Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Détection d'étiquettes personnalisées dans les vidéos
L’exemple suivant montre comment vous pouvez utiliser DetectCustomLabels
avec des trames extraites d’une vidéo. Le code a été testé avec des fichiers vidéo au format mov et mp4.
Utilisation de DetectCustomLabels
avec des trames capturées
-
Si ce n'est pas déjà fait, installez et configurez le AWS CLI et le AWS SDKs. Pour de plus amples informations, veuillez consulter Étape 4 : Configurez le AWS CLI and AWS SDKs.
-
Veillez à disposer des autorisations
rekognition:DetectCustomLabels
etAmazonS3ReadOnlyAccess
. Pour plus d’informations, consultez Étape 4 : Configurez le AWS CLI and AWS SDKs. -
Utilisez l’exemple de code suivant. Remplacez la valeur de
videoFile
par le nom du fichier vidéo. Remplacez la valeurprojectVersionArn
de par le nom de ressource Amazon (ARN) de votre modèle d'étiquettes personnalisées Amazon Rekognition.# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to analyze a local video with an Amazon Rekognition Custom Labels model. """ import argparse import logging import json import math import cv2 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def analyze_video(rek_client, project_version_arn, video_file): """ Analyzes a local video file with an Amazon Rekognition Custom Labels model. Creates a results JSON file based on the name of the supplied video file. :param rek_client: A Boto3 Amazon Rekognition client. :param project_version_arn: The ARN of the Custom Labels model that you want to use. :param video_file: The video file that you want to analyze. """ custom_labels = [] cap = cv2.VideoCapture(video_file) frame_rate = cap.get(5) # Frame rate. while cap.isOpened(): frame_id = cap.get(1) # Current frame number. print(f"Processing frame id: {frame_id}") ret, frame = cap.read() if ret is not True: break if frame_id % math.floor(frame_rate) == 0: has_frame, image_bytes = cv2.imencode(".jpg", frame) if has_frame: response = rek_client.detect_custom_labels( Image={ 'Bytes': image_bytes.tobytes(), }, ProjectVersionArn=project_version_arn ) for elabel in response["CustomLabels"]: elabel["Timestamp"] = (frame_id/frame_rate)*1000 custom_labels.append(elabel) print(custom_labels) with open(video_file + ".json", "w", encoding="utf-8") as f: f.write(json.dumps(custom_labels)) cap.release() def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "project_version_arn", help="The ARN of the model that you want to use." ) parser.add_argument( "video_file", help="The local path to the video that you want to analyze." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") analyze_video(rekognition_client, args.project_version_arn, args.video_file) except ClientError as err: print(f"Couldn't analyze video: {err}") if __name__ == "__main__": main()