topic resource to account A, run the add-permission
command.

aws sns add-permission --topic-arn arn:aws:sns:region:2222-2222-2222:ExampleTopic
 --label Publish-Permission --aws-account-id 1111-1111-1111 --action-name Publish

Cross-account setup for Amazon S3

Scenario: Account A sends data from an MQTT message to an Amazon S3 bucket of account B.

AWS account Account referred to
as

Description

1111-1111
-1111

Account A Rule action: s3:PutObject

2222-2222
-2222

Account B Amazon S3 bucket ARN: arn:aws:s3:::Examp
leBucket

Do the Account A tasks

Note

To run the following commands, your IAM user should have permissions to
iot:CreateTopicRule with the rule ARN as a resource and permissions to
iam:PassRole action with a resource as role ARN.

1. Configure AWS CLI using account A’s IAM user.

2. Create an IAM role that trusts AWS IoT rules engine and attaches a policy that allows access to
account B's Amazon S3 bucket. For example commands and policy documents, see Granting
AWS IoT the required access.

3. To create a rule that is attached to your target S3 bucket, run the create-topic-rule command.

Cross-account setup for Amazon S3 898

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/reference/sns/add-permission.html
https://docs.aws.amazon.com/cli/latest/reference/sns/add-permission.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html

AWS IoT Core Developer Guide

aws iot create-topic-rule --rule-name my-rule --topic-rule-payload file://./my-
rule.json

The following is an example payload file with a rule that inserts all messages sent to the iot/
test topic into the specified Amazon S3 bucket. The SQL statement filters the messages, and
the role ARN grants AWS IoT permissions to add the message to the Amazon S3 bucket.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "s3": {
 "bucketName": "ExampleBucket",
 "key": "${topic()}/${timestamp()}",
 "roleArn": "arn:aws:iam::1111-1111-1111:role/my-iot-role"
 }
 }
]
}

For more information about how to define an Amazon S3 action in an AWS IoT rule, see AWS
IoT rule actions - Amazon S3.

Do the Account B tasks

1. Configure AWS CLI using account B’s IAM user.

2. Create a bucket policy that trusts account A's principal.

The following is an example payload file that defines a bucket policy that trusts the principal
of another account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AddCannedAcl",
 "Effect": "Allow",

Cross-account setup for Amazon S3 899

https://docs.aws.amazon.com/iot/latest/developerguide/s3-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/s3-rule-action.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

AWS IoT Core Developer Guide

 "Principal": {
 "AWS": [
 "arn:aws:iam::1111-1111-1111:root"
]
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::ExampleBucket/*"
 }
]
}

For more information, see bucket policy examples.

3. To attach the bucket policy to the specified bucket, run the put-bucket-policy command.

aws s3api put-bucket-policy --bucket ExampleBucket --policy file://./my-bucket-
policy.json

4. To make the cross-account access work, make sure you have the correct Block all public access
settings. For more information, see Security Best Practices for Amazon S3.

Cross-account setup for AWS Lambda

Scenario: Account A invokes an AWS Lambda function of account B, passing in an MQTT message.

AWS account Account referred to
as

Description

1111-1111
-1111

Account A Rule action: lambda:InvokeFunction

2222-2222
-2222

Account B Lambda function ARN: arn:aws:lambda:reg
ion:2222-2222-2222:function
:example-function

Cross-account setup for AWS Lambda 900

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html#example-bucket-policies-use-case-1
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html

AWS IoT Core Developer Guide

Do the Account A tasks

Notes

To run the following commands, your IAM user should have permissions to
iot:CreateTopicRule with rule ARN as a resource, and permissions to iam:PassRole
action with resource as role ARN.

1. Configure AWS CLI using account A’s IAM user.

2. Run the create-topic-rule command to create a rule that defines cross-account access to
account B's Lambda function.

aws iot create-topic-rule --rule-name my-rule --topic-rule-payload file://./my-
rule.json

The following is an example payload file with a rule that inserts all messages sent to the iot/
test topic into the specified Lambda function. The SQL statement filters the messages and
the role ARN grants AWS IoT permission to pass in the data to the Lambda function.

{
 "sql": "SELECT * FROM 'iot/test'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "lambda": {
 "functionArn": "arn:aws:lambda:region:2222-2222-2222:function:example-function"
 }
 }
]
}

For more information about how to define an AWS Lambda action in an AWS IoT rule, read
AWS IoT rule actions - Lambda.

Do the Account B tasks

1. Configure AWS CLI using account B’s IAM user.

Cross-account setup for AWS Lambda 901

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-topic-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/lambda-rule-action.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

AWS IoT Core Developer Guide

2. Run Lambda's add-permission command to give AWS IoT rules permission to activate the
Lambda function. To run the following command, your IAM user should have permission to
lambda:AddPermission action.

aws lambda add-permission --function-name example-function --region us-east-1 --
principal iot.amazonaws.com --source-arn arn:aws:iot:region:1111-1111-1111:rule/
example-rule --source-account 1111-1111-1111 --statement-id "unique_id" --action
 "lambda:InvokeFunction"

Options:

--principal

This field gives permission to AWS IoT (represented by iot.amazonaws.com) to call the
Lambda function.

--source-arn

This field confirms that only arn:aws:iot:region:1111-1111-1111:rule/example-
rule in AWS IoT triggers this Lambda function and no other rule in the same or different
account can activate this Lambda function.

--source-account

This field confirms that AWS IoT activates this Lambda function only on behalf of the
1111-1111-1111 account.

Notes

If you see an error message "The rule could not be found" from your AWS Lambda
function’s console under Configuration, ignore the error message and proceed to test
the connection.

Error handling (error action)

When AWS IoT receives a message from a device, the rules engine checks to see if the message
matches a rule. If so, the rule's query statement is evaluated and the rule's actions are activated,
passing the query statement's result.

Error handling (error action) 902

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html

AWS IoT Core Developer Guide

If a problem occurs when activating an action, the rules engine activates an error action, if one is
specified for the rule. This might happen when:

• A rule doesn't have permission to access an Amazon S3 bucket.

• A user error causes DynamoDB provisioned throughput to be exceeded.

Note

The error handling covered in this topic is for rule actions. To debug SQL issues, including
external functions, you can set up AWS IoT logging. For more information, see ???.

Error action message format

A single message is generated per rule and message. For example, if two rule actions in the same
rule fail, the error action receives one message that contains both errors.

The error action message looks like the following example.

{
 "ruleName": "TestAction",
 "topic": "testme/action",
 "cloudwatchTraceId": "7e146a2c-95b5-6caf-98b9-50e3969734c7",
 "clientId": "iotconsole-1511213971966-0",
 "base64OriginalPayload":
 "ewogICJtZXNzYWdlIjogIkhlbGxvIHZyb20gQVdTIElvVCBjb25zb2xlIgp9",
 "failures": [
 {
 "failedAction": "S3Action",
 "failedResource": "us-east-1-s3-verify-user",
 "errorMessage": "Failed to put S3 object. The error received was The
 specified bucket does not exist (Service: Amazon S3; Status Code: 404; Error
 Code: NoSuchBucket; Request ID: 9DF5416B9B47B9AF; S3 Extended Request ID:
 yMah1cwPhqTH267QLPhTKeVPKJB8BO5ndBHzOmWtxLTM6uAvwYYuqieAKyb6qRPTxP1tHXCoR4Y=).
 Message arrived on: error/action, Action: s3, Bucket: us-
east-1-s3-verify-user, Key: \"aaa\". Value of x-amz-id-2:
 yMah1cwPhqTH267QLPhTKeVPKJB8BO5ndBHzOmWtxLTM6uAvwYYuqieAKyb6qRPTxP1tHXCoR4Y="
 }
]
}

Error action message format 903

AWS IoT Core Developer Guide

ruleName

The name of the rule that triggered the error action.

topic

The topic in which the original message was received.

cloudwatchTraceId

A unique identity referring to the error logs in CloudWatch.

clientId

The client ID of the message publisher.

base64OriginalPayload

The original message payload Base64-encoded.

failures

failedAction

The name of the action that failed to complete (for example, "S3Action").

failedResource

The name of the resource (for example, the name of an S3 bucket).

errorMessage

The description and explanation of the error.

Error action example

Here is an example of a rule with an added error action. The following rule has an action that
writes message data to a DynamoDB table and an error action that writes data to an Amazon S3
bucket:

{
 "sql" : "SELECT * FROM ..."
 "actions" : [{
 "dynamoDB" : {
 "table" : "PoorlyConfiguredTable",
 "hashKeyField" : "AConstantString",

Error action example 904

AWS IoT Core Developer Guide

 "hashKeyValue" : "AHashKey"}}
],
 "errorAction" : {
 "s3" : {
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_s3",
 "bucketName" : "message-processing-errors",
 "key" : "${replace(topic(), '/', '-') + '-' + timestamp() + '-' +
 newuuid()}"
 }
 }
}

You can use any function or substitution template in an error action's SQL statement including the
external functions: aws_lambda(), get_dynamodb(), get_thing_shadow(), get_secret(),
machinelearning_predict(), and decode(). If an error action requires to call an external
function, then invoking the error action can result in additional bill for the external function.

The following external functions are billed equivalent to that of a rule action: aws_lambda,
get_dynamodb(), and get_thing_shadow(). You also get billed for the decode() function
only when you are decoding a Protobuf message to JSON. For more details, refer to the AWS IoT
Core pricing page.

For more information about rules and how to specify an error action, see Creating an AWS IoT Rule.

For more information about using CloudWatch to monitor the success or failure of rules, see AWS
IoT metrics and dimensions.

Reducing messaging costs with Basic Ingest

You can use Basic Ingest, to securely send device data to the AWS services supported by AWS IoT
rule actions, without incurring messaging costs. Basic Ingest optimizes data flow by removing the
publish/subscribe message broker from the ingestion path.

Basic Ingest can send messages from your devices or applications. The messages have topic names
that start with $aws/rules/rule_name for their first three levels, where rule_name is the name
of the AWS IoT rule that you want to invoke.

You can use an existing rule with Basic Ingest by adding the Basic Ingest prefix ($aws/
rules/rule_name) to the message topic that you'd use to invoke the rule. For example, if you
have a rule named BuildingManager that's invoked by messages with topics like Buildings/

Reducing messaging costs with Basic Ingest 905

https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-func-aws-lambda
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-dynamodb
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-thing-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-secret
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-machine-learning
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-decode-base64
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-func-aws-lambda
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-dynamodb
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-thing-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-decode-base64
https://docs.aws.amazon.com/iot/latest/developerguide/binary-payloads.html#binary-payloads-protobuf
https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/iot-core/pricing/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-rule.html
https://aws.amazon.com/iot-core/pricing/

AWS IoT Core Developer Guide

Building5/Floor2/Room201/Lights ("sql": "SELECT * FROM 'Buildings/#'"),
you can invoke the same rule with Basic Ingest by sending a message with topic $aws/rules/
BuildingManager/Buildings/Building5/Floor2/Room201/Lights.

Note:

• Your devices and rules can't subscribe to Basic Ingest reserved topics. For more information, see
Reserved topics.

• If you need a publish/subscribe broker to distribute messages to multiple subscribers (for
example, to deliver messages to other devices and the rules engine), you should continue to use
the AWS IoT message broker to handle the message distribution. However, make sure that you
publish your messages on topics other than Basic Ingest topics.

Using Basic Ingest

Before you use Basic Ingest, verify that your device or application is using a policy that has publish
permissions on $aws/rules/*. Or, you can specify permission for individual rules with $aws/
rules/rule_name/* in the policy. Otherwise, your devices and applications can continue to use
their existing connections with AWS IoT Core.

When the message reaches the rules engine, there's no difference in implementation or error
handling between rules invoked from Basic Ingest and those invoked through message broker
subscriptions.

You can create rules for use with Basic Ingest. Keep in mind the following:

• The initial prefix of a Basic Ingest topic ($aws/rules/rule_name) isn't available to the
topic(Decimal) function.

• If you define a rule that's invoked only with Basic Ingest, the FROM clause is optional in the sql
field of the rule definition. It's still required if the rule is also invoked by other messages that
must be sent through the message broker (for example, because those other messages must be
distributed to multiple subscribers). For more information, see AWS IoT SQL reference.

• The first three levels of the Basic Ingest topic ($aws/rules/rule_name) aren't counted toward
the 8-segment length limit or toward the 256-total character limit for a topic. Otherwise, the
same restrictions apply as documented in AWS IoT Limits.

• If a message is received with a Basic Ingest topic that specifies an inactive rule or a rule that
doesn't exist, an error log is created in an Amazon CloudWatch log to help you with debugging.

Using Basic Ingest 906

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot

AWS IoT Core Developer Guide

For more information, see Rules engine log entries. A RuleNotFound metric is indicated and you
can create alarms on this metric. For more information, see Rule Metrics in Rule metrics.

• You can still publish with QoS 1 on Basic Ingest topics. You receive a PUBACK after the message
is successfully delivered to the rules engine. Receiving a PUBACK doesn't mean that your rule
actions were completed successfully. You can configure an error action to handle errors when an
action is run. For more information, see Error handling (error action).

AWS IoT SQL reference

In AWS IoT, rules are defined using an SQL-like syntax. SQL statements are composed of three
types of clauses:

SELECT

(Required) Extracts information from the payload of an incoming message and performs
transformations on the information. The messages to use are identified by the topic filter
specified in the FROM clause.

The SELECT clause supports Data types, Operators, Functions, Literals, Case statements, JSON
extensions, Substitution templates, Nested object queries, and Binary payloads.

FROM

The MQTT message topic filter that identifies the messages to extract data from. The rule
is activated for each message sent to an MQTT topic that matches the topic filter specified
here. Required for rules that are activated by messages that pass through the message broker.
Optional for rules that are only activated using the Basic Ingest feature.

WHERE

(Optional) Adds conditional logic that determines whether the actions specified by a rule are
carried out.

The WHERE clause supports Data types, Operators, Functions, Literals, Case statements, JSON
extensions, Substitution templates, and Nested object queries.

An example SQL statement looks like this:

SELECT color AS rgb FROM 'topic/subtopic' WHERE temperature > 50

AWS IoT SQL reference 907

AWS IoT Core Developer Guide

An example MQTT message (also called an incoming payload) looks like this:

{
 "color":"red",
 "temperature":100
}

If this message is published on the 'topic/subtopic' topic, the rule is triggered and the
SQL statement is evaluated. The SQL statement extracts the value of the color property if
the "temperature" property is greater than 50. The WHERE clause specifies the condition
temperature > 50. The AS keyword renames the "color" property to "rgb". The result (also
called an outgoing payload) looks like this:

{
 "rgb":"red"
}

This data is then forwarded to the rule's action, which sends the data for more processing. For
more information about rule actions, see AWS IoT rule actions.

Note

Comments are not currently supported in AWS IoT SQL syntax.
Attribute names with spaces in them can't be used as field names in the SQL statement.
While the incoming payload can have attribute names with spaces in them, such names
can't be used in the SQL statement. They will, however, be passed through to the outgoing
payload if you use a wildcard (*) field name specification.

SELECT clause

The AWS IoT SELECT clause is essentially the same as the ANSI SQL SELECT clause, with some
minor differences.

The SELECT clause supports Data types, Operators, Functions, Literals, Case statements, JSON
extensions, Substitution templates, Nested object queries, and Binary payloads.

You can use the SELECT clause to extract information from incoming MQTT messages. You can also
use SELECT * to retrieve the entire incoming message payload. For example:

SELECT clause 908

AWS IoT Core Developer Guide

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL statement: SELECT * FROM 'topic/subtopic'
Outgoing payload: {"color":"red", "temperature":50}

If the payload is a JSON object, you can reference keys in the object. Your outgoing payload
contains the key-value pair. For example:

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL statement: SELECT color FROM 'topic/subtopic'
Outgoing payload: {"color":"red"}

You can use the AS keyword to rename keys. For example:

Incoming payload published on topic 'topic/subtopic':{"color":"red", "temperature":50}
SQL:SELECT color AS my_color FROM 'topic/subtopic'
Outgoing payload: {"my_color":"red"}

You can select multiple items by separating them with a comma. For example:

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL: SELECT color as my_color, temperature as fahrenheit FROM 'topic/subtopic'
Outgoing payload: {"my_color":"red","fahrenheit":50}

You can select multiple items including '*' to add items to the incoming payload. For example:

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL: SELECT *, 15 as speed FROM 'topic/subtopic'
Outgoing payload: {"color":"red", "temperature":50, "speed":15}

You can use the "VALUE" keyword to produce outgoing payloads that are not JSON objects. With
SQL version 2015-10-08, you can select only one item. With SQL version 2016-03-23 or later,
you can also select an array to output as a top-level object.

Example

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL: SELECT VALUE color FROM 'topic/subtopic'
Outgoing payload: "red"

You can use '.' syntax to drill into nested JSON objects in the incoming payload. For example:

SELECT clause 909

AWS IoT Core Developer Guide

Incoming payload published on topic 'topic/subtopic': {"color":
{"red":255,"green":0,"blue":0}, "temperature":50}
SQL: SELECT color.red as red_value FROM 'topic/subtopic'
Outgoing payload: {"red_value":255}

For information about how to use JSON object and property names that include reserved
characters, such as numbers or the hyphen (minus) character, see JSON extensions

You can use functions (see Functions) to transform the incoming payload. You can use parentheses
for grouping. For example:

Incoming payload published on topic 'topic/subtopic': {"color":"red", "temperature":50}
SQL: SELECT (temperature - 32) * 5 / 9 AS celsius, upper(color) as my_color FROM
 'topic/subtopic'
Outgoing payload: {"celsius":10,"my_color":"RED"}

FROM clause

The FROM clause subscribes your rule to a topic or topic filter. Enclose the topic or topic filter in
single quotes ('). The rule is triggered for each message sent to an MQTT topic that matches the
topic filter specified here. You can subscribe to a group of similar topics using a topic filter.

Example:

Incoming payload published on topic 'topic/subtopic': {temperature: 50}

Incoming payload published on topic 'topic/subtopic-2': {temperature: 50}

SQL: "SELECT temperature AS t FROM 'topic/subtopic'".

The rule is subscribed to 'topic/subtopic', so the incoming payload is passed to the rule. The
outgoing payload, passed to the rule actions, is: {t: 50}. The rule is not subscribed to 'topic/
subtopic-2', so the rule is not triggered for the message published on 'topic/subtopic-2'.

Wildcard Example:

You can use the '#' (multi-level) wildcard character to match one or more particular path elements:

Incoming payload published on topic 'topic/subtopic': {temperature: 50}.

Incoming payload published on topic 'topic/subtopic-2': {temperature: 60}.

FROM clause 910

AWS IoT Core Developer Guide

Incoming payload published on topic 'topic/subtopic-3/details': {temperature: 70}.

Incoming payload published on topic 'topic-2/subtopic-x': {temperature: 80}.

SQL: "SELECT temperature AS t FROM 'topic/#'".

The rule is subscribed to any topic that begins with 'topic', so it's executed three times, sending
outgoing payloads of {t: 50} (for topic/subtopic), {t: 60} (for topic/subtopic-2), and {t: 70}
(for topic/subtopic-3/details) to its actions. It's not subscribed to 'topic-2/subtopic-x', so the
rule isn't triggered for the {temperature: 80} message.

+ Wildcard Example:

You can use the '+' (single-level) wildcard character to match any one particular path element:

Incoming payload published on topic 'topic/subtopic': {temperature: 50}.

Incoming payload published on topic 'topic/subtopic-2': {temperature: 60}.

Incoming payload published on topic 'topic/subtopic-3/details': {temperature: 70}.

Incoming payload published on topic 'topic-2/subtopic-x': {temperature: 80}.

SQL: "SELECT temperature AS t FROM 'topic/+'".

The rule is subscribed to all topics with two path elements where the first element is 'topic'.
The rule is executed for the messages sent to 'topic/subtopic' and 'topic/subtopic-2',
but not 'topic/subtopic-3/details' (it has more levels than the topic filter) or 'topic-2/
subtopic-x' (it doesn't start with topic).

WHERE clause

The WHERE clause determines if the actions specified by a rule are carried out. If the WHERE clause
evaluates to true, the rule actions are performed. Otherwise, the rule actions are not performed.

The WHERE clause supports Data types, Operators, Functions, Literals, Case statements, JSON
extensions, Substitution templates, and Nested object queries.

Example:

Incoming payload published on topic/subtopic: {"color":"red", "temperature":40}.

SQL: SELECT color AS my_color FROM 'topic/subtopic' WHERE temperature > 50
AND color <> 'red'.

WHERE clause 911

AWS IoT Core Developer Guide

In this case, the rule will be triggered, but the actions specified by the rule will not be performed.
There will be no outgoing payload.

You can use functions and operators in the WHERE clause. However, you cannot reference any
aliases created with the AS keyword in the SELECT. The WHERE clause is evaluated first, to
determine if SELECT is evaluated.

Example with non-JSON payload:

Incoming non-JSON payload published on `topic/subtopic`: `80`

SQL: `SELECT decode(encode(*, 'base64'), 'base64') AS value FROM 'topic/
subtopic' WHERE decode(encode(*, 'base64'), 'base64') > 50

In this case, the rule will be triggered, and the actions specified by the rule will be performed. The
outgoing payload will be transformed by the SELECT clause as a JSON payload {"value":80}.

Data types

The AWS IoT rules engine supports all JSON data types.

Supported data types

Type Meaning

Int A discrete Int. 34 digits maximum.

Decimal A Decimal with a precision of 34 digits, with a
minimum non-zero magnitude of 1E-999 and
a maximum magnitude 9.999...E999.

Note

Some functions return Decimal
values with double precision rather
than 34-digit precision.
With SQL V2 (2016-03-23), numeric
values that are whole numbers, such
as 10.0, are processed as an Int value
(10) instead of the expected Decimal
value (10.0). To reliably process whole

Data types 912

AWS IoT Core Developer Guide

Type Meaning

number numeric values as Decimal
values, use SQL V1 (2015-10-08) for
the rule query statement.

Boolean True or False.

String A UTF-8 string.

Array A series of values that don't have to have the
same type.

Object A JSON value consisting of a key and a value.
Keys must be strings. Values can be any type.

Null Null as defined by JSON. It's an actual value
that represents the absence of a value. You
can explicitly create a Null value by using
the Null keyword in your SQL statement.
For example: "SELECT NULL AS n FROM
'topic/subtopic'"

Data types 913

AWS IoT Core Developer Guide

Type Meaning

Undefined Not a value. This isn't explicitly represent
able in JSON except by omitting the value.
For example, in the object {"foo": null},
the key "foo" returns NULL, but the key "bar"
returns Undefined . Internally, the SQL
language treats Undefined as a value, but it
isn't representable in JSON, so when serialized
to JSON, the results are Undefined .

 {"foo":null, "bar":undefined}

is serialized to JSON as:

 {"foo":null}

Similarly, Undefined is converted to
an empty string when serialized by itself.
Functions called with invalid arguments (for
example, wrong types, wrong number of
arguments, and so on) return Undefined .

Conversions

The following table lists the results when a value of one type is converted to another type (when
a value of the incorrect type is given to a function). For example, if the absolute value function
"abs" (which expects an Int or Decimal) is given a String, it attempts to convert the String to
a Decimal, following these rules. In this case, 'abs("-5.123")' is treated as 'abs(-5.123)'.

Note

There are no attempted conversions to Array, Object, Null, or Undefined.

Data types 914

AWS IoT Core Developer Guide

To decimal

Argument type Result

Int A Decimal with no decimal point.

Decimal The source value.

Boolean Undefined . (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

String The SQL engine tries to parse the string as a
Decimal. AWS IoT attempts to parse strings
matching the regular expression:^-?\d+(\.
\d+)?((?i)E-?\d+)?$. "0", "-1.2",
"5E-12" are all examples of strings that are
converted automatically to Decimals.

Array Undefined .

Object Undefined .

Null Null.

Undefined Undefined .

To int

Argument type Result

Int The source value.

Decimal The source value rounded to the nearest Int.

Boolean Undefined . (You can explicitly use the cast
function to transform true = 1.0, false = 0.0.)

String The SQL engine tries to parse the string as a
Decimal. AWS IoT attempts to parse strings
matching the regular expression:^-?\d+(\.

Data types 915

AWS IoT Core Developer Guide

Argument type Result

\d+)?((?i)E-?\d+)?$. "0", "-1.2",
"5E-12" are all examples of strings that are
converted automatically to Decimals. AWS
IoT attempts to convert the String to a
Decimal, and then truncates the decimal
places of that Decimal to make an Int.

Array Undefined .

Object Undefined .

Null Null.

Undefined Undefined .

To Boolean

Argument type Result

Int Undefined . (You can explicitly use the cast
function to transform 0 = False, any_nonze
ro_value = True.)

Decimal Undefined . (You can explicitly use the cast
function to transform 0 = False, any_nonze
ro_value = True.)

Boolean The original value.

String "true"=True and "false"=False (case insensiti
ve). Other string values are Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Data types 916

AWS IoT Core Developer Guide

Argument type Result

Undefined Undefined .

To string

Argument type Result

Int A string representation of the Int in standard
notation.

Decimal A string representing the Decimal value,
possibly in scientific notation.

Boolean "true" or "false". All lowercase.

String The original value.

Array The Array serialized to JSON. The resultant
string is a comma-separated list, enclosed
in square brackets. A String is quoted. A
Decimal, Int, Boolean, and Null is not.

Object The object serialized to JSON. The resultant
string is a comma-separated list of key-value
pairs and begins and ends with curly braces. A
String is quoted. A Decimal, Int, Boolean,
and Null is not.

Null Undefined .

Undefined Undefined.

Operators

The following operators can be used in SELECT and WHERE clauses.

Operators 917

AWS IoT Core Developer Guide

AND operator

Returns a Boolean result. Performs a logical AND operation. Returns true if left and right operands
are true. Otherwise, returns false. Boolean operands or case insensitive "true" or "false" string
operands are required.

Syntax: expression AND expression.

AND operator

Left operand Right operand Output

Boolean Boolean Boolean. True if both operands are true. Otherwise,
false.

String/Boolean String/Boolean If all strings are "true" or "false" (case insensitive), they
are converted to Boolean and processed normally as
boolean AND boolean.

Other value Other value Undefined .

OR operator

Returns a Boolean result. Performs a logical OR operation. Returns true if either the left or the
right operands are true. Otherwise, returns false. Boolean operands or case insensitive "true" or
"false" string operands are required.

Syntax: expression OR expression.

OR operator

Left operand Right operand Output

Boolean Boolean Boolean. True if either operand is true. Otherwise,
false.

String/Boolean String/Boolean If all strings are "true" or "false" (case insensitive), they
are converted to Booleans and processed normally as
boolean OR boolean.

Operators 918

AWS IoT Core Developer Guide

Left operand Right operand Output

Other value Other value Undefined .

NOT operator

Returns a Boolean result. Performs a logical NOT operation. Returns true if the operand is false.
Otherwise, returns true. A Boolean operand or case insensitive "true" or "false" string operand is
required.

Syntax: NOT expression.

NOT operator

Operand Output

Boolean Boolean. True if operand is false. Otherwise,
true.

String If string is "true" or "false" (case insensitive),
it is converted to the corresponding Boolean
value, and the opposite value is returned.

Other value Undefined .

IN operator

Returns a Boolean result. You can use the IN operator in a WHERE clause to check if a value
matches any value in an array. It returns true if the match is found, and false otherwise.

Syntax: expression IN expression.

IN operator

Left operand Right
operand

Output

Int/Decimal/String/Array/ObjectArray True if the Integer/Decimal/String/Array/Object
element is found in the array. Otherwise, false.

Operators 919

AWS IoT Core Developer Guide

Example:

SQL: "select * from 'a/b' where 3 in arr"

JSON: {"arr":[1, 2, 3, "three", 5.7, null]}

In this example, the condition clause where 3 in arr will evaluate to true because 3 is present
in the array named arr. Hence in the SQL statement, select * from 'a/b' will execute. This
example also shows that the array can be heterogeneous.

EXISTS operator

Returns a Boolean result. You can use the EXISTS operator in a conditional clause to test for the
existence of elements in a subquery. It returns true if the subquery returns one or more elements
and false if the subquery returns no elements.

Syntax: expression.

Example:

SQL: "select * from 'a/b' where exists (select * from arr as a where a = 3)"

JSON: {"arr":[1, 2, 3]}

In this example, the condition clause where exists (select * from arr as a where a =
3) will evaluate to true because 3 is present in the array named arr. Hence in the SQL statement,
select * from 'a/b' will execute.

Example:

SQL: select * from 'a/b' where exists (select * from e as e where foo = 2)

JSON: {"foo":4,"bar":5,"e":[{"foo":1},{"foo":2}]}

In this example, the condition clause where exists (select * from e as e where
foo = 2) will evaluate to true because the array e within the JSON object contains the object
{"foo":2}. Hence in the SQL statement, select * from 'a/b' will execute.

Operators 920

AWS IoT Core Developer Guide

> operator

Returns a Boolean result. Returns true if the left operand is greater than the right operand. Both
operands are converted to a Decimal, and then compared.

Syntax: expression > expression.

> operator

Left operand Right operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is greater than the
right operand. Otherwise, false.

String/Int/DecimalString/Int/DecimalIf all strings can be converted to Decimal, then
Boolean. Returns true if the left operand is greater than
the right operand. Otherwise, false.

Other value Undefined . Undefined .

>= operator

Returns a Boolean result. Returns true if the left operand is greater than or equal to the right
operand. Both operands are converted to a Decimal, and then compared.

Syntax: expression >= expression.

>= operator

Left operand Right operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is greater than or
equal to the right operand. Otherwise, false.

String/Int/DecimalString/Int/DecimalIf all strings can be converted to Decimal, then
Boolean. Returns true if the left operand is greater than
or equal to the right operand. Otherwise, false.

Other value Undefined . Undefined .

Operators 921

AWS IoT Core Developer Guide

< operator

Returns a Boolean result. Returns true if the left operand is less than the right operand. Both
operands are converted to a Decimal, and then compared.

Syntax: expression < expression.

< operator

Left operand Right operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is less than the right
operand. Otherwise, false.

String/Int/DecimalString/Int/DecimalIf all strings can be converted to Decimal, then
Boolean. Returns true if the left operand is less than
the right operand. Otherwise, false.

Other value Undefined Undefined

<= operator

Returns a Boolean result. Returns true if the left operand is less than or equal to the right
operand. Both operands are converted to a Decimal, and then compared.

Syntax: expression <= expression.

<= operator

Left operand Right operand Output

Int/Decimal Int/Decimal Boolean. True if the left operand is less than or equal to
the right operand. Otherwise, false.

String/Int/DecimalString/Int/DecimalIf all strings can be converted to Decimal, then
Boolean. Returns true if the left operand is less than or
equal to the right operand. Otherwise, false.

Other value Undefined Undefined

Operators 922

AWS IoT Core Developer Guide

<> operator

Returns a Boolean result. Returns true if both left and right operands are not equal. Otherwise,
returns false.

Syntax: expression <> expression.

<> operator

Left operand Right operand Output

Int Int True if left operand is not equal to right operand.
Otherwise, false.

Decimal Decimal True if left operand is not equal to right operand.
Otherwise, false.Int is converted to Decimal before
being compared.

String String True if left operand is not equal to right operand.
Otherwise, false.

Array Array True if the items in each operand are not equal and not
in the same order. Otherwise, false

Object Object True if the keys and values of each operand are not
equal. Otherwise, false. The order of keys/values is
unimportant.

Null Null False.

Any value Undefined Undefined.

Undefined Any value Undefined.

Mismatched
type

Mismatched
type

True.

Operators 923

AWS IoT Core Developer Guide

= operator

Returns a Boolean result. Returns true if both left and right operands are equal. Otherwise,
returns false.

Syntax: expression = expression.

= operator

Left operand Right operand Output

Int Int True if left operand is equal to right operand. Otherwise
, false.

Decimal Decimal True if left operand is equal to right operand. Otherwise
, false.Int is converted to Decimal before being
compared.

String String True if left operand is equal to right operand. Otherwise
, false.

Array Array True if the items in each operand are equal and in the
same order. Otherwise, false.

Object Object True if the keys and values of each operand are equal.
Otherwise, false. The order of keys/values is unimporta
nt.

Any value Undefined Undefined .

Undefined Any value Undefined .

Mismatched
type

Mismatched
type

False.

+ operator

The "+" is an overloaded operator. It can be used for string concatenation or addition.

Syntax: expression + expression.

Operators 924

AWS IoT Core Developer Guide

+ operator

Left operand Right operand Output

String Any value Converts the right operand to a string and concatenates
it to the end of the left operand.

Any value String Converts the left operand to a string and concatena
tes the right operand to the end of the converted left
operand.

Int Int Int value. Adds operands together.

Int/Decimal Int/Decimal Decimal value. Adds operands together.

Other value Other value Undefined .

- operator

Subtracts the right operand from the left operand.

Syntax: expression - expression.

- operator

Left operand Right operand Output

Int Int Int value. Subtracts right operand from left operand.

Int/Decimal Int/Decimal Decimal value. Subtracts right operand from left
operand.

String/Int/DecimalString/Int/DecimalIf all strings convert to decimals correctly, a Decimal
value is returned. Subtracts right operand from left
operand. Otherwise, returns Undefined .

Other value Other value Undefined .

Other value Other value Undefined .

Operators 925

AWS IoT Core Developer Guide

* operator

Multiplies the left operand by the right operand.

Syntax: expression * expression.

* operator

Left operand Right operand Output

Int Int Int value. Multiplies the left operand by the right
operand.

Int/Decimal Int/Decimal Decimal value. Multiplies the left operand by the right
operand.

String/Int/DecimalString/Int/DecimalIf all strings convert to decimals correctly, a Decimal
value is returned. Multiplies the left operand by the
right operand. Otherwise, returns Undefined .

Other value Other value Undefined .

/ operator

Divides the left operand by the right operand.

Syntax: expression / expression.

/ operator

Left operand Right operand Output

Int Int Int value. Divides the left operand by the right
operand.

Int/Decimal Int/Decimal Decimal value. Divides the left operand by the right
operand.

String/Int/DecimalString/Int/DecimalIf all strings convert to decimals correctly, a Decimal
value is returned. Divides the left operand by the right
operand. Otherwise, returns Undefined .

Operators 926

AWS IoT Core Developer Guide

Left operand Right operand Output

Other value Other value Undefined .

% operator

Returns the remainder from dividing the left operand by the right operand.

Syntax: expression % expression.

% operator

Left operand Right operand Output

Int Int Int value. Returns the remainder from dividing the left
operand by the right operand.

String/Int/DecimalString/Int/DecimalIf all strings convert to decimals correctly, a Decimal
value is returned. Returns the remainder from dividing
the left operand by the right operand. Otherwise,
Undefined .

Other value Other value Undefined .

Functions

You can use the following built-in functions in the SELECT or WHERE clauses of your SQL
expressions.

abs(Decimal)

Returns the absolute value of a number. Supported by SQL version 2015-10-08 and later.

Example: abs(-5) returns 5.

Argument type Result

Int Int, the absolute value of the argument.

Functions 927

AWS IoT Core Developer Guide

Argument type Result

Decimal Decimal, the absolute value of the
argument.

Boolean Undefined .

String Decimal. The result is the absolute value
of the argument. If the string cannot be
converted, the result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

accountid()

Returns the ID of the account that owns this rule as a String. Supported by SQL version
2015-10-08 and later.

Example:

accountid() = "123456789012"

acos(Decimal)

Returns the inverse cosine of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: acos(0) = 1.5707963267948966

Argument type Result

Int Decimal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undefined .

Functions 928

AWS IoT Core Developer Guide

Argument type Result

Decimal Decimal (with double precision), the
inverse cosine of the argument. Imaginary
results are returned as Undefined .

Boolean Undefined .

String Decimal, the inverse cosine of the
argument. If the string cannot be
converted, the result is Undefined

. Imaginary results are returned as
Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

asin(Decimal)

Returns the inverse sine of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: asin(0) = 0.0

Argument type Result

Int Decimal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undefined .

Decimal Decimal (with double precision), the
inverse sine of the argument. Imaginary
results are returned as Undefined .

Functions 929

AWS IoT Core Developer Guide

Argument type Result

Boolean Undefined .

String Decimal (with double precision), the
inverse sine of the argument. If the
string cannot be converted, the result
is Undefined . Imaginary results are
returned as Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

atan(Decimal)

Returns the inverse tangent of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: atan(0) = 0.0

Argument type Result

Int Decimal (with double precision),
the inverse tangent of the argument.
Imaginary results are returned as
Undefined .

Decimal Decimal (with double precision),
the inverse tangent of the argument.
Imaginary results are returned as
Undefined .

Boolean Undefined .

Functions 930

AWS IoT Core Developer Guide

Argument type Result

String Decimal, the inverse tangent of the
argument. If the string cannot be
converted, the result is Undefined

. Imaginary results are returned as
Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

atan2(Decimal, Decimal)

Returns the angle, in radians, between the positive x-axis and the (x, y) point defined in the two
arguments. The angle is positive for counter-clockwise angles (upper half-plane, y > 0), and
negative for clockwise angles (lower half-plane, y < 0). Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: atan2(1, 0) = 1.5707963267948966

Argument type Argument type Result

Int/Decimal Int/Decimal Decimal (with double precision), the
angle between the x-axis and the specified
(x,y) point.

Int/Decimal/String Int/Decimal/String Decimal, the inverse tangent of the point
described. If a string cannot be converted,
the result is Undefined .

Other value Other value Undefined .

Functions 931

AWS IoT Core Developer Guide

aws_lambda(functionArn, inputJson)

Calls the specified Lambda function passing inputJson to the Lambda function and returns the
JSON generated by the Lambda function.

Arguments

Argument Description

functionArn The ARN of the Lambda function to call. The Lambda function must
return JSON data.

inputJson The JSON input passed to the Lambda function. To pass nested
object queries and literals, you must use SQL version 2016-03-23.

You must grant AWS IoT lambda:InvokeFunction permissions to invoke the specified Lambda
function. The following example shows how to grant the lambda:InvokeFunction permission
using the AWS CLI:

aws lambda add-permission --function-name "function_name"
--region "region"
--principal iot.amazonaws.com
--source-arn arn:aws:iot:us-east-1:account_id:rule/rule_name
--source-account "account_id"
--statement-id "unique_id"
--action "lambda:InvokeFunction"

The following are the arguments for the add-permission command:

--function-name

Name of the Lambda function. You add a new permission to update the function's resource
policy.

--region

The AWS Region of your account.

--principal

The principal who is getting the permission. This should be iot.amazonaws.com to allow AWS
IoT permission to call a Lambda function.

Functions 932

AWS IoT Core Developer Guide

--source-arn

The ARN of the rule. You can use the get-topic-rule AWS CLI command to get the ARN of a rule.

--source-account

The AWS account where the rule is defined.

--statement-id

A unique statement identifier.

--action

The Lambda action that you want to allow in this statement. To allow AWS IoT to invoke a
Lambda function, specify lambda:InvokeFunction.

Important

If you add a permission for an AWS IoT principal without providing the source-arn or
source-account, any AWS account that creates a rule with your Lambda action can
trigger rules to invoke your Lambda function from AWS IoT. For more information, see
Lambda Permission Model.

Given a JSON message payload like:

{
 "attribute1": 21,
 "attribute2": "value"
}

The aws_lambda function can be used to call Lambda function as follows.

SELECT
aws_lambda("arn:aws:lambda:us-east-1:account_id:function:lambda_function",
 {"payload":attribute1}) as output FROM 'topic-filter'

If you want to pass the full MQTT message payload, you can specify the JSON payload using '*',
such as the following example.

Functions 933

https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html

AWS IoT Core Developer Guide

SELECT
aws_lambda("arn:aws:lambda:us-east-1:account_id:function:lambda_function", *) as output
 FROM 'topic-filter'

payload.inner.element selects data from messages published on topic 'topic/subtopic'.

some.value selects data from the output that's generated by the Lambda function.

Note

The rules engine limits the execution duration of Lambda functions. Lambda function calls
from rules should be completed within 2000 milliseconds.

bitand(Int, Int)

Performs a bitwise AND on the bit representations of the two Int(-converted) arguments.
Supported by SQL version 2015-10-08 and later.

Example: bitand(13, 5) = 5

Argument type Argument type Result

Int Int Int, a bitwise AND of the two arguments.

Int/Decimal Int/Decimal Int, a bitwise AND of the two arguments
. All non-Int numbers are rounded down
to the nearest Int. If any of the arguments
cannot be converted to an Int, the result
is Undefined .

Int/Decimal/String Int/Decimal/String Int, a bitwise AND of the two arguments
. All strings are converted to decimals
and are rounded down to the nearest
Int. If the conversion fails, the result is
Undefined .

Other value Other value Undefined .

Functions 934

AWS IoT Core Developer Guide

bitor(Int, Int)

Performs a bitwise OR of the bit representations of the two arguments. Supported by SQL version
2015-10-08 and later.

Example: bitor(8, 5) = 13

Argument type Argument type Result

Int Int Int, the bitwise OR of the two arguments.

Int/Decimal Int/Decimal Int, the bitwise OR of the two arguments.
All non-Int numbers are rounded down to
the nearest Int. If the conversion fails, the
result is Undefined .

Int/Decimal/String Int/Decimal/String Int, the bitwise OR on the two arguments
. All strings are converted to decimals and
rounded down to the nearest Int. If the
conversion fails, the result is Undefined .

Other value Other value Undefined .

bitxor(Int, Int)

Performs a bitwise XOR on the bit representations of the two Int(-converted) arguments.
Supported by SQL version 2015-10-08 and later.

Example:bitor(13, 5) = 8

Argument type Argument type Result

Int Int Int, a bitwise XOR on the two arguments.

Int/Decimal Int/Decimal Int, a bitwise XOR on the two arguments
. Non-Int numbers are rounded down to
the nearest Int.

Functions 935

AWS IoT Core Developer Guide

Argument type Argument type Result

Int/Decimal/String Int/Decimal/String Int, a bitwise XOR on the two arguments
. strings are converted to decimals and
rounded down to the nearest Int. If any
conversion fails, the result is Undefined .

Other value Other value Undefined .

bitnot(Int)

Performs a bitwise NOT on the bit representations of the Int(-converted) argument. Supported by
SQL version 2015-10-08 and later.

Example: bitnot(13) = 2

Argument type Result

Int Int, a bitwise NOT of the argument.

Decimal Int, a bitwise NOT of the argument. The
Decimal value is rounded down to the
nearest Int.

String Int, a bitwise NOT of the argument.
Strings are converted to decimals and
rounded down to the nearest Int. If any
conversion fails, the result is Undefined .

Other value Other value.

cast()

Converts a value from one data type to another. Cast behaves mostly like the standard conversions,
with the addition of the ability to cast numbers to or from Booleans. If AWS IoT cannot determine
how to cast one type to another, the result is Undefined. Supported by SQL version 2015-10-08
and later. Format: cast(value as type).

Functions 936

AWS IoT Core Developer Guide

Example:

cast(true as Int) = 1

The following keywords might appear after "as" when calling cast:

For SQL version 2015-10-08 and 2016-03-23

Keyword Result

String Casts value to String.

Nvarchar Casts value to String.

Text Casts value to String.

Ntext Casts value to String.

varchar Casts value to String.

Int Casts value to Int.

Integer Casts value to Int.

Double Casts value to Decimal (with double
precision).

Additionally, for SQL version 2016-03-23

Keyword Result

Decimal Casts value to Decimal.

Bool Casts value to Boolean.

Boolean Casts value to Boolean.

Casting rules:

Functions 937

AWS IoT Core Developer Guide

Cast to decimal

Argument type Result

Int A Decimal with no decimal point.

Decimal The source value.

Note

With SQL V2 (2016-03-23),
numeric values that are whole
numbers, such as 10.0, return
an Int value (10) instead of the
expected Decimal value (10.0).
To reliably cast whole number
numeric values as Decimal values,
use SQL V1 (2015-10-08) for the
rule query statement.

Boolean true = 1.0, false = 0.0.

String Tries to parse the string as a Decimal.
AWS IoT attempts to parse strings
matching the regex: ^-?\d+(\.\d+)?((?i)E-?
\d+)?$. "0", "-1.2", "5E-12" are all examples
of strings that are converted automatically
to decimals.

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

Functions 938

AWS IoT Core Developer Guide

Cast to int

Argument type Result

Int The source value.

Decimal The source value, rounded down to the
nearest Int.

Boolean true = 1.0, false = 0.0.

String Tries to parse the string as a Decimal.
AWS IoT attempts to parse strings
matching the regex: ^-?\d+(\.\d+)?((?i)E-?
\d+)?$. "0", "-1.2", "5E-12" are all examples
of strings that are converted automatically
to decimals. AWS IoT attempts to convert
the string to a Decimal and round down
to the nearest Int.

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

Cast to Boolean

Argument type Result

Int 0 = False, any_nonzero_value = True.

Decimal 0 = False, any_nonzero_value = True.

Boolean The source value.

Functions 939

AWS IoT Core Developer Guide

Argument type Result

String "true" = True and "false" = False (case
insensitive). Other string values =
Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

Cast to string

Argument type Result

Int A string representation of the Int, in
standard notation.

Decimal A string representing the Decimal value,
possibly in scientific notation.

Boolean "true" or "false", all lowercase.

String "true"=True and "false"=False (case-ins
ensitive). Other string values = Undefined

.

Array The array serialized to JSON. The result
string is a comma-separated list enclosed
in square brackets. String is quoted.
Decimal, Int, and Boolean are not.

Object The object serialized to JSON. The JSON
string is a comma-separated list of key-
value pairs and begins and ends with curly

Functions 940

AWS IoT Core Developer Guide

Argument type Result

braces. String is quoted. Decimal, Int,
Boolean, and Null are not.

Null Undefined .

Undefined Undefined .

ceil(Decimal)

Rounds the given Decimal up to the nearest Int. Supported by SQL version 2015-10-08 and later.

Examples:

ceil(1.2) = 2

ceil(-1.2) = -1

Argument type Result

Int Int, the argument value.

Decimal Int, the Decimal value rounded up to the
nearest Int.

String Int. The string is converted to Decimal
and rounded up to the nearest Int. If the
string cannot be converted to a Decimal,
the result is Undefined .

Other value Undefined .

chr(String)

Returns the ASCII character that corresponds to the given Int argument. Supported by SQL
version 2015-10-08 and later.

Examples:

Functions 941

AWS IoT Core Developer Guide

chr(65) = "A".

chr(49) = "1".

Argument type Result

Int The character corresponding to the
specified ASCII value. If the argument
is not a valid ASCII value, the result is
Undefined .

Decimal The character corresponding to the
specified ASCII value. The Decimal
argument is rounded down to the nearest
Int. If the argument is not a valid ASCII
value, the result is Undefined .

Boolean Undefined .

String If the String can be converted to a
Decimal, it is rounded down to the
nearest Int. If the argument is not a valid
ASCII value, the result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Other value Undefined .

clientid()

Returns the ID of the MQTT client sending the message, or n/a if the message wasn't sent over
MQTT. Supported by SQL version 2015-10-08 and later.

Example:

clientid() = "123456789012"

Functions 942

AWS IoT Core Developer Guide

concat()

Concatenates arrays or strings. This function accepts any number of arguments and returns a
String or an Array. Supported by SQL version 2015-10-08 and later.

Examples:

concat() = Undefined.

concat(1) = "1".

concat([1, 2, 3], 4) = [1, 2, 3, 4].

concat([1, 2, 3], "hello") = [1, 2, 3, "hello"]

concat("con", "cat") = "concat"

concat(1, "hello") = "1hello"

concat("he","is","man") = "heisman"

concat([1, 2, 3], "hello", [4, 5, 6]) = [1, 2, 3, "hello", 4, 5, 6]

Number of arguments Result

0 Undefined .

1 The argument is returned unmodified.

2+ If any argument is an Array, the result
is a single array containing all of the
arguments. If no arguments are arrays, and
at least one argument is a String, the
result is the concatenation of the String
representations of all the arguments.
Arguments are converted to strings using
the standard conversions previously listed.

Functions 943

AWS IoT Core Developer Guide

cos(Decimal)

Returns the cosine of a number in radians. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-08 and later.

Example:

cos(0) = 1.

Argument type Result

Int Decimal (with double precision), the
cosine of the argument. Imaginary results
are returned as Undefined .

Decimal Decimal (with double precision), the
cosine of the argument. Imaginary results
are returned as Undefined .

Boolean Undefined .

String Decimal (with double precision), the
cosine of the argument. If the string
cannot be converted to a Decimal, the
result is Undefined . Imaginary results
are returned as Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

cosh(Decimal)

Returns the hyperbolic cosine of a number in radians. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Functions 944

AWS IoT Core Developer Guide

Example: cosh(2.3) = 5.037220649268761.

Argument type Result

Int Decimal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as
Undefined .

Decimal Decimal (with double precision), the
hyperbolic cosine of the argument.
Imaginary results are returned as
Undefined .

Boolean Undefined .

String Decimal (with double precision), the
hyperbolic cosine of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined . Imaginary
results are returned as Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

decode(value, decodingScheme)

Use the decode function to decode an encoded value. If the decoded string is a JSON document,
an addressable object is returned. Otherwise, the decoded string is returned as a string. The
function returns NULL if the string cannot be decoded. This function supports decoding base64-
encoded strings and Protocol Buffer (protobuf) message format.

Supported by SQL version 2016-03-23 and later.

Functions 945

AWS IoT Core Developer Guide

value

A string value or any of the valid expressions, as defined in AWS IoT SQL reference, that return a
string.

decodingScheme

A literal string representing the scheme used to decode the value. Currently, only 'base64'
and 'proto' are supported.

Decoding base64-encoded strings

In this example, the message payload includes an encoded value.

{
 encoded_temp: "eyAidGVtcGVyYXR1cmUiOiAzMyB9Cg=="
}

The decode function in this SQL statement decodes the value in the message payload.

SELECT decode(encoded_temp,"base64").temperature AS temp from 'topic/subtopic'

Decoding the encoded_temp value results in the following valid JSON document, which allows the
SELECT statement to read the temperature value.

{ "temperature": 33 }

The result of the SELECT statement in this example is shown here.

{ "temp": 33 }

If the decoded value was not a valid JSON document, the decoded value would be returned as a
string.

Decoding protobuf message payload

You can use the decode SQL function to configure a Rule that can decode your protobuf message
payload. For more information, see Decoding protobuf message payloads.

Functions 946

AWS IoT Core Developer Guide

The function signature looks like the following:

decode(<ENCODED DATA>, 'proto', '<S3 BUCKET NAME>', '<S3 OBJECT KEY>', '<PROTO NAME>',
 '<MESSAGE TYPE>')

ENCODED DATA

Specifies the protobuf-encoded data to be decoded. If the entire message sent to the Rule is
protobuf-encoded data, you can reference the raw binary incoming payload using *. Otherwise,
this field must be a base-64 encoded JSON string and a reference to the string can be passed in
directly.

1) To decode a raw binary protobuf incoming payload:

decode(*, 'proto', ...)

2) To decode a protobuf-encoded message represented by a base64-encoded string 'a.b':

decode(a.b, 'proto', ...)

proto

Specifies the data to be decoded in a protobuf message format. If you specify base64 instead
of proto, this function will decode base64-encoded strings as JSON.

S3 BUCKET NAME

The name of the Amazon S3 bucket where you’ve uploaded your FileDescriptorSet file.

S3 OBJECT KEY

The object key that specifies the FileDescriptorSet file within the Amazon S3 bucket.

PROTO NAME

The name of the .proto file (excluding the extension) from which the FileDescriptorSet
file was generated.

MESSAGE TYPE

The name of the protobuf message structure within the FileDescriptorSet file, to which the
data to be decoded should conform.

Functions 947

AWS IoT Core Developer Guide

An example SQL expression using the decode SQL function can look like the following:

SELECT VALUE decode(*, 'proto', 's3-bucket', 'messageformat.desc', 'myproto',
 'messagetype') FROM 'some/topic'

• *

Represents a binary incoming payload, which conforms to the protobuf message type called
mymessagetype.

• messageformat.desc

The FileDescriptorSet file stored in an Amazon S3 bucket named s3-bucket.

• myproto

The original .proto file used to generate the FileDescriptorSet file named
myproto.proto.

• messagetype

The message type called messagetype (along with any imported dependencies) as defined in
myproto.proto.

encode(value, encodingScheme)

Use the encode function to encode the payload, which potentially might be non-JSON data, into
its string representation based on the encoding scheme. Supported by SQL version 2016-03-23
and later.

value

Any of the valid expressions, as defined in AWS IoT SQL reference. You can specify * to encode
the entire payload, regardless of whether it's in JSON format. If you supply an expression, the
result of the evaluation is converted to a string before it is encoded.

encodingScheme

A literal string representing the encoding scheme you want to use. Currently, only 'base64' is
supported.

Functions 948

AWS IoT Core Developer Guide

endswith(String, String)

Returns a Boolean indicating whether the first String argument ends with the second String
argument. If either argument is Null or Undefined, the result is Undefined. Supported by SQL
version 2015-10-08 and later.

Example: endswith("cat","at") = true.

Argument type 1 Argument type 2 Result

String String True if the first argument ends in the
second argument. Otherwise, false.

Other value Other value Both arguments are converted to strings
using the standard conversion rules. True
if the first argument ends in the second
argument. Otherwise, false. If either
argument is Null or Undefined , the
result is Undefined .

exp(Decimal)

Returns e raised to the Decimal argument. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-08 and later.

Example: exp(1) = e.

Argument type Result

Int Decimal (with double precision), e ^
argument.

Decimal Decimal (with double precision), e ^
argument.

String Decimal (with double precision), e ^
argument. If the String cannot be

Functions 949

AWS IoT Core Developer Guide

Argument type Result

converted to a Decimal, the result is
Undefined .

Other value Undefined .

floor(Decimal)

Rounds the given Decimal down to the nearest Int. Supported by SQL version 2015-10-08 and
later.

Examples:

floor(1.2) = 1

floor(-1.2) = -2

Argument type Result

Int Int, the argument value.

Decimal Int, the Decimal value rounded down to
the nearest Int.

String Int. The string is converted to Decimal
and rounded down to the nearest Int.
If the string cannot be converted to a
Decimal, the result is Undefined .

Other value Undefined .

get

Extracts a value from a collection-like type (Array, String, Object). No conversion is applied to the
first argument. Conversion applies as documented in the table to the second argument. Supported
by SQL version 2015-10-08 and later.

Examples:

Functions 950

AWS IoT Core Developer Guide

get(["a", "b", "c"], 1) = "b"

get({"a":"b"}, "a") = "b"

get("abc", 0) = "a"

Argument type 1 Argument type 2 Result

Array Any Type (converted to Int) The item at the 0-based index of the
Array provided by the second argument
(converted to Int). If the conversion is
unsuccessful, the result is Undefined .
If the index is outside the bounds of the
Array (negative or >= array.length), the
result is Undefined .

String Any Type (converted to Int) The character at the 0-based index of the
string provided by the second argument
(converted to Int). If the conversion is
unsuccessful, the result is Undefined .
If the index is outside the bounds of the
string (negative or >= string.length), the
result is Undefined .

Object String (no conversion is applied) The value stored in the first argument
object corresponding to the string key
provided as the second argument.

Other value Any value Undefined .

get_dynamodb(tableName, partitionKeyName, partitionKeyValue, sortKeyName,
sortKeyValue, roleArn)

Retrieves data from a DynamoDB table. get_dynamodb() allows you to query a DynamoDB table
while a rule is evaluated. You can filter or augment message payloads using data retrieved from
DynamoDB. Supported by SQL version 2016-03-23 and later.

get_dynamodb() takes the following parameters:

Functions 951

AWS IoT Core Developer Guide

tableName

The name of the DynamoDB table to query.

partitionKeyName

The name of the partition key. For more information, see DynamoDB Keys.

partitionKeyValue

The value of the partition key used to identify a record. For more information, see DynamoDB
Keys.

sortKeyName

(Optional) The name of the sort key. This parameter is required only if the DynamoDB table
queried uses a composite key. For more information, see DynamoDB Keys.

sortKeyValue

(Optional) The value of the sort key. This parameter is required only if the DynamoDB table
queried uses a composite key. For more information, see DynamoDB Keys.

roleArn

The ARN of an IAM role that grants access to the DynamoDB table. The rules engine assumes
this role to access the DynamoDB table on your behalf. Avoid using an overly permissive role.
Grant the role only those permissions required by the rule. The following is an example policy
that grants access to one DynamoDB table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:GetItem",
 "Resource": "arn:aws:dynamodb:aws-region:account-id:table/table-name"
 }
]
}}

As an example of how to use get_dynamodb(), say you have a DynamoDB table that contains
device ID and location information for all of your devices connected to AWS IoT. The following

Functions 952

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey

AWS IoT Core Developer Guide

SELECT statement uses the get_dynamodb() function to retrieve the location for the specified
device ID:

SELECT *, get_dynamodb("InServiceDevices", "deviceId", id,
"arn:aws:iam::12345678910:role/getdynamo").location AS location FROM 'some/
topic'

Note

• You can call get_dynamodb() a maximum of one time per SQL statement. Calling
get_dynamodb() multiple times in a single SQL statement causes the rule to terminate
without invoking any actions.

• If get_dynamodb() returns more than 8 KB of data, the rule's action may not be
invoked.

get_mqtt_property(name)

References any of the following MQTT5 headers: contentType, payLoadFormatIndicator,
responseTopic, and correlationData. This function takes any of the following literal
strings as an argument: content_type, format_indicator, response_topic, and
correlation_data. For more information, see the following Function arguments table.

contentType

String: A UTF-8 encoded string that describes the content of the publishing message.

payLoadFormatIndicator

String: An Enum string value that indicates whether the payload is formatted as UTF-8. Valid
values are UNSPECIFIED_BYTES and UTF8_DATA.

responseTopic

String: A UTF-8 encoded string that's used as the topic name for a response message. The
response topic is used to describe the topic that the receiver should publish to as part of the
request-response flow. The topic must not contain wildcard characters.

correlationData

String: The base64-encoded binary data used by the sender of the Request Message to identify
which request the Response Message is for when it's received.

Functions 953

AWS IoT Core Developer Guide

The following table shows the acceptable function arguments and their associated return types for
the get_mqtt_property function:

Function arguments

SQL Returned data type (if
present)

Returned data type (if not
present)

get_mqtt_property(
"format_indicator")

String (UNSPECIFIED_BYTES
or UTF8_DATA)

String (UNSPECIFIED_BYTES)

get_mqtt_property(
"content_type")

String Undefined

get_mqtt_property(
"response_topic")

String Undefined

get_mqtt_property(
"correlation_data")

base64 encoded String Undefined

get_mqtt_property(
"some_invalid_name
")

Undefined Undefined

The following example Rules SQL references any of the following MQTT5 headers: contentType,
payLoadFormatIndicator, responseTopic, and correlationData.

SELECT *, get_mqtt_property('content_type') as contentType,
 get_mqtt_property('format_indicator') as payloadFormatIndicator,
 get_mqtt_property('response_topic') as responseTopic,
 get_mqtt_property('correlation_data') as correlationData
FROM 'some/topic'

get_secret(secretId, secretType, key, roleArn)

Retrieves the value of the encrypted SecretString or SecretBinary field of the current version
of a secret in AWS Secrets Manager. For more information about creating and maintaining secrets,
see CreateSecret, UpdateSecret, and PutSecretValue.

get_secret() takes the following parameters:

Functions 954

https://docs.aws.amazon.com/secretsmanager/latest/userguide/
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html

AWS IoT Core Developer Guide

secretId

String: The Amazon Resource Name (ARN) or the friendly name of the secret to retrieve.

secretType

String: The secret type. Valid values: SecretString | SecretBinary.

SecretString

• For secrets that you create as JSON objects by using the APIs, the AWS CLI, or the AWS
Secrets Manager console:

• If you specify a value for the key parameter, this function returns the value of the
specified key.

• If you don't specify a value for the key parameter, this function returns the entire JSON
object.

• For secrets that you create as non-JSON objects by using the APIs or the AWS CLI:

• If you specify a value for the key parameter, this function fails with an exception.

• If you don't specify a value for the key parameter, this function returns the contents of
the secret.

SecretBinary

• If you specify a value for the key parameter, this function fails with an exception.

• If you don't specify a value for the key parameter, this function returns the secret value as
a base64-encoded UTF-8 string.

key

(Optional) String: The key name inside a JSON object stored in the SecretString field of
a secret. Use this value when you want to retrieve only the value of a key stored in a secret
instead of the entire JSON object.

If you specify a value for this parameter and the secret doesn't contain a JSON object inside its
SecretString field, this function fails with an exception.

roleArn

String: A role ARN with secretsmanager:GetSecretValue and
secretsmanager:DescribeSecret permissions.

Functions 955

AWS IoT Core Developer Guide

Note

This function always returns the current version of the secret (the version with the
AWSCURRENT tag). The AWS IoT rules engine caches each secret for up to 15 minutes. As a
result, the rules engine can take up to 15 minutes to update a secret. This means that if you
retrieve a secret up to 15 minutes after an update with AWS Secrets Manager, this function
might return the previous version.
This function is not metered, but AWS Secrets Manager charges apply. Because of the
secret caching mechanism, the rules engine occasionally calls AWS Secrets Manager.
Because the rules engine is a fully distributed service, you might see multiple Secrets
Manager API calls from the rules engine during the 15-minute caching window.

Examples:

You can use the get_secret function in an authentication header in an HTTPS rule action, as in
the following API key authentication example.

"API_KEY": "${get_secret('API_KEY', 'SecretString', 'API_KEY_VALUE',
 'arn:aws:iam::12345678910:role/getsecret')}"

For more information about the HTTPS rule action, see the section called “HTTP”.

get_thing_shadow(thingName, shadowName, roleARN)

Returns the specified shadow of the specified thing. Supported by SQL version 2016-03-23 and
later.

thingName

String: The name of the thing whose shadow you want to retrieve.

shadowName

(Optional) String: The name of the shadow. This parameter is required only when referencing
named shadows.

roleArn

String: A role ARN with iot:GetThingShadow permission.

Functions 956

AWS IoT Core Developer Guide

Examples:

When used with a named shadow, provide the shadowName parameter.

SELECT * from 'topic/subtopic'
WHERE
 get_thing_shadow("MyThing","MyThingShadow","arn:aws:iam::123456789012:role/
AllowsThingShadowAccess")
 .state.reported.alarm = 'ON'

When used with an unnamed shadow, omit the shadowName parameter.

SELECT * from 'topic/subtopic'
WHERE
 get_thing_shadow("MyThing","arn:aws:iam::123456789012:role/
AllowsThingShadowAccess")
 .state.reported.alarm = 'ON'

get_user_properties(userPropertyKey)

References User Properties, which is one type of property headers supported in MQTT5.

userProperty

String: A user property is a key-value pair. This function takes the key as an argument and
returns an array of all values that match the associated key.

Function arguments

For the following User Properties in the message headers:

Key Value

some key some value

a different key a different value

some key value with duplicate key

The following table shows the expected SQL behavior:

Functions 957

AWS IoT Core Developer Guide

SQL Returned data
type

Returned data value

get_user_propertie
s('some key')

Array of String ['some value', 'value with
duplicate key']

get_user_propertie
s('other key')

Array of String ['a different value']

get_user_properties() Array of key-value
pair Objects

[{'"some key": "some value"'},
{"other key": "a different
value"}, {"some key": "value with
duplicate key"}]

get_user_propertie
s('non-existent key')

Undefined

The following example Rules SQL references User Properties (a type of MQTT5 property header)
into the payload:

SELECT *, get_user_properties('user defined property key') as userProperty
FROM 'some/topic'

Hashing functions

AWS IoT provides the following hashing functions:

• md2

• md5

• sha1

• sha224

• sha256

• sha384

• sha512

Functions 958

AWS IoT Core Developer Guide

All hash functions expect one string argument. The result is the hashed value of that string.
Standard string conversions apply to non-string arguments. All hash functions are supported by
SQL version 2015-10-08 and later.

Examples:

md2("hello") = "a9046c73e00331af68917d3804f70655"

md5("hello") = "5d41402abc4b2a76b9719d911017c592"

indexof(String, String)

Returns the first index (0-based) of the second argument as a substring in the first argument. Both
arguments are expected as strings. Arguments that are not strings are subjected to standard string
conversion rules. This function does not apply to arrays, only to strings. Supported by SQL version
2016-03-23 and later.

Examples:

indexof("abcd", "bc") = 1

isNull()

Returns true if the argument is the Null value. Supported by SQL version 2015-10-08 and later.

Examples:

isNull(5) = false.

isNull(Null) = true.

Argument type Result

Int false

Decimal false

Boolean false

String false

Array false

Functions 959

AWS IoT Core Developer Guide

Argument type Result

Object false

Null true

Undefined false

isUndefined()

Returns true if the argument is Undefined. Supported by SQL version 2016-03-23 and later.

Examples:

isUndefined(5) = false.

isUndefined(floor([1,2,3]))) = true.

Argument type Result

Int false

Decimal false

Boolean false

String false

Array false

Object false

Null false

Undefined true

length(String)

Returns the number of characters in the provided string. Standard conversion rules apply to
non-String arguments. Supported by SQL version 2016-03-23 and later.

Functions 960

AWS IoT Core Developer Guide

Examples:

length("hi") = 2

length(false) = 5

ln(Decimal)

Returns the natural logarithm of the argument. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: ln(e) = 1.

Argument type Result

Int Decimal (with double precision), the
natural log of the argument.

Decimal Decimal (with double precision), the
natural log of the argument.

Boolean Undefined .

String Decimal (with double precision), the
natural log of the argument. If the string
cannot be converted to a Decimal, the
result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

log(Decimal)

Returns the base 10 logarithm of the argument. Decimal arguments are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Functions 961

AWS IoT Core Developer Guide

Example: log(100) = 2.0.

Argument type Result

Int Decimal (with double precision), the base
10 log of the argument.

Decimal Decimal (with double precision), the base
10 log of the argument.

Boolean Undefined .

String Decimal (with double precision), the base
10 log of the argument. If the String
cannot be converted to a Decimal, the
result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

lower(String)

Returns the lowercase version of the given String. Non-string arguments are converted to strings
using the standard conversion rules. Supported by SQL version 2015-10-08 and later.

Examples:

lower("HELLO") = "hello".

lower(["HELLO"]) = "[\"hello\"]".

lpad(String, Int)

Returns the String argument, padded on the left side with the number of spaces specified by the
second argument. The Int argument must be between 0 and 1000. If the provided value is outside

Functions 962

AWS IoT Core Developer Guide

of this valid range, the argument is set to the nearest valid value (0 or 1000). Supported by SQL
version 2015-10-08 and later.

Examples:

lpad("hello", 2) = " hello".

lpad(1, 3) = " 1"

Argument type 1 Argument type 2 Result

String Int String, the provided String padded on
the left side with a number of spaces equal
to the provided Int.

String Decimal The Decimal argument is rounded down
to the nearest Int and the String is
padded on the left with the specified
number of spaces.

String String The second argument is converted to a
Decimal, which is rounded down to the
nearest Int, and the String is padded
with the specified number spaces on
the left. If the second argument cannot
be converted to an Int, the result is
Undefined .

Other value Int/Decimal/String The first value is converted to a String
using the standard conversions, and then
the LPAD function is applied on that
String. If it cannot be converted, the
result is Undefined .

Any value Other value Undefined .

Functions 963

AWS IoT Core Developer Guide

ltrim(String)

Removes all leading white space (tabs and spaces) from the provided String. Supported by SQL
version 2015-10-08 and later.

Example:

Ltrim(" h i ") = "hi ".

Argument type Result

Int The String representation of the Int
with all leading white space removed.

Decimal The String representation of the
Decimal with all leading white space
removed.

Boolean The String representation of the Boolean
("true" or "false") with all leading white
space removed.

String The argument with all leading white space
removed.

Array The String representation of the Array
(using standard conversion rules) with all
leading white space removed.

Object The String representation of the Object
(using standard conversion rules) with all
leading white space removed.

Null Undefined .

Undefined Undefined .

Functions 964

AWS IoT Core Developer Guide

machinelearning_predict(modelId, roleArn, record)

Use the machinelearning_predict function to make predictions using the data from an MQTT
message based on an Amazon SageMaker model. Supported by SQL version 2015-10-08 and later.
The arguments for the machinelearning_predict function are:

modelId

The ID of the model against which to run the prediction. The real-time endpoint of the model
must be enabled.

roleArn

The IAM role that has a policy with machinelearning:Predict and
machinelearning:GetMLModel permissions and allows access to the model against which
the prediction is run.

record

The data to be passed into the SageMaker Predict API. This should be represented as a
single layer JSON object. If the record is a multi-level JSON object, the record is flattened by
serializing its values. For example, the following JSON:

{ "key1": {"innerKey1": "value1"}, "key2": 0}

would become:

{ "key1": "{\"innerKey1\": \"value1\"}", "key2": 0}

The function returns a JSON object with the following fields:

predictedLabel

The classification of the input based on the model.

details

Contains the following attributes:

PredictiveModelType

The model type. Valid values are REGRESSION, BINARY, MULTICLASS.

Functions 965

AWS IoT Core Developer Guide

Algorithm

The algorithm used by SageMaker to make predictions. The value must be SGD.

predictedScores

Contains the raw classification score corresponding to each label.

predictedValue

The value predicted by SageMaker.

mod(Decimal, Decimal)

Returns the remainder of the division of the first argument by the second argument. Equivalent
to remainder(Decimal, Decimal). You can also use "%" as an infix operator for the same modulo
functionality. Supported by SQL version 2015-10-08 and later.

Example: mod(8, 3) = 2.

Left operand Right operand Output

Int Int Int, the first argument modulo the second
argument.

Int/Decimal Int/Decimal Decimal, the first argument modulo the
second operand.

String/Int/Decimal String/Int/Decimal If all strings convert to decimals, the result
is the first argument modulo the second
argument. Otherwise, Undefined .

Other value Other value Undefined .

nanvl(AnyValue, AnyValue)

Returns the first argument if it is a valid Decimal. Otherwise, the second argument is returned.
Supported by SQL version 2015-10-08 and later.

Example: Nanvl(8, 3) = 8.

Functions 966

AWS IoT Core Developer Guide

Argument type 1 Argument type 2 Output

Undefined Any value The second argument.

Null Any value The second argument.

Decimal (NaN) Any value The second argument.

Decimal (not NaN) Any value The first argument.

Other value Any value The first argument.

newuuid()

Returns a random 16-byte UUID. Supported by SQL version 2015-10-08 and later.

Example: newuuid() = 123a4567-b89c-12d3-e456-789012345000

numbytes(String)

Returns the number of bytes in the UTF-8 encoding of the provided string. Standard conversion
rules apply to non-String arguments. Supported by SQL version 2016-03-23 and later.

Examples:

numbytes("hi") = 2

numbytes("€") = 3

parse_time(String, Long[, String])

Use the parse_time function to format a timestamp into a human-readable date/time format.
Supported by SQL version 2016-03-23 and later. To convert a timestamp string into milliseconds,
see time_to_epoch(String, String).

The parse_time function expects the following arguments:

pattern

(String) A date/time pattern that follows Joda-Time formats.

Functions 967

http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html

AWS IoT Core Developer Guide

timestamp

(Long) The time to be formatted in milliseconds since Unix epoch. See function timestamp().

timezone

(String) The time zone of the formatted date/time. The default is "UTC". The function supports
Joda-Time time zones. This argument is optional.

Examples:

When this message is published to the topic 'A/B', the payload {"ts": "1970.01.01 AD at
21:46:40 CST"} is sent to the S3 bucket:

{
 "ruleArn": "arn:aws:iot:us-east-2:ACCOUNT_ID:rule/RULE_NAME",
 "topicRulePayload": {
 "sql": "SELECT parse_time(\"yyyy.MM.dd G 'at' HH:mm:ss z\", 100000000,
 'America/Belize') as ts FROM 'A/B'",

 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "s3": {
 "roleArn": "arn:aws:iam::ACCOUNT_ID:rule:role/ROLE_NAME",
 "bucketName": "BUCKET_NAME",
 "key": "KEY_NAME"
 }
 }
],
 "ruleName": "RULE_NAME"
 }
}

When this message is published to the topic 'A/B', a payload similar to {"ts": "2017.06.09 AD
at 17:19:46 UTC"} (but with the current date/time) is sent to the S3 bucket:

{
 "ruleArn": "arn:aws:iot:us-east-2:ACCOUNT_ID:rule/RULE_NAME",
 "topicRulePayload": {
 "sql": "SELECT parse_time(\"yyyy.MM.dd G 'at' HH:mm:ss z\", timestamp()) as ts
 FROM 'A/B'",

Functions 968

http://joda-time.sourceforge.net/timezones.html

AWS IoT Core Developer Guide

 "awsIotSqlVersion": "2016-03-23",
 "ruleDisabled": false,
 "actions": [
 {
 "s3": {
 "roleArn": "arn:aws:iam::ACCOUNT_ID:rule:role/ROLE_NAME",
 "bucketName": "BUCKET_NAME",
 "key": "KEY_NAME"
 }
 }
],
 "ruleName": "RULE_NAME"
 }
}

parse_time() can also be used as a substitution template. For example, when this message is
published to the topic 'A/B', the payload is sent to the S3 bucket with key = "2017":

{
 "ruleArn": "arn:aws:iot:us-east-2:ACCOUNT_ID:rule/RULE_NAME",
 "topicRulePayload": {
 "sql": "SELECT * FROM 'A/B'",
 "awsIotSqlVersion": "2016-03-23",
 "ruleDisabled": false,
 "actions": [{
 "s3": {
 "roleArn": "arn:aws:iam::ACCOUNT_ID:rule:role/ROLE_NAME",
 "bucketName": "BUCKET_NAME",
 "key": "${parse_time('yyyy', timestamp(), 'UTC')}"
 }
 }],
 "ruleName": "RULE_NAME"
 }
}

power(Decimal, Decimal)

Returns the first argument raised to the second argument. Decimal arguments are rounded to
double precision before function application. Supported by SQL version 2015-10-08 and later.
Supported by SQL version 2015-10-08 and later.

Example: power(2, 5) = 32.0.

Functions 969

AWS IoT Core Developer Guide

Argument type 1 Argument type 2 Output

Int/Decimal Int/Decimal A Decimal (with double precision),
the first argument raised to the second
argument's power.

Int/Decimal/String Int/Decimal/String A Decimal (with double precision),
the first argument raised to the second
argument's power. Any strings are
converted to decimals. If any String fails
to be converted to Decimal, the result is
Undefined .

Other value Other value Undefined .

principal()

Returns the principal that the device uses for authentication, based on how the triggering message
was published. The following table describes the principal returned for each publishing method
and protocol.

How the message is
published

Protocol Credential type Principal

MQTT client MQTT X.509 device certificate X.509 certificate thumbprint

AWS IoT console MQTT
client

MQTT IAM user or role iam-role-id :session-name

AWS CLI HTTP IAM user or role userid

AWS IoT Device SDK MQTT X.509 device certificate X.509 certificate thumbprint

AWS IoT Device SDK MQTT over WebSocket IAM user or role userid

The following examples show the different types of values that principal() can return:

Functions 970

AWS IoT Core Developer Guide

• X.509 certificate thumbprint:
ba67293af50bf2506f5f93469686da660c7c844e7b3950bfb16813e0d31e9373

• IAM role ID and session name: ABCD1EFG3HIJK2LMNOP5:my-session-name

• Returns a user ID: ABCD1EFG3HIJK2LMNOP5

rand()

Returns a pseudorandom, uniformly distributed double between 0.0 and 1.0. Supported by SQL
version 2015-10-08 and later.

Example:

rand() = 0.8231909191640703

regexp_matches(String, String)

Returns true if the string (first argument) contains a match for the regular expression (second
argument). If you use | in the regular expression, use it with ().

Examples:

regexp_matches("aaaa", "a{2,}") = true.

regexp_matches("aaaa", "b") = false.

regexp_matches("aaa", "(aaa|bbb)") = true.

regexp_matches("bbb", "(aaa|bbb)") = true.

regexp_matches("ccc", "(aaa|bbb)") = false.

First argument:

Argument type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Functions 971

AWS IoT Core Developer Guide

Argument type Result

Boolean The String representation of the Boolean
("true" or "false").

String The String.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined .

Undefined Undefined .

Second argument:

Must be a valid regex expression. Non-string types are converted to String using the standard
conversion rules. Depending on the type, the resultant string might not be a valid regular
expression. If the (converted) argument is not valid regex, the result is Undefined.

regexp_replace(String, String, String)

Replaces all occurrences of the second argument (regular expression) in the first argument with
the third argument. Reference capture groups with "$". Supported by SQL version 2015-10-08 and
later.

Example:

regexp_replace("abcd", "bc", "x") = "axd".

regexp_replace("abcd", "b(.*)d", "$1") = "ac".

First argument:

Argument type Result

Int The String representation of the Int.

Functions 972

AWS IoT Core Developer Guide

Argument type Result

Decimal The String representation of the
Decimal.

Boolean The String representation of the Boolean
("true" or "false").

String The source value.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined .

Undefined Undefined .

Second argument:

Must be a valid regex expression. Non-string types are converted to String using the standard
conversion rules. Depending on the type, the resultant string might not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undefined.

Third argument:

Must be a valid regex replacement string. (Can reference capture groups.) Non-string types are
converted to String using the standard conversion rules. If the (converted) argument is not a valid
regex replacement string, the result is Undefined.

regexp_substr(String, String)

Finds the first match of the second parameter (regex) in the first parameter. Reference capture
groups with "$". Supported by SQL version 2015-10-08 and later.

Example:

regexp_substr("hihihello", "hi") = "hi"

Functions 973

AWS IoT Core Developer Guide

regexp_substr("hihihello", "(hi)*") = "hihi"

First argument:

Argument type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the Boolean
("true" or "false").

String The String argument.

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined .

Undefined Undefined .

Second argument:

Must be a valid regex expression. Non-string types are converted to String using the standard
conversion rules. Depending on the type, the resultant string might not be a valid regular
expression. If the (converted) argument is not a valid regex expression, the result is Undefined.

remainder(Decimal, Decimal)

Returns the remainder of the division of the first argument by the second argument. Equivalent
to mod(Decimal, Decimal). You can also use "%" as an infix operator for the same modulo
functionality. Supported by SQL version 2015-10-08 and later.

Example: remainder(8, 3) = 2.

Functions 974

AWS IoT Core Developer Guide

Left operand Right operand Output

Int Int Int, the first argument modulo the second
argument.

Int/Decimal Int/Decimal Decimal, the first argument modulo the
second operand.

String/Int/Decimal String/Int/Decimal If all strings convert to decimals, the result
is the first argument modulo the second
argument. Otherwise, Undefined .

Other value Other value Undefined .

replace(String, String, String)

Replaces all occurrences of the second argument in the first argument with the third argument.
Supported by SQL version 2015-10-08 and later.

Example:

replace("abcd", "bc", "x") = "axd".

replace("abcdabcd", "b", "x") = "axcdaxcd".

All arguments

Argument type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the Boolean
("true" or "false").

String The source value.

Functions 975

AWS IoT Core Developer Guide

Argument type Result

Array The String representation of the Array
(using standard conversion rules).

Object The String representation of the Object
(using standard conversion rules).

Null Undefined .

Undefined Undefined .

rpad(String, Int)

Returns the string argument, padded on the right side with the number of spaces specified in the
second argument. The Int argument must be between 0 and 1000. If the provided value is outside
of this valid range, the argument is set to the nearest valid value (0 or 1000). Supported by SQL
version 2015-10-08 and later.

Examples:

rpad("hello", 2) = "hello ".

rpad(1, 3) = "1 ".

Argument type 1 Argument type 2 Result

String Int The String is padded
on the right side with
a number of spaces
equal to the provided
Int.

String Decimal The Decimal
argument is rounded
down to the nearest
Int and the string is
padded on the right

Functions 976

AWS IoT Core Developer Guide

Argument type 1 Argument type 2 Result

side with a number of
spaces equal to the
provided Int.

String String The second argument
is converted to a
Decimal, which is
rounded down to
the nearest Int. The
String is padded on
the right side with
a number of spaces
equal to the Int
value.

Other value Int/Decimal/String The first value is
converted to a
String using the
standard conversions,
and the rpad function
is applied on that
String. If it cannot
be converted, the
result is Undefined .

Any value Other value Undefined .

round(Decimal)

Rounds the given Decimal to the nearest Int. If the Decimal is equidistant from two Int values
(for example, 0.5), the Decimal is rounded up. Supported by SQL version 2015-10-08 and later.

Example: Round(1.2) = 1.

Round(1.5) = 2.

Round(1.7) = 2.

Functions 977

AWS IoT Core Developer Guide

Round(-1.1) = -1.

Round(-1.5) = -2.

Argument type Result

Int The argument.

Decimal Decimal is rounded down to the nearest
Int.

String Decimal is rounded down to the nearest
Int. If the string cannot be converted to a
Decimal, the result is Undefined .

Other value Undefined .

rtrim(String)

Removes all trailing white space (tabs and spaces) from the provided String. Supported by SQL
version 2015-10-08 and later.

Examples:

rtrim(" h i ") = " h i"

Argument type Result

Int The String representation of the Int.

Decimal The String representation of the
Decimal.

Boolean The String representation of the Boolean
("true" or "false").

Array The String representation of the Array
(using standard conversion rules).

Functions 978

AWS IoT Core Developer Guide

Argument type Result

Object The String representation of the Object
(using standard conversion rules).

Null Undefined .

Undefined Undefined

sign(Decimal)

Returns the sign of the given number. When the sign of the argument is positive, 1 is returned.
When the sign of the argument is negative, -1 is returned. If the argument is 0, 0 is returned.
Supported by SQL version 2015-10-08 and later.

Examples:

sign(-7) = -1.

sign(0) = 0.

sign(13) = 1.

Argument type Result

Int Int, the sign of the Int value.

Decimal Int, the sign of the Decimal value.

String Int, the sign of the Decimal value.
The string is converted to a Decimal
value, and the sign of the Decimal value
is returned. If the String cannot be
converted to a Decimal, the result is
Undefined . Supported by SQL version
2015-10-08 and later.

Other value Undefined .

Functions 979

AWS IoT Core Developer Guide

sin(Decimal)

Returns the sine of a number in radians. Decimal arguments are rounded to double precision
before function application. Supported by SQL version 2015-10-08 and later.

Example: sin(0) = 0.0

Argument type Result

Int Decimal (with double precision), the sine
of the argument.

Decimal Decimal (with double precision), the sine
of the argument.

Boolean Undefined .

String Decimal (with double precision), the
sine of the argument. If the string cannot
be converted to a Decimal, the result is
Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

sinh(Decimal)

Returns the hyperbolic sine of a number. Decimal values are rounded to double precision before
function application. The result is a Decimal value of double precision. Supported by SQL version
2015-10-08 and later.

Example: sinh(2.3) = 4.936961805545957

Functions 980

AWS IoT Core Developer Guide

Argument type Result

Int Decimal (with double precision), the
hyperbolic sine of the argument.

Decimal Decimal (with double precision), the
hyperbolic sine of the argument.

Boolean Undefined .

String Decimal (with double precision), the
hyperbolic sine of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

sourceip()

Retrieves the IP address of a device or the router that connects to it. If your device is connected to
the internet directly, the function will return the source IP address of the device. If your device is
connected to a router that connects to the internet, the function will return the source IP address
of the router. Supported by SQL version 2016-03-23. sourceip() doesn't take any parameters.

Important

A device's public source IP address is often the IP address of the last Network Address
Translation (NAT) Gateway such as your internet service provider's router or cable modem.

Examples:

sourceip()="192.158.1.38"

Functions 981

AWS IoT Core Developer Guide

sourceip()="1.102.103.104"

sourceip()="2001:db8:ff00::12ab:34cd"

SQL example:

SELECT *, sourceip() as deviceIp FROM 'some/topic'

Examples of how to use the sourceip() function in AWS IoT Core rule actions:

Example 1

The following example shows how to call the () function as a substitution template in a DynamoDB
action.

{
 "topicRulePayload": {
 "sql": "SELECT * AS message FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "dynamoDB": {
 "tableName": "my_ddb_table",
 "hashKeyField": "key",
 "hashKeyValue": "${sourceip()}",
 "rangeKeyField": "timestamp",
 "rangeKeyValue": "${timestamp()}",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_dynamoDB"
 }
 }
]
 }
}

Example 2

The following example shows how to add the sourceip() function as an MQTT user property using
substitution templates.

{
 "topicRulePayload": {

Functions 982

https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamodb-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamodb-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

AWS IoT Core Developer Guide

 "sql": "SELECT * FROM 'some/topic'",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "${topic()}/republish",
 "roleArn": "arn:aws:iam::123456789012:role/aws_iot_republish",
 "headers": {
 "payloadFormatIndicator": "UTF8_DATA",
 "contentType": "rule/contentType",
 "correlationData": "cnVsZSBjb3JyZWxhdGlvbiBkYXRh",
 "userProperties": [
 {
 "key": "ruleKey1",
 "value": "ruleValue1"
 },
 {
 "key": "sourceip",
 "value": "${sourceip()}"
 }
]
 }
 }
 }
]
 }
}

You can retrieve the source IP address from messages passing to AWS IoT Core rules from both
Message Broker and Basic Ingest pathways. You can also retrieve the source IP for both IPv4 and
IPv6 messages. The source IP will be displayed like the following:

IPv6: yyyy:yyyy:yyyy::yyyy:yyyy

IPv4: xxx.xxx.xxx.xxx

Note

The original source IP won't be passed though Republish action.

Functions 983

https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html

AWS IoT Core Developer Guide

substring(String, Int[, Int])

Expects a String followed by one or two Int values. For a String and a single Int argument,
this function returns the substring of the provided String from the provided Int index (0-based,
inclusive) to the end of the String. For a String and two Int arguments, this function returns
the substring of the provided String from the first Int index argument (0-based, inclusive) to
the second Int index argument (0-based, exclusive). Indices that are less than zero are set to
zero. Indices that are greater than the String length are set to the String length. For the three
argument version, if the first index is greater than (or equal to) the second index, the result is the
empty String.

 If the arguments provided are not (String, Int), or (String, Int, Int), the standard conversions
are applied to the arguments to attempt to convert them into the correct types. If the types cannot
be converted, the result of the function is Undefined. Supported by SQL version 2015-10-08 and
later.

Examples:

substring("012345", 0) = "012345".

substring("012345", 2) = "2345".

substring("012345", 2.745) = "2345".

substring(123, 2) = "3".

substring("012345", -1) = "012345".

substring(true, 1.2) = "rue".

substring(false, -2.411E247) = "false".

substring("012345", 1, 3) = "12".

substring("012345", -50, 50) = "012345".

substring("012345", 3, 1) = "".

sql_version()

Returns the SQL version specified in this rule. Supported by SQL version 2015-10-08 and later.

Functions 984

AWS IoT Core Developer Guide

Example:

sql_version() = "2016-03-23"

sqrt(Decimal)

Returns the square root of a number. Decimal arguments are rounded to double precision before
function application. Supported by SQL version 2015-10-08 and later.

Example: sqrt(9) = 3.0.

Argument type Result

Int The square root of the argument.

Decimal The square root of the argument.

Boolean Undefined .

String The square root of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

startswith(String, String)

Returns Boolean, whether the first string argument starts with the second string argument.
If either argument is Null or Undefined, the result is Undefined. Supported by SQL version
2015-10-08 and later.

Example:

startswith("ranger","ran") = true

Functions 985

AWS IoT Core Developer Guide

Argument type 1 Argument type 2 Result

String String Whether the first string starts with the
second string.

Other value Other value Both arguments are converted to strings
using the standard conversion rules.
Returns true if the first string starts with
the second string. If either argument
is Null or Undefined , the result is
Undefined .

tan(Decimal)

Returns the tangent of a number in radians. Decimal values are rounded to double precision
before function application. Supported by SQL version 2015-10-08 and later.

Example: tan(3) = -0.1425465430742778

Argument type Result

Int Decimal (with double precision), the
tangent of the argument.

Decimal Decimal (with double precision), the
tangent of the argument.

Boolean Undefined .

String Decimal (with double precision), the
tangent of the argument. If the string
cannot be converted to a Decimal, the
result is Undefined .

Array Undefined .

Object Undefined .

Functions 986

AWS IoT Core Developer Guide

Argument type Result

Null Undefined .

Undefined Undefined .

tanh(Decimal)

Returns the hyperbolic tangent of a number in radians. Decimal values are rounded to double
precision before function application. Supported by SQL version 2015-10-08 and later.

Example: tanh(2.3) = 0.9800963962661914

Argument type Result

Int Decimal (with double precision), the
hyperbolic tangent of the argument.

Decimal Decimal (with double precision), the
hyperbolic tangent of the argument.

Boolean Undefined .

String Decimal (with double precision), the
hyperbolic tangent of the argument. If the
string cannot be converted to a Decimal,
the result is Undefined .

Array Undefined .

Object Undefined .

Null Undefined .

Undefined Undefined .

Functions 987

AWS IoT Core Developer Guide

time_to_epoch(String, String)

Use the time_to_epoch function to convert a timestamp string into a number of milliseconds
in Unix epoch time. Supported by SQL version 2016-03-23 and later. To convert milliseconds to a
formatted timestamp string, see parse_time(String, Long[, String]).

The time_to_epoch function expects the following arguments:

timestamp

(String) The timestamp string to be converted to milliseconds since Unix epoch. If the
timestamp string doesn't specify a timezone, the function uses the UTC timezone.

pattern

(String) A date/time pattern that follows JDK11 Time Formats.

Examples:

time_to_epoch("2020-04-03 09:45:18 UTC+01:00", "yyyy-MM-dd HH:mm:ss VV") =
1585903518000

time_to_epoch("18 December 2015", "dd MMMM yyyy") = 1450396800000

time_to_epoch("2007-12-03 10:15:30.592 America/Los_Angeles", "yyyy-MM-dd
HH:mm:ss.SSS z") = 1196705730592

timestamp()

Returns the current timestamp in milliseconds from 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970, as observed by the AWS IoT rules engine. Supported by SQL version
2015-10-08 and later.

Example: timestamp() = 1481825251155

topic(Decimal)

Returns the topic to which the message that triggered the rule was sent. If no parameter is
specified, the entire topic is returned. The Decimal parameter is used to specify a specific topic
segment, with 1 designating the first segment. For the topic foo/bar/baz, topic(1) returns foo,
topic(2) returns bar, and so on. Supported by SQL version 2015-10-08 and later.

Functions 988

http://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/format/DateTimeFormatter.html

AWS IoT Core Developer Guide

Examples:

topic() = "things/myThings/thingOne"

topic(1) = "things"

When Basic Ingest is used, the initial prefix of the topic ($aws/rules/rule-name) is not available
to the topic() function. For example, given the topic:

$aws/rules/BuildingManager/Buildings/Building5/Floor2/Room201/Lights

topic() = "Buildings/Building5/Floor2/Room201/Lights"

topic(3) = "Floor2"

traceid()

Returns the trace ID (UUID) of the MQTT message, or Undefined if the message wasn't sent over
MQTT. Supported by SQL version 2015-10-08 and later.

Example:

traceid() = "12345678-1234-1234-1234-123456789012"

transform(String, Object, Array)

Returns an array of objects that contains the result of the specified transformation of the Object
parameter on the Array parameter.

Supported by SQL version 2016-03-23 and later.

String

The transformation mode to use. Refer to the following table for the supported transformation
modes and how they create the Result from the Object and Array parameters.

Object

An object that contains the attributes to apply to each element of the Array.

Array

An array of objects into which the attributes of Object are applied.

Functions 989

AWS IoT Core Developer Guide

Each object in this Array corresponds to an object in the function's response. Each object in
the function's response contains the attributes present in the original object and the attributes
provided by Object as determined by the transformation mode specified in String.

String parameter Object parameter Array parameter Result

enrichArray Object Array of objects An Array of objects
in which each object
contains the attribute
s of an element from
the Array parameter
and the attribute
s of the Object
parameter.

Any other value Any value Any value Undefined

Note

The array returned by this function is limited to 128 KiB.

Transform function example 1

This example shows how the transform() function produces a single array of objects from a data
object and an array.

In this example, the following message is published to the MQTT topic A/B.

{
 "attributes": {
 "data1": 1,
 "data2": 2
 },
 "values": [
 {
 "a": 3
 },

Functions 990

AWS IoT Core Developer Guide

 {
 "b": 4
 },
 {
 "c": 5
 }
]
}

This SQL statement for a topic rule action uses the transform() function with a String value of
enrichArray. In this example, Object is the attributes property from the message payload
and Array is the values array, which contains three objects.

select value transform("enrichArray", attributes, values) from 'A/B'

Upon receiving the message payload, the SQL statement evaluates to the following response.

[
 {
 "a": 3,
 "data1": 1,
 "data2": 2
 },
 {
 "b": 4,
 "data1": 1,
 "data2": 2
 },
 {
 "c": 5,
 "data1": 1,
 "data2": 2
 }
]

Transform function example 2

This example shows how the transform() function can use literal values to include and rename
individual attributes from the message payload.

In this example, the following message is published to the MQTT topic A/B. This is the same
message that was used in the section called “Transform function example 1”.

Functions 991

AWS IoT Core Developer Guide

{
 "attributes": {
 "data1": 1,
 "data2": 2
 },
 "values": [
 {
 "a": 3
 },
 {
 "b": 4
 },
 {
 "c": 5
 }
]
}

This SQL statement for a topic rule action uses the transform() function with a String value of
enrichArray. The Object in the transform() function has a single attribute named key with
the value of attributes.data1 in the message payload and Array is the values array, which
contains the same three objects used in the previous example.

select value transform("enrichArray", {"key": attributes.data1}, values) from 'A/B'

Upon receiving the message payload, this SQL statement evaluates to the following response.
Notice how the data1 property is named key in the response.

[
 {
 "a": 3,
 "key": 1
 },
 {
 "b": 4,
 "key": 1
 },
 {
 "c": 5,
 "key": 1
 }

Functions 992

AWS IoT Core Developer Guide

]

Transform function example 3

This example shows how the transform() function can be used in nested SELECT clauses to select
multiple attributes and create new objects for subsequent processing.

In this example, the following message is published to the MQTT topic A/B.

{
 "data1": "example",
 "data2": {
 "a": "first attribute",
 "b": "second attribute",
 "c": [
 {
 "x": {
 "someInt": 5,
 "someString": "hello"
 },
 "y": true
 },
 {
 "x": {
 "someInt": 10,
 "someString": "world"
 },
 "y": false
 }
]
 }
}

The Object for this transform function is the object returned by the SELECT statement, which
contains the a and b elements of the message's data2 object. The Array parameter consists of
the two objects from the data2.c array in the original message.

select value transform('enrichArray', (select a, b from data2), (select value c from
 data2)) from 'A/B'

With the preceding message, the SQL statement evaluates to the following response.

Functions 993

AWS IoT Core Developer Guide

[
 {
 "x": {
 "someInt": 5,
 "someString": "hello"
 },
 "y": true,
 "a": "first attribute",
 "b": "second attribute"
 },
 {
 "x": {
 "someInt": 10,
 "someString": "world"
 },
 "y": false,
 "a": "first attribute",
 "b": "second attribute"
 }
]

The array returned in this response could be used with topic rule actions that support batchMode.

trim(String)

Removes all leading and trailing white space from the provided String. Supported by SQL version
2015-10-08 and later.

Example:

Trim(" hi ") = "hi"

Argument type Result

Int The String representation of the Int
with all leading and trailing white space
removed.

Decimal The String representation of the
Decimal with all leading and trailing
white space removed.

Functions 994

AWS IoT Core Developer Guide

Argument type Result

Boolean The String representation of the
Boolean ("true" or "false") with all leading
and trailing white space removed.

String The String with all leading and trailing
white space removed.

Array The String representation of the Array
using standard conversion rules.

Object The String representation of the Object
using standard conversion rules.

Null Undefined .

Undefined Undefined .

trunc(Decimal, Int)

Truncates the first argument to the number of Decimal places specified by the second argument.
If the second argument is less than zero, it is set to zero. If the second argument is greater than 34,
it is set to 34. Trailing zeroes are stripped from the result. Supported by SQL version 2015-10-08
and later.

Examples:

trunc(2.3, 0) = 2.

trunc(2.3123, 2) = 2.31.

trunc(2.888, 2) = 2.88.

trunc(2.00, 5) = 2.

Argument type 1 Argument type 2 Result

Int Int The source value.

Functions 995

AWS IoT Core Developer Guide

Argument type 1 Argument type 2 Result

Int/Decimal Int/Decimal The first argument is truncated to the
length described by the second argument.
The second argument, if not an Int, is
rounded down to the nearest Int.

Int/Decimal/String Int/Decimal The first argument is truncated to the
length described by the second argument.
The second argument, if not an Int,
is rounded down to the nearest Int. A
String is converted to a Decimal value.
If the string conversion fails, the result is
Undefined .

Other value Undefined .

upper(String)

Returns the uppercase version of the given String. Non-String arguments are converted to
String using the standard conversion rules. Supported by SQL version 2015-10-08 and later.

Examples:

upper("hello") = "HELLO"

upper(["hello"]) = "[\"HELLO\"]"

Literals

You can directly specify literal objects in the SELECT and WHERE clauses of your rule SQL, which
can be useful for passing information.

Note

Literals are available only when using SQL version 2016-03-23 or later.

Literals 996

AWS IoT Core Developer Guide

JSON object syntax is used (key-value pairs, comma-separated, where keys are strings and values
are JSON values, wrapped in curly brackets {}). For example:

Incoming payload published on topic topic/subtopic: {"lat_long": [47.606,-122.332]}

SQL statement: SELECT {'latitude': get(lat_long, 0),'longitude':get(lat_long,
1)} as lat_long FROM 'topic/subtopic'

The resulting outgoing payload would be: {"lat_long":
{"latitude":47.606,"longitude":-122.332}}.

You can also directly specify arrays in the SELECT and WHERE clauses of your rule SQL, which
allows you to group information. JSON syntax is used (wrap comma-separated items in square
brackets [] to create an array literal). For example:

Incoming payload published on topic topic/subtopic: {"lat": 47.696, "long":
-122.332}

SQL statement: SELECT [lat,long] as lat_long FROM 'topic/subtopic'

The resulting output payload would be: {"lat_long": [47.606,-122.332]}.

Case statements

Case statements can be used for branching execution, like a switch statement.

Syntax:

CASE v WHEN t[1] THEN r[1]
 WHEN t[2] THEN r[2] ...
 WHEN t[n] THEN r[n]
 ELSE r[e] END

The expression v is evaluated and matched for equality against the t[i] value of each WHEN
clause. If a match is found, the corresponding r[i] expression becomes the result of the CASE
statement. The WHEN clauses are evaluated in order so that if there's more than one matching
clause, the result of the first matching clause becomes the result of the CASE statement. If there
are no matches, r[e] of the ELSE clause is the result. If there's no match and no ELSE clause, the
result is Undefined.

CASE statements require at least one WHEN clause. An ELSE clause is optional.

Case statements 997

AWS IoT Core Developer Guide

For example:

Incoming payload published on topic topic/subtopic:

{
 "color":"yellow"
}

SQL statement:

SELECT CASE color
 WHEN 'green' THEN 'go'
 WHEN 'yellow' THEN 'caution'
 WHEN 'red' THEN 'stop'
 ELSE 'you are not at a stop light' END as instructions
 FROM 'topic/subtopic'

The resulting output payload would be:

{
 "instructions":"caution"
}

Note

If v is Undefined, the result of the case statement is Undefined.

JSON extensions

You can use the following extensions to ANSI SQL syntax to facilitate work with nested JSON
objects.

"." Operator

This operator accesses members in embedded JSON objects and functions identically to ANSI SQL
and JavaScript. For example:

SELECT foo.bar AS bar.baz FROM 'topic/subtopic'

JSON extensions 998

AWS IoT Core Developer Guide

selects the value of the bar property in the foo object from the following message payload sent
to the topic/subtopic topic.

{
 "foo": {
 "bar": "RED",
 "bar1": "GREEN",
 "bar2": "BLUE"
 }
}

If a JSON property name includes a hyphen character or numeric characters, the 'dot' notation will
not work. Instead, you must use the get function to extract the property's value.

In this example, the following message is sent to the iot/rules topic.

{
 "mydata": {
 "item2": {
 "0": {
 "my-key": "myValue"
 }
 }
 }
}

Normally, the value of my-key would be identified as in this query.

SELECT * from iot/rules WHERE mydata.item2.0.my-key= "myValue"

However, because the property name my-key contains a hyphen and item2 contains a numeric
character, the get function must be used as the following query shows.

SELECT * from 'iot/rules' WHERE get(get(get(mydata,"item2"),"0"),"my-key") = "myValue"

* Operator

This functions in the same way as the * wildcard in ANSI SQL. It's used in the SELECT clause only
and creates a new JSON object containing the message data. If the message payload is not in JSON
format, * returns the entire message payload as raw bytes. For example:

JSON extensions 999

AWS IoT Core Developer Guide

SELECT * FROM 'topic/subtopic'

Applying a Function to an Attribute Value

The following is an example JSON payload that might be published by a device:

{
 "deviceid" : "iot123",
 "temp" : 54.98,
 "humidity" : 32.43,
 "coords" : {
 "latitude" : 47.615694,
 "longitude" : -122.3359976
 }
}

The following example applies a function to an attribute value in a JSON payload:

SELECT temp, md5(deviceid) AS hashed_id FROM topic/#

The result of this query is the following JSON object:

{
 "temp": 54.98,
 "hashed_id": "e37f81fb397e595c4aeb5645b8cbbbd1"
}

Substitution templates

You can use a substitution template to augment the JSON data returned when a rule is triggered
and AWS IoT performs an action. The syntax for a substitution template is ${expression}, where
expression can be any expression supported by AWS IoT in SELECT clauses, WHERE clauses, and
AWS IoT rule actions. This expression can be plugged into an action field on a rule, allowing you
to dynamically configure an action. In effect, this feature substitutes a piece of information in an
action. This includes functions, operators, and information present in the original message payload.

Substitution templates 1000

AWS IoT Core Developer Guide

Important

Because an expression in a substitution template is evaluated separately from the
"SELECT ..." statement, you can't reference an alias created using the AS clause. You can
only reference information present in the original payload, functions, and operators.

For more information about supported expressions, see AWS IoT SQL reference.

The following rule actions support substitution templates. Each action supports different fields
that can be substituted.

• Apache Kafka

• CloudWatch alarms

• CloudWatch Logs

• CloudWatch metrics

• DynamoDB

• DynamoDBv2

• Elasticsearch

• HTTP

• IoT Analytics

• AWS IoT Events

• AWS IoT SiteWise

• Kinesis Data Streams

• Firehose

• Lambda

• Location

• OpenSearch

• Republish

• S3

• SNS

• SQS

Substitution templates 1001

AWS IoT Core Developer Guide

• Step Functions

• Timestream

Substitution templates appear in the action parameters within a rule:

{
 "sql": "SELECT *, timestamp() AS timestamp FROM 'my/iot/topic'",
 "ruleDisabled": false,
 "actions": [{
 "republish": {
 "topic": "${topic()}/republish",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

If this rule is triggered by the following JSON published to my/iot/topic:

{
 "deviceid": "iot123",
 "temp": 54.98,
 "humidity": 32.43,
 "coords": {
 "latitude": 47.615694,
 "longitude": -122.3359976
 }
}

Then this rule publishes the following JSON to my/iot/topic/republish, which AWS IoT
substitutes from ${topic()}/republish:

{
 "deviceid": "iot123",
 "temp": 54.98,
 "humidity": 32.43,
 "coords": {
 "latitude": 47.615694,
 "longitude": -122.3359976
 },
 "timestamp": 1579637878451
}

Substitution templates 1002

AWS IoT Core Developer Guide

Nested object queries

You can use nested SELECT clauses to query for attributes within arrays and inner JSON objects.
Supported by SQL version 2016-03-23 and later.

Consider the following MQTT message:

{
 "e": [
 { "n": "temperature", "u": "Cel", "t": 1234, "v": 22.5 },
 { "n": "light", "u": "lm", "t": 1235, "v": 135 },
 { "n": "acidity", "u": "pH", "t": 1235, "v": 7 }
]
}

Example

You can convert values to a new array with the following rule.

SELECT (SELECT VALUE n FROM e) as sensors FROM 'my/topic'

The rule generates the following output.

{
 "sensors": [
 "temperature",
 "light",
 "acidity"
]
}

Example

Using the same MQTT message, you can also query a specific value within a nested object with the
following rule.

SELECT (SELECT v FROM e WHERE n = 'temperature') as temperature FROM 'my/topic'

The rule generates the following output.

Nested object queries 1003

AWS IoT Core Developer Guide

{
 "temperature": [
 {
 "v": 22.5
 }
]
}

Example

You can also flatten the output with a more complicated rule.

SELECT get((SELECT v FROM e WHERE n = 'temperature'), 0).v as temperature FROM 'topic'

The rule generates the following output.

{
 "temperature": 22.5
}

Working with binary payloads

To handle your message payload as raw binary data (rather than a JSON object), you can use the *
operator to refer to it in a SELECT clause.

In this topic:

• Binary payload examples

• Decoding protobuf message payloads

Binary payload examples

When you use * to refer to the message payload as raw binary data, you can add data to the rule.
If you have an empty or a JSON payload, the resulting payload can have data added using the rule.
The following shows examples of supported SELECT clauses.

• You can use the following SELECT clauses with only a * for binary payloads.

• SELECT * FROM 'topic/subtopic'

Binary payloads 1004

AWS IoT Core Developer Guide

• SELECT * FROM 'topic/subtopic' WHERE timestamp() % 12 = 0

• You can also add data and use the following SELECT clauses.

• SELECT *, principal() as principal, timestamp() as time FROM 'topic/subtopic'

• SELECT encode(*, 'base64') AS data, timestamp() AS ts FROM 'topic/subtopic'

• You can also use these SELECT clauses with binary payloads.

• The following refers to device_type in the WHERE clause.

SELECT * FROM 'topic/subtopic' WHERE device_type = 'thermostat'

• The following is also supported.

{
 "sql": "SELECT * FROM 'topic/subtopic'",
 "actions": [
 {
 "republish": {
 "topic": "device/${device_id}"
 }
 }
]
}

The following rule actions don't support binary payloads so you must decode them.

• Some rule actions don't support binary payload input, such as a Lambda action, so you must
decode binary payloads. The Lambda rule action can receive binary data, if it's base64 encoded
and in a JSON payload. You can do this by changing the rule to the following.

SELECT encode(*, 'base64') AS data FROM 'my_topic'

• The SQL statement doesn't support string as input. To convert a string input to JSON, you can
run the following command.

SELECT decode(encode(*, 'base64'), 'base64') AS payload FROM 'topic'

Binary payloads 1005

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#lambda-rule

AWS IoT Core Developer Guide

Decoding protobuf message payloads

Protocol Buffers (protobuf) is an open-source data format used to serialize structured data in a
compact, binary form. It's used for transmitting data over networks or storing it in files. Protobuf
allows you to send data in small packet sizes and at a faster rate than other messaging formats.
AWS IoT Core Rules support protobuf by providing the decode(value, decodingScheme) SQL
function, which allows you to decode protobuf-encoded message payloads to JSON format and
route them to downstream services. This section details the step-by-step process to configure
protobuf decoding in AWS IoT Core Rules.

In this section:

• Prerequisites

• Create descriptor files

• Upload descriptor files to S3 bucket

• Configure protobuf decoding in Rules

• Limitations

• Best practices

Prerequisites

• A basic understanding of Protocol Buffers (protobuf)

• The .proto files that define message types and related dependencies

• Installing Protobuf Compiler (protoc) on your system

Create descriptor files

If you already have your descriptor files, you can skip this step. A descriptor file (.desc) is a
compiled version of a .proto file, which is a text file that defines the data structures and message
types to be used in a protobuf serialization. To generate a descriptor file, you must define a
.proto file and use the protoc compiler to compile it.

1. Create .proto files that define the message types. An example .proto file can look like the
following:

syntax = "proto3";

Binary payloads 1006

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/protocolbuffers/protobuf/releases
https://github.com/protocolbuffers/protobuf/releases

AWS IoT Core Developer Guide

message Person {
 optional string name = 1;
 optional int32 id = 2;
 optional string email = 3;
}

In this example .proto file, you use proto3 syntax and define message type Person. The
Person message definition specifies three fields (name, id, and email). For more information
about .proto file message formats, see Language Guide (proto3).

2. Use the protoc compiler to compile the .proto files and generate a descriptor file. An
example command to create a descriptor (.desc) file can be the following:

protoc --descriptor_set_out=<FILENAME>.desc \
 --proto_path=<PATH_TO_IMPORTS_DIRECTORY> \
 --include_imports \
 <PROTO_FILENAME>.proto

This example command generates a descriptor file <FILENAME>.desc, which AWS IoT Core
Rules can use to decode protobuf payloads that conform to the data structure defined in
<PROTO_FILENAME>.proto.

• --descriptor_set_out

Specifies the name of the descriptor file (<FILENAME>.desc) that should be generated.

• --proto_path

Specifies the locations of any imported .proto files that are referenced by the file being
compiled. You can specify the flag multiple times if you have multiple imported .proto files
with different locations.

• --include_imports

Specifies that any imported .proto files should also be compiled and included in the
<FILENAME>.desc descriptor file.

• <PROTO_FILENAME>.proto

Specifies the name of the .proto file that you want to compile.

For more information about the protoc reference, see API Reference.
Binary payloads 1007

https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/protocolbuffers/protobuf/releases
https://developers.google.com/protocol-buffers/docs/reference/overview

AWS IoT Core Developer Guide

Upload descriptor files to S3 bucket

After you create your descriptor files <FILENAME>.desc, upload the descriptor files
<FILENAME>.desc to an Amazon S3 bucket, using the AWS API, AWS SDK, or the AWS
Management Console.

Important considerations

• Make sure that you upload the descriptor files to an Amazon S3 bucket in your AWS account in
the same AWS Region where you intend to configure your Rules.

• Make sure that you grant AWS IoT Core access to read the FileDescriptorSet from S3. If
your S3 bucket has server-side encryption (SSE) disabled or if your S3 bucket is encrypted using
Amazon S3-managed keys (SSE-S3), no additional policy configurations are required. This can be
accomplished with the example bucket policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "s3:Get*",
 "Resource": "arn:aws:s3:::<BUCKET NAME>/<FILENAME>.desc"
 }
]
}

• If your S3 bucket is encrypted using an AWS Key Management Service key (SSE-KMS), make sure
that you grant AWS IoT Core permission to use the key when accessing your S3 bucket. You can
do this by adding this statement to your key policy:

{
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": [

Binary payloads 1008

AWS IoT Core Developer Guide

 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

}

Configure protobuf decoding in Rules

After you upload the descriptor files to your Amazon S3 bucket, configure a Rule that can decode
your protobuf message payload format using the decode(value, decodingScheme) SQL function. A
detailed function signature and example can be found in the decode(value, decodingScheme) SQL
function of the AWS IoT SQL reference.

The following is an example SQL expression using the decode(value, decodingScheme) function:

SELECT VALUE decode(*, 'proto', '<BUCKET NAME>', '<FILENAME>.desc', '<PROTO_FILENAME>',
 '<PROTO_MESSAGE_TYPE>') FROM '<MY_TOPIC>'

In this example expression:

• You use the decode(value, decodingScheme) SQL function to decode the binary message payload
referenced by *. This can be a binary protobuf-encoded payload or a JSON string that represents
a base64-encoded protobuf payload.

• The message payload provided is encoded using the Person message type defined in
PROTO_FILENAME.proto.

• The Amazon S3 bucket named BUCKET NAME contains the FILENAME.desc generated from
PROTO_FILENAME.proto.

After you complete the configuration, publish a message to AWS IoT Core on the topic to which the
Rule is subscribed.

Limitations

AWS IoT Core Rules support protobuf with the following limitations:

• Decoding protobuf message payloads within substitution templates is not supported.

Binary payloads 1009

https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

AWS IoT Core Developer Guide

• When decoding protobuf message payloads, you can use the decode SQL function within a single
SQL expression up to two times.

• The maximum inbound payload size is 128 KiB (1KiB =1024 bytes), the maximum outbound
payload size is 128 KiB, and the maximum size for a FileDescriptorSet object stored in an
Amazon S3 bucket is 32 KiB.

• Amazon S3 buckets encrypted with SSE-C encryption are not supported.

Best practices

Here are some best practices and troubleshooting tips.

• Back up your proto files in the Amazon S3 bucket.

It's a good practice to back up your proto files in case something goes wrong. For example, if you
incorrectly modify the proto files without backups when running protoc, this can cause issues in
your production stack. There are multiple ways to back up your files in an Amazon S3 bucket. For
example, you can use versioning in S3 buckets. For more information about how to back up files
in Amazon S3 buckets, refer to the Amazon S3 Developer Guide.

• Configure AWS IoT logging to view log entries.

It's a good practice to configure AWS IoT logging so that you can check AWS IoT logs for your
account in CloudWatch. When a rule's SQL query calls an external function, AWS IoT Core Rules
generates a log entry with an eventType of FunctionExecution, which contains the reason
field that will help you troubleshoot failures. Possible errors include an Amazon S3 object not
found, or invalid protobuf file descriptor. For more information about how to configure AWS IoT
logging and see the log entries, see Configure AWS IoT logging and Rules engine log entries.

• Update FileDescriptorSet using a new object key and update the object key in your Rule.

You can update FileDescriptorSet by uploading an updated descriptor file to your Amazon
S3 bucket. Your updates to FileDescriptorSet can take up to 15 minutes to be reflected. To
avoid this delay, it's a good practice to upload your updated FileDescriptorSet using a new
object key, and update the object key in your Rule.

SQL versions

The AWS IoT rules engine uses an SQL-like syntax to select data from MQTT messages. The SQL
statements are interpreted based on an SQL version specified with the awsIotSqlVersion

SQL versions 1010

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/recovery-points.html
https://docs.aws.amazon.com/iot/latest/developerguide/configure-logging.html
https://docs.aws.amazon.com/iot/latest/developerguide/cwl-format.html#log-rules-fn-exec

AWS IoT Core Developer Guide

property in a JSON document that describes the rule. For more information about the structure
of JSON rule documents, see Creating a Rule. The awsIotSqlVersion property lets you specify
which version of the AWS IoT SQL rules engine that you want to use. When a new version is
deployed, you can continue to use an earlier version or change your rule to use the new version.
Your current rules continue to use the version with which they were created.

The following JSON example shows you how to specify the SQL version using the
awsIotSqlVersion property.

{
 "sql": "expression",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "republish": {
 "topic": "my-mqtt-topic",
 "roleArn": "arn:aws:iam::123456789012:role/my-iot-role"
 }
 }]
}

AWS IoT currently supports the following SQL versions:

• 2016-03-23 – The SQL version built on 2016-03-23 (recommended).

• 2015-10-08 – The original SQL version built on 2015-10-08.

• beta – The most recent beta SQL version. This version could introduce breaking changes to your
rules.

What's new in the 2016-03-23 SQL rules engine version

• Fixes for selecting nested JSON objects.

• Fixes for array queries.

• Intra-object query support. For more information, see Nested object queries.

• Support to output an array as a top-level object.

• Addition of the encode(value, encodingScheme) function, which can be applied on JSON
and non-JSON format data. For more information, see the encode function.

SQL versions 1011

AWS IoT Core Developer Guide

Output an Array as a top-level object

This feature allows a rule to return an array as a top-level object. For example, given the following
MQTT message:

{
 "a": {"b":"c"},
 "arr":[1,2,3,4]
}

And the following rule:

SELECT VALUE arr FROM 'topic'

The rule generates the following output.

[1,2,3,4]

SQL versions 1012

AWS IoT Core Developer Guide

AWS IoT Device Shadow service

The AWS IoT Device Shadow service adds shadows to AWS IoT thing objects. Shadows can make a
device’s state available to apps and other services whether the device is connected to AWS IoT or
not. AWS IoT thing objects can have multiple named shadows so that your IoT solution has more
options for connecting your devices to other apps and services.

AWS IoT thing objects don't have any shadows until they are created explicitly. Shadows can
be created, updated, and deleted by using the AWS IoT console. Devices, other web clients, and
services can create, update, and delete shadows by using MQTT and the reserved MQTT topics,
HTTP using the Device Shadow REST API, and the AWS CLI for AWS IoT. Because shadows are
stored by AWS in the cloud, they can collect and report device state data from apps and other
cloud services whether the device is connected or not.

Using shadows

Shadows provide a reliable data store for devices, apps, and other cloud services to share data.
They enable devices, apps, and other cloud services to connect and disconnect without losing a
device's state.

While devices, apps, and other cloud services are connected to AWS IoT, they can access and
control the current state of a device through its shadows. For example, an app can request a
change in a device's state by updating a shadow. AWS IoT publishes a message that indicates the
change to the device. The device receives this message, updates its state to match, and publishes
a message with its updated state. The Device Shadow service reflects this updated state in the
corresponding shadow. The app can subscribe to the shadow's update or it can query the shadow
for its current state.

When a device goes offline, an app can still communicate with AWS IoT and the device's shadows.
When the device reconnects, it receives the current state of its shadows so that it can update its
state to match that of its shadows, and then publish a message with its updated state. Likewise,
when an app goes offline and the device state changes while it's offline, the device keeps the
shadow updated so the app can query the shadows for its current state when it reconnects.

If your devices are frequently offline and you would like to configure your devices to receive delta
messages after they reconnect, you can use the persistent session feature. For more information
about the persistent session expiry period, see Persistent session expiry period.

Using shadows 1013

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-data/index.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Core Developer Guide

Choosing to use named or unnamed shadows

The Device Shadow service supports named and unnamed, or classic, shadows. A thing object can
have multiple named shadows, and no more than one unnamed shadow. The thing object can also
have a reserved named shadow, which operates similarly to a named shadow except that you can't
update its name. For more information, see Reserved named shadow.

A thing object can have both named and unnamed shadows at the same time; however, the API
used to access each is slightly different, so it might be more efficient to decide which type of
shadow would work best for your solution and use that type only. For more information about the
API to access the shadows, see Shadow topics.

With named shadows, you can create different views of a thing object’s state. For example, you
could divide a thing object with many properties into shadows with logical groups of properties,
each identified by its shadow name. You could also limit access to properties by grouping them
into different shadows and using policies to control access. For more information about policies to
use with device shadows, see Actions, resources, and condition keys for AWS IoT and AWS IoT Core
policies.

The classic, unnamed shadows are simpler, but somewhat more limited than the named shadows.
Each AWS IoT thing object can have only one unnamed shadow. If you expect your IoT solution to
have a limited need for shadow data, this might be how you want to get started using shadows.
However, if you think you might want to add additional shadows in the future, consider using
named shadows from the start.

Fleet indexing supports unnamed shadows and named shadows differently. For more information,
see Manage fleet indexing.

Accessing shadows

Every shadow has a reserved MQTT topic and HTTP URL that supports the get, update, and
delete actions on the shadow.

Shadows use JSON shadow documents to store and retrieve data. A shadow’s document contains a
state property that describes these aspects of the device’s state:

• desired

Apps specify the desired states of device properties by updating the desired object.

Choosing to use named or unnamed shadows 1014

https://docs.aws.amazon.com/iot/latest/developerguide/preparing-to-use-software-package-catalog.html#reserved-named-shadow
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html

AWS IoT Core Developer Guide

• reported

Devices report their current state in the reported object.

• delta

AWS IoT reports differences between the desired and the reported state in the delta object.

The data stored in a shadow is determined by the state property of the update action's message
body. Subsequent update actions can modify the values of an existing data object, and also add
and delete keys and other elements in the shadow’s state object. For more information about
accessing shadows, see Using shadows in devices and Using shadows in apps and services.

Important

Permission to make update requests should be limited to trusted apps and devices. This
prevents the shadow's state property from being changed unexpectedly; otherwise, the
devices and apps that use the shadow should be designed to expect the keys in the state
property to change.

Using shadows in devices, apps, and other cloud services

Using shadows in devices, apps, and other cloud services requires consistency and coordination
between all of these. The AWS IoT Device Shadow service stores the shadow state, sends messages
when the shadow state changes, and responds to messages that change its state. The devices,
apps, and other cloud services in your IoT solution must manage their state and keep it consistent
with the device shadow's state.

The shadow state data is dynamic and can be altered by the devices, apps, and other cloud services
with permission to access the shadow. For this reason, it is important to consider how each device,
app, and other cloud service will interact with the shadow. For example:

• Devices should write only to the reported property of the shadow state when communicating
state data to the shadow.

• Apps and other cloud services should write only to the desired property when communicating
state change requests to the device through the shadow.

Using shadows in devices, apps, and other cloud services 1015

AWS IoT Core Developer Guide

Important

The data contained in a shadow data object is independent from that of other shadows
and other thing object properties, such as a thing’s attributes and the content of MQTT
messages that a thing object's device might publish. A device can, however, report the same
data in different MQTT topics and shadows if necessary.
A device that supports multiple shadows must maintain the consistency of the data that it
reports in the different shadows.

Message order

There is no guarantee that messages from the AWS IoT service will arrive at the device in any
specific order. The following scenario shows what happens in this case.

Initial state document:

{
 "state": {
 "reported": {
 "color": "blue"
 }
 },
 "version": 9,
 "timestamp": 123456776
}

Update 1:

{
 "state": {
 "desired": {
 "color": "RED"
 }
 },
 "version": 10,
 "timestamp": 123456777
}

Update 2:

Message order 1016

AWS IoT Core Developer Guide

{
 "state": {
 "desired": {
 "color": "GREEN"
 }
 },
 "version": 11,
 "timestamp": 123456778
}

Final state document:

{
 "state": {
 "reported": {
 "color": "GREEN"
 }
 },
 "version": 12,
 "timestamp": 123456779
}

This results in two delta messages:

{
 "state": {
 "color": "RED"
 },
 "version": 11,
 "timestamp": 123456778
}

{
 "state": {
 "color": "GREEN"
 },
 "version": 12,
 "timestamp": 123456779
}

Message order 1017

AWS IoT Core Developer Guide

The device might receive these messages out of order. Because the state in these messages is
cumulative, a device can safely discard any messages that contain a version number older than
the one it is tracking. If the device receives the delta for version 12 before version 11, it can safely
discard the version 11 message.

Trim shadow messages

To reduce the size of shadow messages sent to your device, define a rule that selects only the
fields your device needs then republishes the message on an MQTT topic to which your device is
listening.

The rule is specified in JSON and should look like the following:

{
 "sql": "SELECT state, version FROM '$aws/things/+/shadow/update/delta'",
 "ruleDisabled": false,
 "actions": [
 {
 "republish": {
 "topic": "${topic(3)}/delta",
 "roleArn": "arn:aws:iam:123456789012:role/my-iot-role"
 }
 }
]
}

The SELECT statement determines which fields from the message will be republished to the
specified topic. A "+" wild card is used to match all shadow names. The rule specifies that all
matching messages should be republished to the specified topic. In this case, the "topic()"
function is used to specify the topic on which to republish. topic(3) evaluates to the thing name
in the original topic. For more information about creating rules, see Rules for AWS IoT.

Using shadows in devices

This section describes device communications with shadows using MQTT messages, the preferred
method for devices to communicate with the AWS IoT Device Shadow service.

Shadow communications emulate a request/response model using the publish/subscribe
communication model of MQTT. Every shadow action consists of a request topic, a successful
response topic (accepted), and an error response topic (rejected).

Trim shadow messages 1018

AWS IoT Core Developer Guide

If you want apps and services to be able to determine whether a device is connected, see Detecting
a device is connected.

Important

Because MQTT uses a publish/subscribe communication model, you should subscribe to the
response topics before you publish a request topic. If you don't, you might not receive the
response to the request that you publish.
If you use an AWS IoT Device SDK to call the Device Shadow service APIs, this is handled for
you.

The examples in this section use an abbreviated form of the topic where the ShadowTopicPrefix
can refer to either a named or an unnamed shadow, as described in this table.

Shadows can be named or unnamed (classic). The topics used by each differ only in the topic prefix.
This table shows the topic prefix used by each shadow type.

ShadowTopicPrefix value Shadow type

$aws/things/ thingName /shadow Unnamed (classic) shadow

$aws/things/ thingName /shadow/n
ame/ shadowName

Named shadow

Important

Make sure that your app's or service's use of the shadows is consistent and supported by
the corresponding implementations in your devices. For example, consider how shadows
are created, updated, and deleted. Also consider how updates are handled in the device
and the apps or services that access the device through a shadow. Your design should be
clear about how the device's state is updated and reported and how your apps and services
interact with the device and its shadows.

To create a complete topic, select the ShadowTopicPrefix for the type of shadow to which you
want to refer, replace thingName, and shadowName if applicable, with their corresponding values,

Using shadows in devices 1019

AWS IoT Core Developer Guide

and then append that with the topic stub as shown in the following table. Remember that topics
are case sensitive.

See Shadow topics for more information about the reserved topics for shadows.

Initializing the device on first connection to AWS IoT

After a device registers with AWS IoT, it should subscribe to these MQTT messages for the shadows
that it supports.

Topic Meaning Action a device should take
when this topic is received

ShadowTopicPrefix /
delete/accepted

The delete request was
accepted and AWS IoT
deleted the shadow.

The actions necessary to
accommodate the deleted
shadow, such as stop
publishing updates.

ShadowTopicPrefix /
delete/rejected

The delete request was
rejected by AWS IoT and the
shadow was not deleted. The
message body contains the
error information.

Respond to the error message
in the message body.

ShadowTopicPrefix /
get/accepted

The get request was
accepted by AWS IoT, and the
message body contains the
current shadow document.

The actions necessary to
process the state document in
the message body.

ShadowTopicPrefix /
get/rejected

The get request was rejected
by AWS IoT, and the message
body contains the error
information.

Respond to the error message
in the message body.

ShadowTopicPrefix /
update/accepted

The update request was
accepted by AWS IoT, and the
message body contains the
current shadow document.

Confirm the updated data in
the message body matches
the device state.

Initializing the device on first connection to AWS IoT 1020

AWS IoT Core Developer Guide

Topic Meaning Action a device should take
when this topic is received

ShadowTopicPrefix /
update/rejected

The update request was
rejected by AWS IoT, and the
message body contains the
error information.

Respond to the error message
in the message body.

ShadowTopicPrefix /
update/delta

The shadow document was
updated by a request to
AWS IoT, and the message
body contains the changes
requested.

Update the device's state to
match the desired state in the
message body.

ShadowTopicPrefix /
update/documents

An update to the shadow was
recently completed, and the
message body contains the
current shadow document.

Confirm the updated state in
the message body matches
the device's state.

After subscribing to the messages in the preceding table for each shadow, the device should test
to see if the shadows that it supports have already been created by publishing a /get topic to
each shadow. If a /get/accepted message is received, the message body contains the shadow
document, which the device can use to initialize its state. If a /get/rejected message is received,
the shadow should be created by publishing an /update message with the current device state.

For example, suppose you have a thing My_IoT_Thing which doesn't have any classic or named
shadows. If you now publish a /get request on the reserved topic $aws/things/My_IoT_Thing/
shadow/get, it returns an error on the $aws/things/My_IoT_Thing/shadow/get/rejected
topic because the thing doesn't have any shadows. To resolve this error, first publish an /update
message by using the $aws/things/My_IoT_Thing/shadow/update topic with the current
device state such as the following payload.

{
 "state": {
 "reported": {
 "welcome": "aws-iot",
 "color": "yellow"
 }

Initializing the device on first connection to AWS IoT 1021

AWS IoT Core Developer Guide

 }
}

A classic shadow is now created for the thing and the message is published to the $aws/things/
My_IoT_Thing/shadow/update/accepted topic. If you publish to the topic $aws/things/
My_IoT_Thing/shadow/get, it returns a response to the $aws/things/My_IoT_Thing/
shadow/get/accepted topic with the device state.

For named shadows, you must first create the named shadow or publish an update with
the shadow name before using the get request. For example, to create a named shadow
namedShadow1, first publish the device state information to the topic $aws/things/
My_IoT_Thing/shadow/name/namedShadow1/update. To retrieve the state information,
use the /get request for the named shadow, $aws/things/My_IoT_Thing/shadow/name/
namedShadow1/get.

Processing messages while the device is connected to AWS IoT

While a device is connected to AWS IoT, it can receive /update/delta messages and should keep
the device state matched to the changes in its shadows by:

1. Reading all /update/delta messages received and synchronizing the device state to match.

2. Publishing an /update message with a reported message body that has the device’s current
state, whenever the device's state changes.

While a device is connected, it should publish these messages when indicated.

Indication Topic Payload

The device's state has
changed.

ShadowTopicPrefix /
update

A shadow document with the
reported property.

The device might not be
synchronized with the
shadow.

ShadowTopicPrefix /get (empty)

An action on the device
indicates that a shadow will
no longer be supported by

ShadowTopicPrefix /
delete

(empty)

Processing messages while the device is connected to AWS IoT 1022

AWS IoT Core Developer Guide

Indication Topic Payload

the device, such as when the
device is being removed or
replaced.

Processing messages when the device reconnects to AWS IoT

When a device with one or more shadows connects to AWS IoT, it should synchronize its state with
that of all the shadows that it supports by:

1. Reading all /update/delta messages received and synchronizing the device state to match.

2. Publishing an /update message with a reported message body that has the device’s current
state.

Using shadows in apps and services

This section describes how an app or service interacts with the AWS IoT Device Shadow service.
This example assumes the app or service is interacting only with the shadow and, through the
shadow, the device. This example doesn't include any management actions, such as creating or
deleting shadows.

This example uses the AWS IoT Device Shadow service's REST API to interact with shadows. Unlike
the example used in Using shadows in devices, which uses a publish/subscribe communications
model, this example uses the request/response communications model of the REST API. This
means the app or service must make a request before it can receive a response from AWS IoT.
A disadvantage of this model, however, is that it does not support notifications. If your app or
service requires timely notifications of device state changes, consider the MQTT or MQTT over
WSS protocols, which support the publish/subscribe communication model, as described in Using
shadows in devices.

Important

Make sure that your app's or service's use of the shadows is consistent with and supported
by the corresponding implementations in your devices. Consider, for example, how shadows
are created, updated, and deleted, and how updates are handled in the device and the apps
or services that access the shadow. Your design should clearly specify how the device's state

Processing messages when the device reconnects to AWS IoT 1023

AWS IoT Core Developer Guide

is updated and reported, and how your apps and services interact with the device and its
shadows.

The REST API's URL for a named shadows is:

https://endpoint/things/thingName/shadow?name=shadowName

and for an unnamed shadow:

https://endpoint/things/thingName/shadow

where:

endpoint

The endpoint returned by the CLI command:

aws iot describe-endpoint --endpoint-type IOT:Data-ATS

thingName

The name of the thing object to which the shadow belongs

shadowName

The name of the named shadow. This parameter is not used with unnamed shadows.

Initializing the app or service on connection to AWS IoT

When the app first connects to AWS IoT, it should send an HTTP GET request to the URLs of the
shadows it uses to get the current state of the shadows it's using. This allows it to sync the app or
service to the shadow.

Processing state changes while the app or service is connected to AWS
IoT

While the app or service is connected to AWS IoT, it can query the current state periodically by
sending an HTTP GET request on the URLs of the shadows it uses.

Initializing the app or service on connection to AWS IoT 1024

AWS IoT Core Developer Guide

When an end user interacts with the app or service to change the state of the device, the app or
service can send an HTTP POST request to the URLs of the shadows it uses to update the desired
state of the shadow. This request returns the change that was accepted, but you might have to poll
the shadow by making HTTP GET requests until the device has updated the shadow with its new
state.

Detecting a device is connected

To determine if a device is currently connected, include a connected property in the shadow
document and use an MQTT Last Will and Testament (LWT) message to set the connected
property to false if a device is disconnected due to an error.

Note

MQTT LWT messages sent to AWS IoT reserved topics (topics that begin with $) are ignored
by the AWS IoT Device Shadow service. However, they are processed by subscribed clients
and by the AWS IoT rules engine, so you will need to create an LWT message that is sent
to a non-reserved topic and a rule that republishes the MQTT LWT message as a shadow
update message to the shadow's reserved update topic, ShadowTopicPrefix/update.

To send the Device Shadow service an LWT message

1. Create a rule that republishes the MQTT LWT message on the reserved topic. The following
example is a rule that listens for messages on the my/things/myLightBulb/update topic
and republishes it to $aws/things/myLightBulb/shadow/update.

{
 "rule": {
 "ruleDisabled": false,
 "sql": "SELECT * FROM 'my/things/myLightBulb/update'",
 "description": "Turn my/things/ into $aws/things/",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/myLightBulb/shadow/update",
 "roleArn": "arn:aws:iam:123456789012:role/aws_iot_republish"
 }
 }
]

Detecting a device is connected 1025

AWS IoT Core Developer Guide

 }
}

2. When the device connects to AWS IoT, it registers an LWT message to a non-reserved topic
for the republish rule to recognize. In this example, that topic is my/things/myLightBulb/
update and it sets the connected property to false.

{
 "state": {
 "reported": {
 "connected":"false"
 }
 }
}

3. After connecting, the device publishes a message on its shadow update topic, $aws/things/
myLightBulb/shadow/update, to report its current state, which includes setting its
connected property to true.

{
 "state": {
 "reported": {
 "connected":"true"
 }
 }
}

4. Before the device disconnects gracefully, it publishes a message on its shadow update topic,
$aws/things/myLightBulb/shadow/update, to report its latest state, which include
setting its connected property to false.

{
 "state": {
 "reported": {
 "connected":"false"
 }
 }
}

5. If the device disconnects due to an error, the AWS IoT message broker publishes the device's
LWT message on behalf of the device. The republish rule detects this message and publishes
the shadow update message to update the connected property of the device shadow.

Detecting a device is connected 1026

AWS IoT Core Developer Guide

Simulating Device Shadow service communications

This topic demonstrates how the Device Shadow service acts as an intermediary and allows devices
and apps to use a shadow to update, store, and retrieve a device's state.

To demonstrate the interaction described in this topic, and to explore it further, you'll need an AWS
account and a system on which you can run the AWS CLI. If you don't have these, you can still see
the interaction in the code examples.

In this example, the AWS IoT console represents the device. The AWS CLI represents the app or
service that accesses the device by way of the shadow. The AWS CLI interface is very similar to the
API that an app might use to communicate with AWS IoT. The device in this example is a smart
light bulb and the app displays the light bulb's state and can change the light bulb's state.

Setting up the simulation

These procedures initialize the simulation by opening the AWS IoT console, which simulates your
device, and the command line window that simulates your app.

To set up your simulation environment

1. You'll need an AWS account to run the examples from this topic on your own. If you don't have
an AWS account, create one, as described in Set up your AWS account.

2. Open the AWS IoT console, and in the left menu, choose Test to open the MQTT client.

3. In another window, open a terminal window on a system that has the AWS CLI installed on it.

You should have two windows open: one with the AWS IoT console on the Test page, and one with
a command line prompt.

Initialize the device

In this simulation, we'll be working with a thing object named, mySimulatedThing, and its shadow
named, simShadow1.

Create thing object and its IoT policy

To create a thing object, in the AWS IoT Console:

1. Choose Manage and then choose Things.

Simulating Device Shadow service communications 1027

https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

2. Click the Create button if things are listed otherwise click Register a single thing to create a
single AWS IoT thing.

3. Enter the name mySimulatedThing, leave other settings to default, and then click Next.

4. Use one-click certificate creation to generate the certificates that will authenticate the device's
connection to AWS IoT. Click Activate to activate the certificate.

5. You can attach the policy My_IoT_Policy that would give the device permission to publish and
subscribe to the MQTT reserved topics. For more detailed steps about how to create an AWS IoT
thing and how to create this policy, see Create a thing object.

Create named shadow for the thing object

You can create a named shadow for a thing by publishing an update request to the topic $aws/
things/mySimulatedThing/shadow/name/simShadow1/update as described below.

Or, to create a named shadow:

1. In the AWS IoT Console, choose your thing object in the list of things displayed and then choose
Shadows.

2. Choose Add a shadow, enter the name simShadow1, and then choose Create to add the named
shadow.

Subscribe and publish to reserved MQTT topics

In the console, subscribe to the reserved MQTT shadow topics. These topics are the responses to
the get, update, and delete actions so that your device will be ready to receive the responses
after it publishes an action.

To subscribe to an MQTT topic in the MQTT client

1. In the MQTT client, choose Subscribe to a topic.

2. Enter the get, update, and delete topics to subscribe to. Copy one topic at a time from the
following list, paste it in the Topic filter field, and then click Subscribe. You should see the
topics appear under Subscriptions.

• $aws/things/mySimulatedThing/shadow/name/simShadow1/delete/accepted

• $aws/things/mySimulatedThing/shadow/name/simShadow1/delete/rejected

• $aws/things/mySimulatedThing/shadow/name/simShadow1/get/accepted

Initialize the device 1028

AWS IoT Core Developer Guide

• $aws/things/mySimulatedThing/shadow/name/simShadow1/get/rejected

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/accepted

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/rejected

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/delta

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/documents

At this point, your simulated device is ready to receive the topics as they are published by AWS
IoT.

To publish to an MQTT topic in the MQTT client

After a device has initialized itself and subscribed to the response topics, it should query for the
shadows it supports. This simulation supports only one shadow, the shadow that supports a thing
object named, mySimulatedThing, named, simShadow1.

To get the current shadow state from the MQTT client

1. In the MQTT client, choose Publish to a topic.

2. Under Publish, enter the following topic and delete any content from the message body
window below where you entered the topic to get. You can then choose Publish to topic to
publish the request. $aws/things/mySimulatedThing/shadow/name/simShadow1/get.

If you haven't created the named shadow, simShadow1, you receive a message in the $aws/
things/mySimulatedThing/shadow/name/simShadow1/get/rejected topic and the
code is 404, such as in this example as the shadow has not been created, so we'll create it
next.

{
 "code": 404,
 "message": "No shadow exists with name: 'simShadow1'"
}

To create a shadow with the current status of the device

1. In the MQTT client, choose Publish to a topic and enter this topic:

Initialize the device 1029

AWS IoT Core Developer Guide

$aws/things/mySimulatedThing/shadow/name/simShadow1/update

2. In the message body window below where you entered the topic, enter this shadow document
to show the device is reporting its ID and its current color in RGB values. Choose Publish to
publish the request.

{
 "state": {
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 128,
 128,
 128
]
 }
 },
 "clientToken": "426bfd96-e720-46d3-95cd-014e3ef12bb6"
}

If you receive a message in the topic:

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/accepted:
It means that the shadow was created and the message body contains the current shadow
document.

• $aws/things/mySimulatedThing/shadow/name/simShadow1/update/rejected: Review
the error in the message body.

• $aws/things/mySimulatedThing/shadow/name/simShadow1/get/accepted: The
shadow already exists and the message body has the current shadow state, such as in this
example. With this, you could set your device or confirm that it matches the shadow state.

{
 "state": {
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 128,
 128,
 128

Initialize the device 1030

AWS IoT Core Developer Guide

]
 }
 },
 "metadata": {
 "reported": {
 "ID": {
 "timestamp": 1591140517
 },
 "ColorRGB": [
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 }
]
 }
 },
 "version": 3,
 "timestamp": 1591140517,
 "clientToken": "426bfd96-e720-46d3-95cd-014e3ef12bb6"
}

Send an update from the app

This section uses the AWS CLI to demonstrate how an app can interact with a shadow.

To get the current state of the shadow using the AWS CLI

From the command line, enter this command.

aws iot-data get-thing-shadow --thing-name mySimulatedThing --shadow-name simShadow1 /
dev/stdout

On Windows platforms, you can use con instead of /dev/stdout.

aws iot-data get-thing-shadow --thing-name mySimulatedThing --shadow-name simShadow1
 con

Send an update from the app 1031

AWS IoT Core Developer Guide

Because the shadow exists and had been initialized by the device to reflect its current state, it
should return the following shadow document.

{
 "state": {
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 128,
 128,
 128
]
 }
 },
 "metadata": {
 "reported": {
 "ID": {
 "timestamp": 1591140517
 },
 "ColorRGB": [
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 }
]
 }
 },
 "version": 3,
 "timestamp": 1591141111
}

The app can use this response to initialize its representation of the device state.

If the app updates the state, such as when an end user changes the color of our smart light bulb to
yellow, the app would send an update-thing-shadow command. This command corresponds to the
UpdateThingShadow REST API.

To update a shadow from an app

Send an update from the app 1032

AWS IoT Core Developer Guide

From the command line, enter this command.

AWS CLI v2.x

aws iot-data update-thing-shadow --thing-name mySimulatedThing --shadow-name
 simShadow1 \
 --cli-binary-format raw-in-base64-out \
 --payload '{"state":{"desired":{"ColorRGB":
[255,255,0]}},"clientToken":"21b21b21-bfd2-4279-8c65-e2f697ff4fab"}' /dev/stdout

AWS CLI v1.x

aws iot-data update-thing-shadow --thing-name mySimulatedThing --shadow-name
 simShadow1 \
 --payload '{"state":{"desired":{"ColorRGB":
[255,255,0]}},"clientToken":"21b21b21-bfd2-4279-8c65-e2f697ff4fab"}' /dev/stdout

If successful, this command should return the following shadow document.

{
 "state": {
 "desired": {
 "ColorRGB": [
 255,
 255,
 0
]
 }
 },
 "metadata": {
 "desired": {
 "ColorRGB": [
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 }
]

Send an update from the app 1033

AWS IoT Core Developer Guide

 }
 },
 "version": 4,
 "timestamp": 1591141596,
 "clientToken": "21b21b21-bfd2-4279-8c65-e2f697ff4fab"
}

Respond to update in device

Returning to the MQTT client in the AWS console, you should see the messages that AWS IoT
published to reflect the update command issued in the previous section.

To view the update messages in the MQTT client

In the MQTT client, choose $aws/things/mySimulatedThing/shadow/name/simShadow1/
update/delta in the Subscriptions column. If the topic name is truncated, you can pause on it to
see the full topic. In the topic log of this topic, you should see a /delta message similar to this
one.

{
 "version": 4,
 "timestamp": 1591141596,
 "state": {
 "ColorRGB": [
 255,
 255,
 0
]
 },
 "metadata": {
 "ColorRGB": [
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 }
]
 },

Respond to update in device 1034

AWS IoT Core Developer Guide

 "clientToken": "21b21b21-bfd2-4279-8c65-e2f697ff4fab"
}

Your device would process the contents of this message to set the device state to match the
desired state in the message.

After the device updates the state to match the desired state in the message, it must send the
new reported state back to AWS IoT by publishing an update message. This procedure simulates
this in the MQTT client.

To update the shadow from the device

1. In the MQTT client, choose Publish to a topic.

2. In the message body window , in the topic field above the message body window, enter
the shadow's topic followed by the /update action: $aws/things/mySimulatedThing/
shadow/name/simShadow1/update and in the message body, enter this updated shadow
document, which describes the current state of the device. Click Publish to publish the
updated device state.

{
 "state": {
 "reported": {
 "ColorRGB": [255,255,0]
 }
 },
 "clientToken": "a4dc2227-9213-4c6a-a6a5-053304f60258"
}

If the message was successfully received by AWS IoT, you should see a new response in the
$aws/things/mySimulatedThing/shadow/name/simShadow1/update/accepted message
log in the MQTT client with the current state of the shadow, such as this example.

{
 "state": {
 "reported": {
 "ColorRGB": [
 255,
 255,
 0
]

Respond to update in device 1035

AWS IoT Core Developer Guide

 }
 },
 "metadata": {
 "reported": {
 "ColorRGB": [
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 }
]
 }
 },
 "version": 5,
 "timestamp": 1591142747,
 "clientToken": "a4dc2227-9213-4c6a-a6a5-053304f60258"
}

A successful update to the reported state of the device also causes AWS IoT to send a
comprehensive description of the shadow state in a message to the topic, such as this message
body that resulted from the shadow update performed by the device in the preceding procedure.

{
 "previous": {
 "state": {
 "desired": {
 "ColorRGB": [
 255,
 255,
 0
]
 },
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 128,
 128,
 128

Respond to update in device 1036

AWS IoT Core Developer Guide

]
 }
 },
 "metadata": {
 "desired": {
 "ColorRGB": [
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 }
]
 },
 "reported": {
 "ID": {
 "timestamp": 1591140517
 },
 "ColorRGB": [
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 },
 {
 "timestamp": 1591140517
 }
]
 }
 },
 "version": 4
 },
 "current": {
 "state": {
 "desired": {
 "ColorRGB": [
 255,
 255,
 0
]

Respond to update in device 1037

AWS IoT Core Developer Guide

 },
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 255,
 255,
 0
]
 }
 },
 "metadata": {
 "desired": {
 "ColorRGB": [
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 }
]
 },
 "reported": {
 "ID": {
 "timestamp": 1591140517
 },
 "ColorRGB": [
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 }
]
 }
 },
 "version": 5
 },
 "timestamp": 1591142747,

Respond to update in device 1038

AWS IoT Core Developer Guide

 "clientToken": "a4dc2227-9213-4c6a-a6a5-053304f60258"
}

Observe the update in the app

The app can now query the shadow for the current state as reported by the device.

To get the current state of the shadow using the AWS CLI

1. From the command line, enter this command.

aws iot-data get-thing-shadow --thing-name mySimulatedThing --shadow-name
 simShadow1 /dev/stdout

On Windows platforms, you can use con instead of /dev/stdout.

aws iot-data get-thing-shadow --thing-name mySimulatedThing --shadow-name
 simShadow1 con

2. Because the shadow has just been updated by the device to reflect its current state, it should
return the following shadow document.

{
 "state": {
 "desired": {
 "ColorRGB": [
 255,
 255,
 0
]
 },
 "reported": {
 "ID": "SmartLamp21",
 "ColorRGB": [
 255,
 255,
 0
]
 }
 },
 "metadata": {
 "desired": {

Observe the update in the app 1039

AWS IoT Core Developer Guide

 "ColorRGB": [
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 },
 {
 "timestamp": 1591141596
 }
]
 },
 "reported": {
 "ID": {
 "timestamp": 1591140517
 },
 "ColorRGB": [
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 },
 {
 "timestamp": 1591142747
 }
]
 }
 },
 "version": 5,
 "timestamp": 1591143269
}

Going beyond the simulation

Experiment with the interaction between the AWS CLI (representing the app) and the console
(representing the device) to model your IoT solution.

Going beyond the simulation 1040

AWS IoT Core Developer Guide

Interacting with shadows

This topic describes the messages associated with each of the three methods that AWS IoT
provides for working with shadows. These methods include the following:

UPDATE

Creates a shadow if it doesn't exist, or updates the contents of an existing shadow with the
state information provided in the message body. AWS IoT records a timestamp with each
update to indicate when the state was last updated. When the shadow's state changes, AWS
IoT sends /delta messages to all MQTT subscribers with the difference between the desired
and the reported states. Devices or apps that receive a /delta message can perform actions
based on the difference. For example, a device can update its state to the desired state, or an
app can update its UI to reflect the device's state change.

GET

Retrieves a current shadow document that contains the complete state of the shadow, including
metadata.

DELETE

Deletes the device shadow and its content.

You can't restore a deleted device shadow document, but you can create a new device shadow
with the name of a deleted device shadow document. If you create a device shadow document
that has the same name as one that was deleted within the past 48 hours, the version number
of the new device shadow document will follow that of the deleted one. If a device shadow
document has been deleted for more than 48 hours, the version number of a new device
shadow document with the same name will be 0.

Protocol support

AWS IoT supports MQTT and a REST API over HTTPS protocols to interact with shadows. AWS IoT
provides a set of reserved request and response topics for MQTT publish and subscribe actions.
Devices and apps should subscribe to the response topics before publishing a request topic for
information about how AWS IoT handled the request. For more information, see Device Shadow
MQTT topics and Device Shadow REST API.

Interacting with shadows 1041

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

AWS IoT Core Developer Guide

Requesting and reporting state

When designing your IoT solution using AWS IoT and shadows, you should determine the apps
or devices that will request changes and those that will implement them. Typically, a device
implements and reports changes back to the shadow and apps and services respond to and request
changes in the shadow. Your solution could be different, but the examples in this topic assume that
the client app or service requests changes in the shadow and the device performs the changes and
reports them back to the shadow.

Updating a shadow

Your app or service can update a shadow's state by using the UpdateThingShadow API or by
publishing to the /update topic. Updates affect only the fields specified in the request.

Updating a shadow when a client requests a state change

When a client requests a state change in a shadow by using the MQTT protocol

1. The client should have a current shadow document so that it can identify the properties to
change. See the /get action for how to obtain the current shadow document.

2. The client subscribes to these MQTT topics:

• $aws/things/thingName/shadow/name/shadowName/update/accepted

• $aws/things/thingName/shadow/name/shadowName/update/rejected

• $aws/things/thingName/shadow/name/shadowName/update/delta

• $aws/things/thingName/shadow/name/shadowName/update/documents

3. The client publishes a $aws/things/thingName/shadow/name/shadowName/update
request topic with a state document that contains the desired state of the shadow. Only the
properties to change need to be included in the document. This is an example of a document
with the desired state.

{
 "state": {
 "desired": {
 "color": {
 "r": 10
 },
 "engine": "ON"

Requesting and reporting state 1042

AWS IoT Core Developer Guide

 }
 }
}

4. If the update request is valid, AWS IoT updates the desired state in the shadow and publishes
messages on these topics:

• $aws/things/thingName/shadow/name/shadowName/update/accepted

• $aws/things/thingName/shadow/name/shadowName/update/delta

The /update/accepted message contains an /accepted response state document shadow
document, and the /update/delta message contains a /delta response state document
shadow document.

5. If the update request is not valid, AWS IoT publishes a message with the $aws/
things/thingName/shadow/name/shadowName/update/rejected topic with an Error
response document shadow document that describes the error.

When a client requests a state change in a shadow by using the API

1. The client calls the UpdateThingShadow API with a Request state document state document
as its message body.

2. If the request was valid, AWS IoT returns an HTTP success response code and an /accepted
response state document shadow document as its response message body.

AWS IoT will also publish an MQTT message to the $aws/things/thingName/shadow/
name/shadowName/update/delta topic with a /delta response state document shadow
document for any devices or clients that subscribe to it.

3. If the request was not valid, AWS IoT returns an HTTP error response code an Error response
document as its response message body.

When the device receives the /desired state on the /update/delta topic, it makes the desired
changes in the device. It then sends a message to the /update topic to report its current state to
the shadow.

Updating a shadow 1043

AWS IoT Core Developer Guide

Updating a shadow when a device reports its current state

When a device reports its current state to the shadow by using the MQTT protocol

1. The device should subscribe to these MQTT topics before updating the shadow:

• $aws/things/thingName/shadow/name/shadowName/update/accepted

• $aws/things/thingName/shadow/name/shadowName/update/rejected

• $aws/things/thingName/shadow/name/shadowName/update/delta

• $aws/things/thingName/shadow/name/shadowName/update/documents

2. The device reports its current state by publishing a message to the $aws/
things/thingName/shadow/name/shadowName/update topic that reports the current
state, such as in this example.

{
 "state": {
 "reported" : {
 "color" : { "r" : 10 },
 "engine" : "ON"
 }
 }
}

3. If AWS IoT accepts the update, it publishes a message to the $aws/things/thingName/
shadow/name/shadowName/update/accepted topics with an /accepted response state
document shadow document.

4. If the update request is not valid, AWS IoT publishes a message with the $aws/
things/thingName/shadow/name/shadowName/update/rejected topic with an Error
response document shadow document that describes the error.

When a device reports its current state to the shadow by using the API

1. The device calls the UpdateThingShadow API with a Request state document state document
as its message body.

2. If the request was valid, AWS IoT updates the shadow and returns an HTTP success response
code with an /accepted response state document shadow document as its response message
body.

Updating a shadow 1044

AWS IoT Core Developer Guide

AWS IoT will also publish an MQTT message to the $aws/things/thingName/shadow/
name/shadowName/update/delta topic with a /delta response state document shadow
document for any devices or clients that subscribe to it.

3. If the request was not valid, AWS IoT returns an HTTP error response code an Error response
document as its response message body.

Optimistic locking

You can use the state document version to ensure you are updating the most recent version of a
device's shadow document. When you supply a version with an update request, the service rejects
the request with an HTTP 409 conflict response code if the current version of the state document
does not match the version supplied. The conflict response code can also occur on any API that
modifies ThingShadow, including DeleteThingShadow.

For example:

Initial document:

{
 "state": {
 "desired": {
 "colors": [
 "RED",
 "GREEN",
 "BLUE"
]
 }
 },
 "version": 10
}

Update: (version doesn't match; this request will be rejected)

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }

Updating a shadow 1045

AWS IoT Core Developer Guide

 },
 "version": 9
}

Result:

{
 "code": 409,
 "message": "Version conflict",
 "clientToken": "426bfd96-e720-46d3-95cd-014e3ef12bb6"
}

Update: (version matches; this request will be accepted)

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }
 },
 "version": 10
}

Final state:

{
 "state": {
 "desired": {
 "colors": [
 "BLUE"
]
 }
 },
 "version": 11
}

Retrieving a shadow document

You can retrieve a shadow document by using the GetThingShadow API or by subscribing and
publishing to the /get topic. This retrieves a complete shadow document, including any delta

Retrieving a shadow document 1046

AWS IoT Core Developer Guide

between the desired and reported states. The procedure for this task is the same whether the
device or a client is making the request.

To retrieve a shadow document by using the MQTT protocol

1. The device or client should subscribe to these MQTT topics before updating the shadow:

• $aws/things/thingName/shadow/name/shadowName/get/accepted

• $aws/things/thingName/shadow/name/shadowName/get/rejected

2. The device or client publishes a message to the $aws/things/thingName/shadow/
name/shadowName/get topic with an empty message body.

3. If the request is successful, AWS IoT publishes a message to the $aws/things/thingName/
shadow/name/shadowName/get/accepted topic with a /accepted response state
document in the message body.

4. If the request was not valid, AWS IoT publishes a message to the $aws/things/thingName/
shadow/name/shadowName/get/rejected topic with an Error response document in the
message body.

To retrieve a shadow document by using a REST API

1. The device or client call the GetThingShadow API with an empty message body.

2. If the request is valid, AWS IoT returns an HTTP success response code with an /accepted
response state document shadow document as its response message body.

3. If the request is not valid, AWS IoT returns an HTTP error response code an Error response
document as its response message body.

Deleting shadow data

There are two ways to delete shadow data: you can delete specific properties in the shadow
document and you can delete the shadow completely.

• To delete specific properties from a shadow, update the shadow; however set the value of the
properties that you want to delete to null. Fields with a value of null are removed from the
shadow document.

• To delete the entire shadow, use the DeleteThingShadow API or publish to the /delete topic.

Deleting shadow data 1047

AWS IoT Core Developer Guide

Note

Deleting a shadow doesn't reset its version number to zero at once. It will be reset to zero
after 48 hours.

Deleting a property from a shadow document

To delete a property from a shadow by using the MQTT protocol

1. The device or client should have a current shadow document so that it can identify the
properties to change. See Retrieving a shadow document for information on how to obtain the
current shadow document.

2. The device or client subscribes to these MQTT topics:

• $aws/things/thingName/shadow/name/shadowName/update/accepted

• $aws/things/thingName/shadow/name/shadowName/update/rejected

3. The device or client publishes a $aws/things/thingName/shadow/name/shadowName/
update request topic with a state document that assigns null values to the properties of the
shadow to delete. Only the properties to change need to be included in the document. This is
an example of a document that deletes the engine property.

{
 "state": {
 "desired": {
 "engine": null
 }
 }
}

4. If the update request is valid, AWS IoT deletes the specified properties in the shadow and
publishes a messages with the $aws/things/thingName/shadow/name/shadowName/
update/accepted topic with an /accepted response state document shadow document in
the message body.

5. If the update request is not valid, AWS IoT publishes a message with the $aws/
things/thingName/shadow/name/shadowName/update/rejected topic with an Error
response document shadow document that describes the error.

Deleting shadow data 1048

AWS IoT Core Developer Guide

To delete a property from a shadow by using the REST API

1. The device or client calls the UpdateThingShadow API with a Request state document that
assigns null values to the properties of the shadow to delete. Include only the properties
that you want to delete in the document. This is an example of a document that deletes the
engine property.

{
 "state": {
 "desired": {
 "engine": null
 }
 }
}

2. If the request was valid, AWS IoT returns an HTTP success response code and an /accepted
response state document shadow document as its response message body.

3. If the request was not valid, AWS IoT returns an HTTP error response code an Error response
document as its response message body.

Deleting a shadow

Following are some considerations when deleting a device's shadow.

• Setting the device's shadow state to null does not delete the shadow. The shadow version will
be incremented on the next update.

• Deleting a device's shadow does not delete the thing object. Deleting a thing object does not
delete the corresponding device's shadow.

• Deleting a shadow doesn't reset its version number to zero at once. It will be reset to zero after
48 hours.

To delete a shadow by using the MQTT protocol

1. The device or client subscribes to these MQTT topics:

• $aws/things/thingName/shadow/name/shadowName/delete/accepted

• $aws/things/thingName/shadow/name/shadowName/delete/rejected

Deleting shadow data 1049

AWS IoT Core Developer Guide

2. The device or client publishes a $aws/things/thingName/shadow/name/shadowName/
delete with an empty message buffer.

3. If the delete request is valid, AWS IoT deletes the shadow and publishes a messages with the
$aws/things/thingName/shadow/name/shadowName/delete/accepted topic and an
abbreviated /accepted response state document shadow document in the message body. This
is an example of the accepted delete message:

{
 "version": 4,
 "timestamp": 1591057529
}

4. If the update request is not valid, AWS IoT publishes a message with the $aws/
things/thingName/shadow/name/shadowName/delete/rejected topic with an Error
response document shadow document that describes the error.

To delete a shadow by using the REST API

1. The device or client calls the DeleteThingShadow API with an empty message buffer.

2. If the request was valid, AWS IoT returns an HTTP success response code and an /accepted
response state document and an abbreviated /accepted response state document shadow
document in the message body. This is an example of the accepted delete message:

{
 "version": 4,
 "timestamp": 1591057529
}

3. If the request was not valid, AWS IoT returns an HTTP error response code an Error response
document as its response message body.

Device Shadow REST API

A shadow exposes the following URI for updating state information:

https://account-specific-prefix-ats.iot.region.amazonaws.com/things/thingName/shadow

The endpoint is specific to your AWS account. To find your endpoint, you can:

Device Shadow REST API 1050

AWS IoT Core Developer Guide

• Use the describe-endpoint command from the AWS CLI.

• Use the AWS IoT console settings. In Settings, the endpoint is listed under Custom endpoint

• Use the AWS IoT console thing details page. In the console:

1. Open Manage and under Manage, choose Things.

2. In the list of things, choose the thing for which you want to get the endpoint URI.

3. Choose the Device Shadows tab and choose your shadow. You can view the endpoint URI in
the Device Shadow URL section of the Device Shadow details page.

The format of the endpoint is as follows:

identifier.iot.region.amazonaws.com

The shadow REST API follows the same HTTPS protocols/port mappings as described in Device
communication protocols.

Note

To use the APIs, you must use iotdevicegateway as the service name for authentication.
For more information, see IoTDataPlane.

API actions

• GetThingShadow

• UpdateThingShadow

• DeleteThingShadow

• ListNamedShadowsForThing

You can also use the API to create a named shadow by providing name=shadowName as part of the
query parameter of the API.

GetThingShadow

Gets the shadow for the specified thing.

The response state document includes the delta between the desired and reported states.

GetThingShadow 1051

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-iot-data-plane/classes/iotdataplane.html

AWS IoT Core Developer Guide

Request

The request includes the standard HTTP headers plus the following URI:

HTTP GET https://endpoint/things/thingName/shadow?name=shadowName
Request body: (none)

The name query parameter is not required for unnamed (classic) shadows.

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
Response Body: response state document

For more information, see Example Response State Document.

Authorization

Retrieving a shadow requires a policy that allows the caller to perform the iot:GetThingShadow
action. The Device Shadow service accepts two forms of authentication: Signature Version 4 with
IAM credentials or TLS mutual authentication with a client certificate.

The following is an example policy that allows a caller to retrieve a device's shadow:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:GetThingShadow",
 "Resource": [
 "arn:aws:iot:region:account:thing/thing"
]
 }
]
}

UpdateThingShadow

Updates the shadow for the specified thing.

UpdateThingShadow 1052

AWS IoT Core Developer Guide

Updates affect only the fields specified in the request state document. Any field with a value of
null is removed from the device's shadow.

Request

The request includes the standard HTTP headers plus the following URI and body:

HTTP POST https://endpoint/things/thingName/shadow?name=shadowName
Request body: request state document

The name query parameter is not required for unnamed (classic) shadows.

For more information, see Example Request State Document.

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
Response body: response state document

For more information, see Example Response State Document.

Authorization

Updating a shadow requires a policy that allows the caller to perform the
iot:UpdateThingShadow action. The Device Shadow service accepts two forms of
authentication: Signature Version 4 with IAM credentials or TLS mutual authentication with a client
certificate.

The following is an example policy that allows a caller to update a device's shadow:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:UpdateThingShadow",
 "Resource": [
 "arn:aws:iot:region:account:thing/thing"
]
 }

UpdateThingShadow 1053

AWS IoT Core Developer Guide

]
}

DeleteThingShadow

Deletes the shadow for the specified thing.

Request

The request includes the standard HTTP headers plus the following URI:

HTTP DELETE https://endpoint/things/thingName/shadow?name=shadowName
Request body: (none)

The name query parameter is not required for unnamed (classic) shadows.

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
Response body: Empty response state document

Note that deleting a shadow does not reset its version number to 0.

Authorization

Deleting a device's shadow requires a policy that allows the caller to perform the
iot:DeleteThingShadow action. The Device Shadow service accepts two forms of
authentication: Signature Version 4 with IAM credentials or TLS mutual authentication with a client
certificate.

The following is an example policy that allows a caller to delete a device's shadow:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:DeleteThingShadow",
 "Resource": [

DeleteThingShadow 1054

AWS IoT Core Developer Guide

 "arn:aws:iot:region:account:thing/thing"
]
 }
]
}

ListNamedShadowsForThing

Lists the shadows for the specified thing.

Request

The request includes the standard HTTP headers plus the following URI:

HTTP GET /api/things/shadow/ListNamedShadowsForThing/thingName?
nextToken=nextToken&pageSize=pageSize
Request body: (none)

nextToken

The token to retrieve the next set of results.

This value is returned on paged results and is used in the call that returns the next page.

pageSize

The number of shadow names to return in each call. See also nextToken.

thingName

The name of the thing for which to list the named shadows.

Response

Upon success, the response includes the standard HTTP headers plus the following response code
and a Shadow name list response document.

Note

The unnamed (classic) shadow does not appear in this list. The response is an empty list if
you only have a classic shadow or if the thingName you specify doesn't exist.

ListNamedShadowsForThing 1055

AWS IoT Core Developer Guide

HTTP 200
Response body: Shadow name list document

Authorization

Listing a device's shadow requires a policy that allows the caller to perform the
iot:ListNamedShadowsForThing action. The Device Shadow service accepts two forms of
authentication: Signature Version 4 with IAM credentials or TLS mutual authentication with a client
certificate.

The following is an example policy that allows a caller to list a thing's named shadows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:ListNamedShadowsForThing",
 "Resource": [
 "arn:aws:iot:region:account:thing/thing"
]
 }
]
}

Device Shadow MQTT topics

The Device Shadow service uses reserved MQTT topics to enable devices and apps to get, update,
or delete the state information for a device (shadow).

Publishing and subscribing on shadow topics requires topic-based authorization. AWS IoT reserves
the right to add new topics to the existing topic structure. For this reason, we recommend that you
avoid wild card subscriptions to shadow topics. For example, avoid subscribing to topic filters like
$aws/things/thingName/shadow/# because the number of topics that match this topic filter
might increase as AWS IoT introduces new shadow topics. For examples of the messages published
on these topics see Interacting with shadows.

Shadows can be named or unnamed (classic). The topics used by each differ only in the topic prefix.
This table shows the topic prefix used by each shadow type.

Device Shadow MQTT topics 1056

AWS IoT Core Developer Guide

ShadowTopicPrefix value Shadow type

$aws/things/ thingName /shadow Unnamed (classic) shadow

$aws/things/ thingName /shadow/n
ame/ shadowName

Named shadow

To create a complete topic, select the ShadowTopicPrefix for the type of shadow to which you
want to refer, replace thingName, and shadowName if applicable, with their corresponding values,
and then append that with the topic stub as shown in the following sections.

The following are the MQTT topics used for interacting with shadows.

Topics

• /get

• /get/accepted

• /get/rejected

• /update

• /update/delta

• /update/accepted

• /update/documents

• /update/rejected

• /delete

• /delete/accepted

• /delete/rejected

/get

Publish an empty message to this topic to get the device's shadow:

ShadowTopicPrefix/get

AWS IoT responds by publishing to either /get/accepted or /get/rejected.

/get 1057

AWS IoT Core Developer Guide

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/get"
]
 }
]
}

/get/accepted

AWS IoT publishes a response shadow document to this topic when returning the device's shadow:

ShadowTopicPrefix/get/accepted

For more information, see Response state documents.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/get/
accepted"

/get/accepted 1058

AWS IoT Core Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/get/accepted"
]
 }
]
}

/get/rejected

AWS IoT publishes an error response document to this topic when it can't return the device's
shadow:

ShadowTopicPrefix/get/rejected

For more information, see Error response document.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/get/
rejected"
]
 },
 {
 "Action": [
 "iot:Receive"

/get/rejected 1059

AWS IoT Core Developer Guide

],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/get/rejected"
]
 }
]
}

/update

Publish a request state document to this topic to update the device's shadow:

ShadowTopicPrefix/update

The message body contains a partial request state document.

A client attempting to update the state of a device would send a JSON request state document
with the desired property such as this:

{
 "state": {
 "desired": {
 "color": "red",
 "power": "on"
 }
 }
}

A device updating its shadow would send a JSON request state document with the reported
property, such as this:

{
 "state": {
 "reported": {
 "color": "red",
 "power": "on"
 }
 }
}

AWS IoT responds by publishing to either /update/accepted or /update/rejected.

/update 1060

AWS IoT Core Developer Guide

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/update"
]
 }
]
}

/update/delta

AWS IoT publishes a response state document to this topic when it accepts a change for the
device's shadow, and the request state document contains different values for desired and
reported states:

ShadowTopicPrefix/update/delta

The message buffer contains a /delta response state document.

Message body details

• A message published on update/delta includes only the desired attributes that differ between
the desired and reported sections. It contains all of these attributes, regardless of whether
these attributes were contained in the current update message or were already stored in AWS
IoT. Attributes that do not differ between the desired and reported sections are not included.

• If an attribute is in the reported section but has no equivalent in the desired section, it is not
included.

• If an attribute is in the desired section but has no equivalent in the reported section, it is
included.

/update/delta 1061

AWS IoT Core Developer Guide

• If an attribute is deleted from the reported section but still exists in the desired section, it is
included.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/update/
delta"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/update/delta"
]
 }
]
}

/update/accepted

AWS IoT publishes a response state document to this topic when it accepts a change for the
device's shadow:

ShadowTopicPrefix/update/accepted

The message buffer contains a /accepted response state document.

/update/accepted 1062

AWS IoT Core Developer Guide

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/update/
accepted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/update/accepted"
]
 }
]
}

/update/documents

AWS IoT publishes a state document to this topic whenever an update to the shadow is successfully
performed:

ShadowTopicPrefix/update/documents

The message body contains a /documents response state document.

Example policy

The following is an example of the required policy:

/update/documents 1063

AWS IoT Core Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/update/
documents"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/update/
documents"
]
 }
]
}

/update/rejected

AWS IoT publishes an error response document to this topic when it rejects a change for the
device's shadow:

ShadowTopicPrefix/update/rejected

The message body contains an Error response document.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",

/update/rejected 1064

AWS IoT Core Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/update/
rejected"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/update/rejected"
]
 }
]
}

/delete

To delete a device's shadow, publish an empty message to the delete topic:

ShadowTopicPrefix/delete

The content of the message is ignored.

Note that deleting a shadow does not reset its version number to 0.

AWS IoT responds by publishing to either /delete/accepted or /delete/rejected.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",

/delete 1065

AWS IoT Core Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/delete"
]
 }
]
}

/delete/accepted

AWS IoT publishes a message to this topic when a device's shadow is deleted:

ShadowTopicPrefix/delete/accepted

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/delete/
accepted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [

/delete/accepted 1066

AWS IoT Core Developer Guide

 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/delete/accepted"
]
 }
]
}

/delete/rejected

AWS IoT publishes an error response document to this topic when it can't delete the device's
shadow:

ShadowTopicPrefix/delete/rejected

The message body contains an Error response document.

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/things/thingName/shadow/delete/
rejected"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/things/thingName/shadow/delete/rejected"
]
 }
]

/delete/rejected 1067

AWS IoT Core Developer Guide

}

Device Shadow service documents

The Device Shadow service respects all rules of the JSON specification. Values, objects, and arrays
are stored in the device's shadow document.

Contents

• Shadow document examples

• Document properties

• Delta state

• Versioning shadow documents

• Client tokens in shadow documents

• Empty shadow document properties

• Array values in shadow documents

Shadow document examples

The Device Shadow service uses these documents in UPDATE, GET, and DELETE operations using
the REST API or MQTT Pub/Sub Messages.

Examples

• Request state document

• Response state documents

• Error response document

• Shadow name list response document

Request state document

A request state document has the following format:

{
 "state": {
 "desired": {
 "attribute1": integer2,

Device Shadow service documents 1068

AWS IoT Core Developer Guide

 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "reported": {
 "attribute1": integer1,
 "attribute2": "string1",
 ...
 "attributeN": boolean1
 }
 },
 "clientToken": "token",
 "version": version
}

• state — Updates affect only the fields specified. Typically, you'll use either the desired or the
reported property, but not both in the same request.

• desired — The state properties and values requested to be updated in the device.

• reported — The state properties and values reported by the device.

• clientToken — If used, you can match the request and corresponding response by the client
token.

• version — If used, the Device Shadow service processes the update only if the specified version
matches the latest version it has.

Response state documents

Response state documents have the following format depending on the response type.

/accepted response state document

{
 "state": {
 "desired": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 }
 },
 "metadata": {

Shadow document examples 1069

AWS IoT Core Developer Guide

 "desired": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 }
 },
 "timestamp": timestamp,
 "clientToken": "token",
 "version": version
}

/delta response state document

{
 "state": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "metadata": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 },
 "timestamp": timestamp,
 "clientToken": "token",
 "version": version
}

Shadow document examples 1070

AWS IoT Core Developer Guide

/documents response state document

{
 "previous" : {
 "state": {
 "desired": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "reported": {
 "attribute1": integer1,
 "attribute2": "string1",
 ...
 "attributeN": boolean1
 }
 },
 "metadata": {
 "desired": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 },
 "reported": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 }
 },

Shadow document examples 1071

AWS IoT Core Developer Guide

 "version": version-1
 },
 "current": {
 "state": {
 "desired": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 },
 "reported": {
 "attribute1": integer2,
 "attribute2": "string2",
 ...
 "attributeN": boolean2
 }
 },
 "metadata": {
 "desired": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 },
 "reported": {
 "attribute1": {
 "timestamp": timestamp
 },
 "attribute2": {
 "timestamp": timestamp
 },
 ...
 "attributeN": {
 "timestamp": timestamp
 }
 }
 },
 "version": version

Shadow document examples 1072

AWS IoT Core Developer Guide

 },
 "timestamp": timestamp,
 "clientToken": "token"
}

Response state document properties

• previous — After a successful update, contains the state of the object before the update.

• current — After a successful update, contains the state of the object after the update.

• state

• reported — Present only if a thing reported any data in the reported section and contains
only fields that were in the request state document.

• desired — Present only if a device reported any data in the desired section and contains
only fields that were in the request state document.

• delta — Present only if the desired data differs from the shadow's current reported data.

• metadata — Contains the timestamps for each attribute in the desired and reported
sections so that you can determine when the state was updated.

• timestamp — The Epoch date and time the response was generated by AWS IoT.

• clientToken — Present only if a client token was used when publishing valid JSON to the /
update topic.

• version — The current version of the document for the device's shadow shared in AWS IoT. It is
increased by one over the previous version of the document.

Error response document

An error response document has the following format:

{
 "code": error-code,
 "message": "error-message",
 "timestamp": timestamp,
 "clientToken": "token"
}

• code — An HTTP response code that indicates the type of error.

• message — A text message that provides additional information.

Shadow document examples 1073

AWS IoT Core Developer Guide

• timestamp — The date and time the response was generated by AWS IoT. This property is not
present in all error response documents.

• clientToken — Present only if a client token was used in the published message.

For more information, see Device Shadow error messages.

Shadow name list response document

A shadow name list response document has the following format:

{
 "results": [
 "shadowName-1",
 "shadowName-2",
 "shadowName-3",
 "shadowName-n"
],
 "nextToken": "nextToken",
 "timestamp": timestamp
}

• results — The array of shadow names.

• nextToken — The token value to use in paged requests to get the next page in the sequence.
This property is not present when there are no more shadow names to return.

• timestamp — The date and time the response was generated by AWS IoT.

Document properties

A device's shadow document has the following properties:

state

desired

The desired state of the device. Apps can write to this portion of the document to update
the state of a device directly without having to connect to it.

Document properties 1074

AWS IoT Core Developer Guide

reported

The reported state of the device. Devices write to this portion of the document to report
their new state. Apps read this portion of the document to determine the device's last-
reported state.

metadata

Information about the data stored in the state section of the document. This includes
timestamps, in Epoch time, for each attribute in the state section, which enables you to
determine when they were updated.

Note

Metadata do not contribute to the document size for service limits or pricing. For more
information, see AWS IoT Service Limits.

timestamp

Indicates when the message was sent by AWS IoT. By using the timestamp in the message and
the timestamps for individual attributes in the desired or reported section, a device can
determine a property's age, even if the device doesn't have an internal clock.

clientToken

A string unique to the device that enables you to associate responses with requests in an MQTT
environment.

version

The document version. Every time the document is updated, this version number is
incremented. Used to ensure the version of the document being updated is the most recent.

For more information, see Shadow document examples.

Delta state

Delta state is a virtual type of state that contains the difference between the desired and
reported states. Fields in the desired section that are not in the reported section are included
in the delta. Fields that are in the reported section and not in the desired section are not

Delta state 1075

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_iot

AWS IoT Core Developer Guide

included in the delta. The delta contains metadata, and its values are equal to the metadata in the
desired field. For example:

{
 "state": {
 "desired": {
 "color": "RED",
 "state": "STOP"
 },
 "reported": {
 "color": "GREEN",
 "engine": "ON"
 },
 "delta": {
 "color": "RED",
 "state": "STOP"
 }
 },
 "metadata": {
 "desired": {
 "color": {
 "timestamp": 12345
 },
 "state": {
 "timestamp": 12345
 }
 },
 "reported": {
 "color": {
 "timestamp": 12345
 },
 "engine": {
 "timestamp": 12345
 }
 },
 "delta": {
 "color": {
 "timestamp": 12345
 },
 "state": {
 "timestamp": 12345
 }
 }

Delta state 1076

AWS IoT Core Developer Guide

 },
 "version": 17,
 "timestamp": 123456789
 }
}

When nested objects differ, the delta contains the path all the way to the root.

{
 "state": {
 "desired": {
 "lights": {
 "color": {
 "r": 255,
 "g": 255,
 "b": 255
 }
 }
 },
 "reported": {
 "lights": {
 "color": {
 "r": 255,
 "g": 0,
 "b": 255
 }
 }
 },
 "delta": {
 "lights": {
 "color": {
 "g": 255
 }
 }
 }
 },
 "version": 18,
 "timestamp": 123456789
}

The Device Shadow service calculates the delta by iterating through each field in the desired
state and comparing it to the reported state.

Delta state 1077

AWS IoT Core Developer Guide

Arrays are treated like values. If an array in the desired section doesn't match the array in the
reported section, then the entire desired array is copied into the delta.

Versioning shadow documents

The Device Shadow service supports versioning on every update message, both request and
response. This means that with every update of a shadow, the version of the JSON document is
incremented. This ensures two things:

• A client can receive an error if it attempts to overwrite a shadow using an older version number.
The client is informed it must resync before it can update a device's shadow.

• A client can decide not to act on a received message if the message has a lower version than the
version stored by the client.

A client can bypass version matching by not including a version in the shadow document.

Client tokens in shadow documents

You can use a client token with MQTT-based messaging to verify the same client token is contained
in a request and request response. This ensures the response and request are associated.

Note

The client token can be no longer than 64 bytes. A client token that is longer than 64 bytes
causes a 400 (Bad Request) response and an Invalid clientToken error message.

Empty shadow document properties

The reported and desired properties in a shadow document can be empty or omitted when
they don't apply to the current shadow state. For example, a shadow document contains a
desired property only if it has a desired state. The following is a valid example of a state
document with no desired property:

{
 "reported" : { "temp": 55 }
}

Versioning shadow documents 1078

AWS IoT Core Developer Guide

The reported property can also be empty, such as if the shadow has not been updated by the
device:

{
 "desired" : { "color" : "RED" }
}

If an update causes the desired or reported properties to become null, it is removed from the
document. The following shows how to remove the desired property by setting it to null. You
might do this when a device updates its state, for example.

{
 "state": {
 "reported": {
 "color": "red"
 },
 "desired": null
 }
}

A shadow document can also have neither desired or reported properties, making the shadow
document empty. This is an example of an empty, yet valid shadow document.

{
}

Array values in shadow documents

Shadows support arrays, but treat them as normal values in that an update to an array replaces the
whole array. It is not possible to update part of an array.

Initial state:

{
 "desired" : { "colors" : ["RED", "GREEN", "BLUE"] }
}

Update:

{

Array values in shadow documents 1079

AWS IoT Core Developer Guide

 "desired" : { "colors" : ["RED"] }
}

Final state:

{
 "desired" : { "colors" : ["RED"] }
}

Arrays can't have null values. For example, the following array is not valid and will be rejected.

{
 "desired" : {
 "colors" : [null, "RED", "GREEN"]
 }
}

Device Shadow error messages

The Device Shadow service publishes a message on the error topic (over MQTT) when an attempt
to change the state document fails. This message is only emitted as a response to a publish request
on one of the reserved $aws topics. If the client updates the document using the REST API, then it
receives the HTTP error code as part of its response, and no MQTT error messages are emitted.

HTTP error code Error messages

400 (Bad Request) • Invalid JSON

• Missing required node: state

• State node must be an object

• Desired node must be an object

• Reported node must be an object

• Invalid version

• Invalid clientToken

Device Shadow error messages 1080

AWS IoT Core Developer Guide

HTTP error code Error messages

Note

A client token that is longer than 64 bytes will
cause this response.

• JSON contains too many levels of nesting; maximum
is 6

• State contains an invalid node

401 (Unauthorized) • Unauthorized

403 (Forbidden) • Forbidden

404 (Not Found) • Thing not found

• No shadow exists with name: shadowName

409 (Conflict) • Version conflict

413 (Payload Too Large) • The payload exceeds the maximum size allowed

415 (Unsupported Media Type) • Unsupported documented encoding; supported
encoding is UTF-8

429 (Too Many Requests) • The Device Shadow service will generate this error
message when there are more than 10 in-flight
requests on a single connection. An in-flight request is
an in-progress request that has been started but not
yet completed.

500 (Internal Server Error) • Internal service failure

Device Shadow error messages 1081

AWS IoT Core Developer Guide

Jobs

Use AWS IoT Jobs to define a set of remote operations that can be sent to and run on one or more
devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to
download and install applications, run firmware updates, reboot, rotate certificates, or perform
remote troubleshooting operations.

Accessing AWS IoT jobs

You can get started with AWS IoT Jobs by using the console or the AWS IoT Core API.

Using the console

Sign in to the AWS Management Console, and go to the AWS IoT console. In the navigation pane,
choose Manage, and then choose Jobs. You can create and manage jobs from this section. If you
want to create and manage job templates, in the navigation pane, choose Job templates. For more
information, see Create and manage jobs by using the AWS Management Console.

Using the API or CLI

You can get started by using the AWS IoT Core API operations. For more information, see AWS IoT
API Reference. The AWS IoT Core API that AWS IoT jobs is built on is supported by the AWS SDK.
For more information, see AWS SDKs and Toolkits.

You can use the AWS CLI to run commands for creating and managing jobs and job templates. For
more information, see AWS IoT CLI reference.

AWS IoT Jobs Regions and endpoints

AWS IoT Jobs supports control plane and data plane API endpoints that are specific to your AWS
Region. The data plane API endpoints are specific to your AWS account and AWS Region. For more
information about the AWS IoT Jobs endpoints, see AWS IoT Device Management - jobs data
endpoints in the AWS General Reference.

What is a remote operation?

A remote operation is any update or action you can perform on a physical device, virtual device, or
endpoint that can be done remotely without the need for the physical presence of an operator or
technician. The remote operation is performed using an over-the-air (OTA) update so your devices

Accessing AWS IoT jobs 1082

https://docs.aws.amazon.com/iot/latest/apireference/
https://docs.aws.amazon.com/iot/latest/apireference/
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/cli/latest/reference/iot/index.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#iot_device_management_region_jobs
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#iot_device_management_region_jobs

AWS IoT Core Developer Guide

don't have to be physically present. Managing your device fleet in the AWS Cloud allows you to
perform remote operations on your devices when they are registered with AWS IoT Core.

AWS IoT Device Management Jobs offers a scalable approach for performing remote actions on
your devices registered with AWS IoT Core. A job is created in the AWS Cloud and pushed out to all
targeted devices using an OTA update via the MQTT or HTTP protocol.

AWS IoT Device Management Jobs provide you the capability to perform remote operations such
as factory resets, device reboots, and software OTA updates in a secure, scalable, and more cost-
effective way.

For more information on AWS IoT Core, see What is AWS IoT?.

For more information on AWS IoT Device Management Jobs, see What is AWS IoT Jobs?.

Benefits of using AWS IoT Device Management Jobs for remote
operations

Using AWS IoT Device Management Jobs to perform your remote operations streamlines the
management of your device fleet. The following list highlights some of the key benefits for using
AWS IoT Device Management Jobs to perform your remote operations:

• Seamless integration with other AWS services

• AWS IoT Device Management Jobs integrates closely with the following value-added AWS
services and features:

• Amazon S3: Store your remote operation instructions in a secure Amazon S3 bucket where
you control the access permissions for that content. Using an Amazon S3 bucket provides
a scalable and durable storage solution that natively intergrates with AWS IoT Device
Management Software Package Catalog allowing AWS IoT Device Management Jobs to
reference and substitute in update instructions. For more information, see What is Amazon
S3?.

• Amazon CloudWatch: Monitor and log the remote operation implementation status of
the job execution for each device in addition to other device activity to track and analyze
the overall job performance in AWS IoT Device Management Jobs. For more information,
see What is Amazon CloudWatch? Monitoring jobs logs and capturing historical data for
troubleshooting. How it works with jobs.

• AWS IoT Device Shadow service: Maintain a digital representation of your AWS IoT thing via
a device shadow using AWS IoT Device Management Jobs so your device's state is available

Benefits of using AWS IoT Device Management Jobs for remote operations 1083

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

AWS IoT Core Developer Guide

to applications and other services regardless of device connectivity. For more information,
see AWS IoT Device Shadow service.

• Fleet Hub for AWS IoT Device Management: Build standalone web applications for
monitoring the health of your device fleet. For more information, see What is Fleet Hub for
AWS IoT Device Management?.

• Security best practices

• Permission control: Control the access permissions to your remote operating instructions
using Amazon S3 and determine which IAM users can deploy your remote operating
instructions to your device fleet using AWS IoT policies and IAM user roles.

• For more information on AWS IoT policies, see Create an AWS IoT policy.

• For more information on IAM user roles, see Identity and access management for AWS IoT.

• Scalability

• Targeted job deployment: Control which devices receive the job document from a job with a
targeted job deployment using specific device grouping criteria entered in your job document
when creating the job. Creating an AWS IoT thing for each device and storing that information
in the AWS IoT registry allows you to perform targeted searches using fleet indexing. You
can create custom groups based on the fleet indexing search results to support your target
job deployment. For more information, see Managing devices with AWS IoT. Use jobs to do
snapshot vs continuous jobs.

• Job status: Track the status of the job document rollout to your device fleet and overall job
status from a device fleet level in addition to the individual implementation status of the job
document on each device. For more information, see Jobs and job execution states.

• New device scalability: Easily deploy your job document to a new device by adding it to
an existing, custom group created using fleet indexing via a continuous job. This will save
you time over having to deploy the job document to each new device separately. Or, you
can use a more targeted approach with a snapshot shot by deploying a job document to a
predetermined group of devices once and then the job is completed.

• Flexibility

• Job configurations: Customize your job and job document with the optional job
configurations rollout, scheduling, abort, timeout, and retry to meet your specific needs. For
more information, see Job configurations.

• Cost effective

• Introduce a more efficient cost structure for maintaining your device fleet by leveraging AWS
IoT Device Management Jobs to deploy critical updates and perform routine maintenance

Benefits of using AWS IoT Device Management Jobs for remote operations 1084

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html

AWS IoT Core Developer Guide

tasks. A do-it-yourself (DIY) solution to maintain your device fleet includes recurring, variable
costs such as infrastructure required to host and manage the DIY solution, labor costs to
develop, maintain, and scale the DIY solution, and data transmission costs. Leveraging the
transparent, fixed cost structure of AWS IoT Device Management Jobs, you know exactly what
each job execution for a device will cost in addition to the data transmission costs required to
facilitate the job document rollout to your device fleet and tracking the job execution status
for each device. For more information, see AWS IoT Core pricing.

What is AWS IoT Jobs?

Use AWS IoT Jobs to define a set of remote operations that can be sent to and run on one or more
devices connected to AWS IoT.

To create jobs, first define a job document that contains a list of instructions describing operations
that the device must perform remotely. To perform these operations, specify a list of targets, which
are individual things, thing groups, or both. The job document and targets together constitute a
deployment.

Each deployment can have additional configurations:

• Rollout: This configuration defines how many devices receive the job document every minute.

• Abort: If a certain number of devices don't receive the job notification, use this configuration to
cancel the job. This avoids sending a bad update to an entire fleet.

• Timeout: If a response isn't received from your job targets within a certain duration, the job can
fail. You can track the job that's running on these devices.

• Retry: If a device reports failure or a job times out, you can use AWS IoT Jobs to resend the job
document to the device automatically.

• Scheduling: This configuration enables you to schedule a job for a future date and time. It also
enables you to create recurring maintenance windows that update devices during predefined,
low-traffic periods.

AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the
execution of the job by downloading the job document, performing the operations it specifies, and
reporting its progress to AWS IoT. You can track the progress of a job for a specific target or for all
targets by running commands that are provided by AWS IoT Jobs. When a job starts, it has a status

What is AWS IoT Jobs? 1085

https://docs.aws.amazon.com/iot/latest/developerguide/iot-price.html

AWS IoT Core Developer Guide

of In progress. The devices then report incremental updates while displaying this status until the
job succeeds, fails, or times out.

The following topics describe some key concepts of jobs and the lifecycle of jobs and job
executions.

Topics

• Jobs key concepts

• Jobs and job execution states

Jobs key concepts

The following concepts provide details about AWS IoT Jobs and how to create and deploy jobs to
run remote operations on your devices.

Basic concepts

The following are basic concepts you must know when using AWS IoT Jobs.

Job

A job is a remote operation that is sent to and run on one or more devices connected to
AWS IoT. For example, you can define a job that instructs a set of devices to download and
install an application or run firmware updates, reboot, rotate certificates, or perform remote
troubleshooting operations.

Job document

To create a job, you must first create a job document that is a description of the remote
operations to be performed by the devices.

Job documents are UTF-8 encoded JSON documents and contain information that your devices
require to perform a job. A job document contains one or more URLs where the device can
download an update or other data. The job document can be stored in an Amazon S3 bucket, or
be included inline with the command that creates the job.

Tip

For job document examples, see the jobs-agent.js example in the AWS IoT SDK for
JavaScript.

Jobs key concepts 1086

https://github.com/aws/aws-iot-device-sdk-js/blob/master/examples/jobs-agent.js

AWS IoT Core Developer Guide

Target

When you create a job, you specify a list of targets that are the devices that should perform the
operations. The targets can be things or thing groups or both. The AWS IoT Jobs service sends a
message to each target to inform it that a job is available.

Deployment

After you create a job by providing the job document and specifying your list of targets, the
job document is then deployed to the remote target devices for which you want to perform
the update. For snapshot jobs, the job will complete after deploying to the target devices. For
continuous jobs, a job is deployed to a group of devices as they are added to the groups.

Job execution

A job execution is an instance of a job on a target device. The target starts an execution of
a job by downloading the job document. It then performs the operations specified in the
document, and reports its progress to AWS IoT. An execution number is a unique identifier of
a job execution on a specific target. The AWS IoT Jobs service provides commands to track the
progress of a job execution on a target and the progress of a job across all targets.

Job types concepts

The following concepts can help you understand more about the different types of jobs that you
can create with AWS IoT Jobs.

Snapshot job

By default, a job is sent to all targets that you specify when you create the job. After those
targets complete the job (or report that they're unable to do so), the job is complete.

Continuous job

A continuous job is sent to all targets that you specify when you create the job. It continues to
run and is sent to any new devices (things) that are added to the target group. For example, a
continuous job can be used to onboard or upgrade devices as they're added to a group. You can
make a job continuous by setting an optional parameter when you create the job.

Jobs key concepts 1087

AWS IoT Core Developer Guide

Note

When targeting your IoT fleet using dynamic thing groups, we recommend that you use
continuous jobs instead of snapshot jobs. By using continuous jobs, devices that join the
group receive the job execution even after the job has been created.

Presigned URLs

For secure, time-limited access to data that's not included in the job document, you can use
presigned Amazon S3 URLs. Place your data in an Amazon S3 bucket and add a placeholder link
to the data in the job document. When AWS IoT Jobs receives a request for the job document, it
parses the job document by looking for the placeholder links, and then replaces the links with
presigned Amazon S3 URLs.

The placeholder link is in the following format:

${aws:iot:s3-presigned-url:https://s3.amazonaws.com/bucket/key}

where bucket is your bucket name and key is the object in the bucket to which you are linking.

In the Beijing and Ningxia Regions, presigned URLs work only if the resource owner has an ICP
(Internet Content Provider) license. For more information, see Amazon Simple Storage Service in
the Getting Started with AWS Services in China documentation.

Job configuration concepts

The following concepts can help you understand how to configure jobs.

Rollouts

You can specify how quickly targets are notified of a pending job execution. This allows you to
create a staged rollout to better manage updates, reboots, and other operations. You can create
a rollout configuration by using either a static rollout rate or an exponential rollout rate. To
specify the maximum number of job targets to inform per minute, use a static rollout rate.

For examples of setting rollout rates and for more information about configuring job rollouts,
see Job rollout, scheduling, and abort configurations.

Jobs key concepts 1088

https://docs.amazonaws.cn/en_us/aws/latest/userguide/s3.html

AWS IoT Core Developer Guide

Scheduling

Job scheduling enables you to schedule the rollout timeframe of a job document to all
devices in the target group for continuous and snapshot jobs. Additionally, you can create an
optional maintenance window containing specific dates and times that a job will rollout the job
document to all devices in the target group. A maintenance window is a recurring instance with
a frequency of daily, weekly, monthly, or custom dates and times selected during the initial job
or job template creation. Only continuous jobs can be scheduled to perform a rollout during a
maintenance window.

Jobs Scheduling is specific to your job. Individual Job Executions can't be scheduled. For more
information, see Job rollout, scheduling, and abort configurations.

Abort

You can create a set of conditions to cancel rollouts when criteria that you specify have been
met. For more information, see Job rollout, scheduling, and abort configurations.

Timeouts

Job timeouts notify you whenever a job deployment gets stuck in the IN_PROGRESS state for
an unexpectedly long period of time. There are two types of timers: in-progress timers and
step timers. When the job is IN_PROGRESS, you can monitor and track the progress of your job
deployment.

Rollouts and abort configurations are specific to your job, whereas the timeout configuration
is specific to a job deployment. For more information, see Job execution timeout and retry
configurations.

Retries

Job retries make it possible to retry the job execution when a job fails, times out, or both. You
can have up to 10 attempted retries to execute the job. You can monitor and track the progress
of your retry attempt and whether the job execution succeeded.

Rollouts and abort configurations are specific to your job, whereas the timeout and retry
configurations are specific to a job execution. For more information, see Job execution timeout
and retry configurations.

Jobs and job execution states

The following sections describe the lifecycle of an AWS IoT job and the lifecycle of a job execution.

Jobs and job execution states 1089

AWS IoT Core Developer Guide

Job states

The following diagram shows the different states of an AWS IoT job.

A job that you create using AWS IoT Jobs can be in one of the following states:

• SCHEDULED

During the initial job or job template creation using the AWS IoT console, CreateJob API, or
CreateJobTemplate API, you can select the optional scheduling configuration in the AWS IoT
console or the SchedulingConfig in the CreateJob API or CreateJobTemplate API. When
you start a scheduled job containing a specific startTime, endTime, and endBehavoir,
the job status updates to SCHEDULED. When the job reaches your selected startTime or the
startTime of the next maintenance window (if you selected job rollout during a maintenance
window), the status will update from SCHEDULED to IN_PROGRESS and begin rollout of the job
document to all devices in the target group.

• IN_PROGRESS

When you create a job using the AWS IoT console or the CreateJob API, the job status updates to
IN_PROGRESS. During job creation, AWS IoT Jobs starts rolling out job executions to the devices
in your target group. After all the job executions have rolled out, AWS IoT Jobs waits for devices
to complete the remote action.

For information about concurrency and limits that apply to in-progress jobs, see Job limits.

Jobs and job execution states 1090

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html

AWS IoT Core Developer Guide

Note

When an IN_PROGRESS job reaches the end of the current maintenance window, the
rollout of the job document will stop. The job will update to SCHEDULED until the
startTime of the next maintenance window.

• COMPLETED

A continuous job is handled in one of the following ways:

• For a continuous job without the optional scheduling configuration selected, it's always in
progress and continues to run for any new devices that are added to the target group. It will
never reach a status state of COMPLETED.

• For a continuous job with the optional scheduling configuration selected, the following is true:

• If an endTime was provided, a continuous job will reach COMPLETED status when endTime
has passed and all job executions have reached a terminal status state.

• If an endTime was not provided in the optional scheduling configuration, the continuous job
will continue to perform the job document rollout.

For a snapshot job, the job status changes to COMPLETED when all of its job executions enter a
terminal state, such as SUCCEEDED, FAILED, TIMED_OUT, REMOVED, or CANCELED.

• CANCELED

When you cancel a job using the AWS IoT console, the CancelJob API, or the Job abort
configuration, the job status changes to CANCELED. During job cancellation, AWS IoT Jobs starts
canceling previously created job executions.

For information about concurrency and limits that apply to jobs that are being canceled, see Job
limits.

• DELETION_IN_PROGRESS

When you delete a job using the AWS IoT console or the DeleteJob API, the job status changes to
DELETION_IN_PROGRESS. During job deletion, AWS IoT Jobs starts deleting previously created
job executions. After all job executions have been deleted, the job disappears from your AWS
account.

Jobs and job execution states 1091

https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJob.html

AWS IoT Core Developer Guide

Job execution states

The following table shows the different states of an AWS IoT job execution and whether the state
change is initiated by the device or by AWS IoT Jobs.

Job execution states and source

Job execution state Initiated by
device?

Initiated
by AWS IoT
Jobs?

Terminal
status?

Can be retried?

QUEUED No Yes No Not applicable

IN_PROGRESS Yes No No Not applicable

SUCCEEDED Yes No Yes Not applicable

FAILED Yes No Yes Yes

TIMED_OUT No Yes Yes Yes

REJECTED Yes No Yes No

REMOVED No Yes Yes No

CANCELED No Yes Yes No

The following section describes more about the states of a job execution that's rolled out when you
create a job with AWS IoT Jobs.

• QUEUED

When AWS IoT Jobs rolls out a job execution for a target device, the job execution status is set to
QUEUED. The job execution remains in the QUEUED state until:

• Your device receives the job execution and invokes the Jobs API operations and reports the
status as IN_PROGRESS.

• You cancel the job or job execution, or when the abort criteria that you specified is met, and
the status changes to CANCELED.

• Your device is removed from the target group and the status changes to REMOVED.

Jobs and job execution states 1092

AWS IoT Core Developer Guide

• IN_PROGRESS

If your IoT device subscribes to the reserved Job topics $notify and $notify-next,
and your device invokes either the StartNextPendingJobExecution API or the
UpdateJobExecution API with a status of IN_PROGRESS, AWS IoT Jobs will set the job
execution status to IN_PROGRESS.

The UpdateJobExecution API can be invoked multiple times with a status of IN_PROGRESS.
You can specify additional details about the execution steps using the statusDetails object.

Note

If you create multiple jobs for each device, AWS IoT Jobs and the MQTT protocol don't
guarantee order of delivery.

• SUCCEEDED

When your device successfully completes the remote operation, the device must invoke the
UpdateJobExecution API with a status of SUCCEEDED to indicate that the job execution
succeeded. AWS IoT Jobs then updates and returns the job execution status as SUCCEEDED.

• FAILED

When your device fails to complete the remote operation, the device must invoke the
UpdateJobExecution API with a status of Failed to indicate that the job execution failed.
AWS IoT Jobs then updates and returns the job execution status as Failed. You can retry this
job execution for the device using the Job execution retry configuration.

Jobs and job execution states 1093

AWS IoT Core Developer Guide

• TIMED_OUT

When your device fails to complete a job step when the status is IN_PROGRESS, or when it fails
to complete the remote operation within the timeout duration of the in-progress timer, AWS
IoT Jobs sets the job execution status to TIMED_OUT. You also have a step timer for each job
step of an in-progress job and applies only to the job execution. The in-progress timer duration
is specified using the inProgressTimeoutInMinutes property of the Job execution timeout
configuration. You can retry this job execution for the device using the Job execution retry
configuration.

• REJECTED

When your device receives an invalid or incompatible request, the device must invoke the
UpdateJobExecution API with a status of REJECTED. AWS IoT Jobs then updates and returns
the job execution status as REJECTED.

• REMOVED

When your device is no longer a valid target for the job execution, such as when it's detached
from a dynamic thing group, AWS IoT Jobs sets the job execution status to REMOVED. You can re-
attach the thing to your target group and restart the job execution for the device.

• CANCELED

Jobs and job execution states 1094

AWS IoT Core Developer Guide

When you cancel a job or cancel a job execution using the console or the CancelJob
or CancelJobExecution API, or when the abort criteria specified using the Job abort
configuration is met, AWS IoT Jobs cancels the job and sets the job execution status to
CANCELED.

Managing jobs

Use jobs to notify devices of a software or firmware update. You can use the AWS IoT console, the
Job management and control API operations, the AWS Command Line Interface, or the AWS SDKs
to create and manage jobs.

Code signing for jobs

When sending code to devices, for devices to detect whether the code has been modified in transit,
we recommend that you sign the code file by using the AWS CLI. For instructions, see Create and
manage jobs by using the AWS CLI.

For more information, see What Is Code Signing for AWS IoT?.

Job document

Before you create a job, you must create a job document. If you're using code signing for AWS IoT,
you must upload your job document to a versioned Amazon S3 bucket. For more information about
creating an Amazon S3 bucket and uploading files to it, see Getting Started with Amazon Simple
Storage Service in the Amazon S3 Getting Started Guide.

Tip

For job document examples, see the jobs-agent.js example in the AWS IoT SDK for
JavaScript.

Presigned URLs

Your job document can contain a presigned Amazon S3 URL that points to your code file (or other
file). Presigned Amazon S3 URLs are valid only for a limited amount of time and are generated
when a device requests a job document. Because the presigned URL isn't created when you're

Managing jobs 1095

https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/cli/latest/reference/iot/index.html
http://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://www.npmjs.com/package/aws-iot-device-sdk#jobs-agentjs

AWS IoT Core Developer Guide

creating the job document, use a placeholder URL in your job document instead. A placeholder URL
looks like the following:

${aws:iot:s3-presigned-url:https://s3.region.amazonaws.com/<bucket>/<code
file>}

where:

• bucket is the Amazon S3 bucket that contains the code file.

• code file is the Amazon S3 key of the code file.

When a device requests the job document, AWS IoT generates the presigned URL and replaces the
placeholder URL with the presigned URL. Your job document is then sent to the device.

IAM role to grant permission to download files from S3

When you create a job that uses presigned Amazon S3 URLs, you must provide an IAM role. The
role must grant permission to download files from the Amazon S3 bucket where the data or
updates are stored. The role must also grant permission for AWS IoT to assume the role.

You can specify an optional timeout for the presigned URL. For more information, see CreateJob.

Grant AWS IoT Jobs permission to assume your role

1. Go to the Roles hub of the IAM console and choose your role.

2. On the Trust Relationships tab, choose Edit Trust Relationship and replace the policy
document with the following JSON. Choose Update Trust Policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iot.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }

Presigned URLs 1096

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://console.aws.amazon.com/iamv2/home#/roles

AWS IoT Core Developer Guide

]
}

3. To protect against the confused deputy problem, add the global condition context keys
aws:SourceArn and aws:SourceAccount to the policy.

Important

Your aws:SourceArn must comply with the format:
arn:aws:iot:region:account-id:*. Make sure that region matches your AWS
IoT Region and account-id matches your customer account ID. For more information,
see Cross-service confused deputy prevention.

{
 "Effect": "Allow",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service":
 "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:iot:*:123456789012:job/*"
 }
 }
 }
]
}

4. If your job uses a job document that's an Amazon S3 object, choose Permissions and use the
following JSON. This adds a policy that grants permission to download files from your Amazon
S3 bucket:

{

Presigned URLs 1097

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Core Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::your_S3_bucket/*"
 }
]
}

Topics

• Create and manage jobs by using the AWS Management Console

• Create and manage jobs by using the AWS CLI

Create and manage jobs by using the AWS Management Console

To create a job

1. Sign in to the AWS Management Console and log in to the AWS IoT console.

2. On the left navigation pane, under the Manage section, choose Remote Actions, and then
choose Jobs.

3. On the Jobs page in the Jobs dialog box, choose Create job.

4. Depending on the device that you're using, you can create a custom job, a FreeRTOS OTA
update job, or an AWS IoT Greengrass job. For this example, choose Create a custom job.
Choose Next.

5. On the Custom job properties page, in the Job properties dialog box, enter your information
for the following fields:

• Name: Enter a unique, alphanumeric job name.

• Description - optional: Enter an optional description about your Job.

• Tags - optional:

Create and manage jobs using the console 1098

AWS IoT Core Developer Guide

Note

We recommend that you don't use personally identifiable information in your job IDs
and description.

Choose Next.

6. On the File configuration page in the Job targets dialog box, select the Things or Thing
groups that you want to run this job.

In the Job document dialog box, select one of the following options:

• From file: A JSON job file you previously uploaded to an Amazon S3 bucket

• Code signing

In the job document located in your Amazon S3 URL, ${aws:iot:code-sign-
signature:s3://region.bucket/code-file@code-file-version-id} is
required as a placeholder until it is replaced with the signed code file path using your
Code signing profile. The new signed code file will initially appear in a SignedImages
folder in your Amazon S3 source bucket. A new job document containing a Codesigned_
prefix will be created with the signed code file path replacing the code-sign placeholder
and placed in your Amazon S3 URL for creating a new job.

• Pre-sign resource URLs

In the Pre-signing role drop down, choose the IAM role you created in Presigned URLs.
Using ${aws:iot:s3-presigned-url: to presign URLs for objects located in Amazon
S3 is a best security practice for devices downloading objects from Amazon S3.

If you want to use presigned URLs for a code signing placeholder, use the following
example template:

 ${aws:iot:s3-presigned-url:${aws:iot:code-sign-signature:<S3 URL>}

• From template: A job template containing a job document and job configurations. The job
template can be a custom job template you created or an AWS managed template.

Create and manage jobs using the console 1099

https://docs.aws.amazon.com/iot/latest/developerguide/create-manage-jobs.html#create-manage-jobs-presigned-URLs

AWS IoT Core Developer Guide

If you're creating a job for performing frequently used remote actions such as rebooting
your device, you can use an AWS managed template. These templates have already been
preconfigured for use. For more information, see Create a custom job template and Create
custom job templates from managed templates.

7. On the Job configuration page in the Job configuration dialog box, select one of the
following job types:

• Snapshot job: A snapshot job is complete when it's finished its run on the target devices and
groups.

• Continuous job: A continuous job applies to thing groups and runs on any device that you
later add to a specified target group.

8. In the Additional configurations - optional dialog box, review the following optional Job
configurations and make your selections accordingly:

• Rollout configuration

• Scheduling configuration

• Job executions timeout configuration

• Job executions retry configuration - new

• Abort configuration

Refer to the following sections for additional information on Job configurations:

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Review all of your job selections and then choose Submit to create your job.

After you create the job, the console generates a JSON signature and places it in your job
document. You can use the AWS IoT console to view the status, cancel, or delete a job. To manage
jobs, go to the Job hub of the console.

Create and manage jobs by using the AWS CLI

This section describes how to create and manage jobs.

Create and manage jobs using the CLI 1100

https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/iot/home#/jobhub

AWS IoT Core Developer Guide

Create jobs

To create an AWS IoT job, use the CreateJob command. The job is queued for execution on
the targets (things or thing groups) that you specify. To create an AWS IoT job, you need a job
document that can be included in the body of the request or as a link to an Amazon S3 document.
If the job includes downloading files using presigned Amazon S3 URLs, you need an IAM role
Amazon Resource Name (ARN) that has permission to download the file and grants permission to
the AWS IoT Jobs service to assume the role.

For more information on the syntax when entering the date and time using an API command or the
AWS CLI, see Timestamp.

Code signing with jobs

If you're using code signing for AWS IoT, you must start a code signing job and include the output
in your job document. This will replace the code sign signature placeholder in your job document,
which is required as a placeholder until it is replaced with the signed code file path using your Code
signing profile. The code sign signature placeholder will look like the following:

 ${aws:iot:code-sign-signature:s3://region.bucket/code-file@code-file-version-id}

Use the start-signing-job command to create a code signing job. start-signing-job returns a
job ID. To get the Amazon S3 location where the signature is stored, use the describe-signing-job
command. You can then download the signature from Amazon S3. For more information about
code signing jobs, see Code signing for AWS IoT.

Your job document must contain a presigned URL placeholder for your code file and the JSON
signature output placed in an Amazon S3 bucket using the start-signing-job command:

{
 "presign": "${aws:iot:s3-presigned-url:https://s3.region.amazonaws.com/bucket/
image}",
}

Create a job with a job document

The following command shows how to create a job using a job document (job-document.json)
stored in an Amazon S3 bucket (jobBucket), and a role with permission to download files from
Amazon S3 (S3DownloadRole).

Create and manage jobs using the CLI 1101

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-types.html#parameter-type-timestamp
https://docs.aws.amazon.com/signer/latest/developerguide/api-startsigningjob.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html

AWS IoT Core Developer Guide

aws iot create-job \
 --job-id 010 \
 --targets arn:aws:iot:us-east-1:123456789012:thing/thingOne \
 --document-source https://s3.amazonaws.com/my-s3-bucket/job-document.json \
 --timeout-config inProgressTimeoutInMinutes=100 \
 --job-executions-rollout-config "{ \"exponentialRate\": { \"baseRatePerMinute
\": 50, \"incrementFactor\": 2, \"rateIncreaseCriteria\": { \"numberOfNotifiedThings
\": 1000, \"numberOfSucceededThings\": 1000}}, \"maximumPerMinute\": 1000}" \
 --abort-config "{ \"criteriaList\": [{ \"action\": \"CANCEL\", \"failureType
\": \"FAILED\", \"minNumberOfExecutedThings\": 100, \"thresholdPercentage\": 20},
 { \"action\": \"CANCEL\", \"failureType\": \"TIMED_OUT\", \"minNumberOfExecutedThings
\": 200, \"thresholdPercentage\": 50}]}" \
 --presigned-url-config "{\"roleArn\":\"arn:aws:iam::123456789012:role/
S3DownloadRole\", \"expiresInSec\":3600}"

The job is run on thingOne.

The optional timeout-config parameter specifies the amount of time each device has to finish
its execution of the job. The timer starts when the job execution status is set to IN_PROGRESS.
If the job execution status isn't set to another terminal state before the time expires, it's set to
TIMED_OUT.

The in-progress timer can't be updated and applies to all job executions for the job. Whenever a job
execution remains in the IN_PROGRESS state for longer than this interval, it fails and switches to
the terminal TIMED_OUT status. AWS IoT also publishes an MQTT notification.

For more information about creating configurations for job rollouts and aborts, see Job Rollout and
Abort Configuration.

Note

Job documents that are specified as Amazon S3 files are retrieved at the time you create
the job. If you change the contents of the Amazon S3 file that you used as the source of
your job document after you've created the job document, then what's sent to the job
targets doesn't change.

Create and manage jobs using the CLI 1102

job-rollout-abort.html
job-rollout-abort.html

AWS IoT Core Developer Guide

Update a job

To update a job, use the UpdateJob command. You can update the description,
presignedUrlConfig, jobExecutionsRolloutConfig, abortConfig, and timeoutConfig
fields of a job.

aws iot update-job \
 --job-id 010 \
 --description "updated description" \
 --timeout-config inProgressTimeoutInMinutes=100 \
 --job-executions-rollout-config "{ \"exponentialRate\": { \"baseRatePerMinute\": 50,
 \"incrementFactor\": 2, \"rateIncreaseCriteria\": { \"numberOfNotifiedThings\": 1000,
 \"numberOfSucceededThings\": 1000}, \"maximumPerMinute\": 1000}}" \
 --abort-config "{ \"criteriaList\": [{ \"action\": \"CANCEL\", \"failureType
\": \"FAILED\", \"minNumberOfExecutedThings\": 100, \"thresholdPercentage\": 20},
 { \"action\": \"CANCEL\", \"failureType\": \"TIMED_OUT\", \"minNumberOfExecutedThings
\": 200, \"thresholdPercentage\": 50}]}" \
 --presigned-url-config "{\"roleArn\":\"arn:aws:iam::123456789012:role/
S3DownloadRole\", \"expiresInSec\":3600}"

For more information, see Job Rollout and Abort Configuration.

Cancel a job

To cancel a job, use the CancelJob command. Canceling a job stops AWS IoT from rolling out
any new job executions for the job. It also cancels any job executions that are in a QUEUED state.
AWS IoT keeps any job executions in a terminal state untouched because the device has already
completed the job. If the status of a job execution is IN_PROGRESS, it also remains untouched
unless you use the optional --force parameter.

The following command shows how to cancel a job with ID 010.

aws iot cancel-job --job-id 010

The command displays the following output:

{
 "jobArn": "string",
 "jobId": "string",
 "description": "string"

Create and manage jobs using the CLI 1103

job-rollout-abort.html

AWS IoT Core Developer Guide

}

When you cancel a job, job executions that are in a QUEUED state are canceled. Job executions
that are in an IN_PROGRESS state are canceled, but only if you specify the optional --force
parameter. Job executions in a terminal state aren't canceled.

Warning

Canceling a job that's in the IN_PROGRESS state (by setting the --force parameter)
cancels any job executions that are in progress and causes the device that's running the
job to be unable to update the job execution status. Use caution and make sure that each
device executing a canceled job can recover to a valid state.

The status of a canceled job or of one of its job executions is eventually consistent. AWS IoT stops
scheduling new job executions and QUEUED job executions for that job to devices as soon as
possible. Changing the status of a job execution to CANCELED might take some time, depending on
the number of devices and other factors.

If a job is canceled because it's met the criteria defined by an AbortConfig object, the service
adds auto-populated values for the comment and reasonCode fields. You can create your own
values for reasonCode when the job cancellation is user-driven.

Cancel a job execution

To cancel a job execution on a device, use the CancelJobExecution command. It cancels a job
execution that's in a QUEUED state. If you want to cancel a job execution that's in progress, you
must use the --force parameter.

The following command shows how to cancel the job execution from job 010 running on myThing.

aws iot cancel-job-execution --job-id 010 --thing-name myThing

The command displays no output.

A job execution that's in a QUEUED state is canceled. A job execution that's in an IN_PROGRESS
state is canceled, but only if you specify the optional --force parameter. Job executions in a
terminal state can't be canceled.

Create and manage jobs using the CLI 1104

AWS IoT Core Developer Guide

Warning

When you cancel a job execution that's in the IN_PROGRESS state, the device can't update
the job execution status. Use caution and make sure that the device can recover to a valid
state.

If the job execution is in a terminal state, or if the job execution is in an IN_PROGRESS
state and the --force parameter isn't set to true, this command causes an
InvalidStateTransitionException.

The status of a canceled job execution is eventually consistent. Changing the status of a job
execution to CANCELED might take some time, depending on various factors.

Delete a job

To delete a job and its job executions, use the DeleteJob command. By default, you can only delete
a job that's in a terminal state (SUCCEEDED or CANCELED). Otherwise, an exception occurs. You can
delete a job in the IN_PROGRESS state, however, only if the force parameter is set to true.

To delete a job, run the following command:

aws iot delete-job --job-id 010 --force|--no-force

The command displays no output.

Warning

When you delete a job that's in the IN_PROGRESS state, the device that's deploying the job
can't access job information or update the job execution status. Use caution and make sure
that each device deploying a job that's been deleted can recover to a valid state.

It can take some time to delete a job, depending on the number of job executions created for
the job and other factors. While the job is being deleted, DELETION_IN_PROGRESS appears as
the status of the job. An error results if you attempt to delete or cancel a job with a status that's
already DELETION_IN_PROGRESS.

Create and manage jobs using the CLI 1105

AWS IoT Core Developer Guide

Only 10 jobs can have a status of DELETION_IN_PROGRESS at the same time. Otherwise, a
LimitExceededException occurs.

Get a job document

To retrieve a job document for a job, use the GetJobDocument command. A job document is a
description of the remote operations to be performed by the devices.

To get a job document, run the following command:

aws iot get-job-document --job-id 010

The command returns the job document for the specified job:

{
 "document": "{\n\t\"operation\":\"install\",\n\t\"url\":\"http://amazon.com/
firmWareUpate-01\",\n\t\"data\":\"${aws:iot:s3-presigned-url:https://s3.amazonaws.com/
job-test-bucket/datafile}\"\n}"
}

Note

When you use this command to retrieve a job document, placeholder URLs aren't replaced
by presigned Amazon S3 URLs. When a device calls the GetPendingJobExecutions API
operation, the placeholder URLs are replaced by presigned Amazon S3 URLs in the job
document.

List jobs

To get a list of all jobs in your AWS account, use the ListJobs command. Job data and job execution
data are retained for a limited time. Run the following command to list all jobs in your AWS
account:

aws iot list-jobs

The command returns all jobs in your account, sorted by the job status:

{
 "jobs": [

Create and manage jobs using the CLI 1106

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits

AWS IoT Core Developer Guide

 {
 "status": "IN_PROGRESS",
 "lastUpdatedAt": 1486687079.743,
 "jobArn": "arn:aws:iot:us-east-1:123456789012:job/013",
 "createdAt": 1486687079.743,
 "targetSelection": "SNAPSHOT",
 "jobId": "013"
 },
 {
 "status": "SUCCEEDED",
 "lastUpdatedAt": 1486685868.444,
 "jobArn": "arn:aws:iot:us-east-1:123456789012:job/012",
 "createdAt": 1486685868.444,
 "completedAt": 148668789.690,
 "targetSelection": "SNAPSHOT",
 "jobId": "012"
 },
 {
 "status": "CANCELED",
 "lastUpdatedAt": 1486678850.575,
 "jobArn": "arn:aws:iot:us-east-1:123456789012:job/011",
 "createdAt": 1486678850.575,
 "targetSelection": "SNAPSHOT",
 "jobId": "011"
 }
]
}

Describe a job

To get the status of a job, run the DescribeJob command. The following command shows how to
describe a job:

$ aws iot describe-job --job-id 010

The command returns the status of the specified job. For example:

{
 "documentSource": "https://s3.amazonaws.com/job-test-bucket/job-document.json",
 "job": {
 "status": "IN_PROGRESS",
 "jobArn": "arn:aws:iot:us-east-1:123456789012:job/010",
 "targets": [

Create and manage jobs using the CLI 1107

AWS IoT Core Developer Guide

 "arn:aws:iot:us-east-1:123456789012:thing/myThing"
],
 "jobProcessDetails": {
 "numberOfCanceledThings": 0,
 "numberOfFailedThings": 0,
 "numberOfInProgressThings": 0,
 "numberOfQueuedThings": 0,
 "numberOfRejectedThings": 0,
 "numberOfRemovedThings": 0,
 "numberOfSucceededThings": 0,
 "numberOfTimedOutThings": 0,
 "processingTargets": [
 arn:aws:iot:us-east-1:123456789012:thing/thingOne,
 arn:aws:iot:us-east-1:123456789012:thinggroup/thinggroupOne,
 arn:aws:iot:us-east-1:123456789012:thing/thingTwo,
 arn:aws:iot:us-east-1:123456789012:thinggroup/thinggroupTwo
]
 },
 "presignedUrlConfig": {
 "expiresInSec": 60,
 "roleArn": "arn:aws:iam::123456789012:role/S3DownloadRole"
 },
 "jobId": "010",
 "lastUpdatedAt": 1486593195.006,
 "createdAt": 1486593195.006,
 "targetSelection": "SNAPSHOT",
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": integer,
 "incrementFactor": integer,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": integer, // Set one or the other
 "numberOfSucceededThings": integer // of these two values.
 },
 "maximumPerMinute": integer
 }
 },
 "abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": integer,
 "thresholdPercentage": integer

Create and manage jobs using the CLI 1108

AWS IoT Core Developer Guide

 }
]
 },
 "timeoutConfig": {
 "inProgressTimeoutInMinutes": number
 }
 }
}

List executions for a job

A job running on a specific device is represented by a job execution object. Run the
ListJobExecutionsForJob command to list all job executions for a job. The following shows how to
list the executions for a job:

aws iot list-job-executions-for-job --job-id 010

The command returns a list of job executions:

{
 "executionSummaries": [
 {
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/thingOne",
 "jobExecutionSummary": {
 "status": "QUEUED",
 "lastUpdatedAt": 1486593196.378,
 "queuedAt": 1486593196.378,
 "executionNumber": 1234567890
 }
 },
 {
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/thingTwo",
 "jobExecutionSummary": {
 "status": "IN_PROGRESS",
 "lastUpdatedAt": 1486593345.659,
 "queuedAt": 1486593196.378,
 "startedAt": 1486593345.659,
 "executionNumber": 4567890123
 }
 }
]
}

Create and manage jobs using the CLI 1109

AWS IoT Core Developer Guide

List job executions for a thing

Run the ListJobExecutionsForThing command to list all job executions running on a thing. The
following shows how to list job executions for a thing:

aws iot list-job-executions-for-thing --thing-name thingOne

The command returns a list of job executions that are running or have run on the specified thing:

{
 "executionSummaries": [
 {
 "jobExecutionSummary": {
 "status": "QUEUED",
 "lastUpdatedAt": 1486687082.071,
 "queuedAt": 1486687082.071,
 "executionNumber": 9876543210
 },
 "jobId": "013"
 },
 {
 "jobExecutionSummary": {
 "status": "IN_PROGRESS",
 "startAt": 1486685870.729,
 "lastUpdatedAt": 1486685870.729,
 "queuedAt": 1486685870.729,
 "executionNumber": 1357924680
 },
 "jobId": "012"
 },
 {
 "jobExecutionSummary": {
 "status": "SUCCEEDED",
 "startAt": 1486678853.415,
 "lastUpdatedAt": 1486678853.415,
 "queuedAt": 1486678853.415,
 "executionNumber": 4357680912
 },
 "jobId": "011"
 },
 {
 "jobExecutionSummary": {
 "status": "CANCELED",

Create and manage jobs using the CLI 1110

AWS IoT Core Developer Guide

 "startAt": 1486593196.378,
 "lastUpdatedAt": 1486593196.378,
 "queuedAt": 1486593196.378,
 "executionNumber": 2143174250
 },
 "jobId": "010"
 }
]
}

Describe job execution

Run the DescribeJobExecution command to get the status of a job execution. You must specify
a job ID and thing name and, optionally, an execution number to identify the job execution. The
following shows how to describe a job execution:

aws iot describe-job-execution --job-id 017 --thing-name thingOne

The command returns the JobExecution. For example:

{
 "execution": {
 "jobId": "017",
 "executionNumber": 4516820379,
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/thingOne",
 "versionNumber": 123,
 "createdAt": 1489084805.285,
 "lastUpdatedAt": 1489086279.937,
 "startedAt": 1489086279.937,
 "status": "IN_PROGRESS",
 "approximateSecondsBeforeTimedOut": 100,
 "statusDetails": {
 "status": "IN_PROGRESS",
 "detailsMap": {
 "percentComplete": "10"
 }
 }
 }
}

Create and manage jobs using the CLI 1111

https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecution.html

AWS IoT Core Developer Guide

Delete job execution

Run the DeleteJobExecution command to delete a job execution. You must specify a job ID, a thing
name, and an execution number to identify the job execution. The following shows how to delete a
job execution:

aws iot delete-job-execution --job-id 017 --thing-name thingOne --execution-number
 1234567890 --force|--no-force

The command displays no output.

By default, the status of the job execution must be QUEUED or in a terminal state (SUCCEEDED,
FAILED, REJECTED, TIMED_OUT, REMOVED, or CANCELED). Otherwise, an error occurs. To delete a
job execution with a status of IN_PROGRESS, you can set the force parameter to true.

Warning

When you delete a job execution with a status of IN_PROGRESS, the device that's executing
the job can't access job information or update the job execution status. Use caution and
make sure that the device can recover to a valid state.

Job templates

Use job templates to preconfigure jobs that you can deploy to multiple sets of target devices.
To deploy frequently performed remote actions to your devices, like rebooting or installing an
application, you can use templates to define standard configurations. To perform operations such
as deploying security patches and bug fixes, you can create templates from existing jobs.

When creating a job template, specify the following additional configurations and resources.

• Job properties

• Job documents and targets

• Rollout, scheduling, and cancel criteria

• Timeout and retry criteria

Job templates 1112

AWS IoT Core Developer Guide

Custom and AWS managed templates

Depending on the remote action that you want to perform, you can either create a custom job
template or use an AWS managed template. Use custom job templates to provide your own custom
job document and create reusable jobs to deploy to your devices. AWS managed templates are
job templates provided by AWS IoT Jobs for commonly performed actions. These templates have
a predefined job document for some remote actions so you don't have to create your own job
document. Managed templates help you create reusable jobs for faster launch to your devices.

Topics

• Use AWS managed templates to deploy common remote operations

• Create custom job templates

Use AWS managed templates to deploy common remote operations

AWS managed templates are job templates provided by AWS. They're used for frequently
performed remote actions such as rebooting, downloading a file, or installing an application on
your devices. These templates have a predefined job document for each remote action so you don't
have to create your own job document.

You can choose from a set of predefined configurations and create jobs using these templates
without writing any additional code. Using managed templates, you can view the job document
deployed to your fleets. You can create a job using these templates and create a custom job
template that you can reuse for your remote operations.

What do managed templates contain?

Each AWS managed template contains:

• The environment to run the commands in the job document.

• A job document that specifies the name of the operation and its parameters. For example, if you
use a Download file template, the operation name is Download file and the parameters can be:

• The URL of the file that you want to download to your device. This can be an internet resource
or a public or pre-signed Amazon Simple Storage Service((Amazon S3) URL.

• A local file path on the device to store the downloaded file.

For more information about the job documents and its parameters, see Managed template
remote actions and job documents.

Custom and AWS managed templates 1113

AWS IoT Core Developer Guide

Prerequisites

For your devices to run the remote actions specified by the managed template job document, you
must:

• Install the specific software on your device

Use your own device software and job handlers, or the AWS IoT Device Client. Depending on your
business case, you can also run them both so that they perform different functions.

• Use your own device software and job handlers

You can write your own code for the devices by using the AWS IoT Device SDK and its library
of handlers that support the remote operations. To deploy and run jobs, verify that the device
agent libraries have been installed correctly and are running on the devices.

You can also choose to use your own handlers that support the remote operations. For more
information, see Sample job handlers in the AWS IoT Device Client GitHub repository.

• Use the AWS IoT Device Client

Or, you can install and run the AWS IoT Device Client on your devices because it supports using
all managed templates directly from the console by default.

The Device Client is an open-source software written in C++ that you can compile and install
on your embedded Linux-based IoT devices. The Device Client has a base client and discrete
client-side features. The base client establishes connectivity with AWS IoT over MQTT protocol
and can connect with the different client-side features.

To perform remote operations on your devices, use the client-side Jobs feature of the Device
Client. This feature contains a parser to receive the job document and job handlers that
implement the remote actions specified in the job document. For more information about the
Device Client and its features, see AWS IoT Device Client.

When running on devices, the Device Client receives the job document and has a platform-
specific implementation that it uses to run commands in the document. For more information
about setting up the Device Client and using the Jobs feature, see AWS IoT tutorials.

• Use a supported environment

For each managed template, you'll find information about the environment that you can use
to run the remote actions. We recommend that you use the template with a supported Linux

Use AWS managed templates 1114

https://github.com/awslabs/aws-iot-device-client/tree/main/sample-job-handlers
https://github.com/awslabs/aws-iot-device-client#readme
https://docs.aws.amazon.com/iot/latest/developerguide/iot-tutorials.html

AWS IoT Core Developer Guide

environment as specified in the template. Use the AWS IoT Device Client to run the managed
template remote actions because it supports common microprocessors and Linux environments,
like Debian and Ubuntu.

Managed template remote actions and job documents

The following section lists the different AWS managed templates for AWS IoT Jobs, and describes
the remote actions that can be performed on the devices. The following section has information
about the job document and a description of the job document parameters for each remote action.
Your device-side software uses the template name and the parameters to perform the remote
action.

AWS managed templates accept input parameters for which you specify a value when creating a
job using the template. All managed templates have two optional input parameters in common:
runAsUser and pathToHandler. Except for the AWS-Reboot template, the templates require
additional input parameters for which you must specify a value when creating a job using the
template. These required input parameters vary depending on the template that you choose. For
example, if you choose the AWS-Download-File template, you must specify a list of packages to
install, and a URL to download files from.

Specify a value for the input parameters when using the AWS IoT console or the AWS Command
Line Interface (AWS CLI) to create a job that uses a managed template. When using the CLI,
provide these values by using the document-parameters object. For more information, see
documentParameters.

Note

Use document-parameters only when creating jobs from AWS managed templates. This
parameter can't be used with custom job templates or to create jobs from them.

The following shows a description of the common optional input parameters. You'll see a
description of other input parameters that each managed template requires in the next section.

runAsUser

This parameter specifies whether to run the job handler as another user. If it's not specified
during job creation, the job handler is run as the same user as the Device Client. When you run
the job handler as another user, specify a string value that's not longer than 256 characters.

Use AWS managed templates 1115

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html#iot-CreateJob-request-documentParameters
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html#iot-CreateJob-request-documentParameters

AWS IoT Core Developer Guide

pathToHandler

The path to the job handler running on the device. If it's not specified during job creation, the
Device Client uses the current working directory.

The following shows the different remote actions, their job documents, and parameters that they
accept. All these templates support the Linux environment for running the remote operation on
the device.

AWS–Download–File

Template name

AWS–Download–File

Template description

A managed template provided by AWS for downloading a file.

Input parameters

This template has the following required parameters. You can also specify the optional parameters
runAsUser and pathToHandler.

downloadUrl

The URL to download the file from. This can be an internet resource, an object in Amazon S3
that can be publicly accessed, or an object in Amazon S3 that can only be accessed by your
device using a presigned URL. For more information about using presigned URLs and granting
permissions, see Presigned URLs.

filePath

A local file path that shows the location in the device to store the downloaded file.

Device behavior

The device downloads the file from the specified location, verifies that the download is complete,
and stores it locally.

Job document

Use AWS managed templates 1116

AWS IoT Core Developer Guide

The following shows the job document and its latest version. The template shows the path to the
job handler and the shell script, download-file.sh, that the job handler must run to download
the file. It also shows the required parameters downloadUrl and filePath.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Download-File",
 "type": "runHandler",
 "input": {
 "handler": "download-file.sh",
 "args": [
 "${aws:iot:parameter:downloadUrl}",
 "${aws:iot:parameter:filePath}"
],
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Install–Application

Template name

AWS–Install–Application

Template description

A managed template provided by AWS for installing one or more applications.

Input parameters

This template has the following required parameter, packages. You can also specify the optional
parameters runAsUser and pathToHandler.

packages

A space-separated list of one or more applications to be installed.

Use AWS managed templates 1117

AWS IoT Core Developer Guide

Device behavior

The device installs the applications as specified in the job document.

Job document

The following shows the job document and its latest version. The template shows the path to
the job handler and the shell script, install-packages.sh, that the job handler must run to
download the file. It also shows the required parameter packages.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Install-Application",
 "type": "runHandler",
 "input": {
 "handler": "install-packages.sh",
 "args": [
 "${aws:iot:parameter:packages}"
],
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Reboot

Template name

AWS–Reboot

Template description

A managed template provided by AWS for rebooting your device.

Input parameters

This template has no required parameters. You can specify the optional parameters runAsUser
and pathToHandler.

Use AWS managed templates 1118

AWS IoT Core Developer Guide

Device behavior

The device reboots successfully.

Job document

The following shows the job document and its latest version. The template shows the path to the
job handler and the shell script, reboot.sh, that the job handler must run to reboot the device.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Reboot",
 "type": "runHandler",
 "input": {
 "handler": "reboot.sh",
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Remove–Application

Template name

AWS–Remove–Application

Template description

A managed template provided by AWS for uninstalling one or more applications.

Input parameters

This template has the following required parameter, packages. You can also specify the optional
parameters runAsUser and pathToHandler.

packages

Use AWS managed templates 1119

AWS IoT Core Developer Guide

A space-separated list of one or more applications to be uninstalled.

Device behavior

The device uninstalls the applications as specified in the job document.

Job document

The following shows the job document and its latest version. The template shows the path to
the job handler and the shell script, remove-packages.sh, that the job handler must run to
download the file. It also shows the required parameter packages.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Remove-Application",
 "type": "runHandler",
 "input": {
 "handler": "remove-packages.sh",
 "args": [
 "${aws:iot:parameter:packages}"
],
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Restart–Application

Template name

AWS–Restart–Application

Template description

A managed template provided by AWS for stopping and restarting one or more services.

Input parameters

Use AWS managed templates 1120

AWS IoT Core Developer Guide

This template has the following required parameter, services. You can also specify the optional
parameters runAsUser and pathToHandler.

Services

A space-separated list of one or more applications to be restarted.

Device behavior

The specified applications are stopped and then restarted on the device.

Job document

The following shows the job document and its latest version. The template shows the path to the
job handler and the shell script, restart-services.sh, that the job handler must run to restart
the system services. It also shows the required parameter services.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Restart-Application",
 "type": "runHandler",
 "input": {
 "handler": "restart-services.sh",
 "args": [
 "${aws:iot:parameter:services}"
],
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Start–Application

Template name

AWS-Start-Application

Use AWS managed templates 1121

AWS IoT Core Developer Guide

Template description

A managed template provided by AWS for starting one or more services.

Input parameters

This template has the following required parameter, services. You can also specify the optional
parameters runAsUser and pathToHandler.

services

A space-separated list of one or more applications to be started.

Device behavior

The specified applications start running on the device.

Job document

The following shows the job document and its latest version. The template shows the path to the
job handler and the shell script, start-services.sh, that the job handler must run to start the
system services. It also shows the required parameter services.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Start-Application",
 "type": "runHandler",
 "input": {
 "handler": "start-services.sh",
 "args": [
 "${aws:iot:parameter:services}"
],
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

Use AWS managed templates 1122

AWS IoT Core Developer Guide

AWS–Stop–Application

Template name

AWS–Stop–Application

Template description

A managed template provided by AWS for stopping one or more services.

Input parameters

This template has the following required parameter, services. You can also specify the optional
parameters runAsUser and pathToHandler.

services

A space-separated list of one or more applications to be stopped.

Device behavior

The specified applications stop running on the device.

Job document

The following shows the job document and its latest version. The template shows the path to the
job handler and the shell script, stop-services.sh, that the job handler must run to stop the
system services. It also shows the required parameter services.

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Stop-Application",
 "type": "runHandler",
 "input": {
 "handler": "stop-services.sh",
 "args": [
 "${aws:iot:parameter:services}"
],
 "path": "${aws:iot:parameter:pathToHandler}"

Use AWS managed templates 1123

AWS IoT Core Developer Guide

 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

AWS–Run–Command

Template name

AWS–Run–Command

Template description

A managed template provided by AWS for running a shell command.

Input parameters

This template has the following required parameter, command. You can also specify the optional
parameter runAsUser.

command

A comma separated string of command. Any comma contained in the command itself must be
escaped.

Device behavior

The device runs the shell command as specified in the job document.

Job document

The following shows the job document and its latest version. The template shows the path to the
job command and the command that you provided which the device will run.

{
 "version": "1.0",
 "steps": [
 {
 "action": {

Use AWS managed templates 1124

AWS IoT Core Developer Guide

 "name": "Run-Command",
 "type": "runCommand",
 "input": {
 "command": "${aws:iot:parameter:command}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

Topics

• Create a job from AWS managed templates by using the AWS Management Console

• Create a job from AWS managed templates by using the AWS CLI

Create a job from AWS managed templates by using the AWS Management
Console

Use the AWS Management Console to get information about AWS managed templates and create a
job by using these templates. You can then save the job you create as your own custom template.

Get details about managed templates

You can get information about the different managed templates that are available to use from the
AWS IoT console.

1. To see your available managed templates, go to the Job templates hub of the AWS IoT console
and choose the Managed templates tab.

2. To view details, choose a managed template.

The details page contains the following information:

• Name, description, and Amazon Resource Name (ARN) of the managed template.

• The environment on which the remote operations can be performed, such as Linux.

• The JSON job document that specifies the path to the job handler and the commands to run on
the device. For example, the following shows an example job document for the AWS-Reboot
template. The template shows the path to the job handler and the shell script, reboot.sh, that
the job handler must run to reboot the device.

Use AWS managed templates 1125

https://console.aws.amazon.com/iot/home#/jobtemplatehub

AWS IoT Core Developer Guide

{
 "version": "1.0",
 "steps": [
 {
 "action": {
 "name": "Reboot",
 "type": "runHandler",
 "input": {
 "handler": "reboot.sh",
 "path": "${aws:iot:parameter:pathToHandler}"
 },
 "runAsUser": "${aws:iot:parameter:runAsUser}"
 }
 }
]
}

For more information about the job document and its parameters for various remote actions, see
Managed template remote actions and job documents.

• The latest version of the job document.

Create a job using managed templates

You can use the AWS Management console to choose an AWS managed template to use to create a
job. This section shows you how.

You can also start the job creation workflow and then choose the AWS managed template that
you want to use while creating the job. For more information about this workflow, see Create and
manage jobs by using the AWS Management Console.

1. Choose your AWS managed template

Go to the Job templates hub of the AWS IoT console, choose the Managed templates tab, and
then choose your template.

2. Create a job using your managed template

1. In the details page of your template, choose Create job.

The console switches to the Custom job properties step of the Create job workflow where
your template configuration has been added.

Use AWS managed templates 1126

https://console.aws.amazon.com/iot/home#/jobtemplatehub

AWS IoT Core Developer Guide

2. Enter a unique alphanumeric job name, and optional description and tags, and then choose
Next.

3. Choose the things or thing groups as job targets that you want to run in this job.

4. In the Job document section, your template is displayed with its configuration settings
and input parameters. Enter values for the input parameters of your chosen template. For
example, if you chose the AWS-Download-File template:

• For downloadUrl, enter the URL of the file to download, for example:
https://example.com/index.html.

• For filePath, enter the path on the device to store the downloaded file, for example:
path/to/file.

You can also optionally enter values for the parameters runAsUser and pathToHandler.
For more information about the input parameters of each template, see Managed template
remote actions and job documents.

5. On the Job configuration page, choose the job type as continuous or a snapshot job.
A snapshot job is complete when it finishes its run on the target devices and groups. A
continuous job applies to thing groups and runs on any device that you add to a specified
target group.

6. Continue to add any additional configurations for your job and then review and create your
job. For information about the additional configurations, see:

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Create custom job templates from managed templates

You can use an AWS managed template and a custom job as a starting point to create your own
custom job template. To create a custom job template, first create a job from your AWS managed
template as described in the previous section.

You can then save the custom job as a template to create your own custom job template. To save
as template:

1. Go to the Job hub of the AWS IoT console and choose the job containing your managed
template.

2. Choose Save as a job template and then create your custom job template. For more information
about creating a custom job template, see Create a job template from an existing job.

Use AWS managed templates 1127

https://console.aws.amazon.com/iot/home#/jobhub

AWS IoT Core Developer Guide

Create a job from AWS managed templates by using the AWS CLI

Use the AWS CLI to get information about AWS managed templates and create a job by using these
templates. You can then save the job as a template and then create your own custom template.

List managed templates

The list-managed-job-templates AWS CLI command lists all of the job templates in your
AWS account.

 aws iot list-managed-job-templates

By default, running this command displays all available AWS managed templates and their details.

{
 "managedJobTemplates": [
 {
 "templateArn": "arn:aws:iot:region::jobtemplate/AWS-Reboot:1.0",
 "templateName": "AWS-Reboot",
 "description": "A managed job template for rebooting the device.",
 "environments": [
 "LINUX"
],
 "templateVersion": "1.0"
 },
 {
 "templateArn": "arn:aws:iot:region::jobtemplate/AWS-Remove-
Application:1.0",
 "templateName": "AWS-Remove-Application",
 "description": "A managed job template for uninstalling one or more
 applications.",
 "environments": [
 "LINUX"
],
 "templateVersion": "1.0"
 },
 {
 "templateArn": "arn:aws:iot:region::jobtemplate/AWS-Stop-Application:1.0",
 "templateName": "AWS-Stop-Application",
 "description": "A managed job template for stopping one or more system
 services.",

Use AWS managed templates 1128

https://docs.aws.amazon.com/cli/latest/reference/iot/list-managed-job-templates.html

AWS IoT Core Developer Guide

 "environments": [
 "LINUX"
],
 "templateVersion": "1.0"
 },

 ...

 {
 "templateArn": "arn:aws:iot:us-east-1::jobtemplate/AWS-Restart-
Application:1.0",
 "templateName": "AWS-Restart-Application",
 "description": "A managed job template for restarting one or more system
 services.",
 "environments": [
 "LINUX"
],
 "templateVersion": "1.0"
 }
]
}

For more information, see ListManagedJobTemplates.

Get details about a managed template

The describe-managed-job-template AWS CLI command gets details about a specified job
template. Specify the job template name and an optional template version. If the template version
is not specified, the predefined, default version is returned. The following shows an example of
running the command to get details about the AWS-Download-File template.

aws iot describe-managed-job-template \
 --template-name AWS-Download-File

The command displays the template details and ARN, its job document, and the
documentParameters parameter, which is a list of key-value pairs of input parameters of the
template. For information about the different templates and input parameters, see Managed
template remote actions and job documents.

Use AWS managed templates 1129

https://docs.aws.amazon.com/iot/latest/apireference/API_ListManagedJobTemplates.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-managed-job-template.html

AWS IoT Core Developer Guide

Note

The documentParameters object returned when you use this API must only be used when
creating jobs from AWS managed templates. The object must not be used for custom job
templates. For an example that shows how to use this parameter, see Create a job by using
managed templates.

{
 "templateName": "AWS-Download-File",
 "templateArn": "arn:aws:iot:region::jobtemplate/AWS-Download-File:1.0",
 "description": "A managed job template for downloading a file.",
 "templateVersion": "1.0",
 "environments": [
 "LINUX"
],
 "documentParameters": [
 {
 "key": "downloadUrl",
 "description": "URL of file to download.",
 "regex": "(.*?)",
 "example": "http://www.example.com/index.html",
 "optional": false
 },
 {
 "key": "filePath",
 "description": "Path on the device where downloaded file is written.",
 "regex": "(.*?)",
 "example": "/path/to/file",
 "optional": false
 },
 {
 "key": "runAsUser",
 "description": "Execute handler as another user. If not specified, then
 handler is executed as the same user as device client.",
 "regex": "(.){0,256}",
 "example": "user1",
 "optional": true
 },
 {
 "key": "pathToHandler",

Use AWS managed templates 1130

AWS IoT Core Developer Guide

 "description": "Path to handler on the device. If not specified, then
 device client will use the current working directory.",
 "regex": "(.){0,4096}",
 "example": "/path/to/handler/script",
 "optional": true
 }
],
 "document": "{\"version\":\"1.0\",\"steps\":[{\"action\":{\"name
\":\"Download-File\",\"type\":\"runHandler\",\"input\":{\"handler\":
\"download-file.sh\",\"args\":[\"${aws:iot:parameter:downloadUrl}\",
\"${aws:iot:parameter:filePath}\"],\"path\":\"${aws:iot:parameter:pathToHandler}\"},
\"runAsUser\":\"${aws:iot:parameter:runAsUser}\"}}]}"
}

For more information, see DescribeManagedJobTemplate.

Create a job by using managed templates

The create-job AWS CLI command can be used to create a job from a job template. It targets
a device named thingOne and specifies the Amazon Resource Name (ARN) of the managed
template to use as the basis for the job. You can override advanced configurations, such as timeout
and cancel configurations, by passing the associated parameters of the create-job command.

The example shows how to create a job that uses the AWS-Download-File template. It also
shows how to specify the input parameters of the template by using the document-parameters
parameter.

Note

Use the document-parameters object only with AWS managed templates. This object
must not be used with custom job templates.

aws iot create-job \
 --targets arn:aws:iot:region:account-id:thing/thingOne \
 --job-id "new-managed-template-job" \
 --job-template-arn arn:aws:iot:region::jobtemplate/AWS-Download-File:1.0 \
 --document-parameters downloadUrl=https://example.com/index.html,filePath=path/to/
file

Use AWS managed templates 1131

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeManagedJobTemplate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-job.html

AWS IoT Core Developer Guide

where:

• region is the AWS Region.

• account-id is the unique AWS account number.

• thingOne is the name of the IoT thing for which the job is targeted.

• AWS-Download-File:1.0 is the name of the managed template.

• https://example.com/index.html is the URL to download the file from.

• https://pathto/file/index is the path on the device to store the downloaded file.

Run the following command to create a job for the template, AWS-Download-File.

{
 "jobArn": "arn:aws:iot:region:account-id:job/new-managed-template-job",
 "jobId": "new-managed-template-job",
 "description": "A managed job template for downloading a file."
}

Create a custom job template from managed templates

1. Create a job using a managed template as described in the previous section.

2. Create a custom job template by using the ARN of the job that you created. For more
information, see Create a job template from an existing job.

Create custom job templates

You can create job templates by using the AWS CLI and the AWS IoT console. You can also create
jobs from job templates by using the AWS CLI, the AWS IoT console, and Fleet Hub for AWS IoT
Device Management web applications. For more information about working with job templates
in Fleet Hub applications, see Working with job templates in Fleet Hub for AWS IoT Device
Management.

Note

The total number of substitution patterns in a job document should be less than or equal
to ten.

Create custom job templates 1132

https://docs.aws.amazon.com/iot/latest/fleethubuserguide/aws-iot-monitor-technician-job-templates.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/aws-iot-monitor-technician-job-templates.html

AWS IoT Core Developer Guide

Topics

• Create custom job templates by using the AWS Management Console

• Create custom job templates by using the AWS CLI

Create custom job templates by using the AWS Management Console

This topic explains how to create, delete, and view details about job templates by using the AWS
IoT console.

Create a custom job template

You can either create an original custom job template or create a job template from an existing
job. You can also create a custom job template from an existing job that was created using an
AWS managed template. For more information, see Create custom job templates from managed
templates.

Create an original job template

1. Start creating your job template

1. Go to the Job templates hub of the AWS IoT console and choose the Custom templates tab.

2. Choose Create job template.

Note

You can also navigate to the Job templates page from the Related services page
under Fleet Hub.

2. Specify job template properties

In the Create job template page, enter an alphanumeric identifier for your job name and an
alphanumeric description to provide additional details about the template.

Note

We don't recommend using personally identifiable information in your job IDs or
descriptions.

Create custom job templates 1133

https://console.aws.amazon.com/iot/home#/jobtemplatehub

AWS IoT Core Developer Guide

3. Provide job document

Provide a JSON job file that is either stored in an S3 bucket or as an inline job document that
is specified within the job. This job file will become the job document when you create a job
using this template.

If the job file is stored in an S3 bucket, enter the S3 URL or choose Browse S3, and then
navigate to your job document and select it.

Note

You can select only S3 buckets in your current Region.

4. Continue to add any additional configurations for your job and then review and create your
job. For information about the additional, optional configurations, refer to the following links:

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Create a job template from an existing job

1. Choose your job

1. Go to the Job hub of the AWS IoT console and choose the job that you want to use as the
basis for your job template.

2. Choose Save as a job template.

Note

Optionally, you can choose a different job document or edit the advanced
configurations from the original job, and then choose Create job template. Your new
job template appears on the Job templates page.

2. Specify job template properties

In the Create job template page, enter an alphanumeric identifier for your job name and an
alphanumeric description to provide additional details about the template.

Create custom job templates 1134

https://console.aws.amazon.com/iot/home#/jobhub

AWS IoT Core Developer Guide

Note

The job document is the job file that you specified when creating the template. If the
job document is specified within the job instead of an S3 location, you can see the job
document in the details page of this job.

3. Continue to add any additional configurations for your job and then review and create your
job. For information about the additional configurations, see:

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Create a job from a custom job template

You can create a job from a custom job template by going to the details page of your job template
as described in this topic. You can also create a job or by choosing the job template you want to
use when running the job creation workflow. For more information, see Create and manage jobs by
using the AWS Management Console.

This topic shows how to create a job from the details page of a custom job template. You can
also create a job from an AWS managed template. For more information, see Create a job using
managed templates.

1. Choose your custom job template

Go to the Job templates hub of the AWS IoT console and choose the Custom templates tab,
and then choose your template.

2. Create a job using your custom template

To create a job:

1. In the details page of your template, choose Create job.

The console switches to the Custom job properties step of the Create job workflow where
your template configuration has been added.

2. Enter a unique alphanumeric job name, and optional description and tags, and then choose
Next.

3. Choose the things or thing groups as job targets that you want to run in this job.

Create custom job templates 1135

https://console.aws.amazon.com/iot/home#/jobtemplatehub

AWS IoT Core Developer Guide

In the Job document section, your template is displayed with its configuration settings. If
you want to use a different job document, choose Browse and select a different bucket and
document. Choose Next.

4. On the Job configuration page, choose the job type as continuous or a snapshot job.
A snapshot job is complete when it finishes its run on the target devices and groups. A
continuous job applies to thing groups and runs on any device that you add to a specified
target group.

5. Continue to add any additional configurations for your job and then review and create your
job. For information about the additional configurations, see:

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Note

When a job created from a job template updates the existing parameters provided by the
job template, those updated parameters will override the existing parameters provided by
the job template for that job.

You can also create jobs from job templates with Fleet Hub web applications. For information
about creating jobs in Fleet Hub, see Working with job templates in Fleet Hub for AWS IoT Device
Management.

Delete a job template

To delete a job template, first go to the Job templates hub of the AWS IoT console and choose the
Custom templates tab. Then, choose the job template you want to delete and choose Next.

Note

A deletion is permanent and the job template no longer appears on the Custom templates
tab.

Create custom job templates 1136

https://docs.aws.amazon.com/iot/latest/fleethubuserguide/aws-iot-monitor-technician-job-templates.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/aws-iot-monitor-technician-job-templates.html
https://console.aws.amazon.com/iot/home#/jobtemplatehub

AWS IoT Core Developer Guide

Create custom job templates by using the AWS CLI

This topic explains how to create, delete, and retrieve details about job templates by using the AWS
CLI.

Create a job template from scratch

The following AWS CLI command shows how to create a job using a job document (job-
document.json) stored in an S3 bucket and a role with permission to download files from
Amazon S3 (S3DownloadRole).

aws iot create-job-template \
 --job-template-id 010 \
 --document-source https://s3.amazonaws.com/my-s3-bucket/job-document.json \
 --timeout-config inProgressTimeoutInMinutes=100 \
 --job-executions-rollout-config "{ \"exponentialRate\": { \"baseRatePerMinute\":
 50, \"incrementFactor\": 2, \"rateIncreaseCriteria\": { \"numberOfNotifiedThings\":
 1000, \"numberOfSucceededThings\": 1000}}, \"maximumPerMinute\": 1000}" \
 --abort-config "{ \"criteriaList\": [{ \"action\": \"CANCEL\", \"failureType
\": \"FAILED\", \"minNumberOfExecutedThings\": 100, \"thresholdPercentage\": 20},
 { \"action\": \"CANCEL\", \"failureType\": \"TIMED_OUT\", \"minNumberOfExecutedThings
\": 200, \"thresholdPercentage\": 50}]}" \
 --presigned-url-config "{\"roleArn\":\"arn:aws:iam::123456789012:role/
S3DownloadRole\", \"expiresInSec\":3600}"

The optional timeout-config parameter specifies the amount of time each device has to finish
running the job. The timer starts when the job execution status is set to IN_PROGRESS. If the job
execution status isn't set to another terminal state before the time expires, it's set to TIMED_OUT.

The in-progress timer can't be updated and applies to all job launches for the job. Whenever a job
launch remains in the IN_PROGRESS state for longer than this interval, the job launch fails and
switches to the terminal TIMED_OUT status. AWS IoT also publishes an MQTT notification.

For more information about creating configurations about job rollouts and aborts, see Job rollout
and abort configuration.

Create custom job templates 1137

job-rollout-abort-scheduling.html
job-rollout-abort-scheduling.html

AWS IoT Core Developer Guide

Note

Job documents that are specified as Amazon S3 files are retrieved at the time you create
the job. If you change the contents of the Amazon S3 file you used as the source of your job
document after you create the job, what is sent to the targets of the job doesn't change.

Create a job template from an existing job

The following AWS CLI command creates a job template by specifying the Amazon Resource
Name (ARN) of an existing job. The new job template uses all of the configurations specified in the
job. Optionally, you can change any of the configurations in the existing job by using any of the
optional parameters.

aws iot create-job-template \
 --job-arn arn:aws:iot:region:123456789012:job/job-name \
 --timeout-config inProgressTimeoutInMinutes=100

Get details about a job template

The following AWS CLI command gets details about a specified job template.

aws iot describe-job-template \
 --job-template-id template-id

The command displays the following output.

{
 "abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": number,
 "thresholdPercentage": number

Create custom job templates 1138

AWS IoT Core Developer Guide

 }
]
 },
 "createdAt": number,
 "description": "string",
 "document": "string",
 "documentSource": "string",
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": number,
 "incrementFactor": number,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": number,
 "numberOfSucceededThings": number
 }
 },
 "maximumPerMinute": number
 },
 "jobTemplateArn": "string",
 "jobTemplateId": "string",
 "presignedUrlConfig": {
 "expiresInSec": number,
 "roleArn": "string"
 },
 "timeoutConfig": {
 "inProgressTimeoutInMinutes": number
 }
}

List job templates

The following AWS CLI command lists all of the job templates in your AWS account.

 aws iot list-job-templates

The command displays the following output.

{
 "jobTemplates": [

Create custom job templates 1139

AWS IoT Core Developer Guide

 {
 "createdAt": number,
 "description": "string",
 "jobTemplateArn": "string",
 "jobTemplateId": "string"
 }
],
 "nextToken": "string"
}

To retrieve additional pages of results, use the value of the nextToken field.

Delete a job template

The following AWS CLI command deletes a specified job template.

aws iot delete-job-template \
 --job-template-id template-id

The command displays no output.

Create a job from a custom job template

The following AWS CLI command creates a job from a custom job template. It targets a device
named thingOne and specifies the Amazon Resource Name (ARN) of the job template to use
as the basis for the job. You can override advanced configurations, such as timeout and cancel
configurations, by passing the associated parameters of the create-job command.

Warning

The document-parameters object must be used with the create-job command only
when creating jobs from AWS managed templates. This object must not be used with
custom job templates. For an example that shows how to create jobs using this parameter,
see Create a job by using managed templates.

aws iot create-job \

Create custom job templates 1140

AWS IoT Core Developer Guide

 --targets arn:aws:iot:region:123456789012:thing/thingOne \
 --job-template-arn arn:aws:iot:region:123456789012:jobtemplate/template-id

Job configurations

You can have the following additional configurations for each job that you deploy to the specified
targets.

• Rollout: Defines how many devices receive the job document every minute.

• Scheduling: Schedules a job for a future date and time in addition to using recurring
maintenance windows.

• Abort: Cancels a job in cases such as when some devices don't receive the job notification, or
your devices report failure for their job executions.

• Timeout: If there isn't a response from your job targets within a certain duration after their job
executions have started, the job can fail.

• Retry: Retries the job execution if your device reports failure when attempting to complete a job
execution, or if your job execution times out.

By using these configurations, you can monitor the status of your job execution and avoid a bad
update from being sent to an entire fleet.

Topics

• How job configurations work

• Specify additional configurations

How job configurations work

You use the rollout and abort configurations when you're deploying a job, and the timeout and
retry configurations for job execution. The following sections show more information about how
these configurations work.

Topics

• Job rollout, scheduling, and abort configurations

• Job execution timeout and retry configurations

Job configurations 1141

AWS IoT Core Developer Guide

Job rollout, scheduling, and abort configurations

You can use the job rollout, scheduling, and abort configurations to define how many devices
receive the job document, schedule a job rollout, and determine the criteria for canceling a job.

Job rollout configuration

You can specify how quickly targets are notified of a pending job execution. You can also create a
staged rollout to manage updates, reboots, and other operations. To specify how your targets are
notified, use job rollout rates.

Job rollout rates

You can create a rollout configuration by using either a constant rollout rate or an exponential
rollout rate. To specify the maximum number of job targets to inform per minute, use a constant
rollout rate.

AWS IoT jobs can be deployed using exponential rollout rates as various criteria and thresholds
are met. If the number of failed jobs matches a set of criteria that you specify, then you can
cancel the job rollout. You set the job rollout rate criteria when you create a job by using the
JobExecutionsRolloutConfig object. You also set the job abort criteria at job creation by
using the AbortConfig object.

The following example shows how rollout rates work. For example, a job rollout with a base rate of
50 per minute, increment factor of 2, and number of notified and succeeded devices each as 1,000,
would work as follows: The job will start at a rate of 50 job executions per minute and continue at
that rate until either 1,000 things have received job execution notifications, or 1,000 successful job
executions have occurred.

The following table illustrates how the rollout would proceed over the first four increments.

Rollout rate per minute 50 100 200 400

Number of notified devices or successful
job executions to satisfy a rate increase

1,000 2,000 3,000 4,000

Note

If you're at your max concurrent limit of 500 Jobs (isConcurrent = True), then all active
jobs will remain with a status of IN-PROGRESS and not roll out any new job executions

How job configurations work 1142

https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionsRolloutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AbortConfig.html

AWS IoT Core Developer Guide

until the number of concurrent jobs is 499 or less (isConcurrent = False). This applies
to snapshot and continuous jobs.
If isConcurrent = True, the job is currently rolling out job executions to all devices in
your target group. If isConcurrent = False, the job has completed the rollout of all job
executions to all devices in your target group. It will update its status state once all devices
in your target group reach a terminal state, or a threshold percentage of your target group
if you selected a job abort configuration. The Job level status states for isConcurrent =
True and isConcurrent = False are both IN_PROGRESS.
For more information about active and concurrent job limits, see Active and concurrent job
limits.

Job rollout rates for continuous jobs using dynamic thing groups

When you use a continuous job to roll out remote operations on your fleet, AWS IoT Jobs rolls
out job executions for devices in your target thing group. For new devices that are added to the
dynamic thing group, these job executions continue to roll out to those devices even after the job
has been created.

The rollout configuration can control the rollout rates only for devices that are added to the group
until job creation. After a job has been created, for any new devices, the job executions are created
in near real time as soon as the devices join the target group.

Job scheduling configuration

You can schedule a continuous or snapshot job up to a year in advance using a pre-determined
start time, end time, and end behavior for what will happen to each job execution upon reaching
the end time. Additionally, you can create an optional recurring maintenance window with a
flexible frequency, start time, and duration for continuous jobs to roll out a job document to all
devices within the target group.

Job scheduling configurations

Start time

The start time of a scheduled job is the future date and time that job will begin rollout of the job
document to all devices in the target group. Start time for a scheduled job applies to continuous
jobs and snapshot jobs. When a scheduled job is initially created, it maintains a status state of
SCHEDULED. Upon arriving at the startTime that you selected, it updates to IN_PROGRESS and

How job configurations work 1143

AWS IoT Core Developer Guide

begins the job document rollout. The startTime must be less than or equal to one year from the
initial date and time that you created the scheduled job.

For more information on the syntax for startTime when using an API command or the AWS CLI,
see Timestamp.

For a job with the optional scheduling configuration that takes place during a recurring
maintenance window in a location observing daylight savings time (DST), the time will change by
one hour when switching from DST to standard time and from standard time to DST.

Note

The time zone displayed in the AWS Management Console is your current system time
zone. However, these time zones will be converted into UTC in the system.

End time

The end time of a scheduled job is the future date and time that the job will stop rollout of the
job document to any remaining devices in the target group. End time for a scheduled job applies
to continuous jobs and snapshot jobs. After a scheduled job arrives at the selected endTime, and
all job executions have reached a terminal state, it updates its status state from IN_PROGRESS to
COMPLETED. The endTime must be less than or equal to two years from the initial date and time
that you created the scheduled job. The minimum duration between startTime and endTime is
30 minutes. Job execution retry attempts will occur until the job reaches the endTime, then the
endBehavior will dictate how to proceed.

For more information on the syntax for endTime when using an API command or the AWS CLI, see
Timestamp.

For a job with the optional scheduling configuration that takes place during a recurring
maintenance window in a location observing daylight savings time (DST), the time will change by
one hour when switching from DST to standard time and from standard time to DST.

Note

The time zone displayed in the AWS Management Console is your current system time
zone. However, these time zones will be converted into UTC in the system.

How job configurations work 1144

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-types.html#parameter-type-timestamp
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-types.html#parameter-type-timestamp

AWS IoT Core Developer Guide

End behavior

The end behavior of a scheduled job determines what happens to the job and all unfinished job
executions when the job reaches the selected endTime.

The following lists the end behaviors that you can select from when creating the job or job
template:

• STOP_ROLLOUT

• STOP_ROLLOUT stops the rollout of the job document to all remaining devices in the target
group for the job. Additionally, all QUEUED and IN_PROGRESS job executions will continue
until they reach a terminal state. This is the default end behavior unless you select CANCEL or
FORCE_CANCEL.

• CANCEL

• CANCEL stops the rollout of the job document to all remaining devices in the target group for
the job. Additionally, all QUEUED job executions will be cancelled while all IN_PROGRESS job
executions will continue until they reach a terminal state.

• FORCE_CANCEL

• FORCE_CANCEL stops the rollout of the job document to all remaining devices in the target
group for the job. Additionally, all QUEUED and IN_PROGRESS job executions will be cancelled.

Note

To select an endbehavior, you must select an endtime

Max duration

The max duration of a scheduled job must be less than or equal to two years regardless of the
startTime and endTime.

The following table lists common duration scenarios of a scheduled job:

How job configurations work 1145

AWS IoT Core Developer Guide

Scheduled Job
example number

startTime endTime Max duration

1 Immediately after
initial job creation.

One year after initial
job creation.

One year

2 One month after
initial job creation.

13 months after
initial job creation.

One year

3 One year after initial
job creation.

Two years after initial
job creation.

One year

4 Immediately after
initial job creation.

Two years after initial
job creation.

Two years

Recurring maintenance window

The maintenance window is an optional configuration within the scheduling configuration
of the AWS Management Console and SchedulingConfig within the CreateJob and
CreateJobTemplate APIs. You can set up a recurring maintenance window with a predetermined
start time, duration, and frequency (daily, weekly, or monthly) that the maintenance window
occurs. Maintenance windows only apply to continuous jobs. The maximum duration of a recurring
maintenance window is 23 hours, 50 minutes.

The following diagram illustrates the job status states for various scheduled job scenarios with an
optional maintenance window:

How job configurations work 1146

AWS IoT Core Developer Guide

For more information about job status states, see Jobs and job execution states.

Note

If a job arrives at the endTime during a maintenance window, it will update from
IN_PROGRESS to COMPLETED. Additionally, any remaining job executions will follow the
endBehavior for the job.

Cron expressions

For scheduled jobs rolling out the job document during a maintenance window with a custom
frequency, the custom frequency is entered using a cron expression. A cron expression has six
required fields, which are separated by white space.

Syntax

cron(fields)

How job configurations work 1147

AWS IoT Core Developer Guide

Field Values Wildcards

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day-of-month 1-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? L #

Year 1970-2199 , - * /

Wildcards

• The , (comma) wildcard includes additional values. In the Month field, JAN,FEB,MAR would
include January, February, and March.

• The - (dash) wildcard specifies ranges. In the Day field, 1-15 would include days 1 through 15 of
the specified month.

• The * (asterisk) wildcard includes all values in the field. In the Hours field, * would include every
hour. You can't use * in both the Day-of-month and Day-of-week fields. If you use it in one, you
must use ? in the other.

• The / (forward slash) wildcard specifies increments. In the Minutes field, you could enter 1/10
to specify every tenth minute, starting from the first minute of the hour (for example, the 11th,
21st, and 31st minute, and so on).

• The ? (question mark) wildcard specifies one or another. In the Day-of-month field, you could
enter 7 and if you didn't care what day of the week the 7th was, you could enter ? in the Day-of-
week field.

• The L wildcard in the Day-of-month or Day-of-week fields specifies the last day of the month or
week.

• The W wildcard in the Day-of-month field specifies a weekday. In the Day-of-month field, 3W
specifies the weekday closest to the third day of the month.

• The # wildcard in the Day-of-week field specifies a certain instance of the specified day of the
week within a month. For example, 3#2 would be the second Tuesday of the month: the 3 refers

How job configurations work 1148

AWS IoT Core Developer Guide

to Tuesday because it is the third day of each week, and the 2 refers to the second day of that
type within the month.

Note

If you use a '#' character, you can define only one expression in the day-of-week field. For
example, "3#1,6#3" isn't valid because it's interpreted as two expressions.

Restrictions

• You can't specify the Day-of-month and Day-of-week fields in the same cron expression. If you
specify a value (or a *) in one of the fields, you must use a ?in the other.

Examples

Refer to the following sample cron strings when using a cron expression for the startTime of a
recurring maintenance window.

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 10 * * ? * Run at
10:00
am (UTC)
every day

15 12 * * ? * Run at
12:15
pm (UTC)
every day

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC)
every
Monday

How job configurations work 1149

AWS IoT Core Developer Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

through
Friday

0 8 1 * ? * Run at
8:00 am
(UTC)
every first
day of the
month

Recurring maintenance window duration end logic

When a job rollout during a maintenance window reaches the end of the current maintenance
window occurrence duration, the following actions will occur:

• The Job will cease all rollouts of the job document to any remaining devices in your target group.
It will resume at the startTime of the next maintenance window.

• All job executions with a status of QUEUED will remain in QUEUED until the startTime of the
next maintenance window occurrence. In the next window, they can switch to IN_PROGRESS
when the device is ready to begin performing the actions specified in the job document.

• All job executions with a status of IN_PROGRESS will continue performing the actions specified
in the job document until they reach a terminal state. Any retry attempts as specified in
JobExecutionsRetryConfig will take place at the startTime of the next maintenance
window.

Job abort configuration

Use this configuration to create a criteria to cancel a job when a threshold percentage of devices
meet that criteria. For example, you can use this configuration to cancel a job in the following
cases:

• When a threshold percentage of devices don't receive the job execution notifications, such as
when your device is incompatible for an Over-The-Air (OTA) update. In this case, your device can
report a REJECTED status.

How job configurations work 1150

AWS IoT Core Developer Guide

• When a threshold percentage of devices report failure for their job executions, such as when your
device encounters a disconnection when attempting to download the job document from an
Amazon S3 URL. In such cases, your device must be programmed to report the FAILURE status
to AWS IoT.

• When a TIMED_OUT status is reported because the job execution times out for a threshold
percentage of devices after the job executions have started.

• When there are multiple retry failures. When you add a retry configuration, each retry attempt
can incur additional charges to your AWS account. In such cases, canceling the job can cancel
queued job executions and avoid retry attempts for these executions. For more information
about the retry configuration and using it with the abort configuration, see Job execution
timeout and retry configurations.

You can set up a job abort condition by using the AWS IoT console or the AWS IoT Jobs API.

Job execution timeout and retry configurations

Use the job execution timeout configuration to send you Jobs notifications when a job execution
has been in progress for longer than the set duration. Use the job execution retry configuration to
retry the execution when the job fails or times out.

Job execution timeout configuration

Use the job execution timeout configuration to notify you whenever a job execution gets stuck in
the IN_PROGRESS state for an unexpectedly long period of time. When the job is IN_PROGRESS,
you can monitor the progress of your job execution.

Timers for job timeouts

There are two types of timers: in-progress timers and step timers.

In-progress timers

When you create a job or a job template, you can specify a value for the in-progress timer that's
between 1 minute and 7 days. You can update the value of this timer until the start of your
job execution. After your timer starts, it can't be updated, and the timer value applies to all job
executions for the job. Whenever a job execution remains in the IN_PROGRESS status for longer
than this interval, the job execution fails and switches to the terminal TIMED_OUT status. AWS IoT
also publishes an MQTT notification.

How job configurations work 1151

AWS IoT Core Developer Guide

Step timer

You can also set a step timer that applies to only the job execution that you want to update. This
timer has no effect on the in-progress timer. Each time you update a job execution, you can set a
new value for the step timer. You can also create a new step timer when starting the next pending
job execution for a thing. If the job execution remains in the IN_PROGRESS status for longer than
the step timer interval, it fails and switches to the terminal TIMED_OUT status.

Note

You can set the in-progress timer by using the AWS IoT console or the AWS IoT Jobs API. To
specify the step timer, use the API.

How timers work for job timeouts

The following illustrates the ways in which in-progress timeouts and step timeouts interact with
each other in a 20-minute timeout period.

The following shows the different steps:

1. 12:00

How job configurations work 1152

AWS IoT Core Developer Guide

A new job is created and an in-progress timer for twenty minutes is started when creating a job.
The in-progress timer starts to run and the job execution switches to IN_PROGRESS status.

2. 12:05 PM

A new step timer with a value of 7 minutes is created. The job execution will now time out at
12:12 PM.

3. 12:10 PM

A new step timer with a value of 5 minutes is created. When a new step timer is created, the
previous step timer is discarded, and the job execution will now time out at 12:15 PM.

4. 12:13 PM

A new step timer with a value of 9 minutes is created. The previous step timer is discarded and
the job execution will now time out at 12:20 PM because the in-progress timer times out at
12:20 PM. The step timer can't exceed the in-progress timer's absolute bound.

Job execution retry configuration

You can use the retry configuration to retry the job execution when a certain set of criteria is met.
A retry can be attempted when a job times out or when the device fails. To retry execution because
of a timeout failure, you must enable the timeout configuration.

How to use the retry configuration

Use the following steps to retry the configuration:

1. Determine whether to use the retry configuration for FAILED, TIMED_OUT, or both failure
criteria. For the TIMED_OUT status, after the status is reported, AWS IoT Jobs automatically
retries the job execution for the device.

2. For the FAILED status, check whether your job execution failure can be retried. If it's retryable,
program your device to report a FAILURE status to AWS IoT. The following section describes
more about retryable and non-retryable failures.

3. Specify the number of retries to use for each failure type by using the preceding information.
For a single device, you can specify up to 10 retries for both failure types combined. The retry
attempts stop automatically when an execution succeeds or when it reaches the specified
number of attempts.

How job configurations work 1153

AWS IoT Core Developer Guide

4. Add an abort configuration to cancel the job if there are repeated retry failures to avoid
additional charges from being incurred with a large number of retry attempts.

Note

When a job reaches the end of a recurring maintenance window occurrence, all
IN_PROGRESS job executions will continue performing actions identified in the job
document until they reach a terminal state. If a job execution reaches a terminal state of
FAILED or TIMED_OUT outside of a maintenance window, a retry attempt will occur in the
next window if the attempts aren't exhausted. At the startTime of the next maintenance
window occurrence, a new job execution will be created and enter a status state of QUEUED
until the device is ready to begin.

Retry and abort configuration

Each retry attempt incurs additional charges to your AWS account. To avoid incurring additional
charges from repeated retry failures, we recommend adding an abort configuration. For more
information about pricing, see AWS IoT Device Management pricing.

You might encounter multiple retry failures when a high threshold percentage of your devices
either time out or report failure. In this case, you can use the abort configuration to cancel the job
and avoid any queued job executions or further retry attempts.

Note

When the abort criteria is met for canceling a job execution, only QUEUED job executions
are canceled. Any queued retries for the device will not be attempted. However, current job
executions that have an IN_PROGRESS status will not be canceled.

Before retrying a failed job execution, we also recommend that you check whether your job
execution failure is retryable, as described in the following section.

Retry for failure type of FAILED

To attempt retries for failure type of FAILED, your devices must be programmed to report the
FAILURE status for a failed job execution to AWS IoT. Set the retry configuration with the criteria
to retry FAILED job executions and specify the number of retries to be performed. When AWS IoT

How job configurations work 1154

https://aws.amazon.com/iot-device-management/pricing/

AWS IoT Core Developer Guide

Jobs detects the FAILURE status, it will then automatically attempt to retry the job execution for
the device. The retries continue until the job execution succeeds or when it reaches the maximum
number of retry attempts.

You can track each retry attempt and the job that's running on these devices. By tracking the
execution status, after the specified number of retries have been attempted, you can use your
device to report failures and initiate another retry attempt.

Retryable and non-retryable failures

Your job execution failure can be retryable or non-retryable. Each retry attempt can incur charges
to your AWS account. To avoid incurring additional charges from multiple retry attempts, first
consider checking whether your job execution failure is retryable. An example of retryable failure
includes a connection error that your device encounters while attempting to download the job
document from an Amazon S3 URL. If your job execution failure is retryable, program your device
to report a FAILURE status in case the job execution fails. Then, set the retry configuration to retry
FAILED executions.

If the execution can't be retried, to avoid retrying and potentially incurring additional charges to
your account, we recommend that you program the device to report a REJECTED status to AWS
IoT. Examples of non-retryable failure include when your device is incompatible of receiving a job
update, or when it experiences a memory error while executing a job. In these cases, AWS IoT Jobs
will not retry the job execution because it retries the job execution only when it detects a FAILED
or TIMED_OUT status.

After you've determined that a job execution failure is retryable, if a retry attempt still fails,
consider checking the device logs.

Note

When a job with the optional scheduling configuration reaches its endTime, the selected
endBehavior will stop the rollout of the job document to all remaining devices in the
target group and dictate how to proceed with the remaining job executions. The attempts
are retried if selected via the retry configuration.

Retry for failure type of TIMEOUT

If you enable timeout when creating a job, then AWS IoT Jobs will attempt to retry the job
execution for the device when the status changes from IN_PROGRESS to TIMED_OUT. This status

How job configurations work 1155

AWS IoT Core Developer Guide

change can occur when the in-progress timer times out, or when a step timer that you specify is in
IN_PROGRESS and then times out. The retries continue until the job execution succeeds, or when it
reaches the maximum number of retry attempts for this failure type.

Continuous jobs and thing group membership updates

For continuous jobs that have a job status as IN_PROGRESS, the number of retry attempts is reset
to zero when there are updates to a thing's group membership. For example, consider that you
specified five retry attempts and three retries have already been performed. If a thing is now
removed from the thing group and then rejoins the group, such as with dynamic thing groups, the
number of retry attempts is reset to zero. You can now perform five retry attempts for your thing
group instead of the two attempts that were remaining. In addition, when a thing is removed from
the thing group, additional retry attempts are canceled.

Specify additional configurations

When you create a job or job template, you can specify these additional configurations. The
following shows when you can specify these configurations.

• When creating a custom job template. The additional configuration settings that you specify will
be saved when you create a job from the template.

• When creating a custom job by using a job file. The job file can be a JSON file that's uploaded in
an S3 bucket.

• When creating a custom job by using a custom job template. If the template already has these
settings specified, you can either reuse them or override them by specifying new configuration
settings.

• When creating a custom job by using an AWS managed template.

Topics

• Specify job configurations by using the AWS Management Console

• Specify job configurations by using the AWS IoT Jobs API

Specify job configurations by using the AWS Management Console

You can add the different configurations for your job by using the AWS IoT console. After you've
created a job, you can see the status details of your job configurations on the job details page.

Specify additional configurations 1156

AWS IoT Core Developer Guide

For more information about the different configurations and how they work, see How job
configurations work.

Add the job configurations when you create a job or a job template.

When creating a custom job template

To specify the rollout configuration when creating a custom job template

1. Go to the Job templates hub of the AWS IoT console and choose Create job template.

2. Specify the job template properties, provide the job document, expand the configuration that
you want to add, and then specify the configuration parameters.

When creating a custom job

To specify the rollout configuration when creating a custom job

1. Go to the Job hub of the AWS IoT console and choose Create job.

2. Choose Create a custom job and specify the job properties, targets, and whether to use a job
file or a template for the job document. You can use a custom template or an AWS managed
template.

3. Choose the job configuration and then expand Rollout configuration to specify whether to use
a Constant rate or Exponential rate. Then, specify the configuration parameters.

The next section shows the parameters that you can specify for each configuration.

Rollout configuration

You can specify whether to use a constant rollout rate or an exponential rate.

• Set a constant rollout rate

To set a constant rate for job executions, choose Constant rate, then specify the Maximum per
minute for the upper limit of the rate. This value is optional and ranges from 1 to 1000. If you
don't set it, it uses 1000 as the default value.

• Set an exponential rollout rate

To set an exponential rate, choose Exponential rate and then specify these parameters:

Specify additional configurations 1157

https://console.aws.amazon.com/iot/home#/jobtemplatehub
https://console.aws.amazon.com/iot/home#/jobhub

AWS IoT Core Developer Guide

• Base rate per minute

The rate at which the jobs are executed until the Number of notified devices or Number of
succeeded devices threshold is met for Rate increase criteria.

• Increment factor

The exponential factor by which the rollout rate increases after the Number of notified
devices or Number of succeeded devices threshold is met for Rate increase criteria.

• Rate increase criteria

The threshold for either Number of notified devices or Number of succeeded devices.

Abort configuration

Choose Add new configuration and specify the following parameters for each configuration:

• Failure type

Specifies the failure types that initiate a job abort. These include FAILED, REJECTED,
TIMED_OUT, or ALL.

• Increment factor

Specifies the number of completed job executions that must occur before the job abort criteria
has been met.

• Threshold percentage

Specifies the total number of executed things that initiate a job abort.

Scheduling configuration

Each job can start immediately upon initial creation, scheduled to start at a later date and time, or
take place during a recurring maintenance window.

Choose Add new configuration and specify the following parameters for each configuration:

• Job start

Specify the date and time when the job will start.

• Recurring maintenance window

Specify additional configurations 1158

AWS IoT Core Developer Guide

A recurring maintenance window defines the specific date and time that a job can deploy the job
document to the target devices in the job. The maintenance window can repeat daily, weekly,
monthly, or a custom day and time recurrence.

• Job end

Specify the date and time when the job will end.

• Job end behavior

Select an end behavior for all unfinished job executions when the job is over.

Note

When a job with the optional scheduling configuration and selected end time reaches
the end time, the job stops the rollout to all remaining devices in the target group. It also
leverages the selected end behavior on how to proceed with the remaining job executions
and their retry attempts per the retry configuration.

Timeout configuration

By default, there's no timeout and your job runs canceled or deleted. To use timeouts, choose
Enable timeout, and then specify a timeout value between 1 minute and 7 days.

Retry configuration

Note

After a job has been created, the number of retries can't be updated. You can only remove
the retry configuration for all failure types. When you're creating a job, consider the
appropriate number of retries to use for your configuration. To avoid incurring excess costs
because of potential retry failures, add an abort configuration.

Choose Add new configuration and specify the following parameters for each configuration:

• Failure type

Specify additional configurations 1159

AWS IoT Core Developer Guide

Specifies the failure types that should trigger a job execution retry. These include Failed,
Timeout, and All.

• Number of retries

Specifies the number of retries for the chosen Failure type. For both failure types combined, up
to 10 retries can be attempted.

Specify job configurations by using the AWS IoT Jobs API

You can use the CreateJob or the CreateJobTemplate API to specify the different job
configurations. The following sections describe how to add these configurations. After you've
added the configurations, you can use JobExecutionSummary and JobExecutionSummaryForJob to
view their status.

For more information about the different configurations and how they work, see How job
configurations work.

Rollout configuration

You can specify a constant rollout rate or an exponential rollout rate for your rollout configuration.

• Set a constant rollout rate

To set a constant rollout rate, use the JobExecutionsRolloutConfig object to add the
maximumPerMinute parameter to the CreateJob request. This parameter specifies the upper
limit of the rate at which job executions can occur. This value is optional and ranges from 1 to
1000. If you don't set the value, it uses 1000 as the default value.

 "jobExecutionsRolloutConfig": {
 "maximumPerMinute": 1000
 }

• Set an exponential rollout rate

To set a variable job rollout rate, use the JobExecutionsRolloutConfig object. You
can configure the ExponentialRolloutRateproperty when you run the CreateJob
API operation. The following example sets an exponential rollout rate by using the
exponentialRate parameter. For more information about the parameters, see
ExponentialRolloutRate.

Specify additional configurations 1160

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummary.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummaryForJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionsRolloutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionsRolloutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ExponentialRolloutRate.html

AWS IoT Core Developer Guide

{
...
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": 50,
 "incrementFactor": 2,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": 1000,
 "numberOfSucceededThings": 1000
 },
 "maximumPerMinute": 1000
 }
 }
...
}

Where the parameter:

baseRatePerMinute

Specifies the rate at which the jobs are executed until the numberOfNotifiedThings or
numberOfSucceededThings threshold has been met.

incrementFactor

Specifies the exponential factor by which the rollout rate increases after the
numberOfNotifiedThings or numberOfSucceededThings threshold has been met.

rateIncreaseCriteria

Specifies either the numberOfNotifiedThings or numberOfSucceededThings threshold.

Abort configuration

To add this configuration by using the API, specify the AbortConfig parameter when you run the
CreateJob, or the CreateJobTemplate API operation. The following example shows an abort
configuration for a job rollout that was experiencing multiple failed executions, as specified with
the CreateJob API operation.

Specify additional configurations 1161

https://docs.aws.amazon.com/iot/latest/apireference/API_AbortConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html

AWS IoT Core Developer Guide

Note

Deleting a job execution affects the computation value of the total completed execution.
When a job aborts, the service creates an automated comment and reasonCode to
differentiate a user-driven cancellation from a job abort cancellation.

 "abortConfig": {
 "criteriaList": [
 {
 "action": "CANCEL",
 "failureType": "FAILED",
 "minNumberOfExecutedThings": 100,
 "thresholdPercentage": 20
 },
 {
 "action": "CANCEL",
 "failureType": "TIMED_OUT",
 "minNumberOfExecutedThings": 200,
 "thresholdPercentage": 50
 }
]
 }

Where the parameter:

action

Specifies the action to take when the abort criteria has been met. This parameter is required,
and CANCEL is the only valid value.

failureType

Specifies which failure types should initiate a job abort. Valid values are FAILED, REJECTED,
TIMED_OUT, and ALL.

minNumberOfExecutedThings

Specifies the number of completed job executions that must occur before the job abort criteria
has been met. In this example, AWS IoT doesn't check to see if a job abort should occur until at
least 100 devices have completed job executions.

Specify additional configurations 1162

AWS IoT Core Developer Guide

thresholdPercentage

Specifies the total number of things for which jobs are executed that can initiate a job abort. In
this example, AWS IoT checks sequentially and initiates a job abort if the threshold percentage
is met. If at least 20% of the complete executions failed after 100 executions are complete,
it cancels the job rollout. If this criteria isn't met, AWS IoT then checks if at least 50% of
completed executions timed out after 200 executions are complete. If this is the case, it cancels
the job rollout.

Scheduling configuration

To add this configuration by using the API, specify the optional SchedulingConfig when you run
the CreateJob, or the CreateJobTemplate API operation.

 "SchedulingConfig": {
 "endBehavior": string
 "endTime": string
 "maintenanceWindows": string
 "startTime": string
 }

Where the parameter:

startTime

Specifies the date and time when the job will start.

endTime

Specifies the date and time when the job will end.

maintenanceWindows

Specifies if an optional maintenance window was selected for the scheduled job to rollout the
job document to all devices in the target group. The string format for maintenanceWindow is
YYYY/MM/DD for the date and hh:mm for the time.

endBehavior

Specifies the job behavior for a scheduled job upon reaching the endTime.

Specify additional configurations 1163

https://docs.aws.amazon.com/iot/latest/apireference/API_SchedulingConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html

AWS IoT Core Developer Guide

Note

The optional SchedulingConfig for a job is viewable in the DescribeJob and
DescribeJobTemplate APIs.

Timeout configuration

To add this configuration by using the API, specify the TimeoutConfig parameter when you run
the CreateJob, or the CreateJobTemplate API operation.

To use the timeout configuration

1. To set the in-progress timer when you're creating a job or job template, set a value for the
inProgressTimeoutInMinutes property of the optional TimeoutConfig object.

 "timeoutConfig": {
 "inProgressTimeoutInMinutes": number
 }

2. To specify a step timer for a job execution, set a value for stepTimeoutInMinutes when you
call UpdateJobExecution. The step timer applies only to the job execution that you update. You
can set a new value for this timer each time you update a job execution.

Note

UpdateJobExecution can discard a step timer that's already been created by creating
a new step timer with a value of -1.

{
 ...
 "statusDetails": {
 "string" : "string"
 },
 "stepTimeoutInMinutes": number
}

3. To create a new step timer, you can also call the StartNextPendingJobExecution API operation.

Specify additional configurations 1164

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TimeoutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TimeoutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_StartNextPendingJobExecution.html

AWS IoT Core Developer Guide

Retry configuration

Note

When you're creating a job, consider the appropriate number of retries to use for your
configuration. To avoid incurring excess costs because of potential retry failures, add an
abort configuration. After a job has been created, the number of retries can't be updated.
You can only set the number of retries to 0 by using the UpdateJob API operation.

To add this configuration by using the API, specify the jobExecutionsRetryConfig parameter
when you run the CreateJob, or the CreateJobTemplate API operation.

{
...
 "jobExecutionsRetryConfig": {
 "criteriaList": [
 {
 "failureType": "string",
 "numberOfRetries": number
 }
]
 }
...
}

Where criteriaList is an array specifying the list of criteria that determines the number of retries
permitted for each failure type for a job.

Devices and jobs

Devices can communicate with AWS IoT Jobs using MQTT, HTTP Signature Version 4, or HTTP TLS.
To determine the endpoint to use when your device communicates with AWS IoT Jobs, run the
DescribeEndpoint command. For example, if you run this command:

aws iot describe-endpoint --endpoint-type iot:Data-ATS

you get a result similar to the following:

Devices and jobs 1165

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_jobExecutionsRetryConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html

AWS IoT Core Developer Guide

{
 "endpointAddress": "a1b2c3d4e5f6g7-ats.iot.us-west-2.amazonaws.com"
}

Using the MQTT protocol

Devices can communicate with AWS IoT Jobs using MQTT protocol. Devices subscribe to MQTT
topics to be notified of new jobs and to receive responses from the AWS IoT Jobs service. Devices
publish on MQTT topics to query or update the state of a job launch. Each device has its own
general MQTT topic. For more information about publishing and subscribing to MQTT topics, see
Device communication protocols.

With this method of communication, your device uses its device-specific certificate and private key
to authenticate with AWS IoT Jobs.

Your devices can subscribe to the following topics. thing-name is the name of the thing
associated with the device.

• $aws/things/thing-name/jobs/notify

Subscribe to this topic to notify you when a job launch is added or removed from the list of
pending job launches.

• $aws/things/thing-name/jobs/notify-next

Subscribe to this topic to notify you when the next pending job execution has changed.

• $aws/things/thing-name/jobs/request-name/accepted

The AWS IoT Jobs service publishes success and failure messages on an MQTT topic. The topic
is formed by appending accepted or rejected to the topic used to make the request. Here,
request-name is the name of a request such as Get and the topic can be: $aws/things/
myThing/jobs/get. AWS IoT Jobs then publishes success messages on the $aws/things/
myThing/jobs/get/accepted topic.

• $aws/things/thing-name/jobs/request-name/rejected

Here, request-name is the name of a request such as Get. If the request failed, AWS IoT Jobs
publishes failure messages on the $aws/things/myThing/jobs/get/rejected topic.

You can also use the following HTTPS API operations:

Devices and jobs 1166

AWS IoT Core Developer Guide

• Update the status of a job execution by calling the UpdateJobExecution API.

• Query the status of a job execution by calling the DescribeJobExecution API.

• Retrieve a list of pending job executions by calling the GetPendingJobExecutions API.

• Retrieve the next pending job execution by calling the DescribeJobExecution API with jobId
as $next.

• Get and start the next pending job execution by calling the StartNextPendingJobExecution
API.

Using HTTP Signature Version 4

Devices can communicate with AWS IoT Jobs using HTTP Signature Version 4 on port 443. This
is the method used by the AWS SDKs and CLI. For more information about those tools, see AWS
CLI Command Reference: iot-jobs-data or AWS SDKs and Tools and refer to the IotJobsDataPlane
section for your preferred language.

With this method of communication, your device uses IAM credentials to authenticate with AWS
IoT Jobs.

The following commands are available using this method:

• DescribeJobExecution

aws iot-jobs-data describe-job-execution ...

• GetPendingJobExecutions

aws iot-jobs-data get-pending-job-executions ...

• StartNextPendingJobExecution

aws iot-jobs-data start-next-pending-job-execution ...

• UpdateJobExecution

aws iot-jobs-data update-job-execution ...

Using HTTP TLS

Devices can communicate with AWS IoT Jobs using HTTP TLS on port 8443 using a third-party
software client that supports this protocol.

Devices and jobs 1167

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_StartNextPendingJobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/index.html
https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/index.html
http://aws.amazon.com/tools/#sdk

AWS IoT Core Developer Guide

With this method, your device uses X.509 certificate-based authentication (for example, its device-
specific certificate and private key).

The following commands are available using this method:

• DescribeJobExecution

• GetPendingJobExecutions

• StartNextPendingJobExecution

• UpdateJobExecution

Programming devices to work with jobs

The examples in this section use MQTT to illustrate how a device works with the AWS IoT Jobs
service. Or, you could use the corresponding API or CLI commands. For these examples, we assume
a device called MyThing that subscribes to the following MQTT topics:

• $aws/things/MyThing/jobs/notify (or $aws/things/MyThing/jobs/notify-next)

• $aws/things/MyThing/jobs/get/accepted

• $aws/things/MyThing/jobs/get/rejected

• $aws/things/MyThing/jobs/jobId/get/accepted

• $aws/things/MyThing/jobs/jobId/get/rejected

If you're using code signing for AWS IoT, your device code must verify the signature of your code
file. The signature is in the job document in the codesign property. For more information about
verifying a code file signature, see Device Agent Sample.

Topics

• Device workflow

• Jobs workflow

• Jobs notifications

Device workflow

A device can handle jobs that it runs using either of the following ways.

Programming devices to work with jobs 1168

https://github.com/aws/aws-iot-device-sdk-js#jobsAgent

AWS IoT Core Developer Guide

• Get the next job

1. When a device first comes online, it should subscribe to the device's notify-next topic.

2. Call the DescribeJobExecution MQTT API with jobId $next to get the next job, its job
document, and other details, including any state saved in statusDetails. If the job
document has a code file signature, you must verify the signature before proceeding with
processing the job request.

3. Call the UpdateJobExecution MQTT API to update the job status. Or, to combine this and the
previous step in one call, the device can call StartNextPendingJobExecution.

4. (Optional) You can add a step timer by setting a value for stepTimeoutInMinutes when
you call either UpdateJobExecution or StartNextPendingJobExecution.

5. Perform the actions specified by the job document using the UpdateJobExecution MQTT API
to report on the progress of the job.

6. Continue to monitor the job execution by calling the DescribeJobExecution MQTT
API with this jobId. If the job execution is deleted, DescribeJobExecution returns a
ResourceNotFoundException.

The device should be able to recover to a valid state if the job execution is canceled or
deleted while the device is running the job.

7. Call the UpdateJobExecution MQTT API when finished with the job to update the job status
and report success or failure.

8. Because this job's execution status has been changed to a terminal state, the next job
available for execution (if any) changes. The device is notified that the next pending job
execution has changed. At this point, the device should continue as described in step 2.

If the device remains online, it continues to receive notifications of the next pending job
execution. This includes its job execution data, when it completes a job or a new pending job
execution is added. When this occurs, the device continues as described in step 2.

• Select from available jobs

1. When a device first comes online, it should subscribe to the thing's notify topic.

2. Call the GetPendingJobExecutions MQTT API to get a list of pending job executions.

3. If the list contains one or more job executions, select one.

4. Call the DescribeJobExecution MQTT API to get the job document and other details,
including any state saved in statusDetails.

Device workflow 1169

AWS IoT Core Developer Guide

5. Call the UpdateJobExecution MQTT API to update the job status. If the
includeJobDocument field is set to true in this command, the device can skip the
previous step and retrieve the job document at this point.

6. Optionally, you can add a step timer by setting a value for stepTimeoutInMinutes when
you call UpdateJobExecution.

7. Perform the actions specified by the job document using the UpdateJobExecution MQTT API
to report on the progress of the job.

8. Continue to monitor the job execution by calling the DescribeJobExecution MQTT API with
this jobId. If the job execution is canceled or deleted while the device is running the job, the
device should be able to recover to a valid state.

9. Call the UpdateJobExecution MQTT API when finished with the job to update the job status
and to report success or failure.

If the device remains online, it is notified of all pending job executions when a new pending job
execution becomes available. When this occurs, the device can continue as described in step 2.

If the device is unable to carry out the job, it should call the UpdateJobExecution MQTT API to
update the job status to REJECTED.

Jobs workflow

The following shows the different steps in the jobs workflow from starting a new job to reporting
the completion status of a job execution.

Start a new job

When a new job is created, AWS IoT Jobs publishes a message on the $aws/things/thing-
name/jobs/notify topic for each target device.

The message contains the following information:

{
 "timestamp":1476214217017,
 "jobs":{
 "QUEUED":[{
 "jobId":"0001",
 "queuedAt":1476214216981,

Jobs workflow 1170

AWS IoT Core Developer Guide

 "lastUpdatedAt":1476214216981,
 "versionNumber" : 1
 }]
 }
}

The device receives this message on the '$aws/things/thingName/jobs/notify' topic when
the job execution is queued.

Note

For jobs with the optional SchedulingConfig, the job will maintain an initial status state
of SCHEDULED. When the job reaches the selected startTime, the following will occur:

• The job status state will update to IN_PROGRESS.

• The job will begin rollout of the job document to all devices in the target group.

Get job information

To get more information about a job execution, the device calls the DescribeJobExecution MQTT
API with the includeJobDocument field set to true (the default).

If the request is successful, the AWS IoT Jobs service publishes a message on the $aws/things/
MyThing/jobs/0023/get/accepted topic:

{
 "clientToken" : "client-001",
 "timestamp" : 1489097434407,
 "execution" : {
 "approximateSecondsBeforeTimedOut": number,
 "jobId" : "023",
 "status" : "QUEUED",
 "queuedAt" : 1489097374841,
 "lastUpdatedAt" : 1489097374841,
 "versionNumber" : 1,
 "jobDocument" : {
 < contents of job document >
 }
 }
}

Jobs workflow 1171

AWS IoT Core Developer Guide

If the request fails, the AWS IoT Jobs service publishes a message on the $aws/things/MyThing/
jobs/0023/get/rejected topic.

The device now has the job document that it can use to perform the remote operations for the
job. If the job document contains an Amazon S3 presigned URL, the device can use that URL to
download any required files for the job.

Report job execution status

As the device is executing the job, it can call the UpdateJobExecution MQTT API to update the
status of the job execution.

For example, a device can update the job execution status to IN_PROGRESS by publishing the
following message on the $aws/things/MyThing/jobs/0023/update topic:

{
 "status":"IN_PROGRESS",
 "statusDetails": {
 "progress":"50%"
 },
 "expectedVersion":"1",
 "clientToken":"client001"
}

Jobs respond by publishing a message to the $aws/things/MyThing/jobs/0023/update/
accepted or $aws/things/MyThing/jobs/0023/update/rejected topic:

{
 "clientToken":"client001",
 "timestamp":1476289222841
}

The device can combine the two previous requests by calling StartNextPendingJobExecution. That
gets and starts the next pending job execution and allows the device to update the job execution
status. This request also returns the job document when there is a job execution pending.

If the job contains a TimeoutConfig, the in-progress timer starts running. You can also set a
step timer for a job execution by setting a value for stepTimeoutInMinutes when you call
UpdateJobExecution. The step timer applies only to the job execution that you update. You can set
a new value for this timer each time you update a job execution. You can also create a step timer
when you call StartNextPendingJobExecution. If the job execution remains in the IN_PROGRESS

Jobs workflow 1172

https://docs.aws.amazon.com/iot/latest/apireference/API_TimeoutConfig.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_StartNextPendingJobExecution.html

AWS IoT Core Developer Guide

status for longer than the step timer interval, it fails and switches to the terminal TIMED_OUT
status. The step timer has no effect on the in-progress timer that you set when you create a job.

The status field can be set to IN_PROGRESS, SUCCEEDED, or FAILED. You cannot update the
status of a job execution that is already in a terminal state.

Report execution completed

When the device is finished executing the job, it calls the UpdateJobExecution MQTT API. If the job
was successful, set status to SUCCEEDED and, in the message payload, in statusDetails, add
other information about the job as name-value pairs. The in-progress and step timers end when
the job execution is complete.

For example:

{
 "status":"SUCCEEDED",
 "statusDetails": {
 "progress":"100%"
 },
 "expectedVersion":"2",
 "clientToken":"client-001"
}

If the job was not successful, set status to FAILED and, in statusDetails, add information
about the error that occurred:

{
 "status":"FAILED",
 "statusDetails": {
 "errorCode":"101",
 "errorMsg":"Unable to install update"
 },
 "expectedVersion":"2",
 "clientToken":"client-001"
}

Note

The statusDetails attribute can contain any number of name-value pairs.

Jobs workflow 1173

AWS IoT Core Developer Guide

When the AWS IoT Jobs service receives this update, it publishes a message on the $aws/things/
MyThing/jobs/notify topic to indicate that the job execution is complete:

{
 "timestamp":1476290692776,
 "jobs":{}
}

Additional jobs

If there are other job executions pending for the device, they are included in the message published
to $aws/things/MyThing/jobs/notify.

For example:

{
 "timestamp":1476290692776,
 "jobs":{
 "QUEUED":[{
 "jobId":"0002",
 "queuedAt":1476290646230,
 "lastUpdatedAt":1476290646230
 }],
 "IN_PROGRESS":[{
 "jobId":"0003",
 "queuedAt":1476290646230,
 "lastUpdatedAt":1476290646230
 }]
 }
}

Jobs notifications

The AWS IoT Jobs service publishes MQTT messages to reserved topics when jobs are pending or
when the first job execution in the list changes. Devices can track pending jobs by subscribing to
these topics.

Job notification types

Job notifications are published to MQTT topics as JSON payloads. There are two kinds of
notifications:

Jobs notifications 1174

AWS IoT Core Developer Guide

ListNotification

A ListNotification contains a list of no more than 15 pending job executions. They are sorted
by status (IN_PROGRESS job executions before QUEUED job executions) and then by the times
when they were queued.

A ListNotification is published whenever one of the following criteria is met.

• A new job execution is queued or changes to a non-terminal status (IN_PROGRESS or QUEUED).

• An old job execution changes to a terminal status (FAILED, SUCCEEDED, CANCELED, TIMED_OUT,
REJECTED, or REMOVED).

List Notification (Up to 15 pending job executions in QUEUED or IN_PROGRESS)

Without Optional Scheduling Configura
tion and Recurring Maintenance Window

(Up to 10 job executions)

With Optional Scheduling Configura
tion and Recurring Maintenance Window

(Up to 5 job executions)

Always appears in the ListNotification. Only appears in the ListNotification
during a maintenance window.

NextNotification

• A NextNotification contains summary information about the job execution that's next in the
queue.

A NextNotification is published whenever the first job execution in the list changes.

• A new job execution is added to the list as QUEUED, and it's the first one in the list.

• The status of an existing job execution that wasn't the first one in the list changes from
QUEUED to IN_PROGRESS, and becomes the first one in the list. (This happens when there
are no other IN_PROGRESS job executions in the list or when the job execution whose status
changes from QUEUED to IN_PROGRESS was queued earlier than any other IN_PROGRESS job
execution in the list.)

• The status of the job execution that is first in the list changes to a terminal status and is
removed from the list.

Jobs notifications 1175

AWS IoT Core Developer Guide

For more information about publishing and subscribing to MQTT topics, see the section called
“Device communication protocols”.

Note

Notifications are not available when you use HTTP Signature Version 4 or HTTP TLS to
communicate with jobs.

Job pending

The AWS IoT Jobs service publishes a message on an MQTT topic when a job is added to or
removed from the list of pending job executions for a thing or the first job execution in the list
changes:

• $aws/things/thingName/jobs/notify

• $aws/things/thingName/jobs/notify-next

The messages contain the following example payloads:

$aws/things/thingName/jobs/notify:

{
 "timestamp" : 10011,
 "jobs" : {
 "IN_PROGRESS" : [{
 "jobId" : "other-job",
 "queuedAt" : 10003,
 "lastUpdatedAt" : 10009,
 "executionNumber" : 1,
 "versionNumber" : 1
 }],
 "QUEUED" : [{
 "jobId" : "this-job",
 "queuedAt" : 10011,
 "lastUpdatedAt" : 10011,
 "executionNumber" : 1,
 "versionNumber" : 0
 }]
 }

Jobs notifications 1176

AWS IoT Core Developer Guide

}

If the job execution called this-job originated from a job with the optional scheduling
configuration selected and the job document rollout scheduled to take place during a maintenance
window, it'll only appear during a recurring maintenance window. Outside of a maintenance
window, the job called this-job will be excluded from the list of pending job executions as shown
in the following example.

{
 "timestamp" : 10011,
 "jobs" : {
 "IN_PROGRESS" : [{
 "jobId" : "other-job",
 "queuedAt" : 10003,
 "lastUpdatedAt" : 10009,
 "executionNumber" : 1,
 "versionNumber" : 1
 }],
 "QUEUED" : []
 }
}

$aws/things/thingName/jobs/notify-next:

{
 "timestamp" : 10011,
 "execution" : {
 "jobId" : "other-job",
 "status" : "IN_PROGRESS",
 "queuedAt" : 10009,
 "lastUpdatedAt" : 10009,
 "versionNumber" : 1,
 "executionNumber" : 1,
 "jobDocument" : {"c":"d"}
 }
}

If the job execution called other-job originated from a job with the optional scheduling
configuration selected and the job document rollout scheduled to take place during a maintenance
window, it'll only appear during a recurring maintenance window. Outside of a maintenance

Jobs notifications 1177

AWS IoT Core Developer Guide

window, the job called other-job won't be listed as the next job execution as shown in the
following example.

{} //No other pending jobs

{
 "timestamp" : 10011,
 "execution" : {
 "jobId" : "this-job",
 "queuedAt" : 10011,
 "lastUpdatedAt" : 10011,
 "executionNumber" : 1,
 "versionNumber" : 0,
 "jobDocument" : {"a":"b"}
 }
} // "this-job" is pending next to "other-job"

Possible job execution status values are QUEUED, IN_PROGRESS, FAILED, SUCCEEDED, CANCELED,
TIMED_OUT, REJECTED, and REMOVED.

The following series of examples show the published notifications to each topic as job executions
are created and changed from one state to another.

First, one job, called job1, is created. This notification is published to the jobs/notify topic:

{
 "timestamp": 1517016948,
 "jobs": {
 "QUEUED": [
 {
 "jobId": "job1",
 "queuedAt": 1517016947,
 "lastUpdatedAt": 1517016947,
 "executionNumber": 1,
 "versionNumber": 1
 }
]
 }
}

This notification is published to the jobs/notify-next topic:

Jobs notifications 1178

AWS IoT Core Developer Guide

{
 "timestamp": 1517016948,
 "execution": {
 "jobId": "job1",
 "status": "QUEUED",
 "queuedAt": 1517016947,
 "lastUpdatedAt": 1517016947,
 "versionNumber": 1,
 "executionNumber": 1,
 "jobDocument": {
 "operation": "test"
 }
 }
}

When another job is created (job2), this notification is published to the jobs/notify topic:

{
 "timestamp": 1517017192,
 "jobs": {
 "QUEUED": [
 {
 "jobId": "job1",
 "queuedAt": 1517016947,
 "lastUpdatedAt": 1517016947,
 "executionNumber": 1,
 "versionNumber": 1
 },
 {
 "jobId": "job2",
 "queuedAt": 1517017191,
 "lastUpdatedAt": 1517017191,
 "executionNumber": 1,
 "versionNumber": 1
 }
]
 }
}

A notification is not published to the jobs/notify-next topic because the next job in the queue
(job1) has not changed. When job1 starts to execute, its status changes to IN_PROGRESS. No
notifications are published because the list of jobs and the next job in the queue have not changed.

Jobs notifications 1179

AWS IoT Core Developer Guide

When a third job (job3) is added, this notification is published to the jobs/notify topic:

{
 "timestamp": 1517017906,
 "jobs": {
 "IN_PROGRESS": [
 {
 "jobId": "job1",
 "queuedAt": 1517016947,
 "lastUpdatedAt": 1517017472,
 "startedAt": 1517017472,
 "executionNumber": 1,
 "versionNumber": 2
 }
],
 "QUEUED": [
 {
 "jobId": "job2",
 "queuedAt": 1517017191,
 "lastUpdatedAt": 1517017191,
 "executionNumber": 1,
 "versionNumber": 1
 },
 {
 "jobId": "job3",
 "queuedAt": 1517017905,
 "lastUpdatedAt": 1517017905,
 "executionNumber": 1,
 "versionNumber": 1
 }
]
 }
}

A notification is not published to the jobs/notify-next topic because the next job in the queue
is still job1.

When job1 is complete, its status changes to SUCCEEDED, and this notification is published to the
jobs/notify topic:

{
 "timestamp": 1517186269,
 "jobs": {

Jobs notifications 1180

AWS IoT Core Developer Guide

 "QUEUED": [
 {
 "jobId": "job2",
 "queuedAt": 1517017191,
 "lastUpdatedAt": 1517017191,
 "executionNumber": 1,
 "versionNumber": 1
 },
 {
 "jobId": "job3",
 "queuedAt": 1517017905,
 "lastUpdatedAt": 1517017905,
 "executionNumber": 1,
 "versionNumber": 1
 }
]
 }
}

At this point, job1 has been removed from the queue, and the next job to be executed is job2.
This notification is published to the jobs/notify-next topic:

{
 "timestamp": 1517186269,
 "execution": {
 "jobId": "job2",
 "status": "QUEUED",
 "queuedAt": 1517017191,
 "lastUpdatedAt": 1517017191,
 "versionNumber": 1,
 "executionNumber": 1,
 "jobDocument": {
 "operation": "test"
 }
 }
}

If job3 must begin executing before job2 (which is not recommended), the status of job3 can
be changed to IN_PROGRESS. If this happens, job2 is no longer next in the queue, and this
notification is published to the jobs/notify-next topic:

{

Jobs notifications 1181

AWS IoT Core Developer Guide

 "timestamp": 1517186779,
 "execution": {
 "jobId": "job3",
 "status": "IN_PROGRESS",
 "queuedAt": 1517017905,
 "startedAt": 1517186779,
 "lastUpdatedAt": 1517186779,
 "versionNumber": 2,
 "executionNumber": 1,
 "jobDocument": {
 "operation": "test"
 }
 }
}

No notification is published to the jobs/notify topic because no job has been added or removed.

If the device rejects job2 and updates its status to REJECTED, this notification is published to the
jobs/notify topic:

{
 "timestamp": 1517189392,
 "jobs": {
 "IN_PROGRESS": [
 {
 "jobId": "job3",
 "queuedAt": 1517017905,
 "lastUpdatedAt": 1517186779,
 "startedAt": 1517186779,
 "executionNumber": 1,
 "versionNumber": 2
 }
]
 }
}

If job3 (which is still in progress) is force deleted, this notification is published to the jobs/
notify topic:

{
 "timestamp": 1517189551,
 "jobs": {}

Jobs notifications 1182

AWS IoT Core Developer Guide

}

At this point, the queue is empty. This notification is published to the jobs/notify-next topic:

{
 "timestamp": 1517189551
}

AWS IoT jobs API operations

AWS IoT Jobs API can be used for either of the following categories:

• Administrative tasks such as management and control of jobs. This is the control plane.

• Devices carrying out those jobs. This is the data plane, which permits you to send and receive
data.

Job management and control uses an HTTPS protocol API. Devices can use either an MQTT or
an HTTPS protocol API. The control plane API is designed for a low volume of calls typical when
creating and tracking jobs. It usually opens a connection for a single request, and then closes
the connection after the response is received. The data plane HTTPS and MQTT API permit long
polling. These API operations are designed for large amounts of traffic that can scale to millions of
devices.

Each AWS IoT Jobs HTTPS API has a corresponding command that permits you to call the API from
the AWS Command Line Interface (AWS CLI). The commands are lowercase, with hyphens between
the words that make up the name of the API. For example, you can invoke the CreateJob API on
the CLI by typing:

aws iot create-job ...

If an error occurs during an operation, you get an error response that contains information about
the error.

ErrorResponse

Contains information about an error that occurred during an AWS IoT Jobs service operation.

The following example shows the syntax of this operation:

AWS IoT jobs API operations 1183

AWS IoT Core Developer Guide

{
 "code": "ErrorCode",
 "message": "string",
 "clientToken": "string",
 "timestamp": timestamp,
 "executionState": JobExecutionState
}

The following is a description of this ErrorResponse:

code

ErrorCode can be set to:

InvalidTopic

The request was sent to a topic in the AWS IoT Jobs namespace that doesn't map to any API
operation.

InvalidJson

The contents of the request couldn't be interpreted as valid UTF-8-encoded JSON.

InvalidRequest

The contents of the request were not valid. For example, this code is returned when an
UpdateJobExecution request contains invalid status details. The message contains details
about the error.

InvalidStateTransition

An update attempted to change the job execution to a state that is not valid because of
the job execution's current state. For example, an attempt to change a request in state
SUCCEEDED to state IN_PROGRESS. In this case, the body of the error message also contains
the executionState field.

ResourceNotFound

The JobExecution specified by the request topic doesn't exist.

VersionMismatch

The expected version specified in the request doesn't match the version of the job execution
in the AWS IoT Jobs service. In this case, the body of the error message also contains the
executionState field.

AWS IoT jobs API operations 1184

AWS IoT Core Developer Guide

InternalError

There was an internal error during the processing of the request.

RequestThrottled

The request was throttled.

TerminalStateReached

Occurs when a command to describe a job is performed on a job that is in a terminal state.

message

An error message string.

clientToken

An arbitrary string used to correlate a request with its reply.

timestamp

The time, in seconds since the epoch.

executionState

A JobExecutionState object. This field is included only when the code field has the value
InvalidStateTransition or VersionMismatch. This makes it unnecessary in these cases
to perform a separate DescribeJobExecution request to obtain the current job execution
status data.

The following lists the Jobs API operations and data types.

• Jobs management and control API and data types

• Jobs device MQTT and HTTPS API operations and data types

Jobs management and control API and data types

The following commands are available for Job management and control in the CLI and over the
HTTPS protocol.

• Job management and control data types

• Job management and control API operations

To determine the endpoint-url parameter for your CLI commands, run this command.

Jobs management and control API and data types 1185

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_JobExecutionState.html

AWS IoT Core Developer Guide

aws iot describe-endpoint --endpoint-type=iot:Jobs

This command returns the following output.

{
"endpointAddress": "account-specific-prefix.jobs.iot.aws-region.amazonaws.com"
}

Note

The Jobs endpoint doesn't support ALPN z-amzn-http-ca.

Job management and control data types

The following data types are used by management and control applications to communicate with
AWS IoT Jobs.

Job

The Job object contains details about a job. The following example shows the syntax:

{
 "jobArn": "string",
 "jobId": "string",
 "status": "IN_PROGRESS|CANCELED|SUCCEEDED",
 "forceCanceled": boolean,
 "targetSelection": "CONTINUOUS|SNAPSHOT",
 "comment": "string",
 "targets": ["string"],
 "description": "string",
 "createdAt": timestamp,
 "lastUpdatedAt": timestamp,
 "completedAt": timestamp,
 "jobProcessDetails": {
 "processingTargets": ["string"],
 "numberOfCanceledThings": long,
 "numberOfSucceededThings": long,
 "numberOfFailedThings": long,
 "numberOfRejectedThings": long,

Jobs management and control API and data types 1186

AWS IoT Core Developer Guide

 "numberOfQueuedThings": long,
 "numberOfInProgressThings": long,
 "numberOfRemovedThings": long,
 "numberOfTimedOutThings": long
 },
 "presignedUrlConfig": {
 "expiresInSec": number,
 "roleArn": "string"
 },
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": integer,
 "incrementFactor": integer,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": integer, // Set one or the other
 "numberOfSucceededThings": integer // of these two values.
 },
 "maximumPerMinute": integer
 }
 },
 "abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": integer,
 "thresholdPercentage": integer
 }
]
 },
 "SchedulingConfig": {
 "startTime": string
 "endTime": string
 "timeZone": string

 "endTimeBehavior": string

 },
 "timeoutConfig": {
 "inProgressTimeoutInMinutes": long
 }
}

Jobs management and control API and data types 1187

AWS IoT Core Developer Guide

For more information, see Job or job.

JobSummary

The JobSummary object contains a job summary. The following example shows the syntax:

{
 "jobArn": "string",
 "jobId": "string",
 "status": "IN_PROGRESS|CANCELED|SUCCEEDED|SCHEDULED",
 "targetSelection": "CONTINUOUS|SNAPSHOT",
 "thingGroupId": "string",
 "createdAt": timestamp,
 "lastUpdatedAt": timestamp,
 "completedAt": timestamp
}

For more information, see JobSummary or job-summary.

JobExecution

The JobExecution object represents the execution of a job on a device. The following example
shows the syntax:

Note

When you use the control plane API operations, the JobExecution data type
doesn't contain a JobDocument field. To obtain this information, you can use the
GetJobDocument API operation or the get-job-document CLI command.

{
 "approximateSecondsBeforeTimedOut": 50,
 "executionNumber": 1234567890,
 "forceCanceled": true|false,
 "jobId": "string",
 "lastUpdatedAt": timestamp,
 "queuedAt": timestamp,
 "startedAt": timestamp,
 "status": "QUEUED|IN_PROGRESS|FAILED|SUCCEEDED|CANCELED|TIMED_OUT|REJECTED|
REMOVED",
 "forceCanceled": boolean,

Jobs management and control API and data types 1188

https://docs.aws.amazon.com/iot/latest/apireference/API_Job.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobSummary.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-summary.html
https://docs.aws.amazon.com/iot/latest/apireference/API_GetJobDocument.html
https://docs.aws.amazon.com/cli/latest/reference/get-job-document.html

AWS IoT Core Developer Guide

 "statusDetails": {
 "detailsMap": {
 "string": "string" ...
 },
 "status": "string"
 },
 "thingArn": "string",
 "versionNumber": 123
}

For more information, see JobExecution or job-execution.

JobExecutionSummary

The JobExecutionSummary object contains job execution summary information. The following
example shows the syntax:

{
 "executionNumber": 1234567890,
 "queuedAt": timestamp,
 "lastUpdatedAt": timestamp,
 "startedAt": timestamp,
 "status": "QUEUED|IN_PROGRESS|FAILED|SUCCEEDED|CANCELED|TIMED_OUT|REJECTED|REMOVED"
}

For more information, see JobExecutionSummary or job-execution-summary.

JobExecutionSummaryForJob

The JobExecutionSummaryForJob object contains a summary of information about job
executions for a specific job. The following example shows the syntax:

{
 "executionSummaries": [
 {
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyThing",
 "jobExecutionSummary": {
 "status": "IN_PROGRESS",
 "lastUpdatedAt": 1549395301.389,
 "queuedAt": 1541526002.609,
 "executionNumber": 1
 }
 },

Jobs management and control API and data types 1189

https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummary.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution-summary.html

AWS IoT Core Developer Guide

 ...
]
}

For more information, see JobExecutionSummaryForJob or job-execution-summary-for-
job.

JobExecutionSummaryForThing

The JobExecutionSummaryForThing object contains a summary of information about a job
execution on a specific thing. FThe following example shows the syntax:

{
 "executionSummaries": [
 {
 "jobExecutionSummary": {
 "status": "IN_PROGRESS",
 "lastUpdatedAt": 1549395301.389,
 "queuedAt": 1541526002.609,
 "executionNumber": 1
 },
 "jobId": "MyThingJob"
 },
 ...
]
}

For more information, see JobExecutionSummaryForThing or job-execution-summary-
for-thing.

Job management and control API operations

Use the following API operations or CLI commands:

AssociateTargetsWithJob

Associates a group with a continuous job. The following criteria must be met:

• The job must have been created with the targetSelection field set to CONTINUOUS.

• The job status must currently be IN_PROGRESS.

• The total number of targets associated with a job must not exceed 100.

Jobs management and control API and data types 1190

https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummaryForJob.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution-summary-for-job.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution-summary-for-job.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummaryForThing.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution-summary-for-thing.html
https://docs.aws.amazon.com/cli/latest/reference/iot/job-execution-summary-for-thing.html

AWS IoT Core Developer Guide

HTTPS request

POST /jobs/jobId/targets

{
"targets": ["string"],
"comment": "string"
}

For more information, see AssociateTargetsWithJob.

CLI syntax

aws iot associate-targets-with-job \
--targets <value> \
--job-id <value> \
[--comment <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"targets": [
"string"
],
"jobId": "string",
"comment": "string"
}

For more information, see associate-targets-with-job.

CancelJob

Cancels a job.

HTTPS request

PUT /jobs/jobId/cancel

{
"force": boolean,

Jobs management and control API and data types 1191

https://docs.aws.amazon.com/iot/latest/apireference/API_AssociateTargetsWithJob.html
https://docs.aws.amazon.com/cli/latest/reference/iot/associate-targets-with-job.html

AWS IoT Core Developer Guide

"comment": "string",
"reasonCode": "string"
}

For more information, see CancelJob.

CLI syntax

aws iot cancel-job \
 --job-id <value> \
 [--force <value>] \
 [--comment <value>] \
 [--reasonCode <value>] \
 [--cli-input-json <value>] \
 [--generate-cli-skeleton]

cli-input-json format:

{
 "jobId": "string",
 "force": boolean,
 "comment": "string"
}

For more information, see cancel-job.

CancelJobExecution

Cancels a job execution on a device.

HTTPS request

PUT /things/thingName/jobs/jobId/cancel

{
"force": boolean,
"expectedVersion": "string",
"statusDetails": {
 "string": "string"
 ...
}
}

Jobs management and control API and data types 1192

https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJob.html
https://docs.aws.amazon.com/cli/latest/reference/iot/cancel-job.html

AWS IoT Core Developer Guide

For more information, see CancelJobExecution.

CLI syntax

aws iot cancel-job-execution \
--job-id <value> \
--thing-name <value> \
[--force | --no-force] \
[--expected-version <value>] \
[--status-details <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"thingName": "string",
"force": boolean,
"expectedVersion": long,
"statusDetails": {
"string": "string"
}
}

For more information, see cancel-job-execution.

CreateJob

Creates a job. You can provide the job document as a link to a file in an Amazon S3 bucket
(documentSource parameter), or in the body of the request (document parameter).

A job can be made continuous by setting the optional targetSelection parameter to
CONTINUOUS (the default is SNAPSHOT). A continuous job can be used to onboard or upgrade
devices as they are added to a group because it continues to run and is launched on newly added
things. This can occur even after the things in the group at the time the job was created have
completed the job.

A job can have an optional TimeoutConfig, which sets the value of the in-progress timer. The in-
progress timer can't be updated and applies to all executions of the job.

The following validations are performed on arguments to the CreateJob API:

Jobs management and control API and data types 1193

https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot/cancel-job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TimeoutConfig.html

AWS IoT Core Developer Guide

• The targets argument must be a list of valid thing or thing group ARNs. All things and thing
groups must be in your AWS account.

• The documentSource argument must be a valid Amazon S3 URL to a job document. Amazon S3
URLs are in the form: https://s3.amazonaws.com/bucketName/objectName.

• The document stored in the URL specified by the documentSource argument must be a UTF-8
encoded JSON document.

• The size of a job document is limited to 32 KB due to the limit on the size of an MQTT message
(128 KB) and encryption.

• The jobId must be unique in your AWS account.

HTTPS request

PUT /jobs/jobId

{
"targets": ["string"],
"document": "string",
"documentSource": "string",
"description": "string",
"jobTemplateArn": "string",
"presignedUrlConfigData": {
 "roleArn": "string",
 "expiresInSec": "integer"
},
"targetSelection": "CONTINUOUS|SNAPSHOT",
"jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": integer,
 "incrementFactor": integer,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": integer, // Set one or the other
 "numberOfSucceededThings": integer // of these two values.
 },
 "maximumPerMinute": integer
 }
},
"abortConfig": {
 "criteriaList": [
 {
 "action": "string",

Jobs management and control API and data types 1194

AWS IoT Core Developer Guide

 "failureType": "string",
 "minNumberOfExecutedThings": integer,
 "thresholdPercentage": integer
 }
]
},
"SchedulingConfig": {
 "startTime": string
 "endTime": string
 "timeZone": string

 "endTimeBehavior": string

 }
"timeoutConfig": {
 "inProgressTimeoutInMinutes": long
}
}

For more information, see CreateJob.

CLI syntax

aws iot create-job \
 --job-id <value> \
 --targets <value> \
 [--document-source <value>] \
 [--document <value>] \
 [--description <value>] \
 [--job-template-arn <value>] \
 [--presigned-url-config <value>] \
 [--target-selection <value>] \
 [--job-executions-rollout-config <value>] \
 [--abort-config <value>] \
 [--timeout-config <value>] \
 [--document-parameters <value>] \
 [--cli-input-json <value>] \
 [--generate-cli-skeleton]

cli-input-json format:

{

Jobs management and control API and data types 1195

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html

AWS IoT Core Developer Guide

 "jobId": "string",
 "targets": ["string"],
 "documentSource": "string",
 "document": "string",
 "description": "string",
 "jobTemplateArn": "string",
 "presignedUrlConfig": {
 "roleArn": "string",
 "expiresInSec": long
 },
 "targetSelection": "string",
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": integer,
 "incrementFactor": integer,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": integer, // Set one or the other
 "numberOfSucceededThings": integer // of these two values.
 },
 "maximumPerMinute": integer
 }
 },
 "abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": integer,
 "thresholdPercentage": integer
 }
]
 },
 "timeoutConfig": {
 "inProgressTimeoutInMinutes": long
 },
 "documentParameters": {
 "string": "string"
 }
}

For more information, see create-job.

Jobs management and control API and data types 1196

https://docs.aws.amazon.com/cli/latest/reference/iot/create-job.html

AWS IoT Core Developer Guide

DeleteJob

Deletes a job and its related job executions.

Deleting a job can take time, depending on the number of job executions created for the
job and various other factors. While the job is being deleted, the status of the job is shown
as "DELETION_IN_PROGRESS". Attempting to delete or cancel a job whose status is already
"DELETION_IN_PROGRESS" results in an error.

HTTPS request

DELETE /jobs/jobId?force=force

For more information, see DeleteJob.

CLI syntax

aws iot delete-job \
--job-id <value> \
[--force | --no-force] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"force": boolean
}

For more information, see delete-job.

DeleteJobExecution

Deletes a job execution.

HTTPS request

DELETE /things/thingName/jobs/jobId/executionNumber/executionNumber?force=force

Jobs management and control API and data types 1197

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJob.html
https://docs.aws.amazon.com/cli/latest/reference/iot/delete-job.html

AWS IoT Core Developer Guide

For more information, see DeleteJobExecution.

CLI syntax

aws iot delete-job-execution \
--job-id <value> \
--thing-name <value> \
--execution-number <value> \
[--force | --no-force] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"thingName": "string",
"executionNumber": long,
"force": boolean
}

For more information, see delete-job-execution.

DescribeJob

Gets the details of the job execution.

HTTPS request

GET /jobs/jobId

For more information, see DescribeJob.

CLI syntax

aws iot describe-job \
--job-id <value> \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

Jobs management and control API and data types 1198

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot/delete-job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html

AWS IoT Core Developer Guide

{
"jobId": "string"
}

For more information, see describe-job.

DescribeJobExecution

Gets details of a job execution. The job's execution status must be SUCCEEDED or FAILED.

HTTPS request

GET /things/thingName/jobs/jobId?executionNumber=executionNumber

For more information, see DescribeJobExecution.

CLI syntax

aws iot describe-job-execution \
--job-id <value> \
--thing-name <value> \
[--execution-number <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"thingName": "string",
"executionNumber": long
}

For more information, see describe-job-execution.

GetJobDocument

Gets the job document for a job.

Jobs management and control API and data types 1199

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-job.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-job-execution.html

AWS IoT Core Developer Guide

Note

Placeholder URLs are not replaced with presigned Amazon S3 URLs in the document
returned. Presigned URLs are generated only when the AWS IoT Jobs service receives a
request over MQTT.

HTTPS request

GET /jobs/jobId/job-document

For more information, see GetJobDocument.

CLI syntax

aws iot get-job-document \
--job-id <value> \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string"
}

For more information, see get-job-document.

ListJobExecutionsForJob

Gets a list of job executions for a job.

HTTPS request

GET /jobs/jobId/things?status=status&maxResults=maxResults&nextToken=nextToken

For more information, see ListJobExecutionsForJob.

CLI syntax

aws iot list-job-executions-for-job \

Jobs management and control API and data types 1200

https://docs.aws.amazon.com/iot/latest/apireference/API_GetJobDocument.html
https://docs.aws.amazon.com/cli/latest/reference/iot/get-job-document.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForJob.html

AWS IoT Core Developer Guide

--job-id <value> \
[--status <value>] \
[--max-results <value>] \
[--next-token <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"status": "string",
"maxResults": "integer",
"nextToken": "string"
}

For more information, see list-job-executions-for-job.

ListJobExecutionsForThing

Gets a list of job executions for a thing.

HTTPS request

GET /things/thingName/jobs?status=status&maxResults=maxResults&nextToken=nextToken

For more information, see ListJobExecutionsForThing.

CLI syntax

aws iot list-job-executions-for-thing \
--thing-name <value> \
[--status <value>] \
[--max-results <value>] \
[--next-token <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{

Jobs management and control API and data types 1201

https://docs.aws.amazon.com/cli/latest/reference/iot/list-job-executions-for-job.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForThing.html

AWS IoT Core Developer Guide

"thingName": "string",
"status": "string",
"maxResults": "integer",
"nextToken": "string"
}

For more information, see list-job-executions-for-thing.

ListJobs

Gets a list of jobs in your AWS account.

HTTPS request

GET /jobs?
status=status&targetSelection=targetSelection&thingGroupName=thingGroupName&thingGroupId=thingGroupId&maxResults=maxResults&nextToken=nextToken

For more information, see ListJobs.

CLI syntax

aws iot list-jobs \
[--status <value>] \
[--target-selection <value>] \
[--max-results <value>] \
[--next-token <value>] \
[--thing-group-name <value>] \
[--thing-group-id <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"status": "string",
"targetSelection": "string",
"maxResults": "integer",
"nextToken": "string",
"thingGroupName": "string",
"thingGroupId": "string"
}

Jobs management and control API and data types 1202

https://docs.aws.amazon.com/cli/latest/reference/iot/list-job-executions-for-thing.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobs.html

AWS IoT Core Developer Guide

For more information, see list-jobs.

UpdateJob

Updates supported fields of the specified job. Updated values for timeoutConfig take effect
for only newly in-progress launches. Currently, in-progress launches continue to launch with the
previous timeout configuration.

HTTPS request

PATCH /jobs/jobId
{
"description": "string",
"presignedUrlConfig": {
 "expiresInSec": number,
 "roleArn": "string"
},
"jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": number,
 "incrementFactor": number,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": number,
 "numberOfSucceededThings": number
 },
 "maximumPerMinute": number
 },
"abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": number,
 "thresholdPercentage": number
 }
]
},
"timeoutConfig": {
 "inProgressTimeoutInMinutes": number
}
}

Jobs management and control API and data types 1203

https://docs.aws.amazon.com/cli/latest/reference/iot/list-jobs.html

AWS IoT Core Developer Guide

For more information, see UpdateJob.

CLI syntax

aws iot update-job \
--job-id <value> \
[--description <value>] \
[--presigned-url-config <value>] \
[--job-executions-rollout-config <value>] \
[--abort-config <value>] \
[--timeout-config <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"description": "string",
"presignedUrlConfig": {
 "expiresInSec": number,
 "roleArn": "string"
},
"jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": number,
 "incrementFactor": number,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": number,
 "numberOfSucceededThings": number
 }
 },
 "maximumPerMinute": number
},
"abortConfig": {
 "criteriaList": [
 {
 "action": "string",
 "failureType": "string",
 "minNumberOfExecutedThings": number,
 "thresholdPercentage": number
 }
]
},
"timeoutConfig": {

Jobs management and control API and data types 1204

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateJob.html

AWS IoT Core Developer Guide

 "inProgressTimeoutInMinutes": number
}
}

For more information, see update-job.

Jobs device MQTT and HTTPS API operations and data types

The following commands are available over the MQTT and HTTPS protocols. Use these API
operations on the data plane for devices executing the jobs.

Jobs device MQTT and HTTPS data types

The following data types are used to communicate with the AWS IoT Jobs service over the MQTT
and HTTPS protocols.

JobExecution

The JobExecution object represents the execution of a job on a device. The following example
shows the syntax:

Note

When you use the MQTT and HTTP data plane API operations, the JobExecution data
type contains a JobDocument field. Your devices can use this information to retrieve the
job document from a job execution.

{
 "jobId" : "string",
 "thingName" : "string",
 "jobDocument" : "string",
 "status": "QUEUED|IN_PROGRESS|FAILED|SUCCEEDED|CANCELED|TIMED_OUT|REJECTED|
REMOVED",
 "statusDetails": {
 "string": "string"
 },
 "queuedAt" : "timestamp",
 "startedAt" : "timestamp",

Jobs device MQTT and HTTPS API operations and data types 1205

https://docs.aws.amazon.com/cli/latest/reference/iot/update-job.html

AWS IoT Core Developer Guide

 "lastUpdatedAt" : "timestamp",
 "versionNumber" : "number",
 "executionNumber": long
}

For more information, see JobExecution or job-execution.

JobExecutionState

The JobExecutionState contains information about the state of a job execution. The following
example shows the syntax:

{
 "status": "QUEUED|IN_PROGRESS|FAILED|SUCCEEDED|CANCELED|TIMED_OUT|REJECTED|
REMOVED",
 "statusDetails": {
 "string": "string"
 ...
 }
 "versionNumber": "number"
}

For more information, see JobExecutionState or job-execution-state.

JobExecutionSummary

Contains a subset of information about a job execution. The following example shows the syntax:

{
 "jobId": "string",
 "queuedAt": timestamp,
 "startedAt": timestamp,
 "lastUpdatedAt": timestamp,
 "versionNumber": "number",
 "executionNumber": long
}

For more information, see JobExecutionSummary or job-execution-summary.

Learn more about the MQTT and HTTPS API operations in the following sections:

• Jobs device MQTT API operations

Jobs device MQTT and HTTPS API operations and data types 1206

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_JobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot-data/job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_JobExecutionState.html
https://docs.aws.amazon.com/cli/latest/reference/iot-data/job-execution-state.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_JobExecutionSummary.html
https://docs.aws.amazon.com/cli/latest/reference/iot-data/job-execution-summary.html

AWS IoT Core Developer Guide

• Jobs device HTTP API

Jobs device MQTT API operations

You can issue jobs device commands by publishing MQTT messages to the Reserved topics used for
Jobs commands.

Your device-side client must be subscribed to the response message topics of these commands.
If you use the AWS IoT Device Client, your device will automatically subscribe to the response
topics. This means that the message broker will publish response message topics to the client
that published the command message, whether or not your client has subscribed to the response
message topics. These response messages don't pass through the message broker and can't be
subscribed to by other clients or rules.

When subscribing to the job and jobExecution event topics for your fleet-monitoring solution,
first enable job and job execution events to receive any events on the cloud side. Job progress
messages that are processed through the message broker and can be used by AWS IoT rules
are published as Jobs events. Because the message broker publishes response messages, even
without an explicit subscription to them, your client must be configured to receive and identify the
messages it receives. Your client must also confirm that the thingName in the incoming message
topic applies to the client's thing name before the client acts on the message.

Note

Messages that AWS IoT sends in response to MQTT Jobs API command messages are
charged to your account, whether or not you subscribed to them explicitly.

The following shows the MQTT API operations and their request and response syntax. All MQTT API
operations have the following parameters:

clientToken

An optional client token used to correlate requests and responses. Enter an arbitrary value here
and it's reflected in the response.

timestamp

The time in seconds since the epoch, when the message was sent.

Jobs device MQTT and HTTPS API operations and data types 1207

AWS IoT Core Developer Guide

GetPendingJobExecutions

Gets the list of all jobs that are not in a terminal state, for a specified thing.

To invoke this API, publish a message on $aws/things/thingName/jobs/get.

Request payload:

{ "clientToken": "string" }

The message broker will publish $aws/things/thingName/jobs/get/accepted and
$aws/things/thingName/jobs/get/rejected even without a specific subscription to
them. However, for your client to receive the messages, it must be listening for them. For more
information, see the note about Jobs API messages.

Response payload:

{
"inProgressJobs" : [JobExecutionSummary ...],
"queuedJobs" : [JobExecutionSummary ...],
"timestamp" : 1489096425069,
"clientToken" : "client-001"
}

Where inProgressJobs and queuedJobs return a list of JobExecutionSummary objects that
have status of IN_PROGRESS or QUEUED.

StartNextPendingJobExecution

Gets and starts the next pending job execution for a thing (status IN_PROGRESS or QUEUED).

• Any job executions with status IN_PROGRESS are returned first.

• Job executions are returned in the order in which they were queued. When a thing is added or
removed from the target group for your job, confirm the rollout order of any new job executions
compared to existing job executions.

• If the next pending job execution is QUEUED, its state changes to IN_PROGRESS and the job
execution's status details are set as specified.

• If the next pending job execution is already IN_PROGRESS, its status details aren't changed.

• If no job executions are pending, the response doesn't include the execution field.

Jobs device MQTT and HTTPS API operations and data types 1208

AWS IoT Core Developer Guide

• Optionally, you can create a step timer by setting a value for the stepTimeoutInMinutes
property. If you don't update the value of this property by running UpdateJobExecution, the
job execution times out when the step timer expires.

To invoke this API, publish a message on $aws/things/thingName/jobs/start-next.

Request payload:

{
"statusDetails": {
 "string": "job-execution-state"
 ...
},
"stepTimeoutInMinutes": long,
"clientToken": "string"
}

statusDetails

A collection of name-value pairs that describe the status of the job execution. If not specified,
the statusDetails are unchanged.

stepTimeOutInMinutes

Specifies the amount of time this device has to finish execution of this job. If the job execution
status isn't set to a terminal state before this timer expires, or before the timer is reset, (by
calling UpdateJobExecution, setting the status to IN_PROGRESS and specifying a new
timeout value in field stepTimeoutInMinutes) the job execution status is set to TIMED_OUT.
Setting this timeout has no effect on that job execution timeout that might have been specified
when the job was created (CreateJob using the timeoutConfig field).

The message broker will publish $aws/things/thingName/jobs/start-next/accepted and
$aws/things/thingName/jobs/start-next/rejected even without a specific subscription
to them. However, for your client to receive the messages, it must be listening for them. For more
information, see the note about Jobs API messages.

Response payload:

{
"execution" : JobExecutionData,

Jobs device MQTT and HTTPS API operations and data types 1209

AWS IoT Core Developer Guide

"timestamp" : timestamp,
"clientToken" : "string"
}

Where execution is a JobExecution object. For example:

{
"execution" : {
 "jobId" : "022",
 "thingName" : "MyThing",
 "jobDocument" : "< contents of job document >",
 "status" : "IN_PROGRESS",
 "queuedAt" : 1489096123309,
 "lastUpdatedAt" : 1489096123309,
 "versionNumber" : 1,
 "executionNumber" : 1234567890
},
"clientToken" : "client-1",
"timestamp" : 1489088524284,
}

DescribeJobExecution

Gets detailed information about a job execution.

You can set the jobId to $next to return the next pending job execution for a thing (with a status
of IN_PROGRESS or QUEUED).

To invoke this API, publish a message on $aws/things/thingName/jobs/jobId/get.

Request payload:

{
"jobId" : "022",
"thingName" : "MyThing",
"executionNumber": long,
"includeJobDocument": boolean,
"clientToken": "string"
}

thingName

The name of the thing associated with the device.

Jobs device MQTT and HTTPS API operations and data types 1210

AWS IoT Core Developer Guide

jobId

The unique identifier assigned to this job when it was created.

Or use $next to return the next pending job execution for a thing (with a status of
IN_PROGRESS or QUEUED). In this case, any job executions with status IN_PROGRESS are
returned first. Job executions are returned in the order in which they were created.

executionNumber

(Optional) A number that identifies a job execution on a device. If not specified, the latest job
execution is returned.

includeJobDocument

(Optional) Unless set to false, the response contains the job document. The default is true.

The message broker will publish $aws/things/thingName/jobs/jobId/get/accepted and
$aws/things/thingName/jobs/jobId/get/rejected even without a specific subscription
to them. However, for your client to receive the messages, it must be listening for them. For more
information, see the note about Jobs API messages.

Response payload:

{
"execution" : JobExecutionData,
"timestamp": "timestamp",
"clientToken": "string"
}

Where execution is a JobExecution object.

UpdateJobExecution

Updates the status of a job execution. You can optionally create a step timer by setting a value for
the stepTimeoutInMinutes property. If you don't update the value of this property by running
UpdateJobExecution again, the job execution times out when the step timer expires.

To invoke this API, publish a message on $aws/things/thingName/jobs/jobId/update.

Request payload:

{

Jobs device MQTT and HTTPS API operations and data types 1211

AWS IoT Core Developer Guide

"status": "job-execution-state",
"statusDetails": {
 "string": "string"
 ...
},
"expectedVersion": "number",
"executionNumber": long,
"includeJobExecutionState": boolean,
"includeJobDocument": boolean,
"stepTimeoutInMinutes": long,
"clientToken": "string"
}

status

The new status for the job execution (IN_PROGRESS, FAILED, SUCCEEDED, or REJECTED). This
must be specified on every update.

statusDetails

A collection of name-value pairs that describe the status of the job execution. If not specified,
the statusDetails are unchanged.

expectedVersion

The expected current version of the job execution. Each time you update the job execution, its
version is incremented. If the version of the job execution stored in the AWS IoT Jobs service
doesn't match, the update is rejected with a VersionMismatch error. An ErrorResponse that
contains the current job execution status data is also returned. (This makes it unnecessary to
perform a separate DescribeJobExecution request to obtain the job execution status data.)

executionNumber

(Optional) A number that identifies a job execution on a device. If not specified, the latest job
execution is used.

includeJobExecutionState

(Optional) When included and set to true, the response contains the JobExecutionState
field. The default is false.

includeJobDocument

(Optional) When included and set to true, the response contains the JobDocument. The
default is false.

Jobs device MQTT and HTTPS API operations and data types 1212

AWS IoT Core Developer Guide

stepTimeoutInMinutes

Specifies the amount of time this device has to finish execution of this job. If the job execution
status is not set to a terminal state before this timer expires, or before the timer is reset, the job
execution status is set to TIMED_OUT. Setting or resetting this timeout has no effect on the job
execution timeout that might have been specified when the job was created.

The message broker will publish $aws/things/thingName/jobs/jobId/update/accepted
and $aws/things/thingName/jobs/jobId/update/rejected even without a specific
subscription to them. However, for your client to receive the messages, it must be listening for
them. For more information, see the note about Jobs API messages.

Response payload:

{
"executionState": JobExecutionState,
"jobDocument": "string",
"timestamp": timestamp,
"clientToken": "string"
}

executionState

A JobExecutionState object.

jobDocument

A job document object.

timestamp

The time in seconds since the epoch, when the message was sent.

clientToken

A client token used to correlate requests and responses.

When you use the MQTT protocol, you can also perform the following updates:

JobExecutionsChanged

Sent whenever a job execution is added to or removed from the list of pending job executions for a
thing.

Jobs device MQTT and HTTPS API operations and data types 1213

AWS IoT Core Developer Guide

Use the topic:

$aws/things/thingName/jobs/notify

Message payload:

{
"jobs" : {
 "JobExecutionState": [JobExecutionSummary ...]
 },
 "timestamp": timestamp
}

NextJobExecutionChanged

Sent whenever there is a change to which job execution is next on the list of pending job
executions for a thing, as defined for DescribeJobExecution with jobId $next. This message
is not sent when the next job's execution details change, only when the next job that would be
returned by DescribeJobExecution with jobId $next has changed. Consider job executions J1
and J2 with a status of QUEUED. J1 is next on the list of pending job executions. If the status of J2
is changed to IN_PROGRESS while the state of J1 remains unchanged, then this notification is sent
and contains details of J2.

Use the topic:

$aws/things/thingName/jobs/notify-next

Message payload:

{
"execution" : JobExecution,
"timestamp": timestamp,
}

Jobs device HTTP API

Devices can communicate with AWS IoT Jobs using HTTP Signature Version 4 on port 443. This is
the method used by the AWS SDKs and CLI. For more information about those tools, see AWS CLI
Command Reference:iot-jobs-data or AWS SDKs and Tools.

Jobs device MQTT and HTTPS API operations and data types 1214

https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecutionSummary.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_JobExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/index.html
https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/index.html
http://aws.amazon.com/tools/#sdk

AWS IoT Core Developer Guide

The following commands are available for devices executing the jobs. For information about using
API operations with the MQTT protocol, see Jobs device MQTT API operations.

GetPendingJobExecutions

Gets the list of all jobs that aren't in a terminal state, for a specified thing.

HTTPS request

GET /things/thingName/jobs

Response:

{
"inProgressJobs" : [JobExecutionSummary ...],
"queuedJobs" : [JobExecutionSummary ...]
}

For more information, see GetPendingJobExecutions.

CLI syntax

aws iot-jobs-data get-pending-job-executions \
--thing-name <value> \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"thingName": "string"
}

For more information, see get-pending-job-executions.

StartNextPendingJobExecution

Gets and starts the next pending job execution for a thing (with a status of IN_PROGRESS or
QUEUED).

• Any job executions with status IN_PROGRESS are returned first.

Jobs device MQTT and HTTPS API operations and data types 1215

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/get-pending-job-executions.html

AWS IoT Core Developer Guide

• Job executions are returned in the order in which they were created.

• If the next pending job execution is QUEUED, its status changes to IN_PROGRESS and the job
execution's status details are set as specified.

• If the next pending job execution is already IN_PROGRESS, its status details don't change.

• If no job executions are pending, the response doesn't include the execution field.

• Optionally, you can create a step timer by setting a value for the stepTimeoutInMinutes
property. If you don't update the value of this property by running UpdateJobExecution, the
job execution times out when the step timer expires.

HTTPS request

The following example shows the request syntax:

PUT /things/thingName/jobs/$next
{
"statusDetails": {
 "string": "string"
 ...
},
"stepTimeoutInMinutes": long
}

For more information, see StartNextPendingJobExecution.

CLI syntax

Synopsis:

aws iot-jobs-data start-next-pending-job-execution \
--thing-name <value> \
{--step-timeout-in-minutes <value>] \
[--status-details <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"thingName": "string",

Jobs device MQTT and HTTPS API operations and data types 1216

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_StartNextPendingJobExecution.html

AWS IoT Core Developer Guide

"statusDetails": {
"string": "string"
},
"stepTimeoutInMinutes": long
}

For more information, see start-next-pending-job-execution.

DescribeJobExecution

Gets detailed information about a job execution.

You can set the jobId to $next to return the next pending job execution for a thing. The job's
execution status must be QUEUED or IN_PROGRESS.

HTTPS request

Request:

GET /things/thingName/jobs/jobId?
executionNumber=executionNumber&includeJobDocument=includeJobDocument

Response:

{
"execution" : JobExecution,
}

For more information, see DescribeJobExecution.

CLI syntax

Synopsis:

aws iot-jobs-data describe-job-execution \
--job-id <value> \
--thing-name <value> \
[--include-job-document | --no-include-job-document] \
[--execution-number <value>] \
[--cli-input-json <value>] \
[--generate-cli-skeleton]

Jobs device MQTT and HTTPS API operations and data types 1217

https://docs.aws.amazon.com/cli/latest/reference/iot-jobs-data/start-next-pending-job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html

AWS IoT Core Developer Guide

cli-input-json format:

{
"jobId": "string",
"thingName": "string",
"includeJobDocument": boolean,
"executionNumber": long
}

For more information, see describe-job-execution.

UpdateJobExecution

Updates the status of a job execution. Optionally, you can create a step timer by setting a value for
the stepTimeoutInMinutes property. If you don't update the value of this property by running
UpdateJobExecution again, the job execution times out when the step timer expires.

HTTPS request

Request:

POST /things/thingName/jobs/jobId
{
"status": "job-execution-state",
"statusDetails": {
 "string": "string"
 ...
},
"expectedVersion": "number",
"includeJobExecutionState": boolean,
"includeJobDocument": boolean,
"stepTimeoutInMinutes": long,
"executionNumber": long
}

For more information, see UpdateJobExecution.

CLI syntax

Synopsis:

aws iot-jobs-data update-job-execution \

Jobs device MQTT and HTTPS API operations and data types 1218

https://docs.aws.amazon.com/cli/latest/reference/iot-data/describe-job-execution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html

AWS IoT Core Developer Guide

--job-id <value> \
--thing-name <value> \
--status <value> \
[--status-details <value>] \
[--expected-version <value>] \
[--include-job-execution-state | --no-include-job-execution-state] \
[--include-job-document | --no-include-job-document] \
[--execution-number <value>] \
[--cli-input-json <value>] \
[--step-timeout-in-minutes <value>] \
[--generate-cli-skeleton]

cli-input-json format:

{
"jobId": "string",
"thingName": "string",
"status": "string",
"statusDetails": {
"string": "string"
},
"stepTimeoutInMinutes": number,
"expectedVersion": long,
"includeJobExecutionState": boolean,
"includeJobDocument": boolean,
"executionNumber": long
}

For more information, see update-job-execution.

Securing users and devices with AWS IoT Jobs

To authorize users to use AWS IoT Jobs with their devices, you must grant them permissions by
using IAM policies. The devices must then be authorized by using AWS IoT Core policies to connect
securely to AWS IoT, receive job executions, and update the execution status.

Required policy type for AWS IoT Jobs

The following table shows the different types of policies that you must use for authorization. For
more information about the required policy to use, see Authorization.

Securing users and devices for Jobs 1219

https://docs.aws.amazon.com/cli/latest/reference/iot-data/update-job-execution.html

AWS IoT Core Developer Guide

Required policy type

Use case Protocol Authentication Control
plane/data
plane

Identity type Required
policy type

Authorize
an administr
ator,
operator,
or Cloud
Service to
work securely
with Jobs

HTTPS AWS Signature
Version 4 authentic
ation (port 443)

Both control
plane and
data plane

Amazon
Cognito
Identity, IAM,
or federated
user

IAM policy

Authorize
your IoT
device to
work securely
with Jobs

MQTT/
HTTPS

TCP or TLS mutual
authentication (port
8883 or 443)

Data plane X.509
certificates

AWS IoT Core
policy

To authorize AWS IoT Jobs operations that can be performed both on the control plane and data
plane, you must use IAM policies. The identities must have been authenticated with AWS IoT to
perform these operations, which must be Amazon Cognito identities or IAM users, groups, and
roles. For more information about authentication, see Authentication.

The devices must now be authorized on the data plane by using AWS IoT Core policies to connect
securely to the device gateway. The device gateway enables devices to securely communicate with
AWS IoT, receive job executions, and update the job execution status. Device communication is
secured by using secure MQTT or HTTPS communication protocols. These protocols use X.509
client certificates that are provided by AWS IoT to authenticate the device connections.

The following shows how you authorize your users, cloud services, and devices to use AWS IoT
Jobs. For information about control plane and data plane API operations, see AWS IoT jobs API
operations.

Topics

• Authorizing users and cloud services to use AWS IoT Jobs

Required policy type for AWS IoT Jobs 1220

AWS IoT Core Developer Guide

• Authorizing your devices to securely use AWS IoT Jobs on the data plane

Authorizing users and cloud services to use AWS IoT Jobs

To authorize your users and cloud services, you must use IAM policies on both the control plane
and data plane. The policies must be used with HTTPS protocol and must use AWS Signature
Version 4 authentication (port 443) to authenticate users.

Note

AWS IoT Core policies must not be used on the control plane. Only IAM policies are used for
authorizing users or Cloud Services. For more information about using the required policy
type, see Required policy type for AWS IoT Jobs.

IAM policies are JSON documents that contain policy statements. Policy statements use Effect,
Action, and Resource elements to specify resources, allowed or denied actions, and conditions
under which actions are allowed or denied. For more information, see IAM JSON Policy Elements
Reference in the IAM user Guide.

Warning

We recommend that you don't use wildcard permissions, such as "Action": ["iot:*"]
in your IAM policies or AWS IoT Core policies. Using wildcard permissions is not a
recommended security best practice. For more information, see AWS IoT policy overly
permissive.

IAM policies on the control plane

On the control plane, IAM policies use the iot: prefix with the action to authorize the
corresponding jobs API operation. For example, the iot:CreateJob policy action grants the user
permission to use the CreateJob API.

Policy actions

The following table shows a list of IAM policy actions and permissions to use the API actions. For
information about resource types, see Resource types defined by AWS IoT. For more information
about AWS IoT actions, see Actions defined by AWS IoT.

Authorizing Jobs users and cloud services 1221

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-iot-policy-permissive.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-iot-policy-permissive.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html#awsiot-job
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html

AWS IoT Core Developer Guide

IAM policy actions on control plane

Policy action API operation Resource
types

Description

iot:Assoc
iateTarge
tsWithJob

Associate
TargetsWi
thJob

• job

• thing

• thinggrou
p

Represents the permission to associate
a group with a continuous job. The
iot:AssociateTargetsWithJob

 permission is checked every time a
request is made to associate targets.

iot:CancelJob CancelJob job Represents the permission to cancel a
job. The iot:CancelJob permission is
checked every time a request is made to
cancel a job.

iot:Cance
lJobExecu
tion

CancelJob
Execution

• job

• thing

Represents the permission to cancel a
job execution. The iot: CancelJob
Execution permission is checked
every time a request is made to cancel a
job execution.

iot:CreateJob CreateJob • job

• thing

• thinggrou
p

• jobtempla
te

• package

Represents the permission to create a job.
The iot: CreateJob permission is
checked every time a request is made to
create a job.

iot:Creat
eJobTemplate

CreateJob
Template

• job

• jobtempla
te

• package

Represents the permission to create a
job template. The iot: CreateJob
Template permission is checked every
time a request is made to create a job
template.

iot:DeleteJob DeleteJob job Represents the permission to delete a job.
The iot: DeleteJob permission is

Authorizing Jobs users and cloud services 1222

https://docs.aws.amazon.com/iot/latest/apireference/API_AssociateTargetsWithJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AssociateTargetsWithJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_AssociateTargetsWithJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CancelJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJob.html

AWS IoT Core Developer Guide

Policy action API operation Resource
types

Description

checked every time a request is made to
delete a job.

iot:Delet
eJobTemplate

DeleteJob
Template

jobtempla
te

Represents the permission to delete a
job template. The iot: CreateJob
Template permission is checked every
time a request is made to delete a job
template.

iot:Delet
eJobExecu
tion

DeleteJob
Template

• job

• thing

Represents the permission to delete a
job execution. The iot: DeleteJob
Execution permission is checked
every time a request is made to delete a
job execution.

iot:Descr
ibeJob

DescribeJob job Represents the permission to describe a
job. The iot: DescribeJob permission
is checked every time a request is made to
describe a job.

iot:Descr
ibeJobExe
cution

DescribeJ
obExecution

• job

• thing

Represents the permission to describe
a job execution. The iot: DescribeJ
obExecution permission is checked
every time a request is made to describe a
job execution.

iot:Descr
ibeJobTem
plate

DescribeJ
obTemplate

jobtempla
te

Represents the permission to describe
a job template. The iot: DescribeJ
obTemplate permission is checked
every time a request is made to describe a
job template.

Authorizing Jobs users and cloud services 1223

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobTemplate.html

AWS IoT Core Developer Guide

Policy action API operation Resource
types

Description

iot:Descr
ibeManage
dJobTemplate

DescribeM
anagedJob
Template

jobtempla
te

Represents the permission to describe
a managed job template. The iot:
DescribeManagedJobTemplate
permission is checked every time a
request is made to describe a managed
job template.

iot:GetJo
bDocument

GetJobDoc
ument

job Represents the permission to get the
job document for a job. The iot:GetJo
bDocument permission is checked
every time a request is made to get a job
document.

iot:ListJ
obExecuti
onsForJob

ListJobEx
ecutionsF
orJob

job Represents the permission to list the job
executions for a job. The iot:ListJ
obExecutionsForJob permission is
checked every time a request is made to
list the job executions for a job.

iot:ListJ
obExecuti
onsForThing

ListJobEx
ecutionsF
orThing

thing Represents the permission to list the job
executions for a job. The iot:ListJ
obExecutionsForThing permission
is checked every time a request is made to
list the job executions for a thing.

iot:ListJobs ListJobs none Represents the permission to list the
jobs. The iot:ListJobs permission is
checked every time a request is made to
list the jobs.

iot:ListJ
obTemplates

ListJobTe
mplates

none Represents the permission to list the job
templates. The iot:ListJobTemplat
es permission is checked every time a
request is made to list the job templates.

Authorizing Jobs users and cloud services 1224

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeManagedJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeManagedJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeManagedJobTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_GetJobDocument.html
https://docs.aws.amazon.com/iot/latest/apireference/API_GetJobDocument.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForThing.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForThing.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobExecutionsForThing.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobs.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobTemplates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListJobTemplates.html

AWS IoT Core Developer Guide

Policy action API operation Resource
types

Description

iot:ListM
anagedJob
Templates

ListManag
edJobTemp
lates

none Represents the permission to list the
managed job templates. The iot:ListM
anagedJobTemplates permission is
checked every time a request is made to
list the managed job templates.

iot:UpdateJob UpdateJob job Represents the permission to update a
job. The iot:UpdateJob permission is
checked every time a request is made to
update a job.

iot:TagRe
source

TagResource • job

• jobtempla
te

• thing

Grants permission to tag a specific
resource.

iot:Untag
Resource

UntagReso
urce

• job

• jobtempla
te

• thing

Grants permission to untag a specific
resource.

Basic IAM policy example

The following example shows an IAM policy that allows the user permission to perform the
following actions for your IoT thing and thing group.

In the example, replace:

• region with your AWS Region, such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-group-name with the name of your IoT thing group for which you're targeting jobs, such
as FirmwareUpdateGroup.

Authorizing Jobs users and cloud services 1225

https://docs.aws.amazon.com/iot/latest/apireference/API_ListManagedJobTemplates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListManagedJobTemplates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListManagedJobTemplates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UntagResource.html

AWS IoT Core Developer Guide

• thing-name with the name of your IoT thing for which you're targeting jobs, such as
MyIoTThing.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iot:CreateJobTemplate",
 "iot:CreateJob",
],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:account-id:thinggroup/thing-group-name"
 },
 {
 "Action": [
 "iot:DescribeJob",
 "iot:CancelJob",
 "iot:DeleteJob",
],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:account-id:job/*"
 },
 {
 "Action": [
 "iot:DescribeJobExecution",
 "iot:CancelJobExecution",
 "iot:DeleteJobExecution",
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:region:account-id:thing/thing-name"
 "arn:aws:iot:region:account-id:job/*"
]
 }
]
}

Authorizing Jobs users and cloud services 1226

AWS IoT Core Developer Guide

IAM policy example for IP based authorization

You can restrict principals from making API calls to your control plane endpoint from specific IP
addresses. To specify the IP addresses that can be allowed, in the Condition element of your IAM
policy, use the aws:SourceIp global condition key.

Using this condition key can also deny access to other AWS services from making these API
calls on your behalf, such as AWS CloudFormation. To allow access to these services, use the
aws:ViaAWSService global condition key with the aws:SourceIp key. This makes sure that the
source IP address access restriction applies only to requests that are made directly by a principal.
For more information, see AWS: Denies access to AWS based on the source IP.

The following example shows how to allow only a specific IP address that can make API calls to the
control plane endpoint. The aws:ViaAWSService key is set to true, which allows other services
to make API calls on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:CreateJobTemplate",
 "iot:CreateJob"
],
 "Resource": ["*"],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "123.45.167.89"
 }
 },
 "Bool": {"aws:ViaAWSService": "true"}
 }
],
}

IAM policies on the data plane

IAM policies on the data plane use the iotjobsdata: prefix to authorize jobs API operations
that users can perform. On the data plane, you can grant a user permission to use the

Authorizing Jobs users and cloud services 1227

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceip
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-viaawsservice
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html

AWS IoT Core Developer Guide

DescribeJobExecution API by using the iotjobsdata:DescribeJobExecution policy
action.

Warning

Using IAM policies on the data plane is not recommended when targeting AWS IoT Jobs
for your devices. We recommend that you use IAM policies on the control plane for users
to create and manage jobs. On the data plane, for authorizing devices to retrieve job
executions and update the execution status, use AWS IoT Core policies for HTTPS protocol.

Basic IAM policy example

The API operations that must be authorized are usually performed by you typing CLI commands.
The following shows an example of a user performing a DescribeJobExecution operation.

In the example, replace:

• region with your AWS Region, such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-name with the name of your IoT thing for which you're targeting jobs, such as
myRegisteredThing.

• job-id is the unique identifier for the job that's targeted using the API.

aws iot-jobs-data describe-job-execution \
 --endpoint-url "https://account-id.jobs.iot.region.amazonaws.com" \
 --job-id jobID --thing-name thing-name

The following shows a sample IAM policy that authorizes this action:

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Action": ["iotjobsdata:DescribeJobExecution"],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:account-id:thing/thing-name",
 }

Authorizing Jobs users and cloud services 1228

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html

AWS IoT Core Developer Guide

 }

IAM policy examples for IP based authorization

You can restrict principals from making API calls to your data plane endpoint from specific IP
addresses. To specify the IP addresses that can be allowed, in the Condition element of your IAM
policy, use the aws:SourceIp global condition key.

Using this condition key can also deny access to other AWS services from making these API
calls on your behalf, such as AWS CloudFormation. To allow access to these services, use the
aws:ViaAWSService global condition key with the aws:SourceIp condition key. This makes
sure that the IP address access restriction only applies to requests that are directly made by the
principal. For more information, see AWS: Denies access to AWS based on the source IP.

The following example shows how to allow only a specific IP address that can make API calls to the
data plane endpoint.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["iotjobsdata:*"],
 "Resource": ["*"],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "123.45.167.89"
 }
 },
 "Bool": {"aws:ViaAWSService": "false"}
 }
],
}

The following example shows how to restrict specific IP addresses or address ranges from making
API calls to the data plane endpoint.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",

Authorizing Jobs users and cloud services 1229

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceip
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-viaawsservice
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html

AWS IoT Core Developer Guide

 "Action": ["iotjobsdata:*"],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "123.45.167.89",
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 },
 "Resource": ["*"],
 }
],
}

IAM policy example for both control plane and data plane

If you perform an API operation on both the control plane and data plane, your control
plane policy action must use the iot: prefix, and your data plane policy action must use the
iotjobsdata: prefix.

For example, the DescribeJobExecution API can be used in both the control plane and data
plane. On the control plane, the DescribeJobExecution API is used to describe a job execution. On
the data plane, the DescribeJobExecution API is used to get details of a job execution.

The following IAM policy authorizes a user permission to use the DescribeJobExecution API on
both the control plane and data plane.

In the example, replace:

• region with your AWS Region, such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-name with the name of your IoT thing for which you're targeting jobs, such as
MyIoTThing.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["iotjobsdata:DescribeJobExecution"],
 "Effect": "Allow",

Authorizing Jobs users and cloud services 1230

https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html

AWS IoT Core Developer Guide

 "Resource": "arn:aws:iot:region:account-id:thing/thing-name"
 },
 {
 "Action": [
 "iot:DescribeJobExecution",
 "iot:CancelJobExecution",
 "iot:DeleteJobExecution",
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:region:account-id:thing/thing-name"
 "arn:aws:iot:region:account-id:job/*"
]
 }
]
}

Authorize tagging of IoT resources

For better control over jobs and job templates that you can create, modify, or use, you can attach
tags to the jobs or job templates. Tags also help you discern ownership and assign and allocate
costs by placing them in billing groups and attaching tags to them.

When a user wants to tag their jobs or job templates that they created by using the AWS
Management Console or the AWS CLI, your IAM policy must grant the user permissions to tag
them. To grant permissions, your IAM policy must use the iot:TagResource action.

Note

If your IAM policy doesn't include the iot:TagResource action, then any CreateJob or
CreateJobTemplate with a tag will return an AccessDeniedException error.

When you want to tag your jobs or job templates that you created by using the AWS Management
Console or the AWS CLI, your IAM policy must grant permission to tag them. To grant permissions,
your IAM policy must use the iot:TagResource action.

For general information about tagging your resources, see Tagging your AWS IoT resources.

IAM policy example

Refer to the following IAM policy examples granting tagging permissions:

Authorizing Jobs users and cloud services 1231

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html

AWS IoT Core Developer Guide

Example 1

A user that runs the following command to create a job and tag it to a specific environment.

In this example, replace:

• region with your AWS Region, such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-name with the name of your IoT thing for which you're targeting jobs, such as
MyIoTThing.

aws iot create-job
 --job-id test_job
 --targets "arn:aws:iot:region:account-id:thing/thingOne"
 --document-source "https://s3.amazonaws.com/my-s3-bucket/job-document.json"
 --description "test job description"
 --tags Key=environment,Value=beta

For this example, you must use the following IAM policy:

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Action": ["iot:CreateJob", "iot:CreateJobTemplate", "iot:TagResource"],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:aws-region:account-id:job/*",
 "arn:aws:iot:aws-region:account-id:jobtemplate/*"
]
 }
}

Authorizing your devices to securely use AWS IoT Jobs on the data
plane

To authorize your devices to interact securely with AWS IoT Jobs on the data plane, you must
use AWS IoT Core policies. AWS IoT Core policies for jobs are JSON documents containing policy
statements. These policies also use Effect, Action, and Resource elements, and follow a similar

Authorizing devices to use jobs 1232

AWS IoT Core Developer Guide

convention to IAM policies. For more information about the elements, see IAM JSON Policy
Elements Reference in the IAM user Guide.

The policies can be used with both MQTT and HTTPS protocols and must use TCP or TLS mutual
authentication to authenticate the devices. The following shows how to use these policies across
the different communication protocols.

Warning

We recommend that you don't use wildcard permissions, such as "Action": ["iot:*"]
in your IAM policies or AWS IoT Core policies. Using wildcard permissions is not a
recommended security best practice. For more information, see AWS IoT policy overly
permissive.

AWS IoT Core policies for MQTT protocol

AWS IoT Core policies for MQTT protocol grant you permissions to use the jobs device MQTT
API actions. The MQTT API operations are used to work with MQTT topics that are reserved for
jobs commands. For more information about these API operations, see Jobs device MQTT API
operations.

MQTT policies use policy actions such as iot:Connect, iot:Publish, iot:Subscribe, and
iot:Receieve to work with the jobs topics. These policies allow you to connect to the message
broker, subscribe to the jobs MQTT topics, and send and receive MQTT messages between your
devices and the cloud. For more information about these actions, see AWS IoT Core policy actions.

For information about topics for AWS IoT Jobs, see Job topics.

Basic MQTT policy example

The following example shows how you can use iot:Publish and iot:Subscribe to publish and
subscribe to jobs and job executions.

In the example, replace:

• region with your AWS Region, such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-name with the name of your IoT thing for which you're targeting jobs, such as
MyIoTThing.

Authorizing devices to use jobs 1233

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_elements.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-iot-policy-permissive.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/audit-chk-iot-policy-permissive.html

AWS IoT Core Developer Guide

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/events/job/*",
 "arn:aws:iot:region:account-id:topic/$aws/events/jobExecution/*",
 "arn:aws:iot:region:account-id:topic/$aws/things/thing-name/jobs/*"
]
 }
],
 "Version": "2012-10-17"
}

AWS IoT Core policies for HTTPS protocol

AWS IoT Core policies on the data plane can also use the HTTPS protocol with the TLS
authentication mechanism to authorize your devices. On the data plane, policies use the
iotjobsdata: prefix to authorize jobs API operations that your devices can perform. For example,
the iotjobsdata:DescribeJobExecution policy action grants the user permission to use the
DescribeJobExecution API.

Note

The data plane policy actions must use the iotjobsdata: prefix. On the control plane,
the actions must use the iot: prefix. For an example IAM policy when both control plane
and data plane policy actions are used, see IAM policy example for both control plane and
data plane.

Policy actions

The following table shows a list of AWS IoT Core policy actions and permissions for authorizing
devices to use the API actions. For a list of API operations that you can perform in the data plane,
see Jobs device HTTP API.

Authorizing devices to use jobs 1234

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html

AWS IoT Core Developer Guide

Note

These job execution policy actions apply only to the HTTP TLS endpoint. If you use the
MQTT endpoint, you must use the MQTT policy actions defined previously.

AWS IoT Core policy actions on data plane

Policy action API operation Resource
types

Description

iotjobsda
ta:Descri
beJobExecution

DescribeJ
obExecution

• job

• thing

Represents the permission to retrieve
a job execution. The iotjobsda
ta:DescribeJobExecution
permission is checked every time
a request is made to retrieve a job
execution.

iotjobsda
ta:GetPen
dingJobEx
ecutions

GetPendin
gJobExecutions

thing Represents the permission to
retrieve the list of jobs that are not
in a terminal status for a thing.
The iotjobsdata:GetPen
dingJobExecutions permissio
n is checked every time a request is
made to retrieve the list.

iotjobsda
ta:StartN
extPendin
gJobExecution

StartNext
PendingJo
bExecution

thing Represents the permission to get and
start the next pending job execution
for a thing. That is, to update a job
execution with status QUEUED to
IN_PROGRESS . The iot:Start
NextPendingJobExecution
permission is checked every time
a request is made to start the next
pending job execution.

Authorizing devices to use jobs 1235

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_DescribeJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_GetPendingJobExecutions.html

AWS IoT Core Developer Guide

Policy action API operation Resource
types

Description

iotjobsda
ta:Update
JobExecution

UpdateJob
Execution

thing Represents the permission to update
a job execution. The iot:Updat
eJobExecution permission is
checked every time a request is made
to update the state of a job execution.

Basic policy example

The following shows an example of an AWS IoT Core policy that grants permission to perform the
actions on the data plane API operations for any resource. You can scope your policy to a specific
resource, such as an IoT thing. In your example, replace:

• region with your AWS Region such as us-east-1.

• account-id with your AWS account number, such as 57EXAMPLE833.

• thing-name with the name of the IoT thing, such as MyIoTthing.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iotjobsdata:GetPendingJobExecutions",
 "iotjobsdata:StartNextPendingJobExecution",
 "iotjobsdata:DescribeJobExecution",
 "iotjobsdata:UpdateJobExecution"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:region:account-id:thing/thing-name"
 }
]
}

An example of when you must use these policies can be when your IoT devices use an AWS
IoT Core policy to access one of these API operations, such as the following example of the
DescribeJobExecution API:

Authorizing devices to use jobs 1236

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-jobs-data_UpdateJobExecution.html

AWS IoT Core Developer Guide

GET /things/thingName/jobs/jobId?
executionNumber=executionNumber&includeJobDocument=includeJobDocument&namespaceId=namespaceId
 HTTP/1.1

Job limits

AWS IoT Jobs has Service quotas, or limits, that correspond to the maximum number of service
resources or operations for your AWS account.

Active and concurrent job limits

This section will help you learn more about active and concurrent jobs and the limits that apply to
them.

Active jobs and active job limit

When you create a job by using the AWS IoT console or the CreateJob API, the job status changes
to IN_PROGRESS. All in-progress jobs are active jobs and count towards the active jobs limit. This
includes jobs that are either rolling out new job executions, or jobs that are waiting for devices to
complete their job executions. This limit applies to both continuous and snapshot jobs.

Concurrent jobs and job concurrency limit

In-progress jobs that are either rolling out new job executions, or jobs that are canceling previously
created job executions are concurrent jobs and count towards the job concurrency limit. AWS IoT
Jobs can roll out and cancel job executions swiftly at a rate of 1000 devices per minute. Each job
is concurrent and counts towards the job concurrency limit only for a short time. After the job
executions have been rolled out or canceled, the job is no longer concurrent and does not count
towards the job concurrency limit. You can use the job concurrency to create a large number of jobs
while waiting for devices to complete the job execution.

Note

If a job with the optional scheduling configuration and job document rollout scheduled to
take place during a maintenance window reaches the selected startTime and you're at
your maximum job concurrency limit, then that scheduled job will move to a status state of
CANCELED.

Job limits 1237

AWS IoT Core Developer Guide

To determine whether a job is concurrent, you can use the IsConcurrent property of a job from
the AWS IoT console, or by using the DescribeJob or ListJob API. This limit applies to both
continuous and snapshot jobs.

To view the active jobs and job concurrency limits and other AWS IoT Jobs quotas for your AWS
account and to request a limit increase, see AWS IoT Device Management endpoints and quotas in
the AWS General Reference.

The following diagram shows how the job concurrency applies to in-progress jobs and jobs that are
being canceled.

Note

New jobs with the optional SchedulingConfig will maintain an initial status state of
SCHEDULED and update to IN_PROGRESS upon reaching the selected startTime. After
the new job with the optional SchedulingConfig reaches the selected startTime and
updates to IN_PROGRESS, it will count towards the active jobs limit and job concurrency
limit. Jobs with a status state of SCHEDULED will count towards the active jobs limit, but
will not count towards the job concurrency limit.

The following table shows the limits that apply to active and concurrent jobs and the concurrent
and non-concurrent phases of the job states.

Active and concurrent job limits

Job status Phase Active jobs
limit

Job concurrency
limit

SCHEDULED Non-concurrent phase: AWS IoT Jobs
waits for the scheduled startTime of

Applies Does not apply

Active and concurrent job limits 1238

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits

AWS IoT Core Developer Guide

Job status Phase Active jobs
limit

Job concurrency
limit

the job to begin job execution notificat
ions to your devices. Jobs in this phase
only count towards the active jobs limit
and will have the IsConcurrent
property set to false.

Concurrent phase: AWS IoT Jobs accepts
the request for creating the job and
starts rolling out job execution notificat
ions to your devices. Jobs in this phase
are concurrent, as denoted by the
IsConcurrent property set to true,
and count towards both the active jobs
and the job concurrency limits.

Applies AppliesIN_PROGRE
SS

Non-concurrent phase: AWS IoT Jobs
waits for devices to report the results of
their job executions. Jobs in this phase
only count towards the active jobs limit
and will have the IsConcurrent
property set to false.

Applies Does not apply

Canceled Concurrent phase: AWS IoT Jobs accepts
the request for canceling the job and
starts canceling job executions previousl
y created for your devices. Jobs in this
phase are concurrent and will have the
IsConcurrent property set to true.
Once the job and job executions have
been canceled, the job is no longer
concurrent and does not count towards
the job concurrency limit.

Does not
apply

Applies

Active and concurrent job limits 1239

AWS IoT Core Developer Guide

Note

The max duration of a recurring maintenance window is 23 hours, 50 minutes.

Active and concurrent job limits 1240

AWS IoT Core Developer Guide

AWS IoT secure tunneling

When devices are deployed behind restricted firewalls at remote sites, you need a way to gain
access to those devices for troubleshooting, configuration updates, and other operational tasks.
Use secure tunneling to establish bidirectional communication to remote devices over a secure
connection that is managed by AWS IoT. Secure tunneling does not require updates to your existing
inbound firewall rules, so you can keep the same security level provided by firewall rules at a
remote site.

For example, a sensor device located at a factory that is a couple hundred miles away is having
trouble measuring the factory temperature. You can use secure tunneling to open and quickly
start a session to that sensor device. After you have identified the problem (for example, a bad
configuration file), you can reset the file and restart the sensor device through the same session.
Compared to a more traditional troubleshooting (for example, sending a technician to the factory
to investigate the sensor device), secure tunneling decreases incident response and recovery time
and operational costs.

What is secure tunneling?

Use secure tunneling to access devices that are deployed behind port-restricted firewalls at remote
sites. You can connect to the destination device from your laptop or desktop computer as the
source device by using the AWS Cloud. The source and destination communicate by using an open
source local proxy that runs on each device. The local proxy communicates with the AWS Cloud by
using an open port that is allowed by firewall, typically 443. Data that is transmitted through the
tunnel is encrypted using Transported Layer Security (TLS).

Topics

• Secure tunneling concepts

• How secure tunneling works

• Secure tunnel lifecycle

Secure tunneling concepts

The following terms are used by secure tunneling when establishing communication with remote
devices. For information about how secure tunneling works, see How secure tunneling works.

What is secure tunneling? 1241

AWS IoT Core Developer Guide

Client access token (CAT)

A pair of tokens generated by secure tunneling when a new tunnel is created. The CAT is used
by the source and destination devices to connect to the secure tunneling service. The CAT can
only be used once to connect to the tunnel. To reconnect to the tunnel, rotate the client access
tokens using the RotateTunnelAccessToken API operation or the rotate-tunnel-access-token CLI
command.

Client token

A unique value generated by the client that AWS IoT secure tunneling can use for all
subsequent retry connections to the same tunnel. This field is optional. If the client token is
not provided, then the client access token (CAT) can only be used once for the same tunnel.
Subsequent connection attempts using the same CAT will be rejected. For more information
about using client tokens, see the local proxy reference implementation in GitHub.

Destination application

The application that runs on the destination device. For example, the destination application
can be an SSH daemon for establishing an SSH session using secure tunneling.

Destination device

The remote device you want to access.

Device agent

An IoT application that connects to the AWS IoT device gateway and listens for new tunnel
notifications over MQTT. For more information, see IoT agent snippet.

Local proxy

A software proxy that runs on the source and destination devices and relays a data stream
between secure tunneling and the device application. The local proxy can be run in source mode
or destination mode. For more information, see Local proxy.

Source device

The device an operator uses to initiate a session to the destination device, usually a laptop or
desktop computer.

Tunnel

A logical pathway through AWS IoT that enables bidirectional communication between a source
device and destination device.

Secure tunneling concepts 1242

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RotateTunnelAccessToken.html
https://docs.aws.amazon.com/cli/latest/reference/iotsecuretunneling/rotate-tunnel-access-token.html
https://github.com/aws-samples/aws-iot-securetunneling-localproxy/blob/master/V2WebSocketProtocolGuide.md

AWS IoT Core Developer Guide

How secure tunneling works

The following shows how secure tunneling establishes a connection between your source and
destination device. For information about the different terms such as client access token (CAT), see
Secure tunneling concepts.

1. Open a tunnel

To open a tunnel for initiating a session with your remote destination device, you can use the
AWS Management Console, the AWS CLI open-tunnel command, or the OpenTunnel API.

2. Download the client access token pair

After you've opened a tunnel, you can download the client access token (CAT) for your source
and destination and save it on your source device. You must retrieve the CAT and save it now
before starting the local proxy.

3. Start local proxy in destination mode

The IoT agent that has been installed and is running on your destination device will be
subscribed to the reserved MQTT topic $aws/things/thing-name/tunnels/notify and
will receive the CAT. Here, thing-name is the name of the AWS IoT thing you create for your
destination. For more information, see Secure tunneling topics.

The IoT agent then uses the CAT to start the local proxy in destination mode and set up a
connection on the destination side of the tunnel. For more information, see IoT agent snippet.

4. Start local proxy in source mode

After the tunnel has been opened, AWS IoT Device Management provides the CAT for the
source that you can download on the source device. You can use the CAT to start the local
proxy in source mode, which then connects the source side of the tunnel. For more information
about local proxy, see Local proxy.

5. Open an SSH session

As both sides of the tunnel are connected, you can start an SSH session by using the local
proxy on the source side.

For more information about how to use the AWS Management Console to open a tunnel and start
an SSH session, see Open a tunnel and start SSH session to remote device.

How secure tunneling works 1243

https://docs.aws.amazon.com/cli/latest/reference/iotsecuretunneling/open-tunnel.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_OpenTunnel

AWS IoT Core Developer Guide

The following video describes how secure tunneling works and walks you through the process of
setting up an SSH session to a Raspberry Pi device.

Secure tunnel lifecycle

Tunnels can have the status OPEN or CLOSED. Connections to the tunnel can have the status
CONNECTED or DISCONNECTED. The following shows how the different tunnel and connection
statuses work.

1. When you open a tunnel, it has a status of OPEN. The tunnel's source and destination connection
status is set to DISCONNECTED.

2. When a device (source or destination) connects to the tunnel, the corresponding connection
status changes to CONNECTED.

3. When a device disconnects from the tunnel while the tunnel status remains OPEN, the
corresponding connection status changes back to DISCONNECTED. A device can connect to and
disconnect from a tunnel repeatedly as long as the tunnel remains OPEN.

Note

The client access tokens (CAT) can only be used once to connect to a
tunnel. To reconnect to the tunnel, rotate the client access tokens using the
RotateTunnelAccessToken API operation or the rotate-tunnel-access-token CLI
command. For examples, see Resolving AWS IoT secure tunneling connectivity issues by
rotating client access tokens.

4. When you call CloseTunnel or the tunnel remains OPEN for longer than the
MaxLifetimeTimeout value, a tunnel's status becomes CLOSED. You can configure
MaxLifetimeTimeout when calling OpenTunnel. MaxLifetimeTimeout defaults to 12 hours
if you do not specify a value.

Note

A tunnel cannot be reopened when it is CLOSED.

5. You can call DescribeTunnel and ListTunnels to view tunnel metadata while the tunnel
is visible. The tunnel can be visible in the AWS IoT console for at least three hours before it is
deleted.

Secure tunnel lifecycle 1244

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RotateTunnelAccessToken.html
https://docs.aws.amazon.com/cli/latest/reference/iotsecuretunneling/rotate-tunnel-access-token.html

AWS IoT Core Developer Guide

AWS IoT secure tunneling tutorials

AWS IoT secure tunneling helps customers establish bidirectional communication to remote
devices that are behind a firewall over a secure connection managed by AWS IoT.

To demo AWS IoT secure tunneling, use our AWS IoT secure tunneling demo on GitHub.

The following tutorials will help you learn how to get started and use secure tunneling. You'll learn
how to:

1. Create a secure tunnel using the quick setup and manual setup methods for accessing the
remote device.

2. Configure the local proxy when using the manual setup method and connect to the tunnel to
access the destination device.

3. SSH into the remote device from a browser without having to configure the local proxy.

4. Convert a tunnel created using the AWS CLI or using the manual setup method to use the quick
setup method.

Tutorials in this section

The tutorials in this section focus on creating a tunnel using the AWS Management Console and the
AWS IoT API Reference. In the AWS IoT console, you can create a tunnel from the Tunnels hub page
or from the details page of a thing that you created. For more information, see Tunnel creation
methods in AWS IoT console.

Following shows the tutorials in this section:

• Open a tunnel and use browser-based SSH to access remote device

This tutorial shows how to open a tunnel from the Tunnels hub page using the quick setup
method. You'll also learn how to use browser-based SSH to access the remote device using an in-
context command line interface within the AWS IoT console.

• Open a tunnel using manual setup and connect to remote device

This tutorial shows how to open a tunnel from the Tunnels hub page using the manual setup
method. You'll also learn how to configure and start the local proxy from a terminal in your
source device and connect to the tunnel.

AWS IoT secure tunneling tutorials 1245

https://github.com/aws-samples/iot-secure-tunneling-demo
https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels

AWS IoT Core Developer Guide

• Open a tunnel for remote device and use browser-based SSH

This tutorial shows how to open a tunnel from the details page of a thing that you created. You'll
learn how to create a new tunnel and use an existing tunnel. The existing tunnel corresponds
to the most recent, open tunnel that was created for the device. You can also use the browser-
based SSH to access the remote device.

AWS IoT secure tunneling tutorials

• Open a tunnel and start SSH session to remote device

• Open a tunnel for remote device and use browser-based SSH

Open a tunnel and start SSH session to remote device

In these tutorials, you'll learn how to remotely access a device that's behind a firewall. You can't
start a direct SSH session into the device because the firewall blocks all inbound traffic. The
tutorials show you how you can open a tunnel and then use that tunnel to start an SSH session to a
remote device.

Prerequisites for the tutorials

The prerequisites for running the tutorial can vary depending on whether you use the manual or
quick setup methods for opening a tunnel and accessing the remote device.

Note

For both setup methods, you must allow outbound traffic on port 443.

• For information about prerequisites for the quick setup method tutorial, see Prerequisites for
quick setup method.

• For information about prerequisites for the manual setup method tutorial, see Prerequisites
for manual setup method. If you use this setup method, you must configure the local proxy
on your source device. To download the local proxy source code, see Local proxy reference
implementation on GitHub.

Open a tunnel and start SSH session to remote device 1246

https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

Tunnel setup methods

In these tutorials, you'll learn about the manual and quick setup methods for opening a tunnel
and connecting to the remote device. The following table shows the difference between the setup
methods. After you create the tunnel, you can use an in-browser command line interface to SSH
into the remote device. If you misplace the tokens or the tunnel gets disconnected, you can send
new access tokens to reconnect to the tunnel.

Quick and manual setup methods

Criteria Quick setup Manual setup

Tunnel
creation

Create a new tunnel with default,
editable configurations. To access
your remote device, you can only use
SSH as the destination service.

Create a tunnel by manually specifying
the tunnel configurations. You can use this
method to connect to the remote device
using services other than SSH.

Access
tokens

The destination access token will
be automatically delivered to your
device on the reserved MQTT topic,
if a thing name is specified when
creating the tunnel. You don't have
to download or manage the token on
your source device.

You'll have to manually download and
manage the token on your source device.
The destination access token is automatic
ally delivered to the remote device on the
reserved MQTT topic, if a thing name is
specified when creating the tunnel.

Local
proxy

A web-based local proxy is automatic
ally configured for you for interacti
ng with the device. You don't have to
manually configure the local proxy.

You'll have to manually configure and
launch the local proxy. To configure the
local proxy, you can either use the AWS IoT
Device Client or download the Local proxy
reference implementation on GitHub.

Tunnel creation methods in AWS IoT console

The tutorials in this section show you how to create a tunnel using the AWS Management Console
and the OpenTunnel API. If you configure the destination when creating a tunnel, AWS IoT secure
tunneling delivers the destination client access token to the remote device over MQTT and the
reserved MQTT topic, $aws/things/RemoteDeviceA/tunnels/notify). On receiving the

Open a tunnel and start SSH session to remote device 1247

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-secure
https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-secure
https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://docs.aws.amazon.com/iot/latest/apireference/

AWS IoT Core Developer Guide

MQTT message, the IoT agent on the remote device starts the local proxy in destination mode. For
more information, see Reserved topics.

Note

You can omit the destination configuration if you want to deliver the destination client
access token to the remote device through another method. For more information, see
Configuring a remote device and using IoT agent.

In the AWS IoT console, you can create a tunnel using either of the following methods. For
information about tutorials that will help you learn to create a tunnel using these methods, see
Tutorials in this section.

• Tunnels hub

When you create the tunnel, you'll be able to specify whether to use the quick setup or the
manual setup methods for creating the tunnel and provide the optional tunnel configuration
details. The configuration details also include the name of the destination device and the service
that you want to use for connecting to the device. After you create a tunnel, you can either SSH
within the browser or open a terminal outside the AWS IoT console to access your remote device.

• Thing details page

When you create the tunnel, you'll also be able to specify whether to use the most recent, open
tunnel or create a new tunnel for the device, in addition to choosing the setup methods and
providing any optional tunnel configuration details. You can't edit the configuration details of an
existing tunnel. You can use the quick setup method to rotate the access tokens and SSH into the
remote device within the browser. To open a tunnel using this method, you must have created
an IoT thing (for example, RemoteDeviceA) in the AWS IoT registry. For more information, see
Register a device in the AWS IoT registry.

Tutorials in this section

• Open a tunnel and use browser-based SSH to access remote device

• Open a tunnel using manual setup and connect to remote device

Open a tunnel and start SSH session to remote device 1248

https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/developerguide/register-device.html

AWS IoT Core Developer Guide

Open a tunnel and use browser-based SSH to access remote device

You can use the quick setup or the manual setup method for creating a tunnel. This tutorial shows
how to open a tunnel using the quick setup method and use the browser-based SSH to connect
to the remote device. For an example that shows how to open a tunnel using the manual setup
method, see Open a tunnel using manual setup and connect to remote device.

Using the quick setup method, you can create a new tunnel with default configurations that can
be edited. A web-based local proxy is configured for you and the access token is automatically
delivered to your remote destination device using MQTT. After creating a tunnel, you can start
interacting with your remote device using a command line interface within the console.

With the quick setup method, you must use SSH as the destination service to access the remote
device. For more information about the different setup methods, see Tunnel setup methods.

Prerequisites for quick setup method

• The firewalls that the remote device is behind must allow outbound traffic on port 443. The
tunnel that you create will use this port to connect to the remote device.

• You have an IoT device agent (see IoT agent snippet) running on the remote device that connects
to the AWS IoT device gateway and is configured with an MQTT topic subscription. For more
information, see connect a device to the AWS IoT device gateway.

• You must have an SSH daemon running on the remote device.

Open a tunnel

You can open a secure tunnel using the AWS Management Console, the AWS IoT API Reference, or
the AWS CLI. You can optionally configure a destination name but it's not required for this tutorial.
If you configure the destination, secure tunneling will automatically deliver the access token to the
remote device using MQTT. For more information, see Tunnel creation methods in AWS IoT console.

To open a tunnel using the console

1. Go to the Tunnels hub of the AWS IoT console and choose Create tunnel.

Open a tunnel and start SSH session to remote device 1249

https://docs.aws.amazon.com/iot/latest/developerguide/sdk-tutorials.html
https://console.aws.amazon.com/iot/home#/tunnels

AWS IoT Core Developer Guide

2. For this tutorial, choose Quick setup as the tunnel creation method and then choose Next.

Note

If you create a secure tunnel from the details page of a thing you created, you can
choose whether to create a new tunnel or use an existing one. For more information,
see Open a tunnel for remote device and use browser-based SSH.

3. Review and confirm the tunnel configuration details. To create a tunnel, choose Confirm and
create. If you want to edit these details, choose Previous to go back to the previous page and
then confirm and create the tunnel.

Open a tunnel and start SSH session to remote device 1250

AWS IoT Core Developer Guide

Note

When using quick setup, the service name can't be edited. You must use SSH as the
Service.

4. To create the tunnel, choose Done.

For this tutorial, you don't have to download the source or destination access tokens. These
tokens can only be used once to connect to the tunnel. If your tunnel gets disconnected, you
can generate and send new tokens to your remote device for reconnecting to the tunnel. For
more information, see Resend tunnel access tokens.

To open a tunnel using the API

To open a new tunnel, you can use the OpenTunnel API operation.

Note

You can create a tunnel using the quick setup method only from the AWS IoT console.
When you use the AWS IoT API Reference API or the AWS CLI, it will use the manual setup
method. You can open the existing tunnel that you created and then change the setup

Open a tunnel and start SSH session to remote device 1251

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_OpenTunnel.html

AWS IoT Core Developer Guide

method of the tunnel to use the quick setup. For more information, see Open an existing
tunnel and use browser-based SSH.

The following shows an example of how to run this API operation. Optionally, if you want to
specify the thing name and the destination service, use the DestinationConfig parameter. For
an example that shows how to use this parameter, see Open a new tunnel for the remote device.

aws iotsecuretunneling open-tunnel

Running this command creates a new tunnel and provides you the source and destination access
tokens.

{
 "tunnelId": "01234567-89ab-0123-4c56-789a01234bcd",
 "tunnelArn": "arn:aws:iot:us-
east-1:123456789012:tunnel/01234567-89ab-0123-4c56-789a01234bcd",
 "sourceAccessToken": "<SOURCE_ACCESS_TOKEN>",
 "destinationAccessToken": "<DESTINATION_ACCESS_TOKEN>"
}

Using the browser-based SSH

After you create a tunnel using the quick setup method, and your destination device has connected
to the tunnel, you can access the remote device using a browser-based SSH. Using the browser-
based SSH, you can directly communicate with the remote device by entering commands into
an in-context command line interface within the console. This feature makes it easier for you to
interact with the remote device because you don't have to open a terminal outside the console or
configure the local proxy.

To use the browser-based SSH

1. Go to the Tunnels hub of the AWS IoT console and choose the tunnel that you created to view
its details.

2. Expand the Secure Shell (SSH) section and then choose Connect.

3. Choose whether you want to authenticate into the SSH connection by providing your
username and password, or, for more secure authentication, you can use your device's private
key. If you're authenticating using the private key, you can use RSA, DSA, ECDSA (nistp-*) and
ED25519 key types, in PEM (PKCS#1, PKCS#8) and OpenSSH formats.

Open a tunnel and start SSH session to remote device 1252

https://console.aws.amazon.com/iot/home#/tunnels

AWS IoT Core Developer Guide

• To connect using your username and password, choose Use password. You can then enter
your username and password and start using the in-browser CLI.

• To connect using your destination device's private key, choose Use private key. Specify your
username and upload the device's private key file, and then choose Connect to start using
the in-browser CLI.

After you've authenticated into the SSH connection, you can quickly get started with entering
commands and interact with the device using the browser CLI, as the local proxy has already been
configured for you.

Open a tunnel and start SSH session to remote device 1253

AWS IoT Core Developer Guide

If the browser CLI stays open after the tunnel duration, it might time out, causing the command
line interface to get disconnected. You can duplicate the tunnel and start another session to
interact with the remote device within the console itself.

Troubleshooting issues when using the browser-based SSH

The following shows how to troubleshoot some issues that you might run into when using the
browser-based SSH.

• You see an error instead of the command line interface

You might be seeing the error because your destination device got disconnected. You can choose
Generate new access tokens to generate new access tokens and send the tokens to your remote
device using MQTT. The new tokens can be used to reconnect to the tunnel. Reconnecting to the
tunnel clears the history and refreshes the command line session.

• You see a tunnel disconnected error when authenticating using private key

You might be seeing the error because your private key might not have been accepted by the
destination device. To troubleshoot this error, check the private key file that you uploaded for
authentication. If you still see an error, check your device logs. You can also try reconnecting to
the tunnel by sending new access tokens to your remote device.

• Your tunnel was closed when using the session

If your tunnel was closed because it stayed open for more than the specified duration, your
command line session might get disconnected. A tunnel cannot be reopened once closed. To
reconnect, you must open another tunnel to the device.

You can duplicate a tunnel to create a new tunnel with the same configurations as the closed
tunnel. You can duplicate a closed tunnel from the AWS IoT console. To duplicate the tunnel,
choose the tunnel that was closed to view its details, and then choose Duplicate tunnel. Specify
the tunnel duration that you want to use and then create the new tunnel.

Cleaning up

• Close tunnel

We recommend that you close the tunnel after you've finished using it. A tunnel can also become
closed if it stayed open for longer than the specified tunnel duration. A tunnel cannot be
reopened once closed. You can still duplicate a tunnel by choosing the closed tunnel and then

Open a tunnel and start SSH session to remote device 1254

AWS IoT Core Developer Guide

choosing Duplicate tunnel. Specify the tunnel duration that you want to use and then create the
new tunnel.

• To close an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to close, and then choose Close tunnel.

• To close an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use the
CloseTunnel API.

aws iotsecuretunneling close-tunnel \
 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"

• Delete tunnel

You can delete a tunnel permanently from your AWS account.

Warning

Deletion actions are permanent and can't be undone.

• To delete an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to delete, and then choose Delete tunnel.

• To delete an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use
the CloseTunnel API. When using the API, set the delete flag to true.

aws iotsecuretunneling close-tunnel \
 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"
 --delete true

Open a tunnel using manual setup and connect to remote device

When you open a tunnel, you can choose the quick setup or the manual setup method for opening
a tunnel into the remote device. This tutorial shows how to open a tunnel using the manual setup
method and configure and start the local proxy to connect to the remote device.

When you use the manual setup method, you must manually specify the tunnel configurations
when creating the tunnel. After creating the tunnel, you can SSH within the browser or open a
terminal outside the AWS IoT console. This tutorial shows how to use the terminal outside the
console to access the remote device. You'll also learn how to configure the local proxy and then

Open a tunnel and start SSH session to remote device 1255

https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html
https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html

AWS IoT Core Developer Guide

connect to the local proxy to interact with the remote device. To connect to the local proxy, you
must download the source access token when creating the tunnel.

With this setup method, you can use services other than SSH, such as FTP to connect to the remote
device. For more information about the different setup methods, see Tunnel setup methods.

Prerequisites for manual setup method

• The firewalls that the remote device is behind must allow outbound traffic on port 443. The
tunnel that you create will use this port to connect to the remote device.

• You have an IoT device agent (see IoT agent snippet) running on the remote device that connects
to the AWS IoT device gateway and is configured with an MQTT topic subscription. For more
information, see connect a device to the AWS IoT device gateway.

• You must have an SSH daemon running on the remote device.

• You have downloaded the local proxy source code from GitHub and built it for the platform of
your choice. We'll refer to the built local proxy executable file as localproxy in this tutorial.

Open a tunnel

You can open a secure tunnel using the AWS Management Console, the AWS IoT API Reference, or
the AWS CLI. You can optionally configure a destination name but it's not required for this tutorial.
If you configure the destination, secure tunneling will automatically deliver the access token to the
remote device using MQTT. For more information, see Tunnel creation methods in AWS IoT console.

To open a tunnel in the console

1. Go to the Tunnels hub of the AWS IoT console and choose Create tunnel.

Open a tunnel and start SSH session to remote device 1256

https://docs.aws.amazon.com/iot/latest/developerguide/sdk-tutorials.html
https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://console.aws.amazon.com/iot/home#/tunnelhub

AWS IoT Core Developer Guide

2. For this tutorial, choose Manual setup as the tunnel creation method and then choose Next.
For information about using the quick setup method to create a tunnel, see Open a tunnel and
use browser-based SSH to access remote device.

Note

If you create a secure tunnel from the details page of a thing, you can choose whether
to create a new tunnel or use an existing one. For more information, see Open a tunnel
for remote device and use browser-based SSH.

3. (Optional) Enter the configuration settings for your tunnel. You can also skip this step and
proceed to the next step to create a tunnel.

Enter a tunnel description, a tunnel timeout duration, and resource tags as key-value pairs to
help you identify your resource. For this tutorial, you can skip the destination configuration.

Note

You won't be charged based on the duration for which you keep a tunnel open. You
only incur charges when creating a new tunnel. For pricing information, see Secure
Tunneling in AWS IoT Device Management pricing.

4. Download the client access tokens and then choose Done. The tokens will not be available to
download after you choose Done.

Open a tunnel and start SSH session to remote device 1257

https://aws.amazon.com/iot-device-management/pricing/

AWS IoT Core Developer Guide

These tokens can only be used once to connect to the tunnel. If you misplace the tokens or the
tunnel gets disconnected, you can generate and send new tokens to your remote device for
reconnecting to the tunnel.

To open a tunnel using the API

To open a new tunnel, you can use the OpenTunnel API operation. You can also specify additional
configurations using the API, such as the tunnel duration and the destination configuration.

aws iotsecuretunneling open-tunnel \
 --region us-east-1 \
 --endpoint https://api.us-east-1.tunneling.iot.amazonaws.com

Running this command creates a new tunnel and provides you the source and destination access
tokens.

{
 "tunnelId": "01234567-89ab-0123-4c56-789a01234bcd",
 "tunnelArn": "arn:aws:iot:us-
east-1:123456789012:tunnel/01234567-89ab-0123-4c56-789a01234bcd",
 "sourceAccessToken": "<SOURCE_ACCESS_TOKEN>",
 "destinationAccessToken": "<DESTINATION_ACCESS_TOKEN>"

Open a tunnel and start SSH session to remote device 1258

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_OpenTunnel.html

AWS IoT Core Developer Guide

}

Resend tunnel access tokens

The tokens that you obtained when creating a tunnel can only be used once to connect to the
tunnel. If you misplace the access token or the tunnel gets disconnected, you can resend new
access tokens to the remote device using MQTT at no additional charge. AWS IoT secure tunneling
will revoke the current tokens and return new access tokens for reconnecting to the tunnel.

To rotate the tokens from the console

1. Go to the Tunnels hub of the AWS IoT console and choose the tunnel that you created.

2. In the tunnel details page, choose Generate new access tokens and then choose Next.

3. Download the new access tokens for your tunnel and choose Done. These tokens can be used
only once. If you misplace these tokens or the tunnel gets disconnected, you can resend new
access tokens.

To rotate access tokens using the API

To rotate the tunnel access tokens, you can use the RotateTunnelAccessToken API operation
to revoke the current tokens and return new access tokens for reconnecting to the tunnel.

Open a tunnel and start SSH session to remote device 1259

https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RotateTunnelAccessToken.html

AWS IoT Core Developer Guide

For example, the following command rotates the access tokens for the destination device,
RemoteThing1.

aws iotsecuretunneling rotate-tunnel-access-token \
 --tunnel-id <tunnel-id> \
 --client-mode DESTINATION \
 --destination-config thingName=<RemoteThing1>,services=SSH \
 --region <region>

Running this command generates the new access token as shown in the following example. The
token is then delivered to the device using MQTT to connect to the tunnel, if the device agent is set
up correctly.

{
 "destinationAccessToken": "destination-access-token",
 "tunnelArn": "arn:aws:iot:region:account-id:tunnel/tunnel-id"
}

For examples that show how and when to rotate the access tokens, see Resolving AWS IoT secure
tunneling connectivity issues by rotating client access tokens.

Configure and start the local proxy

To connect to the remote device, open a terminal on your laptop and configure and start the local
proxy. The local proxy transmits data sent by the application running on the source device by using
secure tunneling over a WebSocket secure connection. You can download the local proxy source
from GitHub.

After you configure the local proxy, copy the source client access token, and use it to start the
local proxy in source mode. Following shows an example command to start the local proxy. In the
following command, the local proxy is configured to listen for new connections on port 5555. In
this command:

• -r specifies the AWS Region, which must be the same Region where your tunnel was created.

• -s specifies the port to which the proxy should connect.

• -t specifies the client token text.

Open a tunnel and start SSH session to remote device 1260

https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

./localproxy -r us-east-1 -s 5555 -t source-client-access-token

Running this command will start the local proxy in source mode. If you receive the following error
after running the command, set up the CA path. For information, see Secure tunneling local proxy
on GitHub.

Could not perform SSL handshake with proxy server: certificate verify failed

The following shows a sample output of running the local proxy in source mode.

...

...

Starting proxy in source mode
Attempting to establish web socket connection with endpoint wss://
data.tunneling.iot.us-east-1.amazonaws.com:443
Resolved proxy server IP: 10.10.0.11
Connected successfully with proxy server
Performing SSL handshake with proxy server
Successfully completed SSL handshake with proxy server
HTTP/1.1 101 Switching Protocols

...

Connection: upgrade
channel-id: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
upgrade: websocket

...

Web socket session ID: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
Web socket subprotocol selected: aws.iot.securetunneling-2.0
Successfully established websocket connection with proxy server: wss://
data.tunneling.iot.us-east-1.amazonaws.com:443
Setting up web socket pings for every 5000 milliseconds
Scheduled next read:

...

Starting web socket read loop continue reading...
Resolved bind IP: 127.0.0.1

Open a tunnel and start SSH session to remote device 1261

https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

Listening for new connection on port 5555

Start an SSH session

Open another terminal and use the following command to start a new SSH session by connecting
to the local proxy on port 5555.

ssh username@localhost -p 5555

You might be prompted for a password for the SSH session. When you are done with the SSH
session, type exit to close the session.

Cleaning up

• Close tunnel

We recommend that you close the tunnel after you've finished using it. A tunnel can also become
closed if it stayed open for longer than the specified tunnel duration. A tunnel cannot be
reopened once closed. You can still duplicate a tunnel by opening the closed tunnel and then
choosing Duplicate tunnel. Specify the tunnel duration that you want to use and then create the
new tunnel.

• To close an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to close, and then choose Close tunnel.

• To close an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use the
CloseTunnel API operation.

aws iotsecuretunneling close-tunnel \
 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"

• Delete tunnel

You can delete a tunnel permanently from your AWS account.

Warning

Deletion actions are permanent and can't be undone.

Open a tunnel and start SSH session to remote device 1262

https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html

AWS IoT Core Developer Guide

• To delete an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to delete, and then choose Delete tunnel.

• To delete an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use
the CloseTunnel API operation. When using the API, set the delete flag to true.

aws iotsecuretunneling close-tunnel \
 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"
 --delete true

Open a tunnel for remote device and use browser-based SSH

From the AWS IoT console, you can create a tunnel either from the Tunnels hub or from the details
page of an IoT thing that you created. When you create a tunnel from the Tunnels hub, you can
specify whether to create a tunnel using the quick setup or the manual setup. For an example
tutorial, see Open a tunnel and start SSH session to remote device.

When you create a tunnel from the thing details page of the AWS IoT console, you can also specify
whether to create a new tunnel or open an existing tunnel for that thing as illustrated in this
tutorial. If you choose an existing tunnel, you can access the most recent, open tunnel that you
created for this device. You can then use the command line interface within the terminal to SSH
into the device.

Prerequisites

• The firewalls that the remote device is behind must allow outbound traffic on port 443. The
tunnel that you create will use this port to connect to the remote device.

• You have created an IoT thing (for example, RemoteDevice1) in the AWS IoT registry. This thing
corresponds to the representation of your remote device in the cloud. For more information, see
Register a device in the AWS IoT registry.

• You have an IoT device agent (see IoT agent snippet) running on the remote device that connects
to the AWS IoT device gateway and is configured with an MQTT topic subscription. For more
information, see connect a device to the AWS IoT device gateway.

• You must have an SSH daemon running on the remote device.

Open a tunnel for remote device and use browser-based SSH 1263

https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html
https://docs.aws.amazon.com/iot/latest/developerguide/register-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/register-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/sdk-tutorials.html

AWS IoT Core Developer Guide

Open a new tunnel for the remote device

Say you want to open a tunnel into your remote device, RemoteDevice1. First, create an IoT thing
with the name RemoteDevice1 in the AWS IoT registry. You can then create a tunnel using the
AWS Management Console, the AWS IoT API Reference API, or the AWS CLI.

By configuring a destination when creating a tunnel, the secure tunneling service delivers the
destination client access token to the remote device over MQTT and the reserved MQTT topic
($aws/things/RemoteDeviceA/tunnels/notify). For more information, see Tunnel creation
methods in AWS IoT console.

To create a tunnel for remote device from console

1. Choose the thing, RemoteDevice1, to view its details, and then choose Create secure tunnel.

2. Choose whether to create a new tunnel or open an existing tunnel. To create a new tunnel,
choose Create new tunnel. You can then choose whether to use the manual setup or the quick
setup method to create the tunnel. For more information, see Open a tunnel using manual
setup and connect to remote device and Open a tunnel and use browser-based SSH to access
remote device.

To create a tunnel for remote device using API

To open a new tunnel, you can use the OpenTunnel API operation. The following code shows an
example of running this command.

aws iotsecuretunneling open-tunnel \
 --region us-east-1 \
 --endpoint https://api.us-east-1.tunneling.iot.amazonaws.com
 --cli-input-json file://input.json

Open a tunnel for remote device and use browser-based SSH 1264

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_OpenTunnel.html

AWS IoT Core Developer Guide

Following shows the contents for the input.json file. You can use the destinationConfig
parameter to specify the name of the destination device (for example, RemoteDevice1) and the
service that you want to use to access the destination device, such as SSH. Optionally, you can also
specify additional parameters such as tunnel description and tags.

Contents of input.json

{
 "description": "Tunnel to remote device1",
 "destinationConfig": {
 "services": ["SSH"],
 "thingName": "RemoteDevice1"
 }
}

Running this command creates a new tunnel and provides you the source and destination access
tokens.

{
 "tunnelId": "01234567-89ab-0123-4c56-789a01234bcd",
 "tunnelArn": "arn:aws:iot:us-
east-1:123456789012:tunnel/01234567-89ab-0123-4c56-789a01234bcd",
 "sourceAccessToken": "<SOURCE_ACCESS_TOKEN>",
 "destinationAccessToken": "<DESTINATION_ACCESS_TOKEN>"
}

Open an existing tunnel and use browser-based SSH

Say you created the tunnel for your remote device, RemoteDevice1, using the manual setup
method or using the AWS IoT API Reference API. You can then open the existing tunnel for the
device and choose Quick setup to use the browser-based SSH feature. The configurations of an
existing tunnel can't be edited so you can't use the manual setup method.

To use the browser-based SSH feature, you won't have to download the source access token or
configure the local proxy. A web-based local proxy will be automatically configured for you so you
can start interacting with your remote device.

To use the quick setup method and browser-based SSH

1. Go to the details page of the thing that you created, RemoteDevice1, and Create secure
tunnel.

Open a tunnel for remote device and use browser-based SSH 1265

AWS IoT Core Developer Guide

2. Choose Use existing tunnel to open the most recent, open tunnel that you created for the
remote device. The tunnel configurations can't be edited so you can't use the manual setup
method for the tunnel. To use the quick setup method, choose Quick setup.

3. Proceed to review and confirm the tunnel configuration details and create the tunnel. The
tunnel configurations can't be edited.

When you create the tunnel, secure tunneling will use the RotateTunnelAccessToken API
operation to revoke the original access tokens and generate new access tokens. If your remote
device uses MQTT, these tokens will be automatically delivered to the remote device on the
MQTT topic that it's subscribed to. You can also choose to download these tokens manually to
your source device.

After you've created the tunnel, you can use the browser-based SSH to interact with the remote
device directly from the console using the in-context command-line interface. To use this
command- line interface, choose the tunnel for the thing that you created, and in the details page,
expand the Command-line interface section. As the local proxy has already been configured for
you, you can start entering commands to quickly get started with accessing and interacting with
your remote device, RemoteDevice1.

For more information about the quick setup method and using the browser-based SSH, see Open a
tunnel and use browser-based SSH to access remote device.

Cleaning up

• Close tunnel

We recommend that you close the tunnel after you've finished using it. A tunnel can also become
closed if it stayed open for longer than the specified tunnel duration. A tunnel cannot be
reopened once closed. You can still duplicate a tunnel by opening the closed tunnel and then
choosing Duplicate tunnel. Specify the tunnel duration that you want to use and then create the
new tunnel.

• To close an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to close, and then choose Close tunnel.

• To close an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use the
CloseTunnel API operation.

aws iotsecuretunneling close-tunnel \

Open a tunnel for remote device and use browser-based SSH 1266

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RotateTunnelAccessToken.html
https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html

AWS IoT Core Developer Guide

 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"

• Delete tunnel

You can delete a tunnel permanently from your AWS account.

Warning

Deletion actions are permanent and can't be undone.

• To delete an individual tunnel or multiple tunnels from the AWS IoT console, go to the Tunnels
hub, choose the tunnels that you want to delete, and then choose Delete tunnel.

• To delete an individual tunnel or multiple tunnels using the AWS IoT API Reference API, use
the CloseTunnel API operation. When using the API, set the delete flag to true.

aws iotsecuretunneling close-tunnel \
 --tunnel-id "01234567-89ab-0123-4c56-789a01234bcd"
 --delete true

Local proxy

The local proxy transmits data sent by the application running on the source device by using secure
tunneling over a WebSocket secure connection. You can download the local proxy source from
GitHub.

The local proxy can run in two modes: source or destination. In source mode, the local proxy
runs on the same device or network as the client application that initiates the TCP connection.
In destination mode, the local proxy runs on the remote device, along with the destination
application. A single tunnel can support up to three data streams at a time by using tunnel
multiplexing. For each data stream, secure tunneling uses multiple TCP connections, which
reduces the potential for a time out. For more information, see Multiplex data streams and using
simultaneous TCP connections in a secure tunnel.

How to use the local proxy

You can run the local proxy on the source and destination devices to transmit data to the secure
tunneling endpoints. If your devices are in a network that use a web proxy, the web proxy can

Local proxy 1267

https://console.aws.amazon.com/iot/home#/tunnels
https://console.aws.amazon.com/iot/home#/tunnels
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html
https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

intercept the connections before forwarding them to the internet. In this case, you'll need to
configure your local proxy to use the web proxy. For more information, see Configure local proxy
for devices that use web proxy.

Local proxy workflow

The following steps show how the local proxy is run on the source and destination devices.

1. Connect local proxy to secure tunneling

First, local proxy must establish a connection to secure tunneling. When you start the local
proxy, use the following arguments:

• The -r argument to specify the AWS Region in which the tunnel is opened.

• The -t argument to pass either the source or destination client access token returned from
the OpenTunnel.

Note

Two local proxies using the same client access token value cannot be connected at
the same time.

2. Perform source or destination actions

After the WebSocket connection is established, the local proxy performs either source mode or
destination mode actions, depending on its configuration.

By default, the local proxy attempts to reconnect to secure tunneling if any input/output (I/
O) errors occur or if the WebSocket connection is closed unexpectedly. This causes the TCP
connection to close. If any TCP socket errors occur, the local proxy sends a message through
the tunnel to notify the other side to close its TCP connection. By default, the local proxy
always uses SSL communication.

3. Stop the local proxy

After you use the tunnel, it is safe to stop the local proxy process. We recommend that you
explicitly close the tunnel by calling CloseTunnel. Active tunnel clients might not be closed
right after calling CloseTunnel.

How to use the local proxy 1268

AWS IoT Core Developer Guide

For more information about how to use the AWS Management Console to open a tunnel and start
an SSH session, see Open a tunnel and start SSH session to remote device.

Local proxy best practices

When running the local proxy, follow these best practices:

• Avoid the use of the -t local proxy argument to pass in an access token. We recommend that you
use the AWSIOT_TUNNEL_ACCESS_TOKEN environment variable to set the access token for the
local proxy.

• Run the local proxy executable with least privileges in the operating system or environment.

• Avoid running the local proxy as an administrator on Windows.

• Avoid running the local proxy as root on Linux and macOS.

• Consider running the local proxy on separate hosts, containers, sandboxes, chroot jail, or a
virtualized environment.

• Build the local proxy with relevant security flags, depending on your toolchain.

• On devices with multiple network interfaces, use the -b argument to bind the TCP socket to the
network interface used to communicate with the destination application.

Example command and output

The following shows an example of a command that you run and the corresponding output. The
example shows how the local proxy can be configured in both source and destination modes.
The local proxy upgrades the HTTPS protocol to WebSockets to establish a long-lived connection
and then starts transmitting data through the connection to the secure tunneling device endpoints.

Before you run these commands:

You must have opened a tunnel and obtained the client access tokens for the source and
destination. You must have also built the local proxy as described previously. To build the local
proxy, open the local proxy source code in the GitHub repository and follow the instructions for
building and installing the local proxy.

How to use the local proxy 1269

https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

Note

The following commands used in the examples use the verbosity flag to illustrate an
overview of the different steps described previously after you run the local proxy. We
recommend that you use this flag only for testing purposes.

Running local proxy in source mode

The following commands show how to run the local proxy in source mode.

Linux/macOS

In Linux or macOS, run the following commands in the terminal to configure and start the local
proxy on your source.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
./localproxy -s 5555 -v 5 -r us-west-2

Where:

• -s is the source listen port, which starts the local proxy in source mode.

• -v is the verbosity of the output, which can be a value between zero and six.

• -r is the endpoint region where the tunnel is opened.

For more information about the parameters, see Options set using command line arguments.

Windows

In Windows, you configure the local proxy similar to how you do for Linux or macOS, but how
you define the environment variables is different from the other platforms. Run the following
commands in the cmd window to configure and start the local proxy on your source.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
.\localproxy -s 5555 -v 5 -r us-west-2

Where:

• -s is the source listen port, which starts the local proxy in source mode.

• -v is the verbosity of the output, which can be a value between zero and six.

How to use the local proxy 1270

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#options-set-via-command-line-arguments

AWS IoT Core Developer Guide

• -r is the endpoint region where the tunnel is opened.

For more information about the parameters, see Options set using command line arguments.

The following shows a sample output of running the local proxy in source mode.

...

...

Starting proxy in source mode
Attempting to establish web socket connection with endpoint wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Resolved proxy server IP: 10.10.0.11
Connected successfully with proxy server
Performing SSL handshake with proxy server
Successfully completed SSL handshake with proxy server
HTTP/1.1 101 Switching Protocols

...

Connection: upgrade
channel-id: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
upgrade: websocket

...

Web socket session ID: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
Web socket subprotocol selected: aws.iot.securetunneling-2.0
Successfully established websocket connection with proxy server: wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Setting up web socket pings for every 5000 milliseconds
Scheduled next read:

...

Starting web socket read loop continue reading...
Resolved bind IP: 127.0.0.1
Listening for new connection on port 5555

Running local proxy in destination mode

The following commands show how to run the local proxy in destination mode.

How to use the local proxy 1271

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#options-set-via-command-line-arguments

AWS IoT Core Developer Guide

Linux/macOS

In Linux or macOS, run the following commands in the terminal to configure and start the local
proxy on your destination.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
./localproxy -d 22 -v 5 -r us-west-2

Where:

• -d is the destination application which starts the local proxy in destination mode.

• -v is the verbosity of the output, which can be a value between zero and six.

• -r is the endpoint region where the tunnel is opened.

For more information about the parameters, see Options set using command line arguments.

Windows

In Windows, you configure the local proxy similar to how you do for Linux or macOS, but how
you define the environment variables is different from the other platforms. Run the following
commands in the cmd window to configure and start the local proxy on your destination.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
.\localproxy -d 22 -v 5 -r us-west-2

Where:

• -d is the destination application which starts the local proxy in destination mode.

• -v is the verbosity of the output, which can be a value between zero and six.

• -r is the endpoint region where the tunnel is opened.

For more information about the parameters, see Options set using command line arguments.

The following shows a sample output of running the local proxy in destination mode.

...

...

Starting proxy in destination mode

How to use the local proxy 1272

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#options-set-via-command-line-arguments
https://github.com/aws-samples/aws-iot-securetunneling-localproxy#options-set-via-command-line-arguments

AWS IoT Core Developer Guide

Attempting to establish web socket connection with endpoint wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Resolved proxy server IP: 10.10.0.11
Connected successfully with proxy server
Performing SSL handshake with proxy server
Successfully completed SSL handshake with proxy server
HTTP/1.1 101 Switching Protocols

...

Connection: upgrade
channel-id: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
upgrade: websocket

...

Web socket session ID: 01234567890abc23-00001234-0005678a-b1234c5de677a001-2bc3d456
Web socket subprotocol selected: aws.iot.securetunneling-2.0
Successfully established websocket connection with proxy server: wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Setting up web socket pings for every 5000 milliseconds
Scheduled next read:

...

Starting web socket read loop continue reading...

Configure local proxy for devices that use web proxy

You can use local proxy on AWS IoT devices to communicate with AWS IoT secure tunneling
APIs. The local proxy transmits data sent by the device application using secure tunneling over
a WebSocket secure connection. The local proxy can work in source or destination mode.
In source mode, it runs on the same device or network that initiates the TCP connection. In
destination mode, the local proxy runs on the remote device, along with the destination
application. For more information, see Local proxy.

The local proxy needs to connect directly to the internet to use AWS IoT secure tunneling. For a
long-lived TCP connection with secure tunneling, the local proxy upgrades the HTTPS request to
establish a WebSockets connection to one of the secure tunneling device connection endpoints.

If your devices are in a network that uses a web proxy, the web proxy can intercept the connections
before forwarding them to the internet. To establish a long-lived connection to the secure

Configure local proxy for devices that use web proxy 1273

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html

AWS IoT Core Developer Guide

tunneling device connection endpoints, configure your local proxy to use the web proxy as
described in the websocket specification.

Note

The AWS IoT Device Client doesn't support devices that use a web proxy. To work with the
web proxy, you'll need to use a local proxy and configure it to work with a web proxy as
described below.

The following steps show how the local proxy works with a web proxy.

1. The local proxy sends an HTTP CONNECT request to the web proxy that contains the remote
address of the secure tunneling service, along with the web proxy authentication information.

2. The web proxy will then create a long-lived connection to the remote secure tunneling
endpoints.

3. The TCP connection is established and the local proxy will now work in both source and
destination modes for data transmission.

To complete this procedure, perform the following steps.

• Build the local proxy

• Configure your web proxy

• Configure and start the local proxy

Build the local proxy

Open the local proxy source code in the GitHub repository and follow the instructions for building
and installing the local proxy.

Configure your web proxy

The local proxy relies on the HTTP tunneling mechanism described by the HTTP/1.1 specification.
To comply with the specifications, your web proxy must allow devices to use the CONNECT method.

How you configure your web proxy depends on the web proxy you're using and the web
proxy version. To make sure you configure the web proxy correctly, check your web proxy's
documentation.

Configure local proxy for devices that use web proxy 1274

https://tools.ietf.org/html/rfc6455#section-4.1
https://github.com/aws-samples/aws-iot-securetunneling-localproxy
https://tools.ietf.org/html/rfc7231#section-4.3.6

AWS IoT Core Developer Guide

To configure your web proxy, first identify your web proxy URL and confirm whether your web
proxy supports HTTP tunneling. The web proxy URL will be used later when you configure and start
the local proxy.

1. Identify your web proxy URL

Your web proxy URL will be in the following format.

protocol://web_proxy_host_domain:web_proxy_port

AWS IoT secure tunneling supports only basic authentication for web proxy. To use basic
authentication, you must specify the username and password as part of the web proxy URL.
The web proxy URL will be in the following format.

protocol://username:password@web_proxy_host_domain:web_proxy_port

• protocol can be http or https. We recommend that you use https.

• web_proxy_host_domain is the IP address of your web proxy or a DNS name that resolves
to the IP address of your web proxy.

• web_proxy_port is the port on which the web proxy is listening.

• The web proxy uses this username and password to authenticate the request.

2. Test your web proxy URL

To confirm whether your web proxy supports TCP tunneling, use a curl command and make
sure that you get a 2xx or a 3xx response.

For example, if your web proxy URL is https://server.com:1235, use a proxy-insecure
flag with the curl command because the web proxy might rely on a self-signed certificate.

export HTTPS_PROXY=https://server.com:1235
curl -I https://aws.amazon.com --proxy-insecure

If your web proxy URL has a http port (for example, http://server.com:1234), you don't
have to use the proxy-insecure flag.

export HTTPS_PROXY=http://server.com:1234
curl -I https://aws.amazon.com

Configure local proxy for devices that use web proxy 1275

AWS IoT Core Developer Guide

Configure and start the local proxy

To configure the local proxy to use a web proxy, you must configure the HTTPS_PROXY
environment variable with either the DNS domain names or the IP addresses and port numbers
that your web proxy uses.

After you've configured the local proxy, you can use the local proxy as explained in this README
document.

Note

Your environment variable declaration is case sensitive. We recommend that you define
each variable once using either all uppercase or all lowercase letters. The following
examples show the environment variable declared in uppercase letters. If the same variable
is specified using both uppercase and lowercase letters, the variable specified using
lowercase letters takes precedence.

The following commands show how to configure the local proxy that is running on your destination
to use the web proxy and start the local proxy.

• AWSIOT_TUNNEL_ACCESS_TOKEN: This variable holds the client access token (CAT) for the
destination.

• HTTPS_PROXY: This variable holds the web proxy URL or the IP address for configuring the local
proxy.

The commands shown in the following examples depend on the operating system that you use and
whether the web proxy is listening on an HTTP or an HTTPS port.

Web proxy listening on an HTTP port

If your web proxy is listening on an HTTP port, you can provide the web proxy URL or IP address for
the HTTPS_PROXY variable.

Linux/macOS

In Linux or macOS, run the following commands in the terminal to configure and start the local
proxy on your destination to use a web proxy listening to an HTTP port.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}

Configure local proxy for devices that use web proxy 1276

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#readme

AWS IoT Core Developer Guide

export HTTPS_PROXY=http:proxy.example.com:1234
./localproxy -r us-east-1 -d 22

If you have to authenticate with the proxy, you must specify a username and password as part
of the HTTPS_PROXY variable.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
export HTTPS_PROXY=http://username:password@proxy.example.com:1234
./localproxy -r us-east-1 -d 22

Windows

In Windows, you configure the local proxy similar to how you do for Linux or macOS, but how
you define the environment variables is different from the other platforms. Run the following
commands in the cmd window to configure and start the local proxy on your destination to use
a web proxy listening to an HTTP port.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
set HTTPS_PROXY=http://proxy.example.com:1234
.\localproxy -r us-east-1 -d 22

If you have to authenticate with the proxy, you must specify a username and password as part
of the HTTPS_PROXY variable.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
set HTTPS_PROXY=http://username:password@10.15.20.25:1234
.\localproxy -r us-east-1 -d 22

Web proxy listening on an HTTPS port

Run the following commands if your web proxy is listening on an HTTPS port.

Note

If you're using a self-signed certificate for the web proxy or if you're running the local proxy
on an OS that doesn't have native OpenSSL support and default configurations, you'll have
to set up your web proxy certificates as described in the Certificate setup section in the
GitHub repository.

Configure local proxy for devices that use web proxy 1277

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#certificate-setup

AWS IoT Core Developer Guide

The following commands will look similar to how you configured your web proxy for an HTTP
proxy, with the exception that you'll also specify the path to the certificate files that you installed
as described previously.

Linux/macOS

In Linux or macOS, run the following commands in the terminal to configure the local proxy
running on your destination to use a web proxy listening to an HTTPS port.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
export HTTPS_PROXY=http:proxy.example.com:1234
./localproxy -r us-east-1 -d 22 -c /path/to/certs

If you have to authenticate with the proxy, you must specify a username and password as part
of the HTTPS_PROXY variable.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
export HTTPS_PROXY=http://username:password@proxy.example.com:1234
./localproxy -r us-east-1 -d 22 -c /path/to/certs

Windows

In Windows, run the following commands in the cmd window to configure and start the local
proxy running on your destination to use a web proxy listening to an HTTP port.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
set HTTPS_PROXY=http://proxy.example.com:1234
.\localproxy -r us-east-1 -d 22 -c \path\to\certs

If you have to authenticate with the proxy, you must specify a username and password as part
of the HTTPS_PROXY variable.

set AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
set HTTPS_PROXY=http://username:password@10.15.20.25:1234
.\localproxy -r us-east-1 -d 22 -c \path\to\certs

Example command and output

The following shows an example of a command that you run on a Linux OS and the corresponding
output. The example shows a web proxy that's listening on an HTTP port and how the local proxy

Configure local proxy for devices that use web proxy 1278

AWS IoT Core Developer Guide

can be configured to use the web proxy in both source and destination modes. Before you can
run these commands, you must have already opened a tunnel and obtained the client access tokens
for the source and destination. You must have also built the local proxy and configured your web
proxy as described previously.

Here's an overview of the steps after you start the local proxy. The local proxy:

• Identifies the web proxy URL so that it can use the URL to connect to the proxy server.

• Establishes a TCP connection with the web proxy.

• Sends an HTTP CONNECT request to the web proxy and waits for the HTTP/1.1 200 response,
which indicates that connection has been established.

• Upgrades the HTTPS protocol to WebSockets to establish a long-lived connection.

• Starts transmitting data through the connection to the secure tunneling device endpoints.

Note

The following commands used in the examples use the verbosity flag to illustrate an
overview of the different steps described previously after you run the local proxy. We
recommend that you use this flag only for testing purposes.

Running local proxy in source mode

The following commands show how to run the local proxy in source mode.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
export HTTPS_PROXY=http:username:password@10.15.10.25:1234
./localproxy -s 5555 -v 5 -r us-west-2

The following shows a sample output of running the local proxy in source mode.

...

Parsed basic auth credentials for the URL
Found Web proxy information in the environment variables, will use it to connect via
 the proxy.

...

Configure local proxy for devices that use web proxy 1279

AWS IoT Core Developer Guide

Starting proxy in source mode
Attempting to establish web socket connection with endpoint wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Resolved Web proxy IP: 10.10.0.11
Connected successfully with Web Proxy
Successfully sent HTTP CONNECT to the Web proxy
Full response from the Web proxy:
HTTP/1.1 200 Connection established
TCP tunnel established successfully
Connected successfully with proxy server
Successfully completed SSL handshake with proxy server
Web socket session ID: 0a109afffee745f5-00001341-000b8138-cc6c878d80e8adb0-f186064b
Web socket subprotocol selected: aws.iot.securetunneling-2.0
Successfully established websocket connection with proxy server: wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Seting up web socket pings for every 5000 milliseconds
Scheduled next read:

...

Starting web socket read loop continue reading...
Resolved bind IP: 127.0.0.1
Listening for new connection on port 5555

Running local proxy in destination mode

The following commands show how to run the local proxy in destination mode.

export AWSIOT_TUNNEL_ACCESS_TOKEN=${access_token}
export HTTPS_PROXY=http:username:password@10.15.10.25:1234
./localproxy -d 22 -v 5 -r us-west-2

The following shows a sample output of running the local proxy in destination mode.

...

Parsed basic auth credentials for the URL
Found Web proxy information in the environment variables, will use it to connect via
 the proxy.

...

Configure local proxy for devices that use web proxy 1280

AWS IoT Core Developer Guide

Starting proxy in destination mode
Attempting to establish web socket connection with endpoint wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Resolved Web proxy IP: 10.10.0.1
Connected successfully with Web Proxy
Successfully sent HTTP CONNECT to the Web proxy
Full response from the Web proxy:
HTTP/1.1 200 Connection established
TCP tunnel established successfully
Connected successfully with proxy server
Successfully completed SSL handshake with proxy server
Web socket session ID: 06717bfffed3fd05-00001355-000b8315-da3109a85da804dd-24c3d10d
Web socket subprotocol selected: aws.iot.securetunneling-2.0
Successfully established websocket connection with proxy server: wss://
data.tunneling.iot.us-west-2.amazonaws.com:443
Seting up web socket pings for every 5000 milliseconds
Scheduled next read:

...

Starting web socket read loop continue reading...

Multiplex data streams and using simultaneous TCP
connections in a secure tunnel

You can use multiple data streams per tunnel by using the secure tunneling multiplexing feature.
With multiplexing, you can troubleshoot devices using multiple data streams. You can also reduce
your operational load by eliminating the need to build, deploy, and start multiple local proxies or
open multiple tunnels to the same device. For example, multiplexing can be used in case of a web
browser that requires sending multiple HTTP and SSH data streams.

For each data stream, AWS IoT secure tunneling supports simultaneous TCP connections. Using
simultaneous connections reduces the potential for a time-out in case of multiple requests from
the client. For example, it can reduce the loading time when remotely accessing a web server that's
local to the destination device.

The following sections explain more about multiplexing and using simultaneous TCP connections,
and their different use cases.

Topics

Multiplexing and simultaneous TCP connections 1281

AWS IoT Core Developer Guide

• Multiplexing multiple data streams in a secure tunnel

• Using simultaneous TCP connections in a secure tunnel

Multiplexing multiple data streams in a secure tunnel

You can use the multiplexing feature for devices that use multiple connections or ports.
Multiplexing can also be used when you require multiple connections to a remote device to
troubleshoot any issues. For example, it can be used in case of a web browser that requires sending
multiple HTTP and SSH data streams. The application data from both streams are sent to the
device concurrently over the multiplexed tunnel.

Example use case

Say you need to connect to an on-device web application to change some networking parameters,
while simultaneously issuing shell commands through the terminal to verify that the device is
working properly with the new networking parameters. In this scenario, you may need to connect
to the device through both HTTP and SSH and transfer two parallel data streams to concurrently
access the web application and terminal. With the multiplexing feature, these two independent
streams can be transferred over the same tunnel at the same time.

How to set up a multiplexed tunnel

The following procedure walks you through how to set up a multiplexed tunnel for troubleshooting
devices using applications that require connections to multiple ports. You will set up one tunnel
with two multiplexed streams: one HTTP stream and one SSH stream.

Multiplexing multiple data streams 1282

AWS IoT Core Developer Guide

1. (Optional) Create configuration files

You can optionally configure the source and destination device with configuration files. Use
configuration files if your port mappings are likely to change frequently. You can skip this
step if you prefer to specify the port mapping explicitly using the CLI, or if you don't need to
start the local proxy on designated listening ports. For more information about how to use
configuration files, see Options set via --config in GitHub.

1. On your source device, in the folder where your local proxy will run, create a configuration
folder called Config. Inside this folder, create a file called SSHSource.ini with the
following content:

HTTP1 = 5555
SSH1 = 3333

2. On your destination device, in the folder where your local proxy will run, create
a configuration folder called Config. Inside this folder, create a file called
SSHDestination.ini with the following content:

HTTP1 = 80
SSH1 = 22

2. Open a tunnel

Open a tunnel using the OpenTunnel API operation or the open-tunnel CLI command.
Configure the destination by specifying SSH1 and HTTP1 as the services and the name of the
AWS IoT thing that corresponds to your remote device. Your SSH and HTTP applications are
running on this remote device. You must have already created the IoT thing in the AWS IoT
registry. For more information, see How to manage things with the registry.

aws iotsecuretunneling open-tunnel \
 --destination-config thingName=RemoteDevice1,services=HTTP1,SSH1

Running this command generates the source and destination access tokens which you'll use to
run the local proxy.

{
 "tunnelId": "b2de92a3-b8ff-46c0-b0f2-afa28b00cecd",
 "tunnelArn": "arn:aws:iot:us-west-2:431600097591:tunnel/b2de92a3-b8ff-46c0-b0f2-
afa28b00cecd",

Multiplexing multiple data streams 1283

https://github.com/aws-samples/aws-iot-securetunneling-localproxy#options-set-via---config

AWS IoT Core Developer Guide

 "sourceAccessToken": source_client_access_token,
 "destinationAccessToken": destination_client_access_token
}

3. Configure and start the local proxy

Before you can run the local proxy, either set up the AWS IoT Device Client, or download the
local proxy source code from GitHub and build it for the platform of your choice. You can then
start the destination and the source local proxy to connect to the secure tunnel. For more
information about configuring and using the local proxy, see How to use the local proxy.

Note

On your source device, if you don't use any configuration files or specify the port
mapping using the CLI, you can still use the same command to run the local proxy. The
local proxy in source mode will automatically pick up available ports to use and the
mappings for you.

Start local proxy using configuration files

Run the following commands to run the local proxy in the source and destination modes
using configuration files.

// ----------------- Start the destination local proxy -----------------------
./localproxy -r us-east-1 -m dst -t destination_client_access_token

// ----------------- Start the source local proxy ----------------------------
// You also run the same command below if you want the local proxy to
// choose the mappings for you instead of using configuration files.
./localproxy -r us-east-1 -m src -t source_client_access_token

Start local proxy using CLI port mapping

Run the following commands to run the local proxy in the source and destination modes by
specifying the port mappings explicitly using the CLI.

// ----------------- Start the destination local proxy

./localproxy -r us-east-1 -d HTTP1=80,SSH1=22 -t destination_client_access_token

Multiplexing multiple data streams 1284

https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

// ----------------- Start the source local proxy
 --
./localproxy -r us-east-1 -s HTTP1=5555,SSH1=33 -t source_client_access_token

The application data from SSH and HTTP connection can now be transferred concurrently over the
multiplexed tunnel. As seen in the map below, the service identifier acts as a readable format to
translate the port mapping between the source and destination device. With this configuration,
secure tunneling forwards any incoming HTTP traffic from port 5555 on the source device to
port 80 on the destination device, and any incoming SSH traffic from port 3333 to port 22 on the
destination device.

Using simultaneous TCP connections in a secure tunnel

AWS IoT secure tunneling supports more than one TCP connection simultaneously for each data
stream. You can use this capability when you require simultaneous connections to a remote device.
Using simultaneous TCP connections reduces the potential for a time-out in case of multiple
requests from the client. For example, when accessing a web server that has multiple components
running on it, simultaneous TCP connections can reduce the time it takes to load the site.

Note

Simultaneous TCP connections have a bandwidth limit of 800 Kilobytes per second for each
AWS account. AWS IoT secure tunneling can configure this limit for you depending on the
number of incoming requests.

Using simultaneous TCP connections 1285

AWS IoT Core Developer Guide

Example use case

Say you need to remotely access a web server that's local to the destination device and has
multiple components running on it. With a single TCP connection, while trying to access the web
server, sequential loading can increase the amount of time it takes to load the resources on the
site. The simultaneous TCP connections can reduce the loading time by meeting the resource
requirements of the site, thereby reducing the access time. The following diagram shows how
simultaneous TCP connections are supported for the data stream to the web server application
running on the remote device.

Note

If you want to access multiple applications running on the remote device using the tunnel,
you can use tunnel multiplexing. For more information, see Multiplexing multiple data
streams in a secure tunnel.

How to use simultaneous TCP connections

The following procedure walks you through how to use simultaneous TCP connections for
accessing the web browser on the remote device. When there are multiple requests from the client,
AWS IoT secure tunneling automatically sets up simultaneous TCP connections to handle the
requests, thereby reducing the loading time.

Using simultaneous TCP connections 1286

AWS IoT Core Developer Guide

1. Open a tunnel

Open a tunnel using the OpenTunnel API operation or the open-tunnel CLI command.
Configure the destination by specifying HTTP as the service and the name of the AWS IoT
thing that corresponds to your remote device. Your web server application is running on this
remote device. You must have already created the IoT thing in the AWS IoT registry. For more
information, see How to manage things with the registry.

aws iotsecuretunneling open-tunnel \
 --destination-config thingName=RemoteDevice1,services=HTTP

Running this command generates the source and destination access tokens which you'll use to
run the local proxy.

{
 "tunnelId": "b2de92a3-b8ff-46c0-b0f2-afa28b00cecd",
 "tunnelArn": "arn:aws:iot:us-west-2:431600097591:tunnel/b2de92a3-b8ff-46c0-b0f2-
afa28b00cecd",
 "sourceAccessToken": source_client_access_token,
 "destinationAccessToken": destination_client_access_token
}

2. Configure and start the local proxy

Before you can run the local proxy, download the local proxy source code from GitHub and
build it for the platform of your choice. You can then start the destination and the source local
proxy to connect to the secure tunnel and start using the remote web server application.

Note

For AWS IoT secure tunneling to use simultaneous TCP connections, you must upgrade
to the latest version of the local proxy. This feature is not available if you configure the
local proxy using the AWS IoT Device Client.

// Start the destination local proxy
./localproxy -r us-east-1 -d HTTP=80 -t destination_client_access_token

// Start the source local proxy

Using simultaneous TCP connections 1287

https://github.com/aws-samples/aws-iot-securetunneling-localproxy

AWS IoT Core Developer Guide

./localproxy -r us-east-1 -s HTTP=5555 -t source_client_access_token

For more information about configuring and using the local proxy, see How to use the local
proxy.

You can now use the tunnel to access the web server application. AWS IoT secure tunneling will
automatically set up and handle the simultaneous TCP connections when there are multiple
requests from the client.

Configuring a remote device and using IoT agent

The IoT agent is used to receive the MQTT message that includes the client access token and start
a local proxy on the remote device. You must install and run the IoT agent on the remote device
if you want secure tunneling to deliver the client access token using MQTT. The IoT agent must
subscribe to the following reserved IoT MQTT topic:

Note

If you want to deliver the destination client access token to the remote device through
methods other than subscribing to the reserved MQTT topic, you might need a destination
client access token (CAT) listener and a local proxy. The CAT listener must work with
your chosen client access token delivery mechanism and be able to start a local proxy in
destination mode.

IoT agent snippet

The IoT agent must subscribe to the following reserved IoT MQTT topic so that it can receive the
MQTT message and start the local proxy:

$aws/things/thing-name/tunnels/notify

Where thing-name is the name of AWS IoT thing associated with the remote device.

The following is an example MQTT message payload:

{
 "clientAccessToken": "destination-client-access-token",

Configuring a remote device and using IoT agent 1288

AWS IoT Core Developer Guide

 "clientMode": "destination",
 "region": "aws-region",
 "services": ["destination-service"]
}

After it receives an MQTT message, the IoT agent must start a local proxy on the remote device
with the appropriate parameters.

The following Java code demonstrates how to use the AWS IoT Device SDK and ProcessBuilder
from the Java library to build a simple IoT agent to work with secure tunneling.

// Find the IoT device endpoint for your AWS account
final String endpoint = iotClient.describeEndpoint(new
 DescribeEndpointRequest().withEndpointType("iot:Data-ATS")).getEndpointAddress();

// Instantiate the IoT Agent with your AWS credentials
final String thingName = "RemoteDeviceA";
final String tunnelNotificationTopic = String.format("$aws/things/%s/tunnels/notify",
 thingName);
final AWSIotMqttClient mqttClient = new AWSIotMqttClient(endpoint, thingName,
 "your_aws_access_key", "your_aws_secret_key");

try {
 mqttClient.connect();
 final TunnelNotificationListener listener = new
 TunnelNotificationListener(tunnelNotificationTopic);
 mqttClient.subscribe(listener, true);
}
finally {
 mqttClient.disconnect();
}

private static class TunnelNotificationListener extends AWSIotTopic {
 public TunnelNotificationListener(String topic) {
 super(topic);
 }

 @Override
 public void onMessage(AWSIotMessage message) {
 try {
 // Deserialize the MQTT message
 final JSONObject json = new JSONObject(message.getStringPayload());

IoT agent snippet 1289

https://github.com/aws/aws-iot-device-sdk-java
https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html

AWS IoT Core Developer Guide

 final String accessToken = json.getString("clientAccessToken");
 final String region = json.getString("region");

 final String clientMode = json.getString("clientMode");
 if (!clientMode.equals("destination")) {
 throw new RuntimeException("Client mode " + clientMode + " in the MQTT
 message is not expected");
 }

 final JSONArray servicesArray = json.getJSONArray("services");
 if (servicesArray.length() > 1) {
 throw new RuntimeException("Services in the MQTT message has more than
 1 service");
 }
 final String service = servicesArray.get(0).toString();
 if (!service.equals("SSH")) {
 throw new RuntimeException("Service " + service + " is not supported");
 }

 // Start the destination local proxy in a separate process to connect to
 the SSH Daemon listening port 22
 final ProcessBuilder pb = new ProcessBuilder("localproxy",
 "-t", accessToken,
 "-r", region,
 "-d", "localhost:22");
 pb.start();
 }
 catch (Exception e) {
 log.error("Failed to start the local proxy", e);
 }
 }
}

Controlling access to tunnels

Secure tunneling provides service-specific actions, resources, and condition context keys for use in
IAM permissions policies.

Tunnel access prerequisites

• Learn how to secure AWS resources by using IAM policies.

• Learn how to create and evaluate IAM conditions.

Controlling access to tunnels 1290

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

AWS IoT Core Developer Guide

• Learn how to secure AWS resources using resource tags.

Tunnel access policies

You must use the following policies for authorizing permissions to use the secure tunneling API. For
more information about AWS IoT security see Identity and access management for AWS IoT.

iot:OpenTunnel

The iot:OpenTunnel policy action grants a principal permission to call OpenTunnel.

In the Resource element of the IAM policy statement:

• Specify the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

• Specify a thing ARN to manage the OpenTunnel permission for specific IoT things:

arn:aws:iot:aws-region:aws-account-id:thing/thing-name

For example, the following policy statement allows you to open a tunnel to the IoT thing named
TestDevice.

{
 "Effect": "Allow",
 "Action": "iot:OpenTunnel",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*",
 "arn:aws:iot:aws-region:aws-account-id:thing/TestDevice"
]
}

The iot:OpenTunnel policy action supports the following condition keys:

• iot:ThingGroupArn

• iot:TunnelDestinationService

• aws:RequestTag/tag-key

• aws:SecureTransport

Tunnel access policies 1291

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_OpenTunnel.html

AWS IoT Core Developer Guide

• aws:TagKeys

The following policy statement allows you to open a tunnel to the thing if the thing belongs to a
thing group with a name that starts with TestGroup and the configured destination service on the
tunnel is SSH.

{
 "Effect": "Allow",
 "Action": "iot:OpenTunnel",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*"
],
 "Condition": {
 "ForAnyValue:StringLike": {
 "iot:ThingGroupArn": [
 "arn:aws:iot:aws-region:aws-account-id:thinggroup/TestGroup*"
]
 },
 "ForAllValues:StringEquals": {
 "iot:TunnelDestinationService": [
 "SSH"
]
 }
 }
}

You can also use resource tags to control permission to open tunnels. For example, the following
policy statement allows a tunnel to be opened if the tag key Owner is present with a value of
Admin and no other tags are specified. For general information about using tags, see Tagging your
AWS IoT resources.

{
 "Effect": "Allow",
 "Action": "iot:OpenTunnel",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Owner": "Admin"
 },

Tunnel access policies 1292

AWS IoT Core Developer Guide

 "ForAllValues:StringEquals": {
 "aws:TagKeys": "Owner"
 }
 }
}

iot:RotateTunnelAccessToken

The iot:RotateTunnelAccessToken policy action grants a principal permission to call
RotateTunnelAccessToken.

In the Resource element of the IAM policy statement:

• Specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

• Specify a thing ARN to manage the RotateTunnelAccessToken permission for specific IoT
things:

arn:aws:iot:aws-region:aws-account-id:thing/thing-name

For example, the following policy statement allows you to rotate either a tunnel's source access
token or a client's destination access token for the IoT thing named TestDevice.

{
 "Effect": "Allow",
 "Action": "iot:RotateTunnelAccessToken",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*",
 "arn:aws:iot:aws-region:aws-account-id:thing/TestDevice"
]
}

The iot:RotateTunnelAccessToken policy action supports the following condition keys:

• iot:ThingGroupArn

• iot:TunnelDestinationService

Tunnel access policies 1293

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RorateTunnelAccessToken.html

AWS IoT Core Developer Guide

• iot:ClientMode

• aws:SecureTransport

The following policy statement allows you to rotate the destination access token to the thing
if the thing belongs to a thing group with a name that starts with TestGroup, the configured
destination service on the tunnel is SSH, and the client is in DESTINATION mode.

{
 "Effect": "Allow",
 "Action": "iot:RotateTunnelAccessToken",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*"
],
 "Condition": {
 "ForAnyValue:StringLike": {
 "iot:ThingGroupArn": [
 "arn:aws:iot:aws-region:aws-account-id:thinggroup/TestGroup*"
]
 },
 "ForAllValues:StringEquals": {
 "iot:TunnelDestinationService": [
 "SSH"
],
 "iot:ClientMode": "DESTINATION"
 }
 }
}

iot:DescribeTunnel

The iot:DescribeTunnel policy action grants a principal permission to call DescribeTunnel.

In the Resource element of the IAM policy statement, specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

The iot:DescribeTunnel policy action supports the following condition keys:

Tunnel access policies 1294

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_DescribeTunnel.html

AWS IoT Core Developer Guide

• aws:ResourceTag/tag-key

• aws:SecureTransport

The following policy statement allows you to call DescribeTunnel if the requested tunnel is
tagged with the key Owner with a value of Admin.

{
 "Effect": "Allow",
 "Action": "iot:DescribeTunnel",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "Admin"
 }
 }
}

iot:ListTunnels

The iot:ListTunnels policy action grants a principal permission to call ListTunnels.

In the Resource element of the IAM policy statement:

• Specify the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

• Specify a thing ARN to manage the ListTunnels permission on selected IoT things:

arn:aws:iot:aws-region:aws-account-id:thing/thing-name

The iot:ListTunnels policy action supports the condition key aws:SecureTransport.

The following policy statement allows you to list tunnels for the thing named TestDevice.

{
 "Effect": "Allow",
 "Action": "iot:ListTunnels",
 "Resource": [

Tunnel access policies 1295

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_ListTunnels.html

AWS IoT Core Developer Guide

 "arn:aws:iot:aws-region:aws-account-id:tunnel/*",
 "arn:aws:iot:aws-region:aws-account-id:thing/TestDevice"
]
}

iot:ListTagsForResource

The iot:ListTagsForResource policy action grants a principal permission to call
ListTagsForResource.

In the Resource element of the IAM policy statement, specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

The iot:ListTagsForResource policy action supports the condition key
aws:SecureTransport.

iot:CloseTunnel

The iot:CloseTunnel policy action grants a principal permission to call CloseTunnel.

In the Resource element of the IAM policy statement, specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

The iot:CloseTunnel policy action supports the following condition keys:

• iot:Delete

• aws:ResourceTag/tag-key

• aws:SecureTransport

The following policy statement allows you to call CloseTunnel if the request's Delete parameter
is false and the requested is tagged with the key Owner with a value of QATeam.

Tunnel access policies 1296

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_CloseTunnel.html

AWS IoT Core Developer Guide

{
 "Effect": "Allow",
 "Action": "iot:CloseTunnel",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:tunnel/*"
],
 "Condition": {
 "Bool": {
 "iot:Delete": "false"
 },
 "StringEquals": {
 "aws:ResourceTag/Owner": "QATeam"
 }
 }
}

iot:TagResource

The iot:TagResource policy action grants a principal permission to call TagResource.

In the Resource element of the IAM policy statement, specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

The iot:TagResource policy action supports the condition key aws:SecureTransport.

iot:UntagResource

The iot:UntagResource policy action grants a principal permission to call UntagResource.

In the Resource element of the IAM policy statement, specify a fully qualified tunnel ARN:

arn:aws:iot:aws-region: aws-account-id:tunnel/tunnel-id

You can also use the wildcard tunnel ARN:

arn:aws:iot:aws-region:aws-account-id:tunnel/*

The iot:UntagResource policy action supports the condition key aws:SecureTransport.

Tunnel access policies 1297

AWS IoT Core Developer Guide

Resolving AWS IoT secure tunneling connectivity issues by
rotating client access tokens

When you use AWS IoT secure tunneling, you might run into connectivity issues even if the
tunnel is open. The following sections show some possible issues and how you can resolve
them by rotating the client access tokens. To rotate the client access token (CAT), use the
RotateTunnelAccessToken API or the rotate-tunnel-access-token AWS CLI. Depending on whether
you run into an error with using the client in the source or destination mode, you can rotate the
CAT either in source or destination mode, or both.

Note

• If you're not sure whether the CAT needs to be rotated on the source or destination, you
can rotate the CAT on both the source and destination by setting ClientMode to ALL
when using the RotateTunnelAccessToken API.

• Rotating the CAT doesn't extend the tunnel duration. For example, say the tunnel
duration is 12 hours and the tunnel has already been open for 4 hours. When you rotate
the access tokens, the new tokens that are generated can only be used for the remaining
8 hours.

Topics

• Invalid client access token error

• Client token mismatch error

• Remote device connectivity issues

Invalid client access token error

When using AWS IoT secure tunneling, you can run into a connection error when using the same
client access token (CAT) to reconnect to the same tunnel. In this case, the local proxy can't connect
to the secure tunneling proxy server. If you're using a client in the source mode, you might see the
following error message:

Invalid access token: The access token was previously used and cannot be used again

Resolving secure tunneling connectivity issues 1298

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_RotateTunnelAccessToken.html
https://docs.aws.amazon.com/cli/latest/reference/iotsecuretunneling/rotate-tunnel-access-token.html

AWS IoT Core Developer Guide

The error occurs because the client access token (CAT) can only be used once by the local proxy,
and it then becomes invalid. To resolve this error, rotate the client access token in the SOURCE
mode to generate a new CAT for the source. For an example that shows how to rotate the source
CAT, see Rotate source CAT example.

Client token mismatch error

Note

Using client tokens to reuse the CAT is not recommended. We recommend that you use the
RotateTunnelAccessToken API instead to rotate the client access tokens to reconnect to
the tunnel.

If you're using client tokens, you can reuse the CAT for reconnecting to the tunnel. To reuse the
CAT, you must provide the client token with the CAT the first time you connect to secure tunneling.
Secure tunneling stores the client token so for subsequent connection attempts using the same
token, the client token must also be provided. For more information about using client tokens, see
the local proxy reference implementation in GitHub.

When using client tokens, if you're using a client in the source mode, you might see the following
error:

Invalid client token: The provided client token does not match the client token
 that was previously set.

The error occurs because the client token provided doesn't match the client token that was
provided with the CAT when accessing the tunnel. To resolve this error, rotate the CAT in the
SOURCE mode to generate a new CAT for the source. The following shows an example:

Rotate source CAT example

The following shows an example of how to run the RotateTunnelAccessToken API in the
SOURCE mode to generate a new CAT for the source:

aws iotsecuretunneling rotate-tunnel-access-token \
 --region <region> \
 --tunnel-id <tunnel-id> \

Client token mismatch error 1299

https://github.com/aws-samples/aws-iot-securetunneling-localproxy/blob/master/V2WebSocketProtocolGuide.md

AWS IoT Core Developer Guide

 --client-mode SOURCE

Running this command generates a new source access token and returns the ARN of your tunnel.

{
 "sourceAccessToken": "<source-access-token>",
 "tunnelArn": "arn:aws:iot:<region>:<account-id>:tunnel/<tunnel-id>"
}

You can now use the new source token to connect the local proxy in source mode.

export AWSIOT_TUNNEL_ACCESS_TOKEN=<source-access-token>
./localproxy -r <region> -s <port>

The following shows a sample output of running the local proxy:

...

[info] Starting proxy in source mode
...
[info] Successfully established websocket connection with proxy server ...
[info] Listening for new connection on port <port>
...

Remote device connectivity issues

When using AWS IoT secure tunneling, the device might get disconnected unexpectedly even if
the tunnel is open. To identify whether a device is still connected to the tunnel, you can use the
DescribeTunnel API or the describe-tunnel AWS CLI.

A device can get disconnected for multiple reasons. To resolve the connectivity issue, you can
rotate the CAT on the destination if the device was disconnected due to the following possible
reasons:

• The CAT on the destination became invalid.

• The token wasn't delivered to the device over the secure tunneling reserved MQTT topic:

$aws/things/<thing-name>/tunnels/notify

The following example shows how to resolve this issue:

Remote device connectivity issues 1300

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_DescribeTunnel.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_DescribeTunnel.html
https://docs.aws.amazon.com/cli/latest/reference/iotsecuretunneling/describe-tunnel.html

AWS IoT Core Developer Guide

Rotate destination CAT example

Consider a remote device, <RemoteThing1>. To open a tunnel for that thing, you can use the
following command:

aws iotsecuretunneling open-tunnel \
 --region <region> \
 --destination-config thingName=<RemoteThing1>,services=SSH

Running this command generates the tunnel details and the CAT for your source and destination.

{
 "sourceAccessToken": "<source-access-token>",
 "destinationAccessToken": "<destination-access-token>",
 "tunnelId": "<tunnel-id>",
 "tunnelArn": "arn:aws:iot:<region>:<account-id>:tunnel/tunnel-id"
}

However, when you use the DescribeTunnel API, the output indicates that the device has been
disconnected, as illustrated below:

aws iotsecuretunneling describe-tunnel \
 --tunnel-id <tunnel-id> \
 --region <region>

Running this command displays that the device is still not connected.

{
 "tunnel": {
 ...
 "destinationConnectionState": {
 "status": "DISCONNECTED"
 },
 ...
 }
}

To resolve this error, run the RotateTunnelAccessToken API with the client in DESTINATION
mode and the configurations for the destination. Running this command revokes the old access
token, generates a new token, and resends this token to the MQTT topic:

Remote device connectivity issues 1301

https://docs.aws.amazon.com/iot/latest/apireference/API_iot-secure-tunneling_DescribeTunnel.html

AWS IoT Core Developer Guide

$aws/things/<thing-name>/tunnels/notify

aws iotsecuretunneling rotate-tunnel-access-token \
 --tunnel-id <tunnel-id> \
 --client-mode DESTINATION \
 --destination-config thingName=<RemoteThing1>,services=SSH \
 --region <region>

Running this command generates the new access token as shown below. The token is then
delivered to the device to connect to the tunnel, if the device agent is set up correctly.

{
 "destinationAccessToken": "destination-access-token",
 "tunnelArn": "arn:aws:iot:region:account-id:tunnel/tunnel-id"
}

Remote device connectivity issues 1302

AWS IoT Core Developer Guide

Device provisioning

AWS provides several different ways to provision a device and install unique client certificates on it.
This section describes each way and how to select the best one for your IoT solution. These options
are described in detail in the whitepaper titled Device Manufacturing and Provisioning with X.509
Certificates in AWS IoT Core.

Select the option that fits your situation best

• You can install certificates on IoT devices before they are delivered

If you can securely install unique client certificates on your IoT devices before they are delivered
for use by the end user, you want to use just-in-time provisioning (JITP) or just-in-time
registration (JITR).

Using JITP and JITR, the certificate authority (CA) used to sign the device certificate is registered
with AWS IoT and is recognized by AWS IoT when the device first connects. The device is
provisioned in AWS IoT on its first connection using the details of its provisioning template.

For more information on single thing, JITP, JITR, and bulk provisioning of devices that have
unique certificates, see the section called “Provisioning devices that have device certificates”.

• End users or installers can use an app to install certificates on their IoT devices

If you cannot securely install unique client certificates on your IoT device before they are
delivered to the end user, but the end user or an installer can use an app to register the devices
and install the unique device certificates, you want to use the provisioning by trusted user
process.

Using a trusted user, such as an end user or an installer with a known account, can simplify the
device manufacturing process. Instead of a unique client certificate, devices have a temporary
certificate that enables the device to connect to AWS IoT for only 5 minutes. During that 5-
minute window, the trusted user obtains a unique client certificate with a longer life and installs
it on the device. The limited life of the claim certificate minimizes the risk of a compromised
certificate.

For more information, see the section called “Provisioning by trusted user”.

• End users CANNOT use an app to install certificates on their IoT devices

1303

https://docs.aws.amazon.com/whitepapers/latest/device-manufacturing-provisioning/device-manufacturing-provisioning.html
https://docs.aws.amazon.com/whitepapers/latest/device-manufacturing-provisioning/device-manufacturing-provisioning.html

AWS IoT Core Developer Guide

If neither of the previous options will work in your IoT solution, the provisioning by claim process
is an option. With this process, your IoT devices have a claim certificate that is shared by other
devices in the fleet. The first time a device connects with a claim certificate, AWS IoT registers
the device using its provisioning template and issues the device its unique client certificate for
subsequent access to AWS IoT.

This option enables automatic provisioning of a device when it connects to AWS IoT, but could
present a larger risk in the event of a compromised claim certificate. If a claim certificate
becomes compromised, you can deactivate the certificate. Deactivating the claim certificate
prevents all devices with that claim certificate from being registered in the future. However;
deactivating the claim certificate does not block devices that have already been provisioned.

For more information, see the section called “Provisioning by claim”.

Provisioning devices in AWS IoT

When you provision a device with AWS IoT, you must create resources so your devices and AWS IoT
can communicate securely. Other resources can be created to help you manage your device fleet.
The following resources can be created during the provisioning process:

• An IoT thing.

IoT things are entries in the AWS IoT device registry. Each thing has a unique name and set of
attributes, and is associated with a physical device. Things can be defined using a thing type or
grouped into thing groups. For more information, see Managing devices with AWS IoT.

Although not required, creating a thing makes it possible to manage your device fleet more
effectively by searching for devices by thing type, thing group, and thing attributes. For more
information, see Fleet indexing.

Note

For Fleet Hub to index your Thing's connectivity status data, provision your Thing and
configure it so the Thing name matches the client ID used on the Connect request.

• An X.509 certificate.

Provisioning devices in AWS IoT 1304

AWS IoT Core Developer Guide

Devices use X.509 certificates to perform mutual authentication with AWS IoT. You can register
an existing certificate or have AWS IoT generate and register a new certificate for you. You
associate a certificate with a device by attaching it to the thing that represents the device. You
must also copy the certificate and associated private key onto the device. Devices present the
certificate when connecting to AWS IoT. For more information, see Authentication.

• An IoT policy.

IoT policies define the operations that a device can perform in AWS IoT. IoT policies are attached
to device certificates. When a device presents the certificate to AWS IoT, it is granted the
permissions specified in the policy. For more information, see Authorization. Each device needs a
certificate to communicate with AWS IoT.

AWS IoT supports automated fleet provisioning using provisioning templates. Provisioning
templates describe the resources AWS IoT requires to provision your device. Templates contain
variables that enable you to use one template to provision multiple devices. When you provision
a device, you specify values for the variables specific to the device using a dictionary or map. To
provision another device, specify new values in the dictionary.

You can use automated provisioning whether or not your devices have unique certificates (and their
associated private key).

Fleet provisioning APIs

There are several categories of APIs used in fleet provisioning:

• These control plane functions create and manage the fleet provisioning templates and configure
trusted user policies.

• CreateProvisioningTemplate

• CreateProvisioningTemplateVersion

• DeleteProvisioningTemplate

• DeleteProvisioningTemplateVersion

• DescribeProvisioningTemplate

• DescribeProvisioningTemplateVersion

• ListProvisioningTemplates

• ListProvisioningTemplateVersions

Fleet provisioning APIs 1305

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplateVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteProvisioningTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteProvisioningTemplateVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeProvisioningTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeProvisioningTemplateVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListProvisioningTemplates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListProvisioningTemplateVersions.html

AWS IoT Core Developer Guide

• UpdateProvisioningTemplate

• Trusted users can use this control plane function to generate a temporary onboarding claim. This
temporary claim is passed to the device during Wi-Fi configuration or a similar method.

• CreateProvisioningClaim

• The MQTT API used during the provisioning process by devices with a provisioning claim
certificate embedded in a device, or passed to it by a trusted user.

• the section called “CreateCertificateFromCsr”

• the section called “CreateKeysAndCertificate”

• the section called “RegisterThing”

Provisioning devices that don't have device certificates using
fleet provisioning

By using AWS IoT fleet provisioning, AWS IoT can generate and securely deliver device certificates
and private keys to your devices when they connect to AWS IoT for the first time. AWS IoT provides
client certificates that are signed by the Amazon Root certificate authority (CA).

There are two ways to use fleet provisioning:

• Provisioning by claim

• Provisioning by trusted user

Provisioning by claim

Devices can be manufactured with a provisioning claim certificate and private key (which are
special purpose credentials) embedded in them. If these certificates are registered with AWS IoT,
the service can exchange them for unique device certificates that the device can use for regular
operations. This process includes the following steps:

Before you deliver the device

1. Call CreateProvisioningTemplate to create a provisioning template. This API returns a
template ARN. For more information, see Device provisioning MQTT API.

You can also create a fleet provisioning template in the AWS IoT console.

Provisioning devices that don't have device certificates using fleet provisioning 1306

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateProvisioningTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningClaim.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html

AWS IoT Core Developer Guide

a. From the navigation pane, choose Connect, then choose Fleet provisioning templates.

b. Choose Create template and follow the prompts.

2. Create certificates and associated private keys to be used as provisioning claim certificates.

3. Register these certificates with AWS IoT and associate an IoT policy that restricts the use of the
certificates. The following example IoT policy restricts the use of the certificate associated with
this policy to provisioning devices.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Publish","iot:Receive"],
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:topic/$aws/certificates/
create/*",
 "arn:aws:iot:aws-region:aws-account-id:topic/$aws/provisioning-
templates/templateName/provision/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:topicfilter/$aws/
certificates/create/*",
 "arn:aws:iot:aws-region:aws-account-id:topicfilter/$aws/
provisioning-templates/templateName/provision/*"
]
 }
]
}

4. Give the AWS IoT service permission to create or update IoT resources such as things
and certificates in your account when provisioning devices. Do this by attaching the

Provisioning by claim 1307

AWS IoT Core Developer Guide

AWSIoTThingsRegistration managed policy to an IAM role (called the provisioning role)
that trusts the AWS IoT service principal.

5. Manufacture the device with the provisioning claim certificate securely embedded in it.

The device is now ready to be delivered to where it will be installed for use.

Important

Provisioning claim private keys should be secured at all times, including on the device. We
recommend that you use AWS IoT CloudWatch metrics and logs to monitor for indications
of misuse. If you detect misuse, turn off the provisioning claim certificate so it cannot be
used for device provisioning.

To initialize the device for use

1. The device uses the AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client to connect
to and authenticate with AWS IoT using the provisioning claim certificate that is installed on
the device.

Note

For security, the certificateOwnershipToken returned by
CreateCertificateFromCsr and CreateKeysAndCertificate expires after one
hour. RegisterThing must be called before the certificateOwnershipToken
expires. If the certificate created by CreateCertificateFromCsr or
CreateKeysAndCertificate has not been activated and has not been attached
to a policy or a thing by the time the token expires, the certificate is deleted.
If the token expires, the device can call CreateCertificateFromCsr or
CreateKeysAndCertificate again to generate a new certificate.

2. The device obtains a permanent certificate and private key by using one of these options. The
device will use the certificate and key for all future authentication with AWS IoT.

a. Call CreateKeysAndCertificate to create a new certificate and private key using the
AWS certificate authority.

Or

Provisioning by claim 1308

AWS IoT Core Developer Guide

b. Call CreateCertificateFromCsr to generate a certificate from a certificate signing
request that keeps its private key secure.

3. From the device, call RegisterThing to register the device with AWS IoT and create cloud
resources.

The Fleet Provisioning service uses a provisioning template to define and create cloud
resources such as IoT things. The template can specify attributes and groups that the thing
belongs to. The thing groups must exist before the new thing can be added to them.

4. After saving the permanent certificate on the device, the device must disconnect from
the session that it initiated with the provisioning claim certificate and reconnect using the
permanent certificate.

The device is now ready to communicate normally with AWS IoT.

Provisioning by trusted user

In many cases, a device connects to AWS IoT for the first time when a trusted user, such as an end
user or installation technician, uses a mobile app to configure the device in its deployed location.

Important

You must manage the trusted user's access and permission to perform this procedure. One
way to do this is to provide and maintain an account for the trusted user that authenticates
them and grants them access to the AWS IoT features and API operations required to
perform this procedure.

Before you deliver the device

1. Call CreateProvisioningTemplate to create a provisioning template and return its
templateArn and templateName.

2. Create an IAM role that is used by a trusted user to initiate the provisioning process. The
provisioning template allows only that user to provision a device. For example:

{
 "Effect": "Allow",
 "Action": [

Provisioning by trusted user 1309

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html

AWS IoT Core Developer Guide

 "iot:CreateProvisioningClaim"
],
 "Resource": [
 "arn:aws:iot:aws-region:aws-account-id:provisioningtemplate/templateName"
]
}

3. Give the AWS IoT service permission to create or update IoT resources, such as things
and certificates in your account when provisioning devices. You do this by attaching the
AWSIoTThingsRegistration managed policy to an IAM role (called the provisioning role)
that trusts the AWS IoT service principal.

4. Provide the means to identify your trusted users, such as by providing them with an account
that can authenticate them and authorize their interactions with the AWS API operations
necessary to register their devices.

To initialize the device for use

1. A trusted user signs in to your provisioning mobile app or web service.

2. The mobile app or web application uses the IAM role and calls CreateProvisioningClaim
to obtain a temporary provisioning claim certificate from AWS IoT.

Note

For security, the temporary provisioning claim certificate that
CreateProvisioningClaim returns expires after five minutes. The following steps
must successfully return a valid certificate before the temporary provisioning claim
certificate expires. Temporary provisioning claim certificates do not appear in your
account's list of certificates.

3. The mobile app or web application supplies the temporary provisioning claim certificate to the
device along with any required configuration information, such as Wi-Fi credentials.

4. The device uses the temporary provisioning claim certificate to connect to AWS IoT using the
AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client.

5. The device obtains a permanent certificate and private key by using one of these options
within five minutes of connecting to AWS IoT with the temporary provisioning claim
certificate. The device will use the certificate and key these options return for all future
authentication with AWS IoT.

Provisioning by trusted user 1310

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningClaim.html

AWS IoT Core Developer Guide

a. Call CreateKeysAndCertificate to create a new certificate and private key using the
AWS certificate authority.

Or

b. Call CreateCertificateFromCsr to generate a certificate from a certificate signing
request that keeps its private key secure.

Note

Remember CreateKeysAndCertificate or CreateCertificateFromCsr must
return a valid certificate within five minutes of connecting to AWS IoT with the
temporary provisioning claim certificate.

6. The device calls RegisterThing to register the device with AWS IoT and create cloud
resources.

The Fleet Provisioning service uses a provisioning template to define and create cloud
resources such as IoT things. The template can specify attributes and groups that the thing
belongs to. The thing groups must exist before the new thing can be added to them.

7. After saving the permanent certificate on the device, the device must disconnect from the
session that it initiated with the temporary provisioning claim certificate and reconnect using
the permanent certificate.

The device is now ready to communicate normally with AWS IoT.

Using pre-provisioning hooks with the AWS CLI

The following procedure creates a provisioning template with pre-provisioning hooks. The Lambda
function used here is an example that can be modified.

To create and apply a pre-provisioning hook to a provisioning template

1. Create a Lambda function that has a defined input and output. Lambda functions are highly
customizable. allowProvisioning and parameterOverrides are required for creating
pre-provisioning hooks. For more information about creating Lambda functions, see Using
AWS Lambda with the AWS Command Line Interface.

Using pre-provisioning hooks with the AWS CLI 1311

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-awscli.html

AWS IoT Core Developer Guide

The following is an example of a Lambda function output:

{
 "allowProvisioning": True,
 "parameterOverrides": {
 "incomingKey0": "incomingValue0",
 "incomingKey1": "incomingValue1"
 }
}

2. AWS IoT uses resource-based policies to call Lambda, so you must give AWS IoT permission to
call your Lambda function.

Important

Be sure to include the source-arn or source-account in the global condition
context keys of the policies attached to your Lambda action to prevent permission
manipulation. For more information about this, see Cross-service confused deputy
prevention.

The following is an example using add-permission give IoT permission to your Lambda.

aws lambda add-permission \
 --function-name myLambdaFunction \
 --statement-id iot-permission \
 --action lambda:InvokeFunction \
 --principal iot.amazonaws.com

3. Add a pre-provisioning hook to a template using either the create-provisioning-template or
update-provisioning-template command.

The following CLI example uses the create-provisioning-template to create a provisioning
template that has pre-provisioning hooks:

aws iot create-provisioning-template \
 --template-name myTemplate \
 --provisioning-role-arn arn:aws:iam:us-east-1:1234564789012:role/myRole \
 --template-body file://template.json \

Using pre-provisioning hooks with the AWS CLI 1312

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-provisioning-template.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-provisioning-template.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-provisioning-template.html

AWS IoT Core Developer Guide

 --pre-provisioning-hook file://hooks.json

The output of this command looks like the following:

{
 "templateArn": "arn:aws:iot:us-east-1:1234564789012:provisioningtemplate/
myTemplate",
 "defaultVersionId": 1,
 "templateName": myTemplate
}

You can also load a parameter from a file instead of typing it all as a command line parameter
value to save time. For more information, see Loading AWS CLI Parameters from a File. The
following shows the template parameter in expanded JSON format:

{
 "Parameters" : {
 "DeviceLocation": {
 "Type": "String"
 }
 },
 "Mappings": {
 "LocationTable": {
 "Seattle": {
 "LocationUrl": "https://example.aws"
 }
 }
 },
 "Resources" : {
 "thing" : {
 "Type" : "AWS::IoT::Thing",
 "Properties" : {
 "AttributePayload" : {
 "version" : "v1",
 "serialNumber" : "serialNumber"
 },
 "ThingName" : {"Fn::Join":["",["ThingPrefix_",
{"Ref":"SerialNumber"}]]},
 "ThingTypeName" : {"Fn::Join":["",["ThingTypePrefix_",
{"Ref":"SerialNumber"}]]},
 "ThingGroups" : ["widgets", "WA"],
 "BillingGroup": "BillingGroup"

Using pre-provisioning hooks with the AWS CLI 1313

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html

AWS IoT Core Developer Guide

 },
 "OverrideSettings" : {
 "AttributePayload" : "MERGE",
 "ThingTypeName" : "REPLACE",
 "ThingGroups" : "DO_NOTHING"
 }
 },
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateId": {"Ref": "AWS::IoT::Certificate::Id"},
 "Status" : "Active"
 }
 },
 "policy" : {
 "Type" : "AWS::IoT::Policy",
 "Properties" : {
 "PolicyDocument" : {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:504350838278:topic/foo/
bar"]
 }]
 }
 }
 }
 },
 "DeviceConfiguration": {
 "FallbackUrl": "https://www.example.com/test-site",
 "LocationUrl": {
 "Fn::FindInMap": ["LocationTable",{"Ref": "DeviceLocation"},
 "LocationUrl"]}
 }
}

The following shows the pre-provisioning-hook parameter in expanded JSON format:

{
 "targetArn" : "arn:aws:lambda:us-
east-1:765219403047:function:pre_provisioning_test",
 "payloadVersion" : "2020-04-01"

Using pre-provisioning hooks with the AWS CLI 1314

AWS IoT Core Developer Guide

}

Provisioning devices that have device certificates

AWS IoT provides three ways to provision devices when they already have a device certificate (and
associated private key) on them:

• Single-thing provisioning with a provisioning template. This is a good option if you only need to
provision devices one at a time.

• Just-in-time provisioning (JITP) with a template that provisions a device when it first connects
to AWS IoT. This is a good option if you need to register large numbers of devices, but you don't
have information about them that you can assemble into a bulk provisioning list.

• Bulk registration. This option allows you to specify a list of single-thing provisioning template
values that are stored in a file in an S3 bucket. This approach works well if you have a large
number of known devices whose desired characteristics you can assemble into a list.

Topics

• Single thing provisioning

• Just-in-time provisioning

• Bulk registration

Single thing provisioning

To provision a thing, use the RegisterThing API or the register-thing CLI command. The
register-thing CLI command takes the following arguments:

--template-body

The provisioning template.

--parameters

A list of name-value pairs for the parameters used in the provisioning template, in JSON format
(for example, {"ThingName" : "MyProvisionedThing", "CSR" : "csr-text"}).

See Provisioning templates.

Provisioning devices that have device certificates 1315

https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterThing.html

AWS IoT Core Developer Guide

RegisterThing or register-thing returns the ARNs for the resources and the text of the
certificate it created:

{
 "certificatePem": "certificate-text",
 "resourceArns": {
 "PolicyLogicalName": "arn:aws:iot:us-
west-2:123456789012:policy/2A6577675B7CD1823E271C7AAD8184F44630FFD7",
 "certificate": "arn:aws:iot:us-west-2:123456789012:cert/
cd82bb924d4c6ccbb14986dcb4f40f30d892cc6b3ce7ad5008ed6542eea2b049",
 "thing": "arn:aws:iot:us-west-2:123456789012:thing/MyProvisionedThing"
 }
}

If a parameter is omitted from the dictionary, the default value is used. If no default value is
specified, the parameter is not replaced with a value.

Just-in-time provisioning

You can use just-in-time provisioning (JITP) to provision your devices when they first attempt to
connect to AWS IoT. To provision the device, you must enable automatic registration and associate
a provisioning template with the CA certificate used to sign the device certificate. Provisioning
successes and errors are logged as Device provisioning metrics in Amazon CloudWatch.

Topics

• JITP overview

• Register CA using provisioning template

• Register CA using provisioning template name

JITP overview

When a device attempts to connect to AWS IoT by using a certificate signed by a registered CA
certificate, AWS IoT loads the template from the CA certificate and uses it to call RegisterThing.
The JITP workflow first registers a certificate with a status value of PENDING_ACTIVATION. When
the device provisioning flow is complete, the status of the certificate is changed to ACTIVE.

AWS IoT defines the following parameters that you can declare and reference in provisioning
templates:

Just-in-time provisioning 1316

https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterThing.html

AWS IoT Core Developer Guide

• AWS::IoT::Certificate::Country

• AWS::IoT::Certificate::Organization

• AWS::IoT::Certificate::OrganizationalUnit

• AWS::IoT::Certificate::DistinguishedNameQualifier

• AWS::IoT::Certificate::StateName

• AWS::IoT::Certificate::CommonName

• AWS::IoT::Certificate::SerialNumber

• AWS::IoT::Certificate::Id

The values for these provisioning template parameters are limited to what JITP can extract from
the subject field of the certificate of the device being provisioned. The certificate must contain
values for all of the parameters in the template body. The AWS::IoT::Certificate::Id
parameter refers to an internally generated ID, not an ID that is contained in the certificate. You
can get the value of this ID using the principal() function inside an AWS IoT rule.

Note

You can provision devices using AWS IoT Core just-in-time provisioning (JITP) feature
without having to send the entire trust chain on a device's first connection to AWS IoT Core.
Presenting the CA certificate is optional, but the device is required to send the Server Name
Indication (SNI) extension when it connects to AWS IoT Core.

Example template body

The following JSON file is an example template body of a complete JITP template.

{
 "Parameters":{
 "AWS::IoT::Certificate::CommonName":{
 "Type":"String"
 },
 "AWS::IoT::Certificate::SerialNumber":{
 "Type":"String"
 },
 "AWS::IoT::Certificate::Country":{
 "Type":"String"
 },

Just-in-time provisioning 1317

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

AWS IoT Core Developer Guide

 "AWS::IoT::Certificate::Id":{
 "Type":"String"
 }
 },
 "Resources":{
 "thing":{
 "Type":"AWS::IoT::Thing",
 "Properties":{
 "ThingName":{
 "Ref":"AWS::IoT::Certificate::CommonName"
 },
 "AttributePayload":{
 "version":"v1",
 "serialNumber":{
 "Ref":"AWS::IoT::Certificate::SerialNumber"
 }
 },
 "ThingTypeName":"lightBulb-versionA",
 "ThingGroups":[
 "v1-lightbulbs",
 {
 "Ref":"AWS::IoT::Certificate::Country"
 }
]
 },
 "OverrideSettings":{
 "AttributePayload":"MERGE",
 "ThingTypeName":"REPLACE",
 "ThingGroups":"DO_NOTHING"
 }
 },
 "certificate":{
 "Type":"AWS::IoT::Certificate",
 "Properties":{
 "CertificateId":{
 "Ref":"AWS::IoT::Certificate::Id"
 },
 "Status":"ACTIVE"
 }
 },
 "policy":{
 "Type":"AWS::IoT::Policy",
 "Properties":{

Just-in-time provisioning 1318

AWS IoT Core Developer Guide

 "PolicyDocument":"{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Effect
\": \"Allow\", \"Action\":[\"iot:Publish\"], \"Resource\": [\"arn:aws:iot:us-
east-1:123456789012:topic/foo/bar\"] }] }"
 }
 }
 }
}

This sample template declares values for the AWS::IoT::Certificate::CommonName,
AWS::IoT::Certificate::SerialNumber, AWS::IoT::Certificate::Country, and
AWS::IoT::Certificate::Id provisioning parameters that are extracted from the certificate
and used in the Resources section. The JITP workflow then uses this template to perform the
following actions:

• Register a certificate and set its status to PENDING_ACTIVE.

• Create one thing resource.

• Create one policy resource.

• Attach the policy to the certificate.

• Attach the certificate to the thing.

• Update the certificate status to ACTIVE.

The device provisioning fails if the certificate doesn't have all of the properties
mentioned in the Parameters section of the templateBody. For example, if
AWS::IoT::Certificate::Country is included in the template, but the certificate doesn't have
a Country property, the device provisioning fails.

You can also use CloudTrail to troubleshoot issues with your JITP template. For information about
the metrics that are logged in Amazon CloudWatch, see Device provisioning metrics. For more
information about provisioning templates, see Provisioning templates.

Note

During the provisioning process, just-in-time provisioning (JITP) calls other AWS IoT control
plane API operations. These calls might exceed the AWS IoT Throttling Quotas set for
your account and result in throttled calls. Contact AWS Customer Support to raise your
throttling quotas if necessary.

Just-in-time provisioning 1319

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#throttling-limits
https://console.aws.amazon.com/support/home

AWS IoT Core Developer Guide

Register CA using provisioning template

To register a CA by using a complete provisioning template, follow these steps:

1. Save your provisioning template and the role ARN information like the following example as a
JSON file:

{
 "templateBody" : "{\r\n \"Parameters\" : {\r\n
 \"AWS::IoT::Certificate::CommonName\": {\r\n \"Type\": \"String\"\r
\n },\r\n \"AWS::IoT::Certificate::SerialNumber\": {\r\n
 \"Type\": \"String\"\r\n },\r\n \"AWS::IoT::Certificate::Country
\": {\r\n \"Type\": \"String\"\r\n },\r\n
 \"AWS::IoT::Certificate::Id\": {\r\n \"Type\": \"String\"\r
\n }\r\n },\r\n \"Resources\": {\r\n \"thing\": {\r
\n \"Type\": \"AWS::IoT::Thing\",\r\n \"Properties
\": {\r\n \"ThingName\": {\r\n \"Ref\":
 \"AWS::IoT::Certificate::CommonName\"\r\n },\r\n
 \"AttributePayload\": {\r\n \"version\": \"v1\",\r\n
 \"serialNumber\": {\r\n \"Ref\":
 \"AWS::IoT::Certificate::SerialNumber\"\r\n }\r\n
 },\r\n \"ThingTypeName\": \"lightBulb-versionA\",\r\n
 \"ThingGroups\": [\r\n \"v1-lightbulbs\",\r\n
 {\r\n \"Ref\": \"AWS::IoT::Certificate::Country
\"\r\n }\r\n]\r\n },\r\n
 \"OverrideSettings\": {\r\n \"AttributePayload\": \"MERGE\",\r\n
 \"ThingTypeName\": \"REPLACE\",\r\n \"ThingGroups
\": \"DO_NOTHING\"\r\n }\r\n },\r\n \"certificate\": {\r
\n \"Type\": \"AWS::IoT::Certificate\",\r\n \"Properties
\": {\r\n \"CertificateId\": {\r\n \"Ref\":
 \"AWS::IoT::Certificate::Id\"\r\n },\r\n \"Status\":
 \"ACTIVE\"\r\n },\r\n \"OverrideSettings\": {\r\n
 \"Status\": \"DO_NOTHING\"\r\n }\r\n },\r\n \"policy
\": {\r\n \"Type\": \"AWS::IoT::Policy\",\r\n \"Properties
\": {\r\n \"PolicyDocument\": \"{ \\\"Version\\\": \\\"2012-10-17\
\\", \\\"Statement\\\": [{ \\\"Effect\\\": \\\"Allow\\\", \\\"Action\\\":[\\
\"iot:Publish\\\"], \\\"Resource\\\": [\\\"arn:aws:iot:us-east-1:123456789012:topic
\/foo\/bar\\\"] }] }\"\r\n }\r\n }\r\n }\r\n}",
 "roleArn" : "arn:aws:iam::123456789012:role/JITPRole"
}

Just-in-time provisioning 1320

AWS IoT Core Developer Guide

In this example, the value of the templateBody field must be a JSON object specified
as an escaped string and can use only the values in the preceding list. You can use a
variety of tools to create the required JSON output, such as json.dumps (Python) or
JSON.stringify (Node). The value of the roleARN field must be the ARN of a role that has
the AWSIoTThingsRegistration attached to it. Also, your template can use an existing
PolicyName instead of the inline PolicyDocument in the example.

2. Register a CA certificate with the RegisterCACertificate API operation or the register-ca-
certificate CLI command. You will specify the directory of the provisioning template and
role ARN information that you saved in the previous step:

The following shows an example of how to register a CA certificate in DEFAULT mode using
the AWS CLI:

aws iot register-ca-certificate --ca-certificate file://your-ca-cert --
verification-cert file://your-verification-cert
 --set-as-active --allow-auto-registration --registration-config
 file://your-template

The following shows an example of how to register a CA certificate in SNI_ONLY mode using
the AWS CLI:

aws iot register-ca-certificate --ca-certificate file://your-ca-cert --certificate-
mode SNI_ONLY
 --set-as-active --allow-auto-registration --registration-config
 file://your-template

For more information, see Register your CA Certificates.

3. (Optional) Update the settings for a CA certificate by using the UpdateCACertificate API
operation or the update-ca-certificate CLI command.

The following shows an example of how to update a CA certificate using the AWS CLI:

aws iot update-ca-certificate --certificate-id caCertificateId
 --new-auto-registration-status ENABLE --registration-config
 file://your-template

Just-in-time provisioning 1321

https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterCACertificate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/register-CA-cert.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateCACertificate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-ca-certificate.html

AWS IoT Core Developer Guide

Register CA using provisioning template name

To register a CA by using a provisioning template name, follow these steps:

1. Save your provisioning template body as a JSON file. You can find an example template body
in example template body.

2. To create a provisioning template, use the CreateProvisioningTemplate API or the create-
provisioning-template CLI command:

aws iot create-provisioning-template --template-name your-template-name \
 --template-body file://your-template-body.json --type JITP \
 --provisioning-role-arn arn:aws:iam::123456789012:role/test

Note

For just-in-time provisioning (JITP), you must specify template type to be JITP when
creating the provisioning template. For more information about the template type, see
CreateProvisioningTemplate in the AWS API Reference.

3. To register CA with template name, use the RegisterCACertificate API or the register-ca-
certificate CLI command:

aws iot register-ca-certificate --ca-certificate file://your-ca-cert --
verification-cert file://your-verification-cert \
 --set-as-active --allow-auto-registration --registration-config
 templateName=your-template-name

Bulk registration

You can use the start-thing-registration-task command to register things in bulk. This
command takes a provisioning template, an S3 bucket name, a key name, and a role ARN that
allows access to the file in the S3 bucket. The file in the S3 bucket contains the values used to
replace the parameters in the template. The file must be a newline-delimited JSON file. Each line
contains all of the parameter values for registering a single device. For example:

{"ThingName": "foo", "SerialNumber": "123", "CSR": "csr1"}
{"ThingName": "bar", "SerialNumber": "456", "CSR": "csr2"}

Bulk registration 1322

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-provisioning-template.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-provisioning-template.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_RegisterCACertificate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iot/register-ca-certificate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_StartThingRegistrationTask.html

AWS IoT Core Developer Guide

The following bulk registration-related API operations might be useful:

• ListThingRegistrationTasks: Lists the current bulk thing provisioning tasks.

• DescribeThingRegistrationTask: Provides information about a specific bulk thing registration
task.

• StopThingRegistrationTask: Stops a bulk thing registration task.

• ListThingRegistrationTaskReports: Used to check the results and failures for a bulk thing
registration task.

Note

• Only one bulk registration operation task can run at a time (per account).

• Bulk registration operations call other AWS IoT control plane API operations. These calls
might exceed the AWS IoT Throttling Quotas in your account and cause throttle errors.
Contact AWS Customer Support to raise your AWS IoT throttling quotas, if necessary.

Provisioning templates

A provisioning template is a JSON document that uses parameters to describe the resources
your device must use to interact with AWS IoT. A provisioning template contains two sections:
Parameters and Resources. There are two types of provisioning templates in AWS IoT. One
is used for just-in-time provisioning (JITP) and bulk registration, and the second is used for fleet
provisioning.

Topics

• Parameters section

• Resources section

• Template example for bulk registration

• Template example for just-in-time provisioning (JITP)

• Fleet provisioning

Provisioning templates 1323

https://docs.aws.amazon.com/iot/latest/apireference/API_ListThingRegistrationTasks.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeThingRegistrationTask.html
https://docs.aws.amazon.com/iot/latest/apireference/API_StopThingRegistrationTask.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListThingRegistrationTaskReports.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#throttling-limits
https://console.aws.amazon.com/support/home

AWS IoT Core Developer Guide

Parameters section

The Parameters section declares the parameters used in the Resources section. Each
parameter declares a name, a type, and an optional default value. The default value is used
when the dictionary passed in with the template does not contain a value for the parameter. The
Parameters section of a template document looks like the following:

{
 "Parameters" : {
 "ThingName" : {
 "Type" : "String"
 },
 "SerialNumber" : {
 "Type" : "String"
 },
 "Location" : {
 "Type" : "String",
 "Default" : "WA"
 },
 "CSR" : {
 "Type" : "String"
 }
 }
}

This template body snippet declares four parameters: ThingName, SerialNumber, Location,
and CSR. All of these parameters are of type String. The Location parameter declares a default
value of "WA".

Resources section

The Resources section of the template body declares the resources required for your device
to communicate with AWS IoT: a thing, a certificate, and one or more IoT policies. Each resource
specifies a logical name, a type, and a set of properties.

A logical name allows you to refer to a resource elsewhere in the template.

The type specifies the kind of resource that you are declaring. Valid types are:

• AWS::IoT::Thing

• AWS::IoT::Certificate

Parameters section 1324

AWS IoT Core Developer Guide

• AWS::IoT::Policy

The properties you specify depend on the type of resource you are declaring.

Thing resources

Thing resources are declared using the following properties:

• ThingName: String.

• AttributePayload: Optional. A list of name-value pairs.

• ThingTypeName: Optional. String for an associated thing type for the thing.

• ThingGroups: Optional. A list of groups to which the thing belongs.

• BillingGroup: Optional. String for an associated billing group name.

• PackageVersions: Optional. String for an associated package and version names.

Certificate resources

You can specify certificates in one of the following ways:

• A certificate signing request (CSR).

• A certificate ID of an existing device certificate. (Only certificate IDs can be used with a fleet
provisioning template.)

• A device certificate created with a CA certificate registered with AWS IoT. If you have more than
one CA certificate registered with the same subject field, you must also pass in the CA certificate
used to sign the device certificate.

Note

When you declare a certificate in a template, use only one of these methods. For example,
if you use a CSR, you cannot also specify a certificate ID or a device certificate. For more
information, see X.509 client certificates.

For more information, see X.509 Certificate overview.

Certificate resources are declared using the following properties:

Resources section 1325

AWS IoT Core Developer Guide

• CertificateSigningRequest: String.

• CertificateId: String.

• CertificatePem: String.

• CACertificatePem: String.

• Status: Optional. String that can be ACTIVE or INACTIVE. Defaults to ACTIVE.

Examples:

• Certificate specified with a CSR:

{
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateSigningRequest": {"Ref" : "CSR"},
 "Status" : "ACTIVE"
 }
 }
}

• Certificate specified with an existing certificate ID:

{
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateId": {"Ref" : "CertificateId"}
 }
 }
}

• Certificate specified with an existing certificate .pem and CA certificate .pem:

{
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CACertificatePem": {"Ref" : "CACertificatePem"},
 "CertificatePem": {"Ref" : "CertificatePem"}
 }

Resources section 1326

AWS IoT Core Developer Guide

 }
}

Policy resources

Policy resources are declared using one of the following properties:

• PolicyName: Optional. String. Defaults to a hash of the policy document. The PolicyName
can only reference AWS IoT policies but not IAM policies. If you are using an existing AWS
IoT policy, for the PolicyName property, enter the name of the policy. Do not include the
PolicyDocument property.

• PolicyDocument: Optional. A JSON object specified as an escaped string. If PolicyDocument
is not provided, the policy must already be created.

Note

If a Policy section is present, PolicyName or PolicyDocument, but not both, must be
specified.

Override settings

If a template specifies a resource that already exists, the OverrideSettings section allows you to
specify the action to take:

DO_NOTHING

Leave the resource as is.

REPLACE

Replace the resource with the resource specified in the template.

FAIL

Cause the request to fail with a ResourceConflictsException.

MERGE

Valid only for the ThingGroups and AttributePayload properties of a thing. Merge the
existing attributes or group memberships of the thing with those specified in the template.

Resources section 1327

AWS IoT Core Developer Guide

When you declare a thing resource, you can specify OverrideSettings for the following
properties:

• ATTRIBUTE_PAYLOAD

• THING_TYPE_NAME

• THING_GROUPS

When you declare a certificate resource, you can specify OverrideSettings for the Status
property.

OverrideSettings are not available for policy resources.

Resource example

The following template snippet declares a thing, a certificate, and a policy:

{
 "Resources" : {
 "thing" : {
 "Type" : "AWS::IoT::Thing",
 "Properties" : {
 "ThingName" : {"Ref" : "ThingName"},
 "AttributePayload" : { "version" : "v1", "serialNumber" : {"Ref" :
 "SerialNumber"}},
 "ThingTypeName" : "lightBulb-versionA",
 "ThingGroups" : ["v1-lightbulbs", {"Ref" : "Location"}]
 },
 "OverrideSettings" : {
 "AttributePayload" : "MERGE",
 "ThingTypeName" : "REPLACE",
 "ThingGroups" : "DO_NOTHING"
 }
 },
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateSigningRequest": {"Ref" : "CSR"},
 "Status" : "ACTIVE"
 }
 },
 "policy" : {

Resources section 1328

AWS IoT Core Developer Guide

 "Type" : "AWS::IoT::Policy",
 "Properties" : {
 "PolicyDocument" : "{ \"Version\": \"2012-10-17\", \"Statement
\": [{ \"Effect\": \"Allow\", \"Action\":[\"iot:Publish\"], \"Resource\":
 [\"arn:aws:iot:us-east-1:123456789012:topic/foo/bar\"] }] }"
 }
 }
 }
}

The thing is declared with:

• The logical name "thing".

• The type AWS::IoT::Thing.

• A set of thing properties.

The thing properties include the thing name, a set of attributes, an optional thing type name,
and an optional list of thing groups to which the thing belongs.

Parameters are referenced by {"Ref":"parameter-name"}. When the template is evaluated,
the parameters are replaced with the parameter's value from the dictionary passed in with the
template.

The certificate is declared with:

• The logical name "certificate".

• The type AWS::IoT::Certificate.

• A set of properties.

The properties include the CSR for the certificate, and setting the status to ACTIVE. The CSR text
is passed as a parameter in the dictionary passed with the template.

The policy is declared with:

• The logical name "policy".

• The type AWS::IoT::Policy.

• Either the name of an existing policy or a policy document.

Resources section 1329

AWS IoT Core Developer Guide

Template example for bulk registration

The following JSON file is an example of a complete provisioning template that specifies the
certificate with a CSR:

(The PolicyDocument field value must be a JSON object specified as an escaped string.)

{
 "Parameters" : {
 "ThingName" : {
 "Type" : "String"
 },
 "SerialNumber" : {
 "Type" : "String"
 },
 "Location" : {
 "Type" : "String",
 "Default" : "WA"
 },
 "CSR" : {
 "Type" : "String"
 }
 },
 "Resources" : {
 "thing" : {
 "Type" : "AWS::IoT::Thing",
 "Properties" : {
 "ThingName" : {"Ref" : "ThingName"},
 "AttributePayload" : { "version" : "v1", "serialNumber" : {"Ref" :
 "SerialNumber"}},
 "ThingTypeName" : "lightBulb-versionA",
 "ThingGroups" : ["v1-lightbulbs", {"Ref" : "Location"}]
 }
 },
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateSigningRequest": {"Ref" : "CSR"},
 "Status" : "ACTIVE"
 }
 },
 "policy" : {
 "Type" : "AWS::IoT::Policy",

Template example for bulk registration 1330

AWS IoT Core Developer Guide

 "Properties" : {
 "PolicyDocument" : "{ \"Version\": \"2012-10-17\", \"Statement
\": [{ \"Effect\": \"Allow\", \"Action\":[\"iot:Publish\"], \"Resource\":
 [\"arn:aws:iot:us-east-1:123456789012:topic/foo/bar\"] }] }"
 }
 }
 }
}

Template example for just-in-time provisioning (JITP)

The following JSON file is an example of a complete provisioning template that specifies an
existing certificate with a certificate ID:

{
 "Parameters":{
 "AWS::IoT::Certificate::CommonName":{
 "Type":"String"
 },
 "AWS::IoT::Certificate::SerialNumber":{
 "Type":"String"
 },
 "AWS::IoT::Certificate::Country":{
 "Type":"String"
 },
 "AWS::IoT::Certificate::Id":{
 "Type":"String"
 }
 },
 "Resources":{
 "thing":{
 "Type":"AWS::IoT::Thing",
 "Properties":{
 "ThingName":{
 "Ref":"AWS::IoT::Certificate::CommonName"
 },
 "AttributePayload":{
 "version":"v1",
 "serialNumber":{
 "Ref":"AWS::IoT::Certificate::SerialNumber"
 }
 },
 "ThingTypeName":"lightBulb-versionA",

Template example for just-in-time provisioning (JITP) 1331

AWS IoT Core Developer Guide

 "ThingGroups":[
 "v1-lightbulbs",
 {
 "Ref":"AWS::IoT::Certificate::Country"
 }
]
 },
 "OverrideSettings":{
 "AttributePayload":"MERGE",
 "ThingTypeName":"REPLACE",
 "ThingGroups":"DO_NOTHING"
 }
 },
 "certificate":{
 "Type":"AWS::IoT::Certificate",
 "Properties":{
 "CertificateId":{
 "Ref":"AWS::IoT::Certificate::Id"
 },
 "Status":"ACTIVE"
 }
 },
 "policy":{
 "Type":"AWS::IoT::Policy",
 "Properties":{
 "PolicyDocument":"{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Effect
\": \"Allow\", \"Action\":[\"iot:Publish\"], \"Resource\": [\"arn:aws:iot:us-
east-1:123456789012:topic/foo/bar\"] }] }"
 }
 }
 }
}

Important

You must use CertificateId in a template that's used for JIT provisioning.

For more information about the type of a provisioning template, see
CreateProvisioningTemplate in the AWS API reference.

Template example for just-in-time provisioning (JITP) 1332

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningTemplate.html#iot-CreateProvisioningTemplate-request-type

AWS IoT Core Developer Guide

For more information about how to use this template for just-in-time provisioning, see: Just-in-
time provisioning.

Fleet provisioning

Fleet provisioning templates are used by AWS IoT to set up cloud and device configuration. These
templates use the same parameters and resources as the JITP and bulk registration templates.
For more information, see Provisioning templates. Fleet provisioning templates can contain a
Mapping section and a DeviceConfiguration section. You can use intrinsic functions inside
a fleet provisioning template to generate a device-specific configuration. Fleet provisioning
templates are named resources and are identified by ARNs (for example, arn:aws:iot:us-
west-2:1234568788:provisioningtemplate/templateName).

Mappings

The optional Mappings section matches a key to a corresponding set of named values. For
example, if you want to set values based on an AWS Region, you can create a mapping that uses
the AWS Region name as a key and contains the values you want to specify for each specific
Region. You use the Fn::FindInMap intrinsic function to retrieve values in a map.

You cannot include parameters, pseudo parameters, or call intrinsic functions in the Mappings
section.

Device configuration

The device configuration section contains arbitrary data that you want to send to your devices
when provisioning. For example:

{
 "DeviceConfiguration": {
 "Foo":"Bar"
 }
}

If you're sending messages to your devices by using the JavaScript Object Notation (JSON)
payload format, AWS IoT Core formats this data as JSON. If you're using the Concise Binary
Object Representation (CBOR) payload format, AWS IoT Core formats this data as CBOR. The
DeviceConfiguration section doesn't support nested JSON objects.

Fleet provisioning 1333

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html
https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html

AWS IoT Core Developer Guide

Intrinsic functions

Intrinsic functions are used in any section of the provisioning template except the Mappings
section.

Fn::Join

Appends a set of values into a single value, separated by the specified delimiter. If a delimiter is
an empty string, the values are concatenated with no delimiter.

Important

Fn::Join is not supported for the section called “Policy resources”.

Fn::Select

Returns a single object from a list of objects by index.

Important

Fn::Select does not check for null values or if the index is out of bounds of the
array. Both conditions result in a provisioning error, so make sure you chose a valid index
value and the list contains non-null values.

Fn::FindInMap

Returns the value corresponding to keys in a two-level map that is declared in the Mappings
section.

Fn::Split

Splits a string into a list of string values so you can select an element from the list of strings.
You specify a delimiter that determines where the string is split (for example, a comma). After
you split a string, use Fn::Select to select an element.

For example, if a comma-delimited string of subnet IDs is imported to your stack template, you
can split the string at each comma. From the list of subnet IDs, use Fn::Select to specify a
subnet ID for a resource.

Fleet provisioning 1334

AWS IoT Core Developer Guide

Fn::Sub

Substitutes variables in an input string with values that you specify. You can use this function
to construct commands or outputs that include values that aren't available until you create or
update a stack.

Template example for fleet provisioning

{
 "Parameters" : {
 "ThingName" : {
 "Type" : "String"
 },
 "SerialNumber": {
 "Type": "String"
 },
 "DeviceLocation": {
 "Type": "String"
 }
 },
 "Mappings": {
 "LocationTable": {
 "Seattle": {
 "LocationUrl": "https://example.aws"
 }
 }
 },
 "Resources" : {
 "thing" : {
 "Type" : "AWS::IoT::Thing",
 "Properties" : {
 "AttributePayload" : {
 "version" : "v1",
 "serialNumber" : "serialNumber"
 },
 "ThingName" : {"Ref" : "ThingName"},
 "ThingTypeName" : {"Fn::Join":["",["ThingPrefix_",
{"Ref":"SerialNumber"}]]},
 "ThingGroups" : ["v1-lightbulbs", "WA"],
 "BillingGroup": "LightBulbBillingGroup"
 },
 "OverrideSettings" : {

Fleet provisioning 1335

AWS IoT Core Developer Guide

 "AttributePayload" : "MERGE",
 "ThingTypeName" : "REPLACE",
 "ThingGroups" : "DO_NOTHING"
 }
 },
 "certificate" : {
 "Type" : "AWS::IoT::Certificate",
 "Properties" : {
 "CertificateId": {"Ref": "AWS::IoT::Certificate::Id"},
 "Status" : "Active"
 }
 },
 "policy" : {
 "Type" : "AWS::IoT::Policy",
 "Properties" : {
 "PolicyDocument" : {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action":["iot:Publish"],
 "Resource": ["arn:aws:iot:us-east-1:123456789012:topic/foo/
bar"]
 }]
 }
 }
 }
 },
 "DeviceConfiguration": {
 "FallbackUrl": "https://www.example.com/test-site",
 "LocationUrl": {
 "Fn::FindInMap": ["LocationTable",{"Ref": "DeviceLocation"},
 "LocationUrl"]}
 }
}

Note

An existing provisioning template can be updated to add a pre-provisioning hook.

Fleet provisioning 1336

AWS IoT Core Developer Guide

Pre-provisioning hooks

AWS recommends using pre-provisioning hook functions when creating provisioning templates to
allow more control of which and how many devices your account onboards. Pre-provisioning hooks
are Lambda functions that validate parameters passed from the device before allowing the device
to be provisioned. This Lambda function must exist in your account before you provision a device
because it's called every time a device sends a request through the section called “RegisterThing”.

Important

Be sure to include the source-arn or source-account in the global condition context
keys of the policies attached to your Lambda action to prevent permission manipulation.
For more information about this, see Cross-service confused deputy prevention.

For devices to be provisioned, your Lambda function must accept the input object and return the
output object described in this section. The provisioning proceeds only if the Lambda function
returns an object with "allowProvisioning": True.

Pre-provision hook input

AWS IoT sends this object to the Lambda function when a device registers with AWS IoT.

{
 "claimCertificateId" : "string",
 "certificateId" : "string",
 "certificatePem" : "string",
 "templateArn" : "arn:aws:iot:us-east-1:1234567890:provisioningtemplate/MyTemplate",
 "clientId" : "221a6d10-9c7f-42f1-9153-e52e6fc869c1",
 "parameters" : {
 "string" : "string",
 ...
 }
}

The parameters object passed to the Lambda function contains the properties in the
parameters argument passed in the the section called “RegisterThing” request payload.

Pre-provisioning hooks 1337

AWS IoT Core Developer Guide

Pre-provision hook return value

The Lambda function must return a response that indicates whether it has authorized the
provisioning request and the values of any properties to override.

The following is an example of a successful response from the pre-provisioning function.

{
 "allowProvisioning": true,
 "parameterOverrides" : {
 "Key": "newCustomValue",
 ...
 }
}

"parameterOverrides" values will be added to "parameters" parameter of the the section
called “RegisterThing” request payload.

Note

• If the Lambda function fails, the provisioning request fails with ACCESS_DENIED and an
error is logged to CloudWatch Logs.

• If the Lambda function doesn't return "allowProvisioning": "true" in the
response, the provisioning request fails with ACCESS_DENIED.

• The Lambda function must finish running and return within 5 seconds, otherwise the
provisioning request fails.

Pre-provisioning hook Lambda example

Python

An example of a pre-provisioning hook Lambda in Python.

import json

def pre_provisioning_hook(event, context):
 print(event)

Pre-provision hook return value 1338

AWS IoT Core Developer Guide

 return {
 'allowProvisioning': True,
 'parameterOverrides': {
 'DeviceLocation': 'Seattle'
 }
 }

Java

An example of a pre-provisioning hook Lambda in Java.

Handler class:

package example;

import java.util.Map;
import java.util.HashMap;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class PreProvisioningHook implements
 RequestHandler<PreProvisioningHookRequest, PreProvisioningHookResponse> {

 public PreProvisioningHookResponse handleRequest(PreProvisioningHookRequest
 object, Context context) {
 Map<String, String> parameterOverrides = new HashMap<String, String>();
 parameterOverrides.put("DeviceLocation", "Seattle");

 PreProvisioningHookResponse response = PreProvisioningHookResponse.builder()
 .allowProvisioning(true)
 .parameterOverrides(parameterOverrides)
 .build();

 return response;
 }

}

Request class:

package example;

import java.util.Map;

Pre-provisioning hook Lambda example 1339

AWS IoT Core Developer Guide

import lombok.Builder;
import lombok.Data;
import lombok.AllArgsConstructor;
import lombok.NoArgsConstructor;

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class PreProvisioningHookRequest {
 private String claimCertificateId;
 private String certificateId;
 private String certificatePem;
 private String templateArn;
 private String clientId;
 private Map<String, String> parameters;
}

Response class:

package example;

import java.util.Map;
import lombok.Builder;
import lombok.Data;
import lombok.AllArgsConstructor;
import lombok.NoArgsConstructor;

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class PreProvisioningHookResponse {
 private boolean allowProvisioning;
 private Map<String, String> parameterOverrides;
}

JavaScript

An example of a pre-provisioning hook Lambda in JavaScript.

exports.handler = function(event, context, callback) {

Pre-provisioning hook Lambda example 1340

AWS IoT Core Developer Guide

 console.log(JSON.stringify(event, null, 2));
 var reply = {
 allowProvisioning: true,
 parameterOverrides: {
 DeviceLocation: 'Seattle'
 }
 };
 callback(null, reply);
}

Self-managed certificate signing using AWS IoT Core certificate
provider

You can create an AWS IoT Core certificate provider to sign certificate signing requests (CSRs)
in AWS IoT fleet provisioning. A certificate provider references a Lambda function and the
CreateCertificateFromCsr MQTT API for fleet provisioning. The Lambda function accepts a
CSR and returns a signed client certificate.

When you don't have a certificate provider with your AWS account, the CreateCertificateFromCsr
MQTT API is called in fleet provisioning to generate the certificate from a CSR. After you create
a certificate provider, the behavior of the CreateCertificateFromCsr MQTT API will change and all
calls to this MQTT API will invoke the certificate provider to issue the certificate.

With AWS IoT Core certificate provider, you can implement solutions that utilize private certificate
authorities (CAs) such as AWS Private CA, other publicly trusted CAs, or your own Public Key
Infrastructure (PKI) to sign the CSR. In addition, you can use certificate provider to customize your
client certificate's fields such as validity periods, signing algorithms, issuers, and extensions.

Important

You can only create one certificate provider per AWS account. The signing behavior change
applies to the entire fleet that calls the CreateCertificateFromCsr MQTT API until you delete
the certificate provider from your AWS account.

In this topic:

• How self-managed certificate signing works in fleet provisioning

• Certificate provider Lambda function input

Self-managed certificate signing using AWS IoT Core certificate provider 1341

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/privateca/latest/userguide/PcaWelcome.html
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr

AWS IoT Core Developer Guide

• Certificate provider Lambda function return value

• Example Lambda function

• Self-managed certificate signing for fleet provisioning

• AWS CLI commands for certificate provider

How self-managed certificate signing works in fleet provisioning

Key concepts

The following concepts provide details that can help you understand how self-managed certificate
signing works in AWS IoT fleet provisioning. For more information, see Provisioning devices that
don't have device certificates using fleet provisioning.

AWS IoT fleet provisioning

With AWS IoT fleet provisioning (short for fleet provisioning), AWS IoT Core generates and
securely delivers device certificates to your devices when they connect to AWS IoT Core for the
first time. You can use fleet provisioning to connect devices that don't have device certificates
to AWS IoT Core.

Certificate signing request (CSR)

In the process of fleet provisioning, a device makes a request to AWS IoT Core through the fleet
provisioning MQTT APIs. This request includes a certificate signing request (CSR), which will be
signed to create a client certificate.

AWS managed certificate signing in fleet provisioning

AWS managed is the default setting for certificate signing in fleet provisioning. With AWS
managed certificate signing, AWS IoT Core will sign CSRs using its own CAs.

Self-managed certificate signing in fleet provisioning

Self-managed is another option for certificate signing in fleet provisioning. With self-managed
certificate signing, you create an AWS IoT Core certificate provider to sign CSRs. You can use
self-managed certificate signing to sign CSRs with a CA generated by AWS Private CA, other
publicly trusted CA, or your own Public Key Infrastructure (PKI).

AWS IoT Core certificate provider

AWS IoT Core certificate provider (short for certificate provider) is a customer-managed
resource that's used for self-managed certificate signing in fleet provisioning.

How self-managed certificate signing works in fleet provisioning 1342

https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html

AWS IoT Core Developer Guide

Diagram

The following diagram is a simplified illustration of how self-certificate signing works in AWS IoT
fleet provisioning.

• When a new IoT device is manufactured or introduced to the fleet, it needs client certificates to
authenticate itself with AWS IoT Core.

• As part of the fleet provisioning process, the device makes a request to AWS IoT Core for client
certificates through the fleet provisioning MQTT APIs. This request includes a certificate signing
request (CSR).

• AWS IoT Core invokes the certificate provider and passes the CSR as input to the provider.

• The certificate provider takes the CSR as input and issues a client certificate.

For AWS managed certificate signing, AWS IoT Core signs the CSR using its own CA and issues a
client certificate.

• With the issued client certificate, the device will continue the fleet provisioning and establish a
secure connection with AWS IoT Core.

Certificate provider Lambda function input

AWS IoT Core sends the following object to the Lambda function when a device registers with it.
The value of certificateSigningRequest is the CSR in Privacy-Enhanced Mail (PEM) format
that's provided in the CreateCertificateFromCsr request. The principalId is the ID of
the principal used to connect to AWS IoT Core when making the CreateCertificateFromCsr
request. clientId is the client ID set for the MQTT connection.

Certificate provider Lambda function input 1343

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate-format.html

AWS IoT Core Developer Guide

{
 "certificateSigningRequest": "string",
 "principalId": "string",
 "clientId": "string"
}

Certificate provider Lambda function return value

The Lambda function must return a response that contains the certificatePem value.
The following is an example of a successful response. AWS IoT Core will use the return value
(certificatePem) to create the certificate.

{
 "certificatePem": "string"
}

If the registration is successful, CreateCertificateFromCsr will return the same
certificatePem in the CreateCertificateFromCsr response. For more information, see the
response payload example of CreateCertificateFromCsr.

Example Lambda function

Before creating a certificate provider, you must create a Lambda function to sign a CSR. The
following is an example Lambda function in Python. This function calls AWS Private CA to sign
the input CSR, using a private CA and the SHA256WITHRSA signing algorithm. The returned client
certificate will be valid for one year. For more information about AWS Private CA and how to create
a private CA, see What is AWS Private CA? and Creating a private CA.

import os
import time
import uuid
import boto3

def lambda_handler(event, context):
 ca_arn = os.environ['CA_ARN']
 csr = (event['certificateSigningRequest']).encode('utf-8')

 acmpca = boto3.client('acm-pca')
 cert_arn = acmpca.issue_certificate(
 CertificateAuthorityArn=ca_arn,

Certificate provider Lambda function return value 1344

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/privateca/latest/userguide/PcaWelcome.html
https://docs.aws.amazon.com/privateca/latest/userguide/create-CA.html

AWS IoT Core Developer Guide

 Csr=csr,
 Validity={"Type": "DAYS", "Value": 365},
 SigningAlgorithm='SHA256WITHRSA',
 IdempotencyToken=str(uuid.uuid4())
)['CertificateArn']

 # Wait for certificate to be issued
 time.sleep(1)
 cert_pem = acmpca.get_certificate(
 CertificateAuthorityArn=ca_arn,
 CertificateArn=cert_arn
)['Certificate']

 return {
 'certificatePem': cert_pem
 }

Important

• Certificates returned by the Lambda function must have the same subject name and
public key as the Certificate Signing Request (CSR).

• The Lambda function must finish running in 5 seconds.

• The Lambda function must be in the same AWS account and Region as the certificate
provider resource.

• The AWS IoT service principal must be granted the invoke permission to the Lambda
function. To avoid confused deputy issues, we recommend that you set sourceArn and
sourceAccount for the invoke permissions. For more information, see Cross-service
confused deputy prevention.

The following resource-based policy example for Lambda grants AWS IoT the permission to invoke
the Lambda function:

{
 "Version": "2012-10-17",
 "Id": "InvokePermission",
 "Statement": [
 {
 "Sid": "LambdaAllowIotProvider",

Example Lambda function 1345

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/iot/latest/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/iot/latest/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS IoT Core Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-function",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:iot:us-east-1:123456789012:certificateprovider:my-
certificate-provider"
 }
 }
 }
]
}

Self-managed certificate signing for fleet provisioning

You can choose self-managed certificate signing for fleet provisioning using AWS CLI or AWS
Management Console.

AWS CLI

To choose self-managed certificate signing, you must create an AWS IoT Core certificate
provider to sign CSRs in fleet provisioning. AWS IoT Core invokes the certificate provider, which
takes a CSR as input and returns a client certificate. To create a certificate provider, use the
CreateCertificateProvider API operation or the create-certificate-provider CLI
command.

Note

After you create a certificate provider, the behavior of CreateCertificateFromCsr API
for fleet provisioning will change so that all calls to CreateCertificateFromCsr will
invoke the certificate provider to create the certificates. It can take a few minutes for this
behavior to change after a certificate provider is created.

aws iot create-certificate-provider \

Self-managed certificate signing for fleet provisioning 1346

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr

AWS IoT Core Developer Guide

 --certificateProviderName my-certificate-provider \
 --lambdaFunctionArn arn:aws:lambda:us-east-1:123456789012:function:my-
function-1 \
 --accountDefaultForOperations CreateCertificateFromCsr

The following shows an example output for this command:

{
 "certificateProviderName": "my-certificate-provider",
 "certificateProviderArn": "arn:aws:iot:us-east-1:123456789012:certificateprovider:my-
certificate-provider"
}

For more information, see CreateCertificateProvider from the AWS IoT API Reference.

AWS Management Console

To choose self-managed certificate signing using AWS Management Console, follow the steps:

1. Go to the AWS IoT console.

2. On the left navigation, under Security, choose Certificate signing.

3. On the Certificate signing page, under Certificate signing details, choose Edit certificate
signing method.

4. On the Edit certificate signing method page, under Certificate signing method, choose Self-
managed.

5. In the Self-managed settings section, enter a name for certificate provider, then create or
choose a Lambda function.

6. Choose Update certificate signing.

AWS CLI commands for certificate provider

Create certificate provider

To create a certificate provider, use the CreateCertificateProvider API operation or the
create-certificate-provider CLI command.

AWS CLI commands for certificate provider 1347

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateProvider.html
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Note

After you create a certificate provider, the behavior of CreateCertificateFromCsr API
for fleet provisioning will change so that all calls to CreateCertificateFromCsr will
invoke the certificate provider to create the certificates. It can take a few minutes for this
behavior to change after a certificate provider is created.

aws iot create-certificate-provider \
 --certificateProviderName my-certificate-provider \
 --lambdaFunctionArn arn:aws:lambda:us-east-1:123456789012:function:my-
function-1 \
 --accountDefaultForOperations CreateCertificateFromCsr

The following shows an example output for this command:

{
 "certificateProviderName": "my-certificate-provider",
 "certificateProviderArn": "arn:aws:iot:us-east-1:123456789012:certificateprovider:my-
certificate-provider"
}

For more information, see CreateCertificateProvider from the AWS IoT API Reference.

Update certificate provider

To update a certificate provider, use the UpdateCertificateProvider API operation or the
update-certificate-provider CLI command.

aws iot update-certificate-provider \
 --certificateProviderName my-certificate-provider \
 --lambdaFunctionArn arn:aws:lambda:us-east-1:123456789012:function:my-
function-2 \
 --accountDefaultForOperations CreateCertificateFromCsr

The following shows an example output for this command:

{
 "certificateProviderName": "my-certificate-provider",

AWS CLI commands for certificate provider 1348

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html#create-cert-csr
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateCertificateProvider.html

AWS IoT Core Developer Guide

 "certificateProviderArn": "arn:aws:iot:us-east-1:123456789012:certificateprovider:my-
certificate-provider"
}

For more information, see UpdateCertificateProvider from the AWS IoT API Reference.

Describe certificate provider

To describe a certificate provider, use the DescribeCertificateProvider API operation or the
describe-certificate-provider CLI command.

aws iot describe-certificate-provider --certificateProviderName my-certificate-provider

The following shows an example output for this command:

{
 "certificateProviderName": "my-certificate-provider",
 "lambdaFunctionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function",
 "accountDefaultForOperations": [
 "CreateCertificateFromCsr"
],
 "creationDate": "2022-11-03T00:15",
 "lastModifiedDate": "2022-11-18T00:15"
}

For more information, see DescribeCertificateProvider from the AWS IoT API Reference.

Delete certificate provider

To delete a certificate provider, use the DeleteCertificateProvider API operation or the
delete-certificate-provider CLI command. If you delete the certificate provider resource,
the behavior of CreateCertificateFromCsr will resume, and AWS IoT will create certificates
signed by AWS IoT from a CSR.

aws iot delete-certificate-provider --certificateProviderName my-certificate-provider

This command doesn't produce any output.

For more information, see DeleteCertificateProvider from the AWS IoT API Reference.

AWS CLI commands for certificate provider 1349

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateCertificateProvider.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeCertificateProvider.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteCertificateProvider.html

AWS IoT Core Developer Guide

List certificate provider

To list the certificate providers within your AWS account, use the ListCertificateProviders
API operation or the list-certificate-providers CLI command.

aws iot list-certificate-providers

The following shows an example output for this command:

{
 "certificateProviders": [
 {
 "certificateProviderName": "my-certificate-provider",
 "certificateProviderArn": "arn:aws:iot:us-
east-1:123456789012:certificateprovider:my-certificate-provider"
 }
]
}

For more information, see ListCertificateProvider from the AWS IoT API Reference.

Creating IAM policies and roles for a user installing a device

Note

These procedures are for use only when directed by the AWS IoT console.
To go to this page from the console, open create a new provisioning template.

Why can't this be done in the AWS IoT console?

For the most secure experience, IAM actions are performed in the IAM console. The procedures in
this section walk you through the steps to create the IAM roles and policies that are needed to use
the provisioning template.

Creating an IAM policy for the user who will install a device

This procedure describes how to create an IAM policy that authorizes a user to install a device using
a provisioning template.

Creating IAM policies and roles for a user installing a device 1350

https://docs.aws.amazon.com/iot/latest/apireference/API_ListCertificateProviders.html
https://console.aws.amazon.com/iot/home#/provisioningtemplate/create/provisioningmethods/trustedUser

AWS IoT Core Developer Guide

While performing this procedure, you'll be switching between the IAM console and the AWS IoT
console. We recommend having both consoles open at the same time while you complete this
procedure.

To create an IAM policy for the user who will install a device

1. Open the Policies hub in the IAM console.

2. Choose Create Policy.

3. On the Create policy page, choose the JSON tab.

4. Switch to the page in the AWS IoT console where you chose Configure user policy and role.

5. In the Sample provisioning policy, choose Copy.

6. Switch back to the IAM console.

7. In the JSON editor, paste the policy you copied from the AWS IoT console. This policy is
specific to the template you're creating in the AWS IoT console.

8. To continue, choose Next: Tags.

9. On the Add tags (Optional) page, choose Add tag for each tag you want to add to this policy.
You can skip this step if you don't have any tags to add.

10. To continue, choose Next: Review.

11. On the Review policy page, do the following:

a. For Name*, enter a name for the policy that will help you remember the policy's purpose.

Note the name you give this policy because you'll use it in the next procedure.

b. You can choose to enter an optional description for the policy you're creating.

c. Review the rest of this policy and its tags.

12. To finish creating the new policy, choose Create policy.

After you create your new policy, continue to the section called “Creating an IAM role for the user
who will install a device” to create the user's role entry that you'll attach this policy.

Creating an IAM role for the user who will install a device

These steps describe how to create an IAM role that authenticates the user who will install a device
using a provisioning template.

Creating an IAM role for the user who will install a device 1351

https://console.aws.amazon.com/iamv2/home#/policies

AWS IoT Core Developer Guide

To create an IAM policy for the user who will install a device

1. Open the Role hub in the IAM console.

2. Choose Create role.

3. In Select trusted entity, choose the type of trusted entity that you want to give access to the
template you're creating.

4. Choose or enter the identification of the trusted entity that you want to grant access to, and
then choose Next.

5. On the Add permissions page, in Permission policies, in the search box, enter the name of the
policy you created in the previous procedure.

6. For the policy list, choose the policy that you created in the previous procedure, and then
choose Next.

7. In the Name, review, and create section, do the following:

a. For Role name, enter a role name that will help you remember the role's purpose.

b. For Description, you can choose to enter an optional description of the Role. This isn't
required to continue.

c. Review the values in Step 1 and Step 2.

d. For Add tags (Optional), you can choose to add tags to this role. This isn't required to
continue.

e. Verify the information on this page is complete and correct, and then choose Create role.

After you create the new role, return to the AWS IoT console to continue creating the template.

Updating an existing policy to authorize a new template

The following steps describe how to add a new template to an IAM policy that authorizes a user to
install a device using a provisioning template.

To add a new template to an existing IAM policy

1. Open the Policies hub in the IAM console.

2. In the search box, enter the name of the policy to update.

3. For the list below the search box, find the policy you want to update and choose the policy
name.

Updating an existing policy to authorize a new template 1352

https://console.aws.amazon.com/iamv2/home#/roles
https://console.aws.amazon.com/iamv2/home#/policies

AWS IoT Core Developer Guide

4. For Policy summary, choose the JSON tab, if that panel isn't already visible.

5. To modify the policy document, choose Edit policy.

6. In the editor, choose the JSON tab, if that panel isn't already visible.

7. In the policy document, find the policy statement that contains the
iot:CreateProvisioningClaim action.

If the policy document doesn't contain a policy statement with the
iot:CreateProvisioningClaim action, copy the following statement snippet and paste it
as an additional entry in the Statement array in the policy document.

Note

This snippet must be placed before the closing] character in the Statement array.
You might need to add a comma before or after this snippet to correct any syntax
errors.

{
 "Effect": "Allow",
 "Action": [
 "iot:CreateProvisioningClaim"
],
 "Resource": [
 "--PUT YOUR NEW TEMPLATE ARN HERE--"
]
}

8. Switch to the page in the AWS IoT console where you chose Modify user role permissions.

9. Find the Resource ARN of the template and choose Copy.

10. Switch back to the IAM console.

11. Paste the copied Amazon Resource Name (ARN) at the top of the list of template ARNs in the
Statement array so that it's the first entry.

If this is the only ARN in the array, remove the comma at end of the value you just pasted.

12. Review the updated policy statement and correct any errors indicated by the editor.

13. To save the updated policy document, choose Review policy.

14. Review the policy and then choose Save changes.

Updating an existing policy to authorize a new template 1353

AWS IoT Core Developer Guide

15. Return to the AWS IoT console.

Device provisioning MQTT API

The Fleet Provisioning service supports the following MQTT API operations:

• the section called “CreateCertificateFromCsr”

• the section called “CreateKeysAndCertificate”

• the section called “RegisterThing”

This API supports response buffers in Concise Binary Object Representation (CBOR) format and
JavaScript Object Notation (JSON), depending on the payload-format of the topic. For clarity,
the response and request examples in this section are shown in JSON format.

payload-format Response format data type

cbor Concise Binary Object Representation (CBOR)

json JavaScript Object Notation (JSON)

Important

Before publishing a request message topic, subscribe to the response topics to receive the
response. The messages used by this API use MQTT's publish/subscribe protocol to provide
a request and response interaction.
If you don't subscribe to the response topics before you publish a request, you might not
receive the results of that request.

CreateCertificateFromCsr

Creates a certificate from a certificate signing request (CSR). AWS IoT provides client certificates
that are signed by the Amazon Root certificate authority (CA). The new certificate has a
PENDING_ACTIVATION status. When you call RegisterThing to provision a thing with this
certificate, the certificate status changes to ACTIVE or INACTIVE as described in the template.

Device provisioning MQTT API 1354

AWS IoT Core Developer Guide

For more information on creating a client certificate using your Certificate Authority certificate and
a certificate signing request, refer to Create a client certificate using your CA certificate.

Note

For security, the certificateOwnershipToken returned by
CreateCertificateFromCsr expires after one hour. RegisterThing must be
called before the certificateOwnershipToken expires. If the certificate created by
CreateCertificateFromCsr hasn't been activated and attached to a policy or a thing
by the time the token expires, the certificate is deleted. If the token expires, the device can
call CreateCertificateFromCsr to generate a new certificate.

CreateCertificateFromCsr request

Publish a message with the $aws/certificates/create-from-csr/payload-format topic.

payload-format

The message payload format as cbor or json.

CreateCertificateFromCsr request payload

{
 "certificateSigningRequest": "string"
}

certificateSigningRequest

The CSR, in PEM format.

CreateCertificateFromCsr response

Subscribe to $aws/certificates/create-from-csr/payload-format/accepted.

payload-format

The message payload format as cbor or json.

CreateCertificateFromCsr 1355

AWS IoT Core Developer Guide

CreateCertificateFromCsr response payload

{
 "certificateOwnershipToken": "string",
 "certificateId": "string",
 "certificatePem": "string"
}

certificateOwnershipToken

The token to prove ownership of the certificate during provisioning.

certificateId

The ID of the certificate. Certificate management operations only take a certificateId.

certificatePem

The certificate data, in PEM format.

CreateCertificateFromCsr error

To receive error responses, subscribe to $aws/certificates/create-from-csr/payload-
format/rejected.

payload-format

The message payload format as cbor or json.

CreateCertificateFromCsr error payload

{
 "statusCode": int,
 "errorCode": "string",
 "errorMessage": "string"
}

statusCode

The status code.

CreateCertificateFromCsr 1356

AWS IoT Core Developer Guide

errorCode

The error code.

errorMessage

The error message.

CreateKeysAndCertificate

Creates new keys and a certificate. AWS IoT provides client certificates that are signed by the
Amazon Root certificate authority (CA). The new certificate has a PENDING_ACTIVATION status.
When you call RegisterThing to provision a thing with this certificate, the certificate status
changes to ACTIVE or INACTIVE as described in the template.

Note

For security, the certificateOwnershipToken returned by
CreateKeysAndCertificate expires after one hour. RegisterThing must be
called before the certificateOwnershipToken expires. If the certificate created by
CreateKeysAndCertificate hasn't been activated and attached to a policy or a thing
by the time the token expires, the certificate is deleted. If the token expires, the device can
call CreateKeysAndCertificate to generate a new certificate.

CreateKeysAndCertificate request

Publish a message on $aws/certificates/create/payload-format with an empty message
payload.

payload-format

The message payload format as cbor or json.

CreateKeysAndCertificate response

Subscribe to $aws/certificates/create/payload-format/accepted.

CreateKeysAndCertificate 1357

AWS IoT Core Developer Guide

payload-format

The message payload format as cbor or json.

CreateKeysAndCertificate response

{
 "certificateId": "string",
 "certificatePem": "string",
 "privateKey": "string",
 "certificateOwnershipToken": "string"
}

certificateId

The certificate ID.

certificatePem

The certificate data, in PEM format.

privateKey

The private key.

certificateOwnershipToken

The token to prove ownership of the certificate during provisioning.

CreateKeysAndCertificate error

To receive error responses, subscribe to $aws/certificates/create/payload-format/
rejected.

payload-format

The message payload format as cbor or json.

CreateKeysAndCertificate error payload

{

CreateKeysAndCertificate 1358

AWS IoT Core Developer Guide

 "statusCode": int,
 "errorCode": "string",
 "errorMessage": "string"
}

statusCode

The status code.

errorCode

The error code.

errorMessage

The error message.

RegisterThing

Provisions a thing using a pre-defined template.

RegisterThing request

Publish a message on $aws/provisioning-templates/templateName/
provision/payload-format.

payload-format

The message payload format as cbor or json.

templateName

The provisioning template name.

RegisterThing request payload

{
 "certificateOwnershipToken": "string",
 "parameters": {
 "string": "string",
 ...
 }

RegisterThing 1359

AWS IoT Core Developer Guide

}

certificateOwnershipToken

The token to prove ownership of the certificate. AWS IoT generates the token when you create a
certificate over MQTT.

parameters

Optional. Key-value pairs from the device that are used by the pre-provisioning hooks to
evaluate the registration request.

RegisterThing response

Subscribe to $aws/provisioning-templates/templateName/provision/payload-
format/accepted.

payload-format

The message payload format as cbor or json.

templateName

The provisioning template name.

RegisterThing response payload

{
 "deviceConfiguration": {
 "string": "string",
 ...
 },
 "thingName": "string"
}

deviceConfiguration

The device configuration defined in the template.

thingName

The name of the IoT thing created during provisioning.

RegisterThing 1360

AWS IoT Core Developer Guide

RegisterThing error response

To receive error responses, subscribe to $aws/provisioning-templates/templateName/
provision/payload-format/rejected.

payload-format

The message payload format as cbor or json.

templateName

The provisioning template name.

RegisterThing error response payload

{
 "statusCode": int,
 "errorCode": "string",
 "errorMessage": "string"
}

statusCode

The status code.

errorCode

The error code.

errorMessage

The error message.

RegisterThing 1361

AWS IoT Core Developer Guide

Fleet indexing

You can use fleet indexing to index, search, and aggregate your devices' data from the following
sources: AWS IoT registry, AWS IoT Device Shadow, AWS IoT connectivity, AWS IoT Device
Management Software Package Catalog, and AWS IoT Device Defender violations. You can
query a group of devices, and aggregate statistics on device records that are based on different
combinations of device attributes, including state, connectivity, and device violations. With fleet
indexing, you can organize, investigate, and troubleshoot your fleet of devices.

Fleet indexing provides the following capabilities.

Managing index updates

You can set up a fleet index to index updates for your thing groups, thing registries, device
shadows, device connectivity, and device violations. When you activate fleet indexing, AWS IoT
creates an index for your things or thing groups. AWS_Things is the index created for all of your
things. AWS_ThingGroups is the index that contains all of your thing groups. After fleet indexing
is active, you can run queries on your index. For example, you can find all devices that are handheld
and have more than 70 percent battery life. AWS IoT updates the index continually with your latest
data. For more information, see Managing fleet indexing.

Searching across data sources

You can create a query string based on a query language and use it to search across data sources.
You also need to configure data sources in the fleet indexing setting so that the indexing
configuration contains the data sources you want to search from. The query string describes the
things that you want to find. You can create queries by using AWS managed fields, custom fields,
and any attributes from your indexed data sources. For more information about data sources that
support fleet indexing, see Managing thing indexing.

Querying for aggregate data

You can search your devices for aggregate data and return statistics, percentile, cardinality, or a list
of things with search queries about particular fields. You can run aggregations on AWS managed
fields or any attributes you configure as custom fields within fleet indexing settings. For more
information about aggregation query, see Querying for aggregate data.

Managing index updates 1362

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html

AWS IoT Core Developer Guide

Monitoring aggregate data and creating alarms by using fleet
metrics

You can use fleet metrics to send aggregate data to CloudWatch automatically, analyze trends, and
create alarms to monitor the aggregate state of your fleet based on pre-defined thresholds. For
more information about fleet metrics, see Fleet metrics.

Managing fleet indexing

Fleet indexing manages two types of indexes for you: thing indexing and thing group indexing.

Thing indexing

The index created for all of your things is called AWS_Things. Thing indexing supports the
following data sources: AWS IoT registry data, AWS IoT Device Shadow data, AWS IoT connectivity
data, and AWS IoT Device Defender violations data. By adding these data sources to your fleet
indexing configuration, you can search for things, query for aggregate data, and create dynamic
thing groups and fleet metrics based on your search queries.

Registry-AWS IoT provides a registry that helps you manage things. You can add the registry data
to your fleet indexing configuration to search for devices based on the thing names, descriptions,
and other registry attributes. For more information about the registry, see How to manage things
with the registry.

Shadow-The AWS IoT Device Shadow service provides shadows that help you store your device
state data. Thing indexing supports both classic unnamed shadows and named shadows. To index
named shadows, activate your named shadow settings and specify your shadow names in thing
indexing configuration. By default, you can add up to 10 shadow names per AWS account. To see
how to increase the number of shadow names limit, see AWS IoT Device Management Quotas in
the AWS General Reference.

To add named shadows for indexing:

• If you use the AWS IoT console, turn on Thing indexing, choose Add named shadows, and add
your shadow names through Named shadow selection.

• If you use the AWS Command Line Interface (AWS CLI), set namedShadowIndexingMode to be
ON, and specify shadow names in IndexingFilter. To see example CLI commands, see Manage
thing indexing.

Monitoring aggregate data and creating alarms by using fleet metrics 1363

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html

AWS IoT Core Developer Guide

Important

July 20, 2022 is the General Availability (GA) release of the AWS IoT Device Management
fleet indexing integration with AWS IoT Core named shadows and AWS IoT Device Defender
detect violations. With this GA release, you can index specific named shadows by specifying
shadow names. If you added your named shadows for indexing during this feature's public
preview period from November 30, 2021 to July 19, 2022, we encourage you to reconfigure
your fleet indexing settings and choose specific shadow names to reduce indexing cost and
optimize performance.

For more information about shadows, see AWS IoT Device Shadow service.

Connectivity-Device connectivity data helps you identify the connection status of your devices.
This connectivity data is driven by lifecycle events. When a client connects or disconnects, AWS IoT
publishes lifecycle events with messages to MQTT topics. A connect or disconnect message can be
a list of JSON elements that provide details of the connection status. For more information about
device connectivity, see Lifecycle events.

Device Defender violations-AWS IoT Device Defender violations data helps identify anomalous
device behaviors against the normal behaviors that you define in a Security Profile. A Security
Profile contains a set of expected device behaviors. Each behavior uses a metric that specifies the
normal behavior of your devices. For more information about Device Defender violations, see AWS
IoT Device Defender detect.

For more information, see Managing thing indexing.

Thing group indexing

AWS_ThingGroups is the index that contains all of your thing groups. You can use this index to
search for groups based on group name, description, attributes, and all parent group names.

For more information, see Managing thing group indexing.

Managed fields

Managed fields contain data associated with things, thing groups, device shadows, device
connectivity, and Device Defender violations. AWS IoT defines the data type in managed fields.
You specify the values of each managed field when you create an AWS IoT thing. For example,
thing names, thing groups, and thing descriptions are all managed fields. Fleet indexing indexes

Thing group indexing 1364

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/device-defender-detect.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/device-defender-detect.html

AWS IoT Core Developer Guide

managed fields based on the indexing mode that you specify. Managed fields can't be changed or
appear in customFields. For more information, see Custom fields.

The following lists managed fields for thing indexing:

• Managed fields for the registry

"managedFields" : [
 {name:thingId, type:String},
 {name:thingName, type:String},
 {name:registry.version, type:Number},
 {name:registry.thingTypeName, type:String},
 {name:registry.thingGroupNames, type:String},
]

• Managed fields for classic unnamed shadows

"managedFields" : [
 {name:shadow.version, type:Number},
 {name:shadow.hasDelta, type:Boolean}
]

• Managed fields for named shadows

"managedFields" : [
 {name:shadow.name.shadowName.version, type:Number},
 {name:shadow.name.shadowName.hasDelta, type:Boolean}
]

• Managed fields for thing connectivity

"managedFields" : [
 {name:connectivity.timestamp, type:Number},
 {name:connectivity.version, type:Number},
 {name:connectivity.connected, type:Boolean},
 {name:connectivity.disconnectReason, type:String}
]

• Managed fields for Device Defender

"managedFields" : [
 {name:deviceDefender.violationCount, type:Number},
 {name:deviceDefender.securityprofile.behaviorname.metricName, type:String},

Managed fields 1365

AWS IoT Core Developer Guide

 {name:deviceDefender.securityprofile.behaviorname.lastViolationTime, type:Number},
 {name:deviceDefender.securityprofile.behaviorname.lastViolationValue, type:String},
 {name:deviceDefender.securityprofile.behaviorname.inViolation, type:Boolean}
]

• Managed fields for thing groups

"managedFields" : [
 {name:description, type:String},
 {name:parentGroupNames, type:String},
 {name:thingGroupId, type:String},
 {name:thingGroupName, type:String},
 {name:version, type:Number},
]

The following table lists managed fields that are not searchable.

Data source Managed field that is unsearchable

Registry registry.version

Unnamed shadows shadow.version

Named shadows shadow.name.*.version

Device Defender deviceDefender.version

Thing groups version

Custom fields

You can aggregate thing attributes, Device Shadow data, and Device Defender violations data
by creating custom fields to index them. The customFields attribute is a list of field name and
data type pairs. You can perform aggregation queries based on data type. The indexing mode
that you choose affects fields can be specified in customFields. For example, if you specify the
REGISTRY indexing mode, you can't specify a custom field from a thing shadow. You can use the
update-indexing-configuration CLI command to create or update the custom fields (see an example
command in Updating indexing configuration examples).

Custom fields 1366

https://docs.aws.amazon.com/cli/latest/reference/iot/update-indexing-configuration.html

AWS IoT Core Developer Guide

• Custom field names

Custom field names for thing and thing group attributes begin with attributes., followed by
the attribute name. If unnamed shadow indexing is on, things can have custom field names that
begin with shadow.desired or shadow.reported, followed by the unnamed shadow data
value name. If named shadow indexing is on, things can have custom field names that begin with
shadow.name.*.desired. or shadow.name.*.reported., followed by the named shadow
data value. If Device Defender violations indexing is on, things can have custom field names that
begin with deviceDefender., followed by the Device Defender violations data value.

The attribute or data value name that follows the prefix can have only alphanumeric, - (hyphen),
and _ (underscore) characters. It can't have any spaces.

If there' a type inconsistency between a custom field in your configuration and the value being
indexed, fleet indexing ignores the inconsistent value for aggregation queries. CloudWatch
Logs are helpful when troubleshooting aggregation query problems. For more information, see
Troubleshooting aggregation queries for the fleet indexing service.

• Custom field types

Custom field types have the following supported values: Number, String, and Boolean.

Manage thing indexing

The index created for all of your things is AWS_Things. You can control what to index from the
following data sources: AWS IoT registry data, AWS IoT Device Shadow data, AWS IoT connectivity
data, and AWS IoT Device Defender violations data.

In this topic:

• Enabling thing indexing

• Describing a thing index

• Querying a thing index

• Restrictions and limitations

• Authorization

Manage thing indexing 1367

https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html

AWS IoT Core Developer Guide

Enabling thing indexing

You use the update-indexing-configuration CLI command or the UpdateIndexingConfiguration
API operation to create the AWS_Things index and control its configuration. By using the --
thing-indexing-configuration (thingIndexingConfiguration) parameter, you control
what kind of data (for example, registry, shadow, device connectivity data, and Device Defender
violations data) is indexed.

The --thing-indexing-configuration parameter takes a string with the following structure:

{
 "thingIndexingMode": "OFF"|"REGISTRY"|"REGISTRY_AND_SHADOW",
 "thingConnectivityIndexingMode": "OFF"|"STATUS",
 "deviceDefenderIndexingMode": "OFF"|"VIOLATIONS",
 "namedShadowIndexingMode": "OFF"|"ON",
 "managedFields": [
 {
 "name": "string",
 "type": "Number"|"String"|"Boolean"
 },
 ...
],
 "customFields": [
 {
 "name": "string",
 "type": "Number"|"String"|"Boolean"
 },
 ...
],
 "filter": {
 "namedShadowNames": ["string"],
 "geoLocations": [
 {
 "name": "String",
 "order": "LonLat|LatLon"
 }
]
 }
}

Manage thing indexing 1368

https://docs.aws.amazon.com/cli/latest/reference/iot/update-indexing-configuration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateIndexingConfiguration.html

AWS IoT Core Developer Guide

Thing indexing modes

You can specify different thing indexing modes in your indexing configuration, depending on what
data sources you want to index and search devices from:

• thingIndexingMode: Controls if registry or shadow is indexed. When thingIndexingMode is
set to be OFF, thing indexing is disabled.

• thingConnectivityIndexingMode: Specifies if thing connectivity data is indexed.

• deviceDefenderIndexingMode: Specifies if Device Defender violations data is indexed.

• namedShadowIndexingMode: Specifies if named shadow data is indexed. To select named
shadows to add to your fleet indexing configuration, set namedShadowIndexingMode to be ON
and specify your named shadow names in filter.

The table below shows the valid values for each indexing mode and the data source that's indexed
for each value.

Attribute Valid values Registry Shadow Connectiv
ity

DD
violations

Named
shadow

OFF

REGISTRY ✓

thingInde
xingMode

REGISTRY_
AND_SHADO
W

✓ ✓

Not specified.

OFF

thingConn
ectivityI
ndexingMo
de STATUS ✓

Not specified. deviceDef
enderInde
xingMode OFF

Manage thing indexing 1369

https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html

AWS IoT Core Developer Guide

Attribute Valid values Registry Shadow Connectiv
ity

DD
violations

Named
shadow

VIOLATIONS ✓

Not specified.

OFF

namedShad
owIndexin
gMode

ON ✓

Managed fields and custom fields

Managed fields

Managed fields contain data associated with things, thing groups, device shadows, device
connectivity, and Device Defender violations. AWS IoT defines the data type in managed fields.
You specify the values of each managed field when you create an AWS IoT thing. For example,
thing names, thing groups, and thing descriptions are all managed fields. Fleet indexing indexes
managed fields based on the indexing mode that you specify. Managed fields can't be changed or
appear in customFields.

Custom fields

You can aggregate attributes, Device Shadow data, and Device Defender violations data by creating
custom fields to index them. The customFields attribute is a list of field name and data type
pairs. You can perform aggregation queries based on data type. The indexing mode that you
choose affects fields can be specified in customFields. For example, if you specify the REGISTRY
indexing mode, you can't specify a custom field from a thing shadow. You can use the update-
indexing-configuration CLI command to create or update the custom fields (see an example
command in Updating indexing configuration examples). For more information, see Custom fields.

Indexing filter

Indexing filter provides additional selections for named shadows and geolocation data.

namedShadowNames

To add named shadows to your fleet indexing configuration, set namedShadowIndexingMode to
be ON and specify your named shadow names in namedShadowNames filter.

Manage thing indexing 1370

https://docs.aws.amazon.com/cli/latest/reference/iot/update-indexing-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-indexing-configuration.html

AWS IoT Core Developer Guide

Example

"filter": {
 "namedShadowNames": ["namedShadow1", "namedShadow2"]
}

geoLocations

To add geolocation data to your fleet indexing configuration:

• If your geolocation data is stored in a classic (unnamed) shadow, set thingIndexingMode to be
REGISTRY_AND_SHADOW, and specify your geolocation data in geoLocations filter.

The example filter below specifies a geoLocation object in a classic (unnamed) shadow:

"filter": {
 "geoLocations": [
 {
 "name": "shadow.reported.location",
 "order": "LonLat"
 }
]
 }

• If your geolocation data is stored in a named shadow, set namedShadowIndexingMode to be
ON, add the shadow name in namedShadowNames filter, and specify your geolocation data in
geoLocations filter.

The example filter below specifies a geoLocation object in a named shadow (nameShadow1):

"filter": {
 "namedShadowNames": ["namedShadow1"],
 "geoLocations": [
 {
 "name": "shadow.name.namedShadow1.reported.location",
 "order": "LonLat"
 }
]
 }

Manage thing indexing 1371

AWS IoT Core Developer Guide

For more information, see IndexingFilter from AWS IoT API Reference.

Updating indexing configuration examples

To update your indexing configuration, use the AWS IoT update-indexing-configuration CLI
command . The following examples show how to use update-indexing-configuration.

Short syntax:

aws iot update-indexing-configuration --thing-indexing-configuration \
'thingIndexingMode=REGISTRY_AND_SHADOW, deviceDefenderIndexingMode=VIOLATIONS,
namedShadowIndexingMode=ON,filter={namedShadowNames=[thing1shadow]},
 thingConnectivityIndexingMode=STATUS,
customFields=[{name=attributes.version,type=Number},
{name=shadow.name.thing1shadow.desired.DefaultDesired, type=String},
 {name=shadow.desired.power, type=Boolean},
{name=deviceDefender.securityProfile1.NUMBER_VALUE_BEHAVIOR.lastViolationValue.number,
 type=Number}]'

JSON syntax:

aws iot update-indexing-configuration --cli-input-json \ '{
 "thingIndexingConfiguration": { "thingIndexingMode": "REGISTRY_AND_SHADOW",
 "thingConnectivityIndexingMode": "STATUS",
 "deviceDefenderIndexingMode": "VIOLATIONS",
 "namedShadowIndexingMode": "ON",
 "filter": { "namedShadowNames": ["thing1shadow"]},
 "customFields": [{ "name": "shadow.desired.power", "type": "Boolean" },
 {"name": "attributes.version", "type": "Number"},
 {"name": "shadow.name.thing1shadow.desired.DefaultDesired", "type":
 "String"},
 {"name":
 "deviceDefender.securityProfile1.NUMBER_VALUE_BEHAVIOR.lastViolationValue.number",
 "type": Number}] } }'

This command doesn't produce any output.

To check the thing index status, run the describe-index CLI command:

aws iot describe-index --index-name "AWS_Things"

The output of the describe-index command looks like the following:

Manage thing indexing 1372

https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html

AWS IoT Core Developer Guide

{
 "indexName": "AWS_Things",
 "indexStatus": "ACTIVE",
 "schema": "MULTI_INDEXING_MODE"
}

Note

It can take a moment for fleet indexing to update the fleet index. We recommend waiting
until the indexStatus shows ACTIVE before using it. You can have different values in the
schema field depending on what data sources you've configured. For more information, see
Describing a thing index.

To get your thing indexing configuration details, run the get-indexing-configuration CLI
command:

aws iot get-indexing-configuration

The output of the get-indexing-configuration command looks like the following:

{
 "thingIndexingConfiguration": {
 "thingIndexingMode": "REGISTRY_AND_SHADOW",
 "thingConnectivityIndexingMode": "STATUS",
 "deviceDefenderIndexingMode": "VIOLATIONS",
 "namedShadowIndexingMode": "ON",
 "managedFields": [
 {
 "name": "connectivity.disconnectReason",
 "type": "String"
 },
 {
 "name": "registry.version",
 "type": "Number"
 },
 {
 "name": "thingName",
 "type": "String"
 },
 {

Manage thing indexing 1373

AWS IoT Core Developer Guide

 "name": "deviceDefender.violationCount",
 "type": "Number"
 },
 {
 "name": "shadow.hasDelta",
 "type": "Boolean"
 },
 {
 "name": "shadow.name.*.version",
 "type": "Number"
 },
 {
 "name": "shadow.version",
 "type": "Number"
 },
 {
 "name": "connectivity.version",
 "type": "Number"
 },
 {
 "name": "connectivity.timestamp",
 "type": "Number"
 },
 {
 "name": "shadow.name.*.hasDelta",
 "type": "Boolean"
 },
 {
 "name": "registry.thingTypeName",
 "type": "String"
 },
 {
 "name": "thingId",
 "type": "String"
 },
 {
 "name": "connectivity.connected",
 "type": "Boolean"
 },
 {
 "name": "registry.thingGroupNames",
 "type": "String"
 }
],

Manage thing indexing 1374

AWS IoT Core Developer Guide

 "customFields": [
 {
 "name": "shadow.name.thing1shadow.desired.DefaultDesired",
 "type": "String"
 },

 {
 "name":
 "deviceDefender.securityProfile1.NUMBER_VALUE_BEHAVIOR.lastViolationValue.number",
 "type": "Number"
 },
 {
 "name": "shadow.desired.power",
 "type": "Boolean"
 },
 {
 "name": "attributes.version",
 "type": "Number"
 }
],
 "filter": {
 "namedShadowNames": [
 "thing1shadow"
]
 }
 },
 "thingGroupIndexingConfiguration": {
 "thingGroupIndexingMode": "OFF"
 }
}

To update the custom fields, you can run the update-indexing-configuration command. An
example is as follows:

aws iot update-indexing-configuration --thing-indexing-configuration

 'thingIndexingMode=REGISTRY_AND_SHADOW,customFields=[{name=attributes.version,type=Number},
{name=attributes.color,type=String},{name=shadow.desired.power,type=Boolean},
{name=shadow.desired.intensity,type=Number}]'

This command added shadow.desired.intensity to the indexing configuration.

Manage thing indexing 1375

AWS IoT Core Developer Guide

Note

Updating the custom field indexing configuration overwrites all existing custom fields.
Make sure to specify all custom fields when calling update-indexing-configuration.

After the index is rebuilt, you can use an aggregation query on the newly added fields, search
registry data, shadow data, and thing connectivity status data.

When changing the indexing mode, make sure all of your custom fields are valid by using
the new indexing mode. For example, if you start off using REGISTRY_AND_SHADOW
mode with a custom field called shadow.desired.temperature, you must delete the
shadow.desired.temperature custom field before changing the indexing mode to REGISTRY.
If your indexing configuration contains custom fields that aren't indexed by the indexing mode, the
update fails.

Describing a thing index

The following command shows you how to use the describe-index CLI command to retrieve the
current status of the thing index.

aws iot describe-index --index-name "AWS_Things"

The response of the command can look like the following:

{
 "indexName": "AWS_Things",
 "indexStatus": "BUILDING",
 "schema": "REGISTRY_AND_SHADOW_AND_CONNECTIVITY_STATUS"
}

The first time that you fleet indexing, AWS IoT builds your index. When indexStatus is in the
BUILDING state, you can't query the index. The schema for the things index indicates which type
of data (REGISTRY_AND_SHADOW_AND_CONNECTIVITY_STATUS) is indexed.

Changing the configuration of your index causes the index to be rebuilt. During this process,
the indexStatus is REBUILDING. You can run queries on data in the things index while
it's being rebuilt. For example, if you change the index configuration from REGISTRY to
REGISTRY_AND_SHADOW while the index is being rebuilt, you can query registry data, including

Manage thing indexing 1376

AWS IoT Core Developer Guide

the latest updates. However, you can't query the shadow data until the rebuild is complete. The
amount of time it takes to build or rebuild the index depends on the amount of data.

You can see different values in the schema field depending on the data sources that you've
configured. The following table shows the different schema values and the corresponding
descriptions:

Schema Description

OFF No data sources are configured or indexed.

REGISTRY Registry data is indexed.

REGISTRY_AND_SHADOW Registry data and unnamed (classic) shadow
data are indexed.

REGISTRY_AND_CONNECTIVITY Registry data and connectivity data are
indexed.

REGISTRY_AND_SHADOW_AND_CON
NECTIVITY_STATUS

Registry data, unnamed (classic) shadow data,
and connectivity data are indexed.

MULTI_INDEXING_MODE Named shadow or Device Defender violation
s data is indexed, in addition to registry,
unnamed (classic) shadow or connectivity
data.

Querying a thing index

Use the search-index CLI command to query data in the index.

aws iot search-index --index-name "AWS_Things" --query-string
 "thingName:mything*"

{
 "things":[{
 "thingName":"mything1",
 "thingGroupNames":[
 "mygroup1"

Manage thing indexing 1377

AWS IoT Core Developer Guide

],
 "thingId":"a4b9f759-b0f2-4857-8a4b-967745ed9f4e",
 "attributes":{
 "attribute1":"abc"
 },
 "connectivity": {
 "connected":false,
 "timestamp":1556649874716,
 "disconnectReason": "CONNECTION_LOST"
 }
 },
 {
 "thingName":"mything2",
 "thingTypeName":"MyThingType",
 "thingGroupNames":[
 "mygroup1",
 "mygroup2"
],
 "thingId":"01014ef9-e97e-44c6-985a-d0b06924f2af",
 "attributes":{
 "model":"1.2",
 "country":"usa"
 },
 "shadow":{
 "desired":{
 "location":"new york",
 "myvalues":[3, 4, 5]
 },
 "reported":{
 "location":"new york",
 "myvalues":[1, 2, 3],
 "stats":{
 "battery":78
 }
 },
 "metadata":{
 "desired":{
 "location":{
 "timestamp":123456789
 },
 "myvalues":{
 "timestamp":123456789
 }
 },

Manage thing indexing 1378

AWS IoT Core Developer Guide

 "reported":{
 "location":{
 "timestamp":34535454
 },
 "myvalues":{
 "timestamp":34535454
 },
 "stats":{
 "battery":{
 "timestamp":34535454
 }
 }
 }
 },
 "version":10,
 "timestamp":34535454
 },
 "connectivity": {
 "connected":true,
 "timestamp":1556649855046
 }
 }],
 "nextToken":"AQFCuvk7zZ3D9pOYMbFCeHbdZ+h=G"
}

In the JSON response, "connectivity" (as enabled by the
thingConnectivityIndexingMode=STATUS setting) provides a Boolean value, a timestamp,
and a disconnectReason that indicates whether the device is connected to AWS IoT Core.
The device "mything1" disconnected (false) at POSIX time 1556649874716 due to
CONNECTION_LOST. For more information about disconnect reasons, see Lifecycle events.

"connectivity": {
 "connected":false,
 "timestamp":1556649874716,
 "disconnectReason": "CONNECTION_LOST"
}

The device "mything2" connected (true) at POSIX time 1556649855046:

"connectivity": {
 "connected":true,
 "timestamp":1556649855046

Manage thing indexing 1379

AWS IoT Core Developer Guide

}

Timestamps are given in milliseconds since epoch, so 1556649855046 represents 6:44:15.046 PM
on Tuesday, April 30, 2019 (UTC).

Important

If a device has been disconnected for approximately an hour, the "timestamp" value and
the "disconnectReason" value of the connectivity status might be missing.

Restrictions and limitations

These are the restrictions and limitations for AWS_Things.

Shadow fields with complex types

A shadow field is indexed only if the value of the field is a simple type, such as a JSON object
that doesn't contain an array, or an array that consists entirely of simple types. Simple type
means a string, number, or one of the literals true or false. For example, given the following
shadow state, the value of field "palette" isn't indexed because it's an array that contains
items of complex types. The value of field "colors" is indexed because each value in the array
is a string.

{
 "state": {
 "reported": {
 "switched": "ON",
 "colors": ["RED", "GREEN", "BLUE"],
 "palette": [
 {
 "name": "RED",
 "intensity": 124
 },
 {
 "name": "GREEN",
 "intensity": 68
 },
 {
 "name": "BLUE",
 "intensity": 201

Manage thing indexing 1380

AWS IoT Core Developer Guide

 }
]
 }
 }
}

Nested shadow field names

The names of nested shadow fields are stored as a period (.) delimited string. For example,
given a shadow document:

{
 "state": {
 "desired": {
 "one": {
 "two": {
 "three": "v2"
 }
 }
 }
 }
}

The name of field three is stored as desired.one.two.three. If you also have a shadow
document, it's stored like this:

{
 "state": {
 "desired": {
 "one.two.three": "v2"
 }
 }
}

Both match a query for shadow.desired.one.two.three:v2. As a best practice, don't use
periods in shadow field names.

Shadow metadata

A field in a shadow's metadata section is indexed, but only if the corresponding field in the
shadow's "state" section is indexed. (In the previous example, the "palette" field in the
shadow's metadata section isn't indexed either.)

Manage thing indexing 1381

AWS IoT Core Developer Guide

Unregistered devices

Fleet indexing indexes the connectivity status for a device whose connection clientId is the
same as the thingName of a registered thing in Registry.

Unregistered shadows

If you use UpdateThingShadow to create a shadow using a thing name that hasn't been
registered in your AWS IoT account, fields in this shadow aren't indexed. This applies to both
classic unnamed shadow and named shadow.

Numeric values

If any registry or shadow data is recognized by the service as a numeric value, it's indexed as
such. You can form queries involving ranges and comparison operators on numeric values
(for example, "attribute.foo<5" or "shadow.reported.foo:[75 TO 80]"). To be
recognized as numeric, the value of the data must be a valid, literal type JSON number. The
value can be an integer in the range -2^53...2^53-1, a double-precision floating point with
optional exponential notation, or part of an array that contains only these values.

Null values

Null values aren't indexed.

Maximum values

The maximum number of custom fields for aggregation queries is 5.

The maximum number of requested percentiles for aggregation queries is 100.

Authorization

You can specify the things index as an Amazon Resource Name (ARN) in an AWS IoT policy action,
as follows.

Action Resource

iot:SearchIndex An index ARN (for example, arn:aws:i
ot: your-aws-region your-aws-
account :index/AWS_Things).

Manage thing indexing 1382

https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_UpdateThingShadow.html

AWS IoT Core Developer Guide

Action Resource

iot:DescribeIndex An index ARN (for example, arn:aws:i
ot: your-aws-region :index/AW
S_Things).

Note

If you have permissions to query the fleet index, you can access the data of things across
the entire fleet.

Manage thing group indexing

AWS_ThingGroups is the index that contains all of your thing groups. You can use this index to
search for groups based on group name, description, attributes, and all parent group names.

Enabling thing group indexing

You can use the thing-group-indexing-configuration setting in the
UpdateIndexingConfiguration API to create the AWS_ThingGroups index and control its
configuration. You can use the GetIndexingConfiguration API to retrieve the current indexing
configuration.

To update the thing group indexing configurations, run the update-indexing-configuration CLI
command:

aws iot update-indexing-configuration --thing-group-indexing-configuration
 thingGroupIndexingMode=ON

You can also update configurations for both thing and thing group indexing in a single command,
as follows:

aws iot update-indexing-configuration --thing-indexing-configuration
 thingIndexingMode=REGISTRY --thing-group-indexing-configuration
 thingGroupIndexingMode=ON

The following are valid values for thingGroupIndexingMode.

Manage thing group indexing 1383

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateIndexingConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_GetIndexingConfiguration.html

AWS IoT Core Developer Guide

OFF

No indexing/delete index.

ON

Create or configure the AWS_ThingGroups index.

To retrieve the current thing and thing group indexing configurations, run the get-indexing-
configuration CLI command:

aws iot get-indexing-configuration

The response of the command looks like the following:

{
 "thingGroupIndexingConfiguration": {
 "thingGroupIndexingMode": "ON"
 }
}

Describing group indexes

To retrieve the current status of the AWS_ThingGroups index, use the describe-index CLI
command:

aws iot describe-index --index-name "AWS_ThingGroups"

The response of the command looks like the following:

{
 "indexStatus": "ACTIVE",
 "indexName": "AWS_ThingGroups",
 "schema": "THING_GROUPS"
}

AWS IoT builds your index the first time that you indexing. You can't query the index if the
indexStatus is BUILDING.

Manage thing group indexing 1384

AWS IoT Core Developer Guide

Querying a thing group index

To query data in the index, use the search-index CLI command:

aws iot search-index --index-name "AWS_ThingGroups" --query-string
 "thingGroupName:mythinggroup*"

Authorization

You can specify the thing groups index as a resource ARN in an AWS IoT policy action, as follows.

Action Resource

iot:SearchIndex An index ARN (for example, arn:aws:i
ot: your-aws-region :index/AW
S_ThingGroups).

iot:DescribeIndex An index ARN (for example, arn:aws:i
ot: your-aws-region :index/AW
S_ThingGroups).

Querying for aggregate data

AWS IoT provides four APIs (GetStatistics, GetCardinality, GetPercentiles, and
GetBucketsAggregation) that allow you to search your device fleet for aggregate data.

Note

For issues with missing or unexpected values for the aggregation APIs, read Fleet indexing
troubleshooting guide.

GetStatistics

The GetStatistics API and the get-statistics CLI command return the count, average, sum,
minimum, maximum, sum of squares, variance, and standard deviation for the specified
aggregated field.

Querying for aggregate data 1385

https://docs.aws.amazon.com/iot/latest/apireference/API_GetStatistics.html

AWS IoT Core Developer Guide

The get-statistics CLI command takes the following parameters:

index-name

The name of the index to search. The default value is AWS_Things.

query-string

The query used to search the index. You can specify "*" to get the count of all indexed things
in your AWS account.

aggregationField

(Optional)The field to aggregate. This field must be a managed or custom field defined
when you call update-indexing-configuration. If you don't specify an aggregation field,
registry.version is used as the aggregation field.

query-version

The version of the query to use. The default value is 2017-09-30.

The type of aggregation field can affect the statistics returned.

GetStatistics with string values

If you aggregate on a string field, calling GetStatistics returns a count of devices that have
attributes that match the query. For example:

aws iot get-statistics --aggregation-field 'attributes.stringAttribute'
 --query-string '*'

This command returns the number of devices that contain an attribute named stringAttribute:

{
 "statistics": {
 "count": 3
 }
}

GetStatistics with Boolean values

When you call GetStatistics with a Boolean aggregation field:

GetStatistics 1386

AWS IoT Core Developer Guide

• AVERAGE is the percentage of devices that match the query.

• MINIMUM is 0 or 1 according to the following rules:

• If all the values for the aggregation field are false, MINIMUM is 0.

• If all the values for the aggregation field are true, MINIMUM is 1.

• If the values for the aggregation field are a mixture of false and true, MINIMUM is 0.

• MAXIMUM is 0 or 1 according to the following rules:

• If all the values for the aggregation field are false, MAXIMUM is 0.

• If all the values for the aggregation field are true, MAXIMUM is 1.

• If the values for the aggregation field are a mixture of false and true, MAXIMUM is 1.

• SUM is the sum of the integer equivalent of the Boolean values.

• COUNT is the count of things that match the query string criteria and contain a valid aggregation
field value.

GetStatistics with numerical values

When you call GetStatistics and specify an aggregation field of type Number, GetStatistics
returns the following values:

count

The count of things that match the query string criteria and contain a valid aggregation field
value.

average

The average of the numerical values that match the query.

sum

The sum of the numerical values that match the query.

minimum

The smallest of the numerical values that match the query.

maximum

The largest of the numerical values that match the query.

GetStatistics 1387

AWS IoT Core Developer Guide

sumOfSquares

The sum of the squares of the numerical values that match the query.

variance

The variance of the numerical values that match the query. The variance of a set of values is the
average of the squares of the differences of each value from the average value of the set.

stdDeviation

The standard deviation of the numerical values that match the query. The standard deviation of
a set of values is a measure of how spread out the values are.

The following example shows how to call get-statistics with a numerical custom field.

aws iot get-statistics --aggregation-field 'attributes.numericAttribute2'
 --query-string '*'

{
 "statistics": {
 "count": 3,
 "average": 33.333333333333336,
 "sum": 100.0,
 "minimum": -125.0,
 "maximum": 150.0,
 "sumOfSquares": 43750.0,
 "variance": 13472.22222222222,
 "stdDeviation": 116.06990230986766
 }
}

For numerical aggregation fields, if the field values exceed the maximum double value, the
statistics values are empty.

GetCardinality

The GetCardinality API and the get-cardinality CLI command return the approximate count of
unique values that match the query. For example, you might want to find the number of devices
with battery levels at less than 50 percent:

aws iot get-cardinality --index-name AWS_Things --query-string "batterylevel

GetCardinality 1388

https://docs.aws.amazon.com/iot/latest/apireference/API_GetCardinality.html

AWS IoT Core Developer Guide

 > 50" --aggregation-field "shadow.reported.batterylevel"

This command returns the number of things with battery levels at more than 50 percent:

{
 "cardinality": 100
}

cardinality is always returned by get-cardinality even if there are no matching fields. For
example:

aws iot get-cardinality --query-string "thingName:Non-existent*"
 --aggregation-field "attributes.customField_STR"

{
 "cardinality": 0
}

The get-cardinality CLI command takes the following parameters:

index-name

The name of the index to search. The default value is AWS_Things.

query-string

The query used to search the index. You can specify "*" to get the count of all indexed things
in your AWS account.

aggregationField

The field to aggregate.

query-version

The version of the query to use. The default value is 2017-09-30.

GetPercentiles

The GetPercentiles API and the get-percentiles CLI command groups the aggregated values
that match the query into percentile groupings. The default percentile groupings are:

GetPercentiles 1389

https://docs.aws.amazon.com/iot/latest/apireference/API_GetPercentiles.html

AWS IoT Core Developer Guide

1,5,25,50,75,95,99, although you can specify your own when you call GetPercentiles. This
function returns a value for each percentile group specified (or the default percentile groupings).
The percentile group "1" contains the aggregated field value that occurs in approximately one
percent of the values that match the query. The percentile group "5" contains the aggregated field
value that occurs in approximately five percent of the values that match the query, and so on. The
result is an approximation, the more values that match the query, the more accurate the percentile
values.

The following example shows how to call the get-percentiles CLI command.

aws iot get-percentiles --query-string "thingName:*" --aggregation-field
 "attributes.customField_NUM" --percents 10 20 30 40 50 60 70 80 90 99

{
 "percentiles": [
 {
 "value": 3.0,
 "percent": 80.0
 },
 {
 "value": 2.5999999999999996,
 "percent": 70.0
 },
 {
 "value": 3.0,
 "percent": 90.0
 },
 {
 "value": 2.0,
 "percent": 50.0
 },
 {
 "value": 2.0,
 "percent": 60.0
 },
 {
 "value": 1.0,
 "percent": 10.0
 },
 {
 "value": 2.0,
 "percent": 40.0

GetPercentiles 1390

AWS IoT Core Developer Guide

 },
 {
 "value": 1.0,
 "percent": 20.0
 },
 {
 "value": 1.4,
 "percent": 30.0
 },
 {
 "value": 3.0,
 "percent": 99.0
 }
]
}

The following command shows the output returned from get-percentiles when there are no
matching documents.

aws iot get-percentiles --query-string "thingName:Non-existent*"
 --aggregation-field "attributes.customField_NUM"

{
 "percentiles": []
}

The get-percentile CLI command takes the following parameters:

index-name

The name of the index to search. The default value is AWS_Things.

query-string

The query used to search the index. You can specify "*" to get the count of all indexed things
in your AWS account.

aggregationField

The field to aggregate, which must be of Number type.

query-version

The version of the query to use. The default value is 2017-09-30.

GetPercentiles 1391

AWS IoT Core Developer Guide

percents

(Optional)You can use this parameter to specify custom percentile groupings.

GetBucketsAggregation

The GetBucketsAggregation API and the get-buckets-aggregation CLI command return a list of
buckets and the total number of things that fit the query string criteria.

The following example shows how to call the get-buckets-aggregation CLI command.

aws iot get-buckets-aggregation --query-string '*' --index-name AWS_Things --
aggregation-field 'shadow.reported.batterylevelpercent' --buckets-aggregation-type
 'termsAggregation={maxBuckets=5}'

This command returns the following:

{
 "totalCount": 20,
 "buckets": [
 {
 "keyValue": "100",
 "count": 12
 },
 {
 "keyValue": "90",
 "count": 5
 },
 {
 "keyValue": "75",
 "count": 3
 }
]
}

The get-buckets-aggregation CLI command takes the following parameters:

index-name

The name of the index to search. The default value is AWS_Things.

GetBucketsAggregation 1392

https://docs.aws.amazon.com/iot/latest/apireference/API_GetBucketsAggregation.html

AWS IoT Core Developer Guide

query-string

The query used to search the index. You can specify "*" to get the count of all indexed things
in your AWS account.

aggregation-field

The field to aggregate.

buckets-aggregation-type

The basic control of the response shape and the bucket aggregation type to perform.

Authorization

You can specify the thing groups index as a resource ARN in an AWS IoT policy action, as follows.

Action Resource

iot:GetStatistics An index ARN (for example, arn:aws:i
ot: your-aws-region :index/AW
S_Things or arn:aws:iot: your-aws-
region :index/AWS_ThingGroups).

Query syntax

In fleet indexing, you use a query syntax to specify queries.

Supported features

The query syntax supports the following features:

• Terms and phrases

• Searching fields

• Prefix search

• Range search

• Boolean operators AND, OR, NOT, and –. The hyphen is used to exclude something from search
results (for example, thingName:(tv* AND -plasma)).

• Grouping

Authorization 1393

AWS IoT Core Developer Guide

• Field grouping

• Escaping special characters (such as with \)

Unsupported features

The query syntax doesn't support the following features:

• Leading wildcard search (such as "*xyz"), but searching for "*" matches all things

• Regular expressions

• Boosting

• Ranking

• Fuzzy searches

• Proximity search

• Sorting

• Aggregation

• Special characters: `, @, #, %, \, /, ', ;, and ,. Note that , is only supported in geoqueries.

Notes

A few things to note about the query language:

• The default operator is AND. A query for "thingName:abc thingType:xyz" is equivalent to
"thingName:abc AND thingType:xyz".

• If a field isn't specified, AWS IoT searches for the term in all the registry, Device Shadow, and
Device Defender fields.

• All field names are case sensitive.

• Search is case insensitive. Words are separated by white-space characters as defined by Java's
Character.isWhitespace(int).

• Indexing of Device Shadow data (unnamed shadows and named shadows) includes reported,
desired, delta, and metadata sections.

• Device shadow and registry versions aren't searchable, but are present in the response.

• The maximum number of terms in a query is twelve.

• The special character , is only supported in geoqueries.

Unsupported features 1394

AWS IoT Core Developer Guide

Example thing queries

Specify queries in a query string using a query syntax. The queries are passed to the SearchIndex
API. The following table lists some example query strings.

Query string Result

abc Queries for "abc" in any registry, shadow (classic
unnamed shadow and named shadow), or Device
Defender violations field.

thingName:myThingName Queries for a thing with name "myThingName".

thingName:my* Queries for things with names that begin with "my".

thingName:ab? Queries for things with names that have "ab" plus one
additional character (for example, "aba", "abb", "abc", and
so on.

thingTypeName:aa Queries for things that are associated with type "aa".

thingGroupNames:a Queries for things with a parent thing group name "a".

thingGroupNames:a* Queries for things with a parent thing group name
matching the pattern "a*".

attributes.myAttribute:75 Queries for things with an attribute named "myAttribute"
that has the value 75.

attributes.myAttribute:
[75 TO 80]

Queries for things with an attribute named "myAttribute"
that has a value that falls within a numeric range (75–80,
inclusive).

attributes.myAttribute:
{75 TO 80]

Queries for things with an attribute named "myAttribute"
that has a value that falls within the numeric range (>75
and <=80).

attributes.serialNumber:
["abcd" TO "abcf"]

Queries for things with an attribute named "serialNu
mber" that has a value within an alphanumeric string

Example thing queries 1395

https://docs.aws.amazon.com/iot/latest/apireference/API_SearchIndex.html

AWS IoT Core Developer Guide

Query string Result

range. This query returns things with a "serialNumber"
attribute with values "abcd", "abce", or "abcf".

attributes.myAttri
bute:i*t

Queries for things with an attribute named "myAttrib
ute" where the value is 'i', followed by any number of
characters, followed by 't'.

attributes.attr1:abc AND
attributes.attr2<5 NOT
attributes.attr3>10

Queries for things that combine terms using Boolean
expressions. This query returns things that have an
attribute named "attr1" with a value "abc", an attribute
 named "attr2" that's less than 5, and an attribute named
"attr3" that' not greater than 10.

shadow.hasDelta:true Queries for things with an unnamed shadow that has a
delta element.

NOT attributes.model:l
egacy

Queries for things where the attribute named "model" is
not "legacy".

shadow.reported.st
ats.battery:{70 TO 100}
(v2 OR v3) NOT attribute
s.model:legacy

Queries for things with the following:

• The thing's shadow stats.battery attribute has a
value between 70 and 100.

• The text "v2" or "v3" occurs in a thing's name, type
name, or attribute values.

• The thing's model attribute is not set to "legacy".

shadow.reported.my
values:2

Queries for things where the myvalues array in the
shadow's reported section contains a value of 2.

shadow.reported.lo
cation:* NOT shadow.de
sired.stats.battery:*

Queries for things with the following:

• The location attribute exists in the shadow's
reported section.

• The stats.battery attribute doesn't exist in the
shadow's desired section.

Example thing queries 1396

AWS IoT Core Developer Guide

Query string Result

shadow.name.<shado
wName>.hasDelta:true

Queries for things that have a shadow with the given
name and also a delta element.

shadow.name.<shado
wName>.desired.fil
ament:*

Queries for things that have a shadow with the given
name and also a desired filament property.

shadow.name.<shado
wName>.reported.lo
cation:*

Queries for things that have a shadow with the given
name and where the location attribute exists in the
named shadow's reported section.

connectivity.conne
cted:true

Queries for all connected devices.

connectivity.conne
cted:false

Queries for all disconnected devices.

connectivity.conne
cted:true AND connectiv
ity.timestamp : [15576516
00000 TO 1557867600000]

Queries for all connected devices with a connect
timestamp >= 1557651600000 and <= 1557867600000.
Timestamps are given in milliseconds since epoch.

connectivity.conne
cted:false AND connectiv
ity.timestamp : [15576516
00000 TO 1557867600000]

Queries for all disconnected devices with a disconnect
timestamp >= 1557651600000 and <= 1557867600000.
Timestamps are given in milliseconds since epoch.

connectivity.conne
cted:true AND connectiv
ity.timestamp > 155765160
0000

Queries for all connected devices with a connect
timestamp > 1557651600000. Timestamps are given in
milliseconds since epoch.

connectivity.connected:* Queries for all devices with connectivity information
present.

connectivity.disco
nnectReason:*

Queries for all devices with connectivity disconnec
tReason present.

Example thing queries 1397

AWS IoT Core Developer Guide

Query string Result

connectivity.disco
nnectReason:CLIENT
_INITIATED_DISCONNECT

Queries for all devices disconnected due to CLIENT_IN
ITIATED_DISCONNECT.

deviceDefender.vio
lationCount:[0 TO 100]

Queries for things with a Device Defender violations
count value that falls within the numeric range (0-100,
inclusive).

deviceDefender.<device-
SecurityProfile>.disco
nnectBehavior.inVi
olation:true

Queries for things that are in violation for the behavior
disconnectBehavior as defined in the security
profile device-SecurityProfile . Note that
inViolation:false is not a valid query.

deviceDefender.<device-
SecurityProfile>.disco
nnectBehavior.last
ViolationValue.number>2

Queries for things that are in violation for the behavior
disconnectBehavior as defined in the security
profile device-SecurityProfile with a last violation event
value greater than 2.

deviceDefender.<device-
SecurityProfile>.disco
nnectBehavior.last
ViolationTime>1634
227200000

Queries for things that are in violation for the behavior
disconnectBehavior as defined in the security
profile device-SecurityProfile with a last violation event
after a specified epoch time.

shadow.name.gps-tr
acker.reported.coo
rdinates:geo_dista
nce,47.6204,-122.3
491,15.5km

Queries for things that are within the radial distance of
15.5 km from the coordinates of 47.6204,-122.3491. This
query string applies to when your location data is stored
in a named shadow.

shadow.reported.co
ordinates:geo_dist
ance,47.6204,-122.
3491,15.5km

Queries for things that are within the radial distance of
15.5 km from the coordinates of 47.6204,-122.3491. This
query string applies to when your location data is stored
in a classic shadow.

Example thing queries 1398

AWS IoT Core Developer Guide

Example thing group queries

Queries are specified in a query string using a query syntax and passed to the SearchIndex API.
The following table lists some example query strings.

Query string Result

abc Queries for "abc" in any field.

thingGroupName:myG
roupThingName

Queries for a thing group with name "myGroupT
hingName".

thingGroupName:my* Queries for thing groups with names that begin with
"my".

thingGroupName:ab? Queries for thing groups with names that have "ab"
plus one additional character (for example: "aba", "abb",
"abc", and so on).

attributes.myAttribute:75 Queries for thing groups with an attribute named
"myAttribute" that has the value 75.

attributes.myAttribute:[75
TO 80]

Queries for thing groups with an attribute named
"myAttribute" whose value falls within a numeric range
(75–80, inclusive).

attributes.myAttribute:[75
TO 80]

Queries for thing groups with an attribute named
"myAttribute" whose value falls within the numeric
range (>75 and <=80).

attributes.myAttribute:
["abcd" TO "abcf"]

Queries for thing groups with an attribute named
"myAttribute" whose value is within an alphanumeric
string range. This query returns thing groups with a
"serialNumber" attribute with values "abcd", "abce", or
"abcf".

attributes.myAttribute:i*t Queries for thing groups with an attribute named
"myAttribute" whose value is 'i', followed by any number
of characters, followed by 't'.

Example thing group queries 1399

https://docs.aws.amazon.com/iot/latest/apireference/API_SearchIndex.html

AWS IoT Core Developer Guide

Query string Result

attributes.attr1:abc AND
attributes.attr2<5 NOT
attributes.attr3>10

Queries for thing groups that combine terms using
Boolean expressions. This query returns thing groups
that have an attribute named "attr1" with a value "abc",
an attribute named "attr2" that's less than 5, and an
attribute named "attr3" that's not greater than 10.

NOT attributes.myAttri
bute:cde

Queries for thing groups where the attribute named
"myAttribute" is not "cde".

parentGroupNames:(
myParentThingGroupName)

Queries for thing groups whose parent group name
matches "myParentThingGroupName".

parentGroupNames:(
myParentThingGroupName OR
myRootThingGroupName)

Queries for thing groups whose parent group name
matches "myParentThingGroupName" or "myRootTh
ingGroupName".

parentGroupNames:(
myParentThingGroupNa*)

Queries for thing groups whose parent group name
begins with "myParentThingGroupNa".

Indexing location data

You can use AWS IoT fleet indexing to index your devices' last sent location data and search for
devices using geoqueries. This feature resolves device monitoring and management use cases such
as location tracking and proximity search. Location indexing works similarly to other fleet indexing
features, and with additional configurations to specify in your thing indexing.

Common use cases include: search and aggregate devices located within desired geographic
boundaries, get location specific insights using query terms related to device metadata and state
from indexed data sources, provide a granular view such as filtering results to a specific geographic
area to reduce rendering lags within your fleet monitoring maps and track last reported device
location, and identify devices that are outside of the desired boundary limits and generate alarms
using fleet metrics. To get started with location indexing and geoqueries, see ???.

Supported data formats

AWS IoT fleet indexing supports the following location data formats:

Indexing location data 1400

https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html

AWS IoT Core Developer Guide

1. Well-known text representation of coordinate reference systems

A string that follows the Geographic information - Well-known text representation of
coordinate reference systems format. An example can be "POINT(long lat)".

2. A string that represents the coordinates

A string with the format of "latitude, longitude" or "longitude, latitude" . If you
use "longitude, latitude", you must also specify order in geoLocations. An example
can be "41.12,-71.34".

3. An object of lat(latitude), lon(longitude) keys

This format is applicable to classic shadow and named shadow. Supported keys: lat,
latitude, lon, long, longitude. An example can be {"lat": 41.12, "lon": -71.34}.

4. An array that represents the coordinates

An array with the format [lat,lon] or [lon,lat]. If you use the format [lon,lat], which
is the same as the coordinates in GeoJSON (applicable to classic shadow and named shadow),
you must also specify order in geoLocations.

An example can be:

{
 "location": {
 "coordinates": [
 Longitude,
 Latitude
],
 "type": "Point",
 "properties": {
 "country": "United States",
 "city": "New York",
 "postalCode": "*****",
 "horizontalAccuracy": 20,
 "horizontalConfidenceLevel": 0.67,
 "state": "New York",
 "timestamp": "2023-01-04T20:59:13.024Z"
 }
 }
}

Supported data formats 1401

https://docs.ogc.org/is/12-063r5/12-063r5.html
https://docs.ogc.org/is/12-063r5/12-063r5.html
https://geojson.org/

AWS IoT Core Developer Guide

How to index location data

The following steps show how to update indexing configuration for your location data and use
geoqueries to search for devices.

1. Know where your location data is stored

Fleet indexing currently supports indexing location data stored in classic shadows or named
shadows.

2. Use supported location data formats

Make sure your location data format follows one of the Supported data formats.

3. Update indexing configuration

At a minimum need, enable thing (registry) indexing configuration. You must also enable
indexing on classic shadow or named shadow that contain your location data. When updating
your thing indexing, you should include your location data in the indexing configuration.

4. Create and run geoqueries

Depending on your use cases, create geoqueries and run them to search for devices. The
geoqeury you compose must follow the Query syntax. You can find some examples in ???.

Update thing indexing configuration

To index location data, you must update indexing configuration and include your location data.
Depending on where your location data is stored, follow the steps to update your indexing
configuration:

Location data stored in classic shadows

If your location data is stored in a classic shadow, you must set thingIndexingMode to be
REGISTRY_AND_SHADOW and specify your location data in the geoLocations fields (name and
order) in filter.

In the following thing indexing configuration example, you specify the location data path
shadow.reported.coordinates as name and LonLat as order.

{

How to index location data 1402

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html
https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html

AWS IoT Core Developer Guide

 "thingIndexingMode": "REGISTRY_AND_SHADOW",
 "filter": {
 "geoLocations": [
 {
 "name": "shadow.reported.coordinates",
 "order": "LonLat"
 }
]
 }
}

• thingIndexingMode

The indexing mode controls if registry or shadow is indexed. When thingIndexingMode is set
to be OFF, thing indexing is disabled.

To index location data stored in a classic shadow, you must set thingIndexingMode to be
REGISTRY_AND_SHADOW. For more information, see ???.

• filter

Indexing filter provides additional selections for named shadows and geolocation data. For more
information, see ???.

• geoLocations

The list of geolocation targets that you select to index. The default maximum number of
geolocation targets for indexing is 1. To increase the limit, see AWS IoT Device Management
Quotas.

• name

The name of the geolocation target field. An example value of name can be the location data
path of your shadow: shadow.reported.coordinates.

• order

The order of the geolocation target field. Valid values: LatLon and LonLat. LatLon means
latitude and longitude. LonLat means longitude and latitude. This field is optional. The default
value is LatLon.

Update thing indexing configuration 1403

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits

AWS IoT Core Developer Guide

Location data stored in named shadows

If your location data is stored in a named shadow, set namedShadowIndexingMode to be ON, add
your named shadow name(s) to the namedShadowNames field in filter, and specify your location
data path in the geoLocations field in filter.

In the following thing indexing configuration example, you specify the location data path
shadow.reported.coordinates as name and LonLat as order.

{
 "thingIndexingMode": "REGISTRY",
 "namedShadowIndexingMode": "ON",
 "filter": {
 "namedShadowNames": [
 "namedShadow1"
],
 "geoLocations": [
 {
 "name": "shadow.name.namedShadow1.reported.coordinates",
 "order": "LonLat"
 }
]
 }
}

• thingIndexingMode

The indexing mode controls if registry or shadow is indexed. When thingIndexingMode is set
to be OFF, thing indexing is disabled.

To index location data stored in a named shadow, you must set thingIndexingMode to be
REGISTRY (or REGISTRY_AND_SHADOW). For more information, see ???.

• filter

Indexing filter provides additional selections for named shadows and geolocation data. For more
information, see ???.

• geoLocations

The list of geolocation targets that you select to index. The default maximum number of
geolocation targets for indexing is 1. To increase the limit, see AWS IoT Device Management
Quotas.

Update thing indexing configuration 1404

https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html
https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits

AWS IoT Core Developer Guide

• name

The name of the geolocation target field. An example value of name can be the location data
path of your shadow: shadow.name.namedShadow1.reported.coordinates.

• order

The order of the geolocation target field. Valid values: LatLon and LonLat. LatLon means
latitude and longitude. LonLat means longitude and latitude. This field is optional. The default
value is LatLon.

Example geoqueries

After you complete the indexing configuration for your location data, run geoqueries to search for
devices. You can also combine your geoqueries with other query strings. For more information, see
??? and ???.

Example query 1

This example assumes the location data is stored in a named shadow gps-tracker. The output of
this command is the list of devices that are within the radial distance of 15.5 km from the center
point with coordinates (47.6204,-122.3491).

aws iot search-index --query-string \
"shadow.name.gps-tracker.reported.coordinates:geo_distance,47.6204,-122.3491,15.5km"

Example query 2

This example assumes the location data is stored in a classic shadow. The output of this command
is the list of devices that are within the radial distance of 15.5 km from the center point with
coordinates (47.6204,-122.3491).

aws iot search-index --query-string \
"shadow.reported.coordinates:geo_distance,47.6204,-122.3491,15.5km"

Example query 3

This example assumes the location data is stored in a classic shadow. The output of this command
is the list of devices that are not connected and outside the radial distance of 15.5 km from the
center point with coordinates (47.6204,-122.3491).

Example geoqueries 1405

AWS IoT Core Developer Guide

aws iot search-index --query-string \
"connectivity.connected:false AND (NOT
 shadow.reported.coordinates:geo_distance,47.6204,-122.3491,15.5km)"

Getting started tutorial

This tutorial demonstrates how to use fleet indexing to index your location data. For simplicity,
you create a thing to represent your device and store the location data in a named shadow, update
thing indexing configuration for location indexing, and run example geoqueries to search for
devices within a radial boundary.

This tutorial takes about 15 minutes to complete.

In this topic:

• Prerequisites

• Create thing and shadow

• Update thing indexing configuration

• Run geoquery

Prerequisites

• Install the latest version of AWS CLI.

• Familiarize yourself with Location indexing and geoqueries, Manage thing indexing, and Query
syntax.

Create thing and shadow

You create a thing to represent your device, and a named shadow to store its location data
(coordinates 47.61564, -122.33584).

1. Run the following command to create your thing that represents your bike named Bike-1. For
more information about how to create a thing using AWS CLI, see create-thing from AWS CLI
Reference.

aws iot create-thing --thing-name "Bike-1" \
--attribute-payload '{"attributes": {"model":"OEM-2302-12", "battery":"35",
 "acqDate":"06/09/23"}}'

Getting started tutorial 1406

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/iot/latest/developerguide/location-indexing-geoquery.html
https://docs.aws.amazon.com/iot/latest/developerguide/managing-index.html
https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html
https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html
https://docs.aws.amazon.com/cli/latest/reference/iot/create-thing.html

AWS IoT Core Developer Guide

The output of this command can look like the following:

{
 "thingName": "Bike-1",
 "thingArn": "arn:aws:iot:us-east-1:123456789012:thing/Bike-1",
 "thingId": "df9cf01d-b0c8-48fe-a2e2-e16cff6b23df"
}

2. Run the following command to create a named shadow to store Bike-1's location data
(coordinates 47.61564, -122.33584). For more information about how to create a named
shadow using AWS CLI, see update-thing-shadow from AWS CLI Reference.

aws iot-data update-thing-shadow \
--thing-name Bike-1 \
--shadow-name Bike1-shadow \
--cli-binary-format raw-in-base64-out \
--payload '{"state":{"reported":{"coordinates":{"lat": 47.6153, "lon": -122.3333}}}}'
 \
"output.txt" \

This command doesn't produce any output. To view the named shadow you created, you can run
the list-named-shadows-for-thing CLI command.

aws iot-data list-named-shadows-for-thing --thing-name Bike-1

The output of this command can look like the following:

{
 "results": [
 "Bike1-shadow"
],
 "timestamp": 1699574309
}

Update thing indexing configuration

To index your location data, you must update your thing indexing configuration to
include the location data. Because your location data is stored in a named shadow in this

Getting started tutorial 1407

https://docs.aws.amazon.com/cli/latest/reference/iot-data/update-thing-shadow.html
https://docs.aws.amazon.com/cli/latest/reference/iot-data/list-named-shadows-for-thing.html

AWS IoT Core Developer Guide

tutorial, set thingIndexingMode to be REGISTRY (at a minimum requirement), set
namedShadowIndexingMode to be ON, and add your location data to the configuration. In this
example, you must add the name of your named shadow and the shadow's location data path to
filter.

1. Run the command to update your indexing configuration for location indexing.

aws iot update-indexing-configuration --cli-input-json '{
"thingIndexingConfiguration": { "thingIndexingMode": "REGISTRY",
"thingConnectivityIndexingMode": "OFF",
"deviceDefenderIndexingMode": "OFF",
"namedShadowIndexingMode": "ON",
"filter": {
 "namedShadowNames": ["Bike1-shadow"],
 "geoLocations":[{
 "name":"shadow.name.Bike1-shadow.reported.coordinates"
 }]
},
"customFields": [
{ "name":"attributes.battery",
"type":"Number"}] } }'

The command doesn't produce any output. You may need to wait for a moment until the update
is complete. To check the status, run the describe-index CLI command. If you see indexStatus
shows: ACTIVE, your thing indexing update is complete.

2. Run the command to verify your indexing configuration. This step is optional.

aws iot get-indexing-configuration

The output can look like the following:

{
 "thingIndexingConfiguration": {
 "thingIndexingMode": "REGISTRY",
 "thingConnectivityIndexingMode": "OFF",
 "deviceDefenderIndexingMode": "OFF",
 "namedShadowIndexingMode": "ON",
 "managedFields": [
 {
 "name": "shadow.name.*.hasDelta",

Getting started tutorial 1408

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-index.html

AWS IoT Core Developer Guide

 "type": "Boolean"
 },
 {
 "name": "registry.version",
 "type": "Number"
 },
 {
 "name": "registry.thingTypeName",
 "type": "String"
 },
 {
 "name": "registry.thingGroupNames",
 "type": "String"
 },
 {
 "name": "shadow.name.*.version",
 "type": "Number"
 },
 {
 "name": "thingName",
 "type": "String"
 },
 {
 "name": "thingId",
 "type": "String"
 }
],
 "customFields": [
 {
 "name": "attributes.battery",
 "type": "Number"
 }
],
 "filter": {
 "namedShadowNames": [
 "Bike1-shadow"
],
 "geoLocations": [
 {
 "name": "shadow.name.Bike1-shadow.reported.coordinates",
 "order": "LatLon"
 }
]
 }

Getting started tutorial 1409

AWS IoT Core Developer Guide

 },
 "thingGroupIndexingConfiguration": {
 "thingGroupIndexingMode": "OFF"
 }
}

Run geoquery

Now you have updated your thing indexing configuration to include the location data. Try to create
some geoqueries and run them to see if you can get your desired search results. A geoquery must
follow the Query syntax. You can find some useful example geoqueries in ???.

In the following example command, you use the geoquery shadow.name.Bike1-
shadow.reported.coordinates:geo_distance,47.6204,-122.3491,15.5km to search
for devices that are within the radial distance of 15.5 km from the center point with coordinates
(47.6204,-122.3491).

aws iot search-index --query-string "shadow.name.Bike1-
shadow.reported.coordinates:geo_distance,47.6204,-122.3491,15.5km"

Because you have a device located at the coordinates "lat": 47.6153, "lon": -122.3333, which falls
within the distance of 15.5 km of the center point, you should be able to see this device (Bike-1) in
the output. The output can look like the following:

{
 "things": [
 {
 "thingName": "Bike-1",
 "thingId": "df9cf01d-b0c8-48fe-a2e2-e16cff6b23df",
 "attributes": {
 "acqDate": "06/09/23",
 "battery": "35",
 "model": "OEM-2302-12"
 },
 "shadow": "{\"reported\":{\"coordinates\":{\"lat\":47.6153,\"lon
\":-122.3333}},\"metadata\":{\"reported\":{\"coordinates\":{\"lat\":{\"timestamp
\":1699572906},\"lon\":{\"timestamp\":1699572906}}}},\"hasDelta\":false,\"version\":1}"
 }
]
}

Getting started tutorial 1410

AWS IoT Core Developer Guide

For more information, see ???.

Fleet metrics

Fleet metrics is a feature of fleet indexing, a managed service that allows you to index, search, and
aggregate your devices' data in AWS IoT. You can use fleet metrics, to monitor your fleet devices'
aggregate state in CloudWatch over time, including reviewing your fleet devices' disconnection rate
or average battery level changes of a specified period.

Using fleet metrics, you can build aggregation queries whose results are continually emitted to
CloudWatch as metrics for analyzing trends and creating alarms. For your monitoring tasks, you
can specify the aggregation queries of different aggregation types (Statistics, Cardinality, and
Percentile). You can save all of your aggregation queries to create fleet metrics for reuse in the
future.

Getting started tutorial

In this tutorial, you create a fleet metric to monitor your sensors' temperatures to detect potential
anomalies. When creating the fleet metric, you define an aggregation query that detects the
number of sensors with temperatures exceeding 80 degrees Fahrenheit. You specify the query to
run every 60 seconds and the query results are emitted to CloudWatch, where you can view the
number of sensors that have potential high-temperature risks, and set alarms. To complete this
tutorial, you'll use AWS CLI.

In this tutorial, you'll learn how to:

• Set up

• Create fleet metrics

• View metrics in CloudWatch

• Clean up resources

This tutorial takes about 15 minutes to complete.

Prerequisites

• Install the latest version of AWS CLI

• Familiarize yourself with Querying for aggregate data

• Familiarize yourself with Using Amazon CloudWatch metrics

Fleet metrics 1411

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/iot/latest/developerguide/index-aggregate.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

AWS IoT Core Developer Guide

Set up

To use fleet metrics, enable fleet indexing. To enable fleet indexing for your things or thing groups
with specified data sources and associated configurations, follow the instructions in Managing
thing indexing and Managing thing group indexing.

To set up

1. Run the following command to enable fleet indexing and specify the data sources to search
from.

aws iot update-indexing-configuration \
--thing-indexing-configuration
 "thingIndexingMode=REGISTRY_AND_SHADOW,customFields=[{name=attributes.temperature,type=Number},
{name=attributes.rackId,type=String},
{name=attributes.stateNormal,type=Boolean}],thingConnectivityIndexingMode=STATUS" \

The preceding example CLI command enables fleet indexing to support searching registry
data, shadow data, and thing connectivity status using the AWS_Things index.

The configuration change can take a few minutes to complete. Verify that your fleet indexing
is enabled before you create fleet metrics.

To check if your fleet indexing has been enabled, run the following CLI command:

aws --region us-east-1 iot describe-index --index-name "AWS_Things"

For more information, see Enable thing indexing.

2. Run the following bash script to create ten things and describe them.

Bash script. Type `bash` before running in other shells.

Temperatures=(70 71 72 73 74 75 47 97 98 99)
Racks=(Rack1 Rack1 Rack2 Rack2 Rack3 Rack4 Rack5 Rack6 Rack6 Rack6)
IsNormal=(true true true true true true false false false false)

for ((i=0; i < 10; i++))
do

Getting started tutorial 1412

AWS IoT Core Developer Guide

 thing=$(aws iot create-thing --thing-name "TempSensor$i" --attribute-
payload attributes="{temperature=${Temperatures[@]:$i:1},rackId=${Racks[@]:
$i:1},stateNormal=${IsNormal[@]:$i:1}}")
 aws iot describe-thing --thing-name "TempSensor$i"
done

This script creates ten things to represent ten sensors. Each thing has attributes of
temperature, rackId, and stateNormal as described in the following table:

Attribute Data type Description

temperature Number Temperature value in
Fahrenheit

rackId String ID of the server rack that
contains sensors

stateNormal Boolean Whether the sensor's
temperature value is normal
or not

The output of this script contains ten JSON files. One of the JSON file looks like the following:

{
 "version": 1,
 "thingName": "TempSensor0",
 "defaultClientId": "TempSensor0",
 "attributes": {
 "rackId": "Rack1",
 "stateNormal": "true",
 "temperature": "70"
 },
 "thingArn": "arn:aws:iot:region:account:thing/TempSensor0",
 "thingId": "example-thing-id"
}

For more information, see Create a thing.

Getting started tutorial 1413

https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html#create-thing

AWS IoT Core Developer Guide

Create fleet metrics

To create a fleet metric

1. Run the following command to create a fleet metric named high_temp_FM. You create
the fleet metric to monitor the number of sensors with temperatures exceeding 80 degrees
Fahrenheit in CloudWatch.

aws iot create-fleet-metric --metric-name "high_temp_FM" --query-string
 "thingName:TempSensor* AND attributes.temperature >80" --period 60 --aggregation-
field "attributes.temperature" --aggregation-type name=Statistics,values=count

--metric-name

Data type: string. The --metric-name parameter specifies a fleet metric name. In this
example, you're creating a fleet metric named high_temp_FM.

--query-string

Data type: string. The --query-string parameter specifies the query string. In this example,
the query string means to query all the things with names starting with TempSensor and with
temperatures higher than 80 degrees Fahrenheit. For more information, see Query syntax.

--period

Data type: integer. The --period parameter specifies the time to retrieve the aggregated
data in seconds. In this example, you specify that the fleet metric you're creating retrieves the
aggregated data every 60 seconds.

--aggregation-field

Data type: string. The --aggregation-field parameter specifies the attribute to evaluate.
In this example, the temperature attribute is to be evaluated.

--aggregation-type

The --aggregation-type parameter specifies the statistical summary to display in the fleet
metric. For your monitoring tasks, you can customize the aggregation query properties for
the different aggregation types (Statistics, Cardinality, and Percentile). In this example, you
specify count for the aggregation type and Statistics to return the count of devices that have

Getting started tutorial 1414

AWS IoT Core Developer Guide

attributes that match the query, in other words, to return the count of the devices with names
starting with TempSensor and with temperatures higher than 80 degrees Fahrenheit. For more
information, see Querying for aggregate data.

The output of this command looks like the following:

{
 "metricArn": "arn:aws:iot:region:111122223333:fleetmetric/high_temp_FM",
 "metricName": "high_temp_FM"
}

Note

It can take a moment for the data points to display in CloudWatch.

To learn more about how to create a fleet metric, read Managing fleet metrics.

If you can't create a fleet metric, read Troubleshooting fleet metrics.

2. (Optional) Run the following command to describe your fleet metric named high_temp_FM:

aws iot describe-fleet-metric --metric-name "high_temp_FM"

The output of this command looks like the following:

{
 "queryVersion": "2017-09-30",
 "lastModifiedDate": 1625249775.834,
 "queryString": "*",
 "period": 60,
 "metricArn": "arn:aws:iot:region:111122223333:fleetmetric/high_temp_FM",
 "aggregationField": "registry.version",
 "version": 1,
 "aggregationType": {
 "values": [
 "count"
],
 "name": "Statistics"
 },
 "indexName": "AWS_Things",

Getting started tutorial 1415

AWS IoT Core Developer Guide

 "creationDate": 1625249775.834,
 "metricName": "high_temp_FM"
}

View fleet metrics in CloudWatch

After creating the fleet metric, you can view the metric data in CloudWatch. In this tutorial, you will
see the metric that shows the number of sensors with names starting with TempSensor and with
temperatures higher than 80 degrees Fahrenheit.

To view data points in CloudWatch

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the CloudWatch menu on the left panel, choose Metrics to expand the submenu and then
choose All metrics. This opens the page with the upper half to display the graph and the lower
half containing four tabbed sections.

3. The first tabbed section All metrics lists all the metrics that you can view in groups, choose
IoTFleetMetrics. This contains all of your fleet metrics.

4. On the Aggregation type section of the All metrics tab, choose Aggregation type to view all
the fleet metrics you created.

5. Choose the fleet metric to display graph on the left of the Aggregation type section. You will
see the value count to the left of your Metric name, and this is the value of the aggregation
type that you specified in the Create fleet metrics section of this tutorial.

6. Choose the second tab named Graphed metrics to the right of the All metrics tab to view the
fleet metric you chose from the previous step.

You should be able to see a graph that displays the number of sensors with temperatures
higher than 80 degrees Fahrenheit like the following:

Getting started tutorial 1416

https://console.aws.amazon.com/cloudwatch/

AWS IoT Core Developer Guide

Note

The Period attribute in CloudWatch defaults to 5 minutes. It's the time interval
between data points displaying in CloudWatch. You can change the Period setting
based on your needs.

7. (Optional) You can set a metric alarm.

1. On the CloudWatch menu on the left panel, choose Alarms to expand the submenu and
then choose All alarms.

2. On the Alarms page, choose Create alarm on the upper right corner. Follow the Create
alarm instructions in console to create an alarm as needed. For more information, see Using
Amazon CloudWatch alarms.

To learn more, read Using Amazon CloudWatch metrics.

If you can't see data points in CloudWatch, read Troubleshooting fleet metrics.

Clean up

To delete fleet metrics

You use the delete-fleet-metric CLI command to delete fleet metrics.

To delete the fleet metric named high_temp_FM, run the following command.

Getting started tutorial 1417

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

AWS IoT Core Developer Guide

aws iot delete-fleet-metric --metric-name "high_temp_FM"

To clean up things

You use the delete-thing CLI command to delete things.

To delete the ten things that you created, run the following script:

Bash script. Type `bash` before running in other shells.

for ((i=0; i < 10; i++))
do
 thing=$(aws iot delete-thing --thing-name "TempSensor$i")
done

To clean up metrics in CloudWatch

CloudWatch doesn't support metrics deletion. Metrics expire based on their retention schedules. To
learn more, Using Amazon CloudWatch metrics.

Managing fleet metrics

This topic shows how to use the AWS IoT console and AWS CLI to manage your fleet metrics.

Topics

• Managing fleet metrics (Console)

• Managing fleet metrics (CLI)

• Authorize tagging of IoT resources

Managing fleet metrics (Console)

The following sections show how to use the AWS IoT console to manage your fleet metrics. Make
sure you've enabled fleet indexing with associated data sources and configurations before creating
fleet metrics.

Enable fleet indexing

If you've already enabled fleet indexing, skip this section.

If you haven't enabled fleet indexing, follow these instructions.

Managing fleet metrics 1418

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

AWS IoT Core Developer Guide

1. Open your AWS IoT console at https://console.aws.amazon.com/iot/.

2. On the AWS IoT menu, choose Settings.

3. To view the detailed settings, on the Settings page, scroll down to the Fleet indexing section.

4. To update your fleet indexing settings, to the right of the Fleet indexing section, select Manage
indexing.

5. On the Manage fleet indexing page, update your fleet indexing settings based on your needs.

• Configuration

To turn on thing indexing, toggle Thing indexing on, and then select the data sources you
want to index from.

To turn on thing group indexing, toggle Thing group indexing on.

• Custom fields for aggregation - optional

Custom fields are a list of field name and field type pairs.

To add a custom field pair, choose Add new field. Enter a custom field name such as
attributes.temperature, then select a field type from the Field type menu. Note that a
custom field name begins with attributes. and will be saved as an attribute to run thing
aggregations queries.

To update and save the setting, choose Update.

Create a fleet metric

1. Open your AWS IoT console at https://console.aws.amazon.com/iot/.

2. On the AWS IoT menu, choose Manage, and then choose Fleet metrics.

3. On the Fleet metrics page, choose Create fleet metric and complete the creation steps.

4. In step 1 Configure fleet metrics

• In Query section, enter a query string to specify the things or thing groups you want
to perform the aggregate search. The query string consists of an attribute and a value.
For Properties, choose the attribute you want, or, if it doesn't appear in the list, enter
the attribute in the field. Enter the value after :. An example query string can be
thingName:TempSensor*. For each query string you enter, press enter in your keyboard. If
you enter multiple query strings, specify their relationship by selecting and, or, and not, or or
not between them.

Managing fleet metrics 1419

https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/index-aggregate.html
https://docs.aws.amazon.com/iot/latest/developerguide/index-aggregate.html
https://console.aws.amazon.com/iot/

AWS IoT Core Developer Guide

• In Report properties, choose Index name, Aggregation type, and Aggregation field from
their respective lists. Next, select the data you want to aggregate in Select data, where you
can select multiple data values.

• Choose Next.

5. In step 2 Specify fleet metric properties

• In Fleet metric name field, enter a name for the fleet metric you're creating.

• In Description - optional field, enter a description for the fleet metric you're creating. This
field is optional.

• In Hours and Minutes fields, enter the time (how often) you want the fleet metric to emit data
to CloudWatch.

• Choose Next.

6. In step 3 Review and create

• Review the settings of step 1 and step 2. To edit the settings, choose Edit.

• Choose Create fleet metric.

After successful creation, the fleet metric is listed on the Fleet metric page.

Update a fleet metric

1. On the Fleet metric page, choose the fleet metric that you want to update.

2. On the fleet metric Details page, choose Edit. This opens the creation steps where you can
update your fleet metric in any of the three steps.

3. After you finish updating the fleet metric, choose Update fleet metric.

Delete a fleet metric

1. On the Fleet metric page, choose the fleet metric that you want to delete.

2. On the next page that shows details of your fleet metric, choose Delete.

3. In the dialog box, enter the name of your fleet metric to confirm deletion.

4. Choose Delete. This step deletes your fleet metric permanently.

Managing fleet metrics 1420

AWS IoT Core Developer Guide

Managing fleet metrics (CLI)

The following sections show how to use the AWS CLI to manage your fleet metrics. Make sure
you've enabled fleet indexing with associated data sources and configurations before creating
fleet metrics. To enable fleet indexing for your things or thing groups, follow the instructions in
Managing thing indexing or Managing thing group indexing.

Create a fleet metric

You can use the create-fleet-metric CLI command to create a fleet metric.

aws iot create-fleet-metric --metric-name "YourFleetMetricName" --query-string
 "*" --period 60 --aggregation-field "registry.version" --aggregation-type
 name=Statistics,values=sum

The output of this command contains the name and Amazon Resource Name (ARN) of your fleet
metric. The output looks like the following:

{
 "metricArn": "arn:aws:iot:us-east-1:111122223333:fleetmetric/YourFleetMetricName",
 "metricName": "YourFleetMetricName"
}

List fleet metrics

You can use the list-fleet-metric CLI command to list all the fleet metrics in your account.

aws iot list-fleet-metrics

The output of this command contains all your fleet metrics. The output looks like the following:

{
 "fleetMetrics": [
 {
 "metricArn": "arn:aws:iot:us-east-1:111122223333:fleetmetric/
YourFleetMetric1",
 "metricName": "YourFleetMetric1"
 },
 {
 "metricArn": "arn:aws:iot:us-east-1:111122223333:fleetmetric/
YourFleetMetric2",

Managing fleet metrics 1421

AWS IoT Core Developer Guide

 "metricName": "YourFleetMetric2"
 }
]
}

Describe a fleet metric

You can use the describe-fleet-metric CLI command to display more detailed information about a
fleet metric.

aws iot describe-fleet-metric --metric-name "YourFleetMetricName"

The output of command contains the detailed information about the specified fleet metric. The
output looks like the following:

{
 "queryVersion": "2017-09-30",
 "lastModifiedDate": 1625790642.355,
 "queryString": "*",
 "period": 60,
 "metricArn": "arn:aws:iot:us-east-1:111122223333:fleetmetric/YourFleetMetricName",
 "aggregationField": "registry.version",
 "version": 1,
 "aggregationType": {
 "values": [
 "sum"
],
 "name": "Statistics"
 },
 "indexName": "AWS_Things",
 "creationDate": 1625790642.355,
 "metricName": "YourFleetMetricName"
}

Update a fleet metric

You can use the update-fleet-metric CLI command to update a fleet metric.

aws iot update-fleet-metric --metric-name "YourFleetMetricName" --query-string
 "*" --period 120 --aggregation-field "registry.version" --aggregation-type
 name=Statistics,values=sum,count --index-name AWS_Things

Managing fleet metrics 1422

AWS IoT Core Developer Guide

The update-fleet-metric command doesn't produce any output. You can use the describe-fleet-
metric CLI command to see the result.

{
 "queryVersion": "2017-09-30",
 "lastModifiedDate": 1625792300.881,
 "queryString": "*",
 "period": 120,
 "metricArn": "arn:aws:iot:us-east-1:111122223333:fleetmetric/YourFleetMetricName",
 "aggregationField": "registry.version",
 "version": 2,
 "aggregationType": {
 "values": [
 "sum",
 "count"
],
 "name": "Statistics"
 },
 "indexName": "AWS_Things",
 "creationDate": 1625792300.881,
 "metricName": "YourFleetMetricName"
}

Delete a fleet metric

Use the delete-fleet-metric CLI command to delete a fleet metric.

aws iot delete-fleet-metric --metric-name "YourFleetMetricName"

This command doesn't produce any output if the deletion is successful or if you specify a fleet
metric that doesn't exist.

For more information, see Troubleshooting fleet metrics.

Authorize tagging of IoT resources

For better control over fleet metrics that you can create, modify, or use, you can attach tags to the
fleet metrics.

To tag fleet metrics that you create by using AWS Management Console or AWS CLI, you must
include the iot:TagResource action in your IAM policy to grant the user permissions. If your IAM

Managing fleet metrics 1423

AWS IoT Core Developer Guide

policy doesn't include iot:TagResource, any actions to create a fleet metric with a tag will return
an AccessDeniedException error.

For general information about tagging your resources, see Tagging your AWS IoT resources.

IAM policy example

Refer to the following IAM policy example granting tagging permissions when you create a fleet
metric:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iot:TagResource"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:*:*:fleetmetric/*"
]
 },
 {
 "Action": [
 "iot:CreateFleetMetric"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:*:*:index/*",
 "arn:aws:iot:*:*:fleetmetric/*"
]
 }
]
}

For more information, see Actions, resources, and condition keys for AWS IoT.

Managing fleet metrics 1424

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiot.html

AWS IoT Core Developer Guide

MQTT-based file delivery

One option you can use to manage files and transfer them to AWS IoT devices in your fleet is
MQTT-based file delivery. With this feature in the AWS Cloud you can create a stream that contains
multiple files, you can update stream data (the file list and descriptions), get the stream data, and
more. AWS IoT MQTT-based file delivery can transfer data in small blocks to your IoT devices, using
the MQTT protocol with support for request and response messages in JSON or CBOR.

For more information on ways to transfer data to and from IoT devices using AWS IoT, see
Connecting devices to AWS IoT.

Topics

• What is a stream?

• Managing a stream in the AWS Cloud

• Using AWS IoT MQTT-based file delivery in devices

• An example use case in FreeRTOS OTA

What is a stream?

In AWS IoT, a stream is a publicly addressable resource that is an abstraction for a list of files that
can be transferred to an IoT device. A typical stream contains the following information:

• An Amazon Resource Name (ARN) that uniquely identifies a stream at a given time. This ARN
has the pattern arn:partition:iot:region:account-ID:stream/stream ID.

• A stream ID that identifies your stream and is used (and usually required) in AWS Command Line
Interface (AWS CLI) or SDK commands.

• A stream description that provides a description of the stream resource.

• A stream version that identifies a particular version of the stream. Because stream data can be
modified immediately before devices start the data transfer, the stream version can be used by
the devices to enforce a consistency check.

• A list of files that can be transferred to devices. For each file in the list, the stream records a
file ID, the file size, and the address information of the file, which consists of, for example, the
Amazon S3 bucket name, object key, and object version.

• An AWS Identity and Access Management (IAM) role that grants AWS IoT MQTT-based file
delivery the permission to read stream files stored in data storage.

What is a stream? 1425

AWS IoT Core Developer Guide

AWS IoT MQTT-based file delivery provides the following functionality so that devices can transfer
data from the AWS Cloud:

• Data transfer using the MQTT protocol.

• Support for JSON or CBOR formats.

• The ability to describe a stream (DescribeStream API) to get a stream file list, stream version,
and related information.

• The ability to send data in small blocks (GetStream API) so that devices with hardware
constraints can receive the blocks.

• Support for a dynamic block size per request, to support devices that have different memory
capacities.

• Optimization for concurrent streaming requests when multiple devices request data blocks from
the same stream file.

• Amazon S3 as data storage for stream files.

• Support for data transfer log publishing from AWS IoT MQTT-based file delivery to CloudWatch.

For MQTT-based file delivery quotas, see AWS IoT Core Service Quotas in the AWS General
Reference.

Managing a stream in the AWS Cloud

AWS IoT provides AWS SDK and AWS CLI commands that you can use to manage a stream in the
AWS Cloud. You can use these commands to do the following:

• Create a stream. CLI / SDK

• Describe a stream to get its information. CLI / SDK

• List streams in your AWS account. CLI / SDK

• Update the file list or stream description in a stream. CLI / SDK

• Delete a stream. CLI / SDK

Managing a stream in the AWS Cloud 1426

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt-based-file-delivery-in-devices.html#mqtt-based-file-delivery-describe-stream
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt-based-file-delivery-in-devices.html#mqtt-based-file-delivery-get-getstream
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/cli/latest/reference/iot/create-stream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-stream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeStream.html
https://docs.aws.amazon.com/cli/latest/reference/iot/list-streams.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListStreams.html
https://docs.aws.amazon.com/cli/latest/reference/iot/update-stream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateStream.html
https://docs.aws.amazon.com/cli/latest/reference/iot/delete-stream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteStream.html

AWS IoT Core Developer Guide

Note

At this time, streams are not visible in the AWS Management Console. You must use the
AWS CLI or AWS SDK to manage a stream in AWS IoT. Also, Embedded C SDK is the only
SDK that supports MQTT-based file transfers.

Before you use AWS IoT MQTT-based file delivery from your devices, you must ensure the following
conditions are met for your devices as shown in the next sections:

• A policy reflecting the correct permissions required for transmitting data via MQTT.

• Your device can connect to the AWS IoT Device Gateway.

• A policy statement stating you can tag resources. If CreateStream is called with tags, then
iot:TagResource is required.

Before you use AWS IoT MQTT-based file delivery from your devices, you must follow the steps in
the next sections to make sure that your devices are properly authorized and can connect to the
AWS IoT Device Gateway.

Grant permissions to your devices

You can follow the steps in Create an AWS IoT policy to create a device policy or use an existing
device policy. Attach the policy to the certificates associated with your devices and add the
following permissions to the device policy.

{
 "Version": "2012-10-17",
 "Statement": [
 { "Effect": "Allow",
 "Action": ["iot:Connect"],
 "Resource": [
 "arn:partition:iot:region:accountID:client/
${iot:Connection.Thing.ThingName}"
]
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Receive", "iot:Publish"],
 "Resource": [

Grant permissions to your devices 1427

https://github.com/aws/aws-iot-device-sdk-embedded-C
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-iot-policy

AWS IoT Core Developer Guide

 "arn:partition:iot:region:accountID:topic/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:partition:iot:region:accountID:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*"
]
 }
]
}

Connect your devices to AWS IoT

Devices that use AWS IoT MQTT-based file delivery are required to connect with AWS IoT. AWS IoT
MQTT-based file delivery integrates with AWS IoT in the AWS Cloud, so your devices should directly
connect to the endpoint of the AWS IoT Data Plane.

Note

The endpoint of the AWS IoT data plane is specific to the AWS account and Region. You
must use the endpoint for the AWS account and the Region in which your devices are
registered in AWS IoT.

See Connecting to AWS IoT Core for more information.

TagResource Usage

The CreateStream API action creates a stream for delivering one or more large files in chunks
over MQTT.

A successful CreateStream API call requires the following permissions:

• iot:CreateStream

• iot:TagResource (if CreateStream is with tags)

Connect your devices to AWS IoT 1428

https://docs.aws.amazon.com/iot/latest/apireference/Welcome.html#Welcome_AWS_IoT_Data_Plane

AWS IoT Core Developer Guide

The policy supporting those two permissions is shown below:

 {
 "Version": "2012-10-17",
 "Statement": {
 "Action": ["iot:CreateStream", "iot:TagResource"],
 "Effect": "Allow",
 "Resource": "arn:partition:iot:region:accountID:stream/streamId",
 }
 }

The iot:TagResource policy statement action is required to ensure a user can't create or update
a tag on a resource without the proper permissions. Without the specifc policy statement action of
iot:TagResource, the CreateStream API call will return an AccessDeniedException if the
request comes with tags.

For more information, refer to the following links:

• CreateStream

• TagResource

• Tag

Using AWS IoT MQTT-based file delivery in devices

To initiate the data transfer process, a device must receive an initial data set, which includes a
stream ID at minimum. You can use an Jobs to schedule data transfer tasks for your devices by
including the initial data set in the job document. When a device receives the initial data set, it
should then start the interaction with AWS IoT MQTT-based file delivery. To exchange data with
AWS IoT MQTT-based file delivery, a device should:

• Use the MQTT protocol to subscribe to the MQTT-based file delivery topics.

• Send requests and then wait to receive the responses using MQTT messages.

You can optionally include a stream file ID and a stream version in the initial data set. Sending a
stream file ID to a device can simplify the programming of the device's firmware/software, because
it eliminates the need to make a DescribeStream request from the device to get this ID. The
device can specify the stream version in a GetStream request to enforce a consistency check in
case the stream has been updated unexpectedly.

Using AWS IoT MQTT-based file delivery in devices 1429

https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/iot/latest/apireference/API_Tag.html

AWS IoT Core Developer Guide

Use DescribeStream to get stream data

AWS IoT MQTT-based file delivery provides the DescribeStream API to send stream data to
a device. The stream data returned by this API includes the stream ID, stream version, stream
description and a list of stream files, each of which has a file ID and the file size in bytes. With this
information, a device can select arbitrary files to initiate the data transfer process.

Note

You don't need to use the DescribeStream API if your device receives all required stream
file IDs in the initial data set.

Follow these steps to make a DescribeStream request.

1. Subscribe to the "accepted" topic filter $aws/things/ThingName/streams/StreamId/
description/json.

2. Subscribe to the "rejected" topic filter $aws/things/ThingName/streams/StreamId/
rejected/json.

3. Publish a DescribeStream request by sending a message to $aws/things/ThingName/
streams/StreamId/describe/json.

4. If the request was accepted, your device receives a DescribeStream response on the
"accepted" topic filter.

5. If the request was rejected, your device receives the error response on the "rejected" topic
filter.

Note

If you replace json with cbor in the topics and topic filters shown, your device receives
messages in the CBOR format, which is more compact than JSON.

DescribeStream request

A typical DescribeStream request in JSON looks like the following example.

{

Use DescribeStream to get stream data 1430

AWS IoT Core Developer Guide

 "c": "ec944cfb-1e3c-49ac-97de-9dc4aaad0039"
}

• (Optional) "c" is the client token field.

The client token can't be longer than 64 bytes. A client token that is longer than 64 bytes causes
an error response and an InvalidRequest error message.

DescribeStream response

A DescribeStream response in JSON looks like the following example.

{
 "c": "ec944cfb-1e3c-49ac-97de-9dc4aaad0039",
 "s": 1,
 "d": "This is the description of stream ABC.",
 "r": [
 {
 "f": 0,
 "z": 131072
 },
 {
 "f": 1,
 "z": 51200
 }
]
}

• "c" is the client token field. This is returned if it was given in the DescribeStream request. Use
the client token to associate the response with its request.

• "s" is the stream version as an integer. You can use this version to perform a consistency check
with your GetStream requests.

• "r" contains a list of the files in the stream.

• "f" is the stream file ID as an integer.

• "z" is the stream file size in number of bytes.

• "d" contains the description of the stream.

Use DescribeStream to get stream data 1431

AWS IoT Core Developer Guide

Get data blocks from a stream file

You can use the GetStream API so that a device can receive stream files in small data blocks, so
it can be used by those devices that have constraints on processing large block sizes. To receive an
entire data file, a device might need to send or receive multiple requests and responses until all
data blocks are received and processed.

GetStream request

Follow these steps to make a GetStream request.

1. Subscribe to the "accepted" topic filter $aws/things/ThingName/streams/StreamId/
data/json.

2. Subscribe to the "rejected" topic filter $aws/things/ThingName/streams/StreamId/
rejected/json.

3. Publish a GetStream request to the topic $aws/things/ThingName/streams/StreamId/
get/json.

4. If the request was accepted, your device will receive one or more GetStream responses on the
"accepted" topic filter. Each response message contains basic information and a data payload
for a single block.

5. Repeat steps 3 and 4 to receive all data blocks. You must repeat these steps if the amount
of data requested is larger than 128 KB. You must program your device to use multiple
GetStream requests to receive all of the data requested.

6. If the request was rejected, your device will receive the error response on the "rejected" topic
filter.

Note

• If you replace "json" with "cbor" in the topics and topic filters shown, your device will
receive messages in the CBOR format, which is more compact than JSON.

• AWS IoT MQTT-based file delivery limits the size of a block to 128 KB. If you make a
request for a block that is more than 128 KB, the request will fail.

• You can make a request for multiple blocks whose total size is greater than 128 KB (for
example, if you make a request for 5 blocks of 32 KB each for a total of 160 KB of data).
In this case, the request doesn't fail, but your device must make multiple requests to

Get data blocks from a stream file 1432

AWS IoT Core Developer Guide

receive all of the data requested. The service will send additional blocks as your device
makes additional requests. We recommend that you continue with a new request only
after the previous response has been correctly received and processed.

• Regardless of the total size of data requested, you should program your device to initiate
retries when blocks are not received, or not received correctly.

A typical GetStream request in JSON looks like the following example.

{
 "c": "1bb8aaa1-5c18-4d21-80c2-0b44fee10380",
 "s": 1,
 "f": 0,
 "l": 4096,
 "o": 2,
 "n": 100,
 "b": "..."
}

• [optional] "c" is the client token field.

The client token can be no longer than 64 bytes. A client token that is longer than 64 bytes
causes an error response and an InvalidRequest error message.

• [optional] "s" is the stream version field (an integer).

MQTT-based file delivery applies a consistency check based on this requested version and the
latest stream version in the cloud. If the stream version sent from a device in a GetStream
request doesn't match the latest stream version in the cloud, the service sends an error response
and a VersionMismatch error message. Typically, a device receives the expected (latest) stream
version in the initial data set or in the response to DescribeStream.

• "f" is the stream file ID (an integer in the range 0 to 255).

The stream file ID is required when you create or update a stream using the AWS CLI or SDK. If
a device requests a stream file with an ID that doesn't exist, the service sends an error response
and a ResourceNotFound error message.

• "l" is the data block size in bytes (an integer in the range 256 to 131,072).

Get data blocks from a stream file 1433

AWS IoT Core Developer Guide

Refer to Build a bitmap for a GetStream request for instructions on how to use the bitmap
fields to specify what portion of the stream file will be returned in the GetStream response.
If a device specifies a block size that is out of range, the service sends an error response and a
BlockSizeOutOfBounds error message.

• [optional] "o" is the offset of the block in the stream file (an integer in the range 0 to 98,304).

Refer to Build a bitmap for a GetStream request for instructions on how to use the bitmap
fields to specify what portion of the stream file will be returned in the GetStream response.
The maximum value of 98,304 is based on a 24 MB stream file size limit and 256 bytes for the
minimum block size. The default is 0 if not specified.

• [optional] "n" is the number of blocks requested (an integer in the range 0 to 98,304).

The "n" field specifies either (1) the number of blocks requested, or (2) when the bitmap field
("b") is used, a limit on the number of blocks that will be returned by the bitmap request. This
second use is optional. If not defined, it defaults to 131072/DataBlockSize.

• [optional] "b" is a bitmap that represents the blocks being requested.

Using a bitmap, your device can request non-consecutive blocks, which makes handling retries
following an error more convenient. Refer to Build a bitmap for a GetStream request for
instructions on how to use the bitmap fields to specify which portion of the stream file will be
returned in the GetStream response. For this field, convert the bitmap to a string representing
the bitmap's value in hexadecimal notation. The bitmap must be less than 12,288 bytes.

Important

Either "n" or "b" should be specified. If neither of them is specified, the GetStream request
might not be valid when the file size is less than 131072 bytes (128 KB).

GetStream response

A GetStream response in JSON looks like this example for each data block that is requested.

{
 "c": "1bb8aaa1-5c18-4d21-80c2-0b44fee10380",
 "f": 0,
 "l": 4096,

Get data blocks from a stream file 1434

AWS IoT Core Developer Guide

 "i": 2,
 "p": "..."
}

• "c" is the client token field. This is returned if it was given in the GetStream request. Use the
client token to associate the response with its request.

• "f" is the ID of the stream file to which the current data block payload belongs.

• "l" is the size of the data block payload in bytes.

• "i" is the ID of the data block contained in the payload. Data blocks are numbered starting from
0.

• "p" contains the data block payload. This field is a string, which represents the value of the data
block in Base64 encoding.

Build a bitmap for a GetStream request

You can use the bitmap field (b) in a GetStream request to get non-consecutive blocks from a
stream file. This helps devices with limited RAM capacity deal with network delivery issues. A
device can request only those blocks that were not received or not received correctly. The bitmap
determines which blocks of the stream file will be returned. For each bit, which is set to 1 in the
bitmap, a corresponding block of the stream file will be returned.

Here's an example of how to specify a bitmap and its supporting fields in a GetStream request.
For example, you want to receive a stream file in chunks of 256 bytes (the block size). Think of
each block of 256 bytes as having a number that specifies its position in the file, starting from 0.
So block 0 is the first block of 256 bytes in the file, block 1 is the second, and so on. You want to
request blocks 20, 21, 24 and 43 from the file.

Block offset

Because the first block is number 20, specify the offset (field o) as 20 to save space in the
bitmap.

Number of blocks

To ensure that your device doesn't receive more blocks than it can handle with limited memory
resources, you can specify the maximum number of blocks that should be returned in each
message sent by MQTT-based file delivery. Note that this value is disregarded if the bitmap
itself specifies less than this number of blocks, or if it would make the total size of the response

Get data blocks from a stream file 1435

https://en.wikipedia.org/wiki/Base64

AWS IoT Core Developer Guide

messages sent by MQTT-based file delivery greater than the service limit of 128 KB per
GetStream request.

Block bitmap

The bitmap itself is an array of unsigned bytes expressed in hexadecimal notation, and included
in the GetStream request as a string representation of the number. But to construct this string,
let's start by thinking of the bitmap as a long sequence of bits (a binary number). If a bit in
this sequence is set to 1, the corresponding block from the stream file will be sent back to the
device. For our example, we want to receive blocks 20, 21, 24, and 43, so we must set bits 20,
21, 24, and 43 in our bitmap. We can use the block offset to save space, so after we subtract the
offset from each block number, we want to set bits 0, 1, 4, and 23, like the following example.

 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Taking one byte (8 bits) at a time, this is conventionally written as: "0b00010011",
"0b00000000", and "0b10000000". Bit 0 shows up in our binary representation at the end of
the first byte, and bit 23 at the beginning of the last. This can be confusing unless you know
the conventions. The first byte contains bits 7-0 (in that order), the second byte contains bits
15-8, the third byte contains bits 23-16, and so on. In hexadecimal notation, this converts to
"0x130080".

Tip

You can convert the standard binary to hexadecimal notation. Take four binary digits at
a time and convert these to their hexadecimal equivalent. For example, "0001" becomes
"1", "0011" becomes "3" and so on.

Get data blocks from a stream file 1436

AWS IoT Core Developer Guide

Putting this all together, the JSON for our GetStream request looks like the following.

{
 "c" : "1",
 "s" : 1,
 "l" : 256,
 "f" : 1,
 "o" : 20,
 "n" : 32,
 "b" : "130080"
}

• "c" is the client token field.

• "s" is the expected stream version.

• "l" is the size of the data block payload in bytes.

• "f" is the ID of the source file index.

• "o" is the block offset.

• "n" is the number of blocks.

• "b" is the missing blockId bitmap starting from the offset. This value must be based64-
encoded.

Get data blocks from a stream file 1437

AWS IoT Core Developer Guide

Handling errors from AWS IoT MQTT-based file delivery

An error response that is sent to a device for both DescribeStream and GetStream APIs contains
a client token, an error code and an error message. A typical error response looks like the following
example.

{
 "o": "BlockSizeOutOfBounds",
 "m": "The block size is out of bounds",
 "c": "1bb8aaa1-5c18-4d21-80c2-0b44fee10380"
}

• "o" is the error code that indicates the reason an error occurred. Refer to the error codes later in
this section for more details.

• "m" is the error message that contains details of the error.

• "c" is the client token field. This may be returned if it was given in the DescribeStream request.
You can use the client token to associate the response with its request.

The client token field is not always included in an error response. When the client token given in
the request isn't valid or is malformed, it's not returned in the error response.

Note

For backward compatibility, fields in the error response may be in non-abbreviated form.
For example, the error code might be designated by either "code" or "o" fields and the client
token field may be designated by either "clientToken" or "c" fields. We recommend that you
use the abbreviation form shown above.

InvalidTopic

The MQTT topic of the stream message is invalid.

InvalidJson

The Stream request is not a valid JSON document.

InvalidCbor

The Stream request is not valid CBOR document.

Handling errors from AWS IoT MQTT-based file delivery 1438

AWS IoT Core Developer Guide

InvalidRequest

The request is generally identified as malformed. For more information, see the error message.

Unauthorized

The request is not authorized to access the stream data files in the storage medium, such as
Amazon S3. For more information, see the error message.

BlockSizeOutOfBounds

The block size is out of bounds. Refer to the "MQTT-based File Delivery" section in AWS IoT
Core Service Quotas.

OffsetOutOfBounds

The offset is out of bounds. Refer to the "MQTT-based File Delivery" section in AWS IoT Core
Service Quotas.

BlockCountLimitExceeded

The number of request block(s) is out of bounds. Refer to the "MQTT-based File Delivery"
section in AWS IoT Core Service Quotas.

BlockBitmapLimitExceeded

The size of the request bitmap is out of bounds. Refer to the "MQTT-based File Delivery"
section in AWS IoT Core Service Quotas.

ResourceNotFound

The requested stream, files, file versions or blocks were not found. Refer to the error message
for more details.

VersionMismatch

The stream version in the request doesn't match with the stream version in the MQTT-based file
delivery feature. This indicates that the stream data had been modified since the stream version
was initially received by the device.

ETagMismatch

The S3 ETag in the stream doesn't match with the ETag of the latest S3 object version.

InternalError

An internal error occurred in MQTT-based file delivery.

Handling errors from AWS IoT MQTT-based file delivery 1439

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot

AWS IoT Core Developer Guide

An example use case in FreeRTOS OTA

The FreeRTOS OTA (over-the-air) agent uses AWS IoT MQTT-based file delivery to transfer
FreeRTOS firmware images to FreeRTOS devices. To send the initial data set to a device, it uses the
AWS IoT Job service to schedule an OTA update job to FreeRTOS devices.

For a reference implementation of an MQTT-based file delivery client, see FreeRTOS OTA agent
codes in the FreeRTOS documentation.

An example use case in FreeRTOS OTA 1440

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

AWS IoT Core Developer Guide

Device Advisor

Device Advisor is a cloud-based, fully managed test capability for validating IoT devices during
device software development. Device Advisor provides pre-built tests that you can use to validate
IoT devices for reliable and secure connectivity with AWS IoT Core, before deploying devices to
production. Device Advisor’s pre-built tests help you validate your device software against best
practices for usage of TLS, MQTT, Device Shadow, and IoT Jobs. You can also download signed
qualification reports to submit to the AWS Partner Network to get your device qualified for the
AWS Partner Device Catalog without the need to send your device in and wait for it to be tested.

Note

Device Advisor is supported in us-east-1, us-west-2, ap-northeast-1, and eu-west-1 regions.
Device Advisor supports devices and clients that use the MQTT and the MQTT over
WebSocket Secure (WSS) protocols to publish and subscribe to messages. All protocols
support IPv4 and IPv6.
Device Advisor supports RSA server certificates.

Any device that has been built to connect to AWS IoT Core can take advantage of Device Advisor.
You can access Device Advisor from the AWS IoT console, or by using the AWS CLI or SDK. When
you're ready to test your device, register it with AWS IoT Core and configure the device software
with the Device Advisor endpoint. Then choose the prebuilt tests, configure them, run the tests on
your device, and get the test results along with detailed logs or a qualification report.

Device Advisor is a test endpoint in the AWS cloud. You can test your devices by configuring them
to connect to the test endpoint provided by the Device Advisor. After a device is configured to
connect to the test endpoint, you can visit the Device Advisor’s console or use the AWS SDK to
choose the tests you want to run on your devices. Device Advisor then manages the full lifecycle of
a test, including the provisioning of resources, scheduling of the test process, managing the state
machine, recording the device behavior, logging the results, and providing the final results in form
of a test report.

TLS protocols

Transport Layer Security (TLS) protocol is used to encrypt confidential data over insecure networks
like the internet. The TLS protocol is the successor of the Secure Sockets Layer (SSL) protocol.

1441

https://aws.amazon.com/iot-core/features/
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://devices.amazonaws.com/
https://us-east-1.console.aws.amazon.com/iot/home?region=us-east-1#/deviceadvisor/intro

AWS IoT Core Developer Guide

Device Advisor supports the following TLS protocols:

• TLS 1.3 (recommended)

• TLS 1.2

Protocols, port mappings, and authentication

The device communication protocol is used by a device or a client to connect to the message
broker by using a device endpoint. The following table lists the protocols that the Device Advisor
endpoints support and the authentication methods and ports used.

Protocols, authentication, and port mappings

Protocol Operations
supported

Authentication Port ALPN protocol
name

MQTT over
WebSocket

Publish,
Subscribe

Signature
Version 4

443 N/A

MQTT Publish,
Subscribe

X.509 client
certificate

8883 x-amzn-mq
tt-ca

MQTT Publish,
Subscribe

X.509 client
certificate

443 N/A

This chapter contains the following sections:

• Setting up

• Getting started with Device Advisor in the console

• Device Advisor workflow

• Device Advisor detailed console workflow

• Long duration tests console workflow

• Device Advisor VPC endpoints (AWS PrivateLink)

• Device Advisor test cases

1442

AWS IoT Core Developer Guide

Setting up

Before you use Device Advisor for the first time, complete the following tasks:

Create an IoT thing

First, create an IoT thing and attach a certificate to that thing. For a tutorial on how to create
things, see Create a thing object.

Create an IAM role to use as your device role

Note

You can quickly create the device role with the Device Advisor console. To learn how to set
up your device role with the Device Advisor console, see Getting started with the Device
Advisor in the console.

1. Go to the AWS Identity and Access Management console and log in to the AWS account you
use for Device Advisor testing.

2. In the left navigation pane, chose Policies.

3. Choose Create policy.

4. Under Create policy, do the following:

a. For Service, choose IoT.

b. Under Actions, do one of the following:

• (Recommended) Select actions based on the policy attached to the IoT thing or
certificate you created in the previous section.

• Search for the following actions in the Filter action box and select them:

• Connect

• Publish

• Subscribe

• Receive

• RetainPublish
Setting up 1443

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing
https://docs.aws.amazon.com/iot/latest/developerguide/da-console-guide.html
https://docs.aws.amazon.com/iot/latest/developerguide/da-console-guide.html
https://console.aws.amazon.com/iam/home?region=us-west-2#/home

AWS IoT Core Developer Guide

c. Under Resources, restrict the client, topic, and topic resources. Restricting these resources
is a security best practice. To restrict resources, do the following:

i. Choose Specify client resource ARN for the Connect action.

ii. Choose Add ARN, then do either of the following:

Note

The clientId is the MQTT client ID that your device uses to interact with Device
Advisor.

• Specify the Region, accountID, and clientID in the visual ARN editor.

• Manually enter the Amazon Resource Names (ARNs) of the IoT topics you want to
run your test cases with.

iii. Choose Add.

iv. Choose Specify topic resource ARN for the Receive and one more action.

v. Choose Add ARN, then do either of the following:

Note

The topic name is the MQTT topic that your device publishes messages to.

• Specify the Region, accountID, and Topic name in the visual ARN editor.

• Manually enter the ARNs of the IoT topics you want to run your test cases with.

vi. Choose Add.

vii. Choose Specify topicFilter resource ARN for the Subscribe action.

viii. Choose Add ARN, then do either of the following:

Note

The topic name is the MQTT topic that your device subscribes to.

• Specify the Region, accountID, and Topic name in the visual ARN editor.
Create an IAM role to use as your device role 1444

AWS IoT Core Developer Guide

• Manually enter the ARNs of the IoT topics you want to run your test cases with.

ix. Choose Add.

5. Choose Next: Tags.

6. Choose Next: Review.

7. Under Review policy, enter a Name for your policy.

8. Choose Create policy.

9. On the left navigation pane, Choose Roles.

10. Choose Create Role.

11. Under Select trusted entity, choose Custom trust policy.

12. Enter the following trust policy into the Custom trust policy box. To protect against the
confused deputy problem, add the global condition context keys aws:SourceArn and
aws:SourceAccount to the policy.

Important

Your aws:SourceArn must comply with the format:
arn:aws:iotdeviceadvisor:region:account-id:*. Make sure that region
matches your AWS IoT Region and account-id matches your customer account ID.
For more information, see Cross-service confused deputy prevention.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAwsIoTCoreDeviceAdvisor",
 "Effect": "Allow",
 "Principal": {
 "Service": "iotdeviceadvisor.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnLike": {

Create an IAM role to use as your device role 1445

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html#cross-service-confused-deputy-prevention-DA

AWS IoT Core Developer Guide

 "aws:SourceArn":
 "arn:aws:iotdeviceadvisor:*:111122223333:suitedefinition/*"
 }
 }
 }
]
}

13. Choose Next.

14. Choose the policy you created in Step 4.

15. (Optional) Under Set permissions boundary, choose Use a permissions boundary to control
the maximum role permissions, and then select the policy you created.

16. Choose Next.

17. Enter a Role name and a Role description.

18. Choose Create role.

Create a custom-managed policy for an IAM user to use Device Advisor

1. Navigate to the IAM console at https://console.aws.amazon.com/iam/. If prompted, enter your
AWS credentials to sign in.

2. In the left navigation pane, choose Policies.

3. Choose Create Policy, then choose the JSON tab.

4. Add the necessary permissions to use Device Advisor. The policy document can be found in the
topic Security best practices.

5. Choose Review Policy.

6. Enter a Name and Description.

7. Choose Create Policy.

Create an IAM user to use Device Advisor

Note

We recommend that you create an IAM user to use when you run Device Advisor tests.
Running Device Advisor tests from an admin user can pose security risks and isn't
recommended.

Create a custom-managed policy for an IAM user to use Device Advisor 1446

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html#device-advisor-perms

AWS IoT Core Developer Guide

1. Navigate to the IAM console at https://console.aws.amazon.com/iam/ If prompted, enter your
AWS credentials to sign in.

2. In the left navigation pane, Choose Users.

3. Choose Add User.

4. Enter a User name.

5. Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user
that's accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentia
ls to sign programmatic
requests to the AWS CLI,
AWS SDKs, or AWS APIs.

Following the instructions
for the interface that you
want to use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools,
and AWS APIs, see IAM
Identity Center authentic
ation in the AWS SDKs and
Tools Reference Guide.

IAM Use temporary credentia
ls to sign programmatic
requests to the AWS CLI,
AWS SDKs, or AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Create an IAM user to use Device Advisor 1447

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

AWS IoT Core Developer Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs,
or AWS APIs.

Following the instructions
for the interface that you
want to use.

• For the AWS CLI, see
Authenticating using
IAM user credentials in
the AWS Command Line
Interface User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

6. Choose Next: Permissions.

7. To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-
party identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an
IAM user in the IAM User Guide.

Create an IAM user to use Device Advisor 1448

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

AWS IoT Core Developer Guide

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow
the instructions in Adding permissions to a user (console) in the IAM User Guide.

8. Enter the name of the custom-managed policy that you created in the search box. Then, select
the check box for Policy name.

9. Choose Next: Tags.

10. Choose Next: Review.

11. Choose Create user.

12. Choose Close.

Device Advisor requires access to your AWS resources (things, certificates, and endpoints) on your
behalf. Your IAM user must have the necessary permissions. Device Advisor will also publish logs to
Amazon CloudWatch if you attach the necessary permissions policy to your IAM user.

Configure your device

Device Advisor uses the server name indication (SNI) TLS extension to apply TLS configurations.
Devices must use this extension when they connect and pass a server name that is identical to the
Device Advisor test endpoint.

Device Advisor allows the TLS connection when a test is in the Running state. It denies the TLS
connection before and after each test run. For this reason, we recommend that you use the device
connect retry mechanism for a fully automated testing experience with Device Advisor. You can run
test suites that include more than one test case, such as TLS connect, MQTT connect, and MQTT
publish. If you run multiple test cases, we recommend that your device try to connect to our test
endpoint every five seconds. You can then automate running multiple test cases in sequence.

Note

To ready your device software for testing, we recommend that you use an SDK that can
connect to AWS IoT Core. You should then update the SDK with the Device Advisor test
endpoint provided for your AWS account.

Device Advisor supports two types of endpoints: Account-level and Device-level endpoints. Choose
the endpoint that best fits your use case. To simultaneously run multiple test suites for different
devices, use a Device-level endpoint.

Configure your device 1449

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS IoT Core Developer Guide

Run the following command to get the Device-level endpoint:

For MQTT customers using X.509 client certificates:

aws iotdeviceadvisor get-endpoint --thing-arn your-thing-arn

or

aws iotdeviceadvisor get-endpoint --certificate-arn your-certificate-arn

For MQTT over WebSocket customers using Signature Version 4:

aws iotdeviceadvisor get-endpoint --device-role-arn your-device-role-arn --
authentication-method SignatureVersion4

To run one test suite at a time, choose an Account-level endpoint. Run the following command to
get the Account-level endpoint:

aws iotdeviceadvisor get-endpoint

Getting started with Device Advisor in the console

This tutorial helps you get started with AWS IoT Core Device Advisor on the console. Device Advisor
offers features such as required tests and signed qualification reports. You can use these tests and
reports to qualify and list devices in the AWS Partner Device Catalog as detailed in the AWS IoT
Core qualification program.

For more information about using Device Advisor, see Device Advisor workflow and Device Advisor
detailed console workflow.

To complete this tutorial, follow the steps outlined in Setting up.

Note

Device Advisor is supported in the following AWS Regions:

• US East (N. Virginia)

Getting started with Device Advisor in the console 1450

https://devices.amazonaws.com/
https://aws.amazon.com/partners/dqp/
https://aws.amazon.com/partners/dqp/

AWS IoT Core Developer Guide

• US West (Oregon)

• Asia Pacific (Tokyo)

• Europe (Ireland)

Getting started

1. In the AWS IoT console's navigation pane under Test, choose Device Advisor. Then, choose the
Start walkthrough button on the console.

2. The Getting started with Device Advisor page provides an overview of the steps required to
create a test suite and run tests against your device. You can also find the Device Advisor test
endpoint for your account here. You must configure the firmware or software on the device
used for testing to connect to this test endpoint.

To complete this tutorial, first create a thing and certificate. After you review the information
under How it works, choose Next.

Getting started with Device Advisor in the console 1451

https://console.aws.amazon.com/iot
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-create-thing-certificate

AWS IoT Core Developer Guide

3. In Step 1: Select a protocol, select a protocol from the options listed. Then, choose Next.

4. In Step 2, you create and configure a custom test suite. A custom test suite must have at least
one test group, and each test group must have at least one test case. We've added the MQTT
Connect test case for you to get started.

Choose Test suite properties.

Getting started with Device Advisor in the console 1452

AWS IoT Core Developer Guide

Supply the test suite properties when you create your test suite. You can configure the
following suite-level properties:

• Test suite name: Enter a name for your test suite.

• Timeout (optional): The timeout (in seconds) for each test case in the current test suite. If
you don't specify a timeout value, the default value is used.

• Tags (optional): Add tags to the test suite.

When you’ve finished, choose Update properties.

Getting started with Device Advisor in the console 1453

AWS IoT Core Developer Guide

5. (Optional) To update the test suite group configuration, choose the Edit button next to the
test group name.

• Name: Enter a custom name for the test suite group.

• Timeout (optional): The timeout (in seconds) for each test case in the current test suite. If
you don't specify a timeout value, the default value is used.

When finished, choose Done to continue.

Getting started with Device Advisor in the console 1454

AWS IoT Core Developer Guide

6. (Optional) To update the test case configuration for a test case, choose the Edit button next to
the test case name.

• Name: Enter a custom name for the test suite group.

• Timeout (optional): The timeout (in seconds) for the selected test case. If you don't specify a
timeout value, the default value is used.

When finished, choose Done to continue.

Getting started with Device Advisor in the console 1455

AWS IoT Core Developer Guide

7. (Optional) To add more test groups to the test suite, choose Add test group, then follow the
instructions in Step 5.

8. (Optional) To add more test cases, drag the test cases in the Test cases section into any of your
test groups.

9. You can change the order of your test groups and test cases. To make changes, drag the listed
test cases up or down the list. Device Advisor runs tests in the order you listed them in.

After you've configured your test suite, choose Next.

10. In Step 3, select an AWS IoT thing or certificate to test using Device Advisor. If you don't have
any existing things or certificates, see Setting up.

Getting started with Device Advisor in the console 1456

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html

AWS IoT Core Developer Guide

11. You can configure a device role that Device Advisor uses to perform AWS IoT MQTT actions on
behalf of your test device. For MQTT Connect test case only, the Connect action is selected
automatically. This is because the device role requires this permission to run the test suite. For
other test cases, the corresponding actions are selected.

Provide the resource values for each of the selected actions. For example, for the Connect
action, provide the client ID your device uses to connect to the Device Advisor endpoint. You
can provide multiple values with comma seperated values, and prefix values with a wildcard
(*) character. For example, to provide permission to publish on any topic beginning with
MyTopic, enter MyTopic* as the resource value.

To use a previously created device role from Setting up, choose Select an existing role. Then
choose your device role under Select role.

Configure your device role with one of the two provided options, and then choose Next.

12. In the Test endpoint section, select the endpoint that best fits your use case. To run multiple
test suites simultaneously with the same AWS account, select Device-level endpoint. To run
one test suite at a time, select Account-level endpoint.

Getting started with Device Advisor in the console 1457

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html

AWS IoT Core Developer Guide

13. Step 4 shows an overview of the selected test device, test endpoint, test suite, and test device
role configured. To make changes to a section, choose the Edit button for the section you want
to edit. Once you've confirmed your test configuration, choose Run to create the test suite and
run your tests.

Note

For best results, you can connect your selected test device to the Device Advisor
test endpoint before you start the test suite run. We recommend that you have a
mechanism built for your device to try connecting to our test endpoint every five
seconds for up to one to two minutes.

Getting started with Device Advisor in the console 1458

AWS IoT Core Developer Guide

14. In the navigation pane under Test, choose Device Advisor, and then choose Test runs and
results. Select a test suite run to view its run details and logs.

15. To access the Amazon CloudWatch logs for the suite run:

• Choose Test suite log to view the CloudWatch logs for the test suite run.

• Choose Test case log for any test case to view test case-specific CloudWatch logs.

16. Based on your test results, troubleshoot your device until all tests pass.

Device Advisor workflow

This tutorial explains how to create a custom test suite and run tests against the device you want to
test in the console. After the tests are complete, you can view the test results and detailed logs.

Device Advisor workflow 1459

https://docs.aws.amazon.com/iot/latest/developerguide/iot_troubleshooting.html#device-advisor-troubleshooting

AWS IoT Core Developer Guide

Prerequisites

Before you begin this tutorial this tutorial, complete the steps outlined in Setting up.

Create a test suite definition

First, install an AWS SDK.

rootGroup syntax

A root group is a JSON string that specifies which test cases to include in your test suite. It also
specifies any necessary configurations for those test cases. Use the root group to structure and
order your test suite based on your needs. The hierarchy of a test suite is:

test suite # test group(s) # test case(s)

A test suite must have at least one test group, and each test group must have at least one test case.
Device Advisor runs tests in the order in which you define the test groups and test cases.

Each root group follows this basic structure:

{
 "configuration": { // for all tests in the test suite
 "": ""
 }
 "tests": [{
 "name": ""
 "configuration": { // for all sub-groups in this test group
 "": ""
 },
 "tests": [{
 "name": ""
 "configuration": { // for all test cases in this test group
 "": ""
 },
 "test": {
 "id": ""
 "version": ""
 }
 }]
 }]
}

Prerequisites 1460

https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-service.html#iot-service-sdks

AWS IoT Core Developer Guide

In the root group, you define the test suite with a name, configuration, and the tests that the
group contains. The tests group contains the definitions of individual tests. You define each test
with a name, configuration, and a test block that defines the test cases for that test. Finally,
each test case is defined with an id and version.

For information on how to use the "id" and "version" fields for each test case (test block), see
Device Advisor test cases. That section also contains information on the available configuration
settings.

The following block is an example of a root group configuration. This configurations specifies the
MQTT Connect Happy Case and MQTT Connect Exponential Backoff Retries test cases, along with
descriptions of the configuration fields.

{
 "configuration": {}, // Suite-level configuration
 "tests": [// Group definitions should be provided here
 {
 "name": "My_MQTT_Connect_Group", // Group definition name
 "configuration": {} // Group definition-level configuration,
 "tests": [// Test case definitions should be provided
 here
 {
 "name": "My_MQTT_Connect_Happy_Case", // Test case definition name
 "configuration": {
 "EXECUTION_TIMEOUT": 300 // Test case definition-level
 configuration, in seconds
 },
 "test": {
 "id": "MQTT_Connect", // test case id
 "version": "0.0.0" // test case version
 }
 },
 {
 "name": "My_MQTT_Connect_Jitter_Backoff_Retries", // Test case definition
 name
 "configuration": {
 "EXECUTION_TIMEOUT": 600 // Test case definition-level
 configuration, in seconds
 },
 "test": {
 "id": "MQTT_Connect_Jitter_Backoff_Retries", // test case id
 "version": "0.0.0" // test case version

Create a test suite definition 1461

AWS IoT Core Developer Guide

 }
 }]
 }]
}

You must supply the root group configuration when you create your test suite definition. Save the
suiteDefinitionId that is returned in the response object. You can use this ID to retrieve your
test suite definition information and run your test suite.

Here is a Java SDK example:

response = iotDeviceAdvisorClient.createSuiteDefinition(
 CreateSuiteDefinitionRequest.builder()
 .suiteDefinitionConfiguration(SuiteDefinitionConfiguration.builder()
 .suiteDefinitionName("your-suite-definition-name")
 .devices(
 DeviceUnderTest.builder()
 .thingArn("your-test-device-thing-arn")
 .certificateArn("your-test-device-certificate-arn")
 .deviceRoleArn("your-device-role-arn") //if using SigV4 for
 MQTT over WebSocket
 .build()
)
 .rootGroup("your-root-group-configuration")
 .devicePermissionRoleArn("your-device-permission-role-arn")
 .protocol("MqttV3_1_1 || MqttV5 || MqttV3_1_1_OverWebSocket ||
 MqttV5_OverWebSocket")
 .build()
)
 .build()
)

Get a test suite definition

After you create your test suite definition, you receive the suiteDefinitionId in the response
object of the CreateSuiteDefinition API operation.

When the operation returns the suiteDefinitionId, you may see new id fields within each
group and test case definition within the root group. You can use these IDs to run a subset of your
test suite definition.

Java SDK example:

Get a test suite definition 1462

AWS IoT Core Developer Guide

response = iotDeviceAdvisorClient.GetSuiteDefinition(
 GetSuiteDefinitionRequest.builder()
 .suiteDefinitionId("your-suite-definition-id")
 .build()
)

Get a test endpoint

Use the GetEndpoint API operation to get the test endpoint used by your device. Select the
endpoint that best fits your test. To simultaneously run multiple test suites, use the Device-
level endpoint by providing a thing ARN, certificate ARN, or device role ARN. To run a
single test suite, provide no arguments to the GetEndpoint operation to choose the Account-level
endpoint.

SDK example:

response = iotDeviceAdvisorClient.getEndpoint(GetEndpointRequest.builder()
.certificateArn("your-test-device-certificate-arn")
.thingArn("your-test-device-thing-arn")
.deviceRoleArn("your-device-role-arn") //if using SigV4 for MQTT over WebSocket

.build())

Start a test suite run

After you create a test suite definition and configureyour test device to connect to your Device
Advisor test endpoint, run your test suite with the StartSuiteRun API.

For MQTT customers, use either certificateArn or thingArn to run the test suite. If both are
configured, the certificate is used if it belongs to the thing.

For MQTT over WebSocket customer, use deviceRoleArn to run the test suite. If the specified
role is different from the role specified in the test suite definition, the specified role overrides the
defined role.

For .parallelRun(), use true if you use a Device-level endpoint to run multiple test suites in
parallel using one AWS account.

SDK example:

Get a test endpoint 1463

AWS IoT Core Developer Guide

response = iotDeviceAdvisorClient.startSuiteRun(StartSuiteRunRequest.builder()
.suiteDefinitionId("your-suite-definition-id")
.suiteRunConfiguration(SuiteRunConfiguration.builder()
 .primaryDevice(DeviceUnderTest.builder()
 .certificateArn("your-test-device-certificate-arn")
 .thingArn("your-test-device-thing-arn")
 .deviceRoleArn("your-device-role-arn") //if using SigV4 for MQTT over WebSocket

 .build())
 .parallelRun(true | false)
 .build())
.build())

Save the suiteRunId from the response. You will use this to retrieve the results of this test suite
run.

Get a test suite run

After you start a test suite run, you can check its progress and its results with the GetSuiteRun
API.

SDK example:

// Using the SDK, call the GetSuiteRun API.

response = iotDeviceAdvisorClient.GetSuiteRun(
GetSuiteRunRequest.builder()
 .suiteDefinitionId("your-suite-definition-id")
 .suiteRunId("your-suite-run-id")
.build())

Stop a test suite run

To stop a test suite run that is still in progress, you can call the StopSuiteRun API operation. After
you call the StopSuiteRun operation, the service starts the cleanup process. While the service
runs the cleanup process, the test suite run status updates to Stopping. The cleanup process can
take several minutes. Once the process is complete, the test suite run status updates to Stopped.
After a test run has completely stopped, you n start another test suite run. You can periodically
check the suite run status using the GetSuiteRun API operation, as shown in the previous section.

SDK example:

Get a test suite run 1464

AWS IoT Core Developer Guide

// Using the SDK, call the StopSuiteRun API.

response = iotDeviceAdvisorClient.StopSuiteRun(
StopSuiteRun.builder()
 .suiteDefinitionId("your-suite-definition-id")
 .suiteRunId("your-suite-run-id")
.build())

Get a qualification report for a successful qualification test suite run

If you run a qualification test suite that completes successfully, you can retrieve a qualification
report with the GetSuiteRunReport API operation. You use this qualification report to qualify
your device with the AWS IoT Core qualification program. To determine whether your test suite is
a qualification test suite, check whether the intendedForQualification parameter is set to
true. After you call the GetSuiteRunReport API operation, you can download the report from
the returned URL for up to 90 seconds. If more than 90 seconds elapse from the previous time you
called the GetSuiteRunReport operation, call the operation again to retrieve a new, valid URL.

SDK example:

// Using the SDK, call the getSuiteRunReport API.

response = iotDeviceAdvisorClient.getSuiteRunReport(
 GetSuiteRunReportRequest.builder()
 .suiteDefinitionId("your-suite-definition-id")
 .suiteRunId("your-suite-run-id")
 .build()
)

Device Advisor detailed console workflow

In this tutorial, you'll create a custom test suite and run tests against the device you want to test in
the console. After the tests are complete, you can view the test results and detailed logs.

Tutorials

• Prerequisites

• Create a test suite definition

• Start a test suite run

Get a qualification report for a successful qualification test suite run 1465

AWS IoT Core Developer Guide

• Stop a test suite run (optional)

• View test suite run details and logs

• Download an AWS IoT qualification report

Prerequisites

To complete this tutorial, you need to create a thing and certificate.

Create a test suite definition

1. In the AWS IoT console, in the navigation pane, expand Test, Device Advisor and then choose
Test suites.

Choose Create Test Suite.

2. Select either Use the AWS Qualification test suite or Create a new test
suite.

For protocol, choose either MQTT 3.1.1 or MQTT 5.

Prerequisites 1466

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-create-thing-certificate
https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

Select Use the AWS Qualification test suite to qualify and list your device to the
AWS Partner Device Catalog. By choosing this option, test cases required for qualification of
your device to the AWS IoT Core qualification program are pre-selected. Test groups and test
cases can't be added or removed. You will still need to configure the test suite properties.

Select Create a new test suite to create and configure a custom test suite. We
recommend starting with this option for initial testing and troubleshooting. A custom test
suite must have at least one test group, and each test group must have at least one test case.
For the purpose of this tutorial, we'll select this option and choose Next.

Create a test suite definition 1467

AWS IoT Core Developer Guide

3. Choose Test suite properties. You must create the test suite properties when you create your
test suite.

Under Test suite properties, fill out the following:

• Test suite name: You can create the suite with a custom name.

Create a test suite definition 1468

AWS IoT Core Developer Guide

• Timeout (optional): The timeout in seconds for each test case in the current test suite. If you
don't specify a timeout value, the default value is used.

• Tags (optional): Add tags to the test suite.

When you've finished, choose Update properties.

4. To modify the group level configuration, under Test group 1, choose Edit. Then, enter a
Name to give the group a custom name.

Optionally, you can also enter a Timeout value in seconds under the selected test group. If you
don't specify a timeout value, the default value is used.

Create a test suite definition 1469

AWS IoT Core Developer Guide

Choose Done.

5. Drag one of the available test cases from Test cases into the test group.

6. To modify the test case level configuration for the test case that you added to your test group,
choose Edit. Then, enter a Name to give the group a custom name.

Optionally, you can also enter a Timeout value in seconds under the selected test group. If you
don't specify a timeout value, the default value is used.

Create a test suite definition 1470

AWS IoT Core Developer Guide

Choose Done.

Note

To add more test groups to the test suite, choose Add test group. Follow the preceding
steps to create and configure more test groups, or to add more test cases to one
or more test groups. Test groups and test cases can be reordered by choosing and
dragging a test case to the desired position. Device Advisor runs tests in the order in
which you define the test groups and test cases.

7. Choose Next.

8. In Step 3, configure a device role which Device Advisor will use to perform AWS IoT MQTT
actions on behalf of your test device.

If you selected MQTT Connect test case only in Step 2, the Connect action will be checked
automatically since that permission is required on device role to run this test suite. If you
selected other test cases, the corresponding required actions will be checked. Ensure that
the resource values values for each of the actions is provided. For example, for the Connect
action, provide the client id that your device will be connecting to the Device Advisor endpoint
with. You can provide multiple values by using commas to separate the values, and you can
provide prefix values using a wildcard (*) character as well. For example, to provide permission
to publish on any topic beginning with MyTopic, you can provide “MyTopic*” as the resource
value.

Create a test suite definition 1471

AWS IoT Core Developer Guide

If you already created a device role previously and would like to use that role, select Select an
existing role and choose your device role under Select role.

Configure your device role using one of the two provided options and choose Next.

9. In Step 4, make sure the configuration provided in each of the steps is accurate. To edit
configuration provided for a particular step, choose Edit for the corresponding step.

After you verify the configuration, choose Create test suite.

The test suite should be created successfully and you'll be redirected to the Test suites page
where you can view all the test suite that have been created.

If the test suite creation failed, make sure the test suite, test groups, test cases, and device role
have been configured according to the previous instructions.

Create a test suite definition 1472

AWS IoT Core Developer Guide

Start a test suite run

1. In the AWS IoT console, in the navigation pane, expand Test, Device Advisor, and then choose
Test suites.

2. Choose the test suite for which you'd like to view the test suite details.

The test suite detail page displays all of the information related to the test suite.

3. Choose Actions, then Run test suite.

4. Under Run configuration, you'll need to select an AWS IoT thing or certificate to test using
Device Advisor. If you don't have any existing things or certificates, first create AWS IoT Core
resources.

Start a test suite run 1473

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

In Test endpoint section, select the endpoint that best fits your case. If you plan to run
multiple test suites simultaneously using the same AWS account in the future, select Device-
level endpoint. Otherwise, if you plan to only run one test suite at a time, select Account-
level endpoint.

Configure your test device with the selected Device Advisor's test endpoint.

After you select a thing or certificate and choose a Device Advisor endpoint, choose Run test.

5. Choose Go to results on the top banner for viewing the test run details.

Start a test suite run 1474

AWS IoT Core Developer Guide

Stop a test suite run (optional)

1. In the AWS IoT console, in the navigation pane, expand Test, Device Advisor, and then choose
Test runs and results.

2. Choose the test suite in progress that you want to stop.

3. Choose Actions, then Stop test suite.

4. The cleanup process will take several minutes to complete. While the cleanup process runs, the
test run status will be STOPPING. Wait for the cleanup process to complete and for the test
suite status to change to the STOPPED status before starting a new suite run.

Stop a test suite run (optional) 1475

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

View test suite run details and logs

1. In the AWS IoT console, in the navigation pane, expand Test, Device Advisor and then choose
Test runs and results.

This page displays:

• Number of IoT things

• Number of IoT certificates

• Number of test suites currently running

• All the test suite runs that have been created

2. Choose the test suite for which you'd like to view the run details and logs.

View test suite run details and logs 1476

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

The run summary page displays the status of the current test suite run. This page
automatically refreshes every 10 seconds. We recommend that you have a mechanism built for
your device to try connecting to our test endpoint every five seconds for one to two minutes.
Then you can run multiple test cases in sequence in an automated manner.

3. To access the CloudWatch logs for the test suite run, choose Test suite log.

To access CloudWatch logs for any test case, choose Test case log.

4. Based on your test results, troubleshoot your device until all tests pass.

Download an AWS IoT qualification report

If you chose the Use the AWS IoT Qualification test suite option while creating a test suite and
were able to run a qualification test suite, you can download a qualification report by choosing
Download qualification report in the test run summary page.

Download an AWS IoT qualification report 1477

https://docs.aws.amazon.com/iot/latest/developerguide/iot_troubleshooting.html#device-advisor-troubleshooting

AWS IoT Core Developer Guide

Long duration tests console workflow

This tutorial helps you get started with the Long duration tests on Device Advisor using the
console. To complete the tutorial, follow the steps at Setting up.

1. In the AWS IoT console navigation pane, expand Test, then Device Advisor, then Test suites.
On the page, select Create long duration test suite.

2. On the Create test suite page, select Long duration test suite and choose Next.

For protocol, choose either MQTT 3.1.1 or MQTT 5.

Long duration tests console workflow 1478

https://console.aws.amazon.com/iot

AWS IoT Core Developer Guide

3. Do the following on the Configure test suite page:

a. Update the Test suite name field.

b. Update the Test group name field.

c. Choose the Device operations the device can perform. This will select the tests to run.

d. Select the Settings option.

Long duration tests console workflow 1479

AWS IoT Core Developer Guide

4. (Optional) Input the maximum amount of time Device Advisor must wait for the basic tests to
complete. Select Save.

5. Do the following in the Advanced tests and Additional settings sections.

a. Select or deselect the Advanced tests you want to run as part of this test.

b. Edit the configurations for the tests when applicable.

c. Configure the Additional execution time under the Additional settings section.

d. Choose Next to do the next step.

Long duration tests console workflow 1480

AWS IoT Core Developer Guide

6. In this step, Create a new role or Select an existing role. See Create an IAM role to use as your
device role for details.

7. Review all the configurations created until this step and select Create test suite.

Long duration tests console workflow 1481

AWS IoT Core Developer Guide

8. The created test suite is under the Test suites section. Select the suite to view details.

Long duration tests console workflow 1482

AWS IoT Core Developer Guide

9. To run the created test suite, select Actions then Run test suite.

10. Choose the configuration options in the Run configuration page.

a. Select the Things or Certificate to run the test on.

b. Select either the Account-level endpoint or Device-level endpoint.

c. Choose Run test to run the test.

Long duration tests console workflow 1483

AWS IoT Core Developer Guide

11. To view the results of the test suite run, select Test runs and results in the left navigation
pane. Choose the test suite that ran to view the details of the results.

12. The previous step brings up the test summary page. All the details of the test run are displayed
in this page. When the console prompts to start the device connection, connect your device to
the provided endpoint. The progress of the tests is seen on this page.

Long duration tests console workflow 1484

AWS IoT Core Developer Guide

13. The Long duration test provides an additional Test log summary on the side panel which
displays all the important events occurring between the device and the broker in near real
time. To view more in-depth detailed logs, click on Test case log.

Long duration tests console workflow 1485

AWS IoT Core Developer Guide

Device Advisor VPC endpoints (AWS PrivateLink)

You can establish a private connection between your VPC and the AWS IoT Core Device Advisor test
endpoint (data plane) by creating an interface VPC endpoint. You can use this endpoint to validate
AWS IoT devices for reliable and secure connectivity with AWS IoT Core before deploying devices
to production. Device Advisor's pre-built tests helps you validate your device software against best
practices for usage of TLS, MQTT, Device Shadow, and AWS IoT Jobs.

AWS PrivateLink powers the interface endpoints used with your IoT devices. This service helps
you access the AWS IoT Core Device Advisor test endpoint privately without an internet gateway,
NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC that send
TCP and MQTT packets don't need public IP addresses to communicate with AWS IoT Core Device
Advisor test endpoints. Traffic between your VPC and AWS IoT Core Device Advisor doesn't leave
AWS Cloud. Any TLS and MQTT communication between IoT devices and Device Advisor test cases
stay within the resources in your AWS account.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets.

To learn more about using interface VPC endpoints, see Interface VPC endpoints (AWS PrivateLink)
in the Amazon VPC User Guide.

Considerations for AWS IoT Core Device Advisor VPC endpoints

Review the interface endpoint properties and limitations in the Amazon VPC User Guide before
setting up interface VPC endpoints. Consider the following before you continue:

• AWS IoT Core Device Advisor currently supports making calls to Device Advisor test endpoint
(data plane) from your VPC. A message broker uses data plane communications to send and
receive data. It does this with the help of TLS and MQTT packets. VPC endpoints for AWS IoT
Core Device Advisor connect your AWS IoT device to Device Advisor test endpoints. Control plane
API actions aren't used by this VPC endpoint. To create or run a test suite or other control plane
APIs, use the console, an AWS SDK, or AWS Command Line Interface over the public internet.

• The following AWS Regions support VPC endpoints for AWS IoT Core Device Advisor:

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Tokyo)

• Europe (Ireland)

Device Advisor VPC endpoints (AWS PrivateLink) 1486

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
http://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotdeviceadvisor/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotdeviceadvisor/index.html

AWS IoT Core Developer Guide

• Device Advisor supports MQTT with X.509 client certificates and RSA server certificates.

• VPC endpoint policies aren't supported at this time.

• Check VPC endpoint prerequisites for instructions on how to create resources that connect VPC
endpoints. You must create a VPC and private subnets to use AWS IoT Core Device Advisor VPC
endpoints.

• There are quotas on your AWS PrivateLink resources. For more information, see AWS PrivateLink
quotas.

• VPC endpoints support only IPv4 traffic.

Create an interface VPC endpoint for AWS IoT Core Device Advisor

To get started with VPC endpoints, create an interface VPC endpoint. Next, select AWS IoT Core
Device Advisor as the AWS service. If you are using the AWS CLI, call describe-vpc-endpoint-
services to confirm that AWS IoT Core Device Advisor is present in an Availability Zone in your
AWS Region. Confirm that the security group attached to the endpoint allows TCP protocol
communication for MQTT and TLS traffic. For example, in the US East (N. Virginia) Region, use the
following command:

aws ec2 describe-vpc-endpoint-services --service-name com.amazonaws.us-
east-1.deviceadvisor.iot

You can create a VPC endpoint for AWS IoT Core using the following service name:

• com.amazonaws.region.deviceadvisor.iot

By default, private DNS is turned on for the endpoint. This ensures that use of the default test
endpoint stays within your private subnets. To get your account or device level endpoint, use the
console, AWS CLI or an AWS SDK. For example, if you run get-endpoint within a public subnet or
on the public internet, you can get your endpoint and use it to connect to Device Advisor. For more
information, see Accessing a service through an interface endpoint in the Amazon VPC User Guide.

To connect MQTT clients to the VPC endpoint interfaces, the AWS PrivateLink service creates DNS
records in a private hosted zone attached to your VPC. These DNS records direct the AWS IoT
device’s requests to the VPC endpoint.

Create an interface VPC endpoint for AWS IoT Core Device Advisor 1487

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#prerequisites-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-limits-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-limits-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoint-services.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-vpc-endpoint-services.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotdeviceadvisor/get-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

AWS IoT Core Developer Guide

Controlling access to AWS IoT Core Device Advisor over VPC endpoints

You can restrict device access to AWS IoT Core Device Advisor and allow access only through VPC
endpoints by using VPC condition context keys. AWS IoT Core supports the following VPC related
context keys:

• SourceVpc

• SourceVpce

• VPCSourcelp

Note

AWS IoT Core Device Advisor doesn't support VPC endpoint policies at this time.

The following policy grants permission to connect to AWS IoT Core Device Advisor using a client ID
that matches the thing name. It also publishes to any topic prefixed by the thing name. The policy
is conditional on the device connecting to a VPC endpoint with a particular VPC endpoint ID. This
policy denies connection attempts to your public AWS IoT Core Device Advisor test endpoint.

{
"Version": "2012-10-17",
 "Statement": [
 {
"Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:client/
${iot:Connection.Thing.ThingName}"
],
 "Condition": {
"StringEquals": {
"aws:SourceVpce": "vpce-1a2b3c4d"
 }
 }

 },
 {

Controlling access to AWS IoT Core Device Advisor over VPC endpoints 1488

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpc
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcevpce
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-vpcsourceip
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies

AWS IoT Core Developer Guide

"Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/
${iot:Connection.Thing.ThingName}/*"
]
 }
]
}

Device Advisor test cases

Device Advisor provides prebuilt tests in six categories.

• TLS

• MQTT

• Shadow

• Job execution

• Permissions and policies

• Long duration tests

Device Advisor test cases to qualify for the AWS Device Qualification
Program.

Your device must pass the following tests to qualify according to the AWS Device Qualification
Program.

Note

This is a revised list of the qualification tests.

• TLS Connect ("TLS Connect")

Device Advisor test cases 1489

https://aws.amazon.com/partners/programs/dqp/
https://aws.amazon.com/partners/programs/dqp/

AWS IoT Core Developer Guide

• TLS Incorrect Subject Name Server Cert ("Incorrect Subject Common Name (CN) / Subject
Alternative Name (SAN)")

• TLS Unsecure Server Cert ("Not Signed By Recognized CA")

• TLS Device Support for AWS IoT Cipher Suites ("TLS Device Support for AWS IoT recommended
Cipher Suites")

• TLS Receive Maximum Size Fragments("TLS Receive Maximum Size Fragments")

• TLS Expired Server Cert("Expired server certificate")

• TLS Large Size Server Cert("TLS large Size Server Certificate")

• MQTT Connect ("Device send CONNECT to AWS IoT Core (Happy case)")

• MQTT Subscribe ("Can Subscribe (Happy Case)")

• MQTT Publish ("QoS0 (Happy Case)")

• MQTT Connect Jitter Retries("Device connect retries with jitter backoff - No CONNACK response")

TLS

Use these tests to determine if the transport layer security protocol (TLS) between your devices
and AWS IoT is secure.

Note

Device Advisor now supports TLS 1.3.

Happy Path

TLS Connect

Validates if the device under test can complete the TLS handshake to AWS IoT. This test doesn't
validate the MQTT implementation of the client device.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. For best results, we recommend
a timeout value of 2 minutes.

TLS 1490

AWS IoT Core Developer Guide

"tests":[
 {
 "name":"my_tls_connect_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", //in seconds
 },
 "test":{
 "id":"TLS_Connect",
 "version":"0.0.0"
 }
 }
]

Example Test case outputs:

• Pass — The device under test completed TLS handshake with AWS IoT.

• Pass with warnings — The device under test completed TLS handshake with AWS IoT, but
there were TLS warning messages from the device or AWS IoT.

• Fail — The device under test failed to complete TLS handshake with AWS IoT due to
handshake error.

TLS Receive Maximum Size Fragments

This test case validates that your device can receive and process TLS maximum size fragments.
Your test device must subscribe to a pre-configured topic with QoS 1 to receive a large payload.
You can customize the payload with the configuration ${payload}.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. For best results, we recommend
a timeout value of 2 minutes.

"tests":[
 {
 "name":"TLS Receive Maximum Size Fragments",
 "configuration": {
 // optional:

TLS 1491

AWS IoT Core Developer Guide

 "EXECUTION_TIMEOUT":"300", //in seconds
 "PAYLOAD_FORMAT":"{"message":"${payload}"}", // A string with a placeholder
 ${payload}, or leave it empty to receive a plain string.
 "TRIGGER_TOPIC": "test_1" // A topic to which a device will subscribe, and
 to which a test case will publish a large payload.
 },
 "test":{
 "id":"TLS_Receive_Maximum_Size_Fragments",
 "version":"0.0.0"
 }
 }
]

Cipher Suites

TLS Device Support for AWS IoT recommended Cipher Suites

Validates that the cipher suites in the TLS Client Hello message from the device under test
contains the recommended AWS IoT cipher suites. It provides more insights into cipher suites
supported by the device.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_tls_support_aws_iot_cipher_suites_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"TLS_Support_AWS_IoT_Cipher_Suites",
 "version":"0.0.0"
 }
 }

TLS 1492

AWS IoT Core Developer Guide

]

Example Test case outputs:

• Pass — The device under test cipher suites contain at least one of the recommended AWS IoT
cipher suite and don't contain any unsupported cipher suites.

• Pass with warnings — The device cipher suites contain at least one AWS IoT cipher suite but:

1. It doesn't contain any of the recommended cipher suites

2. It contains cipher suites that aren't supported by AWS IoT.

We suggest that you verify that any unsupported cipher suites are safe.

• Fail — The device under test cipher suites doesn't contain any of the AWS IoT supported
cipher suites.

Larger Size Server Certificate

TLS large Size Server Certificate

Validates at your device can complete the TLS handshake with AWS IoT when it receives and
processes a larger size server certificate. The size of the server certificate (in bytes) used by
this test is larger than what is currently used in the TLS Connect test case and IoT Core by 20
During this test case, AWS IoT tests your device’s buffer space for TLS If the buffer space is
large enough, the TLS handshake ompletes without errors. This test esn't validate the MQTT
implementation of the device. The test case ds after the TLS handshake process completes.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. For best results, we recommend
a timeout value of 2 minutes. If this test case fails but the TLS Connect test case passes,
we recommend you increase your device’s buffer space limit for TLS Increasing the
buffer space limit sures that your device can process a larger size server certificate in
case the size increases.

"tests":[
 {

TLS 1493

AWS IoT Core Developer Guide

 "name":"my_tls_large_size_server_cert_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"TLS_Large_Size_Server_Cert",
 "version":"0.0.0"
 }
 }
]

Example Test case outputs:

• Pass — The device under test completed the TLS handshake with AWS IoT.

• Pass with warnings — The device under test completed the TLS handshake with AWS IoT, but
there are TLS warning messages either from the device or AWS IoT.

• Fail — The device under test failed to complete the TLS handshake with AWS IoT because of
an error during the handshake process.

TLS Unsecure Server Cert

Not Signed By Recognized CA

Validates that the device under test closes the connection if it's presented with a server
certificate without a valid signature from the ATS CA. A device should only connect to an
endpoint that presents a valid certificate.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_tls_unsecure_server_cert_test",
 "configuration": {

TLS 1494

AWS IoT Core Developer Guide

 // optional:
 "EXECUTION_TIMEOUT":"300", //in seconds
 },
 "test":{
 "id":"TLS_Unsecure_Server_Cert",
 "version":"0.0.0"
 }
 }
]

Example Test case outputs:

• Pass — The device under test closed the connection.

• Fail — The device under test completed TLS handshake with AWS IoT.

TLS Incorrect Subject Name Server Cert / Incorrect Subject Common Name (CN) / Subject
Alternative Name (SAN)

Validates that the device under test closes the connection if it's presented with a server
certificate for a domain name that is different than the one requested.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_tls_incorrect_subject_name_cert_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"TLS_Incorrect_Subject_Name_Server_Cert",
 "version":"0.0.0"
 }
 }
]

TLS 1495

AWS IoT Core Developer Guide

Example Test case outputs:

• Pass — The device under test closed the connection.

• Fail — The device under test completed the TLS handshake with AWS IoT.

TLS Expired Server Certificate

Expired server certificate

Validates that the device under test closes the connection if it's presented with an expired
server certificate.

Example API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_tls_expired_cert_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", //in seconds
 },
 "test":{
 "id":"TLS_Expired_Server_Cert",
 "version":"0.0.0"
 }
 }
]

Example Test case outputs:

• Pass — The device under test refuses to complete the TLS handshake with AWS IoT. The
device sends a TLS alert message before it closes the connection.

• Pass with warnings — The device under test refuses to complete the TLS handshake with
AWS IoT. However, it doesn’t send a TLS alert message before it closes the connection.

TLS 1496

AWS IoT Core Developer Guide

• Fail — The device under test completes the TLS handshake with AWS IoT.

MQTT

CONNECT, DISCONNECT, and RECONNECT

"Device send CONNECT to AWS IoT Core (Happy case)"

Validates that the device under test sends a CONNECT request.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_mqtt_connect_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"MQTT_Connect",
 "version":"0.0.0"
 }
 }
]

"Device can return PUBACK to an arbitrary topic for QoS1"

This test case will check if the device (client) can return a PUBACK message if it received a
publish message from the broker after subscribing to a topic with QoS1.

The payload content and the payload size are configurable for this test case. If the payload
size is configured, Device Advisor will overwrite the value for the payload content, and send a
predefined payload to the device with the desired size. The payload size is a value between 0 to

MQTT 1497

AWS IoT Core Developer Guide

128 and cannot exceed 128 KB. AWS IoT Core rejects publish and connect requests larger than
128 KB, as seen in the AWS IoT Core message broker and protocol limits and quotas page.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout
value of 2 minutes. PAYLOAD_SIZE can be configured to a value between 0 and 128
kilobytes. Defining a payload size overrides the payload content as Device Advisor will
be sending a pre-defined payload with the given size back to the device.

"tests":[
{
 "name":"my_mqtt_client_puback_qos1",
 "configuration": {
 // optional:"TRIGGER_TOPIC": "myTopic",
 "EXECUTION_TIMEOUT":"300", // in seconds
 "PAYLOAD_FOR_PUBLISH_VALIDATION":"custom payload",
 "PAYLOAD_SIZE":"100" // in kilobytes
 },
 "test": {
 "id": "MQTT_Client_Puback_QoS1",
 "version": "0.0.0"
 }
 }
]

"Device connect retries with jitter backoff - No CONNACK response"

Validates that the device under test uses the proper jitter backoff when reconnecting with
the broker for at least five times. The broker logs the timestamp of the device under test's
CONNECT request, performs packet validation, pauses without sending a CONNACK to
the device under test, and waits for the device under test to resend the request. The sixth
connection attempt is allowed to pass through and CONNACK is allowed to flow back to the
device under test.

The preceding process is performed again. In total, this test case requires the device to connect
at least 12 times in total. The collected timestamps are used to validate that jitter backoff is

MQTT 1498

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Core Developer Guide

used by the device under test. If the device under test has a strictly exponential backoff delay,
this test case will pass with warnings.

We recommend implementation of the Exponential Backoff And Jitter mechanism on the device
under test to pass this test case.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 4 minutes.

"tests":[
 {
 "name":"my_mqtt_jitter_backoff_retries_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"MQTT_Connect_Jitter_Backoff_Retries",
 "version":"0.0.0"
 }
 }
]

"Device connect retries with exponential backoff - No CONNACK response"

Validates that the device under test uses the proper exponential backoff when reconnecting
with the broker for at least five times. The broker logs the timestamp of the device under
test's CONNECT request, performs packet validation, pauses without sending a CONNACK
to the client device, and waits for the device under test to resend the request. The collected
timestamps are used to validate that an exponential backoff is used by the device under test.

We recommend implementation of the Exponential Backoff And Jitter mechanism on the device
under test to pass this test case.

API test case definition:

MQTT 1499

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS IoT Core Developer Guide

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 4 minutes.

"tests":[
 {
 "name":"my_mqtt_exponential_backoff_retries_test",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"600", // in seconds
 },
 "test":{
 "id":"MQTT_Connect_Exponential_Backoff_Retries",
 "version":"0.0.0"
 }
 }
]

"Device re-connect with jitter backoff - After server disconnect"

Validates if a device under test uses necessary jitter and backoff while reconnecting after it's
been disconnected from the server. Device Advisor disconnects the device from the server for at
least five times and observes the device's behavior for MQTT reconnection. Device Advisor logs
the timestamp of the CONNECT request for the device under test, performs packet validation,
pauses without sending a CONNACK to the client device, and waits for the device under test to
resend the request. The collected timestamps are used to validate that the device under test
uses jitter and backoff while reconnecting. If the device under test has a strictly exponential
backoff or doesn't implement a proper jitter backoff mechanism, this test case will pass with
warnings. If the device under test has implemented either a linear backoff or a constant backoff
mechanism, the test will fail.

To pass this test case, we recommend implementing the Exponential Backoff And Jitter
mechanism on the device under test.

API test case definition:

MQTT 1500

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS IoT Core Developer Guide

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 4 minutes.
The number of reconnection attempts to validate for backoff can be changed by
specifying the RECONNECTION_ATTEMPTS. The number must be between 5 and 10. The
default value is 5.

"tests":[
 {
 "name":"my_mqtt_reconnect_backoff_retries_on_server_disconnect",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "RECONNECTION_ATTEMPTS": 5
 },
 "test":{
 "id":"MQTT_Reconnect_Backoff_Retries_On_Server_Disconnect",
 "version":"0.0.0"
 }
 }
]

"Device re-connect with jitter backoff - On unstable connection"

Validates if a device under test uses necessary jitter and backoff while reconnecting on an
unstable connection. Device Advisor disconnects the device from the server after five successful
connections, and observes the device's behavior for MQTT reconnection. Device Advisor logs
the timestamp of the CONNECT request for the device under test, performs packet validation,
sends back CONNACK, disconnects, log the timestamp of the disconnection, and waits for the
device under test to resend the request. The collected timestamps are used to validate that
the device under test uses jitter and backoff while reconnecting after successful but unstable
connections. If the device under test has a strictly exponential backoff or doesn't implement a
proper jitter backoff mechanism, this test case will pass with warnings. If the device under test
has implemented either a linear backoff or a constant backoff mechanism, the test will fail.

To pass this test case, we recommend implementing the Exponential Backoff And Jitter
mechanism on the device under test.

MQTT 1501

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS IoT Core Developer Guide

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 4 minutes.
The number of reconnection attempts to validate for backoff can be changed by
specifying the RECONNECTION_ATTEMPTS. The number must be between 5 and 10. The
default value is 5.

"tests":[
 {
 "name":"my_mqtt_reconnect_backoff_retries_on_unstable_connection",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "RECONNECTION_ATTEMPTS": 5
 },
 "test":{
 "id":"MQTT_Reconnect_Backoff_Retries_On_Unstable_Connection",
 "version":"0.0.0"
 }
 }
]

Publish

"QoS0 (Happy Case)"

Validates that the device under test publishes a message with QoS0 or QoS1. You can also
validate the topic of the message and payload by specifying the topic value and payload in the
test settings.

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

MQTT 1502

AWS IoT Core Developer Guide

"tests":[
 {
 "name":"my_mqtt_publish_test",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "TOPIC_FOR_PUBLISH_VALIDATION": "my_TOPIC_FOR_PUBLISH_VALIDATION",
 "PAYLOAD_FOR_PUBLISH_VALIDATION": "my_PAYLOAD_FOR_PUBLISH_VALIDATION",
 },
 "test":{
 "id":"MQTT_Publish",
 "version":"0.0.0"
 }
 }
]

"QoS1 publish retry - No PUBACK"

Validates that the device under test republishes a message sent with QoS1, if the broker doesn't
send PUBACK. You can also validate the topic of the message by specifying this topic in the test
settings. The client device must not disconnect before republishing the message. This test also
validates that the republished message has the same packet identifier as the original. During
the test execution, if the device loses connection and reconnects, the test case will reset without
failing and the device has to perform the test case steps again.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. It is recommended for at least 4
minutes.

"tests":[
 {
 "name":"my_mqtt_publish_retry_test",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "TOPIC_FOR_PUBLISH_VALIDATION": "my_TOPIC_FOR_PUBLISH_VALIDATION",
 "PAYLOAD_FOR_PUBLISH_VALIDATION": "my_PAYLOAD_FOR_PUBLISH_VALIDATION",

MQTT 1503

AWS IoT Core Developer Guide

 },
 "test":{
 "id":"MQTT_Publish_Retry_No_Puback",
 "version":"0.0.0"
 }
 }
]

"Publish Retained messages"

Validates that the device under test publishes a message with retainFlag set to true. You can
validate the topic and payload of the message by setting the topic value and payload in the test
settings. If the retainFlag sent within the PUBLISH packet is not set to true, the test case will
fail.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes. To run this test case, add the iot:RetainPublish action in your device
role.

"tests":[
 {
 "name":"my_mqtt_publish_retained_messages_test",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds

 "TOPIC_FOR_PUBLISH_RETAINED_VALIDATION": "my_TOPIC_FOR_PUBLISH_RETAINED_VALIDATION",

 "PAYLOAD_FOR_PUBLISH_RETAINED_VALIDATION": "my_PAYLOAD_FOR_PUBLISH_RETAINED_VALIDATION",
 },
 "test":{
 "id":"MQTT_Publish_Retained_Messages",
 "version":"0.0.0"
 }
 }
]

MQTT 1504

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-iam-role
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-iam-role

AWS IoT Core Developer Guide

"Publish with User Property"

Validates that the device under test publishes a message with the correct user property. You
can validate the user property by setting the name-value pair in the test settings. If the user
property is not provided or doesn't match, the test case fails.

API test case definition:

Note

This is a MQTT5 only test case.
EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_mqtt_user_property_test",
 "test":{
 "USER_PROPERTIES": [
 {"name": "name1", "value":"value1"},
 {"name": "name2", "value":"value2"}
],
 "EXECUTION_TIMEOUT":"300", // in seconds
 },
 "test":{
 "id":"MQTT_Publish_User_Property",
 "version":"0.0.0"
 }
 }
]

Subscribe

"Can Subscribe (Happy Case)"

Validates that the device under test subscribes to MQTT topics. You can also validate the topic
that the device under test subscribes to by specifying this topic in the test settings.

API test case definition:

MQTT 1505

AWS IoT Core Developer Guide

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_mqtt_subscribe_test",
 "configuration":{
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "TOPIC_LIST_FOR_SUBSCRIPTION_VALIDATION":
["my_TOPIC_FOR_PUBLISH_VALIDATION_a","my_TOPIC_FOR_PUBLISH_VALIDATION_b"]
 },
 "test":{
 "id":"MQTT_Subscribe",
 "version":"0.0.0"
 }
 }
]

"Subscribe Retry - No SUBACK"

Validates that the device under test retries a failed subscription to MQTT topics. The server then
waits and doesn't send a SUBACK. If the client device doesn't retry the subscription, the test
fails. The client device must retry the failed subscription with the same packet Id. You can also
validate the topic that the device under test subscribes to by specifying this topic in the test
settings. During the test execution, if the device loses connection and reconnects, the test case
will reset without failing and the device has to perform the test case steps again.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 4 minutes.

"tests":[

MQTT 1506

AWS IoT Core Developer Guide

 {
 "name":"my_mqtt_subscribe_retry_test",
 "configuration":{
 "EXECUTION_TIMEOUT":"300", // in seconds
 // optional:
 "TOPIC_LIST_FOR_SUBSCRIPTION_VALIDATION":
["myTOPIC_FOR_PUBLISH_VALIDATION_a","my_TOPIC_FOR_PUBLISH_VALIDATION_b"]
 },
 "test":{
 "id":"MQTT_Subscribe_Retry_No_Suback",
 "version":"0.0.0"
 }
 }
]

Keep-Alive

"Mqtt No Ack PingResp"

This test case validates if the device under test disconnects when it doesn't receive a ping
response. As part of this test case, Device Advisor blocks responses sent from AWS IoT Core for
publish, subscribe, and ping requests. It also validates if the device under test disconnects the
MQTT connection.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout
greater than 1.5 times the keepAliveTime value.
The maximum keepAliveTime must be no greater than 230 seconds for this test.

"tests":[
 {
 "name":"Mqtt No Ack PingResp",
 "configuration":
 //optional:
 "EXECUTION_TIMEOUT":"306", // in seconds
 },

MQTT 1507

AWS IoT Core Developer Guide

 "test":{
 "id":"MQTT_No_Ack_PingResp",
 "version":"0.0.0"
 }
 }
]

Persistent Session

"Persistent Session (Happy Case)"

This test case validates the device behavior when disconnected from a persistent session. The
test case checks if the device can reconnect, resume the subscriptions to its trigger topics
without explicitly re-subscribing, receive the stored messages in the topics, and work as
expected during a persistent session. When this test case passes, it indicates that the client
device is able to maintain a persistent session with the AWS IoT Core broker in an expected
manner. For more information on AWS IoT Persistent Sessions, see Using MQTT persistent
sessions .

In this test case, the client device is expected to CONNECT with the AWS IoT Core with a clean
session flag set to false, and then subscribe to a trigger topic. After a successful subscription,
the device will be disconnected by AWS IoT Core Device Advisor. While the device is in a
disconnected state, a QoS 1 message payload will be stored in that topic. Device Advisor will
then allow the client device to re-connect with the test endpoint. At this point, since there
is a persistent session, the client device is expected to resume its topic subscriptions without
sending any additional SUBSCRIBE packets and receive the QoS 1 message from the broker.
After re-connecting, if the client device re-subscribes to its trigger topic again by sending an
additional SUBSCRIBE packet and/or if the client fails to receive the stored message from the
trigger topic, the test case will fail.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout
value of at least 4 minutes. In the first connection, client device needs to explicitly
subscribe to a TRIGGER_TOPIC which was not subscribed before. To pass the test case,
client device must successfully subscribe to TRIGGER_TOPIC with a QoS 1. After re-
connecting, the client device is expected to understand that there is an active persistent

MQTT 1508

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-persistent-sessions
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-persistent-sessions

AWS IoT Core Developer Guide

session; so it should accept the stored message sent by the trigger topic and return
PUBACK for that specific message.

"tests":[
 {
 "name":"my_mqtt_persistent_session_happy_case",
 "configuration":{
 //required:
 "TRIGGER_TOPIC": "myTrigger/topic",
 // optional:
 // if Payload not provided, a string will be stored in the trigger topic to
 be sent back to the client device
 "PAYLOAD": "The message which should be received from AWS IoT Broker after
 re-connecting to a persistent session from the specified trigger topic.",

 "EXECUTION_TIMEOUT":"300" // in seconds
 },
 "test":{
 "id":"MQTT_Persistent_Session_Happy_Case",
 "version":"0.0.0"
 }
 }
]

"Persistent Session - Session Expiry"

This test case helps to validate device behavior when a disconnected device reconnects to an
expired persistent session. After the session expires, we expect the device to resubscribe to the
topics previously subscribed to by explicitly sending a new SUBSCRIBE packet.

During the first connection, we expect the test device to CONNECT with the AWS IoT broker,
as its CleanSession flag is set to false to initiate a persistent session. The device should then
subscribe to a trigger topic. Then the device is disconnected by AWS IoT Core Device Advisor,
after a successful subscription and initiation of a persistent session. After the disconnection,
AWS IoT Core Device Advisor allows the test device to re-connect back with the test endpoint.
At this point, when the test device sends another CONNECT packet, AWS IoT Core Device
Advisor sends back a CONNACK packet that indicates that the persistent session is expired. The
test device needs to interpret this packet properly, and it is expected to re-subscribe to the
same trigger topic again as the persistent session is terminated. If the test device does not re-

MQTT 1509

AWS IoT Core Developer Guide

subscribe to its topic trigger again, the test case fails. For the test to pass, the device needs to
understand that the persistent session is over, and send back a new SUBSCRIBE packet for the
same trigger topic in the second connection.

If this test case passes for a test device, it indicates that the device is able to handle re-
connection on expiry of persistent session in an expected way.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of at least 4 minutes. The test device needs to explicitly subscribe to a TRIGGER_TOPIC,
to which it was not subscribed before. To pass the test case, the test device must send
a CONNECT packet with CleanSession flag set to false, and successfully subscribe
to a trigger topic with a QoS 1. After a successful connection, AWS IoT Core Device
Advisor disconnects the device. After the disconnection, AWS IoT Core Device Advisor
allows the device to re-connect back, and the device is expected to re-subscribe to the
same TRIGGER_TOPIC since AWS IoT Core Device Advisor would have terminated the
persistent session.

"tests":[
 {
 "name":"my_expired_persistent_session_test",
 "configuration":{
 //required:
 "TRIGGER_TOPIC": "myTrigger/topic",
 // optional:
 "EXECUTION_TIMEOUT":"300" // in seconds
 },
 "test":{
 "id":"MQTT_Expired_Persistent_Session",
 "version":"0.0.0"
 }
 }
]

MQTT 1510

AWS IoT Core Developer Guide

Shadow

Use these tests to verify your devices under test use AWS IoT Device Shadow service correctly. See
AWS IoT Device Shadow service for more information. If these test cases are configured in your test
suite, then providing a thing is required when starting the suite run.

MQTT over WebSocket is not supported at this time.

Publish

"Device publishes state after it connects (Happy case)"

Validates if a device can publish its state after it connects to AWS IoT Core

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_shadow_publish_reported_state",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "SHADOW_NAME": "SHADOW_NAME",
 "REPORTED_STATE": {
 "STATE_ATTRIBUTE": "STATE_VALUE"
 }
 },
 "test":{
 "id":"Shadow_Publish_Reported_State",
 "version":"0.0.0"
 }
 }
]

The REPORTED_STATE can be provided for additional validation on your device's exact shadow
state, after it connects. By default, this test case validates your device publishing state.

Shadow 1511

AWS IoT Core Developer Guide

If SHADOW_NAME is not provided, the test case looks for messages published to topic prefixes of
the Unnamed (classic) shadow type by default. Provide a shadow name if your device uses the
named shadow type. See Using shadows in devices for more information.

Update

"Device updates reported state to desired state (Happy case)"

Validates if your device reads all update messages received and synchronizes the device's
state to match the desired state properties. Your device should publish its latest reported
state after synchronizing. If your device already has an existing shadow before running
the test, make sure the desired state configured for the test case and the existing
reported state do not already match. You can identify Shadow update messages sent by
Device Advisor by looking at the ClientToken field in the Shadow document as it will be
DeviceAdvisorShadowTestCaseSetup.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 2 minutes.

"tests":[
 {
 "name":"my_shadow_update_reported_state",
 "configuration": {
 "DESIRED_STATE": {
 "STATE_ATTRIBUTE": "STATE_VALUE"
 },
 // optional:
 "EXECUTION_TIMEOUT":"300", // in seconds
 "SHADOW_NAME": "SHADOW_NAME"
 },
 "test":{
 "id":"Shadow_Update_Reported_State",
 "version":"0.0.0"
 }
 }

Shadow 1512

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-comms-device.html

AWS IoT Core Developer Guide

]

The DESIRED_STATE should have at least one attribute and associated value.

If SHADOW_NAME is not provided, then the test case looks for messages published to topic
prefixes of the Unnamed (classic) shadow type by default. Provide a shadow name if your device
uses the named shadow type. See Using shadows in devices for more information.

Job Execution

"Device can complete a job execution"

This test case helps you validate if your device is able to receive updates using AWS IoT Jobs,
and publish the status of successful updates. For more information on AWS IoT Jobs, see Jobs.

To successfully run this test case, there are two reserved AWS topics that you need to grant
your Device Role . To subscribe to job activity related messages, use the notify and notify-next
topics. Your device role must grant PUBLISH action for the following topics:

• $aws/things/thingName/jobs/jobId/get

• $aws/things/thingName/jobs/jobId/update

It is recommended to grant SUBSCRIBE and RECEIVE actions for the following topics:

• $aws/things/thingName/jobs/get/accepted

• $aws/things/thingName/jobs/jobId/get/rejected

• $aws/things/thingName/jobs/jobId/update/accepted

• $aws/things/thingName/jobs/jobId/update/rejected

It is recommended to grant SUBSCRIBE action for the following topic:

• $aws/things/thingName/jobs/notify-next

For more information about these reserved topics, see reserved topics for AWS IoT Jobs.

MQTT over WebSocket is not supported at this time.

API test case definition:

Job Execution 1513

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-comms-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-iam-role
https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-job

AWS IoT Core Developer Guide

Note

EXECUTION_TIMEOUT has a default value of 5 minutes. We recommend a timeout value
of 3 minutes. Depending on the AWS IoT Job document or source provided, adjust the
timeout value (for example, if a job will take a long time to run, define a longer timeout
value for the test case). To run the test, either a valid AWS IoT Job document or an
already existing job ID is required. An AWS IoT Job document can be provided as a JSON
document or an S3 link. If a job document is provided, providing a job ID is optional. If
a job ID is provided, Device Advisor will use that ID while creating the AWS IoT Job on
your behalf. If the job document is not provided, you can provide an existing ID that is
in the same region as you are running the test case. In this case, Device Advisor will use
that AWS IoT Job while running the test case.

"tests": [
 {
 "name":"my_job_execution",
 "configuration": {
 // optional:
 // Test case will create a job task by using either JOB_DOCUMENT or
 JOB_DOCUMENT_SOURCE.
 // If you manage the job task on your own, leave it empty and provide the
 JOB_JOBID (self-managed job task).
 // JOB_DOCUMENT is a JSON formatted string
 "JOB_DOCUMENT": "{
 \"operation\":\"reboot\",
 \"files\" : {
 \"fileName\" : \"install.py\",
 \"url\" : \"${aws:iot:s3-presigned-url:https://s3.amazonaws.com/
bucket-name/key}\"
 }
 }",
 // JOB_DOCUMENT_SOURCE is an S3 link to the job document. It will be used
 only if JOB_DOCUMENT is not provided.
 "JOB_DOCUMENT_SOURCE": "https://s3.amazonaws.com/bucket-name/key",
 // JOB_JOBID is mandatory, only if neither document nor document source is
 provided. (Test case needs to know the self-managed job task id).
 "JOB_JOBID": "String",
 // JOB_PRESIGN_ROLE_ARN is used for the presign Url, which will replace the
 placeholder in the JOB_DOCUMENT field
 "JOB_PRESIGN_ROLE_ARN": "String",

Job Execution 1514

AWS IoT Core Developer Guide

 // Presigned Url expiration time. It must be between 60 and 3600 seconds,
 with the default value being 3600.
 "JOB_PRESIGN_EXPIRES_IN_SEC": "Long"
 "EXECUTION_TIMEOUT": "300", // in seconds
 },
 "test": {
 "id": "Job_Execution",
 "version": "0.0.0"
 }
 }
]

For more information on creating and using job documents see job document.

Permissions and policies

You can use the following tests to determine if the policies attached to your devices’ certificates
follow standard best practices.

MQTT over WebSocket is not supported at this time.

"Device certificate attached policies don’t contain wildcards"

Validates if the permission policies associated with a device follow best practices and do not
grant the device more permissions than needed.

API test case definition:

Note

EXECUTION_TIMEOUT has a default value of 1 minute. We recommend setting a
timeout of at least 30 seconds.

"tests":[
 {
 "name":"my_security_device_policies",
 "configuration": {
 // optional:
 "EXECUTION_TIMEOUT":"60" // in seconds

Permissions and policies 1515

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

AWS IoT Core Developer Guide

 },
 "test": {
 "id": "Security_Device_Policies",
 "version": "0.0.0"
 }
 }
]

Long duration tests

Long duration tests is a new test suite that monitors a device's behavior when it operates over
longer periods of time. Compared to running individual tests that focus on specific behaviors of a
device, the long duration test examines the device's behavior in a variety of real-world scenarios
over the device's lifespan. Device Advisor orchestrates the tests in the most efficient possible order.
The test generates results and logs, including a summary log with useful metrics about the device's
performance while under test.

MQTT long duration test case

In the MQTT long duration test case, the device's behavior is initially observed in happy case
scenarios such as MQTT Connect, Subscribe, Publish, and Reconnect. Then, the device is observed
in multiple, complex failure scenarios such as MQTT Reconnect Backoff, Long Server Disconnect,
and Intermittent Connectivity.

MQTT long duration test case execution flow

There are three phases in the execution of a MQTT long duration test case:

Long duration tests 1516

AWS IoT Core Developer Guide

Long duration tests 1517

AWS IoT Core Developer Guide

Basic tests execution

In this phase, the test case runs simple tests in parallel. The test validates if the device has the
operations selected in the configuration.

The set of basic tests can include the following, based on the operations selected:

CONNECT

This scenario validates if the device is able to make a successful connection with the broker.

PUBLISH

This scenario validates if the device successfully publishes against the broker.

QoS 0

This test case validates if the device successfully sends a PUBLISH message to the broker during a
publish with QoS 0. The test does not wait on the PUBACK message to be received by the device.

Long duration tests 1518

AWS IoT Core Developer Guide

QoS 1

In this test case, the device is expected to send two PUBLISH messages to the broker with QoS 1.
After the first PUBLISH message, the broker waits for up to 15 seconds before it responds. The
device must retry the original PUBLISH message with the same packet identifier within the 15
second window. If it does, the broker responds with a PUBACK message and the test validates. If
the device doesn't retry the PUBLISH, the original PUBACK is sent to the device and the test is
marked as Pass with warnings, along with a system message. During the test execution, if the
device loses connection and reconnects, the test scenario will reset without failing and the device
has to perform the test scenario steps again.

Long duration tests 1519

AWS IoT Core Developer Guide

SUBSCRIBE

This scenario validates if the device successfully subscribes against the broker.

QoS 0

This test case validates if the device successfully sends a SUBSCRIBE message to the broker during
a subscribe with QoS 0. The test doesn't wait for the device to receive a SUBACK message.

Long duration tests 1520

AWS IoT Core Developer Guide

QoS 1

In this test case, the device is expected to send two SUBSCRIBE messages to the broker with QoS
1. After the first SUBSCRIBE message, the broker waits for up to 15 seconds before it responds.
The device must retry the original SUBSCRIBE message with the same packet identifier within the
15 second window. If it does, the broker responds with a SUBACK message and the test validates.
If the device doesn't retry the SUBSCRIBE, the original SUBACK is sent to the device and the test
is marked as Pass with warnings, along with a system message. During the test execution, if the
device loses connection and reconnects, the test scenario will reset without failing and the device
has to perform the test scenario steps again.

Long duration tests 1521

AWS IoT Core Developer Guide

RECONNECT

This scenario validates if the device successfully reconnects with the broker after the device
is disconnected from a successful connection. Device Advisor won't disconnect the device if it
connected more than once previously during the test suite. Instead, it will mark the test as Pass.

Long duration tests 1522

AWS IoT Core Developer Guide

Advanced tests execution

In this phase, the test case runs more complex tests in serial to validate if the device follows best
practices. These advanced tests are available for selection and can be opted out if not required.
Each advanced test has its own timeout value based on what the scenario demands.

RETURN PUBACK ON QoS 1 SUBSCRIPTION

Note

Only select this scenario if your device is capable of performing QoS 1 subscriptions.

This scenario validates if, after the device subscribes to a topic and receives a PUBLISH message
from the broker, it returns a PUBACK message.

Long duration tests 1523

AWS IoT Core Developer Guide

RECEIVE LARGE PAYLOAD

Note

Select this scenario only if your device is capable of performing QoS 1 subscriptions.

This scenario validates if the device responds with a PUBACK message after receiving a PUBLISH
message from the broker for a QoS 1 topic with a large payload. The format of the expected
payload can be configured using the LONG_PAYLOAD_FORMAT option.

Long duration tests 1524

AWS IoT Core Developer Guide

PERSISTENT SESSION

Note

Select this scenario only if your device is capable of performing QoS 1 subscriptions and
can maintain a persistent session.

This scenario validates the device behavior in maintaining persistent sessions. The test validates
when the following conditions are met:

• The device connects to the broker with an active QoS 1 subscription and persistent sessions
enabled.

• The device successfully disconnects from the broker during the session.

• The device reconnects to the broker and resumes subscriptions to its trigger topics without
explicitly resubscribing to those topics.

• The device successfully receives messages stored by the broker for its subscribed topics and runs
as expected.

For more information on AWS IoT Persistent Sessions, see Using MQTT persistent sessions.

Long duration tests 1525

https://docs.aws.amazon.com//iot/latest/developerguide/mqtt.html#mqtt-persistent-sessions

AWS IoT Core Developer Guide

KEEP ALIVE

This scenario validates if the device successfully disconnects after it doesn't receive a ping response
from the broker. The connection must have a valid keep-alive timer configured. As part of this test,
the broker blocks all responses sent for PUBLISH, SUBSCRIBE, and PINGREQ messages. It also
validates if the device under test disconnects the MQTT connection.

Long duration tests 1526

AWS IoT Core Developer Guide

INTERMITTENT CONNECTIVITY

This scenario validates if the device can connect back to the broker after the broker disconnects the
device at random intervals for a random period of time.

Long duration tests 1527

AWS IoT Core Developer Guide

RECONNECT BACKOFF

This scenario validates if the device has a backoff mechanism implemented when the
broker disconnects from it multiple times. Device Advisor reports the backoff type as
exponential, jitter, linear or constant. The number of backoff attempts is configurable using the
BACKOFF_CONNECTION_ATTEMPTS option. The default value is 5. The value is configurable
between 5 and 10.

To pass this test, we recommend implementing the Exponential Backoff And Jitter mechanism on
the device under test.

Long duration tests 1528

http://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS IoT Core Developer Guide

LONG SERVER DISCONNECT

This scenario validates if the device can successfully reconnect after the broker disconnects the
device for a long period of time (up to 120 minutes). The time for server disconnection can be
configured using the LONG_SERVER_DISCONNECT_TIME option. The default value is 120 minutes.
This value is configurable from 30 to 120 minutes.

Long duration tests 1529

AWS IoT Core Developer Guide

Additional execution time

The additional execution time is the time the test waits after completing all the above tests
and before ending the test case. Customers use this additional time period to monitor and log
all communications between the device and the broker. The additional execution time can be
configured using the ADDITIONAL_EXECUTION_TIME option. By default, this option is set to 0
minutes and can be 0 to 120 minutes.

MQTT long duration test configuration options

All configuration options provided for the MQTT long duration test are optional. The following
options are available:

Long duration tests 1530

AWS IoT Core Developer Guide

OPERATIONS

The list of operations that the device performs, such as CONNECT, PUBLISH and SUBSCRIBE.
The test case runs scenarios based on the specified operations. Operations that aren't specified
are assumed valid.

{
"OPERATIONS": ["PUBLISH", "SUBSCRIBE"]
//by default the test assumes device can CONNECT
}

SCENARIOS

Based on the operations selected, the test case runs scenarios to validate the device's behavior.
There are two types of scenarios:

• Basic Scenarios are simple tests that validate if the device can perform the operations
selected above as part of the configuration. These are pre-selected based on the operations
specified in the configuration. No more input is required in the configuration.

• Advanced Scenarios are more complex scenarios that are performed against the device to
validate if the device follows best practices when met with real world conditions. These are
optional and can be passed as an array of scenarios to the configuration input of the test
suite.

{
 "SCENARIOS": [// list of advanced scenarios
 "PUBACK_QOS_1",
 "RECEIVE_LARGE_PAYLOAD",
 "PERSISTENT_SESSION",
 "KEEP_ALIVE",
 "INTERMITTENT_CONNECTIVITY",
 "RECONNECT_BACK_OFF",
 "LONG_SERVER_DISCONNECT"
]
}

BASIC_TESTS_EXECUTION_TIME_OUT:

The maximum time the test case will wait for all the basic tests to complete. The default value
is 60 minutes. This value is configurable from 30 to 120 minutes.

Long duration tests 1531

AWS IoT Core Developer Guide

LONG_SERVER_DISCONNECT_TIME:

The time taken for the test case to disconnect and reconnect the device during the Long Server
Disconnect test. The default value is 60 minutes. This value is configurable from 30 to 120
minutes.

ADDITIONAL_EXECUTION_TIME:

Configuring this option provides a time window after all the tests are completed, to monitor
events between the device and broker. The default value is 0 minutes. This value is configurable
from 0 to 120 minutes.

BACKOFF_CONNECTION_ATTEMPTS:

This option configures the number of times the device is disconnected by the test case. This is
used by the Reconnect Backoff test. The default value is 5 attempts. This value is configurable
from 5 to 10.

LONG_PAYLOAD_FORMAT:

The format of the message payload that the device expects when the test case publishes to a
QoS 1 topic subscribed by the device.

API test case definition:

{
"tests":[
 {
 "name":"my_mqtt_long_duration_test",
 "configuration": {
 // optional
 "OPERATIONS": ["PUBLISH", "SUBSCRIBE"],
 "SCENARIOS": [
 "LONG_SERVER_DISCONNECT",
 "RECONNECT_BACK_OFF",
 "KEEP_ALIVE",
 "RECEIVE_LARGE_PAYLOAD",
 "INTERMITTENT_CONNECTIVITY",
 "PERSISTENT_SESSION",
],
 "BASIC_TESTS_EXECUTION_TIMEOUT": 60, // in minutes (60 minutes by default)
 "LONG_SERVER_DISCONNECT_TIME": 60, // in minutes (120 minutes by default)
 "ADDITIONAL_EXECUTION_TIME": 60, // in minutes (0 minutes by default)

Long duration tests 1532

AWS IoT Core Developer Guide

 "BACKOFF_CONNECTION_ATTEMPTS": "5",
 "LONG_PAYLOAD_FORMAT":"{"message":"${payload}"}"
 },
 "test":{
 "id":"MQTT_Long_Duration",
 "version":"0.0.0"
 }
 }
]
}

MQTT long duration test case summary log

The MQTT long duration test case runs for longer duration than regular test cases. A separate
summary log is provided, which lists important events such as device connections, publish, and
subscribe during the run. Details include what was tested, what was not tested and what failed.
At the end of the log, the test includes a summary of all the events that happened during the test
case run. This includes:

• Keep Alive timer configured on the device.

• Persistent session flag configured on the device.

• The number of device connections during the test run.

• The device reconnection backoff type, if validated for the reconnect backoff test.

• The topics the device published to, during the test case run.

• The topics the device subscribed to, during the test case run.

Long duration tests 1533

AWS IoT Core Developer Guide

AWS IoT Device Management Software Package Catalog

With AWS IoT Device Management Software Package Catalog, you can maintain an inventory of
software packages and their versions. You can associate package versions to individual things and
AWS IoT dynamic thing groups, and deploy them through in-house processes or AWS IoT jobs.

A software package contains one or more package versions, which is a collection of files that can
be deployed as a single unit. Package versions can contain firmware, operating system updates,
device applications, configurations, and security patches. As the software evolves over time, you
can create a new package version and deploy it to your fleet.

The AWS IoT software package hub is located within AWS IoT Core. You can use the hub to
centrally register and maintain your software package inventory and metadata, which creates
a catalog of software packages and their versions. You can choose to group devices based on
software packages and package versions deployed on the device. This feature provides the
opportunity to keep device-side package inventory as a named shadow, associate and group
devices based on versions, and visualize package version distribution across the fleet by using fleet
metrics.

If you have an in-house software deployment system established, you can continue to use that
process to deploy your package versions. If you don’t have a deployment process established or if
you prefer, we recommend using AWS IoT jobs to use the features in the Software Package Catalog.
For more information, see Preparing AWS IoT jobs.

This chapter contains the following sections:

• Preparing to use Software Package Catalog

• Preparing security

• Preparing fleet indexing

• Preparing AWS IoT Jobs

• Getting started with Software Package Catalog

Preparing to use Software Package Catalog

The following section provides an overview of the package version lifecycle and information for
using AWS IoT Device Management Software Package Catalog.

Preparing to use Software Package Catalog 1534

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html

AWS IoT Core Developer Guide

Package version lifecycle

A package version can evolve through the following lifecycle states: draft, published, and
deprecated. It can also be deleted.

• Draft

When you create a package version, it’s in a draft state. This state indicates that the software
package is being prepared or is incomplete.

While the package version in this state, you can’t deploy it. You can edit the package version’s
description, attributes, and tags.

You can transition a package version that’s in the draft state to published or be deleted by
using the console, or by issuing either the UpdatePackageVersion or DeletePackageVersion API
operations.

• Published

When your package version is ready to deploy, transition the package version to a published
state. While in this state, you can choose to identify the package version as the default version by
editing the software package in the console or through the UpdatePackage API operation. In this
state, you can edit only the description and tags.

Package version lifecycle 1535

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackage.html

AWS IoT Core Developer Guide

You can transition a package version that’s in the published state to deprecated
or be deleted by using the console, or issuing either the UpdatePackageVersion or
DeletePackageVersion API operations.

• Deprecated

If a new package version is available, you can transition earlier package versions to deprecated.
You can still deploy jobs with a deprecated package version. You can also name a deprecated
package version as the default version, and edit only the description and tags.

Consider transitioning a package version to deprecated when the version is outdated, but you
still have devices in the field using the older version or needs to maintain it due to run-time
dependency.

You can transition a package version that’s in the deprecated state to published
or be deleted by using the console, or issuing either the UpdatePackageVersion or
DeletePackageVersion API operattions.

• Deleted

When you no longer intend to use a package version, you can delete it by using the console or
issuing the DeletePackageVersion API operation.

Note

If you delete a package version while there are pending jobs that reference it, you will
receive an error message when the job successfully completes and attempts to update
the reserved named shadow.
If the software package version you want to delete is named as the default
package version, you must first update the package to name another version as
default or leave the field unnamed. You can do this by using the console or the
UpdatePackageVersion API operation. (To remove any named package version as default,
set the unsetDefaultVersion parameter to true when you issue the UpdatePackage API
operation).

If you delete a software package through the console, it deletes all of the package versions
associated with that package, unless one is named as the default version.

Package version lifecycle 1536

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackage.html#iot-UpdatePackage-request-unsetDefaultVersion
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackage.html

AWS IoT Core Developer Guide

Package version naming conventions

When you name package versions, it's important to plan and apply a logical naming strategy so
that you and others can easily identify the latest package version and the version progression. You
must provide a version name when creating the package version, but the strategy and format is
largely up to your business case.

As a best practice, we recommend using the Semantic Versioning SemVer format. For example,
1.2.3 where 1 is the major version for functionally incompatible changes, 2 the major version
for functionally compatible changes, and 3 is the patch version (for bug fixes). For more
information, see Semantic Versioning 2.0.0. For more information about the package version name
requirements, see versionName in the AWS IoT API reference guide.

Default version

Setting a version as default is optional. You can add or remove default package versions. You can
also deploy a package version that is not named as the default version.

When you create a package version, it’s placed in a draft state and can’t be named as the default
version until you transition the package version to published. Software Package Catalog doesn’t
automatically select a version as default or update a newer package version as the default. You
must intentionally name the package version you choose through the console or by issuing the
UpdatePackageVersion API operation.

Version attributes

Version attributes and their values hold important information about your package versions. We
recommend that you define general purpose attributes for a package or package version. For
example, you might create a name-value pair for platform, architecture, operating system, release
date, author, or Amazon S3 URL.

When you create an AWS IoT job with a job document, you can also choose to use a substitution
variable ($parameter) that refers to an attribute’s value. For more information, see Preparing AWS
IoT Jobs.

Version attributes that are used in package versions will not be automatically added to the
reserved named shadow and can’t be indexed or queried through Fleet Indexing directly. To index
or query package version attributes through Fleet Indexing, you can populate the version attribute
in the reserved named shadow.

Package version naming conventions 1537

https://semver.org/
https://semver.org/
https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePackageVersion.html#API_CreatePackageVersion_RequestSyntax
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html

AWS IoT Core Developer Guide

We recommend that the version attribute parameter in the reserved named shadow capture
device-reported properties , such as operation system and installation time. They can also be
indexed and queried through Fleet Indexing.

Version attributes aren't required to follow a specific naming convention. You can create name-
value pairs to meet your business needs. The combined size of all the attributes on a package
version is limited to 3KB. For more information, see Software Package Catalog software package
and package versions limits.

Enabling AWS IoT fleet indexing

You must activate fleet indexing for Software Package Catalog to create or update software
packages and package versions. Fleet indexing provides support that enables AWS IoT things to be
grouped through dynamic thing groups that are filtered by version. For example, fleet indexing can
identify things that have or don’t have a specific package version installed, don’t have any package
versions installed, or match specific name-value pairs. Finally, fleet indexing provides standard and
custom metrics that you can use to gain insight about the state of your fleet. For more information,
see Preparing fleet indexing.

Note

Enabling fleet indexing for Software Package Catalog incurs standard service costs. For
more information, see AWS IoT Device Management, Pricing.

Reserved named shadow

The reserved named shadow, $package, reflects the state of the device's installed software
packages and package versions. Fleet indexing uses the reserved named shadow as a data source to
build standard and custom metrics so you can query the state of your fleet. For more information,
see Preparing fleet indexing.

A reserved named shadow is similar to a named shadow with the exception that its name is
predefined and you can’t change it. In addition, the reserved named shadow doesn’t update with
metadata, and uses only the version and attributes keywords.

Update requests that include other keywords, such as description, will receive an error response
under the rejected topic. For more information, see Device Shadow error messages.

Enabling AWS IoT fleet indexing 1538

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#software_package_catalog_limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#software_package_catalog_limits
https://aws.amazon.com/iot-device-management/pricing/
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-fleet-indexing.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-error-messages.html

AWS IoT Core Developer Guide

It can be created when you create an AWS IoT thing through the console, when an AWS IoT job
successfully completes and updates the shadow, and if you issue the UpdateThingShadow API
operation. For more information, see UpdateThingShadow in the AWS IoT Core developer guide.

Note

Indexing the reserved named shadow doesn’t count toward the number of named shadows
that fleet indexing can index. For more information, see AWS IoT Device Management fleet
indexing limits and quotas. In addition, if you choose to have AWS IoT jobs update the
reserved named shadow when a job successfully completes, the API call is counted toward
your Device Shadow and registry operations and can incur a cost. For more information, see
AWS IoT Device Management jobs limits and quotas and the IndexingFilter API data type.

Structure of the $package shadow

The reserved named shadow contains the following:

{
 "state": {
 "reported": {
 "<packageName>": {
 "version": "",
 "attributes": {
 }
 }
 }
 },
 "version" : 1
 "timestamp" : 1672531201
}

The shadow properties are updated with the following information:

• <packageName>: The name of the installed software package, which is updated with the
packageName parameter.

• version: The name of the installed package version, which is updated with the versionName
parameter.

• attributes: Optional metadata stored by the device and indexed by Fleet indexing. This allows
customers to query their indexes based on the data stored.

Reserved named shadow 1539

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_UpdateThingShadow.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-rest-api.html#API_UpdateThingShadow
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits
https://docs.aws.amazon.com/iot/latest/apireference/API_IndexingFilter.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePackage.html#API_CreatePackage_RequestSyntax
https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePackageVersion.html#API_CreatePackageVersion_RequestSyntax

AWS IoT Core Developer Guide

• version: The shadow's version number. It's automatically incremented each time the shadow is
updated and begins at 1.

• timestamp: Indicates when the shadow was last updated and is recorded in Unix time.

For more information about the format and behavior of a named shadow, see AWS IoT Device
Shadow service Message order.

Deleting a software package and its package versions

Before you delete a software package, do the following:

• Confirm that the package and its versions aren’t actively being deployed.

• Delete all the associated versions first. If one of the versions is designated as the default version,
you must remove the named default version from the package. Because designating a default
version is optional, there is no conflict removing it. To remove the default version from the
software package, edit the package through the console or use the UpdatePackageVersion API
operation.

As long as there is no named default package version, you can use the console to delete a software
package and all of its package versions will also be deleted. If you use an API call to delete
software packages, you must delete the package versions first and then the software package.

Preparing security

This section discusses the main security requirements for AWS IoT Device Management Software
Package Catalog.

Resource-based authentication

Software Package Catalog uses resource-based authorization to provide added security when
updating software on your fleet. This means that you must create an AWS Identity and Access
Management (IAM) policy that grants rights to perform create, read, update, delete, and list
actions for software packages and package versions, and reference the specific software packages
and package versions that you want to deploy in the Resources section. You also need these
rights so that you can update the reserved named shadow. You reference the software packages
and package versions by including an Amazon Resource Name (ARN) for each entity.

Deleting a software package 1540

https://en.wikipedia.org/wiki/Unix_time
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html#message-ordering
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html#message-ordering
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-to-use-software-package-catalog.html#reserved-named-shadow

AWS IoT Core Developer Guide

Note

If you intend the policy to grant rights for package version API calls (such as
CreatePackageVersion, UpdatePackageVersion, DeletePackageVersion), then you need
to include both the software package and the package version ARNs in the policy. If you
intend the policy to grant rights for software package API calls (such as CreatePackage,
UpdatePackage, and DeletePackage) then you must include only the software package ARN
in the policy.

Structure the software package and package version ARNs as follows:

• Software package:
arn:aws:iot:<region>:<accountID>:package/<packageName>/package

• Package version: arn:aws:iot:<region>:<accountID>:package/<packageName>/
version/<versionName>

Note

There are other related rights that you might include in this policy. For example, you might
include an ARN for the job, thinggroup, and jobtemplate. For more information and a
complete listing of the policy options, see Securing users and devices with AWS IoT Jobs.

For example, if you have a software package and package version that’s named as follows:

• AWS IoT thing: myThing

• Package name: samplePackage

• Version 1.0.0

The policy might look like the following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Resource-based authentication 1541

https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreatePackage.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackage.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeletePackage.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs-security.html

AWS IoT Core Developer Guide

 "Action": [
 "iot:createPackage",
 "iot:createPackageVersion",
 "iot:updatePackage",
 "iot:updatePackageVersion"
],
 "Resource": [
 "arn:aws:iot:us-east-1:111122223333:package/samplePackage",
 "arn:aws:iot:us-east-1:111122223333:package/samplePackage/version/1.0.0"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow"
],
 "Resource": "arn:aws:iot:us-east-1:111122223333:thing/myThing/$package"
 }
]
}

AWS IoT Job rights to deploy package versions

For security purposes it’s important for you to grant rights to deploy packages and package
versions, and name the specific packages and package versions they’re allowed to deploy. To do
this, you create an IAM role and policy that grants permission to deploy jobs with package versions.
The policy must specify the destination package versions as a resource.

IAM policy

The IAM policy grants the right to create a job that includes the package and version that are
named in the Resource section.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:CreateJob",
 "iot:CreateJobTemplate"

AWS IoT Job rights to deploy package versions 1542

AWS IoT Core Developer Guide

],
 "Resource":[
 "arn:aws:iot:*:111122223333:job/<jobId>",
 "arn:aws:iot:*:111122223333:thing/<thingName>/$package",
 "arn:aws:iot:*:111122223333:thinggroup/<thingGroupName>",
 "arn:aws:iot:*:111122223333:jobtemplate/<jobTemplateName>",
 "arn:aws:iot:*:111122223333:package/<packageName>/
version/<versionName>"
]
 }
]
}

Note

If you want to deploy a job that uninstalls a software package and package version, you
must authorize an ARN where the package version is $null, such as in the following:

arn:aws:iot:<regionCode>:111122223333:package/<packageName>/version/$null

AWS IoT Job rights to update the reserved named shadow

To allow jobs to update the thing’s reserved name shadow when the job successfully completes,
you must create an IAM role and policy. There are two ways you can do this in the AWS IoT console.
The first is when you create a software package in the console. If you see an Enable dependencies
for package management dialog box, you can choose to use an existing role or create a new role.
Or, in the AWS IoT console, choose Settings, choose Manage indexing, and then Manage indexing
for device packages and versions.

Note

If you choose to have the AWS IoT Job service update the reserved named shadow when
a job successfully completes, the API call is counted toward your Device Shadow and
registry operations and can incur a cost. For more information, see AWS IoT Core pricing.

When you use the Create role option, the generated role’s name begins with aws-iot-role-
update-shadows and contains the following policies:

AWS IoT Job rights to update the reserved named shadow 1543

https://aws.amazon.com/iot-core/pricing/

AWS IoT Core Developer Guide

Setting up a role

Permissions

The permissions policy grants the rights to query and update the thing shadow. The $package
parameter in the resource ARN targets the reserved named shadow.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:DescribeEndpoint",
 "Resource": ""
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow"
],
 "Resource": [
 "arn:aws:iot:<regionCode>:111122223333:thing/<thingName>/$package"
]
 }
]
}

Trust relationship

In addition to the permissions policy, the role requires a trust relationship with AWS IoT Core so
that the entity can assume the role and update the reserved named shadow.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

AWS IoT Job rights to update the reserved named shadow 1544

AWS IoT Core Developer Guide

]
}

Setting up a user policy

iam:PassRole permission

Finally, you must have the permission to pass the role to AWS IoT Core when you call the
UpdatePackageConfiguration API operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iot:UpdatePackageConfiguration"
],
 "Resource": "arn:aws:iam::111122223333:role/<roleName>"
 }
]
}

AWS IoT Jobs permissions to download from Amazon S3

The job document is saved in Amazon S3. You refer to this file when you dispatch through AWS IoT
Jobs. You must provide AWS IoT Jobs with the rights to download the file (s3:GetObject). You
must also set up a trust relationship between Amazon S3 and AWS IoT Jobs. For instructions to
create these policies, see Presigned URLs in Managing Jobs.

Preparing fleet indexing

With AWS IoT fleet indexing, you can search and aggregate data by using the reserved named
shadow ($package). You can also group AWS IoT things by querying the Reserved named shadow
and dynamic thing groups. For example, you can find information about which AWS IoT things
use a specific package version, don't have a specific package version installed, or don’t have any
package version installed. You can gain further insight by combining attributes. For example,

AWS IoT Jobs permissions to download from Amazon S3 1545

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageConfiguration.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageConfiguration.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-manage-jobs.html#create-manage-jobs-presigned-URLs
https://docs.aws.amazon.com/iot/latest/developerguide/create-manage-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html

AWS IoT Core Developer Guide

identifying things that have a specific version and are of a specific thing type (such as version 1.0.0
and thing type of pump_sensor). For more information, see Fleet indexing.

Setting the $package shadow as a data source

To use fleet indexing with Software Package Catalog, you must enable fleet indexing, set the
named shadow as the data source, and define $package as the named shadow filter. If you
haven’t enabled fleet indexing, you can enable it within this process. From AWS IoT Core in the
console, open Settings, choose Manage indexing, then Add named shadows, Add device software
packages and versions, and Update. For more information, see Manage thing indexing.

Alternately, you can enable fleet indexing when you create your first package. When the Enable
dependencies for package management dialog box appears, choose the option to add device
software packages and versions as data sources to fleet indexing. By selecting this option, you also
enable fleet indexing.

Note

Enabling fleet indexing for Software Package Catalog incurs standard service costs. For
more information, see AWS IoT Device Management, Pricing.

Metrics displayed in the console

On the AWS IoT console software package details page, the Discovery panel displays standard
metrics ingested through the $package shadow.

Setting the $package shadow as a data source 1546

https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html
https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/developerguide/managing-fleet-index.html#thing-index
https://aws.amazon.com/iot-device-management/pricing/

AWS IoT Core Developer Guide

• The Current version distribution chart shows the number of devices and percentage for the
10 most recent package versions that are associated to an AWS IoT thing from all the devices
associated to this software package. Note: If the software package has more package versions
than those labeled in the chart, you can find them grouped within Other.

• The Historical chart shows the number of devices associated with selected package versions
over a specified time period. The chart is initially empty until you select up to 5 package
versions and define the date range and time interval. To select the chart’s parameters, choose
Settings. The data displayed in the Historical chart might be different than the Current version
distribution chart because of the difference in number of package versions that they display and
also because you can choose which package versions to analyze in the Historical chart. Note:
When you select a package version to visualize, it counts toward the maximum number of fleet
metrics limits. For more information, see Fleet indexing limits and quotas.

For another method to gain insight into collecting package version distribution, see Collecting
package version distribution through getBucketsAggregation.

Query patterns

Fleet indexing with Software Package Catalog uses most of the supported features (for example,
terms and phrases and search fields) that are standard for fleet indexing. The exception is that
the comparison and range queries aren't available for the reserved named shadow ($package)
version key. However, these queries are available for the attributes key. For more information,
see Query syntax.

Example data

Note: for information about the reserved named shadow and its structure, see Reserved named
shadow.

In this example, a first device is named AnyThing and has the following packages installed:

• Software package: SamplePackage

Package version: 1.0.0

Package ID: 1111

The shadow looks as follows:

Query patterns 1547

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-fleet-indexing.html#package-version-distribution
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-fleet-indexing.html#package-version-distribution
https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-to-use-software-package-catalog.html#reserved-named-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-to-use-software-package-catalog.html#reserved-named-shadow

AWS IoT Core Developer Guide

{
 "state": {
 "reported": {
 "SamplePackage": {
 "version": "1.0.0",
 "attributes": {
 "s3UrlForSamplePackage": "https://EXAMPIEBUCKET.s3.us-
west-2.amazonaws.com/exampleCodeFile1",
 "packageID": "1111"
 }
 }
 }
 }
}

A second device is named AnotherThing and has the following package installed:

• Software package: SamplePackage

Package version: 1.0.0

Package ID: 1111

• Software package: OtherPackage

Package version: 1.2.5

Package ID: 2222

The shadow looks as follows:

{
 "state": {
 "reported": {
 "SamplePackage": {
 "version": "1.0.0",
 "attributes": {
 "s3UrlForSamplePackage": "https://EXAMPIEBUCKET.s3.us-
west-2.amazonaws.com/exampleCodeFile1",
 "packageID": "1111"
 }
 },

Query patterns 1548

AWS IoT Core Developer Guide

 "OtherPackage": {
 "version": "1.2.5",
 "attributes": {
 "s3UrlForOtherPackage": "https://EXAMPIEBUCKET.s3.us-
west-2.amazonaws.com/exampleCodeFile2",
 "packageID": "2222"
 }
 },
 }
 }
}

Sample queries

The following table lists sample queries based on the example device shadows for AnyThing and
AnotherThing. For more information, see Example thing queries.

Latest version of AWS IoT Device Tester for FreeRTOS

Requested information Query Result

Things that have a specific
package version installed

shadow.name.$packa
ge.reported.Sample
Package.version:1.
0.0

AnyThing, OtherThing

Things that don't have a
specific package version
installed

NOT shadow.name.
$package.report
ed.OtherPackage.ve
rsion:1.2.5

AnyThing

Any device using a package
version whose package ID is
greater than 1500

shadow.name.$packa
ge.reported.*.attr
ibutes.packageID>1
500"

OtherThing

Things that have a specific
package installed and have
more than one package
installed

shadow.name.$packa
ge.reported.Sample
Package.version:1.
0.0 AND shadow.na

OtherThing

Query patterns 1549

https://docs.aws.amazon.com/iot/latest/developerguide/example-queries.html

AWS IoT Core Developer Guide

Requested information Query Result

me.$package.report
ed.totalCount:2

Collecting package version distribution through
getBucketsAggregation

In addition to the Discovery panel within the AWS IoT console, you can also get package version
distribution information by using the GetBucketsAggregation API operation. To get the
package version distribution information, you must do the following:

• Define a custom field within fleet indexing for each software package. Note: Creating custom
fields count toward AWS IoT fleet indexing service quotas.

• Format the custom field as follows:

shadow.name.$package.reported.<packageName>.version

For more information, see the Custom fields section in AWS IoT fleet indexing.

Preparing AWS IoT Jobs

AWS IoT Device Management Software Package Catalog extends AWS IoT Jobs through
substitution parameters, and integration with AWS IoT fleet indexing, dynamic thing groups, and
the AWS IoT thing’s reserved named shadow.

Note

To use all the functionality that Software Package Catalog offers, you must create these
AWS Identity and Access Management (IAM) roles and policies: AWS IoT Jobs rights to
deploy package versions and AWS IoT Jobs rights to update the reserved named shadow.
For more information, see Preparing security.

Collecting package version distribution through getBucketsAggregation 1550

https://docs.aws.amazon.com/iot/latest/apireference/API_GetBucketsAggregation.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#fleet-indexing-limits
https://docs.aws.amazon.com/iot/latest/developerguide/managing-fleet-index.html#custom-field
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-security.html#job-rights-deploy-versions
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-security.html#job-rights-deploy-versions
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-security.html#job-rights-update-reserved-named-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-security.html

AWS IoT Core Developer Guide

Substitution parameters for AWS IoT jobs

You can use substitution parameters as a placeholder within your AWS IoT job document. When
the job service encounters a substitution parameter, it points the job to a named software version’s
attribute for the parameter value. You can use this process to create a single job document and
pass the metadata into the job through general-purpose attributes. For example, you might pass
an Amazon Simple Storage Service(Amazon S3) URL, a software package Amazon Resource Name
(ARN), or a signature into the job document through package version attributes.

The substitution parameter should be formatted in the job document as follows:

${aws:iot:package:<packageName>:version:<versionName>:attributes:<anyAttributeName>}

In this example, there is a software package named, samplePackage, and it has a package version
named 2.1.5 that has the following attributes:

• name: s3URL, value: https://EXAMPIEBUCKET.s3.us-west-2.amazonaws.com/
exampleCodeFile

• This attribute identifies the location of the code file that’s stored within Amazon S3.

• name: signature, value: aaaaabbbbbcccccdddddeeeeefffffggggghhhhhiiiiijjjj

• This attribute provides a code signature value that the device requires as a security measure.
For more information, see Code Signing for jobs. Note: This attribute is an example and not
required as part of Software Package Catalog or jobs.

For downloads, the job document parameter is written as follows:

{
"samplePackage": "${aws:iot:package:samplePackage1:version:2.1.5:attributes:s3URL}"
}

For signature, the job document parameter is written as follows:

{
"samplePackage": "${aws:iot:package:samplePackage1:version:2.1.5:attributes:signature}"
}

The complete job document is written as follows:

Substitution parameters for AWS IoT jobs 1551

https://docs.aws.amazon.com/iot/latest/developerguide/create-manage-jobs.html#create-manage-jobs-code-signing

AWS IoT Core Developer Guide

{
 ...
 "Steps": {
 "uninstall": ["samplePackage"],
 "download": [
 {
 "samplePackage":
 "${aws:iot:package:samplePackage1:version:2.1.5:attributes:s3URL}"
 },
],
 "signature": [
 "samplePackage" :
 "${aws:iot:package:samplePackage1:version:2.1.5:attributes:signature}"
]
 }
}

After the substitution is made, the following job document is deployed to the devices:

{
 ...
 "Steps": {
 "uninstall": ["samplePackage"],
 "download": [
 {
 "samplePackage": "https://EXAMPIEBUCKET.s3.us-west-2.amazonaws.com/
exampleCodeFile"
 },
],
 "signature": [
 "samplePackage" : "aaaaabbbbbcccccdddddeeeeefffffggggghhhhhiiiiijjjj"
]
 }
}

For more information about AWS IoT Jobs, creating job documents, and deploying jobs, see Jobs.

Preparing the job document and package version for deployment

When a package version is created, it’s in a draft state to indicate that it’s being prepared for
deployment. To prepare the package version for deployment, you must create a job document,
save the document in a location that the job can access (such as Amazon S3), and confirm that the

Preparing the job document and package version for deployment 1552

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

AWS IoT Core Developer Guide

package version has the attribute values that you want the job document to use. (Note: You can
update attributes for a package version only while it’s in the draft state.)

When you are satisfied with the package version, publish it either through the software package
details page in the AWS IoT console or by issuing the UpdatePackageVersion API operation. You
can then reference the package version when you create the job either through the AWS IoT
console or by issuing the CreateJob API operation.

Naming the packages and versions when deploying

When you deploy an AWS IoT job, you must name the same software packages
and package versions that are named in the job document in the job deployment
(destinationPackageVersions). If you don’t, you'll receive an error message stating the
missing package versions.

You can include additional software packages and package versions that aren't included within
the job document. If you do this, the job doesn't provide instructions to the device about what to
do with those files and the device is expected to know what to do. For example, you might send
additional files to the device if they contain data that the device might reference.

Targeting jobs through AWS IoT dynamic thing groups

Software Package Catalog works with fleet indexing, AWS IoT jobs, and AWS IoT dynamic thing
groups to filter and target devices within your fleet to select which package version to deploy
to your devices. You can run a fleet indexing query based on your device's current package
information and target those things for an AWS IoT job. You can also release software updates,
but only to eligible target devices. For example, you can specify that you want to deploy a
configuration only to those devices that currently run the iot-device-client 1.5.09. For
more information, see Create a dynamic thing group.

Reserved named shadow and package versions

If configured, AWS IoT Jobs can update a thing’s reserved named shadow ($package)when the job
successfully completes. If you do so, you don’t need to manually associate a package version to a
thing’s reserved named shadow.

You might choose to manually associate or update a package version to the thing’s reserved named
shadow in the following situations:

• You register a thing to AWS IoT Core without associating the installed package version.

Naming the packages and versions when deploying 1553

https://docs.aws.amazon.com/iot/latest/apireference/API_UpdatePackageVersion.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html#create-dynamic-thing-group

AWS IoT Core Developer Guide

• AWS IoT Jobs isn’t configured to update the thing’s reserved named shadow.

• You use an in-house process to dispatch package versions to your fleet and that process doesn’t
update AWS IoT Core when it completes.

Note

We recommend you use AWS IoT Jobs to update the package version in the reserved
named shadow ($package). Updating the version parameter in the $package shadow
through other processes (such as, manual or programmatic API calls) when AWS IoT Jobs is
also configured to update the shadow, can cause inconsistencies between the actual version
on device and version reported to the reserved named shadow.

You can add or update a package version to a thing’s reserved named shadow ($package) through
the console or the UpdateThingShadow API operation. For more information, see Associating a
package version to an AWS IoT thing.

Note

Associating a package version to an AWS IoT thing doesn’t directly update the device
software. You must deploy the package version to the device to update the device
software.

Uninstalling a software package and its package version

$null is a reserved placeholder that prompts the AWS IoT Jobs service to remove the existing
software package and package version from the device’s reserved named shadow $package. For
more information, see Reserved named shadow.

To use this feature, replace the version name at the end of the destinationPackageVersion Amazon
Resource Name (ARN) with $null. Afterward, you must instruct your service to remove the
software from the device.

The authorized ARN uses the following format:

arn:aws:iot:<regionCode>:111122223333:package/<packageName>/version/$null

Uninstalling a software package 1554

https://docs.aws.amazon.com/iot/latest/apireference/API_iotdata_UpdateThingShadow.html
https://docs.aws.amazon.com/iot/latest/developerguide/associating-package-version.html
https://docs.aws.amazon.com/iot/latest/developerguide/associating-package-version.html
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-to-use-software-package-catalog.html#reserved-named-shadow
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJobTemplate.html#iot-CreateJobTemplate-request-destinationPackageVersions

AWS IoT Core Developer Guide

For example,

$ aws iot create-job \
 ... \
 --destinationPackageVersions ["arn:aws:iot:us-east-1:111122223333:package/
samplePackage/version/$null"]

Getting started with Software Package Catalog

You can build and maintain the AWS IoT Device Management Software Package Catalog through
the AWS Management Console, AWS IoT Core API operations, and AWS Command Line Interface
(AWS CLI).

Using the console

To use the AWS Management Console, sign into your AWS account and navigate to AWS IoT Core.
In the navigation pane, choose Software packages. You can then create and manage packages and
their versions from this section.

Using API or CLI operations

You can use the AWS IoT Core API operations to create and manage Software Package Catalog
features. For more information, see AWS IoT API Reference and AWS SDKs and Toolkits. The AWS
CLI commands also manage your catalog. For more information, see the AWS IoT CLI Command
Reference.

This chapter contains the following sections:

• Creating a software package and package version

• Deploying a package version through AWS IoT jobs

• Associating a package version to an AWS IoT thing

Creating a software package and package version

You can use the following steps to create a package and an initial version thing through the AWS
Management Console.

To create a software package

1. Sign into your AWS account and navigate to the AWS IoT console.

Getting started 1555

https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/apireference/
https://aws.amazon.com/developer/tools/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/index.html
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

2. On the navigation pane, choose Software packages.

3. On the AWS IoT software package page, choose Create package. The Enable dependencies
for package management dialog box appears.

4. Under Fleet indexing, select Add device software packages and version. This is required for
Software Package Catalog and provides fleet indexing and metrics about your fleet.

5. [Optional] If you want AWS IoT jobs to update the reserved named shadow when jobs
successfully complete, select Auto update shadows from jobs. If you do not want AWS IoT
jobs to make this update, leave this check-box unselected.

6. [Optional] To grant AWS IoT jobs the rights to update the reserved named shadow, under
Select role, choose Create role. If you don't want AWS IoT jobs to make this update, this role is
not required.

7. Create or select a role.

a. If you don’t have a role for this purpose: When the Create role dialog box appears, enter
a Role name, and then choose Create.

b. If you do have a role for this purpose: For Select role, choose your role and then make
sure the Attach policy to IAM role check box is selected.

8. Choose Confirm. The Create new package page appears.

9. Under Package detail, enter a Package name.

10. Under Package description, enter information to help you identify and manage this package.

11. [Optional] You can use tags to help you categorize and manage this package. To add tags,
expand Tags, choose Add tag, and enter a key-value pair. You can enter up to 50 tags. For
more information, see Tagging your AWS IoT resources.

To add a package version while creating a new package

1. Under First version, enter a Version name.

We recommend using the SemVer format (for example, 1.0.0.0) to uniquely identify your
package version. You are also able to use a different formatting strategy that better suits your
use case. For more information, see Package version lifecycle.

2. Under Version description, enter information that will help you identify and manage this
package version .

Creating a package and version 1556

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot.html
https://semver.org/

AWS IoT Core Developer Guide

Note

The Default version check box is deactivated because package versions are created in
a draft state. You can name the default version after you create the package version
and when you change the state to published. For more information, see Package
version lifecycle.

3. [Optional] To help you manage this version or to communicate information to your devices,
enter one or more name-value pairs for Version attributes. Choose Add attribute for each
name-value pair you enter. For more information, see Version attributes.

4. [Optional] You can use tags to help you categorize and manage this package. To add tags,
expand Tags, choose Add tag, and enter a key-value pair. You can enter up to 50 tags. For
more information, see Tagging your AWS IoT resources.

5. Choose Create package. The AWS IoT software package page appears and your package is
listed in the table of packages.

6. [Optional] To review information about the software package and package version you
created, choose your package name. Tthe package details page appears.

Deploying a package version through AWS IoT jobs

You can use the following steps to deploy a package version through the AWS Management
Console.

Prerequisites:

Before you begin, do the following:

• Register AWS IoT things with AWS IoT Core. For directions to add your devices to AWS IoT Core,
see Create a thing object.

• [Optional] Create an AWS IoT thing group or dynamic thing group to target the devices that you
will deploy the package version. For directions to create a thing group, see Create a static thing
group. For directions to create a dynamic thing group, see Create a dynamic thing group.

• Create a software package and a package version. For more information, see Creating a software
package and package version.

• Create a job document. For more information, see Preparing the job document and package
version for deployment.

Deploying a package version 1557

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing
https://docs.aws.amazon.com/iot/latest/developerguide/thing-groups.html#create-thing-group
https://docs.aws.amazon.com/iot/latest/developerguide/thing-groups.html#create-thing-group
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html#create-dynamic-thing-group
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html#preparing-to-deploy
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html#preparing-to-deploy

AWS IoT Core Developer Guide

To deploy an AWS IoT job

1. On the AWS IoT console, choose Software packages.

2. Choose the software package that you want to deploy. The software package details page
appears.

3. Choose the package version that you want to deploy, under Versions, and choose Deploy job
version.

4. If this is your first time deploying a job through this portal, a dialog box describing the
requirements appears. Review the information and choose Acknowledge.

5. Enter a name for the deployment or leave the autogenerated name in the Name field.

6. [Optional] In the Description field, enter a description that identifies the purpose or contents
of the deployment, or leave the autogenerated information.

Note: We recommend that you don't use personally identifiable information in the Job name
and description fields.

7. [Optional] Add any tags to associate with this job.

8. Choose Next.

9. Under Job targets, choose the things or thing groups that should receive the job.

10. In the Job file field, specify the job document JSON file.

11. Open Jobs integration with the Package Catalog service.

12. Select the packages and versions that are specified within your job document.

Note

You are required to choose the same packages and package versions that are specified
within the job document. You can include more, but the job will issue instructions only
for the packages and versions included in the job document. For more information, see
Naming the packages and versions when deploying.

13. Choose Next.

14. On the Job configuration page, select one of the following job types in the Job configuration
dialog box:

• Snapshot job: A snapshot job is complete when it's finished its run on the target devices and
groups.

Deploying a package version 1558

https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/developerguide/preparing-jobs-for-service-package-catalog.html#naming-package-versions

AWS IoT Core Developer Guide

• Continuous job: A continuous job applies to thing groups and runs on any device that you
later add to a specified target group.

15. In the Additional configurations - optional dialog box, review the following optional job
configurations and make your selections accordingly. For more information, see Job rollout,
scheduling, and abort configurations and Job execution timeout and retry configurations.

• Rollout configuration

• Scheduling configuration

• Job executions timeout configuration

• Job executions retry configuration

• Abort configuration

16. Review the job selections and then choose Submit.

After you create the job, the console generates a JSON signature and places it in your job
document. You can use the AWS IoT console to view the status of a job, or cancel or delete a job. To
manage jobs, go to the Job hub of the console.

Associating a package version to an AWS IoT thing

After you install software on your device, you can associate a package version to an AWS IoT
thing’s reserved named shadow. If AWS IoT jobs has been configured to update the thing’s reserved
named shadow after the job deploys and successfully completes, you don’t need to complete this
procedure. For more information, see Reserved named shadow.

Prerequisites:

Before you begin, do the following:

• Create an AWS IoT thing, or things, and establish telemetry through AWS IoT Core. For more
information, see Getting started with AWS IoT Core.

• Create a software package and package version. For more information, see Creating a software
package and package version.

• Install the package version software on the device.

Associating a package version 1559

https://docs.aws.amazon.com/iot/latest/developerguide/jobs-configurations-details.html#job-rollout-abort-scheduling
https://docs.aws.amazon.com/iot/latest/developerguide/jobs-configurations-details.html#job-rollout-abort-scheduling
https://docs.aws.amazon.com/iot/latest/developerguide/jobs-configurations-details.html#job-timeout-retry
https://console.aws.amazon.com/iot/home#/jobhub
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

AWS IoT Core Developer Guide

Note

Associating a package version to an AWS IoT thing doesn’t update or install software on the
physical device. The package version must be deployed to the device.

To associate a package version to an AWS IoT thing

1. On the AWS IoT console navigation pane, expand the All devices menu and choose Things.

2. Identify the AWS IoT thing that you want to update from the list and choose the thing name to
display its details page.

3. In the Details section, choose Packages and versions.

4. Choose Add to package and version.

5. For Choose a device package, choose the software package you want.

6. For Choose a version, choose the software version you want.

7. Choose Add device package.

The package and version appear on the Selected packages and versions list.

8. Repeat these steps for each package and version that you want to associate to this thing.

9. When you’re finished, choose Add package and version details. The Thing details page opens
and you can see the new package and version in the list.

Associating a package version 1560

https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

AWS IoT Core Device Location

Before using the AWS IoT Core Device Location feature, review the Terms and Conditions for
this feature. Note that AWS may transmit your geolocation search request parameters, such
as the location data used to run searches, and other information to your chosen third party
data provider, which may be outside of the AWS Region that you are currently using. For more
information, see AWS Service Terms.

Use AWS IoT Core Device Location to test the location of your IoT devices using third-party solvers.
Solvers are algorithms provided by third-party vendors that resolve measurement data and
estimate the location of your device. By identifying the location of your devices, you can track and
debug them in the field to troubleshoot any issues.

The measurement data collected from various sources is resolved, and the geolocation information
is reported as a GeoJSON payload. The GeoJSON format is a format that's used to encode
geographic data structures. The payload contains the latitude and longitude coordinates of your
device location, which are based on the World Geodetic System coordinate system (WGS84).

Topics

• Measurement types and solvers

• How AWS IoT Core Device Location works

• How to use AWS IoT Core Device Location

• Resolving location of IoT devices

• Resolving device location using AWS IoT Core Device Location MQTT topics

• Location solvers and device payload

Measurement types and solvers

AWS IoT Core Device Location partners with third-party vendors to resolve the measurement data
and to provide an estimated device location. The following table shows the measurement types
and the third-party location solvers, and information about supported devices. For information
about LoRaWAN devices and configuring device location for them, see Configuring position of
LoRaWAN resources.

Measurement types and solvers 1561

https://aws.amazon.com/service-terms
https://geojson.org/
https://gisgeography.com/wgs84-world-geodetic-system/
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/lorawan-configure-location.html
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/lorawan-configure-location.html

AWS IoT Core Developer Guide

Measurement types and solvers

Measurement type Third-party solvers Supported devices

Wi-Fi access points Wi-Fi based solver General IoT devices and LoRaWAN
devices

Cellular radio towers: GSM, LTE,
CDMA, SCDMA, WCMDA, and
TD-SCDMA data

Cellular based solver General IoT devices and LoRaWAN
devices

IP address IP reverse lookup solver General IoT devices

GNSS scan data (NAV messages) GNSS solver General IoT devices and LoRaWAN
devices

For more information about the location solvers and examples that show the device payload for
the various measurement types, see Location solvers and device payload.

How AWS IoT Core Device Location works

The following diagram shows how AWS IoT Core Device Location collects measurement data and
resolves the location information of your devices.

How AWS IoT Core Device Location works 1562

AWS IoT Core Developer Guide

The following steps show how AWS IoT Core Device Location works.

1. Receive measurement data

The raw measurement data related to your device location is first sent from the device. The
measurement data is specified as a JSON payload.

2. Process measurement data

The measurement data is processed, and AWS IoT Core Device Location chooses the
measurement data to be used, which can be Wi-Fi, cellular, GNSS scan, or IP address
information.

3. Choose solver

The third-party solver is chosen based on the measurement data. For example, if the
measurement data contains Wi-Fi and IP address information, it chooses the Wi-Fi solver and
the IP reverse lookup solver.

How AWS IoT Core Device Location works 1563

AWS IoT Core Developer Guide

4. Obtain resolved location

An API request is sent to the solver providers requesting to resolve the location. AWS IoT Core
Device Location then gets the estimated geolocation information from the solvers.

5. Choose resolved location

The resolved location information and its accuracy is compared, and AWS IoT Core Device
Location chooses the geolocation results with the highest accuracy.

6. Output location information

The geolocation information is sent to you as a GeoJSON payload. The payload contains the
WGS84 geo coordinates, the accuracy information, confidence levels, and the timestamp at
which the resolved location was obtained.

How to use AWS IoT Core Device Location

The following steps show how to use AWS IoT Core Device Location.

1. Provide measurement data

Specify the raw measurement data related to the location of your device as a JSON payload.
To retrieve the payload measurement data, go to your device logs, or use CloudWatch Logs,
and copy the payload data information. The JSON payload must contain one or more types
of data measurement. For examples that show the payload format for various solvers, see
Location solvers and device payload.

2. Resolve location information

Using the Device Location page in the AWS IoT console or the GetPositionEstimate API
operation, pass the payload measurement data and resolve the device location. AWS IoT Core
Device Location then chooses the solver with the highest accuracy and reports the device
location. For more information, see Resolving location of IoT devices.

3. Copy location information

Verify the geolocation information that was resolved by AWS IoT Core Device Location and
reported as a GeoJSON payload. You can copy the payload for use with your applications and
other AWS services. For example, you can send your geographical location data to Amazon
Location Service using the Location AWS IoT rule action.

How to use AWS IoT Core Device Location 1564

https://console.aws.amazon.com/iot/home#/device-location-test
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html

AWS IoT Core Developer Guide

The following topics show how to use AWS IoT Core Device Location and examples of device
location payload.

• Resolving location of IoT devices

• Location solvers and device payload

Resolving location of IoT devices

Use AWS IoT Core Device Location to decode the measurement data from your devices, and resolve
the device location using third-party solvers. The resolved location is generated as a GeoJSON
payload with the geo coordinates and accuracy information. You can resolve the location of your
device from the AWS IoT console, the AWS IoT Wireless API, or AWS CLI.

Topics

• Resolving device location (console)

• Resolving device location (API)

• Troubleshooting errors when resolving the location

Resolving device location (console)

To resolve the device location (console)

1. Go to the Device Location page in the AWS IoT console.

2. Obtain the payload measurement data from your device logs or from CloudWatch Logs, and
enter it in the Resolve position via payload section.

The following code shows a sample JSON payload. The payload contains cellular and Wi-Fi
measurement data. If your payload contains additional types of measurement data, the solver
with the best accuracy will be used. For more information and payload examples, see the
section called “Location solvers and device payload”.

Note

The JSON payload must contain at least one type of measurement data.

Resolving location of IoT devices 1565

https://console.aws.amazon.com/iot/home#/device-location-test

AWS IoT Core Developer Guide

{
 "Timestamp": 1664313161,
 "Ip":{
 "IpAddress": "54.240.198.35"
 },
 "WiFiAccessPoints": [{
 "MacAddress": "A0:EC:F9:1E:32:C1",
 "Rss": -77
 }],
 "CellTowers": {
 "Gsm": [{
 "Mcc": 262,
 "Mnc": 1,
 "Lac": 5126,
 "GeranCid": 16504,
 "GsmLocalId": {
 "Bsic": 6,
 "Bcch": 82
 },
 "GsmTimingAdvance": 1,
 "RxLevel": -110,
 "GsmNmr": [{
 "Bsic": 7,
 "Bcch": 85,
 "RxLevel": -100,
 "GlobalIdentity": {
 "Lac": 1,
 "GeranCid": 1
 }
 }]
 }],
 "Wcdma": [{
 "Mcc": 262,
 "Mnc": 7,
 "Lac": 65535,
 "UtranCid": 14674663,
 "WcdmaNmr": [{
 "Uarfcndl": 10786,
 "UtranCid": 14674663,
 "Psc": 149
 },
 {

Resolving device location (console) 1566

AWS IoT Core Developer Guide

 "Uarfcndl": 10762,
 "UtranCid": 14674663,
 "Psc": 211
 }
]
 }],
 "Lte": [{
 "Mcc": 262,
 "Mnc": 2,
 "EutranCid": 2898945,
 "Rsrp": -50,
 "Rsrq": -5,
 "LteNmr": [{
 "Earfcn": 6300,
 "Pci": 237,
 "Rsrp": -60,
 "Rsrq": -6,
 "EutranCid": 2898945
 },
 {
 "Earfcn": 6300,
 "Pci": 442,
 "Rsrp": -70,
 "Rsrq": -7,
 "EutranCid": 2898945
 }
]
 }]
 }
}

3. To resolve the location information, choose Resolve.

The location information is of type blob and returned as a payload that uses the GeoJSON
format, which is a format used for encoding geographical data structures. The payload
contains:

• The WGS84 geo coordinates, which include the latitude and longitude information. It might
also include an altitude information.

• The type of location information reported, such as Point. A point location type represents
the location as a WGS84 latitude and longitude, encoded as a GeoJSON point.

Resolving device location (console) 1567

https://geojson.org/geojson-spec.html#point

AWS IoT Core Developer Guide

• The horizontal and vertical accuracy information, which indicates the difference, in meters,
between the location information estimated by the solvers and the actual device location.

• The confidence level, which indicates the uncertainty in the location estimate response. The
default value is 0.68, which indicates a 68% probability that the actual device location is
within the uncertainty radius of the estimated location.

• The city, state, country, and postal code where the device is located. This information will be
reported only when the IP reverse lookup solver is used.

• The timestamp information, which corresponds to the date and time at which the location
was resolved. It uses the Unix timestamp format.

The following code shows a sample GeoJSON payload returned by resolving the location.

Note

If AWS IoT Core Device Location reports errors when attempting to resolve the
location, you can troubleshoot the errors and resolve the location. For more
information, see Troubleshooting errors when resolving the location.

{
 "coordinates": [
 13.376076698303223,
 52.51823043823242
],
 "type": "Point",
 "properties": {
 "verticalAccuracy": 45,
 "verticalConfidenceLevel": 0.68,
 "horizontalAccuracy": 303,
 "horizontalConfidenceLevel": 0.68,
 "country": "USA",
 "state": "CA",
 "city": "Sunnyvalue",
 "postalCode": "91234",
 "timestamp": "2022-11-18T12:23:58.189Z"
 }
}

Resolving device location (console) 1568

AWS IoT Core Developer Guide

4. Go to the Resource location section and verify the geolocation information reported by AWS
IoT Core Device Location . You can copy the payload for use with other applications and AWS
services. For example, you can use the Location to send your geographical location data to
Amazon Location Service.

Resolving device location (API)

To resolve the device location using the AWS IoT Wireless API, use the GetPositionEstimate API
operation or the get-position-estimate CLI command. Specify the payload measurement data as
input, and run the API operation to resolve the device location.

Note

The GetPositionEstimate API operation doesn't store any device or state information
and can't be used retrieve historical location data. It performs a one-time operation that
resolves the measurement data and produces the estimated location. To retrieve the
location information, you must specify the payload information every time you perform
this API operation.

The following command shows an example of how to resolve the location using this API operation.

Note

When running the get-position-estimate CLI command, you must specify the output
JSON file as the first input. This JSON file will store the estimated location information
obtained as response from the CLI in GeoJSON format. For example, the following
command stores the location information in the locationout.json file.

aws iotwireless get-position-estimate locationout.json \
 --ip IpAddress=""54.240.198.35"" \
 --wi-fi-access-points \
 MacAddress="A0:EC:F9:1E:32:C1",Rss=-75 \
 MacAddress="A0:EC:F9:15:72:5E",Rss=-67

Resolving device location (API) 1569

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html
https://docs.aws.amazon.com/cli/latest/reference/iotwireless/get-position-estimate.html

AWS IoT Core Developer Guide

This example includes both Wi-Fi access points and IP address as the measurement types. AWS
IoT Core Device Location chooses between the Wi-Fi solver and the IP reverse lookup solver, and it
selects the solver with the higher accuracy.

The resolved location is returned as a payload that uses the GeoJSON format, which is a format
used for encoding geographical data structures. It is then stored in the locationout.json file.
The payload contains the WGS84 latitude and longitude coordinates, accuracy and confidence level
information, the location data type, and the timestamp at which the location was resolved.

{
 "coordinates": [
 13.37704086303711,
 52.51865005493164
],
 "type": "Point",
 "properties": {
 "verticalAccuracy": 707,
 "verticalConfidenceLevel": 0.68,
 "horizontalAccuracy": 389,
 "horizontalConfidenceLevel": 0.68,
 "country": "USA",
 "state": "CA",
 "city": "Sunnyvalue",
 "postalCode": "91234",
 "timestamp": "2022-11-18T14:03:57.391Z"
 }
}

Troubleshooting errors when resolving the location

When you attempt to resolve the location, you might see any of the following error codes. AWS
IoT Core Device Location might generate an error when using the GetPositionEstimate API
operation, or else refer to the line number corresponding to the error in the AWS IoT console.

• 400 error

This error indicates that the format of the device payload JSON can't be validated by AWS IoT
Core Device Location. The error might occur because:

• The JSON measurement data is formatted incorrectly.

• The payload contains only the timestamp information.

Troubleshooting errors when resolving the location 1570

AWS IoT Core Developer Guide

• The measurement data parameters, such as the IP address, are not valid.

To resolve this error, check whether your JSON is formatted correctly and contains data from one
or more measurement types as input. If the IP address is invalid, for information about how you
can provide a valid IP address to resolve the error, see IP reverse lookup solver.

• 403 error

This error indicates that you don't have the permissions to perform the API operation or to use
the AWS IoT console to retrieve the device location. To resolve this error, verify that you have
the required permissions to perform this action. This error might occur if your AWS Management
Console session or your AWS CLI session token have expired. To resolve this error, refresh the
session token to use the AWS CLI, or log out of the AWS Management Console and then log in
using your credentials.

• 404 error

This error indicates that no location information was found or solved by AWS IoT Core Device
Location. The error might occur due to cases such as insufficient data in the measurement data
input. For example:

• The MAC address or cellular tower information is not sufficient.

• The IP address is not available to look up and retrieve the location.

• The GNSS payload is not sufficient.

To resolve the error in such cases, check whether your measurement data contains sufficient
information required to resolve the device location.

• 500 error

This error indicates that an internal server exception occurred when AWS IoT Core Device
Location attempted to resolve the location. To attempt to fix this error, refresh the session and
retry sending the measurement data to be resolved.

Resolving device location using AWS IoT Core Device Location
MQTT topics

You can use reserved MQTT topics to get the latest location information for your devices with the
AWS IoT Core Device Location feature.

Resolving device location using MQTT topics 1571

AWS IoT Core Developer Guide

Format of device location MQTT topics

Reserved topics for AWS IoT Core Device Location use the following prefix:

$aws/device_location/{customer_device_id}/

To create a complete topic, first replace customer_device_id with your unique ID that you
use for identifying your device. We recommend that you specify the WirelessDeviceId, such
as for LoRaWAN and Sidewalk devices, and thingName, if your device is registered as an AWS
IoT thing. You then append the topic with the topic stub, such as get_position_estimate or
get_position_estimate/accepted as shown in the following section.

Note

The {customer_device_id} can only contain letters, numbers, and dashes. When
subscribing to device location topics, you can only use the plus sign (+) as a wildcard
character. For example, you can use the + wildcard for the {customer_device_id}
to obtain the location information for your devices. When you subscribe to the topic
$aws/device_location/+/get_position_estimate/accepted, a message will
be published with the location information for devices that match any device ID if it was
successfully resolved.

The following are the reserved topics used to interact with AWS IoT Core Device Location.

Device location MQTT topics

Topic Allowed operation
s

Description

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate

Publish A device publishes to this topic to get the
scanned raw measurement data to be
resolved by AWS IoT Core Device Location.

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate/accepted

Subscribe AWS IoT Core Device Location publishes the
location information to this topic when it
successfully resolves the device location.

Format of device location MQTT topics 1572

AWS IoT Core Developer Guide

Topic Allowed operation
s

Description

$aws/device_locati
on/customer_
device_id /get_posi
tion_estimate/rejected

Subscribe AWS IoT Core Device Location publishes the
error information to this topic when it fails
to resolve the device location.

Policy for device location MQTT topics

To receive messages from device location topics, your device must use a policy that allows it to
connect to the AWS IoT device gateway and subscribe to the MQTT topics.

The following is an example of the policy required for receiving messages for the various topics.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate/accepted",
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate/rejected"
]
 },
 {

Policy for device location MQTT topics 1573

AWS IoT Core Developer Guide

 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/
device_location/customer_device_id/get_position_estimate/accepted",
 "arn:aws:iot:region:account:topicfilter/$aws/
device_location/customer_device_id/get_position_estimate/rejected"
]
 }
]
}

Device location topics and payload

The following shows the AWS IoT Core Device Location topics, the format of their message
payload, and an example policy for each topic.

Topics

• /get_position_estimate

• /get_position_estimate/accepted

• /get_position_estimate/rejected

/get_position_estimate

Publish a message to this topic to get the raw measurement data from the device to be resolved by
AWS IoT Core Device Location.

$aws/device_location/customer_device_id/get_position_estimate

AWS IoT Core Device Location responds by publishing to either /get_position_estimate/accepted or
/get_position_estimate/rejected.

Note

The message published to this topic must be a valid JSON payload. If the input message is
not in valid JSON format, you won't get any response. For more information, see Message
payload.

Device location topics and payload 1574

AWS IoT Core Developer Guide

Message payload

The message payload format follows a similar structure as the AWS IoT Wireless API operation
request body, GetPositionEstimate. It contains:

• An optional Timestamp string, which corresponds to the date and time the location was
resolved. The Timestamp string can have a minimum length of 1 and maximum length of 10.

• An optional MessageId string, which can be used to map the request to the response. If you
specify this string, the message published to the get_position_estimate/accepted or
get_position_estimate/rejected topics will contain this MessageId. The MessageID
string can have a minimum length of 1 and maximum length of 256.

• The measurement data from the device that contains one or more of the following measurement
types:

• WiFiAccessPoint

• CellTowers

• IpAddress

• Gnss

The following shows a sample message payload.

{
 "Timestamp": "1664313161",
 "MessageId": "ABCD1",
 "WiFiAccessPoints": [
 {
 "MacAddress": "A0:EC:F9:1E:32:C1",
 "Rss": -66
 }
],
 "Ip":{
 "IpAddress": "54.192.168.0"
 },
 "Gnss":{
 "Payload":"8295A614A2029517F4F77C0A7823B161A6FC57E25183D96535E3689783F6CA48",
 "CaptureTime":1354393948
 }
}

Device location topics and payload 1575

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_WiFiAccessPoint.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CellTowers.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_Ip.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_Gnss.html

AWS IoT Core Developer Guide

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate"
]
 }
]
}

/get_position_estimate/accepted

AWS IoT Core Device Location publishes a response to this topic when returning the resolved
location information for your device. The location information is returned in GeoJSON format.

$aws/device_location/customer_device_id/get_position_estimate/accepted

The following shows the message payload and an example policy.

Message payload

The following is an example of the message payload in GeoJSON format. If you specified a
MessageId in your raw measurement data and AWS IoT Core Device Location resolved the location
information successfully, then the message payload returns the same MessageId information.

{
 "coordinates": [
 13.37704086303711,
 52.51865005493164
],
 "type": "Point",

Device location topics and payload 1576

https://geojson.org/

AWS IoT Core Developer Guide

 "properties": {
 "verticalAccuracy": 707,
 "verticalConfidenceLevel": 0.68,
 "horizontalAccuracy": 389,
 "horizontalConfidenceLevel": 0.68,
 "country": "USA",
 "state": "CA",
 "city": "Sunnyvalue",
 "postalCode": "91234",
 "timestamp": "2022-11-18T14:03:57.391Z",
 "messageId": "ABCD1"
 }
}

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/
device_location/customer_device_id/get_position_estimate/accepted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate/accepted"
]
 }
]
}

Device location topics and payload 1577

AWS IoT Core Developer Guide

/get_position_estimate/rejected

AWS IoT Core Device Location publishes an error response to this topic when it fails to resolve the
device location.

$aws/device_location/customer_device_id/get_position_estimate/rejected

The following shows the message payload and example policy. For information about the errors,
see Troubleshooting errors when resolving the location.

Message payload

The following is an example of the message payload that provides the error code and message,
which indicates why AWS IoT Core Device Location failed to resolve the location information. If
you specified a MessageId when providing your raw measurement data and AWS IoT Core Device
Location failed to resolve the location information, then the same MessageId information will be
returned in the message payload.

{
 "errorCode": 500,
 "errorMessage":"Internal server error",
 "messageId": "ABCD1"
}

Example policy

The following is an example of the required policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account:topicfilter/$aws/
device_location/customer_device_id/get_position_estimate/rejected"
]
 },
 {

Device location topics and payload 1578

AWS IoT Core Developer Guide

 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account:topic/$aws/device_location/customer_device_id/
get_position_estimate/rejected"
]
 }
]
}

Location solvers and device payload

Location solvers are algorithms that can be used to resolve the location of your IoT devices. AWS
IoT Core Device Location supports the following location solvers. You'll see examples of the JSON
payload format for these measurement types, the devices supported by the solver, and how the
location is resolved.

To resolve the device location, specify one or more of these measurement data types. A single,
resolved location will be returned for all measurement data combined.

Topics

• Wi-Fi based solver

• Cellular based solver

• IP reverse lookup solver

• GNSS solver

Wi-Fi based solver

Use the Wi-Fi based solver to resolve the location using the scan information from Wi-Fi access
points. The solver supports the WLAN technology, and it can be used to compute the device
location for general IoT devices and LoRaWAN wireless devices.

The LoRaWAN devices must have the LoRa Edge chipset, which can decode the incoming Wi-
Fi scan information. LoRa Edge is an ultra-low power platform that integrates a long-range
LoRa transceiver, multi-constellation GNSS scanner, and passive Wi-Fi MAC scanner targeting
geolocation applications. When an uplink message is received from the device, the Wi-Fi scan data
is sent to AWS IoT Core Device Location, and the location is estimated based on the Wi-Fi scan

Location solvers and device payload 1579

AWS IoT Core Developer Guide

results. The decoded information is then passed to the Wi-Fi based solver to retrieve the location
information.

Wi-Fi based solver payload example

The following code shows an example of the JSON payload from the device that contains the
measurement data. When AWS IoT Core Device Location receives this data as input, it sends
an HTTP request to the solver provider to resolve the location information. To retrieve the
information, specify values for the MAC Address and RSS (received signal strength). To do this,
either provide the JSON payload using this format, or use the WiFiAccessPoints object parameter of
the GetPositionEstimate API operation.

{
 "Timestamp": 1664313161, // optional
 "WiFiAccessPoints": [
 {
 "MacAddress": "A0:EC:F9:1E:32:C1", // required
 "Rss": -75 // required
 }
]
}

Cellular based solver

You can use the cellular based solver to resolve the location using measurement data obtained
from cellular radio towers. The solver supports the following technologies. A single resolved
location information is obtained, even if you include measurement data from any or all of these
technologies.

• GSM

• CDMA

• WCDMA

• TD-SCDMA

• LTE

Cellular based solver payload examples

The following code shows examples of the JSON payload from the device that contains cellular
measurement data. When AWS IoT Core Device Location receives this data as input, it sends

Cellular based solver 1580

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_WiFiAccessPoint.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html

AWS IoT Core Developer Guide

an HTTP request to the solver provider to resolve the location information. To retrieve the
information, you either provide the JSON payload using this format in the console, or specify
values for the CellTowers parameter of the GetPositionEstimate API operation. You can provide
the measurement data by specifying values for parameters using any or all of these cellular
technologies.

LTE (Long-term evolution)

When you use this measurement data, you must specify information such as the network and
country code of the mobile network, and optional additional parameters including information
about the local ID. The following code shows an example of the payload format. For more
information about these parameters, see LTE object.

{
 "Timestamp": 1664313161, // optional
 "CellTowers": {
 "Lte": [
 {
 "Mcc": int, // required
 "Mnc": int, // required
 "EutranCid": int, // required. Make sure that you use int for
 EutranCid.
 "Tac": int, // optional
 "LteLocalId": { // optional
 "Pci": int, // required
 "Earfcn": int, // required
 },
 "LteTimingAdvance": int, // optional
 "Rsrp": int, // optional
 "Rsrq": float, // optional
 "NrCapable": boolean, // optional
 "LteNmr": [// optional
 {
 "Pci": int, // required
 "Earfcn": int, // required
 "EutranCid": int, // required
 "Rsrp": int, // optional
 "Rsrq": float // optional
 }
]
 }
]

Cellular based solver 1581

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html#iotwireless-GetPositionEstimate-request-CellTowers
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_LteObj.html

AWS IoT Core Developer Guide

 }
}

GSM (Global System for Mobile Communications)

When you use this measurement data, you must specify information such as the network and
country code of the mobile network, the base station information, and optional additional
parameters. The following code shows an example of the payload format. For more information
about these parameters, see GSM object.

{
 "Timestamp": 1664313161, // optional
 "CellTowers": {
 "Gsm": [
 {
 "Mcc": int, // required
 "Mnc": int, // required
 "Lac": int, // required
 "GeranCid": int, // required
 "GsmLocalId": { // optional
 "Bsic": int, // required
 "Bcch": int, // required
 },
 "GsmTimingAdvance": int, // optional
 "RxLevel": int, // optional
 "GsmNmr": [// optional
 {
 "Bsic": int, // required
 "Bcch": int, // required
 "RxLevel": int, // optional
 "GlobalIdentity": {
 "Lac": int, // required
 "GeranCid": int // required
 }
 }
]
 }
]
}

Cellular based solver 1582

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GsmObj.html

AWS IoT Core Developer Guide

CDMA (Code-division multiple access)

When you use this measurement data, you must specify information such as the signal power
and identification information, the base station information, and optional additional parameters.
The following code shows an example of the payload format. For more information about these
parameters, see CDMA object.

{
 "Timestamp": 1664313161, // optional
 "CellTowers": {
 "Cdma": [
 {
 "SystemId": int, // required
 "NetworkId": int, // required
 "BaseStationId": int, // required
 "RegistrationZone": int, // optional
 "CdmaLocalId": { // optional
 "PnOffset": int, // required
 "CdmaChannel": int, // required
 },
 "PilotPower": int, // optional
 "BaseLat": float, // optional
 "BaseLng": float, // optional
 "CdmaNmr": [// optional
 {
 "PnOffset": int, // required
 "CdmaChannel": int, // required
 "PilotPower": int, // optional
 "BaseStationId": int // optional
 }
]
 }
]
 }
}

WCDMA (Wideband code-division multiple access)

When you use this measurement data, you must specify information such as the network and
country code, signal power and identification information, the base station information, and
optional additional parameters. The following code shows an example of the payload format. For
more information about these parameters, see CDMA object.

Cellular based solver 1583

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CdmaObj.html
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CdmaObj.html

AWS IoT Core Developer Guide

{
 "Timestamp": 1664313161, // optional
 "CellTowers": {
 "Wcdma": [
 {
 "Mcc": int, // required
 "Mnc": int, // required
 "UtranCid": int, // required
 "Lac": int, // optional
 "WcdmaLocalId": { // optional
 "Uarfcndl": int, // required
 "Psc": int, // required
 },
 "Rscp": int, // optional
 "Pathloss": int, // optional
 "WcdmaNmr": [// optional
 {
 "Uarfcndl": int, // required
 "Psc": int, // required
 "UtranCid": int, // required
 "Rscp": int, // optional
 "Pathloss": int, // optional
 }
]
 }
]
 }
}

TD-SCDMA (Time division synchronous code-division multiple access)

When you use this measurement data, you must specify information such as the network and
country code, signal power and identification information, the base station information, and
optional additional parameters. The following code shows an example of the payload format. For
more information about these parameters, see CDMA object.

{
 "Timestamp": 1664313161, // optional
 "CellTowers": {
 "Tdscdma": [
 {
 "Mcc": int, // required

Cellular based solver 1584

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_CdmaObj.html

AWS IoT Core Developer Guide

 "Mnc": int, // required
 "UtranCid": int, // required
 "Lac": int, // optional
 "TdscdmaLocalId": { // optional
 "Uarfcn": int, // required
 "CellParams": int, // required
 },
 "TdscdmaTimingAdvance": int, // optional
 "Rscp": int, // optional
 "Pathloss": int, // optional
 "TdscdmaNmr": [// optional
 {
 "Uarfcn": int, // required
 "CellParams": int, // required
 "UtranCid": int, // optional
 "Rscp": int, // optional
 "Pathloss": int, // optional
 }
]
 }
]
 }
}

IP reverse lookup solver

You can use the IP reverse lookup solver to resolve the location using the IP address as input. The
solver can obtain the location information from devices that have been provisioned with AWS IoT.
Specify the IP address information using a format that's either the IPv4 or IPv6 standard pattern,
or the IPv6 hex compressed pattern. You then obtain the resolved location estimate, including
additional information such as city and country where the device is located.

Note

By using the IP reverse lookup, you agree not to use it for the purpose of identifying or
locating a specific household or street address.

IP reverse lookup solver payload example

The following code shows an example of the JSON payload from the device that contains the
measurement data. When AWS IoT Core Device Location receives the IP address information in the

IP reverse lookup solver 1585

AWS IoT Core Developer Guide

measurement data, it looks up this information in the solver provider's database, which is then
used to resolve the location information. To retrieve the information, either provide the JSON
payload using this format, or specify values for the Ip parameter of the GetPositionEstimate API
operation.

Note

When this solver is used, the city, state, country, and postal code where the device is
located is also reported in addition to the coordinates. For an example, see Resolving device
location (console).

{
 "Timestamp": 1664313161,
 "Ip":{
 "IpAddress":"54.240.198.35"
 }
}

GNSS solver

Use the GNSS (Global Navigation Satellite System) solver to retrieve the device location using the
information contained in the GNSS scan result messages or NAV messages. You can optionally
provide additional GNSS assistance information, which reduces the number of variables that the
solver must use to search for signals. By providing this assistance information, which includes the
position, altitude, and the capture time and accuracy information, the solver can easily identify the
satellites in view and compute the device location.

This solver can be used with LoRaWAN devices, and other devices that have been provisioned
with AWS IoT. For general IoT devices, if the devices support location estimation using GNSS,
when the GNSS scan information is received from the device, the transceivers resolve the location
information. For LoRaWAN devices, the devices must have the LoRa Edge chipset. When an uplink
message is received from the device, the GNSS scan data is sent to AWS IoT Core for LoRaWAN, and
the location is estimated based on the scan results from the transceivers.

GNSS solver payload example

The following code shows an example of the JSON payload from the device that contains the
measurement data. When AWS IoT Core Device Location receives the GNSS scan information

GNSS solver 1586

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html#iotwireless-GetPositionEstimate-request-Ip
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html

AWS IoT Core Developer Guide

containing the payload in the measurement data, it uses the transceivers and any additional
assistance information included to search for signals and resolve the location information. To
retrieve the information, either provide the JSON payload using this format, or specify values for
the Gnss parameter of the GetPositionEstimate API operation.

Note

Before AWS IoT Core Device Location can resolve the device location, you must remove the
destination byte from the payload.

{
 "Timestamp": 1664313161, // optional
 "Gnss": {
 "AssistAltitude": number, // optional
 "AssistPosition": [number], // optional
 "CaptureTime": number, // optional
 "CaptureTimeAccuracy": number, // optional
 "Payload": "string", // required
 "Use2DSolver": boolean // optional
 }
}

GNSS solver 1587

https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html#iotwireless-GetPositionEstimate-request-Gnss
https://docs.aws.amazon.com/iot-wireless/2020-11-22/apireference/API_GetPositionEstimate.html

AWS IoT Core Developer Guide

Event messages

This section contains information about messages published by AWS IoT when things or jobs are
updated or changed. For information about the AWS IoT Events service that allows you to create
detectors to monitor your devices for failures or changes in operation, and to trigger actions when
they occur, see AWS IoT Events.

How event messages are generated

AWS IoT publishes event messages when certain events occur. For example, events are generated
by the registry when things are added, updated, or deleted. Each event causes a single event
message to be sent. Event messages are published over MQTT with a JSON payload. The content of
the payload depends on the type of event.

Note

Event messages are guaranteed to be published once. It is possible for them to be
published more than once. The ordering of event messages is not guaranteed.

Policy for receiving event messages

To receive event messages, your device must use an appropriate policy that allows it to connect to
the AWS IoT device gateway and subscribe to MQTT event topics. You must also subscribe to the
appropriate topic filters.

The following is an example of the policy required for receiving lifecycle events:

{
 "Version":"2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":[
 "iot:Subscribe",
 "iot:Receive"
],
 "Resource":[

How event messages are generated 1588

https://aws.amazon.com/iot-events

AWS IoT Core Developer Guide

 "arn:aws:iot:region:account:/$aws/events/*"
]
 }]
}

Enable events for AWS IoT

Before subscribers to the reserved topics can receive messages, you must enable event messages
from the AWS Management Console or by using the API or CLI. For information about the event
messages that the different options manage, see the Table of AWS IoT event configuration
settings.

• To enable event messages, go to the Settings tab of the AWS IoT console and then, in the Event-
based messages section, choose Manage events. You can specify the events that you want to
manage.

• To control which event types are published by using the API or CLI, call the
UpdateEventConfigurations API or use the update-event-configurations CLI command. For
example:

aws iot update-event-configurations --event-configurations "{\"THING\":{\"Enabled\":
 true}}"

Note

All quotation marks (") are escaped with a backslash (\).

You can get the current event configuration by calling the DescribeEventConfigurations API or by
using the describe-event-configurations CLI command. For example:.

aws iot describe-event-configurations

Table of AWS IoT event configuration settings

Enable events for AWS IoT 1589

https://console.aws.amazon.com/iot/home#/settings
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateEventConfigurations.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEventConfigurations.html

AWS IoT Core Developer Guide

Event category

(AWS IoT Console: Settings:
Event-based messages)

eventConfigurations
key value

(AWS CLI/API)

Event message topic

(Can only be configured by
using the AWS CLI/API)

CA_CERTIFICATE $aws/events/certif
icates/registered/
caCertificateId

(Can only be configured by
using the AWS CLI/API)

CERTIFICATE $aws/events/
presence/connec
ted/ clientId

(Can only be configured by
using the AWS CLI/API)

CERTIFICATE $aws/events/
presence/discon
nected/ clientId

(Can only be configured by
using the AWS CLI/API)

CERTIFICATE $aws/events/subscr
iptions/subscribed
/ clientId

(Can only be configured by
using the AWS CLI/API)

CERTIFICATE $aws/events/subscr
iptions/unsubscrib
ed/ clientId

Job completed, canceled JOB $aws/events/
job/jobID/canceled

Job completed, canceled JOB $aws/events/
job/jobID/cancella
tion_in_progress

Job completed, canceled JOB $aws/events/
job/jobID/completed

Job completed, canceled JOB $aws/events/
job/jobID/deleted

Enable events for AWS IoT 1590

AWS IoT Core Developer Guide

Event category

(AWS IoT Console: Settings:
Event-based messages)

eventConfigurations
key value

(AWS CLI/API)

Event message topic

Job completed, canceled JOB $aws/events/
job/jobID/deletion
_in_progress

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/canceled

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/deleted

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/failed

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/rejected

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/removed

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/succeede
d

Job execution: success, failed,
rejected, canceled, removed

JOB_EXECUTION $aws/events/jobExe
cution/ jobID/timed_ou
t

Thing: created, updated,
deleted

THING $aws/events/thing/
thingName /created

Thing: created, updated,
deleted

THING $aws/events/thing/
thingName /updated

Enable events for AWS IoT 1591

AWS IoT Core Developer Guide

Event category

(AWS IoT Console: Settings:
Event-based messages)

eventConfigurations
key value

(AWS CLI/API)

Event message topic

Thing: created, updated,
deleted

THING $aws/events/thing/
thingName /deleted

Thing group: added, removed THING_GROUP $aws/events/thingG
roup/ thingGroupName /
created

Thing group: added, removed THING_GROUP $aws/events/thingG
roup/ thingGroupName /
updated

Thing group: added, removed THING_GROUP $aws/events/thingG
roup/ thingGroupName /
deleted

Thing group hierarchy: added,
removed

THING_GROUP_HIERAR
CHY

$aws/events/thingG
roupHierarchy/thin
gGroup/ parentThi
ngGroupName /childThi
ngGroup/ childThin
gGroupName /added

Thing group hierarchy: added,
removed

THING_GROUP_HIERAR
CHY

$aws/events/thingG
roupHierarchy/thin
gGroup/ parentThi
ngGroupName /childThi
ngGroup/ childThin
gGroupName /removed

Enable events for AWS IoT 1592

AWS IoT Core Developer Guide

Event category

(AWS IoT Console: Settings:
Event-based messages)

eventConfigurations
key value

(AWS CLI/API)

Event message topic

Thing group membership:
added, removed

THING_GROUP_MEMBER
SHIP

$aws/events/thingG
roupMembership/thi
ngGroup/ thingGrou
pName /thing/thingName
/added

Thing group membership:
added, removed

THING_GROUP_MEMBER
SHIP

$aws/events/thingG
roupMembership/thi
ngGroup/ thingGrou
pName /thing/thingName
/removed

Thing type: created, updated,
deleted

THING_TYPE $aws/events/thingT
ype/ thingTypeName /
created

Thing type: created, updated,
deleted

THING_TYPE $aws/events/thingT
ype/ thingTypeName /
updated

Thing type: created, updated,
deleted

THING_TYPE $aws/events/thingT
ype/ thingTypeName /
deleted

Enable events for AWS IoT 1593

AWS IoT Core Developer Guide

Event category

(AWS IoT Console: Settings:
Event-based messages)

eventConfigurations
key value

(AWS CLI/API)

Event message topic

Thing type association:
added, removed

THING_TYPE_ASSOCIA
TION

$aws/events/thingT
ypeAssociation/
thing/ thingName /
thingType/ thingType
Name /added

$aws/events/thingT
ypeAssociation/
thing/ thingName /
thingType/ thingType
Name /removed

Registry events

The registry can publish event messages when things, thing types, and thing groups are created,
updated, or deleted. These events, however, are not available by default. For information about
how to turn on these events, see Enable events for AWS IoT.

The registry can provide the following event types:

• Thing events

• Thing type events

• Thing group events

Thing events

Thing Created/Updated/Deleted

The registry publishes the following event messages when things are created, updated, or deleted:

• $aws/events/thing/thingName/created

• $aws/events/thing/thingName/updated

Registry events 1594

AWS IoT Core Developer Guide

• $aws/events/thing/thingName/deleted

The messages contain the following example payload:

{
 "eventType" : "THING_EVENT",
 "eventId" : "f5ae9b94-8b8e-4d8e-8c8f-b3266dd89853",
 "timestamp" : 1234567890123,
 "operation" : "CREATED|UPDATED|DELETED",
 "accountId" : "123456789012",
 "thingId" : "b604f69c-aa9a-4d4a-829e-c480e958a0b5",
 "thingName" : "MyThing",
 "versionNumber" : 1,
 "thingTypeName" : null,
 "attributes": {
 "attribute3": "value3",
 "attribute1": "value1",
 "attribute2": "value2"
 }
}

The payloads contain the following attributes:

eventType

Set to "THING_EVENT".

eventId

A unique event ID (string).

timestamp

The UNIX timestamp of when the event occurred.

operation

The operation that triggered the event. Valid values are:

• CREATED

• UPDATED

• DELETED

Thing events 1595

AWS IoT Core Developer Guide

accountId

Your AWS account ID.

thingId

The ID of the thing being created, updated, or deleted.

thingName

The name of the thing being created, updated, or deleted.

versionNumber

The version of the thing being created, updated, or deleted. This value is set to 1 when a thing
is created. It is incremented by 1 each time the thing is updated.

thingTypeName

The thing type associated with the thing, if one exists. Otherwise, null.

attributes

A collection of name-value pairs associated with the thing.

Thing type events

Thing type related events:

• Thing Type Created/Deprecated/Undeprecated/Deleted

• Thing Type Associated or Disassociated with a Thing

Thing Type Created/Deprecated/Undeprecated/Deleted

The registry publishes the following event messages when thing types are created, deprecated,
undeprecated, or deleted:

• $aws/events/thingType/thingTypeName/created

• $aws/events/thingType/thingTypeName/updated

• $aws/events/thingType/thingTypeName/deleted

The message contains the following example payload:

Thing type events 1596

AWS IoT Core Developer Guide

{
 "eventType" : "THING_TYPE_EVENT",
 "eventId" : "8827376c-4b05-49a3-9b3b-733729df7ed5",
 "timestamp" : 1234567890123,
 "operation" : "CREATED|UPDATED|DELETED",
 "accountId" : "123456789012",
 "thingTypeId" : "c530ae83-32aa-4592-94d3-da29879d1aac",
 "thingTypeName" : "MyThingType",
 "isDeprecated" : false|true,
 "deprecationDate" : null,
 "searchableAttributes" : ["attribute1", "attribute2", "attribute3"],
 "description" : "My thing type"
}

The payloads contain the following attributes:

eventType

Set to "THING_TYPE_EVENT".

eventId

A unique event ID (string).

timestamp

The UNIX timestamp of when the event occurred.

operation

The operation that triggered the event. Valid values are:

• CREATED

• UPDATED

• DELETED

accountId

Your AWS account ID.

thingTypeId

The ID of the thing type being created, deprecated, or deleted.

thingTypeName

The name of the thing type being created, deprecated, or deleted.

Thing type events 1597

AWS IoT Core Developer Guide

isDeprecated

true if the thing type is deprecated. Otherwise, false.

deprecationDate

The UNIX timestamp for when the thing type was deprecated.

searchableAttributes

A collection of name-value pairs associated with the thing type that can be used for searching.

description

A description of the thing type.

Thing Type Associated or Disassociated with a Thing

The registry publishes the following event messages when a thing type is associated or
disassociated with a thing.

• $aws/events/thingTypeAssociation/thing/thingName/thingType/typeName/added

• $aws/events/thingTypeAssociation/thing/thingName/thingType/typeName/
removed

The following is an example of an added payload. Payloads for removed messages are similar.

{
 "eventId" : "87f8e095-531c-47b3-aab5-5171364d138d",
 "eventType" : "THING_TYPE_ASSOCIATION_EVENT",
 "operation" : "ADDED",
 "thingId" : "b604f69c-aa9a-4d4a-829e-c480e958a0b5",
 "thingName": "myThing",
 "thingTypeName" : "MyThingType",
 "timestamp" : 1234567890123,
}

The payloads contain the following attributes:

eventId

A unique event ID (string).

Thing type events 1598

AWS IoT Core Developer Guide

eventType

Set to "THING_TYPE_ASSOCIATION_EVENT".

operation

The operation that triggered the event. Valid values are:

• ADDED

• REMOVED

thingId

The ID of the thing whose type association was changed.

thingName

The name of the thing whose type association was changed.

thingTypeName

The thing type associated with, or no longer associated with, the thing.

timestamp

The UNIX timestamp of when the event occurred.

Thing group events

Thing group related events:

• Thing Group Created/Updated/Deleted

• Thing Added to or Removed from a Thing Group

• Thing Group Added to or Deleted from a Thing Group

Thing Group Created/Updated/Deleted

The registry publishes the following event messages when a thing group is created, updated, or
deleted.

• $aws/events/thingGroup/groupName/created

• $aws/events/thingGroup/groupName/updated

Thing group events 1599

AWS IoT Core Developer Guide

• $aws/events/thingGroup/groupName/deleted

The following is an example of an updated payload. Payloads for created and deleted
messages are similar.

{
 "eventType": "THING_GROUP_EVENT",
 "eventId": "8b9ea8626aeaa1e42100f3f32b975899",
 "timestamp": 1603995417409,
 "operation": "UPDATED",
 "accountId": "571EXAMPLE833",
 "thingGroupId": "8757eec8-bb37-4cca-a6fa-403b003d139f",
 "thingGroupName": "Tg_level5",
 "versionNumber": 3,
 "parentGroupName": "Tg_level4",
 "parentGroupId": "5fce366a-7875-4c0e-870b-79d8d1dce119",
 "description": "New description for Tg_level5",
 "rootToParentThingGroups": [
 {
 "groupArn": "arn:aws:iot:us-west-2:571EXAMPLE833:thinggroup/TgTopLevel",
 "groupId": "36aa0482-f80d-4e13-9bff-1c0a75c055f6"
 },
 {
 "groupArn": "arn:aws:iot:us-west-2:571EXAMPLE833:thinggroup/Tg_level1",
 "groupId": "bc1643e1-5a85-4eac-b45a-92509cbe2a77"
 },
 {
 "groupArn": "arn:aws:iot:us-west-2:571EXAMPLE833:thinggroup/Tg_level2",
 "groupId": "0476f3d2-9beb-48bb-ae2c-ea8bd6458158"
 },
 {
 "groupArn": "arn:aws:iot:us-west-2:571EXAMPLE833:thinggroup/Tg_level3",
 "groupId": "1d9d4ffe-a6b0-48d6-9de6-2e54d1eae78f"
 },
 {
 "groupArn": "arn:aws:iot:us-west-2:571EXAMPLE833:thinggroup/Tg_level4",
 "groupId": "5fce366a-7875-4c0e-870b-79d8d1dce119"
 }
],
 "attributes": {
 "attribute1": "value1",
 "attribute3": "value3",
 "attribute2": "value2"

Thing group events 1600

AWS IoT Core Developer Guide

 },
 "dynamicGroupMappingId": null
}

The payloads contain the following attributes:

eventType

Set to "THING_GROUP_EVENT".

eventId

A unique event ID (string).

timestamp

The UNIX timestamp of when the event occurred.

operation

The operation that triggered the event. Valid values are:

• CREATED

• UPDATED

• DELETED

accountId

Your AWS account ID.

thingGroupId

The ID of the thing group being created, updated, or deleted.

thingGroupName

The name of the thing group being created, updated, or deleted.

versionNumber

The version of the thing group. This value is set to 1 when a thing group is created. It is
incremented by 1 each time the thing group is updated.

parentGroupName

The name of the parent thing group, if one exists.

Thing group events 1601

AWS IoT Core Developer Guide

parentGroupId

The ID of the parent thing group, if one exists.

description

A description of the thing group.

rootToParentThingGroups

An array of information about the parent thing group. There is one element for each parent
thing group, starting from the root thing group and continuing to the thing group's parent.
Each entry contains the thing group's groupArn and groupId.

attributes

A collection of name-value pairs associated with the thing group.

Thing Added to or Removed from a Thing Group

The registry publishes the following event messages when a thing is added to or removed from a
thing group.

• $aws/events/thingGroupMembership/thingGroup/thingGroupName/
thing/thingName/added

• $aws/events/thingGroupMembership/thingGroup/thingGroupName/
thing/thingName/removed

The messages contain the following example payload:

{
 "eventType" : "THING_GROUP_MEMBERSHIP_EVENT",
 "eventId" : "d684bd5f-6f6e-48e1-950c-766ac7f02fd1",
 "timestamp" : 1234567890123,
 "operation" : "ADDED|REMOVED",
 "accountId" : "123456789012",
 "groupArn" : "arn:aws:iot:ap-northeast-2:123456789012:thinggroup/
MyChildThingGroup",
 "groupId" : "06838589-373f-4312-b1f2-53f2192291c4",
 "thingArn" : "arn:aws:iot:ap-northeast-2:123456789012:thing/MyThing",
 "thingId" : "b604f69c-aa9a-4d4a-829e-c480e958a0b5",

Thing group events 1602

AWS IoT Core Developer Guide

 "membershipId" : "8505ebf8-4d32-4286-80e9-c23a4a16bbd8"
}

The payloads contain the following attributes:

eventType

Set to "THING_GROUP_MEMBERSHIP_EVENT".

eventId

The event ID.

timestamp

The UNIX timestamp for when the event occurred.

operation

ADDED when a thing is added to a thing group. REMOVED when a thing is removed from a thing
group.

accountId

Your AWS account ID.

groupArn

The ARN of the thing group.

groupId

The ID of the group.

thingArn

The ARN of the thing that was added or removed from the thing group.

thingId

The ID of the thing that was added or removed from the thing group.

membershipId

An ID that represents the relationship between the thing and the thing group. This value is
generated when you add a thing to a thing group.

Thing group events 1603

AWS IoT Core Developer Guide

Thing Group Added to or Deleted from a Thing Group

The registry publishes the following event messages when a thing group is added to or removed
from another thing group.

• $aws/events/thingGroupHierarchy/thingGroup/parentThingGroupName/
childThingGroup/childThingGroupName/added

• $aws/events/thingGroupHierarchy/thingGroup/parentThingGroupName/
childThingGroup/childThingGroupName/removed

The message contains the following example payload:

{
 "eventType" : "THING_GROUP_HIERARCHY_EVENT",
 "eventId" : "264192c7-b573-46ef-ab7b-489fcd47da41",
 "timestamp" : 1234567890123,
 "operation" : "ADDED|REMOVED",
 "accountId" : "123456789012",
 "thingGroupId" : "8f82a106-6b1d-4331-8984-a84db5f6f8cb",
 "thingGroupName" : "MyRootThingGroup",
 "childGroupId" : "06838589-373f-4312-b1f2-53f2192291c4",
 "childGroupName" : "MyChildThingGroup"
}

The payloads contain the following attributes:

eventType

Set to "THING_GROUP_HIERARCHY_EVENT".

eventId

The event ID.

timestamp

The UNIX timestamp for when the event occurred.

operation

ADDED when a thing is added to a thing group. REMOVED when a thing is removed from a thing
group.

Thing group events 1604

AWS IoT Core Developer Guide

accountId

Your AWS account ID.

thingGroupId

The ID of the parent thing group.

thingGroupName

The name of the parent thing group.

childGroupId

The ID of the child thing group.

childGroupName

The name of the child thing group.

Jobs events

The AWS IoT Jobs service publishes to reserved topics on the MQTT protocol when jobs are
pending, completed, or canceled, and when a device reports success or failure when running a job.
Devices or management and monitoring applications can track the status of jobs by subscribing to
these topics.

How to enable jobs events

Response messages from the AWS IoT Jobs service don't pass through the message broker and
they can't be subscribed to by other clients or rules. To subscribe to job activity-related messages,
use the notify and notify-next topics. For information about jobs topics, see Job topics.

To be notified of jobs updates, enable these jobs events by using the AWS Management Console, or
by using the API or CLI. For more information, see Enable events for AWS IoT.

How jobs events work

Because it can take some time to cancel or delete a job, two messages are sent to indicate the start
and end of a request. For example, when a cancellation request starts, a message is sent to the
$aws/events/job/jobID/cancellation_in_progress topic. When the cancellation request
is complete, a message is sent to the $aws/events/job/jobID/canceled topic.

Jobs events 1605

AWS IoT Core Developer Guide

A similar process occurs for a job deletion request. Management and monitoring applications can
subscribe to these topics to keep track of the status of jobs. For more information about publishing
and subscribing to MQTT topics, see the section called “Device communication protocols”.

Job event types

The following shows the different types of jobs events:

Job Completed/Canceled/Deleted

The AWS IoT Jobs service publishes a message on an MQTT topic when a job is completed,
canceled, deleted, or when cancellation or deletion are in progress:

• $aws/events/job/jobID/completed

• $aws/events/job/jobID/canceled

• $aws/events/job/jobID/deleted

• $aws/events/job/jobID/cancellation_in_progress

• $aws/events/job/jobID/deletion_in_progress

The completed message contains the following example payload:

{
 "eventType": "JOB",
 "eventId": "7364ffd1-8b65-4824-85d5-6c14686c97c6",
 "timestamp": 1234567890,
 "operation": "completed",
 "jobId": "27450507-bf6f-4012-92af-bb8a1c8c4484",
 "status": "COMPLETED",
 "targetSelection": "SNAPSHOT|CONTINUOUS",
 "targets": [
 "arn:aws:iot:us-east-1:123456789012:thing/a39f6f91-70cf-4bd2-a381-9c66df1a80d0",
 "arn:aws:iot:us-east-1:123456789012:thinggroup/2fc4c0a4-6e45-4525-
a238-0fe8d3dd21bb"
],
 "description": "My Job Description",
 "completedAt": 1234567890123,
 "createdAt": 1234567890123,
 "lastUpdatedAt": 1234567890123,
 "jobProcessDetails": {
 "numberOfCanceledThings": 0,
 "numberOfRejectedThings": 0,
 "numberOfFailedThings": 0,

Jobs events 1606

AWS IoT Core Developer Guide

 "numberOfRemovedThings": 0,
 "numberOfSucceededThings": 3
 }
}

The canceled message contains the following example payload.

{
 "eventType": "JOB",
 "eventId": "568d2ade-2e9c-46e6-a115-18afa1286b06",
 "timestamp": 1234567890,
 "operation": "canceled",
 "jobId": "4d2a531a-da2e-47bb-8b9e-ff5adcd53ef0",
 "status": "CANCELED",
 "targetSelection": "SNAPSHOT|CONTINUOUS",
 "targets": [
 "arn:aws:iot:us-east-1:123456789012:thing/Thing0-947b9c0c-ff10-4a80-b4b3-
cd33d0145a0f",
 "arn:aws:iot:us-east-1:123456789012:thinggroup/
ThingGroup1-95c644d5-1621-41a6-9aa5-ad2de581d18f"
],
 "description": "My job description",
 "createdAt": 1234567890123,
 "lastUpdatedAt": 1234567890123
}

The deleted message contains the following example payload.

{
 "eventType": "JOB",
 "eventId": "568d2ade-2e9c-46e6-a115-18afa1286b06",
 "timestamp": 1234567890,
 "operation": "deleted",
 "jobId": "4d2a531a-da2e-47bb-8b9e-ff5adcd53ef0",
 "status": "DELETED",
 "targetSelection": "SNAPSHOT|CONTINUOUS",
 "targets": [
 "arn:aws:iot:us-east-1:123456789012:thing/Thing0-947b9c0c-ff10-4a80-b4b3-
cd33d0145a0f",
 "arn:aws:iot:us-east-1:123456789012:thinggroup/
ThingGroup1-95c644d5-1621-41a6-9aa5-ad2de581d18f"
],
 "description": "My job description",

Jobs events 1607

AWS IoT Core Developer Guide

 "createdAt": 1234567890123,
 "lastUpdatedAt": 1234567890123,
 "comment": "Comment for this operation"
 }

The cancellation_in_progress message contains the following example payload:

{
 "eventType": "JOB",
 "eventId": "568d2ade-2e9c-46e6-a115-18afa1286b06",
 "timestamp": 1234567890,
 "operation": "cancellation_in_progress",
 "jobId": "4d2a531a-da2e-47bb-8b9e-ff5adcd53ef0",
 "status": "CANCELLATION_IN_PROGRESS",
 "targetSelection": "SNAPSHOT|CONTINUOUS",
 "targets": [
 "arn:aws:iot:us-east-1:123456789012:thing/Thing0-947b9c0c-ff10-4a80-b4b3-
cd33d0145a0f",
 "arn:aws:iot:us-east-1:123456789012:thinggroup/
ThingGroup1-95c644d5-1621-41a6-9aa5-ad2de581d18f"
],
 "description": "My job description",
 "createdAt": 1234567890123,
 "lastUpdatedAt": 1234567890123,
 "comment": "Comment for this operation"
 }

The deletion_in_progress message contains the following example payload:

{
 "eventType": "JOB",
 "eventId": "568d2ade-2e9c-46e6-a115-18afa1286b06",
 "timestamp": 1234567890,
 "operation": "deletion_in_progress",
 "jobId": "4d2a531a-da2e-47bb-8b9e-ff5adcd53ef0",
 "status": "DELETION_IN_PROGRESS",
 "targetSelection": "SNAPSHOT|CONTINUOUS",
 "targets": [
 "arn:aws:iot:us-east-1:123456789012:thing/Thing0-947b9c0c-ff10-4a80-b4b3-
cd33d0145a0f",
 "arn:aws:iot:us-east-1:123456789012:thinggroup/
ThingGroup1-95c644d5-1621-41a6-9aa5-ad2de581d18f"
],

Jobs events 1608

AWS IoT Core Developer Guide

 "description": "My job description",
 "createdAt": 1234567890123,
 "lastUpdatedAt": 1234567890123,
 "comment": "Comment for this operation"
 }

Job Execution Terminal Status

The AWS IoT Jobs service publishes a message when a device updates a job execution to
terminal status:

• $aws/events/jobExecution/jobID/succeeded

• $aws/events/jobExecution/jobID/failed

• $aws/events/jobExecution/jobID/rejected

• $aws/events/jobExecution/jobID/canceled

• $aws/events/jobExecution/jobID/timed_out

• $aws/events/jobExecution/jobID/removed

• $aws/events/jobExecution/jobID/deleted

The message contains the following example payload:

{
 "eventType": "JOB_EXECUTION",
 "eventId": "cca89fa5-8a7f-4ced-8c20-5e653afb3572",
 "timestamp": 1234567890,
 "operation": "succeeded|failed|rejected|canceled|removed|timed_out",
 "jobId": "154b39e5-60b0-48a4-9b73-f6f8dd032d27",
 "thingArn": "arn:aws:iot:us-east-1:123456789012:myThing/6d639fbc-8f85-4a90-924d-
a2867f8366a7",
 "status": "SUCCEEDED|FAILED|REJECTED|CANCELED|REMOVED|TIMED_OUT",
 "statusDetails": {
 "key": "value"
 }
}

Lifecycle events

AWS IoT can publish lifecycle events on the MQTT topics. These events are available by default and
they can't be disabled.

Lifecycle events 1609

AWS IoT Core Developer Guide

Note

Lifecycle messages might be sent out of order. You might receive duplicate messages.

In this topic:

• Connect/Disconnect events

• Subscribe/Unsubscribe events

Connect/Disconnect events

Note

With AWS IoT Device Management fleet indexing, you can search for things, run aggregate
queries, and create dynamic groups based on thing Connect/Disconnect events. For more
information, see Fleet indexing.

AWS IoT publishes a message to the following MQTT topics when a client connects or disconnects:

• $aws/events/presence/connected/clientId – A client connected to the message broker.

• $aws/events/presence/disconnected/clientId – A client disconnected from the
message broker.

The following is a list of JSON elements that are contained in the connection/disconnection
messages published to the $aws/events/presence/connected/clientId topic.

clientId

The client ID of the connecting or disconnecting client.

Note

Client IDs that contain # or + do not receive lifecycle events.

Connect/Disconnect events 1610

https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html

AWS IoT Core Developer Guide

clientInitiatedDisconnect

True if the client initiated the disconnect. Otherwise, false. Found in disconnect messages only.

disconnectReason

The reason why the client is disconnecting. Found in disconnect messages only. The following
table contains valid values and whether the broker will send Last Will and Testament (LWT)
messages when the disconnection occurs.

Disconnect reason Description The broker will
send the LWT
messages

AUTH_ERROR The client failed to authenticate or authorization
failed.

Yes. If the device
has an active
connection before
receiving this error.

CLIENT_IN
ITIATED_D
ISCONNECT

The client indicates that it will disconnec
t. The client can do this by sending either
a MQTT DISCONNECT control packet or a
Close frame if the client is using a WebSocket
connection.

No.

CLIENT_ERROR The client did something wrong that causes
it to disconnect. For example, a client will be
disconnected for sending more than 1 MQTT
CONNECT packet on the same connection or if
the client attempts to publish with a payload
that exceeds the payload limit.

Yes.

CONNECTIO
N_LOST

The client-server connection is cut off. This can
happen during a period of high network latency
or when the internet connection is lost.

Yes.

DUPLICATE
_CLIENTID

The client is using a client ID that is already
in use. In this case, the client that is already

Yes.

Connect/Disconnect events 1611

AWS IoT Core Developer Guide

Disconnect reason Description The broker will
send the LWT
messages

connected will be disconnected with this
disconnect reason.

FORBIDDEN
_ACCESS

The client is not allowed to be connected. For
example, a client with a denied IP address will
fail to connect.

Yes. If the device
has an active
connection before
receiving this error.

MQTT_KEEP
_ALIVE_TI
MEOUT

If there is no client-server communication for
1.5x of the client's keep-alive time, the client is
disconnected.

Yes.

SERVER_ERROR Disconnected due to unexpected server issues. Yes.

SERVER_IN
ITIATED_D
ISCONNECT

Server intentionally disconnects a client for
operational reasons.

Yes.

THROTTLED The client is disconnected for exceeding a
throttling limit.

Yes.

WEBSOCKET
_TTL_EXPI
RATION

The client is disconnected because a WebSocket
has been connected longer than its time-to-live
value.

Yes.

eventType

The type of event. Valid values are connected or disconnected.

ipAddress

The IP address of the connecting client. This can be in IPv4 or IPv6 format. Found in connection
messages only.

Connect/Disconnect events 1612

AWS IoT Core Developer Guide

principalIdentifier

The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.

sessionIdentifier

A globally unique identifier in AWS IoT that exists for the life of the session.

timestamp

An approximation of when the event occurred.

versionNumber

The version number for the lifecycle event. This is a monotonically increasing long integer value
for each client ID connection. The version number can be used by a subscriber to infer the order
of lifecycle events.

Note

The connect and disconnect messages for a client connection have the same version
number.
The version number might skip values and is not guaranteed to be consistently
increasing by 1 for each event.
If a client is not connected for approximately one hour, the version number is reset
to 0. For persistent sessions, the version number is reset to 0 after a client has been
disconnected longer than the configured time-to-live (TTL) for the persistent session.

A connect message has the following structure.

{
 "clientId": "186b5",
 "timestamp": 1573002230757,
 "eventType": "connected",
 "sessionIdentifier": "a4666d2a7d844ae4ac5d7b38c9cb7967",
 "principalIdentifier": "12345678901234567890123456789012",
 "ipAddress": "192.0.2.0",
 "versionNumber": 0
}

A disconnect message has the following structure.

Connect/Disconnect events 1613

AWS IoT Core Developer Guide

{
 "clientId": "186b5",
 "timestamp": 1573002340451,
 "eventType": "disconnected",
 "sessionIdentifier": "a4666d2a7d844ae4ac5d7b38c9cb7967",
 "principalIdentifier": "12345678901234567890123456789012",
 "clientInitiatedDisconnect": true,
 "disconnectReason": "CLIENT_INITIATED_DISCONNECT",
 "versionNumber": 0
}

Handling client disconnections

The best practice is to always have a wait state implemented for lifecycle events, including Last
Will and Testament (LWT) messages. When a disconnect message is received, your code should
wait a period of time and verify a device is still offline before taking action. One way to do this is
by using SQS Delay Queues. When a client receives a LWT or a lifecycle event, you can enqueue a
message (for example, for 5 seconds). When that message becomes available and is processed (by
Lambda or another service), you can first check if the device is still offline before taking further
action.

Subscribe/Unsubscribe events

AWS IoT publishes a message to the following MQTT topic when a client subscribes or unsubscribes
to an MQTT topic:

$aws/events/subscriptions/subscribed/clientId

or

$aws/events/subscriptions/unsubscribed/clientId

Where clientId is the MQTT client ID that connects to the AWS IoT message broker.

The message published to this topic has the following structure:

{
 "clientId": "186b5",
 "timestamp": 1460065214626,
 "eventType": "subscribed" | "unsubscribed",

Subscribe/Unsubscribe events 1614

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-delay-queues.html

AWS IoT Core Developer Guide

 "sessionIdentifier": "00000000-0000-0000-0000-000000000000",
 "principalIdentifier": "000000000000/ABCDEFGHIJKLMNOPQRSTU:some-user/
ABCDEFGHIJKLMNOPQRSTU:some-user",
 "topics" : ["foo/bar","device/data","dog/cat"]
}

The following is a list of JSON elements that are contained in the subscribed and unsubscribed
messages published to the $aws/events/subscriptions/subscribed/clientId and $aws/
events/subscriptions/unsubscribed/clientId topics.

clientId

The client ID of the subscribing or unsubscribing client.

Note

Client IDs that contain # or + do not receive lifecycle events.

eventType

The type of event. Valid values are subscribed or unsubscribed.

principalIdentifier

The credential used to authenticate. For TLS mutual authentication certificates, this is the
certificate ID. For other connections, this is IAM credentials.

sessionIdentifier

A globally unique identifier in AWS IoT that exists for the life of the session.

timestamp

An approximation of when the event occurred.

topics

An array of the MQTT topics to which the client has subscribed.

Note

Lifecycle messages might be sent out of order. You might receive duplicate messages.

Subscribe/Unsubscribe events 1615

AWS IoT Core Developer Guide

Troubleshooting AWS IoT

Help us improve this topic

Let us know what would help make it better

The following information might help you troubleshoot common issues in AWS IoT.

Tasks

• AWS IoT Core troubleshooting guide

• AWS IoT Device Advisor troubleshooting guide

• AWS IoT Device Management troubleshooting guide

• AWS IoT errors

AWS IoT Core troubleshooting guide

Help us improve this topic

Let us know what would help make it better

This is the troubleshooting section for AWS IoT Core.

Topics

• Diagnosing connectivity issues

• Diagnosing rules issues

• Diagnosing problems with shadows

• Diagnosing Salesforce IoT input stream action issues

• Diagnosing Stream Limits

• Troubleshooting device fleet disconnects

AWS IoT Core troubleshooting guide 1616

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/iot_troubleshooting.html
https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/iot-core-troubleshoot.html

AWS IoT Core Developer Guide

Diagnosing connectivity issues

Help us improve this topic

Let us know what would help make it better

A successful connection to AWS IoT requires:

• A valid connection

• A valid and active certificate

• A policy that allows the desired connection and operation

Connection

How do I find the correct endpoint?

• The endpointAddress returned by aws iot describe-endpoint --endpoint-type
iot:Data-ATS

or

• The domainName returned by aws iot describe-domain-configuration –-domain-
configuration-name "domain_configuration_name"

How do I find the correct Server Name Indication (SNI) value?

The correct SNI value is the endpointAddress returned by the describe-endpoint or the
domainName returned by the describe-domain-configuration commands. It's the same
address as the endpoint in the previous step. When connecting devices to AWS IoT Core,
clients can send the Server Name Indication (SNI) extension, which is not required but highly
recommended. To use features such as multi-account registration, custom domains, and VPC
endpoints, you must use the SNI extension. For more information, see Transport Security in
AWS IoT.

How do I solve a connectivity issue that persists?

You can use AWS Device Advisor to help troubleshoot. Device Advisor's pre-built tests help you
validate your device software against best practices for usage of TLS, MQTT, AWS IoT Device
Shadow, and AWS IoT Jobs.

Diagnosing connectivity issues 1617

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/diagnosing-connectivity-issues.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-domain-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-domain-configuration.html
https://tools.ietf.org/html/rfc3546#section-3.1
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html#multiple-account-cert
https://docs.aws.amazon.com/iot/latest/developerguide/iot-custom-endpoints-configurable-custom.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
transport-security.html
transport-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

AWS IoT Core Developer Guide

Here is a link to the existing Device Advisor content.

Authentication

Devices must be authenticated to connect to AWS IoT endpoints. For devices that use X.509 client
certificates for authentication, the certificates must be registered with AWS IoT and be active.

How do my devices authenticate AWS IoT endpoints?

Add the AWS IoT CA certificate to your client's trust store. Refer to the documentation on Server
Authentication in AWS IoT Core and then follow the links to download the appropriate CA
certificate.

What is checked when a device connects to AWS IoT?

When a device attempts to connect to AWS IoT:

1. AWS IoT checks for a valid certificate and Server Name Indication (SNI) value.

2. AWS IoT checks to see that the certificate used is registered with the AWS IoT Account and
that it has been activated.

3. When a device attempts to perform any action in AWS IoT, such as to subscribe to or publish
a message, the policy attached to the certificate it used to connect is checked to confirm that
the device is authorized to perform that action.

How can I validate a correctly configured certificate?

Use the OpenSSL s_client command to test a connection to the AWS IoT endpoint:

openssl s_client -connect custom_endpoint.iot.aws-region.amazonaws.com:8443 -
CAfile CA.pem -cert cert.pem -key privateKey.pem

For more information about using openssl s_client, see OpenSSL s_client documentation.

How do I check the status of a certificate?

• List the certificates

If you don't know the certificate ID, you can see the status of all your certificates by using the
aws iot list-certificates command.

• Show a certificate's details

If you know the certificate's ID, this command shows you more detailed information about the
certificate.

Diagnosing connectivity issues 1618

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html
x509-client-certs.html#server-authentication
x509-client-certs.html#server-authentication
https://www.openssl.org/docs/man1.0.2/man1/openssl-s_client.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-certificates.html

AWS IoT Core Developer Guide

aws iot describe-certificate --certificate-id "certificateId"

• Review the certificate in the AWS IoT Console

In the AWS IoT console, in the left menu, choose Secure, and then choose Certificates.

Choose the certificate that you are using to connect from the list to open its detail page.

In the certificate's detail page, you can see its current status.

The certificate's status can be changed by using the Actions menu in the upper-right corner
of the details page.

Authorization

AWS IoT resources use AWS IoT Core policies to authorize those resources to perform actions. For
an action to be authorized, the specified AWS IoT resources must have a policy document attached
to it that grants permission to perform that action.

I received a PUBNACK or SUBNACK response from the broker. What do I do?

Make sure that there is a policy attached to the certificate you are using to call AWS IoT. All
publish/subscribe operations are denied by default.

Make sure the attached policy authorizes the actions you are trying to perform.

Make sure the attached policy authorizes the resources that are trying to perform the
authorized actions.

I have an AUTHORIZATION_FAILURE entry in my logs.

Make sure that there is a policy attached to the certificate you are using to call AWS IoT. All
publish/subscribe operations are denied by default.

Make sure the attached policy authorizes the actions you are trying to perform.

Make sure the attached policy authorizes the resources that are trying to perform the
authorized actions.

How do I check what the policy authorizes?

In the AWS IoT console, in the left menu, choose Secure, and then choose Certificates.

Diagnosing connectivity issues 1619

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-certificate.html
https://console.aws.amazon.com/iot/home
https://console.aws.amazon.com/iot/home

AWS IoT Core Developer Guide

Choose the certificate that you are using to connect from the list to open its detail page.

In the certificate's detail page, you can see its current status.

In the left menu of the certificate's detail page, choose Policies to see the policies attached to
the certificate.

Choose the desired policy to see its details page.

In the policy's details page, review the policy's Policy document to see what it authorizes.

Choose Edit policy document to make changes to the policy document.

Security and identity

When you provide the server certificates for AWS IoT custom domain configuration, the certificates
have a maximum of four domain names.

For more information, see AWS IoT Core endpoints and quotas.

Diagnosing rules issues

Help us improve this topic

Let us know what would help make it better

This section describes some of the things to check when you encounter a problem with rule.

Configuring CloudWatch Logs for troubleshooting

The best way to debug issues you are having with rules is to use CloudWatch Logs. When you
enable CloudWatch Logs for AWS IoT, you can see which rules are triggered and their success
or failure. You also get information about whether WHERE clause conditions match. For more
information, see Monitor AWS IoT using CloudWatch Logs.

The most common rules issue is authorization. The logs show if your role is not authorized to
perform AssumeRole on the resource. Here is an example log generated by fine-grained logging:

{

Diagnosing rules issues 1620

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#security-limits
https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/diagnosing-rules.html

AWS IoT Core Developer Guide

 "timestamp": "2017-12-09 22:49:17.954",
 "logLevel": "ERROR",
 "traceId": "ff563525-6469-506a-e141-78d40375fc4e",
 "accountId": "123456789012",
 "status": "Failure",
 "eventType": "RuleExecution",
 "clientId": "iotconsole-123456789012-3",
 "topicName": "test-topic",
 "ruleName": "rule1",
 "ruleAction": "DynamoAction",
 "resources": {
 "ItemHashKeyField": "id",
 "Table": "trashbin",
 "Operation": "Insert",
 "ItemHashKeyValue": "id",
 "IsPayloadJSON": "true"
 },
 "principalId": "ABCDEFG1234567ABCD890:outis",
 "details": "User: arn:aws:sts::123456789012:assumed-role/dynamo-
testbin/5aUMInJH is not authorized to perform: dynamodb:PutItem on
 resource: arn:aws:dynamodb:us-east-1:123456789012:table/testbin (Service:
 AmazonDynamoDBv2; Status Code: 400; Error Code: AccessDeniedException; Request ID:
 AKQJ987654321AKQJ123456789AKQJ987654321AKQJ987654321)"
}

Here is a similar example log generated by global logging:

2017-12-09 22:49:17.954 TRACEID:ff562535-6964-506a-e141-78d40375fc4e
PRINCIPALID:ABCDEFG1234567ABCD890:outis [ERROR] EVENT:DynamoActionFailure
TOPICNAME:test-topic CLIENTID:iotconsole-123456789012-3
MESSAGE:Dynamo Insert record failed. The error received was User:
 arn:aws:sts::123456789012:assumed-role/dynamo-testbin/5aUMInJI is not authorized to
 perform: dynamodb:PutItem on resource: arn:aws:dynamodb:us-east-1:123456789012:table/
testbin
(Service: AmazonDynamoDBv2; Status Code: 400; Error Code: AccessDeniedException;
 Request ID: AKQJ987654321AKQJ987654321AKQJ987654321AKQJ987654321).
Message arrived on: test-topic, Action: dynamo, Table: trashbin, HashKeyField: id,
 HashKeyValue: id, RangeKeyField: None, RangeKeyValue: 123456789012
No newer events found at the moment. Retry.

For more information, see the section called “Viewing AWS IoT logs in the CloudWatch console”.

Diagnosing rules issues 1621

AWS IoT Core Developer Guide

Diagnosing external services

External services are controlled by the end user. Before rule execution, make sure that the external
services you have linked to your rule are set up and have enough throughput and capacity units for
your application.

Diagnosing SQL problems

If your SQL query is not returning the data you expect:

• Review the logs for error messages.

• Confirm that your SQL syntax matches the JSON document in the message.

Review the object and property names used in the query with those used in the JSON document
of the topic's message payload. For more information about the JSON formatting in SQL queries,
see JSON extensions.

• Check to see if the JSON object or property names include reserved or numeric characters.

For more information about reserved characters in JSON object references in SQL queries, see
JSON extensions.

Diagnosing problems with shadows

Help us improve this topic

Let us know what would help make it better

Diagnosing shadows

Issue Troubleshooting guidelines

A device's shadow document is rejected with
Invalid JSON document.

If you are unfamiliar with JSON, modify the
examples provided in this guide for your
own use. For more information, see Shadow
document examples.

Diagnosing problems with shadows 1622

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/diagnosing-shadows.html

AWS IoT Core Developer Guide

Issue Troubleshooting guidelines

I submitted correct JSON, but none or only
parts of it are stored in the device's shadow
document.

Be sure you are following the JSON formattin
g guidelines. Only JSON fields in the desired
and reported sections are stored. JSON
content (even if formally correct) outside of
those sections is ignored.

I received an error that the device's shadow
exceeds the allowed size.

The device's shadow supports 8 KB of data
only. Try shortening field names inside of
your JSON document or simply create more
shadows by creating more things. A device can
have an unlimited number of things/shadows
associated with it. The only requirement is
that each thing name must be unique in your
account.

When I receive a device's shadow, it is larger
than 8 KB. How can this happen?

Upon receipt, the AWS IoT service adds
metadata to the device's shadow. The service
includes this data in its response, but it does
not count toward the limit of 8 KB. Only
the data for desired and reported state
inside the state document sent to the device's
shadow counts toward the limit.

My request has been rejected due to incorrect
version. What should I do?

Perform a GET operation to sync to the latest
state document version. When using MQTT,
subscribe to the ./update/accepted topic to be
notified about state changes and receive the
latest version of the JSON document.

Diagnosing problems with shadows 1623

AWS IoT Core Developer Guide

Issue Troubleshooting guidelines

The timestamp is off by several seconds. The timestamp for individual fields and the
whole JSON document is updated when the
document is received by the AWS IoT service
or when the state document is published onto
the ./update/accepted and ./update/delta
message. Messages can be delayed over the
network, which can cause the timestamp to be
off by a few seconds.

My device can publish and subscribe on the
corresponding shadow topics, but when I
attempt to update the shadow document over
the HTTP REST API, I get HTTP 403.

Be sure you have created policies in IAM
to allow access to these topics and for the
corresponding action (UPDATE/GET/DELETE)
for the credentials you are using. IAM policies
and certificate policies are independent.

Other issues. The Device Shadow service logs errors to
CloudWatch Logs. To identify device and
configuration issues, enable CloudWatch Logs
and view the logs for debug information.

Diagnosing Salesforce IoT input stream action issues

Help us improve this topic

Let us know what would help make it better

Execution trace

How do I see the execution trace of a Salesforce action?

See the Monitor AWS IoT using CloudWatch Logs section. After you have activated the logs, you
can see the execution trace of the Salesforce action.

Diagnosing Salesforce action issues 1624

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/diagnosing-salesforce.html

AWS IoT Core Developer Guide

Action success and failure

How do I check that messages have been sent successfully to a Salesforce IoT input stream?

View the logs generated by execution of the Salesforce action in CloudWatch Logs. If you see
Action executed successfully, then it means that the AWS IoT rules engine received
confirmation from the Salesforce IoT that the message was successfully pushed to the targeted
input stream.

If you are experiencing problems with the Salesforce IoT platform, contact Salesforce IoT
support.

What do I do if messages have not been sent successfully to a Salesforce IoT input stream?

View the logs generated by execution of the Salesforce action in CloudWatch Logs. Depending
on the log entry, you can try the following actions:

Failed to locate the host

Check that the url parameter of the action is correct and that your Salesforce IoT input
stream exists.

Received Internal Server Error from Salesforce

Retry. If the problem persists, contact Salesforce IoT Support.

Received Bad Request Exception from Salesforce

Check the payload you are sending for errors.

Received Unsupported Media Type Exception from Salesforce

Salesforce IoT does not support a binary payload at this time. Check that you are sending a
JSON payload.

Received Unauthorized Exception from Salesforce

Check that the token parameter of the action is correct and that your token is still valid.

Received Not Found Exception from Salesforce

Check that the url parameter of the action is correct and that your Salesforce IoT input
stream exists.

If you receive an error that is not listed here, contact AWS IoT Support.

Diagnosing Salesforce action issues 1625

AWS IoT Core Developer Guide

Diagnosing Stream Limits

Troubleshooting "Stream limit exceeded for your AWS account"

If you see "Error: You have exceeded the limit for the number of streams
in your AWS account.", you can clean up the unused streams in your account instead of
requesting a limit increase.

To clean up an unused stream that you created using the AWS CLI or SDK:

aws iot delete-stream –stream-id value

For more details, see delete-stream.

Note

You can use the list-streams command to find the stream IDs.

Troubleshooting device fleet disconnects

Help us improve this topic

Let us know what would help make it better

AWS IoT device fleet disconnects can happen for multiple reasons. This article explains how to
diagnose a disconnect reason and how to handle disconnects caused by regular maintenance of
AWS IoT service or a throttling limit.

To diagnose the disconnect reason

You can check the AWSIotLogsV2 log group in CloudWatch to identify the disconnect reason in the
disconnectReason field of the log entry.

You can also use AWS IoT's lifecycle events feature to identify the disconnect reason. If you’ve
subscribed to lifecycle's disconnect event ($aws/events/presence/disconnected/clientId),
you’ll get a notification from AWS IoT when the disconnect happens. You can identify the
disconnect reason in the disconnectReason field of the notification.

Diagnosing Stream Limits 1626

https://docs.aws.amazon.com/cli/latest/reference/iot/delete-stream.html
https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/ota-troubleshooting-fleet-disconnects.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://docs.aws.amazon.com/iot/latest/developerguide/cwl-format.html
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html#connect-disconnect

AWS IoT Core Developer Guide

For more information, see CloudWatch AWS IoT log entries and Lifecycle events.

To troubleshoot disconnects due to AWS IoT service maintenance

Disconnects caused by AWS IoT's service maintenance are logged as
SERVER_INITIATED_DISCONNECT in AWS IoT's lifecycle event and CloudWatch. To handle
these disconnects, adjust your client-side setup to make sure your devices can be automatically
reconnected to the AWS IoT platform.

To troubleshoot disconnects due to a throttling limit

Disconnects caused by a throttling limit are logged as THROTTLED in AWS IoT's lifecycle event and
CloudWatch. To handle these disconnects, you can request message broker limit increases as the
device count grows.

For more information, see AWS IoT Core Message Broker.

AWS IoT Device Advisor troubleshooting guide

Help us improve this topic

Let us know what would help make it better

General

Q: Can I run multiple test suites in parallel?

A: Yes. Device Advisor now supports running multiple test suites on different devices using
a Device-level endpoint. If you use the Account-level endpoint, you can run one suite at a
time because one Device Advisor endpoint is available per account. For more information see
Configure your device.

Q: I saw from my device that the TLS connection was denied by Device Advisor. Is this expected?

A: Yes. Device Advisor denies the TLS connection before and after each test run. We recommend
that users implement a device retry mechanism to have a fully automated testing experience
with Device Advisor. If you execute a test suite with more than one test case, for example TLS
connect, MQTT connect, and MQTT publish, then we recommend that you have a mechanism
built for your device. The mechanism can try to connect to our test endpoint every 5 seconds

AWS IoT Device Advisor troubleshooting guide 1627

https://docs.aws.amazon.com/iot/latest/developerguide/cwl-format.html
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/device-advisor-troubleshooting.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-configure-device
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-configure-device

AWS IoT Core Developer Guide

for a minute to two. In this way you can run multiple test cases in sequence in an automated
manner.

Q: Can I get a history of Device Advisor API calls made on my account for security analysis and
operational troubleshooting purposes?

A: Yes. To receive a history of Device Advisor API calls made on your account, you simply
turn on CloudTrail in the AWS IoT Management Console and filter the event source to be
iotdeviceadvisor.amazonaws.com.

Q: How do I view Device Advisor logs in CloudWatch?

A: Logs generated during a test suite run are uploaded to CloudWatch if you add the required
policy (for example, CloudWatchFullAccess) to your service role (see Setting up). If there is at
least one test case in the test suite, a log group "aws/iot/deviceadvisor/$testSuiteId" is created
with two log streams. One stream is the "$testRunId" and includes logs of actions taken before
and after executing the test cases in your test suite, such as setup and cleanup steps. The other
log stream is "$suiteRunId_$testRunId," which is specific to a test suite run. Events sent from
devices and AWS IoT Core will be logged to this log stream.

Q: What is the purpose of the device permission role?

A: Device Advisor stands between your test device and AWS IoT Core to simulate test scenarios.
It accepts connections and messages from your test devices and forwards them to AWS IoT
Core by assuming your device permission role and initiating a connection on your behalf. It’s
important to make sure the device role permissions are the same as those on the certificate you
use for running tests. AWS IoT certificate policies are not enforced when Device Advisor initiates
a connection to AWS IoT Core on your behalf by using the device permission role. However, the
permissions from the device permission role you set are enforced.

Q: In what Regions is Device Advisor supported?

A: Device Advisor is supported in us-east-1, us-west-2, ap-northeast-1, and eu-west-1 Regions.

Q: Why do I see inconsistent results?

A: One of the primary causes of inconsistent results is setting a test's EXECUTION_TIMEOUT
to a value that is too low. For more information about recommended and default
EXECUTION_TIMEOUT values, see Device Advisor test cases.

Q: What MQTT protocol does Device Advisor support?

A: Device Advisor supports MQTT Version 3.1.1 with X509 client certificates.

AWS IoT Device Advisor troubleshooting guide 1628

https://docs.aws.amazon.com//iot/latest/developerguide/device-advisor-tests.html

AWS IoT Core Developer Guide

Q: What if my test case failed with an execution timed out message even though I tried to connect
my device to the test endpoint?

A: Validate all the steps under Create an IAM role to be used as your device role. If the test
still fails, it could be that the device is not sending the correct Server Name Indication (SNI)
extension, which is required for Device Advisor to work. The correct SNI value is the endpoint
address returned when following the Configure your device section. AWS IoT also requires
devices to send the Server Name Indication (SNI) extension to the Transport Layer Security (TLS)
protocol. For more information, see Transport security in AWS IoT.

Q: My MQTT connection fails with an "libaws-c-mqtt: AWS_ERROR_MQTT_UNEXPECTED_HANGUP"
error (or) my device’s MQTT connection is being automatically disconnected from the Device
Advisor endpoint. How can this error be resolved?

A: This particular error code and unexpected disconnections can be caused by many different
things, but is most likely related to the device role attached to the device. The below
checkpoints (in order of priority) will resolve this issue.

• The device role attached to the device must have the minimum IAM permissions required
to run the tests. Device Advisor will use the attached device role to perform AWS IoT
MQTT actions on behalf of the test device. If required permissions are absent, then the
AWS_ERROR_MQTT_UNEXPECTED_HANGUP error will be seen or unexpected disconnections
will happen while the device tries to connect to Device Advisor endpoint. For example, if
you selected to run the MQTT Publish test case, both Connect and Publish actions must
be included in the role with the corresponding ClientId and Topic (you can provide multiple
values by using commas to separate the values, and you can provide prefix values using a
wildcard (*) character. For example: To provide permissions to publish on any topic beginning
with TestTopic, you can provide "TestTopic*” as the resource value. Here are some
examples of policies.

• Mismatch between the values defined in the device role for your resource types and the
actual values used in code. For example: A mismatch in ClientId defined in the role and the
actual ClientId used in your device code. Values like ClientId, Topic, and TopicFilter must be
identical in the device role and code.

• The device certificate attached to your device must be active and have a policy attached to
it with the required action permissions for resources. Note that, the device certificate policy
grants or denies access to AWS IoT resources and AWS IoT Core data plane operations. Device
Advisor requires you to have an active device certificate attached to your device which grants
the action permissions used during a test case.

AWS IoT Device Advisor troubleshooting guide 1629

https://docs.aws.amazon.com//iot/latest/developerguide/device-advisor-setting-up.html#da-iam-role
https://docs.aws.amazon.com//iot/latest/developerguide/device-advisor-setting-up.html#da-configure-device
https://docs.aws.amazon.com//iot/latest/developerguide/transport-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-setting-up.html#da-iam-role
https://docs.aws.amazon.com/iot/latest/developerguide/example-iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/example-iot-policies.html
https://docs.aws.amazon.com//iot/latest/developerguide/certificate-policy-examples.html
https://docs.aws.amazon.com//iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com//iot/latest/developerguide/iot-action-resources.html

AWS IoT Core Developer Guide

AWS IoT Device Management troubleshooting guide

Help us improve this topic

Let us know what would help make it better

This is the troubleshooting section for AWS IoT Device Management.

Topics

• AWS IoT Jobs Troubleshooting

• Fleet indexing troubleshooting guide

AWS IoT Jobs Troubleshooting

This is the troubleshooting section for AWS IoT Jobs.

How do I locate an AWS IoT Jobs endpoint?

How do I locate the AWS IoT Jobs control plane endpoint?

AWS IoT Jobs supports controls plane API operations using the HTTPS protocol. Verify you have
connected to the correct control plane endpoint using the HTTPS protocol.

For a list of AWS region-specific endpoints, see AWS IoT Core - control plane endpoints.

For a list of FIPS compliant AWS IoT Jobs control plane endpoints, see FIPS Endpoints by
Service

Note

AWS IoT Jobs and AWS IoT Core share the same AWS Region-specific endpoints.

How do I locate the AWS IoT Jobs data plane endpoint?

AWS IoT Jobs supports data plane API operations using the HTTPS and MQTT protocols. Verify
you have connected to the correct data plane endpoint using the HTTPS or MQTT protocol.

• HTTPS protocol

AWS IoT Device Management troubleshooting guide 1630

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/device-management-troubleshoot.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-control-plane-endpoints
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service

AWS IoT Core Developer Guide

• Use the following describe-endpoint CLI command shown below or the
DescribeEndpoint REST API. For the endpoint type, use iot:Jobs.

aws iot describe-endpoint --endpoint-type iot:Jobs

• MQTT protocol

• Use the following describe-endpoint CLI command shown below or the
DescribeEndpoint REST API. For the endpoint type, use iot:Data-ATS (recommended)
or iot:Data.

aws iot describe-endpoint --endpoint-type iot:Data-ATS (recommended)

aws iot describe-endpoint --endpoint-type iot:Data

For a list of FIPS compliant AWS IoT Jobs data plane endpoints, see FIPS Endpoints by Service

How do I monitor AWS IoT Jobs activity and provide metrics?

Monitoring AWS IoT Jobs activity using Amazon CloudWatch provides real-time visibility into
ongoing AWS IoT Jobs operations and helps control costs with CloudWatch alarms via AWS
IoT Rules. You must configure logging before you can monitor AWS IoT Jobs activity and setup
CloudWatch alarms. For more information on setting up logging, see Configure AWS IoT logging.

For more information on Amazon CloudWatch and how to setup permission via an IAM user role to
use CloudWatch resources, see Identity and access management for Amazon CloudWatch.

How do I set up AWS IoT Jobs metrics and monitoring using Amazon CloudWatch?

To set up AWS IoT logging, follow the steps outlined in Configure AWS IoT logging. AWS IoT
logging set up can be done in the AWS Management Console, AWS CLI, or API. AWS IoT logging
set up for specific thing groups must be done in the AWS CLI or API only.

The AWS IoT Jobs metrics section contains the AWS IoT Jobs metrics used for monitoring AWS
IoT Jobs activity. It explains how to view the metrics in the AWS Management Console and AWS
CLI.

Additionally, you can set up CloudWatch alarms to alert you of specific metrics you want to
closely monitor. For guidance on alarm setup, see Using Amazon CloudWatch alarms.

AWS IoT Jobs Troubleshooting 1631

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeEndpoint.html
https://aws.amazon.com/compliance/fips/#FIPS_Endpoints_by_Service
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://docs.aws.amazon.com/iot/latest/developerguide/configure-logging.html
https://docs.aws.amazon.com/iot/latest/developerguide/metrics_dimensions.html#jobs-metrics
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS IoT Core Developer Guide

Device fleets and single device troubleshooting

A job execution maintains a status of QUEUED indefinitely

When a job execution with a status state of QUEUED does not proceed to the next logical status
state such as IN_PROGRESS, FAILED, or TIMED_OUT, one of the following scenarios may be the
cause:

• Review your device activity in the CloudWatch logs located in the CloudWatch console. For
more information, refer to Monitor AWS IoT using CloudWatch Logs.

• The IAM role associated with the job and subsequent job execution may not have the
correct permissions listed in one of the policy statements of the IAM policy attached to
that IAM role. Use the describe-job API to identify the IAM role linked to that job and
subsequent job execution and review the IAM policy for correct permissions. Once the policy
permission statements have been updated, you should be able to perform the AssumeRole
API command on the resource.

A job execution was not created for my thing or thing group

When a job updates its status state to IN_PROGRESS, it will begin the job document rollout
to all devices in your target group. This status state update will create a job execution for each
target device. If a job execution was not created for one of the target devices, refer to the
following guidance:

• Is the thing directly targeted by the job, the job has a status state of IN_PROGRESS, and
the job is concurrent? If all three conditions are met, then the job is still sending out job
executions to all devices in your target group and that specific thing has not received its job
execution yet.

• Review the devices in your target group for the job and the job status state in the AWS
Management Console or use the describe-job API command.

• Use the describe-job API command to review if the job has the IsConcurrent property
set to true or false. For more information, see Job limits.

• The thing is not directly targeted by the job.

• If the Thing was added to a ThingGroup and the job targeted the ThingGroup, then
verify the Thing is part of the ThingGroup.

AWS IoT Jobs Troubleshooting 1632

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeJob.html
https://docs.aws.amazon.com/iot/latest/developerguide/job-limits.html

AWS IoT Core Developer Guide

• If the job is a snapshot job with a status state of IN_PROGRESS and is concurrent, then the
job is still sending out job executions to all devices in your target group and that specific
Thing has not received its job execution yet.

• If the job is a continuous job with a status state of IN_PROGRESS and is concurrent,
then the job is still sending out job executions to all devices in your target group and
that specific Thing has not received its job execution yet. For continuous jobs only, you
can also remove the Thing from the ThingGroup and then add the Thing back to the
ThingGroup.

• If the job is a snapshot job with a status state of IN_PROGRESS and is not concurrent,
then it's likely the Thing or ThingGroup membership relationship is not acknowledged
by AWS IoT Jobs. It is recommended to add several seconds of waiting time after your
AddThingToThingGroup call before you create your Job. Alternatively, you can switch
the target selection to Continuous, thus making the service backfill the delayed Thing
and ThingGroup membership attachment event.

New job fails due to LimitedExceededException error

If your job creation fails with an error response of LimitedExceededException, then call the
list-jobs API and review all jobs with isConcurrent=true to determine if you are at your
job concurrency limit. See Job limits for additional information on concurrent jobs. To view your
job concurrency limits and to request a limit increase, see AWS IoT Device Management jobs
limits and quotas.

Job document size limit

The job document size is limited by the MQTT payload size. If you need a job document larger
than 32 kB (kilobytes), 32,000 B (bytes), then create and store the job document in Amazon
S3 and add an Amazon S3 object URL in the documentSource field for the CreateJob API
or using the AWS CLI. For the AWS Management Console, add an Amazon S3 object URL in the
Amazon S3 URL text box when creating a job.

• AWS Management Console create job documentation: Create and manage jobs by using the
AWS Management Console

• AWS CLI create job documentation: Create and manage jobs using the AWS CLI

• CreateJob API documentation: CreateJob

AWS IoT Jobs Troubleshooting 1633

https://docs.aws.amazon.com/iot/latest/developerguide/job-limits.html
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits
https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-console.html
https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-console.html
https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-cli.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateJob.html

AWS IoT Core Developer Guide

Device Side MQTT message requests throttle limits

If you receive an error code 400 ThrottlingException, the device side MQTT message
failed due to reaching the limit of simultaneous device side requests. See AWS IoT Device
Management jobs limits and quotas for more information on throttle limits and if it is
adjustable.

Connection timeout error

An error code 400 RequestExpired indicates a connection failure due to high latency or low
client side timeout values.

• See Testing connectivity with your device data endpoint for information on testing
connection between the client side and server side.

Invalid API command

Confirm the correct API command is entered to avoid an error message stating the API
command is invalid. See the AWS IoT API Reference for a comprehensive list of all AWS IoT API
commands.

Service side connection error

An error code 503 ServiceUnavailable indicates the error originated from the server side.

• See AWS Health Dashboard (all AWS services) for the current status of all AWS services.

• See AWS Health Dashboard (personal AWS account) for the current status of your personal
AWS account.

Fleet indexing troubleshooting guide

Troubleshooting aggregation queries for the fleet indexing service

If you are having type mismatch errors, you can use CloudWatch Logs to troubleshoot the problem.
CloudWatch Logs must be enabled before logs are written by the Fleet Indexing service. For more
information, see Monitor AWS IoT using CloudWatch Logs.

To make aggregation queries on non-managed fields, you must specify a field you defined in the
customFields argument passed to UpdateIndexingConfiguration or update-indexing-

Fleet indexing troubleshooting guide 1634

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#job-limits
https://docs.aws.amazon.com/iot/latest/developerguide/iot-quick-start-test-connection.html
https://docs.aws.amazon.com/iot/latest/apireference/Welcome.html
https://health.aws.amazon.com/health/status
https://aws.amazon.com/premiumsupport/technology/aws-health-dashboard/

AWS IoT Core Developer Guide

configuration. If the field value is inconsistent with the configured field data type, this value is
ignored when you perform an aggregation query.

If a field cannot be indexed because of a mismatched type, the Fleet Indexing service sends an
error log to CloudWatch Logs. The error log contains the field name, the value that could not be
converted, and the thing name for the device. The following is an example error log:

{
 "timestamp": "2017-02-20 20:31:22.932",
 "logLevel": "ERROR",
 "traceId": "79738924-1025-3a00-a669-7bec69f7f07a",
 "accountId": "000000000000",
 "status": "SucceededWithIssues",
 "eventType": "IndexingCustomFieldFailed",
 "thingName": "thing0",
 "failedCustomFields": [
 {
 "Name": "attributeName1",
 "Value": "apple",
 "ExpectedType": "String"
 },
 {
 "Name": "attributeName2",
 "Value": "2",
 "ExpectedType": "Boolean"
 }
]
}

If a device has been disconnected for approximately an hour, the connectivity status timestamp
value might be missing. For persistent sessions, the value might be missing after a client has
been disconnected longer than the configured time-to-live (TTL) for the persistent session. The
connectivity status data is indexed only for connections where the client ID has a matching thing
name. (The client ID is the value used to connect a device to AWS IoT Core.)

Troubleshooting fleet indexing configuration

Can't downgrade fleet indexing configuration

Downgrading fleet indexing configuration is not supported when you want to remove the data
sources that are associated with a fleet metric or a dynamic group.

Fleet indexing troubleshooting guide 1635

AWS IoT Core Developer Guide

For example, if your indexing configuration has registry data, shadow data, and
connectivity data, and a fleet metric exists with the query thingName:TempSensor* AND
shadow.desired.temperature>80, updating the indexing configuration to include only the
registry data will result in an error.

Modifying custom fields used by existing fleet metrics is not supported.

Can't update your indexing configuration due to incompatible fleet metrics or dynamic groups

If you can't update your indexing configuration due to incompatible fleet metrics or dynamic
groups, delete the incompatible fleet metrics or dynamic groups before you update the indexing
configuration.

Troubleshooting location indexing and geoqueries

To troubleshoot mismatched type errors in location indexing and geoqueries, you can enable
CloudWatch logs. For more information about how to monitor AWS IoT using CloudWatch, follow
the step-by-step guide.

When you index location data using geoqueries, the location fields you specify in geoLocations
must match the location fields you pass to UpdateIndexingConfiguration. If there's a
mismatch, fleet indexing sends a mismatched type error to CloudWatch. The error log contains the
field name, the value that could not be converted, and the thing name for the device.

The following is an example error log:

{
"timestamp": "2023-11-09 01:39:43.466",
 "logLevel": "ERROR",
 "traceId": "79738924-1025-3a00-a669-7bec69f7f07a",
 "accountId": "123456789012",
 "status": "Failure",
 "eventType": "IndexingGeoLocationFieldFailed",
 "thingName": "thing0",
 "failedGeolocationFields": [
 {
"Name": "attributeName1",
 "Value": "apple",
 "ExpectedType": "Geopoint"
 }
],

Fleet indexing troubleshooting guide 1636

https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html

AWS IoT Core Developer Guide

 "reason": "failed to index the field because it could not be converted to one of
 the expected geoLocation formats."
}

For more information, see ???.

Troubleshooting fleet metrics

Can't see data points in CloudWatch

If you're able to create a fleet metric but you can't see data points in CloudWatch, it's likely that
you don't have a thing that meets the query string criteria.

See this example command of how to create a fleet metric:

aws iot create-fleet-metric --metric-name "example_FM" --query-string
 "thingName:TempSensor* AND attributes.temperature>80" --period 60 --aggregation-field
 "attributes.temperature" --aggregation-type name=Statistics,values=count

If you don't have a thing that meets the query string criteria --query-string
"thingName:TempSensor* AND attributes.temperature>80":

• With values=count, you'll be able to create a fleet metric and there'll be data points to show in
CloudWatch. The data points of the value count is always 0.

• With values other than count, you'll be able to create a fleet metric but you won't see the fleet
metric in CloudWatch and there'll be no data points to show in CloudWatch.

AWS IoT errors

Help us improve this topic

Let us know what would help make it better

This section lists the error codes sent by AWS IoT.

AWS IoT errors 1637

https://docs.aws.amazon.com/forms/aws-doc-feedback?hidden_service_name=IoT%20Docs&topic_url=http://docs.aws.amazon.com/en_us/iot/latest/developerguide/iot-errors.html

AWS IoT Core Developer Guide

Message broker error codes

Error code Error description

400 Bad request.

401 Unauthorized.

403 Forbidden.

503 Service unavailable.

Identity and security error codes

Error code Error description

401 Unauthorized.

Device shadow error codes

Error code Error description

400 Bad request.

401 Unauthorized.

403 Forbidden.

404 Not found.

409 Conflict.

413 Request too large.

422 Failed to process request.

429 Too many requests.

500 Internal error.

503 Service unavailable.

AWS IoT errors 1638

AWS IoT Core Developer Guide

AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device
Client

This page summarizes the AWS IoT Device SDKs, open-source libraries, developer guides, sample
apps, and porting guides to help you build innovative IoT solutions with AWS IoT and your choice
of hardware platforms.

These SDKs are for use on your IoT device. If you're developing an IoT app for use on a mobile
device, see the AWS Mobile SDKs. If you're developing an IoT app or server-side program, see the
AWS SDKs.

AWS IoT Device SDKs

The AWS IoT Device SDKs include open-source libraries, developer guides with samples, and
porting guides so that you can build innovative IoT products or solutions on your choice of
hardware platforms.

Note

The AWS IoT Device SDKs have released an MQTT 5 client. The AWS IoT Device SDKs don't
support using TLS 1.3 on macOS.

These SDKs help you connect your IoT devices to AWS IoT using the MQTT and WSS protocols.

C++

AWS IoT C++ Device SDK

The AWS IoT C++ Device SDK allows developers to build connected applications using AWS
and the AWS IoT APIs. Specifically, this SDK was designed for devices that are not resource
constrained and require advanced features such as message queuing, multi-threading support,
and the latest language features. For more information, see the following:

• AWS IoT Device SDK C++ v2 on GitHub

• AWS IoT Device SDK C++ v2 Readme

• AWS IoT Device SDK C++ v2 Samples

AWS IoT Device SDKs 1639

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2#aws-iot-device-sdk-for-c-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-c-v2

AWS IoT Core Developer Guide

• AWS IoT Device SDK C++ v2 API documentation

Python

AWS IoT Device SDK for Python

The AWS IoT Device SDK for Python makes it possible for developers to write Python scripts to
use their devices to access the AWS IoT platform through MQTT or MQTT over the WebSocket
protocol. By connecting their devices to AWS IoT, users can securely work with the message
broker, rules, and shadows provided by AWS IoT and with other AWS services like AWS Lambda,
Kinesis, and Amazon S3, and more.

• AWS IoT Device SDK for Python v2 on GitHub

• AWS IoT Device SDK for Python v2 Readme

• AWS IoT Device SDK for Python v2 Samples

• AWS IoT Device SDK for Python v2 API documentation

JavaScript

AWS IoT Device SDK for JavaScript

The aws-iot-device-sdk.js package makes it possible for developers to write JavaScript
applications that access AWS IoT using MQTT or MQTT over the WebSocket protocol. It can
be used in Node.js environments and browser applications. For more information, see the
following:

• AWS IoT Device SDK for JavaScript v2 on GitHub

• AWS IoT Device SDK for JavaScript v2 Readme

• AWS IoT Device SDK for JavaScript v2 Samples

• AWS IoT Device SDK for JavaScript v2 API documentation

Java

AWS IoT Device SDK for Java

The AWS IoT Device SDK for Java makes it possible for Java developers to access the AWS IoT
platform through MQTT or MQTT over the WebSocket protocol. The SDK is built with shadow
support. You can access shadows by using HTTP methods, including GET, UPDATE, and DELETE.

AWS IoT Device SDKs 1640

https://aws.github.io/aws-iot-device-sdk-cpp-v2/
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2#aws-iot-device-sdk-v2-for-python
https://github.com/aws/aws-iot-device-sdk-python-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-v2-for-python
https://aws.github.io/aws-iot-device-sdk-python-v2/
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2#aws-iot-device-sdk-for-javascript-v2
https://github.com/aws/aws-iot-device-sdk-js-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-javascript-v2
https://aws.github.io/aws-iot-device-sdk-js-v2/index.html

AWS IoT Core Developer Guide

The SDK also supports a simplified shadow access model, which allows developers to exchange
data with shadows by just using getter and setter methods, without having to serialize or
deserialize any JSON documents.

Note

The AWS IoT Device SDK for Java v2 now supports Android development. For more
information, see AWS IoT Device SDK for Android.

For more information, see the following:

• AWS IoT Device SDK for Java v2 on GitHub

• AWS IoT Device SDK for Java v2 Readme

• AWS IoT Device SDK for Java v2 Samples

• AWS IoT Device SDK for Java v2 API documentation

AWS IoT Device SDK for Embedded C

Note

This SDK is intended for use by experienced embedded-software developers.

The AWS IoT Device SDK for Embedded C (C-SDK) is a collection of C source files under the MIT
open source license that can be used in embedded applications to securely connect IoT devices to
AWS IoT Core. It includes an MQTT client, JSON Parser, and AWS IoT Device Shadow, AWS IoT Jobs,
AWS IoT Fleet Provisioning, and AWS IoT Device Defender libraries. This SDK is distributed in source
form and can be built into customer firmware along with application code, other libraries, and an
operating system (OS) of your choice.

The AWS IoT Device SDK for Embedded C is generally targeted at resource constrained devices that
require an optimized C language runtime. You can use the SDK on any operating system and host it
on any processor type (for example, MCUs and MPUs).

For more information, see the following:

• AWS IoT Device SDK for Embedded C on GitHub

AWS IoT Device SDK for Embedded C 1641

https://github.com/aws/aws-iot-device-sdk-java-v2/blob/main/documents/ANDROID.md
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2#aws-iot-device-sdk-for-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2/tree/main/samples#sample-apps-for-the-aws-iot-device-sdk-for-java-v2
https://aws.github.io/aws-iot-device-sdk-java-v2/
https://github.com/aws/aws-iot-device-sdk-embedded-C

AWS IoT Core Developer Guide

• AWS IoT Device SDK for Embedded C Readme

• AWS IoT Device SDK for Embedded C Samples

Earlier AWS IoT Device SDKs versions

These are earlier versions of AWS IoT Device SDKs that have been replaced by the newer versions
listed above. These SDKs are receiving only maintenance and security updates. They will not be
updated to include new features and should not be used on new projects.

• AWS IoT C++ Device SDK on GitHub

• AWS IoT C++ Device SDK Readme

• AWS IoT Device SDK for Python v1 on GitHub

• AWS IoT Device SDK for Python v1 Readme

• AWS IoT Device SDK for Java on GitHub

• AWS IoT Device SDK for Java Readme

• AWS IoT Device SDK for JavaScript on GitHub

• AWS IoT Device SDK for JavaScript Readme

• Arduino Yún SDK on GitHub

• Arduino Yún SDK Readme

AWS Mobile SDKs

The AWS Mobile SDKs provide mobile app developers platform-specific support for the APIs of the
AWS IoT Core services, IoT device communication using MQTT, and the APIs of other AWS services.

Android

AWS Mobile SDK for Android

The AWS Mobile SDK for Android contains a library, samples, and documentation for developers
to build connected mobile applications using AWS. This SDK also includes support for MQTT
device communications and calling the APIs of the AWS IoT Core services. For more information,
see the following:

• AWS Mobile SDK for Android on GitHub

Earlier AWS IoT Device SDKs versions 1642

https://github.com/aws/aws-iot-device-sdk-embedded-C#aws-iot-device-sdk-for-embedded-c
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/docs/doxygen/output/html/demos_main.html
https://github.com/aws/aws-iot-device-sdk-cpp/tree/release
https://github.com/aws/aws-iot-device-sdk-python/blob/master/README.rst#new-version-available
https://github.com/aws/aws-iot-device-sdk-python
https://github.com/aws/aws-iot-device-sdk-python#new-version-available
https://github.com/aws/aws-iot-device-sdk-java
https://github.com/aws/aws-iot-device-sdk-java#new-version-available
https://github.com/aws/aws-iot-device-sdk-js
https://github.com/aws/aws-iot-device-sdk-js#new-version-available
https://github.com/aws/aws-iot-device-sdk-arduino-yun
https://github.com/aws/aws-iot-device-sdk-arduino-yun#aws-iot-arduino-y%C3%BAn-sdk
https://github.com/aws/aws-sdk-android

AWS IoT Core Developer Guide

• AWS Mobile SDK for Android Readme

• AWS Mobile SDK for Android Samples

• AWS Mobile SDK for Android API reference

• AWSIoTClient Class reference documentation

iOS

AWS Mobile SDK for iOS

The AWS Mobile SDK for iOS is an open-source software development kit, distributed under
an Apache Open Source license. The AWS Mobile SDK for iOS provides a library, code samples,
and documentation to help developers build connected mobile applications using AWS. This
SDK also includes support for MQTT device communications and calling the APIs of the AWS IoT
Core services. For more information, see the following:

• AWS Mobile SDK for iOS on GitHub

• AWS Mobile SDK for iOS Readme

• AWS Mobile SDK for iOS Samples

• AWSIoT Class reference docs in the AWS Mobile SDK for iOS

AWS IoT Device Client

The AWS IoT Device Client provides code to help your device connect to AWS IoT, perform fleet
provisioning tasks, support device security policies, connect using secure tunneling, and process
jobs on your device. You can install this software on your device to handle these routine device
tasks so you can focus on your specific solution.

Note

The AWS IoT Device Client works with microprocessor-based IoT devices with x86_64 or
ARM processors and common Linux operating systems.

C++

AWS IoT Device Client

AWS IoT Device Client 1643

https://github.com/aws-amplify/aws-sdk-android/blob/main/README.md#aws-sdk-for-android
https://github.com/awslabs/aws-sdk-android-samples#aws-sdk-for-android-samples
https://aws-amplify.github.io/aws-sdk-android/docs/reference/
https://aws-amplify.github.io/aws-sdk-android/docs/reference/com/amazonaws/services/iot/AWSIotClient.html
https://github.com/aws/aws-sdk-ios
https://github.com/aws-amplify/aws-sdk-ios/blob/main/README.md#aws-sdk-for-ios
https://github.com/awslabs/aws-sdk-ios-samples#the-aws-sdk-for-ios-samples
https://aws-amplify.github.io/aws-sdk-ios/docs/reference/AWSIoT/index.html

AWS IoT Core Developer Guide

For more information about the AWS IoT Device Client in C++, see the following:

• AWS IoT Device Client in C++ source code on GitHub

• AWS IoT Device Client in C++ Readme

AWS IoT Device Client 1644

https://github.com/awslabs/aws-iot-device-client
https://github.com/awslabs/aws-iot-device-client#aws-iot-device-client

AWS IoT Core Developer Guide

Code examples for AWS IoT using AWS SDKs

The following code examples show how to use AWS IoT with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello AWS IoT

The following code examples show how to get started using AWS IoT.

C++

SDK for C++

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS iot)

Set this project's name.
project("hello_iot")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

1645

AWS IoT Core Developer Guide

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_iot.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_iot.cpp source file.

#include <aws/core/Aws.h>
#include <aws/iot/IoTClient.h>
#include <aws/iot/model/ListThingsRequest.h>
#include <iostream>

/*
 * A "Hello IoT" starter application which initializes an AWS IoT client and
 * lists the AWS IoT topics in the current account.
 *

1646

AWS IoT Core Developer Guide

 * main function
 *
 * Usage: 'hello_iot'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optional: change the log level for debugging.
 // options.loggingOptions.logLevel = Aws::Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::IoT::IoTClient iotClient(clientConfig);
 // List the things in the current account.
 Aws::IoT::Model::ListThingsRequest listThingsRequest;

 Aws::String nextToken; // Used for pagination.
 Aws::Vector<Aws::IoT::Model::ThingAttribute> allThings;

 do {
 if (!nextToken.empty()) {
 listThingsRequest.SetNextToken(nextToken);
 }

 Aws::IoT::Model::ListThingsOutcome listThingsOutcome =
 iotClient.ListThings(
 listThingsRequest);
 if (listThingsOutcome.IsSuccess()) {
 const Aws::Vector<Aws::IoT::Model::ThingAttribute> &things =
 listThingsOutcome.GetResult().GetThings();
 allThings.insert(allThings.end(), things.begin(), things.end());
 nextToken = listThingsOutcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "List things failed"
 << listThingsOutcome.GetError().GetMessage() <<
 std::endl;
 break;
 }
 } while (!nextToken.empty());

1647

AWS IoT Core Developer Guide

 std::cout << allThings.size() << " thing(s) found." << std::endl;
 for (auto const &thing: allThings) {
 std::cout << thing.GetThingName() << std::endl;
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return 0;
}

• For API details, see listThings in AWS SDK for C++ API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iot.IotClient;
import software.amazon.awssdk.services.iot.model.ListThingsRequest;
import software.amazon.awssdk.services.iot.model.ListThingsResponse;
import software.amazon.awssdk.services.iot.model.ThingAttribute;
import java.util.List;

public class HelloIoT {
 public static void main(String[] args) {
 System.out.println("Hello AWS IoT. Here is a listing of your AWS IoT
 Things:");

1648

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/listThings
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot/hello_iot#code-examples
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 IotClient iotClient = IotClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listAllThings(iotClient);
 }

 public static void listAllThings(IotClient iotClient) {
 ListThingsRequest thingsRequest = ListThingsRequest.builder()
 .maxResults(10)
 .build();

 ListThingsResponse response = iotClient.listThings(thingsRequest) ;
 List<ThingAttribute> thingList = response.things();
 for (ThingAttribute attribute : thingList) {
 System.out.println("Thing name: "+attribute.thingName());
 System.out.println("Thing ARN: "+attribute.thingArn());
 }
 }
}

• For API details, see listThings in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.iot.IotClient
import aws.sdk.kotlin.services.iot.model.ListThingsRequest

suspend fun main() {
 println("A listing of your AWS IoT Things:")
 listAllThings()
}

1649

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/listThings
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

suspend fun listAllThings() {
 val thingsRequest = ListThingsRequest {
 maxResults = 10
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 val response = iotClient.listThings(thingsRequest)
 val thingList = response.things
 if (thingList != null) {
 for (attribute in thingList) {
 println("Thing name ${attribute.thingName}")
 println("Thing ARN: ${attribute.thingArn}")
 }
 }
 }
}

• For API details, see listThings in AWS SDK for Kotlin API reference.

Code examples

• Actions for AWS IoT using AWS SDKs

• Use AttachThingPrincipal with an AWS SDK or CLI

• Use CreateKeysAndCertificate with an AWS SDK or CLI

• Use CreateThing with an AWS SDK or CLI

• Use CreateTopicRule with an AWS SDK or CLI

• Use DeleteCertificate with an AWS SDK or CLI

• Use DeleteThing with an AWS SDK or CLI

• Use DeleteTopicRule with an AWS SDK or CLI

• Use DescribeEndpoint with an AWS SDK or CLI

• Use DescribeThing with an AWS SDK or CLI

• Use DetachThingPrincipal with an AWS SDK or CLI

• Use ListCertificates with an AWS SDK or CLI

• Use ListThings with an AWS SDK or CLI

• Use SearchIndex with an AWS SDK or CLI

• Use UpdateIndexingConfiguration with an AWS SDK or CLI 1650

https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

• Use UpdateThing with an AWS SDK or CLI

• Scenarios for AWS IoT using AWS SDKs

• Work with AWS IoT devices, things, and shadows using AWS IoT SDK

Actions for AWS IoT using AWS SDKs

The following code examples demonstrate how to perform individual AWS IoT actions with AWS
SDKs. These excerpts call the AWS IoT API and are code excerpts from larger programs that must
be run in context. Each example includes a link to GitHub, where you can find instructions for
setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS IoT API Reference.

Examples

• Use AttachThingPrincipal with an AWS SDK or CLI

• Use CreateKeysAndCertificate with an AWS SDK or CLI

• Use CreateThing with an AWS SDK or CLI

• Use CreateTopicRule with an AWS SDK or CLI

• Use DeleteCertificate with an AWS SDK or CLI

• Use DeleteThing with an AWS SDK or CLI

• Use DeleteTopicRule with an AWS SDK or CLI

• Use DescribeEndpoint with an AWS SDK or CLI

• Use DescribeThing with an AWS SDK or CLI

• Use DetachThingPrincipal with an AWS SDK or CLI

• Use ListCertificates with an AWS SDK or CLI

• Use ListThings with an AWS SDK or CLI

• Use SearchIndex with an AWS SDK or CLI

• Use UpdateIndexingConfiguration with an AWS SDK or CLI

• Use UpdateThing with an AWS SDK or CLI

Actions 1651

https://docs.aws.amazon.com/iot/latest/apireference/Welcome.html

AWS IoT Core Developer Guide

Use AttachThingPrincipal with an AWS SDK or CLI

The following code examples show how to use AttachThingPrincipal.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Attach a principal to an AWS IoT thing.
/*!
 \param principal: A principal to attach.
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::attachThingPrincipal(const Aws::String &principal,
 const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient client(clientConfiguration);
 Aws::IoT::Model::AttachThingPrincipalRequest request;
 request.SetPrincipal(principal);
 request.SetThingName(thingName);
 Aws::IoT::Model::AttachThingPrincipalOutcome outcome =
 client.AttachThingPrincipal(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully attached principal to thing." << std::endl;
 }
 else {
 std::cerr << "Failed to attach principal to thing." <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

AttachThingPrincipal 1652

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

• For API details, see AttachThingPrincipal in AWS SDK for C++ API Reference.

CLI

AWS CLI

To attach a certificate to your thing

The following attach-thing-principal example attaches a certificate to the
MyTemperatureSensor thing. The certificate is identified by an ARN. You can find the ARN
for a certificate in the AWS IoT console.

aws iot attach-thing-principal \
 --thing-name MyTemperatureSensor \
 --principal arn:aws:iot:us-
west-2:123456789012:cert/2e1eb273792174ec2b9bf4e9b37e6c6c692345499506002a35159767055278e8

This command produces no output.

For more information, see How to Manage Things with the Registry in the AWS IoT
Developers Guide.

• For API details, see AttachThingPrincipal in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void attachCertificateToThing(IotClient iotClient, String
 thingName, String certificateArn) {
 // Attach the certificate to the thing.
 AttachThingPrincipalRequest principalRequest =
 AttachThingPrincipalRequest.builder()

AttachThingPrincipal 1653

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/AttachThingPrincipal
https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/attach-thing-principal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 .thingName(thingName)
 .principal(certificateArn)
 .build();

 AttachThingPrincipalResponse attachResponse =
 iotClient.attachThingPrincipal(principalRequest);

 // Verify the attachment was successful.
 if (attachResponse.sdkHttpResponse().isSuccessful()) {
 System.out.println("Certificate attached to Thing successfully.");

 // Print additional information about the Thing.
 describeThing(iotClient, thingName);
 } else {
 System.err.println("Failed to attach certificate to Thing. HTTP
 Status Code: " +
 attachResponse.sdkHttpResponse().statusCode());
 }
 }

• For API details, see AttachThingPrincipal in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun attachCertificateToThing(thingNameVal: String?, certificateArn:
 String?) {
 val principalRequest = AttachThingPrincipalRequest {
 thingName = thingNameVal
 principal = certificateArn
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.attachThingPrincipal(principalRequest)

AttachThingPrincipal 1654

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/AttachThingPrincipal
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 println("Certificate attached to $thingNameVal successfully.")
 }
}

• For API details, see AttachThingPrincipal in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateKeysAndCertificate with an AWS SDK or CLI

The following code examples show how to use CreateKeysAndCertificate.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create keys and certificate for an Aws IoT device.
//! This routine will save certificates and keys to an output folder, if
 provided.
/*!
 \param outputFolder: Location for storing output in files, ignored when string
 is empty.
 \param certificateARNResult: A string to receive the ARN of the created
 certificate.
 \param certificateID: A string to receive the ID of the created certificate.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::createKeysAndCertificate(const Aws::String &outputFolder,
 Aws::String &certificateARNResult,
 Aws::String &certificateID,

CreateKeysAndCertificate 1655

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient client(clientConfiguration);
 Aws::IoT::Model::CreateKeysAndCertificateRequest
 createKeysAndCertificateRequest;

 Aws::IoT::Model::CreateKeysAndCertificateOutcome outcome =
 client.CreateKeysAndCertificate(createKeysAndCertificateRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created a certificate and keys" << std::endl;
 certificateARNResult = outcome.GetResult().GetCertificateArn();
 certificateID = outcome.GetResult().GetCertificateId();
 std::cout << "Certificate ARN: " << certificateARNResult << ",
 certificate ID: "
 << certificateID << std::endl;

 if (!outputFolder.empty()) {
 std::cout << "Writing certificate and keys to the folder '" <<
 outputFolder
 << "'." << std::endl;
 std::cout << "Be sure these files are stored securely." << std::endl;

 Aws::String certificateFilePath = outputFolder + "/
certificate.pem.crt";
 std::ofstream certificateFile(certificateFilePath);
 if (!certificateFile.is_open()) {
 std::cerr << "Error opening certificate file, '" <<
 certificateFilePath
 << "'."
 << std::endl;
 return false;
 }
 certificateFile << outcome.GetResult().GetCertificatePem();
 certificateFile.close();

 const Aws::IoT::Model::KeyPair &keyPair =
 outcome.GetResult().GetKeyPair();

 Aws::String privateKeyFilePath = outputFolder + "/private.pem.key";
 std::ofstream privateKeyFile(privateKeyFilePath);
 if (!privateKeyFile.is_open()) {
 std::cerr << "Error opening private key file, '" <<
 privateKeyFilePath
 << "'."

CreateKeysAndCertificate 1656

AWS IoT Core Developer Guide

 << std::endl;
 return false;
 }
 privateKeyFile << keyPair.GetPrivateKey();
 privateKeyFile.close();

 Aws::String publicKeyFilePath = outputFolder + "/public.pem.key";
 std::ofstream publicKeyFile(publicKeyFilePath);
 if (!publicKeyFile.is_open()) {
 std::cerr << "Error opening public key file, '" <<
 publicKeyFilePath
 << "'."
 << std::endl;
 return false;
 }
 publicKeyFile << keyPair.GetPublicKey();
 }
 }
 else {
 std::cerr << "Error creating keys and certificate: "
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see CreateKeysAndCertificate in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create an RSA key pair and issue an X.509 certificate

The following create-keys-and-certificate creates a 2048-bit RSA key pair and issues
an X.509 certificate using the issued public key. Because this is the only time that AWS IoT
provides the private key for this certificate, be sure to keep it in a secure location.

aws iot create-keys-and-certificate \
 --certificate-pem-outfile "myTest.cert.pem" \
 --public-key-outfile "myTest.public.key" \

CreateKeysAndCertificate 1657

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/CreateKeysAndCertificate

AWS IoT Core Developer Guide

 --private-key-outfile "myTest.private.key"

Output:

{
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/9894ba17925e663f1d29c23af4582b8e3b7619c31f3fbd93adcb51ae54b83dc2",
 "certificateId":
 "9894ba17925e663f1d29c23af4582b8e3b7619c31f3fbd93adcb51ae54b83dc2",
 "certificatePem": "
-----BEGIN CERTIFICATE-----
MIICiTCCEXAMPLE6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC
VVMxCzAJBgNVBAgEXAMPLEAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6
b24xFDASBgNVBAsTC0lBTSEXAMPLE2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
BgkqhkiG9w0BCQEWEG5vb25lQGFtYEXAMPLEb20wHhcNMTEwNDI1MjA0NTIxWhcN
MTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCEXAMPLEJBgNVBAgTAldBMRAwDgYD
VQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDAEXAMPLEsTC0lBTSBDb25z
b2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEXAMPLE25lQGFt
YXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+aEXAMPLE
EXAMPLEfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T
rDHudUZEXAMPLELG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE
Ibb3OhjZnzcvQAEXAMPLEWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4
nUhVVxYUntneD9+h8Mg9qEXAMPLEyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb
FFBjvSfpJIlJ00zbhNYS5f6GuoEDEXAMPLEBHjJnyp378OD8uTs7fLvjx79LjSTb
NYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=
-----END CERTIFICATE-----\n",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----
\nMIIBIjANBgkqhkEXAMPLEQEFAAOCAQ8AMIIBCgKCAQEAEXAMPLE1nnyJwKSMHw4h\nMMEXAMPLEuuN/
dMAS3fyce8DW/4+EXAMPLEyjmoF/YVF/gHr99VEEXAMPLE5VF13\n59VK7cEXAMPLE67GK+y
+jikqXOgHh/xJTwo
+sGpWEXAMPLEDz18xOd2ka4tCzuWEXAMPLEahJbYkCPUBSU8opVkR7qkEXAMPLE1DR6sx2HocliOOLtu6Fkw91swQWEXAMPLE
\GB3ZPrNh0PzQYvjUStZeccyNCx2EXAMPLEvp9mQOUXP6plfgxwKRX2fEXAMPLEDa
\nhJLXkX3rHU2xbxJSq7D+XEXAMPLEcw+LyFhI5mgFRl88eGdsAEXAMPLElnI9EesG\nFQIDAQAB
\n-----END PUBLIC KEY-----\n",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----\nkey omittted for security
 reasons\n-----END RSA PRIVATE KEY-----\n"
 }
}

For more infomration, see Create and Register an AWS IoT Device Certificate in the AWS IoT
Developer Guide.

CreateKeysAndCertificate 1658

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-create.html

AWS IoT Core Developer Guide

• For API details, see CreateKeysAndCertificate in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static String createCertificate(IotClient iotClient) {
 try {
 CreateKeysAndCertificateResponse response =
 iotClient.createKeysAndCertificate();
 String certificatePem = response.certificatePem();
 String certificateArn = response.certificateArn();

 // Print the details.
 System.out.println("\nCertificate:");
 System.out.println(certificatePem);
 System.out.println("\nCertificate ARN:");
 System.out.println(certificateArn);
 return certificateArn;

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

 return "";
 }

• For API details, see CreateKeysAndCertificate in AWS SDK for Java 2.x API Reference.

CreateKeysAndCertificate 1659

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-keys-and-certificate.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/CreateKeysAndCertificate

AWS IoT Core Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static String createCertificate(IotClient iotClient) {
 try {
 CreateKeysAndCertificateResponse response =
 iotClient.createKeysAndCertificate();
 String certificatePem = response.certificatePem();
 String certificateArn = response.certificateArn();

 // Print the details.
 System.out.println("\nCertificate:");
 System.out.println(certificatePem);
 System.out.println("\nCertificate ARN:");
 System.out.println(certificateArn);
 return certificateArn;

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

 return "";
 }

• For API details, see CreateKeysAndCertificate in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

CreateKeysAndCertificate 1660

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

Use CreateThing with an AWS SDK or CLI

The following code examples show how to use CreateThing.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::createThing(const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::CreateThingRequest createThingRequest;
 createThingRequest.SetThingName(thingName);

 Aws::IoT::Model::CreateThingOutcome outcome = iotClient.CreateThing(
 createThingRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created thing " << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to create thing " << thingName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see CreateThing in AWS SDK for C++ API Reference.

CreateThing 1661

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples
https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/CreateThing

AWS IoT Core Developer Guide

CLI

AWS CLI

Example 1: To create a thing record in the registry

The following create-thing example creates an entry for a device in the AWS IoT thing
registry.

aws iot create-thing \
 --thing-name SampleIoTThing

Output:

{
 "thingName": "SampleIoTThing",
 "thingArn": "arn:aws:iot:us-west-2: 123456789012:thing/SampleIoTThing",
 "thingId": " EXAMPLE1-90ab-cdef-fedc-ba987EXAMPLE "
}

Example 2: To define a thing that is associated with a thing type

The following create-thing example create a thing that has the specified thing type and
its attributes.

aws iot create-thing \
 --thing-name "MyLightBulb" \
 --thing-type-name "LightBulb" \
 --attribute-payload "{"attributes": {"wattage":"75", "model":"123"}}"

Output:

{
 "thingName": "MyLightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyLightBulb",
 "thingId": "40da2e73-c6af-406e-b415-15acae538797"
}

For more information, see How to Manage Things with the Registry and Thing Types in the
AWS IoT Developers Guide.

• For API details, see CreateThing in AWS CLI Command Reference.

CreateThing 1662

https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-thing.html

AWS IoT Core Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createIoTThing(IotClient iotClient, String thingName) {
 try {
 CreateThingRequest createThingRequest = CreateThingRequest.builder()
 .thingName(thingName)
 .build();

 CreateThingResponse createThingResponse =
 iotClient.createThing(createThingRequest);
 System.out.println(thingName +" was successfully created. The ARN
 value is " + createThingResponse.thingArn());

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see CreateThing in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

CreateThing 1663

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/CreateThing
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

suspend fun createIoTThing(thingNameVal: String) {
 val createThingRequest = CreateThingRequest {
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.createThing(createThingRequest)
 println("Created $thingNameVal}")
 }
}

• For API details, see CreateThing in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateTopicRule with an AWS SDK or CLI

The following code examples show how to use CreateTopicRule.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an AWS IoT rule with an SNS topic as the target.
/*!
 \param ruleName: The name for the rule.
 \param snsTopic: The SNS topic ARN for the action.
 \param sql: The SQL statement used to query the topic.
 \param roleARN: The IAM role ARN for the action.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.

CreateTopicRule 1664

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 */
bool
AwsDoc::IoT::createTopicRule(const Aws::String &ruleName,
 const Aws::String &snsTopicARN, const Aws::String
 &sql,
 const Aws::String &roleARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::CreateTopicRuleRequest request;
 request.SetRuleName(ruleName);

 Aws::IoT::Model::SnsAction snsAction;
 snsAction.SetTargetArn(snsTopicARN);
 snsAction.SetRoleArn(roleARN);

 Aws::IoT::Model::Action action;
 action.SetSns(snsAction);

 Aws::IoT::Model::TopicRulePayload topicRulePayload;
 topicRulePayload.SetSql(sql);
 topicRulePayload.SetActions({action});

 request.SetTopicRulePayload(topicRulePayload);
 auto outcome = iotClient.CreateTopicRule(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created topic rule " << ruleName << "." <<
 std::endl;
 }
 else {
 std::cerr << "Error creating topic rule " << ruleName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 return outcome.IsSuccess();
}

• For API details, see CreateTopicRule in AWS SDK for C++ API Reference.

CreateTopicRule 1665

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/CreateTopicRule

AWS IoT Core Developer Guide

CLI

AWS CLI

To create a rule that sends an Amazon SNS alert

The following create-topic-rule example creates a rule that sends an Amazon SNS
message when soil moisture level readings, as found in a device shadow, are low.

aws iot create-topic-rule \
 --rule-name "LowMoistureRule" \
 --topic-rule-payload file://plant-rule.json

The example requires the following JSON code to be saved to a file named plant-
rule.json:

{
 "sql": "SELECT * FROM '$aws/things/MyRPi/shadow/update/accepted' WHERE
 state.reported.moisture = 'low'\n",
 "description": "Sends an alert whenever soil moisture level readings are too
 low.",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [{
 "sns": {
 "targetArn": "arn:aws:sns:us-
west-2:123456789012:MyRPiLowMoistureTopic",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/
MyRPiLowMoistureTopicRole",
 "messageFormat": "RAW"
 }
 }]
}

This command produces no output.

For more information, see Creating an AWS IoT Rule in the AWS IoT Developers Guide.

• For API details, see CreateTopicRule in AWS CLI Command Reference.

CreateTopicRule 1666

https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-rule.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/create-topic-rule.html

AWS IoT Core Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void createIoTRule(IotClient iotClient, String roleARN, String
 ruleName, String action) {
 try {
 String sql = "SELECT * FROM '" + TOPIC + "'";
 SnsAction action1 = SnsAction.builder()
 .targetArn(action)
 .roleArn(roleARN)
 .build();

 // Create the action.
 Action myAction = Action.builder()
 .sns(action1)
 .build();

 // Create the topic rule payload.
 TopicRulePayload topicRulePayload = TopicRulePayload.builder()
 .sql(sql)
 .actions(myAction)
 .build();

 // Create the topic rule request.
 CreateTopicRuleRequest topicRuleRequest =
 CreateTopicRuleRequest.builder()
 .ruleName(ruleName)
 .topicRulePayload(topicRulePayload)
 .build();

 // Create the rule.
 iotClient.createTopicRule(topicRuleRequest);
 System.out.println("IoT Rule created successfully.");

 } catch (IotException e) {

CreateTopicRule 1667

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

• For API details, see CreateTopicRule in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createIoTRule(roleARNVal: String?, ruleNameVal: String?, action:
 String?) {
 val sqlVal = "SELECT * FROM '$TOPIC '"
 val action1 = SnsAction {
 targetArn = action
 roleArn = roleARNVal
 }

 val myAction = Action {
 sns = action1
 }

 val topicRulePayloadVal = TopicRulePayload {
 sql = sqlVal
 actions = listOf(myAction)
 }

 val topicRuleRequest = CreateTopicRuleRequest {
 ruleName = ruleNameVal
 topicRulePayload = topicRulePayloadVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.createTopicRule(topicRuleRequest)

CreateTopicRule 1668

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/CreateTopicRule
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 println("IoT rule created successfully.")
 }
}

• For API details, see CreateTopicRule in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteCertificate with an AWS SDK or CLI

The following code examples show how to use DeleteCertificate.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete a certificate.
/*!
 \param certificateID: The ID of a certificate.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::deleteCertificate(const Aws::String &certificateID,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::DeleteCertificateRequest request;
 request.SetCertificateId(certificateID);

 Aws::IoT::Model::DeleteCertificateOutcome outcome =
 iotClient.DeleteCertificate(

DeleteCertificate 1669

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted certificate " << certificateID <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting certificate " << certificateID << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteCertificate in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a device certificate

The following delete-certificate example deletes the device certificate with the
specified ID.

aws iot delete-certificate \
 --certificate-id
 c0c57bbc8baaf4631a9a0345c957657f5e710473e3ddbee1428d216d54d53ac9

This command produces no output.

For more information, see DeleteCertificate in the AWS IoT API Reference.

• For API details, see DeleteCertificate in AWS CLI Command Reference.

DeleteCertificate 1670

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DeleteCertificate
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteCertificate.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/delete-certificate.html

AWS IoT Core Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteCertificate(IotClient iotClient, String
 certificateArn) {
 DeleteCertificateRequest certificateProviderRequest =
 DeleteCertificateRequest.builder()
 .certificateId(extractCertificateId(certificateArn))
 .build();

 iotClient.deleteCertificate(certificateProviderRequest);
 System.out.println(certificateArn +" was successfully deleted.");
 }

• For API details, see DeleteCertificate in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteCertificate(certificateArn: String) {
 val certificateProviderRequest = DeleteCertificateRequest {
 certificateId = extractCertificateId(certificateArn)
 }
 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.deleteCertificate(certificateProviderRequest)

DeleteCertificate 1671

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/DeleteCertificate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 println("$certificateArn was successfully deleted.")
 }
}

• For API details, see DeleteCertificate in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteThing with an AWS SDK or CLI

The following code examples show how to use DeleteThing.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::deleteThing(const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DeleteThingRequest request;
 request.SetThingName(thingName);
 const auto outcome = iotClient.DeleteThing(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted thing " << thingName << std::endl;
 }

DeleteThing 1672

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 else {
 std::cerr << "Error deleting thing " << thingName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteThing in AWS SDK for C++ API Reference.

CLI

AWS CLI

To display detailed information about a thing

The following delete-thing example deletes a thing from the AWS IoT registry for your
AWS account.

aws iot delete-thing --thing-name "FourthBulb"

This command produces no output.

For more information, see How to Manage Things with the Registry in the AWS IoT
Developers Guide.

• For API details, see DeleteThing in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void deleteIoTThing(IotClient iotClient, String thingName) {

DeleteThing 1673

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DeleteThing
https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/delete-thing.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 try {
 DeleteThingRequest deleteThingRequest = DeleteThingRequest.builder()
 .thingName(thingName)
 .build();

 iotClient.deleteThing(deleteThingRequest);
 System.out.println("Deleted Thing " + thingName);

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DeleteThing in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteIoTThing(thingNameVal: String) {
 val deleteThingRequest = DeleteThingRequest {
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.deleteThing(deleteThingRequest)
 println("Deleted $thingNameVal")
 }
}

• For API details, see DeleteThing in AWS SDK for Kotlin API reference.

DeleteThing 1674

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/DeleteThing
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteTopicRule with an AWS SDK or CLI

The following code examples show how to use DeleteTopicRule.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an AWS IoT rule.
/*!
 \param ruleName: The name for the rule.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::deleteTopicRule(const Aws::String &ruleName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DeleteTopicRuleRequest request;
 request.SetRuleName(ruleName);

 Aws::IoT::Model::DeleteTopicRuleOutcome outcome = iotClient.DeleteTopicRule(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted rule " << ruleName << std::endl;
 }
 else {
 std::cerr << "Failed to delete rule " << ruleName <<
 ": " << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();

DeleteTopicRule 1675

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

}

• For API details, see DeleteTopicRule in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a rule

The following delete-topic-rule example deletes the specified rule.

aws iot delete-topic-rule \
 --rule-name "LowMoistureRule"

This command produces no output.

For more information, see Deleting a Rule in the AWS IoT Developers Guide.

• For API details, see DeleteTopicRule in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeEndpoint with an AWS SDK or CLI

The following code examples show how to use DescribeEndpoint.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Describe the endpoint specific to the AWS account making the call.

DescribeEndpoint 1676

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DeleteTopicRule
https://docs.aws.amazon.com/iot/latest/developerguide/iot-delete-rule.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/delete-topic-rule.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

/*!
 \param endpointResult: String to receive the endpoint result.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::describeEndpoint(Aws::String &endpointResult,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::String endpoint;
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DescribeEndpointRequest describeEndpointRequest;
 describeEndpointRequest.SetEndpointType(
 "iot:Data-ATS"); // Recommended endpoint type.

 Aws::IoT::Model::DescribeEndpointOutcome outcome =
 iotClient.DescribeEndpoint(
 describeEndpointRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully described endpoint." << std::endl;
 endpointResult = outcome.GetResult().GetEndpointAddress();
 }
 else {
 std::cerr << "Error describing endpoint" <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DescribeEndpoint in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To get your current AWS endpoint

The following describe-endpoint example retrieves the default AWS endpoint to which
all commands are applied.

DescribeEndpoint 1677

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DescribeEndpoint

AWS IoT Core Developer Guide

aws iot describe-endpoint

Output:

{
 "endpointAddress": "abc123defghijk.iot.us-west-2.amazonaws.com"
}

For more information, see DescribeEndpoint in the AWS IoT Developer Guide.

Example 2: To get your ATS endpoint

The following describe-endpoint example retrieves the Amazon Trust Services (ATS)
endpoint.

aws iot describe-endpoint \
 --endpoint-type iot:Data-ATS

Output:

{
 "endpointAddress": "abc123defghijk-ats.iot.us-west-2.amazonaws.com"
}

For more information, see X.509 Certificates and AWS IoT in the AWS IoT Developer Guide.

• For API details, see DescribeEndpoint in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static String describeEndpoint(IotClient iotClient) {

DescribeEndpoint 1678

https://docs.aws.amazon.com/iot/latest/developerguide/iot-commands.html#api-iot-DescribeEndpoint
https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-endpoint.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 try {
 DescribeEndpointResponse endpointResponse =
 iotClient.describeEndpoint(DescribeEndpointRequest.builder().build());

 // Get the endpoint URL.
 String endpointUrl = endpointResponse.endpointAddress();
 String exString = getValue(endpointUrl);
 String fullEndpoint = "https://"+exString+"-ats.iot.us-
east-1.amazonaws.com";

 System.out.println("Full Endpoint URL: "+fullEndpoint);
 return fullEndpoint;

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "" ;
 }

• For API details, see DescribeEndpoint in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun describeEndpoint(): String? {
 val request = DescribeEndpointRequest {}

 IotClient { region = "us-east-1" }.use { iotClient ->
 val endpointResponse = iotClient.describeEndpoint(request)
 val endpointUrl: String? = endpointResponse.endpointAddress
 val exString: String = getValue(endpointUrl)
 val fullEndpoint = "https://$exString-ats.iot.us-east-1.amazonaws.com"
 println("Full endpoint URL: $fullEndpoint")

DescribeEndpoint 1679

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/DescribeEndpoint
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 return fullEndpoint
 }
}

• For API details, see DescribeEndpoint in AWS SDK for Kotlin API reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_address(client: &Client, endpoint_type: &str) -> Result<(), Error>
 {
 let resp = client
 .describe_endpoint()
 .endpoint_type(endpoint_type)
 .send()
 .await?;

 println!("Endpoint address: {}", resp.endpoint_address.unwrap());

 println!();

 Ok(())
}

• For API details, see DescribeEndpoint in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

DescribeEndpoint 1680

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iot#code-examples
https://docs.rs/releases/search?query=aws-sdk

AWS IoT Core Developer Guide

Use DescribeThing with an AWS SDK or CLI

The following code examples show how to use DescribeThing.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Describe an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::describeThing(const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::DescribeThingRequest request;
 request.SetThingName(thingName);

 Aws::IoT::Model::DescribeThingOutcome outcome =
 iotClient.DescribeThing(request);

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::DescribeThingResult &result = outcome.GetResult();
 std::cout << "Retrieved thing '" << result.GetThingName() << "'" <<
 std::endl;
 std::cout << "thingArn: " << result.GetThingArn() << std::endl;
 std::cout << result.GetAttributes().size() << " attribute(s) retrieved"
 << std::endl;
 for (const auto &attribute: result.GetAttributes()) {
 std::cout << " attribute: " << attribute.first << "=" <<
 attribute.second
 << std::endl;

DescribeThing 1681

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 }
 }
 else {
 std::cerr << "Error describing thing " << thingName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DescribeThing in AWS SDK for C++ API Reference.

CLI

AWS CLI

To display detailed information about a thing

The following describe-thing example display information about a thing (device) that is
defined in the AWS IoT registry for your AWS account.

aws iot describe-thing --thing-name "MyLightBulb"

Output:

{
 "defaultClientId": "MyLightBulb",
 "thingName": "MyLightBulb",
 "thingId": "40da2e73-c6af-406e-b415-15acae538797",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyLightBulb",
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1
}

For more information, see How to Manage Things with the Registry in the AWS IoT
Developers Guide.

• For API details, see DescribeThing in AWS CLI Command Reference.

DescribeThing 1682

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DescribeThing
https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/describe-thing.html

AWS IoT Core Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 private static void describeThing(IotClient iotClient, String thingName) {
 try {
 DescribeThingRequest thingRequest = DescribeThingRequest.builder()
 .thingName(thingName)
 .build() ;

 // Print Thing details.
 DescribeThingResponse describeResponse =
 iotClient.describeThing(thingRequest);
 System.out.println("Thing Details:");
 System.out.println("Thing Name: " + describeResponse.thingName());
 System.out.println("Thing ARN: " + describeResponse.thingArn());

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DescribeThing in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DescribeThing 1683

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/DescribeThing
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

suspend fun describeThing(thingNameVal: String) {
 val thingRequest = DescribeThingRequest {
 thingName = thingNameVal
 }

 // Print Thing details.
 IotClient { region = "us-east-1" }.use { iotClient ->
 val describeResponse = iotClient.describeThing(thingRequest)
 println("Thing details:")
 println("Thing name: ${describeResponse.thingName}")
 println("Thing ARN: ${describeResponse.thingArn}")
 }
}

• For API details, see DescribeThing in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DetachThingPrincipal with an AWS SDK or CLI

The following code examples show how to use DetachThingPrincipal.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Detach a principal from an AWS IoT thing.
/*!
 \param principal: A principal to detach.
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.

DetachThingPrincipal 1684

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::detachThingPrincipal(const Aws::String &principal,
 const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::DetachThingPrincipalRequest detachThingPrincipalRequest;
 detachThingPrincipalRequest.SetThingName(thingName);
 detachThingPrincipalRequest.SetPrincipal(principal);

 Aws::IoT::Model::DetachThingPrincipalOutcome outcome =
 iotClient.DetachThingPrincipal(
 detachThingPrincipalRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully detached principal " << principal << " from
 thing "
 << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to detach principal " << principal << " from thing "
 << thingName << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DetachThingPrincipal in AWS SDK for C++ API Reference.

CLI

AWS CLI

To detach a certificate/principal from a thing

The following detach-thing-principal example removes a certificate that represents a
principal from the specified thing.

aws iot detach-thing-principal \

DetachThingPrincipal 1685

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/DetachThingPrincipal

AWS IoT Core Developer Guide

 --thing-name "MyLightBulb" \
 --principal "arn:aws:iot:us-
west-2:123456789012:cert/604c48437a57b7d5fc5d137c5be75011c6ee67c9a6943683a1acb4b1626bac36"

This command produces no output.

For more information, see How to Manage Things with the Registry in the AWS IoT
Developers Guide.

• For API details, see DetachThingPrincipal in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void detachThingPrincipal(IotClient iotClient, String
 thingName, String certificateArn){
 try {
 DetachThingPrincipalRequest thingPrincipalRequest =
 DetachThingPrincipalRequest.builder()
 .principal(certificateArn)
 .thingName(thingName)
 .build();

 iotClient.detachThingPrincipal(thingPrincipalRequest);
 System.out.println(certificateArn +" was successfully removed from "
 +thingName);

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see DetachThingPrincipal in AWS SDK for Java 2.x API Reference.

DetachThingPrincipal 1686

https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/detach-thing-principal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/DetachThingPrincipal

AWS IoT Core Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun detachThingPrincipal(thingNameVal: String, certificateArn: String) {
 val thingPrincipalRequest = DetachThingPrincipalRequest {
 principal = certificateArn
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.detachThingPrincipal(thingPrincipalRequest)
 println("$certificateArn was successfully removed from $thingNameVal")
 }
}

• For API details, see DetachThingPrincipal in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListCertificates with an AWS SDK or CLI

The following code examples show how to use ListCertificates.

ListCertificates 1687

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! List certificates registered in the AWS account making the call.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::listCertificates(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::ListCertificatesRequest request;

 Aws::Vector<Aws::IoT::Model::Certificate> allCertificates;
 Aws::String marker; // Used to paginate results.
 do {
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::IoT::Model::ListCertificatesOutcome outcome =
 iotClient.ListCertificates(
 request);

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::ListCertificatesResult &result =
 outcome.GetResult();
 marker = result.GetNextMarker();
 allCertificates.insert(allCertificates.end(),
 result.GetCertificates().begin(),
 result.GetCertificates().end());
 }
 else {
 std::cerr << "Error: " << outcome.GetError().GetMessage() <<
 std::endl;

ListCertificates 1688

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 return false;
 }
 } while (!marker.empty());

 std::cout << allCertificates.size() << " certificate(s) found." << std::endl;

 for (auto &certificate: allCertificates) {
 std::cout << "Certificate ID: " << certificate.GetCertificateId() <<
 std::endl;
 std::cout << "Certificate ARN: " << certificate.GetCertificateArn()
 << std::endl;
 std::cout << std::endl;
 }

 return true;
}

• For API details, see ListCertificates in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To list the certificates registered in your AWS account

The following list-certificates example lists all certificates registered in your account.
If you have more than the default paging limit of 25, you can use the nextMarker response
value from this command and supply it to the next command to get the next batch of
results. Repeat until nextMarker returns without a value.

aws iot list-certificates

Output:

{
 "certificates": [
 {
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/604c48437a57b7d5fc5d137c5be75011c6ee67c9a6943683a1acb4b1626bac36",
 "certificateId":
 "604c48437a57b7d5fc5d137c5be75011c6ee67c9a6943683a1acb4b1626bac36",

ListCertificates 1689

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/ListCertificates

AWS IoT Core Developer Guide

 "status": "ACTIVE",
 "creationDate": 1556810537.617
 },
 {
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/262a1ac8a7d8aa72f6e96e365480f7313aa9db74b8339ec65d34dc3074e1c31e",
 "certificateId":
 "262a1ac8a7d8aa72f6e96e365480f7313aa9db74b8339ec65d34dc3074e1c31e",
 "status": "ACTIVE",
 "creationDate": 1546447050.885
 },
 {
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
b193ab7162c0fadca83246d24fa090300a1236fe58137e121b011804d8ac1d6b",
 "certificateId":
 "b193ab7162c0fadca83246d24fa090300a1236fe58137e121b011804d8ac1d6b",
 "status": "ACTIVE",
 "creationDate": 1546292258.322
 },
 {
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/7aebeea3845d14a44ec80b06b8b78a89f3f8a706974b8b34d18f5adf0741db42",
 "certificateId":
 "7aebeea3845d14a44ec80b06b8b78a89f3f8a706974b8b34d18f5adf0741db42",
 "status": "ACTIVE",
 "creationDate": 1541457693.453
 },
 {
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/54458aa39ebb3eb39c91ffbbdcc3a6ca1c7c094d1644b889f735a6fc2cd9a7e3",
 "certificateId":
 "54458aa39ebb3eb39c91ffbbdcc3a6ca1c7c094d1644b889f735a6fc2cd9a7e3",
 "status": "ACTIVE",
 "creationDate": 1541113568.611
 },
 {
 "certificateArn": "arn:aws:iot:us-
west-2:123456789012:cert/4f0ba725787aa94d67d2fca420eca022242532e8b3c58e7465c7778b443fd65e",
 "certificateId":
 "4f0ba725787aa94d67d2fca420eca022242532e8b3c58e7465c7778b443fd65e",
 "status": "ACTIVE",
 "creationDate": 1541022751.983
 }
]

ListCertificates 1690

AWS IoT Core Developer Guide

}

• For API details, see ListCertificates in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void listCertificates(IotClient iotClient) {
 ListCertificatesResponse response = iotClient.listCertificates();
 List<Certificate> certList = response.certificates();
 for (Certificate cert : certList) {
 System.out.println("Cert id: " + cert.certificateId());
 System.out.println("Cert Arn: " + cert.certificateArn());
 }
 }

• For API details, see ListCertificates in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listCertificates() {
 IotClient { region = "us-east-1" }.use { iotClient ->
 val response = iotClient.listCertificates()

ListCertificates 1691

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-certificates.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/ListCertificates
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 val certList = response.certificates
 certList?.forEach { cert ->
 println("Cert id: ${cert.certificateId}")
 println("Cert Arn: ${cert.certificateArn}")
 }
 }
}

• For API details, see ListCertificates in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListThings with an AWS SDK or CLI

The following code examples show how to use ListThings.

CLI

AWS CLI

Example 1: To list all things in the registry

The following list-things example lists the things (devices) that are defined in the AWS
IoT registry for your AWS account.

aws iot list-things

Output:

{
 "things": [
 {
 "thingName": "ThirdBulb",
 "thingTypeName": "LightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/ThirdBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },

ListThings 1692

https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

 "version": 2
 },
 {
 "thingName": "MyOtherLightBulb",
 "thingTypeName": "LightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/
MyOtherLightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 3
 },
 {
 "thingName": "MyLightBulb",
 "thingTypeName": "LightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyLightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1
 },
 {
 "thingName": "SampleIoTThing",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/SampleIoTThing",
 "attributes": {},
 "version": 1
 }
]
}

Example 2: To list the defined things that have a specific attribute

The following list-things example displays a list of things that have an attribute named
wattage.

aws iot list-things \
 --attribute-name wattage

Output:

{

ListThings 1693

AWS IoT Core Developer Guide

 "things": [
 {
 "thingName": "MyLightBulb",
 "thingTypeName": "LightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyLightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 1
 },
 {
 "thingName": "MyOtherLightBulb",
 "thingTypeName": "LightBulb",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/
MyOtherLightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "version": 3
 }
]
}

For more information, see How to Manage Things with the Registry in the AWS IoT
Developers Guide.

• For API details, see ListThings in AWS CLI Command Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_things(client: &Client) -> Result<(), Error> {
 let resp = client.list_things().send().await?;

ListThings 1694

https://docs.aws.amazon.com/iot/latest/developerguide/thing-registry.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/list-things.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/iot#code-examples

AWS IoT Core Developer Guide

 println!("Things:");

 for thing in resp.things.unwrap() {
 println!(
 " Name: {}",
 thing.thing_name.as_deref().unwrap_or_default()
);
 println!(
 " Type: {}",
 thing.thing_type_name.as_deref().unwrap_or_default()
);
 println!(
 " ARN: {}",
 thing.thing_arn.as_deref().unwrap_or_default()
);
 println!();
 }

 println!();

 Ok(())
}

• For API details, see ListThings in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SearchIndex with an AWS SDK or CLI

The following code examples show how to use SearchIndex.

SearchIndex 1695

https://docs.rs/releases/search?query=aws-sdk

AWS IoT Core Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Query the AWS IoT fleet index.
//! For query information, see https://docs.aws.amazon.com/iot/latest/
developerguide/query-syntax.html
/*!
 \param: query: The query string.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::searchIndex(const Aws::String &query,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::SearchIndexRequest request;
 request.SetQueryString(query);

 Aws::Vector<Aws::IoT::Model::ThingDocument> allThingDocuments;
 Aws::String nextToken; // Used for pagination.
 do {
 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 Aws::IoT::Model::SearchIndexOutcome outcome =
 iotClient.SearchIndex(request);

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::SearchIndexResult &result =
 outcome.GetResult();
 allThingDocuments.insert(allThingDocuments.end(),
 result.GetThings().cbegin(),
 result.GetThings().cend());

SearchIndex 1696

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 nextToken = result.GetNextToken();

 }
 else {
 std::cerr << "Error in SearchIndex: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!nextToken.empty());

 std::cout << allThingDocuments.size() << " thing document(s) found." <<
 std::endl;
 for (const auto thingDocument: allThingDocuments) {
 std::cout << " Thing name: " << thingDocument.GetThingName() << "."
 << std::endl;
 }
 return true;
}

• For API details, see SearchIndex in AWS SDK for C++ API Reference.

CLI

AWS CLI

To query the thing index

The following search-index example queries the AWS_Things index for things that have
a type of LightBulb.

aws iot search-index \
 --index-name "AWS_Things" \
 --query-string "thingTypeName:LightBulb"

Output:

{
 "things": [
 {
 "thingName": "MyLightBulb",

SearchIndex 1697

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/SearchIndex

AWS IoT Core Developer Guide

 "thingId": "40da2e73-c6af-406e-b415-15acae538797",
 "thingTypeName": "LightBulb",
 "thingGroupNames": [
 "LightBulbs",
 "DeadBulbs"
],
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "connectivity": {
 "connected": false
 }
 },
 {
 "thingName": "ThirdBulb",
 "thingId": "615c8455-33d5-40e8-95fd-3ee8b24490af",
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "connectivity": {
 "connected": false
 }
 },
 {
 "thingName": "MyOtherLightBulb",
 "thingId": "6dae0d3f-40c1-476a-80c4-1ed24ba6aa11",
 "thingTypeName": "LightBulb",
 "attributes": {
 "model": "123",
 "wattage": "75"
 },
 "connectivity": {
 "connected": false
 }
 }
]
}

For more information, see Managing Thing Indexing in the AWS IoT Developer Guide.

• For API details, see SearchIndex in AWS CLI Command Reference.

SearchIndex 1698

https://docs.aws.amazon.com/iot/latest/developerguide/managing-index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/search-index.html

AWS IoT Core Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void searchThings(IotClient iotClient, String queryString){
 SearchIndexRequest searchIndexRequest = SearchIndexRequest.builder()
 .queryString(queryString)
 .build();

 try {
 // Perform the search and get the result.
 SearchIndexResponse searchIndexResponse =
 iotClient.searchIndex(searchIndexRequest);

 // Process the result.
 if (searchIndexResponse.things().isEmpty()) {
 System.out.println("No things found.");
 } else {
 searchIndexResponse.things().forEach(thing ->
 System.out.println("Thing id found using search is " + thing.thingId()));
 }
 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see SearchIndex in AWS SDK for Java 2.x API Reference.

SearchIndex 1699

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/SearchIndex

AWS IoT Core Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun searchThings(queryStringVal: String?) {
 val searchIndexRequest = SearchIndexRequest {
 queryString = queryStringVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 val searchIndexResponse = iotClient.searchIndex(searchIndexRequest)
 if (searchIndexResponse.things?.isEmpty() == true) {
 println("No things found.")
 } else {
 searchIndexResponse.things
 ?.forEach { thing -> println("Thing id found using search is
 ${thing.thingId}") }
 }
 }
}

• For API details, see SearchIndex in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateIndexingConfiguration with an AWS SDK or CLI

The following code examples show how to use UpdateIndexingConfiguration.

UpdateIndexingConfiguration 1700

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Update the indexing configuration.
/*!
 \param thingIndexingConfiguration: A ThingIndexingConfiguration object which is
 ignored if not set.
 \param thingGroupIndexingConfiguration: A ThingGroupIndexingConfiguration
 object which is ignored if not set.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::updateIndexingConfiguration(
 const Aws::IoT::Model::ThingIndexingConfiguration
 &thingIndexingConfiguration,
 const Aws::IoT::Model::ThingGroupIndexingConfiguration
 &thingGroupIndexingConfiguration,
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::UpdateIndexingConfigurationRequest request;

 if (thingIndexingConfiguration.ThingIndexingModeHasBeenSet()) {
 request.SetThingIndexingConfiguration(thingIndexingConfiguration);
 }

 if (thingGroupIndexingConfiguration.ThingGroupIndexingModeHasBeenSet()) {

 request.SetThingGroupIndexingConfiguration(thingGroupIndexingConfiguration);
 }

 Aws::IoT::Model::UpdateIndexingConfigurationOutcome outcome =
 iotClient.UpdateIndexingConfiguration(
 request);

UpdateIndexingConfiguration 1701

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

 if (outcome.IsSuccess()) {
 std::cout << "UpdateIndexingConfiguration succeeded." << std::endl;
 }
 else {
 std::cerr << "UpdateIndexingConfiguration failed."
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see UpdateIndexingConfiguration in AWS SDK for C++ API Reference.

CLI

AWS CLI

To enable thing indexing

The following update-indexing-configuration example enables thing indexing
to support searching registry data, shadow data, and thing connectivity status using the
AWS_Things index.

aws iot update-indexing-configuration
 --thing-indexing-configuration
 thingIndexingMode=REGISTRY_AND_SHADOW,thingConnectivityIndexingMode=STATUS

This command produces no output.

For more information, see Managing Thing Indexing in the AWS IoT Developers Guide.

• For API details, see UpdateIndexingConfiguration in AWS CLI Command Reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateThing with an AWS SDK or CLI

The following code examples show how to use UpdateThing.

UpdateThing 1702

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/UpdateIndexingConfiguration
https://docs.aws.amazon.com/iot/latest/developerguide/managing-index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-indexing-configuration.html

AWS IoT Core Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Update an AWS IoT thing with attributes.
/*!
 \param thingName: The name for the thing.
 \param attributeMap: A map of key/value attributes/
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::updateThing(const Aws::String &thingName,
 const std::map<Aws::String, Aws::String>
 &attributeMap,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::UpdateThingRequest request;
 request.SetThingName(thingName);
 Aws::IoT::Model::AttributePayload attributePayload;
 for (const auto &attribute: attributeMap) {
 attributePayload.AddAttributes(attribute.first, attribute.second);
 }
 request.SetAttributePayload(attributePayload);

 Aws::IoT::Model::UpdateThingOutcome outcome = iotClient.UpdateThing(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated thing " << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to update thing " << thingName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

UpdateThing 1703

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot#code-examples

AWS IoT Core Developer Guide

• For API details, see UpdateThing in AWS SDK for C++ API Reference.

CLI

AWS CLI

To associate a thing with a thing type

The following update-thing example associates a thing in the AWS IoT registry with a
thing type. When you make the association, you provide values for the attributes defined by
the thing type.

aws iot update-thing \
 --thing-name "MyOtherLightBulb" \
 --thing-type-name "LightBulb" \
 --attribute-payload "{"attributes": {"wattage":"75", "model":"123"}}"

This command does not produce output. Use the describe-thing command to see the
result.

For more information, see Thing Types in the AWS IoT Developers Guide.

• For API details, see UpdateThing in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 public static void updateThing(IotClient iotClient, String thingName) {
 // Specify the new attribute values.
 String newLocation = "Office";
 String newFirmwareVersion = "v2.0";

UpdateThing 1704

https://docs.aws.amazon.com/goto/SdkForCpp/iot-2015-05-28/UpdateThing
https://docs.aws.amazon.com/iot/latest/developerguide/thing-types.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot/update-thing.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

 Map<String, String> attMap = new HashMap<>();
 attMap.put("location", newLocation);
 attMap.put("firmwareVersion", newFirmwareVersion);

 AttributePayload attributePayload = AttributePayload.builder()
 .attributes(attMap)
 .build();

 UpdateThingRequest updateThingRequest = UpdateThingRequest.builder()
 .thingName(thingName)
 .attributePayload(attributePayload)
 .build();

 try {
 // Update the IoT Thing attributes.
 iotClient.updateThing(updateThingRequest);
 System.out.println("Thing attributes updated successfully.");

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see UpdateThing in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun updateThing(thingNameVal: String?) {
 val newLocation = "Office"
 val newFirmwareVersion = "v2.0"
 val attMap: MutableMap<String, String> = HashMap()
 attMap["location"] = newLocation

UpdateThing 1705

https://docs.aws.amazon.com/goto/SdkForJavaV2/iot-2015-05-28/UpdateThing
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 attMap["firmwareVersion"] = newFirmwareVersion

 val attributePayloadVal = AttributePayload {
 attributes = attMap
 }

 val updateThingRequest = UpdateThingRequest {
 thingName = thingNameVal
 attributePayload = attributePayloadVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 // Update the IoT thing attributes.
 iotClient.updateThing(updateThingRequest)
 println("$thingNameVal attributes updated successfully.")
 }
}

• For API details, see UpdateThing in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for AWS IoT using AWS SDKs

The following code examples show you how to implement common scenarios in AWS IoT with AWS
SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within AWS IoT. Each scenario includes a link to GitHub, where you can find instructions on how to
set up and run the code.

Examples

• Work with AWS IoT devices, things, and shadows using AWS IoT SDK

Work with AWS IoT devices, things, and shadows using AWS IoT SDK

The following code examples show how to work with AWS IoT device management use cases using
AWS IoT SDK

Scenarios 1706

https://sdk.amazonaws.com/kotlin/api/latest/index.html

AWS IoT Core Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an AWS IoT thing.

 Aws::String thingName = askQuestion("Enter a thing name: ");

 if (!createThing(thingName, clientConfiguration)) {
 std::cerr << "Exiting because createThing failed." << std::endl;
 cleanup("", "", "", "", "", false, clientConfiguration);
 return false;
 }

//! Create an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::createThing(const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::CreateThingRequest createThingRequest;
 createThingRequest.SetThingName(thingName);

 Aws::IoT::Model::CreateThingOutcome outcome = iotClient.CreateThing(
 createThingRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created thing " << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to create thing " << thingName << ": " <<
 outcome.GetError().GetMessage() << std::endl;

Work with device management use cases 1707

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/iot/things_and_shadows_workflow#code-examples

AWS IoT Core Developer Guide

 }

 return outcome.IsSuccess();
}

Generate and attach a device certificate.

 Aws::String certificateARN;
 Aws::String certificateID;
 if (askYesNoQuestion("Would you like to create a certificate for your thing?
 (y/n) ")) {
 Aws::String outputFolder;
 if (askYesNoQuestion(
 "Would you like to save the certificate and keys to file? (y/n)
 ")) {
 outputFolder = std::filesystem::current_path();
 outputFolder += "/device_keys_and_certificates";

 std::filesystem::create_directories(outputFolder);

 std::cout << "The certificate and keys will be saved to the folder: "
 << outputFolder << std::endl;
 }

 if (!createKeysAndCertificate(outputFolder, certificateARN,
 certificateID,
 clientConfiguration)) {
 std::cerr << "Exiting because createKeysAndCertificate failed."
 << std::endl;
 cleanup(thingName, "", "", "", "", false, clientConfiguration);
 return false;
 }

 std::cout << "\nNext, the certificate will be attached to the thing.\n"
 << std::endl;
 if (!attachThingPrincipal(certificateARN, thingName,
 clientConfiguration)) {
 std::cerr << "Exiting because attachThingPrincipal failed." <<
 std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "",
 false,
 clientConfiguration);

Work with device management use cases 1708

AWS IoT Core Developer Guide

 return false;
 }
 }

//! Create keys and certificate for an Aws IoT device.
//! This routine will save certificates and keys to an output folder, if
 provided.
/*!
 \param outputFolder: Location for storing output in files, ignored when string
 is empty.
 \param certificateARNResult: A string to receive the ARN of the created
 certificate.
 \param certificateID: A string to receive the ID of the created certificate.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::createKeysAndCertificate(const Aws::String &outputFolder,
 Aws::String &certificateARNResult,
 Aws::String &certificateID,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient client(clientConfiguration);
 Aws::IoT::Model::CreateKeysAndCertificateRequest
 createKeysAndCertificateRequest;

 Aws::IoT::Model::CreateKeysAndCertificateOutcome outcome =
 client.CreateKeysAndCertificate(createKeysAndCertificateRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created a certificate and keys" << std::endl;
 certificateARNResult = outcome.GetResult().GetCertificateArn();
 certificateID = outcome.GetResult().GetCertificateId();
 std::cout << "Certificate ARN: " << certificateARNResult << ",
 certificate ID: "
 << certificateID << std::endl;

 if (!outputFolder.empty()) {
 std::cout << "Writing certificate and keys to the folder '" <<
 outputFolder
 << "'." << std::endl;
 std::cout << "Be sure these files are stored securely." << std::endl;

Work with device management use cases 1709

AWS IoT Core Developer Guide

 Aws::String certificateFilePath = outputFolder + "/
certificate.pem.crt";
 std::ofstream certificateFile(certificateFilePath);
 if (!certificateFile.is_open()) {
 std::cerr << "Error opening certificate file, '" <<
 certificateFilePath
 << "'."
 << std::endl;
 return false;
 }
 certificateFile << outcome.GetResult().GetCertificatePem();
 certificateFile.close();

 const Aws::IoT::Model::KeyPair &keyPair =
 outcome.GetResult().GetKeyPair();

 Aws::String privateKeyFilePath = outputFolder + "/private.pem.key";
 std::ofstream privateKeyFile(privateKeyFilePath);
 if (!privateKeyFile.is_open()) {
 std::cerr << "Error opening private key file, '" <<
 privateKeyFilePath
 << "'."
 << std::endl;
 return false;
 }
 privateKeyFile << keyPair.GetPrivateKey();
 privateKeyFile.close();

 Aws::String publicKeyFilePath = outputFolder + "/public.pem.key";
 std::ofstream publicKeyFile(publicKeyFilePath);
 if (!publicKeyFile.is_open()) {
 std::cerr << "Error opening public key file, '" <<
 publicKeyFilePath
 << "'."
 << std::endl;
 return false;
 }
 publicKeyFile << keyPair.GetPublicKey();
 }
 }
 else {
 std::cerr << "Error creating keys and certificate: "
 << outcome.GetError().GetMessage() << std::endl;
 }

Work with device management use cases 1710

AWS IoT Core Developer Guide

 return outcome.IsSuccess();
}

//! Attach a principal to an AWS IoT thing.
/*!
 \param principal: A principal to attach.
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::attachThingPrincipal(const Aws::String &principal,
 const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient client(clientConfiguration);
 Aws::IoT::Model::AttachThingPrincipalRequest request;
 request.SetPrincipal(principal);
 request.SetThingName(thingName);
 Aws::IoT::Model::AttachThingPrincipalOutcome outcome =
 client.AttachThingPrincipal(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully attached principal to thing." << std::endl;
 }
 else {
 std::cerr << "Failed to attach principal to thing." <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

Perform various operations on the AWS IoT thing.

 if (!updateThing(thingName, { {"location", "Office"}, {"firmwareVersion",
 "v2.0"} }, clientConfiguration)) {
 std::cerr << "Exiting because updateThing failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }

Work with device management use cases 1711

AWS IoT Core Developer Guide

 printAsterisksLine();

 std::cout << "Now an endpoint will be retrieved for your account.\n" <<
 std::endl;
 std::cout << "An IoT Endpoint refers to a specific URL or Uniform Resource
 Locator that serves as the entry point\n"
 << "for communication between IoT devices and the AWS IoT service." <<
 std::endl;

 askQuestion("Press Enter to continue:", alwaysTrueTest);

 Aws::String endpoint;
 if (!describeEndpoint(endpoint, clientConfiguration)) {
 std::cerr << "Exiting because getEndpoint failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }
 std::cout <<"Your endpoint is " << endpoint << "." << std::endl;
 printAsterisksLine();

 std::cout << "Now the certificates in your account will be listed." <<
 std::endl;
 askQuestion("Press Enter to continue:", alwaysTrueTest);

 if (!listCertificates(clientConfiguration)) {
 std::cerr << "Exiting because listCertificates failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }

 printAsterisksLine();

 std::cout << "Now the shadow for the thing will be updated.\n" << std::endl;
 std::cout << "A thing shadow refers to a feature that enables you to create a
 virtual representation, or \"shadow,\"\n"
 << "of a physical device or thing. The thing shadow allows you to synchronize
 and control the state of a device between\n"
 << "the cloud and the device itself. and the AWS IoT service. For example,
 you can write and retrieve JSON data from a thing shadow." << std::endl;
 askQuestion("Press Enter to continue:", alwaysTrueTest);

Work with device management use cases 1712

AWS IoT Core Developer Guide

 if (!updateThingShadow(thingName, R"({"state":{"reported":
{"temperature":25,"humidity":50}}})", clientConfiguration)) {
 std::cerr << "Exiting because updateThingShadow failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }

 printAsterisksLine();

 std::cout << "Now, the state information for the shadow will be retrieved.\n"
 << std::endl;
 askQuestion("Press Enter to continue:", alwaysTrueTest);

 Aws::String shadowState;
 if (!getThingShadow(thingName, shadowState, clientConfiguration)) {
 std::cerr << "Exiting because getThingShadow failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }
 std::cout << "The retrieved shadow state is: " << shadowState << std::endl;

 printAsterisksLine();

 std::cout << "A rule with now be added to to the thing.\n" << std::endl;
 std::cout << "Any user who has permission to create rules will be able to
 access data processed by the rule." << std::endl;
 std::cout << "In this case, the rule will use an Simple Notification Service
 (SNS) topic and an IAM rule." << std::endl;
 std::cout << "These resources will be created using a CloudFormation
 template." << std::endl;
 std::cout << "Stack creation may take a few minutes." << std::endl;

 askQuestion("Press Enter to continue: ", alwaysTrueTest);
 Aws::Map<Aws::String, Aws::String> outputs
 =createCloudFormationStack(STACK_NAME,clientConfiguration);
 if (outputs.empty()) {
 std::cerr << "Exiting because createCloudFormationStack failed." <<
 std::endl;
 cleanup(thingName, certificateARN, certificateID, "", "", false,
 clientConfiguration);
 return false;
 }

Work with device management use cases 1713

AWS IoT Core Developer Guide

 // Retrieve the topic ARN and role ARN from the CloudFormation stack outputs.
 auto topicArnIter = outputs.find(SNS_TOPIC_ARN_OUTPUT);
 auto roleArnIter = outputs.find(ROLE_ARN_OUTPUT);
 if ((topicArnIter == outputs.end()) || (roleArnIter == outputs.end())) {
 std::cerr << "Exiting because output '" << SNS_TOPIC_ARN_OUTPUT <<
 "' or '" << ROLE_ARN_OUTPUT << "'not found in the CloudFormation stack."
 << std::endl;
 cleanup(thingName, certificateARN, certificateID, STACK_NAME, "",
 false,
 clientConfiguration);
 return false;
 }

 Aws::String topicArn = topicArnIter->second;
 Aws::String roleArn = roleArnIter->second;
 Aws::String sqlStatement = "SELECT * FROM '";
 sqlStatement += MQTT_MESSAGE_TOPIC_FILTER;
 sqlStatement += "'";

 printAsterisksLine();

 std::cout << "Now a rule will be created.\n" << std::endl;
 std::cout << "Rules are an administrator-level action. Any user who has
 permission\n"
 << "to create rules will be able to access data processed by the
 rule." << std::endl;
 std::cout << "In this case, the rule will use an SNS topic" << std::endl;
 std::cout << "and the following SQL statement '" << sqlStatement << "'." <<
 std::endl;
 std::cout << "For more information on IoT SQL, see https://
docs.aws.amazon.com/iot/latest/developerguide/iot-sql-reference.html" <<
 std::endl;
 Aws::String ruleName = askQuestion("Enter a rule name: ");
 if (!createTopicRule(ruleName, topicArn, sqlStatement, roleArn,
 clientConfiguration)) {
 std::cerr << "Exiting because createRule failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, STACK_NAME, "",
 false,
 clientConfiguration);
 return false;
 }

 printAsterisksLine();

Work with device management use cases 1714

AWS IoT Core Developer Guide

 std::cout << "Now your rules will be listed.\n" << std::endl;
 askQuestion("Press Enter to continue: ", alwaysTrueTest);
 if (!listTopicRules(clientConfiguration)) {
 std::cerr << "Exiting because listRules failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, STACK_NAME, ruleName,
 false,
 clientConfiguration);
 return false;
 }

 printAsterisksLine();
 Aws::String queryString = "thingName:" + thingName;
 std::cout << "Now the AWS IoT fleet index will be queried with the query\n'"
 << queryString << "'.\n" << std::endl;
 std::cout << "For query information, see https://docs.aws.amazon.com/iot/
latest/developerguide/query-syntax.html" << std::endl;

 std::cout << "For this query to work, thing indexing must be enabled in your
 account.\n"
 << "This can be done with the awscli command line by calling 'aws iot update-
indexing-configuration'\n"
 << "or it can be done programmatically." << std::endl;
 std::cout << "For more information, see https://docs.aws.amazon.com/iot/
latest/developerguide/managing-index.html" << std::endl;
 if (askYesNoQuestion("Do you want to enable thing indexing in your account?
 (y/n) "))
 {
 Aws::IoT::Model::ThingIndexingConfiguration thingIndexingConfiguration;

 thingIndexingConfiguration.SetThingIndexingMode(Aws::IoT::Model::ThingIndexingMode::REGISTRY_AND_SHADOW);

 thingIndexingConfiguration.SetThingConnectivityIndexingMode(Aws::IoT::Model::ThingConnectivityIndexingMode::STATUS);
 // The ThingGroupIndexingConfiguration object is ignored if not set.
 Aws::IoT::Model::ThingGroupIndexingConfiguration
 thingGroupIndexingConfiguration;
 if (!updateIndexingConfiguration(thingIndexingConfiguration,
 thingGroupIndexingConfiguration, clientConfiguration)) {
 std::cerr << "Exiting because updateIndexingConfiguration failed." <<
 std::endl;
 cleanup(thingName, certificateARN, certificateID, STACK_NAME,
 ruleName, false,
 clientConfiguration);
 return false;

Work with device management use cases 1715

AWS IoT Core Developer Guide

 }
 }

 if (!searchIndex(queryString, clientConfiguration)) {

 std::cerr << "Exiting because searchIndex failed." << std::endl;
 cleanup(thingName, certificateARN, certificateID, STACK_NAME, ruleName,
 false,
 clientConfiguration);
 return false;
 }

//! Update an AWS IoT thing with attributes.
/*!
 \param thingName: The name for the thing.
 \param attributeMap: A map of key/value attributes/
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::updateThing(const Aws::String &thingName,
 const std::map<Aws::String, Aws::String>
 &attributeMap,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::UpdateThingRequest request;
 request.SetThingName(thingName);
 Aws::IoT::Model::AttributePayload attributePayload;
 for (const auto &attribute: attributeMap) {
 attributePayload.AddAttributes(attribute.first, attribute.second);
 }
 request.SetAttributePayload(attributePayload);

 Aws::IoT::Model::UpdateThingOutcome outcome = iotClient.UpdateThing(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated thing " << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to update thing " << thingName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 }

Work with device management use cases 1716

AWS IoT Core Developer Guide

 return outcome.IsSuccess();
}

//! Describe the endpoint specific to the AWS account making the call.
/*!
 \param endpointResult: String to receive the endpoint result.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::describeEndpoint(Aws::String &endpointResult,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::String endpoint;
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DescribeEndpointRequest describeEndpointRequest;
 describeEndpointRequest.SetEndpointType(
 "iot:Data-ATS"); // Recommended endpoint type.

 Aws::IoT::Model::DescribeEndpointOutcome outcome =
 iotClient.DescribeEndpoint(
 describeEndpointRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully described endpoint." << std::endl;
 endpointResult = outcome.GetResult().GetEndpointAddress();
 }
 else {
 std::cerr << "Error describing endpoint" <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

//! List certificates registered in the AWS account making the call.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::listCertificates(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::ListCertificatesRequest request;

Work with device management use cases 1717

AWS IoT Core Developer Guide

 Aws::Vector<Aws::IoT::Model::Certificate> allCertificates;
 Aws::String marker; // Used to paginate results.
 do {
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::IoT::Model::ListCertificatesOutcome outcome =
 iotClient.ListCertificates(
 request);

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::ListCertificatesResult &result =
 outcome.GetResult();
 marker = result.GetNextMarker();
 allCertificates.insert(allCertificates.end(),
 result.GetCertificates().begin(),
 result.GetCertificates().end());
 }
 else {
 std::cerr << "Error: " << outcome.GetError().GetMessage() <<
 std::endl;
 return false;
 }
 } while (!marker.empty());

 std::cout << allCertificates.size() << " certificate(s) found." << std::endl;

 for (auto &certificate: allCertificates) {
 std::cout << "Certificate ID: " << certificate.GetCertificateId() <<
 std::endl;
 std::cout << "Certificate ARN: " << certificate.GetCertificateArn()
 << std::endl;
 std::cout << std::endl;
 }

 return true;
}

//! Update the shadow of an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param document: The state information, in JSON format.

Work with device management use cases 1718

AWS IoT Core Developer Guide

 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::updateThingShadow(const Aws::String &thingName,
 const Aws::String &document,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoTDataPlane::IoTDataPlaneClient
 iotDataPlaneClient(clientConfiguration);
 Aws::IoTDataPlane::Model::UpdateThingShadowRequest updateThingShadowRequest;
 updateThingShadowRequest.SetThingName(thingName);
 std::shared_ptr<std::stringstream> streamBuf =
 std::make_shared<std::stringstream>(
 document);
 updateThingShadowRequest.SetBody(streamBuf);
 Aws::IoTDataPlane::Model::UpdateThingShadowOutcome outcome =
 iotDataPlaneClient.UpdateThingShadow(
 updateThingShadowRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated thing shadow." << std::endl;
 }
 else {
 std::cerr << "Error while updating thing shadow."
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

//! Get the shadow of an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param documentResult: String to receive the state information, in JSON format.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::getThingShadow(const Aws::String &thingName,
 Aws::String &documentResult,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoTDataPlane::IoTDataPlaneClient iotClient(clientConfiguration);
 Aws::IoTDataPlane::Model::GetThingShadowRequest request;
 request.SetThingName(thingName);
 auto outcome = iotClient.GetThingShadow(request);

Work with device management use cases 1719

AWS IoT Core Developer Guide

 if (outcome.IsSuccess()) {
 std::stringstream ss;
 ss << outcome.GetResult().GetPayload().rdbuf();
 documentResult = ss.str();
 }
 else {
 std::cerr << "Error getting thing shadow: " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

//! Create an AWS IoT rule with an SNS topic as the target.
/*!
 \param ruleName: The name for the rule.
 \param snsTopic: The SNS topic ARN for the action.
 \param sql: The SQL statement used to query the topic.
 \param roleARN: The IAM role ARN for the action.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::IoT::createTopicRule(const Aws::String &ruleName,
 const Aws::String &snsTopicARN, const Aws::String
 &sql,
 const Aws::String &roleARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::CreateTopicRuleRequest request;
 request.SetRuleName(ruleName);

 Aws::IoT::Model::SnsAction snsAction;
 snsAction.SetTargetArn(snsTopicARN);
 snsAction.SetRoleArn(roleARN);

 Aws::IoT::Model::Action action;
 action.SetSns(snsAction);

 Aws::IoT::Model::TopicRulePayload topicRulePayload;
 topicRulePayload.SetSql(sql);
 topicRulePayload.SetActions({action});

Work with device management use cases 1720

AWS IoT Core Developer Guide

 request.SetTopicRulePayload(topicRulePayload);
 auto outcome = iotClient.CreateTopicRule(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created topic rule " << ruleName << "." <<
 std::endl;
 }
 else {
 std::cerr << "Error creating topic rule " << ruleName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 return outcome.IsSuccess();
}

//! Lists the AWS IoT topic rules.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::listTopicRules(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::ListTopicRulesRequest request;

 Aws::Vector<Aws::IoT::Model::TopicRuleListItem> allRules;
 Aws::String nextToken; // Used for pagination.
 do {
 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 Aws::IoT::Model::ListTopicRulesOutcome outcome =
 iotClient.ListTopicRules(
 request);

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::ListTopicRulesResult &result =
 outcome.GetResult();
 allRules.insert(allRules.end(),
 result.GetRules().cbegin(),
 result.GetRules().cend());

 nextToken = result.GetNextToken();
 }

Work with device management use cases 1721

AWS IoT Core Developer Guide

 else {
 std::cerr << "ListTopicRules error: " <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 } while (!nextToken.empty());

 std::cout << "ListTopicRules: " << allRules.size() << " rule(s) found."
 << std::endl;
 for (auto &rule: allRules) {
 std::cout << " Rule name: " << rule.GetRuleName() << ", rule ARN: "
 << rule.GetRuleArn() << "." << std::endl;
 }

 return true;
}

//! Query the AWS IoT fleet index.
//! For query information, see https://docs.aws.amazon.com/iot/latest/
developerguide/query-syntax.html
/*!
 \param: query: The query string.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::searchIndex(const Aws::String &query,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::SearchIndexRequest request;
 request.SetQueryString(query);

 Aws::Vector<Aws::IoT::Model::ThingDocument> allThingDocuments;
 Aws::String nextToken; // Used for pagination.
 do {
 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 Aws::IoT::Model::SearchIndexOutcome outcome =
 iotClient.SearchIndex(request);

Work with device management use cases 1722

AWS IoT Core Developer Guide

 if (outcome.IsSuccess()) {
 const Aws::IoT::Model::SearchIndexResult &result =
 outcome.GetResult();
 allThingDocuments.insert(allThingDocuments.end(),
 result.GetThings().cbegin(),
 result.GetThings().cend());
 nextToken = result.GetNextToken();

 }
 else {
 std::cerr << "Error in SearchIndex: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (!nextToken.empty());

 std::cout << allThingDocuments.size() << " thing document(s) found." <<
 std::endl;
 for (const auto thingDocument: allThingDocuments) {
 std::cout << " Thing name: " << thingDocument.GetThingName() << "."
 << std::endl;
 }
 return true;
}

Clean up resources.

bool
AwsDoc::IoT::cleanup(const Aws::String &thingName, const Aws::String
 &certificateARN,
 const Aws::String &certificateID, const Aws::String
 &stackName,
 const Aws::String &ruleName, bool askForConfirmation,
 const Aws::Client::ClientConfiguration &clientConfiguration)
 {
 bool result = true;

 if (!ruleName.empty() && (!askForConfirmation ||
 askYesNoQuestion("Delete the rule '" + ruleName +
 "'? (y/n) "))) {
 result &= deleteTopicRule(ruleName, clientConfiguration);

Work with device management use cases 1723

AWS IoT Core Developer Guide

 }

 Aws::CloudFormation::CloudFormationClient
 cloudFormationClient(clientConfiguration);

 if (!stackName.empty() && (!askForConfirmation ||
 askYesNoQuestion(
 "Delete the CloudFormation stack '" +
 stackName +
 "'? (y/n) "))) {
 result &= deleteStack(stackName, clientConfiguration);
 }

 if (!certificateARN.empty() && (!askForConfirmation ||
 askYesNoQuestion("Delete the certificate '" +
 certificateARN + "'? (y/n)
 "))) {
 result &= detachThingPrincipal(certificateARN, thingName,
 clientConfiguration);
 result &= deleteCertificate(certificateID, clientConfiguration);
 }

 if (!thingName.empty() && (!askForConfirmation ||
 askYesNoQuestion("Delete the thing '" + thingName
 +
 "'? (y/n) "))) {
 result &= deleteThing(thingName, clientConfiguration);
 }

 return result;
}

//! Detach a principal from an AWS IoT thing.
/*!
 \param principal: A principal to detach.
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::detachThingPrincipal(const Aws::String &principal,
 const Aws::String &thingName,

Work with device management use cases 1724

AWS IoT Core Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::DetachThingPrincipalRequest detachThingPrincipalRequest;
 detachThingPrincipalRequest.SetThingName(thingName);
 detachThingPrincipalRequest.SetPrincipal(principal);

 Aws::IoT::Model::DetachThingPrincipalOutcome outcome =
 iotClient.DetachThingPrincipal(
 detachThingPrincipalRequest);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully detached principal " << principal << " from
 thing "
 << thingName << std::endl;
 }
 else {
 std::cerr << "Failed to detach principal " << principal << " from thing "
 << thingName << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

//! Delete a certificate.
/*!
 \param certificateID: The ID of a certificate.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::deleteCertificate(const Aws::String &certificateID,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);

 Aws::IoT::Model::DeleteCertificateRequest request;
 request.SetCertificateId(certificateID);

 Aws::IoT::Model::DeleteCertificateOutcome outcome =
 iotClient.DeleteCertificate(
 request);

Work with device management use cases 1725

AWS IoT Core Developer Guide

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted certificate " << certificateID <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting certificate " << certificateID << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

//! Delete an AWS IoT rule.
/*!
 \param ruleName: The name for the rule.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::IoT::deleteTopicRule(const Aws::String &ruleName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DeleteTopicRuleRequest request;
 request.SetRuleName(ruleName);

 Aws::IoT::Model::DeleteTopicRuleOutcome outcome = iotClient.DeleteTopicRule(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted rule " << ruleName << std::endl;
 }
 else {
 std::cerr << "Failed to delete rule " << ruleName <<
 ": " << outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

//! Delete an AWS IoT thing.
/*!
 \param thingName: The name for the thing.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

Work with device management use cases 1726

AWS IoT Core Developer Guide

bool AwsDoc::IoT::deleteThing(const Aws::String &thingName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::IoT::IoTClient iotClient(clientConfiguration);
 Aws::IoT::Model::DeleteThingRequest request;
 request.SetThingName(thingName);
 const auto outcome = iotClient.DeleteThing(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted thing " << thingName << std::endl;
 }
 else {
 std::cerr << "Error deleting thing " << thingName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.iot.IotClient;
import software.amazon.awssdk.services.iot.model.Action;
import software.amazon.awssdk.services.iot.model.AttachThingPrincipalRequest;
import software.amazon.awssdk.services.iot.model.AttachThingPrincipalResponse;
import software.amazon.awssdk.services.iot.model.AttributePayload;
import software.amazon.awssdk.services.iot.model.Certificate;
import
 software.amazon.awssdk.services.iot.model.CreateKeysAndCertificateResponse;
import software.amazon.awssdk.services.iot.model.CreateThingRequest;
import software.amazon.awssdk.services.iot.model.CreateTopicRuleRequest;

Work with device management use cases 1727

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iot#readme

AWS IoT Core Developer Guide

import software.amazon.awssdk.services.iot.model.DeleteCertificateRequest;
import software.amazon.awssdk.services.iot.model.CreateThingResponse;
import software.amazon.awssdk.services.iot.model.DeleteThingRequest;
import software.amazon.awssdk.services.iot.model.DescribeEndpointRequest;
import software.amazon.awssdk.services.iot.model.DescribeEndpointResponse;
import software.amazon.awssdk.services.iot.model.DescribeThingRequest;
import software.amazon.awssdk.services.iot.model.DescribeThingResponse;
import software.amazon.awssdk.services.iot.model.DetachThingPrincipalRequest;
import software.amazon.awssdk.services.iot.model.IotException;
import software.amazon.awssdk.services.iot.model.ListCertificatesResponse;
import software.amazon.awssdk.services.iot.model.ListTopicRulesRequest;
import software.amazon.awssdk.services.iot.model.ListTopicRulesResponse;
import software.amazon.awssdk.services.iot.model.SearchIndexRequest;
import software.amazon.awssdk.services.iot.model.SearchIndexResponse;
import software.amazon.awssdk.services.iot.model.SnsAction;
import software.amazon.awssdk.services.iot.model.TopicRuleListItem;
import software.amazon.awssdk.services.iot.model.TopicRulePayload;
import software.amazon.awssdk.services.iot.model.UpdateThingRequest;
import software.amazon.awssdk.services.iotdataplane.IotDataPlaneClient;
import software.amazon.awssdk.services.iotdataplane.model.GetThingShadowRequest;
import software.amazon.awssdk.services.iotdataplane.model.GetThingShadowResponse;
import
 software.amazon.awssdk.services.iotdataplane.model.UpdateThingShadowRequest;
import java.net.URI;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This Java example performs these tasks:
 *
 * 1. Creates an AWS IoT Thing.

Work with device management use cases 1728

AWS IoT Core Developer Guide

 * 2. Generate and attach a device certificate.
 * 3. Update an AWS IoT Thing with Attributes.
 * 4. Get an AWS IoT Endpoint.
 * 5. List your certificates.
 * 6. Updates the shadow for the specified thing..
 * 7. Write out the state information, in JSON format
 * 8. Creates a rule
 * 9. List rules
 * 10. Search things
 * 11. Detach amd delete the certificate.
 * 12. Delete Thing.
 */
public class IotScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");
 private static final String TOPIC = "your-iot-topic";
 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <roleARN> <snsAction>

 Where:
 roleARN - The ARN of an IAM role that has permission to work
 with AWS IOT.
 snsAction - An ARN of an SNS topic.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String thingName;
 String ruleName;
 String roleARN = args[0];
 String snsAction = args[1];
 Scanner scanner = new Scanner(System.in);
 IotClient iotClient = IotClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the AWS IoT example workflow.");

Work with device management use cases 1729

AWS IoT Core Developer Guide

 System.out.println("""
 This example program demonstrates various interactions with the AWS
 Internet of Things (IoT) Core service. The program guides you through a series
 of steps,
 including creating an IoT Thing, generating a device certificate,
 updating the Thing with attributes, and so on.
 It utilizes the AWS SDK for Java V2 and incorporates functionality
 for creating and managing IoT Things, certificates, rules,
 shadows, and performing searches. The program aims to showcase AWS
 IoT capabilities and provides a comprehensive example for
 developers working with AWS IoT in a Java environment.

 """);
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Create an AWS IoT Thing.");
 System.out.println("""
 An AWS IoT Thing represents a virtual entity in the AWS IoT service
 that can be associated with a physical device.
 """);
 // Prompt the user for input.
 System.out.print("Enter Thing name: ");
 thingName = scanner.nextLine();
 createIoTThing(iotClient, thingName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Generate a device certificate.");
 System.out.println("""
 A device certificate performs a role in securing the communication
 between devices (Things) and the AWS IoT platform.
 """);

 System.out.print("Do you want to create a certificate for " +thingName
 +"? (y/n)");
 String certAns = scanner.nextLine();
 String certificateArn="" ;
 if (certAns != null && certAns.trim().equalsIgnoreCase("y")) {
 certificateArn = createCertificate(iotClient);
 System.out.println("Attach the certificate to the AWS IoT Thing.");
 attachCertificateToThing(iotClient, thingName, certificateArn);

Work with device management use cases 1730

AWS IoT Core Developer Guide

 } else {
 System.out.println("A device certificate was not created.");
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Update an AWS IoT Thing with Attributes.");
 System.out.println("""
 IoT Thing attributes, represented as key-value pairs, offer a
 pivotal advantage in facilitating efficient data
 management and retrieval within the AWS IoT ecosystem.
 """);
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 updateThing(iotClient, thingName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Return a unique endpoint specific to the Amazon
 Web Services account.");
 System.out.println("""
 An IoT Endpoint refers to a specific URL or Uniform Resource Locator
 that serves as the entry point for communication between IoT devices and the AWS
 IoT service.
 """);
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 String endpointUrl = describeEndpoint(iotClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. List your AWS IoT certificates");
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 if (certificateArn.length() > 0) {
 listCertificates(iotClient);
 } else {
 System.out.println("You did not create a certificates. Skipping this
 step.");
 }
 System.out.println(DASHES);

 System.out.println(DASHES);

Work with device management use cases 1731

AWS IoT Core Developer Guide

 System.out.println("6. Create an IoT shadow that refers to a digital
 representation or virtual twin of a physical IoT device");
 System.out.println("""
 A Thing Shadow refers to a feature that enables you to create a
 virtual representation, or "shadow,"
 of a physical device or thing. The Thing Shadow allows you to
 synchronize and control the state of a device between
 the cloud and the device itself. and the AWS IoT service. For
 example, you can write and retrieve JSON data from a Thing Shadow.
 """);
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 IotDataPlaneClient iotPlaneClient = IotDataPlaneClient.builder()
 .region(Region.US_EAST_1)
 .endpointOverride(URI.create(endpointUrl))
 .build();

 updateShadowThing(iotPlaneClient, thingName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Write out the state information, in JSON
 format.");
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 getPayload(iotPlaneClient, thingName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Creates a rule");
 System.out.println("""
 Creates a rule that is an administrator-level action.
 Any user who has permission to create rules will be able to access data
 processed by the rule.
 """);
 System.out.print("Enter Rule name: ");
 ruleName = scanner.nextLine();
 createIoTRule(iotClient, roleARN, ruleName, snsAction);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. List your rules.");
 System.out.print("Press Enter to continue...");
 scanner.nextLine();

Work with device management use cases 1732

AWS IoT Core Developer Guide

 listIoTRules(iotClient);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Search things using the Thing name.");
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 String queryString = "thingName:"+thingName ;
 searchThings(iotClient, queryString);
 System.out.println(DASHES);

 System.out.println(DASHES);
 if (certificateArn.length() > 0) {
 System.out.print("Do you want to detach and delete the certificate
 for " +thingName +"? (y/n)");
 String delAns = scanner.nextLine();
 if (delAns != null && delAns.trim().equalsIgnoreCase("y")) {
 System.out.println("11. You selected to detach amd delete the
 certificate.");
 System.out.print("Press Enter to continue...");
 scanner.nextLine();
 detachThingPrincipal(iotClient, thingName, certificateArn);
 deleteCertificate(iotClient, certificateArn);
 } else {
 System.out.println("11. You selected not to delete the
 certificate.");
 }
 } else {
 System.out.println("11. You did not create a certificate so there is
 nothing to delete.");
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("12. Delete the AWS IoT Thing.");
 System.out.print("Do you want to delete the IoT Thing? (y/n)");
 String delAns = scanner.nextLine();
 if (delAns != null && delAns.trim().equalsIgnoreCase("y")) {
 deleteIoTThing(iotClient, thingName);
 } else {
 System.out.println("The IoT Thing was not deleted.");
 }
 System.out.println(DASHES);

Work with device management use cases 1733

AWS IoT Core Developer Guide

 System.out.println(DASHES);
 System.out.println("The AWS IoT workflow has successfully completed.");
 System.out.println(DASHES);
 }

 public static void listCertificates(IotClient iotClient) {
 ListCertificatesResponse response = iotClient.listCertificates();
 List<Certificate> certList = response.certificates();
 for (Certificate cert : certList) {
 System.out.println("Cert id: " + cert.certificateId());
 System.out.println("Cert Arn: " + cert.certificateArn());
 }
 }

 public static void listIoTRules(IotClient iotClient) {
 try {
 ListTopicRulesRequest listTopicRulesRequest =
 ListTopicRulesRequest.builder().build();
 ListTopicRulesResponse listTopicRulesResponse =
 iotClient.listTopicRules(listTopicRulesRequest);
 System.out.println("List of IoT Rules:");
 List<TopicRuleListItem> ruleList = listTopicRulesResponse.rules();
 for (TopicRuleListItem rule : ruleList) {
 System.out.println("Rule Name: " + rule.ruleName());
 System.out.println("Rule ARN: " + rule.ruleArn());
 System.out.println("--------------");
 }

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createIoTRule(IotClient iotClient, String roleARN, String
 ruleName, String action) {
 try {
 String sql = "SELECT * FROM '" + TOPIC + "'";
 SnsAction action1 = SnsAction.builder()
 .targetArn(action)
 .roleArn(roleARN)
 .build();

 // Create the action.

Work with device management use cases 1734

AWS IoT Core Developer Guide

 Action myAction = Action.builder()
 .sns(action1)
 .build();

 // Create the topic rule payload.
 TopicRulePayload topicRulePayload = TopicRulePayload.builder()
 .sql(sql)
 .actions(myAction)
 .build();

 // Create the topic rule request.
 CreateTopicRuleRequest topicRuleRequest =
 CreateTopicRuleRequest.builder()
 .ruleName(ruleName)
 .topicRulePayload(topicRulePayload)
 .build();

 // Create the rule.
 iotClient.createTopicRule(topicRuleRequest);
 System.out.println("IoT Rule created successfully.");

 } catch (IotException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void getPayload(IotDataPlaneClient iotPlaneClient, String
 thingName) {
 try {
 GetThingShadowRequest getThingShadowRequest =
 GetThingShadowRequest.builder()
 .thingName(thingName)
 .build();

 GetThingShadowResponse getThingShadowResponse =
 iotPlaneClient.getThingShadow(getThingShadowRequest);

 // Extracting payload from response.
 SdkBytes payload = getThingShadowResponse.payload();
 String payloadString = payload.asUtf8String();
 System.out.println("Received Shadow Data: " + payloadString);

 } catch (IotException e) {

Work with device management use cases 1735

AWS IoT Core Developer Guide

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void updateShadowThing(IotDataPlaneClient iotPlaneClient,
 String thingName) {
 try {
 // Create Thing Shadow State Document.
 String stateDocument = "{\"state\":{\"reported\":{\"temperature\":25,
 \"humidity\":50}}}";
 SdkBytes data= SdkBytes.fromString(stateDocument,
 StandardCharsets.UTF_8);
 UpdateThingShadowRequest updateThingShadowRequest =
 UpdateThingShadowRequest.builder()
 .thingName(thingName)
 .payload(data)
 .build();

 // Update Thing Shadow.
 iotPlaneClient.updateThingShadow(updateThingShadowRequest);
 System.out.println("Thing Shadow updated successfully.");

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void updateThing(IotClient iotClient, String thingName) {
 // Specify the new attribute values.
 String newLocation = "Office";
 String newFirmwareVersion = "v2.0";

 Map<String, String> attMap = new HashMap<>();
 attMap.put("location", newLocation);
 attMap.put("firmwareVersion", newFirmwareVersion);

 AttributePayload attributePayload = AttributePayload.builder()
 .attributes(attMap)
 .build();

 UpdateThingRequest updateThingRequest = UpdateThingRequest.builder()
 .thingName(thingName)

Work with device management use cases 1736

AWS IoT Core Developer Guide

 .attributePayload(attributePayload)
 .build();

 try {
 // Update the IoT Thing attributes.
 iotClient.updateThing(updateThingRequest);
 System.out.println("Thing attributes updated successfully.");

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static String describeEndpoint(IotClient iotClient) {
 try {
 DescribeEndpointResponse endpointResponse =
 iotClient.describeEndpoint(DescribeEndpointRequest.builder().build());

 // Get the endpoint URL.
 String endpointUrl = endpointResponse.endpointAddress();
 String exString = getValue(endpointUrl);
 String fullEndpoint = "https://"+exString+"-ats.iot.us-
east-1.amazonaws.com";

 System.out.println("Full Endpoint URL: "+fullEndpoint);
 return fullEndpoint;

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "" ;
 }

 public static void detachThingPrincipal(IotClient iotClient, String
 thingName, String certificateArn){
 try {
 DetachThingPrincipalRequest thingPrincipalRequest =
 DetachThingPrincipalRequest.builder()
 .principal(certificateArn)
 .thingName(thingName)
 .build();

Work with device management use cases 1737

AWS IoT Core Developer Guide

 iotClient.detachThingPrincipal(thingPrincipalRequest);
 System.out.println(certificateArn +" was successfully removed from "
 +thingName);

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteCertificate(IotClient iotClient, String
 certificateArn) {
 DeleteCertificateRequest certificateProviderRequest =
 DeleteCertificateRequest.builder()
 .certificateId(extractCertificateId(certificateArn))
 .build();

 iotClient.deleteCertificate(certificateProviderRequest);
 System.out.println(certificateArn +" was successfully deleted.");
 }

 // Get the cert Id from the Cert ARN value.
 private static String extractCertificateId(String certificateArn) {
 // Example ARN: arn:aws:iot:region:account-id:cert/certificate-id.
 String[] arnParts = certificateArn.split(":");
 String certificateIdPart = arnParts[arnParts.length - 1];
 return certificateIdPart.substring(certificateIdPart.lastIndexOf("/") +
 1);
 }

 public static String createCertificate(IotClient iotClient) {
 try {
 CreateKeysAndCertificateResponse response =
 iotClient.createKeysAndCertificate();
 String certificatePem = response.certificatePem();
 String certificateArn = response.certificateArn();

 // Print the details.
 System.out.println("\nCertificate:");
 System.out.println(certificatePem);
 System.out.println("\nCertificate ARN:");
 System.out.println(certificateArn);
 return certificateArn;

Work with device management use cases 1738

AWS IoT Core Developer Guide

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

 return "";
 }

 public static void attachCertificateToThing(IotClient iotClient, String
 thingName, String certificateArn) {
 // Attach the certificate to the thing.
 AttachThingPrincipalRequest principalRequest =
 AttachThingPrincipalRequest.builder()
 .thingName(thingName)
 .principal(certificateArn)
 .build();

 AttachThingPrincipalResponse attachResponse =
 iotClient.attachThingPrincipal(principalRequest);

 // Verify the attachment was successful.
 if (attachResponse.sdkHttpResponse().isSuccessful()) {
 System.out.println("Certificate attached to Thing successfully.");

 // Print additional information about the Thing.
 describeThing(iotClient, thingName);
 } else {
 System.err.println("Failed to attach certificate to Thing. HTTP
 Status Code: " +
 attachResponse.sdkHttpResponse().statusCode());
 }
 }

 private static void describeThing(IotClient iotClient, String thingName) {
 try {
 DescribeThingRequest thingRequest = DescribeThingRequest.builder()
 .thingName(thingName)
 .build() ;

 // Print Thing details.
 DescribeThingResponse describeResponse =
 iotClient.describeThing(thingRequest);
 System.out.println("Thing Details:");
 System.out.println("Thing Name: " + describeResponse.thingName());

Work with device management use cases 1739

AWS IoT Core Developer Guide

 System.out.println("Thing ARN: " + describeResponse.thingArn());

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteIoTThing(IotClient iotClient, String thingName) {
 try {
 DeleteThingRequest deleteThingRequest = DeleteThingRequest.builder()
 .thingName(thingName)
 .build();

 iotClient.deleteThing(deleteThingRequest);
 System.out.println("Deleted Thing " + thingName);

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void createIoTThing(IotClient iotClient, String thingName) {
 try {
 CreateThingRequest createThingRequest = CreateThingRequest.builder()
 .thingName(thingName)
 .build();

 CreateThingResponse createThingResponse =
 iotClient.createThing(createThingRequest);
 System.out.println(thingName +" was successfully created. The ARN
 value is " + createThingResponse.thingArn());

 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 private static String getValue(String input) {
 // Define a regular expression pattern for extracting the subdomain.
 Pattern pattern = Pattern.compile("^(.*?)\\.iot\\.us-east-1\\.amazonaws\
\.com");

Work with device management use cases 1740

AWS IoT Core Developer Guide

 // Match the pattern against the input string.
 Matcher matcher = pattern.matcher(input);

 // Check if a match is found.
 if (matcher.find()) {
 // Extract the subdomain from the first capturing group.
 String subdomain = matcher.group(1);
 System.out.println("Extracted subdomain: " + subdomain);
 return subdomain ;
 } else {
 System.out.println("No match found");
 }
 return "" ;
 }

 public static void searchThings(IotClient iotClient, String queryString){
 SearchIndexRequest searchIndexRequest = SearchIndexRequest.builder()
 .queryString(queryString)
 .build();

 try {
 // Perform the search and get the result.
 SearchIndexResponse searchIndexResponse =
 iotClient.searchIndex(searchIndexRequest);

 // Process the result.
 if (searchIndexResponse.things().isEmpty()) {
 System.out.println("No things found.");
 } else {
 searchIndexResponse.things().forEach(thing ->
 System.out.println("Thing id found using search is " + thing.thingId()));
 }
 } catch (IotException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Work with device management use cases 1741

AWS IoT Core Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.iot.IotClient
import aws.sdk.kotlin.services.iot.model.Action
import aws.sdk.kotlin.services.iot.model.AttachThingPrincipalRequest
import aws.sdk.kotlin.services.iot.model.AttributePayload
import aws.sdk.kotlin.services.iot.model.CreateThingRequest
import aws.sdk.kotlin.services.iot.model.CreateTopicRuleRequest
import aws.sdk.kotlin.services.iot.model.DeleteCertificateRequest
import aws.sdk.kotlin.services.iot.model.DeleteThingRequest
import aws.sdk.kotlin.services.iot.model.DescribeEndpointRequest
import aws.sdk.kotlin.services.iot.model.DescribeThingRequest
import aws.sdk.kotlin.services.iot.model.DetachThingPrincipalRequest
import aws.sdk.kotlin.services.iot.model.ListTopicRulesRequest
import aws.sdk.kotlin.services.iot.model.SearchIndexRequest
import aws.sdk.kotlin.services.iot.model.SnsAction
import aws.sdk.kotlin.services.iot.model.TopicRulePayload
import aws.sdk.kotlin.services.iot.model.UpdateThingRequest
import aws.sdk.kotlin.services.iotdataplane.IotDataPlaneClient
import aws.sdk.kotlin.services.iotdataplane.model.GetThingShadowRequest
import aws.sdk.kotlin.services.iotdataplane.model.UpdateThingShadowRequest
import aws.smithy.kotlin.runtime.content.ByteStream
import aws.smithy.kotlin.runtime.content.toByteArray
import java.util.Scanner
import java.util.regex.Pattern
import kotlin.system.exitProcess

/**
 * Before running this Kotlin code example, ensure that your development
 environment
 * is set up, including configuring your credentials.
 *
 * For detailed instructions, refer to the following documentation topic:

Work with device management use cases 1742

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/iot#code-examples

AWS IoT Core Developer Guide

 * [Setting Up Your Development Environment](https://docs.aws.amazon.com/sdk-for-
kotlin/latest/developer-guide/setup.html)
 *
 * This code example requires an SNS topic and an IAM Role.
 * Follow the steps in the documentation to set up these resources:
 *
 * - [Creating an SNS Topic](https://docs.aws.amazon.com/sns/latest/dg/sns-
getting-started.html#step-create-topic)
 * - [Creating an IAM Role](https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_create.html)
 */

val DASHES = String(CharArray(80)).replace("\u0000", "-")
val TOPIC = "your-iot-topic"
suspend fun main(args: Array<String>) {
 val usage = """
 Usage:
 <roleARN> <snsAction>

 Where:
 roleARN - The ARN of an IAM role that has permission to work
 with AWS IOT.
 snsAction - An ARN of an SNS topic.

 """.trimIndent()

 if (args.size != 2) {
 println(usage)
 exitProcess(1)
 }

 var thingName: String
 val roleARN = args[0]
 val snsAction = args[1]
 val scanner = Scanner(System.`in`)

 println(DASHES)
 println("Welcome to the AWS IoT example scenario.")
 println(
 """
 This example program demonstrates various interactions with the AWS
 Internet of Things (IoT) Core service.
 The program guides you through a series of steps, including creating
 an IoT thing, generating a device certificate,

Work with device management use cases 1743

AWS IoT Core Developer Guide

 updating the thing with attributes, and so on.

 It utilizes the AWS SDK for Kotlin and incorporates functionality for
 creating and managing IoT things, certificates, rules,
 shadows, and performing searches. The program aims to showcase AWS
 IoT capabilities and provides a comprehensive example for
 developers working with AWS IoT in a Kotlin environment.
 """.trimIndent()
)

 print("Press Enter to continue...")
 scanner.nextLine()
 println(DASHES)

 println(DASHES)
 println("1. Create an AWS IoT thing.")
 println(
 """
 An AWS IoT thing represents a virtual entity in the AWS IoT service
 that can be associated with a physical device.
 """.trimIndent()
)
 // Prompt the user for input.
 print("Enter thing name: ")
 thingName = scanner.nextLine()
 createIoTThing(thingName)
 describeThing(thingName)
 println(DASHES)

 println(DASHES)
 println("2. Generate a device certificate.")
 println(
 """
 A device certificate performs a role in securing the communication
 between devices (things) and the AWS IoT platform.
 """.trimIndent()
)

 print("Do you want to create a certificate for $thingName? (y/n)")
 val certAns = scanner.nextLine()
 var certificateArn: String? = ""
 if (certAns != null && certAns.trim { it <= ' ' }.equals("y", ignoreCase =
 true)) {
 certificateArn = createCertificate()

Work with device management use cases 1744

AWS IoT Core Developer Guide

 println("Attach the certificate to the AWS IoT thing.")
 attachCertificateToThing(thingName, certificateArn)
 } else {
 println("A device certificate was not created.")
 }
 println(DASHES)

 println(DASHES)
 println("3. Update an AWS IoT thing with Attributes.")
 println(
 """
 IoT thing attributes, represented as key-value pairs, offer a pivotal
 advantage in facilitating efficient data
 management and retrieval within the AWS IoT ecosystem.
 """.trimIndent()
)
 print("Press Enter to continue...")
 scanner.nextLine()
 updateThing(thingName)
 println(DASHES)

 println(DASHES)
 println("4. Return a unique endpoint specific to the Amazon Web Services
 account.")
 println(
 """
 An IoT Endpoint refers to a specific URL or Uniform Resource Locator that
 serves as the entry point for communication between IoT devices and the AWS IoT
 service.
 """.trimIndent()
)
 print("Press Enter to continue...")
 scanner.nextLine()
 val endpointUrl = describeEndpoint()
 println(DASHES)

 println(DASHES)
 println("5. List your AWS IoT certificates")
 print("Press Enter to continue...")
 scanner.nextLine()
 if (certificateArn!!.isNotEmpty()) {
 listCertificates()
 } else {
 println("You did not create a certificates. Skipping this step.")

Work with device management use cases 1745

AWS IoT Core Developer Guide

 }
 println(DASHES)

 println(DASHES)
 println("6. Create an IoT shadow that refers to a digital representation or
 virtual twin of a physical IoT device")
 println(
 """
 A thing shadow refers to a feature that enables you to create a
 virtual representation, or "shadow,"
 of a physical device or thing. The thing shadow allows you to
 synchronize and control the state of a device between
 the cloud and the device itself. and the AWS IoT service. For
 example, you can write and retrieve JSON data from a thing shadow.

 """.trimIndent()
)
 print("Press Enter to continue...")
 scanner.nextLine()
 updateShawdowThing(thingName)
 println(DASHES)

 println(DASHES)
 println("7. Write out the state information, in JSON format.")
 print("Press Enter to continue...")
 scanner.nextLine()
 getPayload(thingName)
 println(DASHES)

 println(DASHES)
 println("8. Creates a rule")
 println(
 """
 Creates a rule that is an administrator-level action.
 Any user who has permission to create rules will be able to access data
 processed by the rule.
 """.trimIndent()
)
 print("Enter Rule name: ")
 val ruleName = scanner.nextLine()
 createIoTRule(roleARN, ruleName, snsAction)
 println(DASHES)

 println(DASHES)

Work with device management use cases 1746

AWS IoT Core Developer Guide

 println("9. List your rules.")
 print("Press Enter to continue...")
 scanner.nextLine()
 listIoTRules()
 println(DASHES)

 println(DASHES)
 println("10. Search things using the name.")
 print("Press Enter to continue...")
 scanner.nextLine()
 val queryString = "thingName:$thingName"
 searchThings(queryString)
 println(DASHES)

 println(DASHES)
 if (certificateArn.length > 0) {
 print("Do you want to detach and delete the certificate for $thingName?
 (y/n)")
 val delAns = scanner.nextLine()
 if (delAns != null && delAns.trim { it <= ' ' }.equals("y", ignoreCase =
 true)) {
 println("11. You selected to detach amd delete the certificate.")
 print("Press Enter to continue...")
 scanner.nextLine()
 detachThingPrincipal(thingName, certificateArn)
 deleteCertificate(certificateArn)
 } else {
 println("11. You selected not to delete the certificate.")
 }
 } else {
 println("11. You did not create a certificate so there is nothing to
 delete.")
 }
 println(DASHES)

 println(DASHES)
 println("12. Delete the AWS IoT thing.")
 print("Do you want to delete the IoT thing? (y/n)")
 val delAns = scanner.nextLine()
 if (delAns != null && delAns.trim { it <= ' ' }.equals("y", ignoreCase =
 true)) {
 deleteIoTThing(thingName)
 } else {
 println("The IoT thing was not deleted.")

Work with device management use cases 1747

AWS IoT Core Developer Guide

 }
 println(DASHES)

 println(DASHES)
 println("The AWS IoT workflow has successfully completed.")
 println(DASHES)
}

suspend fun deleteIoTThing(thingNameVal: String) {
 val deleteThingRequest = DeleteThingRequest {
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.deleteThing(deleteThingRequest)
 println("Deleted $thingNameVal")
 }
}

suspend fun deleteCertificate(certificateArn: String) {
 val certificateProviderRequest = DeleteCertificateRequest {
 certificateId = extractCertificateId(certificateArn)
 }
 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.deleteCertificate(certificateProviderRequest)
 println("$certificateArn was successfully deleted.")
 }
}

private fun extractCertificateId(certificateArn: String): String? {
 // Example ARN: arn:aws:iot:region:account-id:cert/certificate-id.
 val arnParts = certificateArn.split(":".toRegex()).dropLastWhile
 { it.isEmpty() }.toTypedArray()
 val certificateIdPart = arnParts[arnParts.size - 1]
 return certificateIdPart.substring(certificateIdPart.lastIndexOf("/") + 1)
}

suspend fun detachThingPrincipal(thingNameVal: String, certificateArn: String) {
 val thingPrincipalRequest = DetachThingPrincipalRequest {
 principal = certificateArn
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->

Work with device management use cases 1748

AWS IoT Core Developer Guide

 iotClient.detachThingPrincipal(thingPrincipalRequest)
 println("$certificateArn was successfully removed from $thingNameVal")
 }
}

suspend fun searchThings(queryStringVal: String?) {
 val searchIndexRequest = SearchIndexRequest {
 queryString = queryStringVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 val searchIndexResponse = iotClient.searchIndex(searchIndexRequest)
 if (searchIndexResponse.things?.isEmpty() == true) {
 println("No things found.")
 } else {
 searchIndexResponse.things
 ?.forEach { thing -> println("Thing id found using search is
 ${thing.thingId}") }
 }
 }
}

suspend fun listIoTRules() {
 val listTopicRulesRequest = ListTopicRulesRequest {}

 IotClient { region = "us-east-1" }.use { iotClient ->
 val listTopicRulesResponse =
 iotClient.listTopicRules(listTopicRulesRequest)
 println("List of IoT rules:")
 val ruleList = listTopicRulesResponse.rules
 ruleList?.forEach { rule ->
 println("Rule name: ${rule.ruleName}")
 println("Rule ARN: ${rule.ruleArn}")
 println("--------------")
 }
 }
}

suspend fun createIoTRule(roleARNVal: String?, ruleNameVal: String?, action:
 String?) {
 val sqlVal = "SELECT * FROM '$TOPIC '"
 val action1 = SnsAction {
 targetArn = action
 roleArn = roleARNVal

Work with device management use cases 1749

AWS IoT Core Developer Guide

 }

 val myAction = Action {
 sns = action1
 }

 val topicRulePayloadVal = TopicRulePayload {
 sql = sqlVal
 actions = listOf(myAction)
 }

 val topicRuleRequest = CreateTopicRuleRequest {
 ruleName = ruleNameVal
 topicRulePayload = topicRulePayloadVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.createTopicRule(topicRuleRequest)
 println("IoT rule created successfully.")
 }
}

suspend fun getPayload(thingNameVal: String?) {
 val getThingShadowRequest = GetThingShadowRequest {
 thingName = thingNameVal
 }

 IotDataPlaneClient { region = "us-east-1" }.use { iotPlaneClient ->
 val getThingShadowResponse =
 iotPlaneClient.getThingShadow(getThingShadowRequest)
 val payload = getThingShadowResponse.payload
 val payloadString = payload?.let { java.lang.String(it, Charsets.UTF_8) }
 println("Received shadow data: $payloadString")
 }
}

suspend fun listCertificates() {
 IotClient { region = "us-east-1" }.use { iotClient ->
 val response = iotClient.listCertificates()
 val certList = response.certificates
 certList?.forEach { cert ->
 println("Cert id: ${cert.certificateId}")
 println("Cert Arn: ${cert.certificateArn}")
 }

Work with device management use cases 1750

AWS IoT Core Developer Guide

 }
}

suspend fun describeEndpoint(): String? {
 val request = DescribeEndpointRequest {}

 IotClient { region = "us-east-1" }.use { iotClient ->
 val endpointResponse = iotClient.describeEndpoint(request)
 val endpointUrl: String? = endpointResponse.endpointAddress
 val exString: String = getValue(endpointUrl)
 val fullEndpoint = "https://$exString-ats.iot.us-east-1.amazonaws.com"
 println("Full endpoint URL: $fullEndpoint")
 return fullEndpoint
 }
}

private fun getValue(input: String?): String {
 // Define a regular expression pattern for extracting the subdomain.
 val pattern = Pattern.compile("^(.*?)\\.iot\\.us-east-1\\.amazonaws\\.com")

 // Match the pattern against the input string.
 val matcher = pattern.matcher(input)

 // Check if a match is found.
 if (matcher.find()) {
 val subdomain = matcher.group(1)
 println("Extracted subdomain: $subdomain")
 return subdomain
 } else {
 println("No match found")
 }
 return ""
}

suspend fun updateThing(thingNameVal: String?) {
 val newLocation = "Office"
 val newFirmwareVersion = "v2.0"
 val attMap: MutableMap<String, String> = HashMap()
 attMap["location"] = newLocation
 attMap["firmwareVersion"] = newFirmwareVersion

 val attributePayloadVal = AttributePayload {
 attributes = attMap
 }

Work with device management use cases 1751

AWS IoT Core Developer Guide

 val updateThingRequest = UpdateThingRequest {
 thingName = thingNameVal
 attributePayload = attributePayloadVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 // Update the IoT thing attributes.
 iotClient.updateThing(updateThingRequest)
 println("$thingNameVal attributes updated successfully.")
 }
}

suspend fun updateShawdowThing(thingNameVal: String?) {
 // Create the thing shadow state document.
 val stateDocument = "{\"state\":{\"reported\":{\"temperature\":25, \"humidity
\":50}}}"
 val byteStream: ByteStream = ByteStream.fromString(stateDocument)
 val byteArray: ByteArray = byteStream.toByteArray()

 val updateThingShadowRequest = UpdateThingShadowRequest {
 thingName = thingNameVal
 payload = byteArray
 }

 IotDataPlaneClient { region = "us-east-1" }.use { iotPlaneClient ->
 iotPlaneClient.updateThingShadow(updateThingShadowRequest)
 println("The thing shadow was updated successfully.")
 }
}

suspend fun attachCertificateToThing(thingNameVal: String?, certificateArn:
 String?) {
 val principalRequest = AttachThingPrincipalRequest {
 thingName = thingNameVal
 principal = certificateArn
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.attachThingPrincipal(principalRequest)
 println("Certificate attached to $thingNameVal successfully.")
 }
}

Work with device management use cases 1752

AWS IoT Core Developer Guide

suspend fun describeThing(thingNameVal: String) {
 val thingRequest = DescribeThingRequest {
 thingName = thingNameVal
 }

 // Print Thing details.
 IotClient { region = "us-east-1" }.use { iotClient ->
 val describeResponse = iotClient.describeThing(thingRequest)
 println("Thing details:")
 println("Thing name: ${describeResponse.thingName}")
 println("Thing ARN: ${describeResponse.thingArn}")
 }
}

suspend fun createCertificate(): String? {
 IotClient { region = "us-east-1" }.use { iotClient ->
 val response = iotClient.createKeysAndCertificate()
 val certificatePem = response.certificatePem
 val certificateArn = response.certificateArn

 // Print the details.
 println("\nCertificate:")
 println(certificatePem)
 println("\nCertificate ARN:")
 println(certificateArn)
 return certificateArn
 }
}

suspend fun createIoTThing(thingNameVal: String) {
 val createThingRequest = CreateThingRequest {
 thingName = thingNameVal
 }

 IotClient { region = "us-east-1" }.use { iotClient ->
 iotClient.createThing(createThingRequest)
 println("Created $thingNameVal}")
 }
}

Work with device management use cases 1753

AWS IoT Core Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using AWS IoT with an
AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Work with device management use cases 1754

AWS IoT Core Developer Guide

AWS IoT quotas

You can find information about AWS IoT quotas in the AWS General Reference.

• For AWS IoT Core quotas information, see AWS IoT Core Endpoints and Quotas.

• For AWS IoT Device Management quotas information, see AWS IoT Device Management
Endpoints and Quotas.

• For AWS IoT Device Defender quotas information, see AWS IoT Device Defender Endpoints and
Quotas.

1755

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#limits_iot
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#iot_device_management_quotas
https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html#iot_device_management_quotas
https://docs.aws.amazon.com/general/latest/gr/iot_device_defender.html#iot_device_defender_quotas
https://docs.aws.amazon.com/general/latest/gr/iot_device_defender.html#iot_device_defender_quotas

AWS IoT Core Developer Guide

AWS IoT Core pricing

You can find information about AWS IoT Core pricing in the AWS Marketing page and the AWS
Pricing Calculator.

• To check AWS IoT Core pricing information, see AWS IoT Core Pricing.

• To estimate the cost of your architect solution, see AWS Pricing Calculator.

1756

https://calculator.aws/#/addService
https://calculator.aws/#/addService
https://aws.amazon.com/iot-core/pricing/
https://calculator.aws/#/addService

	AWS IoT Core
	Table of Contents
	What is AWS IoT?
	How your devices and apps access AWS IoT
	What AWS IoT can do
	IoT in Industry
	IoT in Home automation

	How AWS IoT works
	The IoT universe
	Apps
	Cloud services
	Communications
	Devices
	Interfaces

	AWS IoT services overview
	AWS IoT device software
	AWS IoT control services
	AWS IoT data services

	AWS IoT Core services
	AWS IoT Core messaging services
	AWS IoT Core control services
	AWS IoT Core data services
	AWS IoT Core support service

	Learn more about AWS IoT
	Training resources for AWS IoT
	AWS IoT resources and guides
	AWS IoT in social media
	AWS services used by the AWS IoT Core rules engine
	Communication protocols supported by AWS IoT Core

	What's new in the AWS IoT console
	Legend

	Using AWS IoT with an AWS SDK

	Getting started with AWS IoT Core
	Connect your first device to AWS IoT Core
	Set up your AWS account
	Sign up for an AWS account
	Create a user with administrative access
	Open the AWS IoT console

	Try the AWS IoT Core interactive tutorial
	Connecting IoT devices
	Saving offline device state
	Routing device data to services

	Try the AWS IoT quick connect
	Step 1. Start the tutorial
	Step 2. Create a thing object
	Step 3. Download files to your device
	Step 4. Run the sample
	Step 5. Explore further
	Testing connectivity with your device data endpoint
	Find your device data endpoint
	Test the connection quickly
	Get the app to test the connection to your device data endpoint and port
	Test the connection to your device data endpoint and port

	Explore AWS IoT Core services in hands-on tutorial
	Which device option is best for you?
	Create AWS IoT resources
	Create an AWS IoT policy
	Create a thing object

	Configure your device
	Create a virtual device with Amazon EC2
	Set up an Amazon EC2 instance
	Install Git, Node.js and configure the AWS CLI
	Create AWS IoT resources for your virtual device
	Install the AWS IoT Device SDK for JavaScript
	Run the sample application
	View messages from the sample app in the AWS IoT console

	Use your Windows or Linux PC or Mac as an AWS IoT device
	Set up your personal computer
	Install Git, Python, and the AWS IoT Device SDK for Python
	Install the latest version of Git and Python
	Install the AWS IoT Device SDK for Python
	Prepare to run the sample applications

	Set up the policy and run the sample application
	View messages from the sample app in the AWS IoT console
	Run the Shared Subscription example in Python

	Connect a Raspberry Pi or other device
	Set up your device
	Install the required tools and libraries for the AWS IoT Device SDK
	Install AWS IoT Device SDK
	Install and run the sample app
	View messages from the sample app in the AWS IoT console

	Troubleshooting problems with the sample app
	Check the certificate
	Check the policy attached to the certificate
	Check the command line
	Check the endpoint address
	Check the file names of the certificate files
	Check the SDK installation

	View MQTT messages with the AWS IoT MQTT client
	Viewing MQTT messages in the MQTT client
	Troubleshooting MQTT messages

	Publishing MQTT messages from the MQTT client
	Testing Shared Subscriptions in the MQTT client

	Connecting to AWS IoT Core
	AWS IoT Core - control plane endpoints
	AWS IoT device endpoints
	AWS IoT Core for LoRaWAN gateways and devices
	Connecting to AWS IoT Core service endpoints
	AWS CLI for AWS IoT Core
	AWS SDKs
	AWS Mobile SDKs
	REST APIs of the AWS IoT Core services

	Connecting devices to AWS IoT
	AWS IoT device data and service endpoints
	AWS IoT Device SDKs
	Device communication protocols
	Choosing a protocol for your device communication
	Connection duration limits
	MQTT
	Connecting with MQTT using the AWS IoT Device SDKs
	MQTT Quality of Service (QoS) options
	MQTT persistent sessions
	Creating a persistent session
	Operations during a persistent session
	Message traffic after reconnection to a persistent session
	Ending a persistent session
	Reconnection after a persistent session has expired
	Persistent session message charges

	MQTT retained messages
	Common tasks with MQTT retained messages in AWS IoT Core
	Billing and retained messages
	Comparing MQTT retained messages and MQTT persistent sessions
	MQTT retained messages and AWS IoT Device Shadows

	MQTT Last Will and Testament (LWT) messages
	Using connectAttributes
	MQTT 5 supported features
	Shared Subscriptions
	Clean Start and Session Expiry
	Reason Code on all ACKs
	Topic Aliases
	Message Expiry
	Other MQTT 5 features

	MQTT 5 properties
	MQTT reason codes
	AWS IoT differences from MQTT specifications

	HTTPS
	HTTPS message URL
	HTTPS message code examples

	MQTT topics
	Topic names
	Topic ARN

	Topic filters
	Topic filter ARN

	MQTT message payload
	Reserved topics
	Asset model topics
	AWS IoT Device Defender topics
	AWS IoT Core Device Location topics
	Event topics
	Fleet provisioning topics
	Job topics
	Rule topics
	Secure tunneling topics
	Shadow topics
	MQTT-based file delivery topics
	Reserved topic ARN

	Configurable endpoints
	Domain configurations use cases
	Important notes for using domain configurations in AWS IoT Core
	Creating and configuring AWS managed domains
	Creating and configuring custom domains
	Registering server certificates in AWS certificate manager
	Certificate requirements
	Using one certificate for multiple domains
	ACM-generated public certificates
	External certificates signed by a public CA
	External certificates signed by a private CA
	Creating a validation certificate

	Creating a domain configuration
	Creating DNS records
	Troubleshooting

	Managing domain configurations
	Viewing domain configurations
	Updating domain configurations
	Deleting domain configurations
	Rotating certificates in custom domains

	Configuring TLS settings in domain configurations
	Configure TLS settings in domain configurations (console)
	Configure TLS settings in domain configurations (CLI)

	Server certificate configuration for OCSP stapling
	What is OCSP?
	Key concepts
	OCSP diagrams

	How OCSP stapling works
	How OCSP stapling works in AWS IoT Core
	Benefits of using OCSP stapling compared to client-side OCSP checks

	Enabling server certificate OCSP stapling in AWS IoT Core
	Console
	AWS CLI

	Important notes for using server certificate OCSP stapling in AWS IoT Core
	Troubleshooting server certificate OCSP stapling in AWS IoT Core

	Connecting to AWS IoT FIPS endpoints
	AWS IoT Core - control plane endpoints
	AWS IoT Core - data plane endpoints
	AWS IoT Device Management - jobs data endpoints
	AWS IoT Device Management - Fleet Hub endpoints
	AWS IoT Device Management - secure tunneling endpoints

	AWS IoT tutorials
	Building demos with the AWS IoT Device Client
	Prerequisites to building demos with the AWS IoT Device Client
	Tutorial: Preparing your devices for the AWS IoT Device Client
	Step 1: Install and update the device's operating system
	Load the device's operating system onto microSD card
	Start your IoT device with the new operating system
	Connect your local host computer to your device

	Step 2: Install and verify required software on your device
	Update the operating system software
	Install the required applications and libraries
	(Optional) Save the microSD card image

	Step 3: Test your device and save the Amazon CA cert
	Install the AWS Command Line Interface
	Configure your AWS account credentials
	Download the Amazon Root CA certificate
	(Optional) Save the microSD card image

	Tutorial: Installing and configuring the AWS IoT Device Client
	Step 1: Download and save the AWS IoT Device Client
	Download and build the AWS IoT Device Client
	Create the directories used by the tutorials

	(Optional) Save the microSD card image
	Step 2: Provision your Raspberry Pi in AWS IoT
	Install the microSD card in your Raspberry Pi
	Provision your device in AWS IoT Core
	Create and download device certificate files
	Create AWS IoT resources

	Step 3: Configure the AWS IoT Device Client to test connectivity
	Create the config file
	Open MQTT test client
	Run AWS IoT Device Client

	Tutorial: Demonstrate MQTT message communication with the AWS IoT Device Client
	Step 1: Prepare the Raspberry Pi to demonstrate MQTT message communication
	Create the certificate files to demonstrate MQTT communication
	Provision your device to demonstrate MQTT communication
	Configure the AWS IoT Device Client config file and MQTT test client to demonstrate MQTT communication

	Step 2: Demonstrate publishing messages with the AWS IoT Device Client
	Publish the default message using the AWS IoT Device Client
	Publish a custom message using the AWS IoT Device Client.
	Create a custom MQTT message for the AWS IoT Device Client
	Publish the custom MQTT message by using the AWS IoT Device Client

	Step 3: Demonstrate subscribing to messages with the AWS IoT Device Client
	Subscribe to a single MQTT message topic
	Subscribe to multiple MQTT message topic using wildcard characters

	Tutorial: Demonstrate remote actions (jobs) with the AWS IoT Device Client
	Step 1: Prepare the Raspberry Pi to run jobs
	Provision your Raspberry Pi to demonstrate jobs
	Create and download device certificate files to demonstrate AWS IoT jobs
	Create AWS IoT resources to demonstrate AWS IoT jobs

	Configure the AWS IoT Device Client to run the jobs agent

	Step 2: Create and run the job in AWS IoT
	Create and store the job's job document
	Run a job in AWS IoT for one IoT device

	Tutorial: Cleaning up after running the AWS IoT Device Client tutorials
	Step 1: Cleaning up your devices after building demos with the AWS IoT Device Client
	Option 1: Cleaning up by rewriting the microSD card
	Option 2: Cleaning up by deleting user directories

	Step 2: Cleaning up your AWS account after building demos with the AWS IoT Device Client
	Clean up AWS IoT resources
	Clean up AWS resources

	Building solutions with the AWS IoT Device SDKs
	Start building solutions with the AWS IoT Device SDKs
	Tutorial: Connecting a device to AWS IoT Core by using the AWS IoT Device SDK
	Prepare your device for AWS IoT
	Review the MQTT protocol
	Review the pubsub.py Device SDK sample app
	Communication protocols
	MQTT
	MQTT over WSS
	HTTPS

	Persistent sessions
	Quality of Service
	Message publish
	Message subscription
	Device disconnection and reconnection

	Connect your device and communicate with AWS IoT Core
	Subscribe to wild card topic filters
	Exercise procedure
	Exercise result

	Process topic filter subscriptions
	Exercise procedure
	Exercise result

	Publish messages from your device
	Exercise procedure
	Exercise result

	Review the results
	Tutorial: Using the AWS IoT Device SDK for Embedded C
	Step1: Install the AWS IoT Device SDK for Embedded C
	Step 2: Configure the sample app
	Step 3: Build and run the sample application

	Creating AWS IoT rules to route device data to other services
	Tutorial: Republishing an MQTT message
	Review MQTT topics and AWS IoT rules
	Step 1: Create an AWS IoT rule to republish an MQTT message
	Step 2: Test your new rule
	Troubleshooting your Republish message rule

	Step 3: Review the results and next steps

	Tutorial: Sending an Amazon SNS notification
	Step 1: Create an Amazon SNS topic that sends an SMS text message
	Step 2: Create an AWS IoT rule to send the text message
	Step 3: Test the AWS IoT rule and Amazon SNS notification
	Troubleshooting your SNS message rule

	Step 4: Review the results and next steps

	Tutorial: Storing device data in a DynamoDB table
	Step 1: Create the DynamoDB table for this tutorial
	Step 2: Create an AWS IoT rule to send data to the DynamoDB table
	Step 3: Test the AWS IoT rule and DynamoDB table
	Troubleshooting your DynamoDB rule

	Step 4: Review the results and next steps

	Tutorial: Formatting a notification by using an AWS Lambda function
	Step 1: Create an AWS Lambda function that sends a text message
	Step 2: Create an AWS IoT rule with an AWS Lambda rule action
	Step 3: Test the AWS IoT rule and AWS Lambda rule action
	Troubleshooting your AWS Lambda rule and notification

	Step 4: Review the results and next steps

	Retaining device state while the device is offline with Device Shadows
	Tutorial: Preparing your Raspberry Pi to run the shadow application
	Step 1: Set up and configure Raspberry Pi device

	Tutorial: Provisioning your device in AWS IoT
	Step 1: Create an AWS IoT policy for the Device Shadow
	Step 2: Create a thing resource and attach the policy to the thing
	Step 3: Review the results and next steps

	Tutorial: Installing the Device SDK and running the sample application for Device Shadows
	Step 1: Run the shadow.py sample app
	Step 2: Review the shadow.py Device SDK sample app
	Step 3: Troubleshoot problems with the shadow.py sample app
	Step 4: Review the results and next steps

	Tutorial: Interacting with Device Shadow using the sample app and the MQTT test client
	Step 1: Update desired and reported values using shadow.py sample app
	Step 2: View messages from the shadow.py sample app in the MQTT test client
	Step 3: Troubleshoot errors with Device Shadow interactions
	Step 4: Review the results and next steps

	Tutorial: Creating a custom authorizer for AWS IoT Core
	Step 1: Create a Lambda function for your custom authorizer
	Step 2: Create a public and private key pair for your custom authorizer
	Step 3: Create a customer authorizer resource and its authorization
	Create a customer authorizer resource
	Authorize the custom authorizer resource

	Step 4: Test the authorizer by calling test-invoke-authorizer
	Step 5: Test publishing MQTT message using Postman
	Step 6: View messages in MQTT test client
	Step 7: Review the results and next steps
	Step 8: Clean up

	Tutorial: Monitoring soil moisture with AWS IoT and Raspberry Pi
	Prerequisites
	Setting up AWS IoT
	Step 1: Create the AWS IoT policy
	Step 2: Create the AWS IoT thing, certificate, and private key
	Step 3: Create an Amazon SNS topic and subscription
	Step 4: Create an AWS IoT rule to send an email

	Setting up your Raspberry Pi and moisture sensor

	Managing devices with AWS IoT
	How to manage things with the registry
	Create a thing
	List things
	Describe things
	Update a thing
	Delete a thing
	Attach a principal to a thing
	Detach a principal from a thing

	Thing types
	Create a thing type
	List thing types
	Describe a thing type
	Associate a thing type with a thing
	Deprecate a thing type
	Delete a thing type

	Static thing groups
	Create a static thing group
	Describe a thing group
	Add a thing to a static thing group
	Remove a thing from a static thing group
	List things in a thing group
	List thing groups
	List groups for a thing
	Update a static thing group
	Delete a thing group
	Attach a policy to a static thing group
	Detach a policy from a static thing group
	List the policies attached to a static thing group
	List the groups for a policy
	Get effective policies for a thing
	Test authorization for MQTT actions

	Dynamic thing groups
	Use cases of dynamic thing groups
	Specify a dynamic thing group as a target for a job
	Use dynamic group membership changes to perform desired actions
	Add devices to a dynamic thing group for automatic violation detection
	Set log levels on dynamic thing groups to observe devices with fine-grained logging

	Create a dynamic thing group
	Describe a dynamic thing group
	Update a dynamic thing group
	Delete a dynamic thing group
	Dynamic and Static Thing Group Limitations
	Dynamic Thing Group Limitations
	Fleet indexing
	The number of dynamic thing groups is limited
	Successful commands can log errors
	With overrideDynamicGroups enabled, static groups take priority over dynamic groups
	Older dynamic thing groups take priority over newer ones
	You can't apply policies to dynamic thing groups
	Dynamic thing group membership is eventually consistent

	Tagging your AWS IoT resources
	Tag basics
	Tag restrictions and limitations

	Using tags with IAM policies
	Billing groups
	Viewing cost allocation and usage data

	Security in AWS IoT
	AWS IoT security
	Authentication
	AWS training and certification
	X.509 Certificate overview
	Server authentication
	Endpoint types
	Creating an IotDataPlaneClient with the AWS SDK for Java

	CA certificates for server authentication
	Server authentication guidelines

	Client authentication
	X.509 client certificates
	Using X.509 client certificates
	Using X.509 client certificates in multiple AWS accounts with multi-account registration
	Certificate signing algorithms supported by AWS IoT
	Key algorithms supported by AWS IoT
	Create AWS IoT client certificates
	Create an AWS IoT certificate (console)
	Create an AWS IoT certificate (CLI)

	Create your own client certificates
	Manage your CA certificates
	Create a CA certificate
	Register your CA certificate
	Register a CA certificate (console)
	Register a CA certificate (CLI)
	Register a CA certificate in SNI_ONLY mode (CLI) - Recommended
	Register a CA certificate in DEFAULT mode (CLI)

	Create a CA verification certificate to register the CA certificate in the console

	Deactivate a CA certificate
	Deactivate a CA certificate (console)
	Deactivate a CA certificate (CLI)

	Create a client certificate using your CA certificate
	Create a client certificate (CLI)

	Register a client certificate
	Register a client certificate manually
	Register a client certificate signed by a registered CA (console)
	Register a client certificate signed by an unregistered CA (console)
	Register a client certificate signed by a registered CA (CLI)
	Register a client certificate signed by an unregistered CA (CLI)

	Register a client certificate when the client connects to AWS IoT just-in-time registration (JITR)
	Configure a CA certificate to support automatic registration (console)
	Configure a CA certificate to support automatic registration (CLI)
	Configure the first connection by a client for automatic registration

	Activate or deactivate a client certificate
	Activate a client certificate (console)
	Deactivate a client certificate (console)
	Activate a client certificate (CLI)
	Deactivate a client certificate (CLI)

	Attach a thing or policy to a client certificate
	Attach a thing to a client certificate (console)
	Attach a policy to a client certificate (console)
	Attach a thing to a client certificate (CLI)
	Attach a policy to a client certificate (CLI)

	Revoke a client certificate
	Revoke a client certificate (console)
	Revoke a client certificate (CLI)

	Transfer a certificate to another account
	Begin a certificate transfer
	Begin a certificate transfer (console)
	Begin a certificate transfer (CLI)

	Accept or reject a certificate transfer
	Accept or reject a certificate transfer (console)
	Accept or reject a certificate transfer (CLI)

	Cancel a certificate transfer
	Cancel a certificate transfer (console)
	Cancel a certificate transfer (CLI)

	IAM users, groups, and roles
	Amazon Cognito identities

	Custom authentication and authorization
	Understanding the custom authentication workflow
	AWS IoT Core custom authentication and authorization workflow
	Scaling considerations

	Creating and managing custom authorizers
	Defining your Lambda function
	Creating an authorizer
	Testing your authorizers
	Managing custom authorizers

	Connecting to AWS IoT Core by using custom authentication
	HTTPS
	MQTT
	MQTT over WebSockets
	Signing the token

	Troubleshooting your authorizers
	Check for issues in your authorizer’s Lambda function
	Investigating device issues

	Authorization
	AWS training and certification
	AWS IoT Core policies
	AWS IoT Core policy actions
	AWS IoT Core action resources
	AWS IoT Core policy variables
	Basic AWS IoT Core policy variables
	Thing policy variables
	X.509 Certificate AWS IoT Core policy variables
	CertificateId
	Issuer attributes
	Subject attributes
	Issuer alternate name attributes
	Subject alternate name attributes
	Other attributes
	Using X.509 certificate policy variables
	X.509 certificate example
	Using certificate issuer attributes as certificate policy variables
	Using certificate subject attributes as certificate policy variables
	Using certificate Issuer alternate name attributes as certificate policy variables
	Using certificate subject alternate name attributes as certificate policy variables
	Using other certificate attribute as a certificate policy variable
	X.509 Certificate policy variable limitations
	Example policies using certificate policy variables

	Cross-service confused deputy prevention
	AWS IoT Core policy examples
	Connect policy examples
	MQTT persistent sessions policy examples

	Publish/Subscribe policy examples
	Using wildcard characters in MQTT and AWS IoT Core policies
	Policies to publish, subscribe and receive messages to/from specific topics
	Policies to publish, subscribe and receive messages to/from topics with a specific prefix
	Policies to publish, subscribe and receive messages to/from topics specific to each device
	Policies to publish, subscribe and receive messages to/from topics with thing attribute in topic name
	Policies to deny publishing messages to subtopics of a topic name
	Policies to deny receiving messages from subtopics of a topic name
	Policies to subscribe to topics using MQTT wildcard characters
	Policies for HTTP and WebSocket clients

	Connect and publish policy examples
	Retained message policy examples
	Policy to connect and publish retained messages
	Policy to connect and publish retained Will messages
	Policy to list and get retained messages

	Certificate policy examples
	Thing policy examples
	Basic job policy example

	Authorization with Amazon Cognito identities
	Policy examples for unauthenticated and authenticated Amazon Cognito users connecting to AWS IoT Core
	GitHub examples

	Authorizing direct calls to AWS services using AWS IoT Core credential provider
	How to use a certificate to get a security token

	Cross account access with IAM

	Data protection in AWS IoT Core
	Data encryption in AWS IoT
	Transport security in AWS IoT Core
	TLS protocols
	Security policies
	Important notes for transport security in AWS IoT Core
	Transport security for LoRaWAN wireless devices

	Data encryption in AWS IoT
	Device Advisor
	Encryption in transit

	Key management in AWS IoT
	Device Advisor

	Identity and access management for AWS IoT
	Audience
	Authenticating with IAM identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS IoT works with IAM
	AWS IoT identity-based policies
	Actions
	Device Advisor actions

	Resources
	Device Advisor resources

	Condition keys
	Examples

	AWS IoT resource-based policies
	Authorization based on AWS IoT tags
	AWS IoT IAM roles
	Using temporary credentials with AWS IoT
	Service-linked roles
	Service roles

	AWS IoT identity-based policy examples
	Policy best practices
	Using the AWS IoT console
	Allow users to view their own permissions
	Viewing AWS IoT resources based on tags
	Viewing AWS IoT Device Advisor resources based on tags

	AWS managed policies for AWS IoT
	AWS managed policy: AWSIoTConfigAccess
	AWS managed policy: AWSIoTConfigReadOnlyAccess
	AWS managed policy: AWSIoTDataAccess
	AWS managed policy: AWSIoTFullAccess
	AWS managed policy: AWSIoTLogging
	AWS managed policy: AWSIoTOTAUpdate
	AWS managed policy: AWSIoTRuleActions
	AWS managed policy: AWSIoTThingsRegistration
	AWS IoT updates to AWS managed policies

	Troubleshooting AWS IoT identity and access
	I am not authorized to perform an action in AWS IoT
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS IoT resources

	Logging and Monitoring
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Compliance validation for AWS IoT Core
	Resilience in AWS IoT Core
	Using AWS IoT Core with interface VPC endpoints
	Creating VPC endpoints for AWS IoT Core data plane
	Creating VPC endpoints for AWS IoT Core credential provider
	Creating an Amazon VPC interface endpoint
	Configuring private hosted zone
	Create a private hosted zone
	Create a record

	Controlling Access to AWS IoT Core over VPC endpoints
	Limitations
	Limitations of IoT data VPC endpoints
	Limitations of credential provider endpoints

	Scaling VPC endpoints with AWS IoT Core
	Using custom domains with VPC endpoints
	Availability of VPC endpoints for AWS IoT Core

	Infrastructure security in AWS IoT
	Security monitoring of production fleets or devices with AWS IoT Core
	Security best practices in AWS IoT Core
	Protecting MQTT connections in AWS IoT
	See also

	Keep your device's clock in sync
	Validate the server certificate
	Use a single identity per device
	Use a second AWS Region as backup
	Use just in time provisioning
	Permissions to run AWS IoT Device Advisor tests
	Cross-service confused deputy prevention for Device Advisor

	AWS training and certification

	Monitoring AWS IoT
	Configure AWS IoT logging
	Configure logging role and policy
	Create a logging role
	Logging role policy

	Configure default logging in the AWS IoT (console)
	Configure default logging in AWS IoT (CLI)
	Configure resource-specific logging in AWS IoT (CLI)
	Log levels

	Monitor AWS IoT alarms and metrics using Amazon CloudWatch
	Using AWS IoT metrics
	Creating CloudWatch alarms to monitor AWS IoT
	How can I be notified if my things do not connect successfully each day?
	How can I be notified if my things are not publishing data each day?
	How can I be notified if my thing's shadow updates are being rejected each day?
	How can I create a CloudWatch alarm for jobs?

	AWS IoT metrics and dimensions
	AWS IoT metrics
	AWS IoT Core credential provider metrics
	Server certificate OCSP stapling metric
	Rule metrics
	Rule action metrics
	HTTP action specific metrics
	Message broker metrics
	Device shadow metrics
	Jobs metrics
	Device Defender audit metrics
	Device Defender detect metrics
	Device provisioning metrics
	LoRaWAN metrics
	Fleet indexing metrics
	Dimensions for metrics

	Monitor AWS IoT using CloudWatch Logs
	Viewing AWS IoT logs in the CloudWatch console
	CloudWatch Logs AWS IoT log entries
	Message broker log entries
	Connect log entry
	Connect log entry example

	Disconnect log entry
	Disconnect log entry example

	GetRetainedMessage log entry
	GetRetainedMessage log entry example

	ListRetainedMessage log entry
	ListRetainedMessage log entry example

	Publish-In log entry
	Publish-In log entry example

	Publish-Out log entry
	Publish-Out log entry example

	Queued log entry
	Queued server error log entry example
	Queued success log entry example
	Queued throttled log entry example

	Subscribe log entry
	MQTT 3 Subscribe log entry example
	MQTT 5 Subscribe log entry example

	Server certificate OCSP log entries
	RetrieveOCSPStapleData log entry
	RetrieveOCSPStapleData log entry examples

	Device Shadow log entries
	DeleteThingShadow log entry
	DeleteThingShadow log entry example

	GetThingShadow log entry
	GetThingShadow log entry example

	UpdateThingShadow log entry
	UpdateThingShadow log entry example

	Rules engine log entries
	FunctionExecution log entry
	FunctionExecution log entry example

	RuleExecution log entry
	RuleExecution log entry example

	RuleMatch log entry
	RuleMatch log entry example

	RuleExecutionThrottled log entry
	RuleExecutionThrottled log entry example

	RuleNotFound log entry
	RuleNotFound log entry example

	StartingRuleExecution log entry
	StartingRuleExecution log entry example

	Job log entries
	DescribeJobExecution log entry
	DescribeJobExecution log entry example

	GetPendingJobExecution log entry
	GetPendingJobExecution log entry example

	ReportFinalJobExecutionCount log entry
	ReportFinalJobExecutionCount log entry example

	StartNextPendingJobExecution log entry
	StartNextPendingJobExecution log entry example

	UpdateJobExecution log entry
	UpdateJobExecution log entry example

	Device provisioning log entries
	GetDeviceCredentials log entry
	GetDeviceCredentials log entry example

	ProvisionDevice log entry
	ProvisionDevice log entry example

	Dynamic thing group log entries
	AddThingToDynamicThingGroupsFailed log entry
	AddThingToDynamicThingGroupsFailed log entry example

	Fleet indexing log entries
	NamedShadowCountForDynamicGroupQueryLimitExceeded log entry
	NamedShadowCountForDynamicGroupQueryLimitExceeded log entry example

	Common CloudWatch Logs attributes

	Upload device-side logs to Amazon CloudWatch
	How it works
	MQTT topics
	Rule action
	Batch mode

	Uploading device-side logs by using AWS IoT rules
	Prerequisites
	Creating a CloudWatch log group
	Creating a topic rule
	Sending device-side logs to AWS IoT
	Viewing the log data

	Logging AWS IoT API calls using AWS CloudTrail
	AWS IoT information in CloudTrail
	Understanding AWS IoT log file entries

	Rules for AWS IoT
	Granting an AWS IoT rule the access it requires
	Pass role permissions
	Creating an AWS IoT rule
	Tagging your rules
	IAM policy example

	Viewing your rules
	Deleting a rule
	AWS IoT rule actions
	Apache Kafka
	Requirements
	Parameters
	Examples
	Virtual private cloud (VPC) destinations
	Requirements and considerations
	Pricing
	Creating virtual private cloud (VPC) topic rule destinations
	Creating a VPC destination by using AWS CLI
	Creating a VPC destination by using the AWS IoT Core console

	CloudWatch alarms
	Requirements
	Parameters
	Examples
	See also

	CloudWatch Logs
	Requirements
	MQTT message format requirements for batchMode
	Parameters
	Examples
	See also

	CloudWatch metrics
	Requirements
	Parameters
	Examples
	See also

	DynamoDB
	Requirements
	Parameters
	Examples
	See also

	DynamoDBv2
	Requirements
	Parameters
	Examples
	See also

	Elasticsearch
	Requirements
	Parameters
	Examples
	See also

	HTTP
	Requirements
	Parameters
	Examples
	HTTP action retry logic
	See also
	Working with HTTP topic rule destinations
	HTTP topic rule destination overview
	Creating and confirming HTTP topic rule destinations
	Sending a new confirmation request
	Disabling and deleting a topic rule destination
	Certificate authorities supported by HTTPS endpoints in topic rule destinations

	IoT Analytics
	Requirements
	Parameters
	Examples
	See also

	AWS IoT Events
	Requirements
	Parameters
	Examples
	See also

	AWS IoT SiteWise
	Requirements
	Parameters
	Examples
	See also

	Firehose
	Requirements
	Parameters
	Examples
	See also

	Kinesis Data Streams
	Requirements
	Parameters
	Examples
	See also

	Lambda
	Requirements
	Parameters
	Examples
	See also

	Location
	Requirements
	Parameters
	Examples
	See also

	OpenSearch
	Requirements
	Parameters
	Limitations
	Examples
	See also

	Republish
	Requirements
	Parameters
	Examples

	S3
	Requirements
	Parameters
	Examples
	See also

	Salesforce IoT
	Parameters
	Examples

	SNS
	Requirements
	Parameters
	Examples
	See also

	SQS
	Requirements
	Parameters
	Examples
	See also

	Step Functions
	Requirements
	Parameters
	Examples
	See also

	Timestream
	Requirements
	Parameters
	Timestream record content
	Examples

	Troubleshooting a rule
	Accessing cross-account resources using AWS IoT rules
	Prerequisites
	Cross-account setup for Amazon SQS
	Cross-account setup for Amazon SNS
	Cross-account setup for Amazon S3
	Cross-account setup for AWS Lambda

	Error handling (error action)
	Error action message format
	Error action example

	Reducing messaging costs with Basic Ingest
	Using Basic Ingest

	AWS IoT SQL reference
	SELECT clause
	FROM clause
	WHERE clause
	Data types
	Conversions

	Operators
	AND operator
	OR operator
	NOT operator
	IN operator
	EXISTS operator
	> operator
	>= operator
	< operator
	<= operator
	<> operator
	= operator
	+ operator
	- operator
	* operator
	/ operator
	% operator

	Functions
	abs(Decimal)
	accountid()
	acos(Decimal)
	asin(Decimal)
	atan(Decimal)
	atan2(Decimal, Decimal)
	aws_lambda(functionArn, inputJson)
	bitand(Int, Int)
	bitor(Int, Int)
	bitxor(Int, Int)
	bitnot(Int)
	cast()
	ceil(Decimal)
	chr(String)
	clientid()
	concat()
	cos(Decimal)
	cosh(Decimal)
	decode(value, decodingScheme)
	Decoding base64-encoded strings
	Decoding protobuf message payload

	encode(value, encodingScheme)
	endswith(String, String)
	exp(Decimal)
	floor(Decimal)
	get
	get_dynamodb(tableName, partitionKeyName, partitionKeyValue, sortKeyName, sortKeyValue, roleArn)
	get_mqtt_property(name)
	get_secret(secretId, secretType, key, roleArn)
	get_thing_shadow(thingName, shadowName, roleARN)
	get_user_properties(userPropertyKey)
	Hashing functions
	indexof(String, String)
	isNull()
	isUndefined()
	length(String)
	ln(Decimal)
	log(Decimal)
	lower(String)
	lpad(String, Int)
	ltrim(String)
	machinelearning_predict(modelId, roleArn, record)
	mod(Decimal, Decimal)
	nanvl(AnyValue, AnyValue)
	newuuid()
	numbytes(String)
	parse_time(String, Long[, String])
	power(Decimal, Decimal)
	principal()
	rand()
	regexp_matches(String, String)
	regexp_replace(String, String, String)
	regexp_substr(String, String)
	remainder(Decimal, Decimal)
	replace(String, String, String)
	rpad(String, Int)
	round(Decimal)
	rtrim(String)
	sign(Decimal)
	sin(Decimal)
	sinh(Decimal)
	sourceip()
	substring(String, Int[, Int])
	sql_version()
	sqrt(Decimal)
	startswith(String, String)
	tan(Decimal)
	tanh(Decimal)
	time_to_epoch(String, String)
	timestamp()
	topic(Decimal)
	traceid()
	transform(String, Object, Array)
	Transform function example 1
	Transform function example 2
	Transform function example 3

	trim(String)
	trunc(Decimal, Int)
	upper(String)

	Literals
	Case statements
	JSON extensions
	Substitution templates
	Nested object queries
	Working with binary payloads
	Binary payload examples
	Decoding protobuf message payloads
	Prerequisites
	Create descriptor files
	Upload descriptor files to S3 bucket
	Configure protobuf decoding in Rules
	Limitations
	Best practices

	SQL versions
	What's new in the 2016-03-23 SQL rules engine version
	Output an Array as a top-level object

	AWS IoT Device Shadow service
	Using shadows
	Choosing to use named or unnamed shadows
	Accessing shadows
	Using shadows in devices, apps, and other cloud services
	Message order
	Trim shadow messages

	Using shadows in devices
	Initializing the device on first connection to AWS IoT
	Processing messages while the device is connected to AWS IoT
	Processing messages when the device reconnects to AWS IoT

	Using shadows in apps and services
	Initializing the app or service on connection to AWS IoT
	Processing state changes while the app or service is connected to AWS IoT
	Detecting a device is connected

	Simulating Device Shadow service communications
	Setting up the simulation
	Initialize the device
	Send an update from the app
	Respond to update in device
	Observe the update in the app
	Going beyond the simulation

	Interacting with shadows
	Protocol support
	Requesting and reporting state
	Updating a shadow
	Updating a shadow when a client requests a state change
	Updating a shadow when a device reports its current state
	Optimistic locking

	Retrieving a shadow document
	Deleting shadow data
	Deleting a property from a shadow document
	Deleting a shadow

	Device Shadow REST API
	GetThingShadow
	UpdateThingShadow
	DeleteThingShadow
	ListNamedShadowsForThing

	Device Shadow MQTT topics
	/get
	Example policy

	/get/accepted
	Example policy

	/get/rejected
	Example policy

	/update
	Example policy

	/update/delta
	Message body details
	Example policy

	/update/accepted
	Example policy

	/update/documents
	Example policy

	/update/rejected
	Example policy

	/delete
	Example policy

	/delete/accepted
	Example policy

	/delete/rejected
	Example policy

	Device Shadow service documents
	Shadow document examples
	Request state document
	Response state documents
	/accepted response state document
	/delta response state document
	/documents response state document
	Response state document properties

	Error response document
	Shadow name list response document

	Document properties
	Delta state
	Versioning shadow documents
	Client tokens in shadow documents
	Empty shadow document properties
	Array values in shadow documents

	Device Shadow error messages

	Jobs
	Accessing AWS IoT jobs
	AWS IoT Jobs Regions and endpoints
	What is a remote operation?
	Benefits of using AWS IoT Device Management Jobs for remote operations

	What is AWS IoT Jobs?
	Jobs key concepts
	Basic concepts
	Job types concepts
	Presigned URLs
	Job configuration concepts

	Jobs and job execution states
	Job states
	Job execution states

	Managing jobs
	Code signing for jobs
	Job document
	Presigned URLs
	Create and manage jobs by using the AWS Management Console
	Create and manage jobs by using the AWS CLI
	Create jobs
	Code signing with jobs
	Create a job with a job document

	Update a job
	Cancel a job
	Cancel a job execution
	Delete a job
	Get a job document
	List jobs
	Describe a job
	List executions for a job
	List job executions for a thing
	Describe job execution
	Delete job execution

	Job templates
	Custom and AWS managed templates
	Use AWS managed templates to deploy common remote operations
	What do managed templates contain?
	Prerequisites
	Managed template remote actions and job documents
	AWS–Download–File
	AWS–Install–Application
	AWS–Reboot
	AWS–Remove–Application
	AWS–Restart–Application
	AWS–Start–Application
	AWS–Stop–Application
	AWS–Run–Command

	Create a job from AWS managed templates by using the AWS Management Console
	Get details about managed templates
	Create a job using managed templates
	Create custom job templates from managed templates

	Create a job from AWS managed templates by using the AWS CLI
	List managed templates
	Get details about a managed template
	Create a job by using managed templates
	Create a custom job template from managed templates

	Create custom job templates
	Create custom job templates by using the AWS Management Console
	Create a custom job template
	Create an original job template
	Create a job template from an existing job

	Create a job from a custom job template
	Delete a job template

	Create custom job templates by using the AWS CLI
	Create a job template from scratch
	Create a job template from an existing job
	Get details about a job template
	List job templates
	Delete a job template
	Create a job from a custom job template

	Job configurations
	How job configurations work
	Job rollout, scheduling, and abort configurations
	Job rollout configuration
	Job rollout rates
	Job rollout rates for continuous jobs using dynamic thing groups

	Job scheduling configuration
	Job scheduling configurations
	Recurring maintenance window
	Recurring maintenance window duration end logic

	Job abort configuration

	Job execution timeout and retry configurations
	Job execution timeout configuration
	Timers for job timeouts
	How timers work for job timeouts

	Job execution retry configuration

	Specify additional configurations
	Specify job configurations by using the AWS Management Console
	Rollout configuration
	Abort configuration
	Scheduling configuration
	Timeout configuration
	Retry configuration

	Specify job configurations by using the AWS IoT Jobs API
	Rollout configuration
	Abort configuration
	Scheduling configuration
	Timeout configuration
	Retry configuration

	Devices and jobs
	Using the MQTT protocol
	Using HTTP Signature Version 4
	Using HTTP TLS
	Programming devices to work with jobs
	Device workflow
	Jobs workflow
	Start a new job
	Get job information
	Report job execution status
	Report execution completed
	Additional jobs

	Jobs notifications
	Job notification types
	Job pending

	AWS IoT jobs API operations
	ErrorResponse
	Jobs management and control API and data types
	Job management and control data types
	Job
	JobSummary
	JobExecution
	JobExecutionSummary
	JobExecutionSummaryForJob
	JobExecutionSummaryForThing

	Job management and control API operations
	AssociateTargetsWithJob
	CancelJob
	CancelJobExecution
	CreateJob
	DeleteJob
	DeleteJobExecution
	DescribeJob
	DescribeJobExecution
	GetJobDocument
	ListJobExecutionsForJob
	ListJobExecutionsForThing
	ListJobs
	UpdateJob

	Jobs device MQTT and HTTPS API operations and data types
	Jobs device MQTT and HTTPS data types
	JobExecution
	JobExecutionState
	JobExecutionSummary

	Jobs device MQTT API operations
	GetPendingJobExecutions
	StartNextPendingJobExecution
	DescribeJobExecution
	UpdateJobExecution
	JobExecutionsChanged
	NextJobExecutionChanged

	Jobs device HTTP API
	GetPendingJobExecutions
	StartNextPendingJobExecution
	DescribeJobExecution
	UpdateJobExecution

	Securing users and devices with AWS IoT Jobs
	Required policy type for AWS IoT Jobs
	Authorizing users and cloud services to use AWS IoT Jobs
	IAM policies on the control plane
	Policy actions
	Basic IAM policy example
	IAM policy example for IP based authorization

	IAM policies on the data plane
	Basic IAM policy example
	IAM policy examples for IP based authorization
	IAM policy example for both control plane and data plane

	Authorize tagging of IoT resources
	IAM policy example

	Authorizing your devices to securely use AWS IoT Jobs on the data plane
	AWS IoT Core policies for MQTT protocol
	Basic MQTT policy example

	AWS IoT Core policies for HTTPS protocol
	Policy actions
	Basic policy example

	Job limits
	Active and concurrent job limits

	AWS IoT secure tunneling
	What is secure tunneling?
	Secure tunneling concepts
	How secure tunneling works
	Secure tunnel lifecycle

	AWS IoT secure tunneling tutorials
	Tutorials in this section
	Open a tunnel and start SSH session to remote device
	Prerequisites for the tutorials
	Tunnel setup methods
	Tunnel creation methods in AWS IoT console
	Open a tunnel and use browser-based SSH to access remote device
	Prerequisites for quick setup method
	Open a tunnel
	Using the browser-based SSH
	Troubleshooting issues when using the browser-based SSH
	Cleaning up

	Open a tunnel using manual setup and connect to remote device
	Prerequisites for manual setup method
	Open a tunnel
	Resend tunnel access tokens
	Configure and start the local proxy
	Start an SSH session
	Cleaning up

	Open a tunnel for remote device and use browser-based SSH
	Prerequisites
	Open a new tunnel for the remote device
	Open an existing tunnel and use browser-based SSH
	Cleaning up

	Local proxy
	How to use the local proxy
	Local proxy workflow
	Local proxy best practices
	Example command and output

	Configure local proxy for devices that use web proxy
	Build the local proxy
	Configure your web proxy
	Configure and start the local proxy
	Web proxy listening on an HTTP port
	Web proxy listening on an HTTPS port
	Example command and output

	Multiplex data streams and using simultaneous TCP connections in a secure tunnel
	Multiplexing multiple data streams in a secure tunnel
	Example use case
	How to set up a multiplexed tunnel

	Using simultaneous TCP connections in a secure tunnel
	Example use case
	How to use simultaneous TCP connections

	Configuring a remote device and using IoT agent
	IoT agent snippet

	Controlling access to tunnels
	Tunnel access prerequisites
	Tunnel access policies
	iot:OpenTunnel
	iot:RotateTunnelAccessToken
	iot:DescribeTunnel
	iot:ListTunnels
	iot:ListTagsForResource
	iot:CloseTunnel
	iot:TagResource
	iot:UntagResource

	Resolving AWS IoT secure tunneling connectivity issues by rotating client access tokens
	Invalid client access token error
	Client token mismatch error
	Rotate source CAT example

	Remote device connectivity issues
	Rotate destination CAT example

	Device provisioning
	Provisioning devices in AWS IoT
	Fleet provisioning APIs
	Provisioning devices that don't have device certificates using fleet provisioning
	Provisioning by claim
	Provisioning by trusted user
	Using pre-provisioning hooks with the AWS CLI

	Provisioning devices that have device certificates
	Single thing provisioning
	Just-in-time provisioning
	JITP overview
	Example template body

	Register CA using provisioning template
	Register CA using provisioning template name

	Bulk registration

	Provisioning templates
	Parameters section
	Resources section
	Thing resources
	Certificate resources
	Policy resources
	Override settings
	Resource example

	Template example for bulk registration
	Template example for just-in-time provisioning (JITP)
	Fleet provisioning
	Mappings
	Device configuration
	Intrinsic functions
	Template example for fleet provisioning

	Pre-provisioning hooks
	Pre-provision hook input
	Pre-provision hook return value
	Pre-provisioning hook Lambda example

	Self-managed certificate signing using AWS IoT Core certificate provider
	How self-managed certificate signing works in fleet provisioning
	Key concepts
	Diagram

	Certificate provider Lambda function input
	Certificate provider Lambda function return value
	Example Lambda function
	Self-managed certificate signing for fleet provisioning
	AWS CLI
	AWS Management Console

	AWS CLI commands for certificate provider
	Create certificate provider
	Update certificate provider
	Describe certificate provider
	Delete certificate provider
	List certificate provider

	Creating IAM policies and roles for a user installing a device
	Why can't this be done in the AWS IoT console?
	Creating an IAM policy for the user who will install a device
	Creating an IAM role for the user who will install a device
	Updating an existing policy to authorize a new template

	Device provisioning MQTT API
	CreateCertificateFromCsr
	CreateCertificateFromCsr request
	CreateCertificateFromCsr request payload

	CreateCertificateFromCsr response
	CreateCertificateFromCsr response payload

	CreateCertificateFromCsr error
	CreateCertificateFromCsr error payload

	CreateKeysAndCertificate
	CreateKeysAndCertificate request
	CreateKeysAndCertificate response
	CreateKeysAndCertificate response

	CreateKeysAndCertificate error
	CreateKeysAndCertificate error payload

	RegisterThing
	RegisterThing request
	RegisterThing request payload

	RegisterThing response
	RegisterThing response payload

	RegisterThing error response
	RegisterThing error response payload

	Fleet indexing
	Managing index updates
	Searching across data sources
	Querying for aggregate data
	Monitoring aggregate data and creating alarms by using fleet metrics
	Managing fleet indexing
	Thing indexing
	Thing group indexing
	Managed fields
	Custom fields
	Manage thing indexing
	Enabling thing indexing
	Thing indexing modes
	Managed fields and custom fields
	Indexing filter
	Updating indexing configuration examples

	Describing a thing index
	Querying a thing index
	Restrictions and limitations
	Authorization

	Manage thing group indexing
	Enabling thing group indexing
	Describing group indexes
	Querying a thing group index
	Authorization

	Querying for aggregate data
	GetStatistics
	GetStatistics with string values
	GetStatistics with Boolean values
	GetStatistics with numerical values

	GetCardinality
	GetPercentiles
	GetBucketsAggregation
	Authorization

	Query syntax
	Supported features
	Unsupported features
	Notes

	Example thing queries
	Example thing group queries
	Indexing location data
	Supported data formats
	How to index location data
	Update thing indexing configuration
	Location data stored in classic shadows
	Location data stored in named shadows

	Example geoqueries
	Getting started tutorial
	Prerequisites
	Create thing and shadow
	Update thing indexing configuration
	Run geoquery

	Fleet metrics
	Getting started tutorial
	Prerequisites
	Set up
	Create fleet metrics
	View fleet metrics in CloudWatch
	Clean up

	Managing fleet metrics
	Managing fleet metrics (Console)
	Enable fleet indexing
	Create a fleet metric
	Update a fleet metric
	Delete a fleet metric

	Managing fleet metrics (CLI)
	Create a fleet metric
	List fleet metrics
	Describe a fleet metric
	Update a fleet metric
	Delete a fleet metric

	Authorize tagging of IoT resources
	IAM policy example

	MQTT-based file delivery
	What is a stream?
	Managing a stream in the AWS Cloud
	Grant permissions to your devices
	Connect your devices to AWS IoT
	TagResource Usage

	Using AWS IoT MQTT-based file delivery in devices
	Use DescribeStream to get stream data
	DescribeStream request
	DescribeStream response

	Get data blocks from a stream file
	GetStream request
	GetStream response
	Build a bitmap for a GetStream request

	Handling errors from AWS IoT MQTT-based file delivery

	An example use case in FreeRTOS OTA

	Device Advisor
	Setting up
	Create an IoT thing
	Create an IAM role to use as your device role
	Create a custom-managed policy for an IAM user to use Device Advisor
	Create an IAM user to use Device Advisor
	Configure your device

	Getting started with Device Advisor in the console
	Device Advisor workflow
	Prerequisites
	Create a test suite definition
	rootGroup syntax

	Get a test suite definition
	Get a test endpoint
	Start a test suite run
	Get a test suite run
	Stop a test suite run
	Get a qualification report for a successful qualification test suite run

	Device Advisor detailed console workflow
	Prerequisites
	Create a test suite definition
	Start a test suite run
	Stop a test suite run (optional)
	View test suite run details and logs
	Download an AWS IoT qualification report

	Long duration tests console workflow
	Device Advisor VPC endpoints (AWS PrivateLink)
	Considerations for AWS IoT Core Device Advisor VPC endpoints
	Create an interface VPC endpoint for AWS IoT Core Device Advisor
	Controlling access to AWS IoT Core Device Advisor over VPC endpoints

	Device Advisor test cases
	Device Advisor test cases to qualify for the AWS Device Qualification Program.
	TLS
	Happy Path
	Cipher Suites
	Larger Size Server Certificate
	TLS Unsecure Server Cert
	TLS Expired Server Certificate

	MQTT
	CONNECT, DISCONNECT, and RECONNECT
	Publish
	Subscribe
	Keep-Alive
	Persistent Session

	Shadow
	Publish
	Update

	Job Execution
	Permissions and policies
	Long duration tests
	MQTT long duration test case
	MQTT long duration test case execution flow
	Basic tests execution
	CONNECT
	PUBLISH
	QoS 0
	QoS 1

	SUBSCRIBE
	QoS 0
	QoS 1

	RECONNECT

	Advanced tests execution
	RETURN PUBACK ON QoS 1 SUBSCRIPTION
	RECEIVE LARGE PAYLOAD
	PERSISTENT SESSION
	KEEP ALIVE
	INTERMITTENT CONNECTIVITY
	RECONNECT BACKOFF
	LONG SERVER DISCONNECT

	Additional execution time

	MQTT long duration test configuration options
	MQTT long duration test case summary log

	AWS IoT Device Management Software Package Catalog
	Preparing to use Software Package Catalog
	
	Package version lifecycle
	Package version naming conventions
	Default version
	Version attributes
	Enabling AWS IoT fleet indexing
	Reserved named shadow
	Deleting a software package and its package versions

	Preparing security
	Resource-based authentication
	AWS IoT Job rights to deploy package versions
	AWS IoT Job rights to update the reserved named shadow
	AWS IoT Jobs permissions to download from Amazon S3

	Preparing fleet indexing
	Setting the $package shadow as a data source
	Metrics displayed in the console
	Query patterns
	Example data
	Sample queries

	Collecting package version distribution through getBucketsAggregation

	Preparing AWS IoT Jobs
	Substitution parameters for AWS IoT jobs
	Preparing the job document and package version for deployment
	Naming the packages and versions when deploying
	Targeting jobs through AWS IoT dynamic thing groups
	Reserved named shadow and package versions
	Uninstalling a software package and its package version

	Getting started with Software Package Catalog
	Creating a software package and package version
	Deploying a package version through AWS IoT jobs
	Associating a package version to an AWS IoT thing

	AWS IoT Core Device Location
	Measurement types and solvers
	How AWS IoT Core Device Location works
	How to use AWS IoT Core Device Location
	Resolving location of IoT devices
	Resolving device location (console)
	Resolving device location (API)
	Troubleshooting errors when resolving the location

	Resolving device location using AWS IoT Core Device Location MQTT topics
	Format of device location MQTT topics
	Policy for device location MQTT topics
	Device location topics and payload
	/get_position_estimate
	Message payload
	Example policy

	/get_position_estimate/accepted
	Message payload
	Example policy

	/get_position_estimate/rejected
	Message payload
	Example policy

	Location solvers and device payload
	Wi-Fi based solver
	Wi-Fi based solver payload example

	Cellular based solver
	Cellular based solver payload examples
	LTE (Long-term evolution)
	GSM (Global System for Mobile Communications)
	CDMA (Code-division multiple access)
	WCDMA (Wideband code-division multiple access)
	TD-SCDMA (Time division synchronous code-division multiple access)

	IP reverse lookup solver
	IP reverse lookup solver payload example

	GNSS solver
	GNSS solver payload example

	Event messages
	How event messages are generated
	Policy for receiving event messages

	Enable events for AWS IoT
	Registry events
	Thing events
	Thing type events
	Thing Type Created/Deprecated/Undeprecated/Deleted
	Thing Type Associated or Disassociated with a Thing

	Thing group events
	Thing Group Created/Updated/Deleted
	Thing Added to or Removed from a Thing Group
	Thing Group Added to or Deleted from a Thing Group

	Jobs events
	Lifecycle events
	Connect/Disconnect events
	Handling client disconnections

	Subscribe/Unsubscribe events

	Troubleshooting AWS IoT
	AWS IoT Core troubleshooting guide
	Diagnosing connectivity issues
	Connection
	Authentication
	Authorization
	Security and identity

	Diagnosing rules issues
	Configuring CloudWatch Logs for troubleshooting
	Diagnosing external services
	Diagnosing SQL problems

	Diagnosing problems with shadows
	Diagnosing Salesforce IoT input stream action issues
	Execution trace
	Action success and failure

	Diagnosing Stream Limits
	Troubleshooting device fleet disconnects

	AWS IoT Device Advisor troubleshooting guide
	AWS IoT Device Management troubleshooting guide
	AWS IoT Jobs Troubleshooting
	How do I locate an AWS IoT Jobs endpoint?
	How do I monitor AWS IoT Jobs activity and provide metrics?
	Device fleets and single device troubleshooting

	Fleet indexing troubleshooting guide
	Troubleshooting aggregation queries for the fleet indexing service
	Troubleshooting fleet indexing configuration
	Troubleshooting location indexing and geoqueries
	Troubleshooting fleet metrics

	AWS IoT errors

	AWS IoT Device SDKs, Mobile SDKs, and AWS IoT Device Client
	AWS IoT Device SDKs
	AWS IoT Device SDK for Embedded C
	Earlier AWS IoT Device SDKs versions

	AWS Mobile SDKs
	AWS IoT Device Client

	Code examples for AWS IoT using AWS SDKs
	Hello AWS IoT
	Actions for AWS IoT using AWS SDKs
	Use AttachThingPrincipal with an AWS SDK or CLI
	Use CreateKeysAndCertificate with an AWS SDK or CLI
	Use CreateThing with an AWS SDK or CLI
	Use CreateTopicRule with an AWS SDK or CLI
	Use DeleteCertificate with an AWS SDK or CLI
	Use DeleteThing with an AWS SDK or CLI
	Use DeleteTopicRule with an AWS SDK or CLI
	Use DescribeEndpoint with an AWS SDK or CLI
	Use DescribeThing with an AWS SDK or CLI
	Use DetachThingPrincipal with an AWS SDK or CLI
	Use ListCertificates with an AWS SDK or CLI
	Use ListThings with an AWS SDK or CLI
	Use SearchIndex with an AWS SDK or CLI
	Use UpdateIndexingConfiguration with an AWS SDK or CLI
	Use UpdateThing with an AWS SDK or CLI

	Scenarios for AWS IoT using AWS SDKs
	Work with AWS IoT devices, things, and shadows using AWS IoT SDK

	AWS IoT quotas
	AWS IoT Core pricing

