Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Créez votre propre conteneur Docker avec la bibliothèque SageMaker AI distributed data parallel library
Pour créer votre propre conteneur Docker à des fins de formation et utiliser la bibliothèque parallèle de données SageMaker AI, vous devez inclure les dépendances correctes et les fichiers binaires des bibliothèques parallèles distribuées par SageMaker IA dans votre Dockerfile. Cette section fournit des instructions sur la façon de créer un Dockerfile complet avec le minimum de dépendances pour l'entraînement distribué en SageMaker IA à l'aide de la bibliothèque data parallel.
Note
Cette option Docker personnalisée avec la bibliothèque SageMaker AI data parallel sous forme binaire n'est disponible que pour PyTorch.
Pour créer un Dockerfile avec le kit de SageMaker formation et la bibliothèque data parallel
-
Commencez par une image Docker à partir de NVIDIA CUDA
. Utilisez les versions pour développeurs de cuDNN qui contiennent les outils d'exécution et de développement CUDA (en-têtes et bibliothèques) pour créer à partir du code source. PyTorch FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04
Astuce
Les images officielles du AWS Deep Learning Container (DLC) sont créées à partir des images de base NVIDIA CUDA
. Si vous souhaitez utiliser les images DLC prédéfinies comme références tout en suivant le reste des instructions, consultez les AWS Deep Learning Containers for PyTorch Dockerfiles. -
Ajoutez les arguments suivants pour spécifier les versions de PyTorch et d'autres packages. Indiquez également les chemins des compartiments Amazon S3 menant à la bibliothèque SageMaker AI data parallel et à d'autres logiciels pour utiliser les AWS ressources, tels que le plug-in Amazon S3.
Pour utiliser des versions de bibliothèques tierces autres que celles fournies dans l'exemple de code suivant, nous vous recommandons de consulter les Dockerfiles officiels de AWS Deep Learning Container PyTorch pour
trouver les versions testées, compatibles et adaptées à votre application. URLs Pour rechercher l'
SMDATAPARALLEL_BINARY
argument, consultez les tables de recherche à l'adresseFrameworks pris en charge.ARG PYTORCH_VERSION=
1.10.2
ARG PYTHON_SHORT_VERSION=3.8
ARG EFA_VERSION=1.14.1
ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl
ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws
-
Définissez les variables d'environnement suivantes pour créer correctement les composants d' SageMaker apprentissage et exécuter la bibliothèque Data Parallel. Vous utilisez ces variables pour les composants dans les étapes suivantes.
# Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH
-
Installez ou mettez à jour
curl
,wget
etgit
pour télécharger et créer des packages dans les étapes suivantes.RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/*
-
Installez le logiciel Elastic Fabric Adapter (EFA) pour les communications réseau EC2 Amazon.
RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa
-
Installez Conda
pour traiter la gestion des paquets. RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya
-
Obtenez, compilez, installez PyTorch et ses dépendances. Nous construisons PyTorch à partir du code source
car nous devons contrôler la version NCCL pour garantir la compatibilité avec le plug-in AWS OFI NCCL . -
En suivant les étapes du dockerfile PyTorch officiel
, installez les dépendances de construction et configurez ccache pour accélérer la recompilation. RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev \ && rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache
-
Dépendances communes et dépendances Linux
de l'installationPyTorch. # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113
-
Clonez le PyTorch GitHubdépôt
. RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION}
-
Installez et créez une version spécifique de NCCL
. Pour ce faire, remplacez le contenu du dossier NCCL par défaut ( /pytorch/third_party/nccl
) par la version NCCL spécifique du référentiel NVIDIA. PyTorch La version NCCL a été définie à l'étape 3 de ce guide.RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1
-
Construisez et installez PyTorch. Ce processus prend généralement un peu plus d'une heure. Il est créé en utilisant la version NCCL téléchargée à l'étape précédente.
RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch
-
-
Créez et installez le Plugin NCCL OFI AWS
. Cela permet le support de libfabric pour la bibliothèque SageMaker AI data parallel. RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl
-
Construisez et installez TorchVision
. RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision
-
Installez et configurer OpenSSH. OpenSSH est requis pour que MPI communique entre les conteneurs. Autorisez OpenSSH à parler aux conteneurs sans demander de confirmation.
RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config
-
Installez le plug-in PT S3 pour accéder efficacement aux jeux de données dans Amazon S3.
RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt
-
Installez la bibliothèque libboost
. Ce package est nécessaire pour mettre en réseau la fonctionnalité d'E/S asynchrone de la bibliothèque SageMaker AI data parallel. WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost
-
Installez les outils d' SageMaker IA suivants pour la PyTorch formation.
WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training
-
Enfin, installez le binaire SageMaker AI data parallel et les dépendances restantes.
RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
-
Après avoir créé le Dockerfile, consultez Adapting Your Own Training Container pour savoir comment créer le conteneur Docker, l'héberger dans Amazon ECR et exécuter une tâche de formation à l'aide du SDK Python. SageMaker
L'exemple de code suivant montre un Dockerfile complet après avoir combiné tous les blocs de code précédents.
# This file creates a docker image with minimum dependencies to run SageMaker AI data parallel training FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04 # Set appropiate versions and location for components ARG PYTORCH_VERSION=1.10.2 ARG PYTHON_SHORT_VERSION=3.8 ARG EFA_VERSION=1.14.1 ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws # Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="3.7 5.0 7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH # Install basic dependencies to download and build other dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/* # Install EFA. # This is required for SMDDP backend communication RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa # Install Conda RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya # Install PyTorch. # Start with dependencies listed in official PyTorch dockerfile # https://github.com/pytorch/pytorch/blob/master/Dockerfile RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev && \ rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113 # Clone PyTorch RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION} # Note that we need to use the same NCCL version for PyTorch and OFI plugin. # To enforce that, install NCCL from source before building PT and OFI plugin. # Install NCCL. # Required for building OFI plugin (OFI requires NCCL's header files and library) RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1 # Build and install PyTorch. RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch RUN ccache -C # Build and install OFI plugin. \ # It is required to use libfabric. RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl # Build and install Torchvision RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision # Install OpenSSH. # Required for MPI to communicate between containers, allow OpenSSH to talk to containers without asking for confirmation RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config # Install PT S3 plugin. # Required to efficiently access datasets in Amazon S3 RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt # Install libboost from source. # This package is needed for smdataparallel functionality (for networking asynchronous IO). WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost # Install SageMaker AI PyTorch training. WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training # Install SageMaker AI data parallel binary (SMDDP) # Start with dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* # Install SMDDP RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
Astuce
Pour des informations plus générales sur la création d'un Dockerfile personnalisé pour l'entraînement à l' SageMaker IA, consultez Utiliser vos propres algorithmes d'entraînement.
Astuce
Si vous souhaitez étendre le Dockerfile personnalisé pour intégrer la bibliothèque parallèle de SageMaker modèles AI, consultez. Créez votre propre conteneur Docker avec la bibliothèque parallèle de modèles SageMaker distribués