Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Dimensionnement des clusters MemoryDB
À mesure que la demande de vos clusters évolue, vous pouvez décider d'améliorer les performances ou de réduire les coûts en modifiant le nombre de partitions de votre cluster MemoryDB. Il est recommandé d'utiliser à cette fin la mise à l'échelle horizontal en ligne, parce que votre cluster peut ainsi continuer à traiter les demandes pendant le processus de mise à l'échelle.
Les conditions qui peuvent vous conduire à décider de redimensionner votre cluster sont les suivantes :
-
Pression mémoire :
Si les nœuds de votre cluster sont sous pression mémoire, vous pouvez décider de l'augmenter de telle sorte que vous ayez plus de ressources pour mieux stocker les données et traiter les demandes.
Vous pouvez déterminer si vos nœuds sont soumis à une pression de mémoire en surveillant les indicateurs suivants : FreeableMemorySwapUsage,, et BytesUsedForMemoryDB.
-
Goulet d'étranglement UC ou réseau :
Si latency/throughput des problèmes affectent votre cluster, vous devrez peut-être le redimensionner pour les résoudre.
Vous pouvez surveiller vos niveaux de latence et de débit en surveillant les métriques suivantes : CPUUtilization, NetworkBytesIn, NetworkBytesOutCurrConnections, et NewConnections.
-
Votre cluster est surdimensionné :
La demande courante sur votre cluster est telle que la mise à l'échelle ne nuit pas aux performances et réduit vos coûts.
Vous pouvez surveiller l'utilisation de votre cluster pour déterminer si vous pouvez ou non l'adapter en toute sécurité à l'aide des métriques suivantes : FreeableMemorySwapUsage,, BytesUsedForMemoryDB CPUUtilizationNetworkBytesIn,, NetworkBytesOut, CurrConnections, et NewConnections.
Impact la mise à l'échelle sur les performances
Lorsque vous dimensionnez à l'aide du processus hors ligne, votre cluster se retrouve hors ligne pendant une partie importante du processus et de ce fait vous ne pouvez pas traiter les demandes. Lorsque vous mettez à l'échelle à l'aide de la méthode en ligne, comme la mise à l'échelle est une opération gourmande en ressources de calcul, il en résulte une certaine dégradation des performances ; néanmoins, votre cluster continue à traiter les demandes d'un bout à l'autre de l'opération de mise à l'échelle. L'importance de la dégradation à laquelle vous êtes confronté dépend de votre utilisation normale de l'UC et de vos données.
Il existe deux méthodes pour redimensionner votre cluster MemoryDB : mise à l'échelle horizontale et verticale.
-
La mise à l'échelle horizontale vous permet de modifier le nombre de partitions dans le cluster en ajoutant ou en supprimant des partitions. Le processus de repartage en ligne permet une mise à l'échelle in/out pendant que le cluster continue de traiter les demandes entrantes.
-
Dimensionnement vertical : modifier le type de nœud pour redimensionner le cluster. La mise à l'échelle verticale en ligne permet une mise à l'échelle up/down pendant que le cluster continue de traiter les demandes entrantes.
Si vous réduisez la taille et la capacité de mémoire du cluster, en augmentant ou en diminuant la taille, assurez-vous que la nouvelle configuration dispose de suffisamment de mémoire pour vos données et la surcharge du moteur.