Images SageMaker Docker préconçues pour le deep learning - Amazon SageMaker

Images SageMaker Docker préconçues pour le deep learning

SageMaker fournit des images Docker préconçues qui incluent des bibliothèques de cadres de deep learning et d'autres dépendances nécessaires pour l'entraînement et l'inférence. Pour obtenir la liste complète des images Docker préconçues disponibles, veuillez consulter Images Deep Learning Containers.

Si vous n'utilisez pas le kit SDK Amazon SageMaker Python et l'un de ses estimateurs pour récupérer les images préconçues, vous devez les récupérer par vous-même.

Utilisation du kit SDK SageMaker Python

Avec le kit SDK SageMaker Python, vous pouvez entraîner et déployer des modèles à l'aide de l'un de ces cadres de deep learning populaires. Pour obtenir des instructions sur l'installation et l'utilisation du kit SDK, veuillez consulter Kit SDK Amazon SageMaker Python. Le tableau suivant répertorie les cadres disponibles et les instructions sur la façon de les utiliser avec le kit SDK SageMaker Python :

Extension d'images Docker SageMaker préconçues

Vous pouvez personnaliser ces conteneurs préconçus ou les étendre afin de gérer toutes les exigences fonctionnelles supplémentaires pour votre algorithme ou modèle non prises en charge par l'image Docker SageMaker préconçue. Pour obtenir un exemple, veuillez consulter Extension de nos conteneurs PyTorch.

Vous pouvez utiliser des conteneurs préconçus pour déployer vos modèles personnalisés ou des modèles qui ont été entraînés dans un autre cadre que SageMaker. Pour obtenir une présentation du processus d'importation des artefacts du modèle entraîné dans SageMaker et leur hébergement au niveau d'un point de terminaison, veuillez consulter Bring your own pre-trained MXNet or TensorFlow models into Amazon SageMaker (Importer ses propres modèles MXNet ou TensorFlow préentraînés dans Amazon SageMaker).