Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Run distributed training on a heterogeneous cluster in Amazon SageMaker AI

Focus mode
Run distributed training on a heterogeneous cluster in Amazon SageMaker AI - Amazon SageMaker AI

Through the distribution argument of the SageMaker AI estimator class, you can assign a specific instance group to run distributed training. For example, assume that you have the following two instance groups and want to run multi-GPU training on one of them.

from sagemaker.instance_group import InstanceGroup instance_group_1 = InstanceGroup("instance_group_1", "ml.c5.18xlarge", 1) instance_group_2 = InstanceGroup("instance_group_2", "ml.p3dn.24xlarge", 2)

You can set the distributed training configuration for one of the instance groups. For example, the following code examples show how to assign training_group_2 with two ml.p3dn.24xlarge instances to the distributed training configuration.

Note

Currently, only one instance group of a heterogeneous cluster can be specified to the distribution configuration.

With MPI

PyTorch
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "mpi": { "enabled": True, "processes_per_host": 8 }, "instance_groups": [instance_group_2] } )
TensorFlow
from sagemaker.tensorflow import TensorFlow estimator = TensorFlow( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "mpi": { "enabled": True, "processes_per_host": 8 }, "instance_groups": [instance_group_2] } )
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "mpi": { "enabled": True, "processes_per_host": 8 }, "instance_groups": [instance_group_2] } )

With the SageMaker AI data parallel library

PyTorch
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "dataparallel": { "enabled": True } }, "instance_groups": [instance_group_2] } )
TensorFlow
from sagemaker.tensorflow import TensorFlow estimator = TensorFlow( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "dataparallel": { "enabled": True } }, "instance_groups": [instance_group_2] } )
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "dataparallel": { "enabled": True } }, "instance_groups": [instance_group_2] } )
Note

When using the SageMaker AI data parallel library, make sure the instance group consists of the supported instance types by the library.

For more information about the SageMaker AI data parallel library, see SageMaker AI Data Parallel Training.

With the SageMaker AI model parallel library

PyTorch
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "modelparallel": { "enabled":True, "parameters": { ... # SageMaker AI model parallel parameters } } }, "instance_groups": [instance_group_2] } )
TensorFlow
from sagemaker.tensorflow import TensorFlow estimator = TensorFlow( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "modelparallel": { "enabled":True, "parameters": { ... # SageMaker AI model parallel parameters } } }, "instance_groups": [instance_group_2] } )
from sagemaker.pytorch import PyTorch estimator = PyTorch( ... instance_groups=[instance_group_1, instance_group_2], distribution={ "smdistributed": { "modelparallel": { "enabled":True, "parameters": { ... # SageMaker AI model parallel parameters } } }, "instance_groups": [instance_group_2] } )

For more information about the SageMaker AI model parallel library, see SageMaker AI Model Parallel Training.

PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.