Consultas de ejemplo - Amazon Chime SDK

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Consultas de ejemplo

Utilice estas consultas de ejemplo para extraer y organizar los datos de su catálogo de datos de Glue para análisis de llamadas de Amazon Chime SDK.

nota

Para obtener información sobre cómo conectarse a Amazon Athena y consultar el catálogo de datos de Glue, consulte Conexión a Amazon Athena con ODBC.

Amplíe cada sección según sea necesario.

call_analytics_metadata tiene el campo metadata en formato de cadena JSON. Utilice la función json_extract_scalar de Athena para consultar los elementos de esta cadena.

SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID" FROM "GlueDatabaseName"."call_analytics_metadata"

El campo call_analytics_metadata tiene el campo de metadatos en formato de cadena JSON. metadata tiene otro objeto anidado denominado oneTimeMetadata, este objeto contiene metadatos SIPRec en formatos XML original y JSON transformado. Utilice la función json_extract_scalar de Athena para consultar los elementos de esta cadena.

SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.siprecMetadata') AS "siprec Metadata XML", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.siprecMetadataJson') AS "Siprec Metadata JSON", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.inviteHeaders') AS "Invite Headers" FROM "GlueDatabaseName"."call_analytics_metadata" WHERE callevent-type = "update";

call_analytics_recording_metadata tiene el campo de metadatos en formato de cadena JSON. Utilice la función json_extract_scalar de Athena para consultar los elementos de esta cadena.

SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID" FROM "GlueDatabaseName"."call_analytics_recording_metadata" WHERE detail-subtype = "Recording"

voice_analytics_status tiene un campo de detalles en el tipo de datos struct. En el siguiente ejemplo, se muestra cómo consultar un campo de tipo de datos struct:

SELECT detail.transactionId AS "Transaction ID", detail.voiceConnectorId AS "VoiceConnector ID", detail.siprecmetadata AS "Siprec Metadata", detail.inviteheaders AS "Invite Headers", detail.streamStartTime AS "Stream Start Time" FROM "GlueDatabaseName"."voice_analytics_status"

En el siguiente ejemplo de consulta, se unen call_analytics_metadata y voice_analytics_status:

SELECT a.detail.transactionId AS "Transaction ID", a.detail.voiceConnectorId AS "VoiceConnector ID", a.detail.siprecmetadata AS "Siprec Metadata", a.detail.inviteheaders AS "Invite Headers", a.detail.streamStartTime AS "Stream Start Time" json_extract_scalar(b.metadata,'$.fromNumber') AS "From Number", json_extract_scalar(b.metadata,'$.toNumber') AS "To Number", json_extract_scalar(b.metadata,'$.callId') AS "Call ID", json_extract_scalar(b.metadata,'$.direction') AS Direction FROM "GlueDatabaseName"."voice_analytics_status" a INNER JOIN "GlueDatabaseName"."call_analytics_metadata" b ON a.detail.transactionId = json_extract_scalar(b.metadata,'$.transactionId')

transcribe_call_analytics_post_call has transcript field in struct format with nested arrays. Use la siguiente consulta para separar las matrices:

SELECT jobstatus, languagecode, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.id) AS utteranceId, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.content) AS transcript, accountid, channel, sessionid, contentmetadata.output AS "Redaction" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" m CROSS JOIN UNNEST (IF(CARDINALITY(m.transcript)=0, ARRAY[NULL], transcript)) AS e(transcript)

La siguiente consulta permite unirse a las tablas transcribe_call_analytics_post_call y call_analytics_metadata:

WITH metadata AS( SELECT from_iso8601_timestamp(time) AS "Timestamp", date_parse(date_format(from_iso8601_timestamp(time), '%m/%d/%Y %H:%i:%s') , '%m/%d/%Y %H:%i:%s') AS "DateTime", date_parse(date_format(from_iso8601_timestamp(time) , '%m/%d/%Y') , '%m/%d/%Y') AS "Date", date_format(from_iso8601_timestamp(time) , '%H:%i:%s') AS "Time", mediainsightspipelineid, json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", REGEXP_REPLACE(REGEXP_EXTRACT(json_extract_scalar(metadata,'$.oneTimeMetadata.s3RecordingUrl'), '[^/]+(?=\.[^.]+$)'), '\.wav$', '') AS "SessionID" FROM "GlueDatabaseName"."call_analytics_metadata" ), transcript_events AS( SELECT jobstatus, languagecode, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.id) AS utteranceId, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.content) AS transcript, accountid, channel, sessionid, contentmetadata.output AS "Redaction" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" m CROSS JOIN UNNEST (IF(CARDINALITY(m.transcript)=0, ARRAY[NULL], transcript)) AS e(transcript) ) SELECT jobstatus, languagecode, a.utteranceId, transcript, accountid, channel, a.sessionid, "Redaction" "Timestamp", "DateTime", "Date", "Time", mediainsightspipelineid, "To Number", "VoiceConnector ID", "From Number", "Call ID", Direction, "Transaction ID" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" a LEFT JOIN metadata b ON a.sessionid = b.SessionID

El siguiente ejemplo de consulta une la URL Voice enhancement call recording:

SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", s3MediaObjectConsoleUrl FROM {GlueDatabaseName}."call_analytics_recording_metadata" WHERE detail-subtype = "VoiceEnhancement"