Seleccione sus preferencias de cookies

Usamos cookies esenciales y herramientas similares que son necesarias para proporcionar nuestro sitio y nuestros servicios. Usamos cookies de rendimiento para recopilar estadísticas anónimas para que podamos entender cómo los clientes usan nuestro sitio y hacer mejoras. Las cookies esenciales no se pueden desactivar, pero puede hacer clic en “Personalizar” o “Rechazar” para rechazar las cookies de rendimiento.

Si está de acuerdo, AWS y los terceros aprobados también utilizarán cookies para proporcionar características útiles del sitio, recordar sus preferencias y mostrar contenido relevante, incluida publicidad relevante. Para aceptar o rechazar todas las cookies no esenciales, haga clic en “Aceptar” o “Rechazar”. Para elegir opciones más detalladas, haga clic en “Personalizar”.

Ejemplos de Amazon Textract que utilizan la AWS CLI

Modo de enfoque
Ejemplos de Amazon Textract que utilizan la AWS CLI - AWS Command Line Interface

Esta documentación es para la versión 1 de AWS CLI. Para obtener documentación relacionada con la versión 2 de AWS CLI, consulte la Guía del usuario de la versión 2.

Esta documentación es para la versión 1 de AWS CLI. Para obtener documentación relacionada con la versión 2 de AWS CLI, consulte la Guía del usuario de la versión 2.

En los siguientes ejemplos de código se muestra cómo realizar acciones e implementar escenarios comunes usando AWS Command Line Interface con Amazon Textract.

Las acciones son extractos de código de programas más grandes y deben ejecutarse en contexto. Mientras las acciones muestran cómo llamar a las distintas funciones de servicio, es posible ver las acciones en contexto en los escenarios relacionados.

En cada ejemplo se incluye un enlace al código de origen completo, con instrucciones de configuración y ejecución del código en el contexto.

Acciones

En el siguiente ejemplo de código, se muestra cómo utilizar analyze-document.

AWS CLI

Análisis del texto de un documento

En el siguiente ejemplo de analyze-document se muestra cómo analizar el texto de un documento.

Linux/macOS:

aws textract analyze-document \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]'

Windows:

aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region region-name

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }

Para obtener más información, consulte Análisis del texto de un documento con Amazon Textract en la Guía para desarrolladores de Amazon Textract

  • Para obtener información acerca de la API, consulte AnalyzeDocument en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar analyze-document.

AWS CLI

Análisis del texto de un documento

En el siguiente ejemplo de analyze-document se muestra cómo analizar el texto de un documento.

Linux/macOS:

aws textract analyze-document \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]'

Windows:

aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region region-name

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }

Para obtener más información, consulte Análisis del texto de un documento con Amazon Textract en la Guía para desarrolladores de Amazon Textract

  • Para obtener información acerca de la API, consulte AnalyzeDocument en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar detect-document-text.

AWS CLI

Detección de texto en un documento

En el siguiente ejemplo de detect-document-text se muestra cómo detectar texto en un documento.

Linux/macOS:

aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Windows:

aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }

Para obtener más información, consulte Detección del texto de un documento con Amazon Textract en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte DetectDocumentText en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar detect-document-text.

AWS CLI

Detección de texto en un documento

En el siguiente ejemplo de detect-document-text se muestra cómo detectar texto en un documento.

Linux/macOS:

aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Windows:

aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }

Para obtener más información, consulte Detección del texto de un documento con Amazon Textract en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte DetectDocumentText en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar get-document-analysis.

AWS CLI

Obtención de los resultados del análisis de texto asíncrono de un documento de varias páginas

En el siguiente ejemplo de get-document-analysis se muestra cómo obtener los resultados del análisis de texto asíncrono de un documento de varias páginas.

aws textract get-document-analysis \ --job-id df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b \ --max-results 1000

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte GetDocumentAnalysis en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar get-document-analysis.

AWS CLI

Obtención de los resultados del análisis de texto asíncrono de un documento de varias páginas

En el siguiente ejemplo de get-document-analysis se muestra cómo obtener los resultados del análisis de texto asíncrono de un documento de varias páginas.

aws textract get-document-analysis \ --job-id df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b \ --max-results 1000

Salida:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte GetDocumentAnalysis en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar get-document-text-detection.

AWS CLI

Para obtener los resultados de la detección de texto asíncrono de un documento de varias páginas

En el siguiente ejemplo de get-document-text-detection, se muestra cómo obtener los resultados de la detección de texto asíncrono en un documento de varias páginas.

aws textract get-document-text-detection \ --job-id 57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9 \ --max-results 1000

Output

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

En el siguiente ejemplo de código, se muestra cómo utilizar get-document-text-detection.

AWS CLI

Para obtener los resultados de la detección de texto asíncrono de un documento de varias páginas

En el siguiente ejemplo de get-document-text-detection, se muestra cómo obtener los resultados de la detección de texto asíncrono en un documento de varias páginas.

aws textract get-document-text-detection \ --job-id 57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9 \ --max-results 1000

Output

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

En el siguiente ejemplo de código, se muestra cómo utilizar start-document-analysis.

AWS CLI

Cómo empezar a analizar el texto de un documento de varias páginas

En el siguiente ejemplo de start-document-analysis se muestra cómo iniciar el análisis asíncrono de texto de un documento de varias páginas.

Linux/macOS:

aws textract start-document-analysis \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Windows:

aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Salida:

{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte StartDocumentAnalysis en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar start-document-analysis.

AWS CLI

Cómo empezar a analizar el texto de un documento de varias páginas

En el siguiente ejemplo de start-document-analysis se muestra cómo iniciar el análisis asíncrono de texto de un documento de varias páginas.

Linux/macOS:

aws textract start-document-analysis \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Windows:

aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Salida:

{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

  • Para obtener información sobre la API, consulte StartDocumentAnalysis en la Referencia de comandos de la AWS CLI.

En el siguiente ejemplo de código, se muestra cómo utilizar start-document-text-detection.

AWS CLI

Cómo empezar a detectar texto en un documento de varias páginas

En el siguiente ejemplo de start-document-text-detection se muestra cómo iniciar la detección asíncrona de texto de un documento de varias páginas.

Linux/macOS:

aws textract start-document-text-detection \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleARN"

Windows:

aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Salida:

{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

En el siguiente ejemplo de código, se muestra cómo utilizar start-document-text-detection.

AWS CLI

Cómo empezar a detectar texto en un documento de varias páginas

En el siguiente ejemplo de start-document-text-detection se muestra cómo iniciar la detección asíncrona de texto de un documento de varias páginas.

Linux/macOS:

aws textract start-document-text-detection \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleARN"

Windows:

aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Salida:

{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }

Para obtener más información, consulte Detección y análisis de texto en documentos de varias páginas en la Guía para desarrolladores de Amazon Textract

En esta página

PrivacidadTérminos del sitioPreferencias de cookies
© 2025, Amazon Web Services, Inc o sus afiliados. Todos los derechos reservados.