Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Cas d'utilisation 5 — Sous-requêtes ou CTE
Les expressions de table communes (CTE) permettent de décomposer les requêtes volumineuses en requêtes plus petites. Cela facilite la maintenance de l'ensemble de la requête.
Les jointures de sous-requêtes sont remplacées par des jointures CTE, qui sont plus lisibles car la requête est nommée et séparée dans la section CTE. Cela est particulièrement utile lorsque la taille de la requête augmente et qu'elle devient plus difficile à gérer. De plus, les résultats du CTE dans PostgreSQL sont matérialisés. Si vous appelez le CTE à plusieurs endroits, la définition de requête réelle ne sera exécutée qu'une seule fois. Le résultat sera enregistré en mémoire. Vous pouvez l'utiliser pour toute logique complexe qui doit être utilisée à plusieurs endroits dans la même requête. Mettez cette logique dans un CTE et appelez le CTE autant de fois que vous le souhaitez.
Par exemple, un client utilisait des requêtes d'application en ligne comportant de nombreuses sous-requêtes au sein des requêtes. Les sous-requêtes ont été filtrées en fonction des valeurs des paramètres d'entrée envoyées par les applications.
EXPLAIN ANALYZE SELECT * FROM ORDER_DETAILS A WHERE A.ORDID IN (SELECT ORDID FROM PAYMENT_DETAILS) AND A.ORDID IN (SELECT ORDID FROM ITEM_DETAILS ) AND A.ORDID = 1000000;
"Nested Loop Semi Join (cost=3000.00..194258.21 rows=5 width=74) (actual time=201.605..747.945 rows=5 loops=1)" " -> Nested Loop Semi Join (cost=2000.00..135040.47 rows=5 width=74) (actual time=146.016..666.779 rows=5 loops=1)" " -> Gather (cost=1000.00..78580.31 rows=5 width=74) (actual time=58.893..463.570 rows=5 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on order_details a (cost=0.00..77579.81 rows=2 width=74) (actual time=165.627..549.702 rows=2 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1666665" " -> Materialize (cost=1000.00..56460.07 rows=3 width=4) (actual time=17.424..40.638 rows=1 loops=5)" " -> Gather (cost=1000.00..56460.06 rows=3 width=4) (actual time=87.113..203.178 rows=1 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on payment_details (cost=0.00..55459.76 rows=1 width=4) (actual time=174.431..423.792 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333002" " -> Materialize (cost=1000.00..59217.64 rows=4 width=4) (actual time=11.117..16.231 rows=1 loops=5)" " -> Gather (cost=1000.00..59217.62 rows=4 width=4) (actual time=55.581..81.148 rows=1 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on item_details (cost=0.00..58217.22 rows=2 width=4) (actual time=287.030..411.004 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333080" "Planning Time: 0.266 ms" "Execution Time: 747.986 ms"
Après avoir modifié les sous-requêtes à l'aide d'un CTE et ajouté des filtres afin que seuls les ensembles de lignes requis soient récupérés, les performances des requêtes s'améliorent.
EXPLAIN ANALYZE WITH PAYMENT AS ( SELECT * FROM PAYMENT_DETAILS WHERE ORDID = 1000000 ), ITEM AS (SELECT * FROM ITEM_DETAILS WHERE ORDID = 1000000) SELECT * FROM ORDER_DETAILS A JOIN PAYMENT B ON A.ORDID=B.ORDID JOIN ITEM C ON B.ORDID=C.ORDID
"Nested Loop (cost=3000.00..194258.91 rows=60 width=166) (actual time=586.410..732.918 rows=80 loops=1)" " -> Nested Loop (cost=2000.00..115677.83 rows=12 width=92) (actual time=456.760..457.083 rows=16 loops=1)" " -> Gather (cost=1000.00..59217.62 rows=4 width=48) (actual time=153.802..154.060 rows=4 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on item_details (cost=0.00..58217.22 rows=2 width=48) (actual time=85.417..249.045 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333332" " -> Materialize (cost=1000.00..56460.07 rows=3 width=44) (actual time=75.738..75.753 rows=4 loops=4)" " -> Gather (cost=1000.00..56460.06 rows=3 width=44) (actual time=302.947..303.005 rows=4 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on payment_details (cost=0.00..55459.76 rows=1 width=44) (actual time=184.609..294.784 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333332" " -> Materialize (cost=1000.00..78580.34 rows=5 width=74) (actual time=8.103..17.238 rows=5 loops=16)" " -> Gather (cost=1000.00..78580.31 rows=5 width=74) (actual time=129.641..275.795 rows=5 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on order_details a (cost=0.00..77579.81 rows=2 width=74) (actual time=78.556..268.994 rows=2 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1666665" "Planning Time: 0.108 ms" "Execution Time: 732.953 ms"
Voici les observations issues des exemples de données. Lorsque vous exécutez la requête sur un énorme ensemble de données, la différence de performances est très importante.